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ABSTRACT

The expression of inhibitory immune checkpoint molecules such as PD-L] is frequently observed in human
cancers and can lead to the suppression of T cell-mediated immune responses. Here we apply ECCITE-seq,
a technology which combines pooled CRISPR screens with single-cell mRNA and surface protein
measurements, to explore the molecular networks that regulate PD-LI expression. We also develop a
computational framework, mixscape, that substantially improves the signal-to-noise ratio in single-cell
perturbation screens by identifying and removing confounding sources of variation. Applying these tools,
we identify and validate regulators of PD-LI, and leverage our multi-modal data to identify both
transcriptional and post-transcriptional modes of regulation. In particular, we discover that the kelch-like
protein KEAPI and the transcriptional activator NRF2, mediate levels of PD-LI upregulation after IFNvy
stimulation. Our results identify a novel mechanism for the regulation of immune checkpoints and present
a powerful analytical framework for the analysis of multi-modal single-cell perturbation screens.

INTRODUCTION

Immune checkpoint (IC) molecules regulate the critical balance between activation and inhibition during
immune responses. Under normal physiological conditions, inhibitory IC molecules are essential to
maintain self-tolerance and prevent autoimmunity [1,2], but their expression is often mis-regulated in
human cancers to escape immune surveillance [3,4]. For example, the inhibitory IC PD-L1, which interacts
with the PD-1 receptor on T cells to inhibit T-cell activation [5], is overexpressed in many cancers and
serves as a prognostic factor for patient survival and response to immunotherapy [6]. There is therefore
substantial interest not only in identifying therapeutic avenues to block these interactions, but also in
understanding the molecular networks utilized by cancer cells to up-regulate ICs like PD-L1.

Previous efforts have established an initial set of molecular regulators that influence both mRNA and
surface protein levels for PD-LI. Numerous studies have observed that exposure to interferon gamma
(IFNYy) rapidly induces PD-LI expression both in cancer cell lines in vitro, as well as in the tumor
microenvironment [7—10]. Core components of the IFNY response therefore represent upstream regulators
of PD-LI expression, including the transcription factor IRF1 (which binds directly to the PD-LI promoter
[11]), the JAK-STAT signal transduction pathway, and the IFNy receptors themselves. Additional
modulators of IFNY signaling [12], PD-LI promoter chromatin state [13], or response to UV-mediated
stress [14] have also been identified. In addition, there has been particular recent interest in the
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characterization of putative post-transcriptional regulators of PD-L/ stability and degradation. For example,
the Cullin 3-SPOP E3-ligase complex can directly ubiquitinate PD-L1 in a cell-cycle dependent manner,
leading to its degradation [15]. In addition, a genome-wide CRISPR screen identified two previously
uncharacterized regulators, CMTM6 and CMTM4, which stabilize PD-L1 surface expression by preventing
lysosome-mediated degradation [16,17]. In each of these cases, perturbation of PD-LI regulators was
shown to modulate the activity of anti-tumor T cells, highlighting the therapeutic interest in understanding
the regulation of inhibitory IC molecules.

We recently introduced expanded CRISPR-compatible CITE-seq (ECCITE-seq), which simultaneously
measures transcriptomes, surface protein levels, and perturbations at single-cell resolution, as a new
approach to identify and characterize molecular regulators [18]. ECCITE-seq builds upon the experimental
design of pooled CRISPR screens, where multiple perturbations are multiplexed together in a single
experiment, but offers distinct advantages. First, the single-cell sequencing readout (i.e. Perturb-seq,
CROP-seq, CRISP-seq) [19-21], enables the measurement of detailed molecular phenotypes, instead of
one phenotype (expression of a single protein or cell viability). Second, by simultaneously coupling
measurements of mRNA, surface protein, and direct detection of guides within the same cell [22], ECCITE-
seq allows for multimodal characterization of each perturbation. We therefore reasoned that ECCITE-seq
would enable us to simultaneously test and identify new regulators of IC molecules, and in particular, to
distinguish between transcriptional and post-transcriptional modes. Moreover, the rich and high-
dimensional readouts readily facilitate network and pathway-based analyses, which could go beyond the
identification of individual genes and yield insights into their regulatory mechanism.

Here, we apply ECCITE-seq to simultaneously perturb and characterize putative regulators of inhibitory
IC molecules in response to IFNy stimulation. When analyzing our single-cell data, we identified
confounding sources of heterogeneity, including the presence of cells that received a targeting guide RNA
but exhibited no perturbation effects, introducing substantial noise into downstream analyses. We
developed and validated computational methods to control for these factors, and substantially increased our
statistical power to characterize multi-modal perturbations.

Leveraging these tools, we identify a set of genes whose perturbation affects PD-LI transcript levels,
surface protein levels, or both, and characterize the underlying molecular pathways utilized by each
regulator. In particular, we find that the kelch-like protein KEAPI and the transcriptional activator NRF2,
both of which are frequently mutated in human cancers [23], can modify PD-LI levels. We link these
findings to a novel regulatory mechanism for CUL3, and show that this gene acts as an indirect
transcriptional activator of PD-LI mRNA via stabilization of the NRF2 pathway. Taken together, our
findings identify an important pathway for immune checkpoint regulation, and present a powerful and
broadly applicable analytical framework for analyzing ECCITE-seq data.

RESULTS

Human cancer cells routinely up-regulate IC molecules, such as PD-LI, to escape immune surveillance.
The blockade of these checkpoints can significantly enhance the efficacy of the anti-tumor immune
response, particularly during immunotherapy [24]. We were therefore motivated to gain deeper
understanding of the molecular pathways and regulators that affect inhibitory IC expression, with a


https://doi.org/10.1101/2020.06.28.175596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.28.175596; this version posted June 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

particular focus on PD-LI. Aiming to develop an experimental system to study multiple ICs simultaneously,
we screened four cancer cell lines (THP-1, K562, KG-1 and U937) and tested their ability to up-regulate
IC molecules in response to cytokines by flow cytometry (Supplementary Methods). We found that
stimulating THP-1 cells with a combination of IFNYy, Decitabine (DAC), and transforming growth-factor
beta 1 (TGFp1) resulted in robust induction of three ICs: PD-L1, PD-L2, and CD86 (Supplementary Figure
1A). We also created a modified THP-1 cell line to inducibly express Cas9 under doxycycline treatment,
representing an in-vitro model system amenable to environmental and genomic perturbations
(Supplementary Methods).

In order to identify and characterize new regulators, we pursued a two-step experimental strategy, where
each step leveraged multi-modal single-cell sequencing technologies (Figure 1A). First, we performed
CITE-seq [22] on both unstimulated and stimulated THP-1 cells. Through the use of DNA-barcoded
antibodies, CITE-seq enables the simultaneous measurement of cellular transcriptomes alongside surface
protein levels of PD-L1, PD-L2, and CD86. We reasoned that these data would enable us to identify gene
modules whose transcriptional levels mirrored the surface expression of each IC. Within these modules, we
could identify a ‘target set’ of putative regulators representing genes known to affect transcription,
chromatin, signaling, or protein stability. In a second step, we performed multiplexed perturbation and
functional characterization of our target set. To accomplish this, we applied our recently developed
ECCITE-seq technology, which extends CRISPR-compatibility to the CITE-seq protocol and enables
simultaneous guide RNA capture. ECCITE-seq allowed us to multiplex >100 individual perturbations
together, and to simultaneously test the effect of each in a single experiment. Moreover, the rich and multi-
modal nature of these data allowed us to distinguish both transcriptional and post-transcriptional effects,
and to explore mechanistic hypotheses for each gene.

CITE-seq and ECCITE-seq enable identification and characterization of putative IC regulators

To identify putative IC regulators, we performed CITE-seq experiments on both stimulated and
unstimulated THP-1 cells (Supplementary Methods). We recovered a total of 7,566 single-cell profiles,
each representing coupled measurements of cellular transcriptomes and surface levels for three proteins:
PD-L1, PD-L2 and CD86. For each surface protein, we compared the patterns of up-regulation upon
stimulation observed by CITE-seq with those observed by flow cytometry, and found highly concordant
results across technologies (Figure 1B, C; Supplementary Figure 1A, B). The multi-modal CITE-seq
measurements allowed for the identification of genes whose expression is activated alongside IC surface
protein induction (Supplementary Methods). Induced genes included well-characterized members of the
IFNy pathway (including the receptors JAK2, STATI, and IRFI), while down-regulated genes (ELANE,
MS4A6A, CTSG) were consistent with the monocyte progenitor identity of resting THP-1 cells.

Based on these results, we selected 26 genes for downstream characterization (Supplementary Table 1).
Our panel included eight genes with well-characterized regulatory effects on PD-LI, and 18 genes
representing transcription factors, chromatin regulators, signaling regulators, and modifiers of protein
stability, that were mined from our CITE-seq data but where a clear link with IC regulation has not been
firmly established. The first set represents positive controls for downstream analyses, while the second are
putative new regulators. We designed a pooled single guide RNA (sgRNA) library consisting of three to
four gRNAs per gene along with ten non-targeting (NT) guides, representing a total library of 111 gRNAs.
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In order to functionally characterize our previously identified genes, we performed ECCITE-seq, a 5’
capture-based scRNA-seq method that is able to reverse transcribe sgRNA via the addition of a scaffold-
specific primer, alongside cellular transcriptomes and ADTs. To guide our experimental design, we first
performed a pilot experiment using gRNAs targeting PD-LI or IFNGRI as well as NT controls. In both
cases, we observed a substantial reduction in PD-L1 expression, and perturbation of IFNGRI also ablated
the IFNYy transcriptional response (Figure 1E). Clear effects were observed even after downsampling the
dataset to 25 cells/gRNA (Supplementary Figure 1C).

We next performed an ECCITE-seq experiment utilizing our full library of 111 guides. Our total dataset
represents three independent transductions (biological replicates) at low multiplicity of infection (MOI),
aiming to maximize the proportion of cells infected with a single gRNA. After transduction, Cas9
expression was activated with doxycycline, and 90% of cells were stimulated to induce IC expression (the
remainder were profiled without stimulation, Supplementary Figure 2A). Cells were then incubated with
TotalSeq C antibodies (BioLegend), and processed on the 10x Genomics Single Cell 5° assay. All samples
were processed in parallel using our previously described multiplexing approach (‘cell hashing’; [25]), and
sequenced on the [llumina NovaSeq platform (55,300 average mRNA reads/cell). Out of 30,328 cells, we
found 22,606 cells where we could detect robust expression of at least one gRNA, including 22,573 where
a cell could be specifically assigned to an individual perturbation (Supplementary Figures 2B-D), in line
with the results of our pilot experiment.

Calculating local perturbation signatures removes confounding sources of variation

We next performed unsupervised dimensionality reduction (PCA) and visualization (UMAP) of the
ECCITE-seq data based on their RNA profiles (Figure 2A, B; Supplementary Methods). While we had
expected that cells would form groupings that were consistent with their underlying genetic perturbation,
we initially observed that alternative sources of variation, including replicate identity, cell-cycle stage, and
the activation of cellular stress responses (Supplementary Figure 3A, B), confounded our analysis. These
sources of heterogeneity were also present in an independent analysis of NT control cells (those expressing
non-targeting gRNAs, Supplementary Figure 3C), and we therefore designed a procedure to mitigate their
effects.

Briefly, for each target cell (expressing one target gRNA), we identified 20 cells from the control pool (NT
cells) with the most similar mRNA expression profiles (Figure 2C; Supplementary Methods). These k=20
nearest neighbors should be in a matched biological state to the target cell, but did not receive a targeting
gRNA. Therefore, subtracting their averaged expression from the target cell’s original RNA profile results
in a local perturbation signature, the component of each cell’s transcriptome that specifically reflects its
genetic perturbation. Notably, our procedure is capable of characterizing both linear and non-linear
perturbation effects, and requires minimal prior knowledge (for example, it does not require a pre-computed
list of cell cycle genes). We note that this focuses downstream analyses on changes in expression, rather
than cell-state proportions. However, we independently tested for relationships between each perturbation
and the resulting fraction of cells in each cell-cycle state, and found no significant effects.
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We then repeated principal components analysis and UMAP visualization based on these perturbation
signatures, and found that variation in replicate, cell cycle state and activation of cellular stress was
substantially mitigated (Figure 2D). As a result, we observed two clear groups of cells expressing a
consistent set of gRNAs, including a cluster consisting of cells perturbed for key upstream components of
the IFNy pathway (IFNGRI, IFNGR2, JAK2, STATI), and a second consisting of cells lacking the
downstream IFNYy mediator /RF'/. Cells from the remaining 21 perturbations grouped into a single cluster
in this unsupervised analysis. However, cells with a subset of gRNAs (for example, SMAD4) were not
evenly distributed and showed evidence of substructure (Supplementary Figure 4), suggesting that
additional computational improvements may help to clarify their unique molecular perturbations.

A subset of cells ‘escape’ molecular perturbation

The ECCITE-seq data clearly identified the substantial molecular consequences and distinct clustering
associated with perturbation of key IFNy components. For example, IFNGR2g2 cells in the perturbed
cluster (circled cells in Figure 2E), exhibited sharp decreases in the expression of hundreds of IFNy pathway
genes, and in PD-L]I protein levels as well (Figure 2F, G). However, a subset of these cells also appeared
to ‘escape’ molecular perturbation. Out of the 1,193 expressing gRNAs targeting IFNGR2, 74% were
members of the perturbed cluster, but the remaining 26% were indistinguishable from non-targeting
controls (Figure 2F, G), demonstrating heterogeneous functional responses among cells expressing the
same gRNA.

As has been previously suggested [19,21], cells that ‘escape’ perturbation may not have a deleterious
mutation at the Cas9 gene target site. We explored this idea by isolating reads overlapping the IFNGR2g2
gRNA cut site. Since the gene was highly expressed in the ECCITE-seq data, and the gRNA cut site was
fortuitously located near the 5’ end, we were able to recover reads for 16,543 cells in the overall dataset
(278 of these cells expressed IFNGRg2 gRNA, of which 115 appeared to escape perturbation), and
characterized the specific mutations that were introduced. As expected, non-targeted cells did not contain
insertions or deletion mutations at the cut site (INDELs), while ‘perturbed’ cells typically exhibited
frameshift INDELSs (Figure 2H, I). Strikingly, ‘escaping’ cells, when mutated, were primarily characterized
by in-frame INDELSs, particularly for three or six bases (Figure 2H, I). These results confirm that a
substantial fraction of cells escape the introduction of a deleterious mutation, and therefore exhibit no
functional consequence of perturbation.

While this phenomenon will also weaken the signal in bulk screens, the ECCITE-seq readout provides us
with an opportunity to remove ‘escaping’ cells from the analysis. Due to the limited depth of scRNA-seq
based readouts (alongside the ability to profile mutations outside the transcript end), we cannot directly
measure the mutational profile of each cell in the vast majority of cases. However, inspired by previous
pioneering work [19,21,26], we reasoned that we could use the cell’s transcriptome as a phenotypic readout
of the presence or absence of a deleterious mutation, and developed a strategy to systematically identify
and remove ‘escaping’ cells.
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Mixscape robustly classifies ‘non-perturbed’ cells

Our analytical solution to identify ‘escaping’ cells is inspired by a classification tool known as Mixture
Discriminant Analysis (MDA). MDA assumes that individual samples fall into different groups, but that
each group is a mixture of n different subclasses [27]. This assumption is valid for our ECCITE-seq data,
where individual cells can be divided into groups dependent on their expressed gRNA, but each group can
represent a mixture of ‘perturbed’ and ‘escaping’ (or non-perturbed) subclasses. MDA fits Gaussian
mixture models for data points in each group, enabling the assignment of subclass identity.

We therefore modeled our ECCITE-seq transcriptomic data using a mixture of Gaussians, but placed two
constraints on the method. First, we set n=1 for the ‘control’ group, and n=2 for all other gRNA-defined
groups. Second, based on our previous observations (Figure 2E-G), we assumed that the ‘escaping’ cells
exhibit a perturbation signature that is similar to ‘control’ cells. When fitting Gaussian mixture models, we
therefore constrained the parameters for one of the mixture components to mirror the ‘control’ cells. We
refer to the resulting procedure as mixscape. For each targeted cell, mixscape considers a cell’s perturbation
signature (calculated as previously described), and assigns it to a ‘perturbed’ or ‘escaping’ subclass (Figure
3A).

We validated the mixscape predictions on IFNGR?2 cells (74.6% classified as perturbed (‘KO’), 25.4%
classified as non-perturbed (NP), i.e. an 74.6% perturbation rate), by confirming that only cells predicted
as KO exhibited reductions in IFNYy target expression and PD-L1 surface protein levels. We observed
similar results for additional interferon-regulators, including IFNGRI, IFNGR2, JAK2, STATI, and IRF1
(Figure 3B) . Interestingly, mixscape predicted substantial variation in the perturbation rate of four
independent /IRF1 gRNAs, ranging from 39% to 92% (Figure 3C, black boxes). To independently measure
the efficacy of each guide, we used flow cytometry to assess its effect on PD-L1 protein expression (Figure
3D, E). These measurements were concordant with mixscape predictions, further validating our approach.

We note that in cases where functional removal of a gene fails to result in a detectable transcriptomic shift,
mixscape will also mark a cell as non-perturbed, even if a frameshift mutation was introduced
(Supplementary Figure 6A-C). Indeed, for 15 genes, mixscape predicted a 0% perturbation rate. In each of
these cases, we also found no differentially expressed genes when comparing cells targeted by these gRNA
to non-targeted controls. Furthermore, when we attempted to classify cells expressing a NT gRNA as a
negative control, mixscape correctly predicted a 0% perturbation rate. Importantly, these results
demonstrated that mixscape does not overfit the data and only predicts cells to be in the ‘perturbed’ class
when there is a detectable change in their molecular state.

A full description of mixscape is presented in the Supplementary Methods, alongside comparative
benchmarking with MIMOSCA [19] and MUSIC [26] (Supplementary Figures 7 A-D and 8 A-D). We used
both positive controls (cells targeted with the IFNGRg?2 guide) and negative controls (cells targeted with a
NT gRNA) to evaluate performance, and found that mixscape was the only method capable of sensitively
identifying perturbed cells without overfitting (Supplementary Figures 7A and 8A). We have implemented
mixscape as part of Seurat, our open-source R toolkit for single-cell analysis [28], and include an
introductory vignette (Supplementary Note 1) demonstrating how to run the software on our ECCITE-seq
dataset.
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For 11 genes, mixscape did predict the presence of perturbations, with a perturbation rate varying from 23%
to 83%. This variation could reflect differences in the targeting efficiency of individual gRNAs, the strength
of perturbation for each individual gene, or differences in the dosage requirement (heterozygous vs
homozygous KO) for each putative regulator. We also note that our observed perturbation rate could be
skewed for perturbations that result in cell death, as these could selectively deplete KO cells. Regardless,
these analyses highlight the importance of characterizing the extensive heterogeneity within cells that
receive the same sgRNA. In downstream analyses, we chose to remove cells that were predicted to escape
perturbation, as including these cells will substantially dampen the biological effects associated with gene
knockout.

To visualize the remaining 11 classes we applied Linear Discriminant Analysis (LDA). LDA aims to
identify discriminant functions that maximally differentiate the mixscape-derived classes (Supplementary
Methods). We then used these discriminant functions as input to generate a two-dimensional UMAP for
visualization (Figure 3F). We found that the resulting UMAP effectively separated the different
perturbations, with the exception of a negative control (Supplementary Methods), while maintaining local
proximity for similar perturbations (i.e. cells targeted with gRNA against [FNGRI and IFNGR?2 are adjacent
in the embedding). Using LDA as an initial step improved separation in all cases except for the negative
control (Supplementary Figure 9), suggesting that combining LDA with UMAP is an effective approach
for the visualization of pooled single-cell sequencing screens.

CUL3 and BRD4 are negative regulators of PD-L1 expression

These analyses suggest that after removing non-perturbed cells, each genetic knockout induces a specific
molecular response. Indeed, when performing differential expression compared to control cells, we
observed striking differences in gene expression that defined each molecular perturbation (Figure 4A). Of
particular interest, we observed that perturbation of eight genes also resulted in a shift of PD-L1 protein
levels in our ECCITE-seq data (Figure 4B). We identified five positive regulators (PD-L/ downregulation
upon perturbation) and three negative regulators, a subset of which had been previously validated
[9,11,13,16,17,29]. For example, in addition to the core components of the IFNy pathway, we verified that
perturbation of BHLH transcription factor MYC [12] and the ubiquitin ligase CUL3 [15] both increase PD-
L1 surface protein levels, consistent with previous reports. These results demonstrate the potential for
ECCITE-seq data to robustly and accurately characterize multiplexed perturbations. Importantly,
perturbation of these eight genes did not result in appreciable shifts in CD86 and PDL2 protein expression
(Supplementary Figure 10A-B) suggesting that these regulatory effects are specific to PD-L1.

To our surprise, we observed that perturbation of the bromodomain-containing protein BRD4 resulted in a
upregulation of PD-L1 protein levels, indicating that BRD4 acts as a negative regulator. Previous studies
have utilized the bromodomain inhibitor JQ1, an alternative to BRD4 genetic perturbation, to suggest that
BRD+4 is in fact a positive regulator of PD-L] [13,29]. To help reconcile these differences, we treated our
stimulated cells with JQ1 and observed a reduction in PD-L1 expression (Figure 4C). However, we
validated that CRISPR-mediated genetic perturbation of BRD4 leads to an up-regulation of PD-L1
expression using flow cytometry (Figure 4D), confirming the ECCITE-seq result. These results indicate
that BRD4 is a negative regulator of PD-L1 expression, and that the JQI inhibitor may interact with
additional proteins in order to achieve PD-L1 reduction.
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We also observed that CUL3 and BRD4 perturbation resulted in similar levels of PD-L1 protein
upregulation (Figure 4B). To our surprise, while the ubiquitin ligase complex CUL3-SPOP has been shown
to post-transcriptionally regulate PD-L1 protein levels [15], we also detected a 1.6-fold (p < 10'")
upregulation of PD-LI mRNA levels (Figure 4E). We observed both protein and mRNA up-regulation only
in cells predicted to be perturbed by mixscape. Our results suggest that in addition to its known role in
regulating PD-L1 protein stability via direct ubiquitination, CUL3 perturbation also modulates PD-L1
mRNA levels.

To gain further insight into the effects of CUL3 perturbation, we identified differentially expressed genes
(DE) between CUL3-perturbed and control cells, and intersected these genes with members of previously
identified transcriptional pathways (Supplementary Figures 11A, B). We observed no overlap with
canonical IFNY signaling targets, suggesting that CUL3-mediated transcriptional regulation of PD-LI is
mediated through an IFNy-independent pathway. Instead, we observed a striking enrichment (p < 10-') for
target genes of the Nuclear factor erythroid-2 factor 2 (NRF2) signaling pathway (Figure 4F).

CULS3 indirectly regulates PD-L1 at the transcriptional level through NRF?2

The NRF2 pathway is activated during oxidative stress, and induces the expression of many antioxidant
genes to prevent cellular damage and death [30]. NRF2 has been shown to directly bind to the PD-LI
promoter and activate transcription under ultraviolet-induced stress [14], and NRF2 protein stability is
directly regulated by the CUL3-KEAP1 ubiquitin ligase complex [31]. Taken together with these findings,
our data suggest that CUL3 may have two distinct mechanisms for regulating PD-L1 protein expression.
First, as previously described [15], perturbation of the CUL3-SPOP complex interferes with the
ubiquitination of PD-L1, directly enhancing its stability and protein expression level. Second, our data
indicate that perturbing the CUL3-KEAP1 complex interferes with the ubiquitination of NRF2, boosting
pathway activation and PD-L] transcript expression (Figure SA).

In order to validate that CUL3 acts as an indirect regulator of PD-LI mRNA levels, we performed a focused
validation screen by infecting cells with 27 gRNAs targeting 6 genes (Supplementary Table 1). We used
flow cytometry to isolate bins of PD-L1 high (PD-L1") and low expressing (PD-L1%) cells after stimulation
(Supplementary Figure 12), sequenced the gRNA locus for each bin, and compared the gRNA
representation. gRNAs against genes that were predicted to be negative regulators of PD-L1, including
CUL3, and KEAPI were consistently overrepresented in PD-L1" cells in two biological replicates (Figure
5B), while we observed the converse for predicted positive regulators (VNRF2 and IFNGRI).

As an independent validation, we found that direct overexpression of NRF2 in THP-1 cells resulted in an
up-regulation of PD-L1 protein by flow cytometry (Figure 5C). Taken together, our data demonstrate that
by modifying the activity of the NRF2 pathway, the CUL3-KEAP1 complex is an indirect regulator of PD-
L1, and highlight the potential for ECCITE-seq to disentangle complex regulatory pathways via
simultaneous characterization of both RNA and protein modalities.
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DISCUSSION

In this study, we coupled pooled CRISPR screens to a multi-modal single-cell sequencing readout in order
to investigate the regulation of IC proteins, such as PD-L1. We leveraged our dataset to characterize the
transcriptional and post-transcriptional effects of 111 independent perturbations. To assist in this process,
we developed unsupervised computational methods to control for confounding sources of variation that can
mask perturbation signals in ECCITE-seq datasets. Our analyses identified numerous regulators of PD-L1
expression, and in particular, two negative regulators (BRD4 and CUL3) which we validated using
complementary approaches.

The multi-modal nature of ECCITE-seq data enabled us to move beyond the identification of regulators
towards a more in-depth molecular characterization. For example, we found that CUL3-KEAPI can act as
an indirect regulator of PD-LI mRNA levels, in addition to the previously identified role for CUL3-SPOP
in directly regulating PD-L1 protein stability. These findings are intriguing in light of recent reports that
KEAPI is often mutated in lung cancer, and mutations in the NRF2/KEAPI have been associated with
treatment resistance [23,32]. Future studies may benefit from exploring possible links between these
mutations and the expression of IC molecules.

Our datasets also highlight that cells which are targeted with the same sgRNA are inherently heterogeneous.
First, we demonstrated that the calculation of a ‘local’ perturbation signature can remove confounding
sources of variation from downstream analyses, even when these sources are unknown. Second, we
introduce mixscape, inspired by mixture discriminant analysis and building on previous pioneering methods
[19,21,26]. Mixscape robustly filters cells that do not exhibit transcriptomic evidence of perturbation, and
substantially increases the signal/noise ratio in downstream analyses. The ability to computationally
leverage the heterogeneity within targeted cells is a distinct advantage of coupling genetic screens to a
single-cell sequencing readout. Importantly, alternative genetic perturbations such as CRISPR interference
and CRISPR activation may reduce this heterogeneity, though confounding sources of variation and
‘escaping’ cells are likely to characterize these technologies as well.

One limitation of mixscape is the reliance on detecting a shift in gene expression in order to classify cells.
In particular, perturbations that modify alternative phenotypes, such as epigenetic state, protein levels, or
functional responses, but exhibit no evidence of transcriptomic change will be classified as ‘no detected
perturbation / non-perturbed (NP)’. In this manuscript, we inferred perturbation status using the
transcriptome, and validated our calls using surface protein levels from ECCITE-seq. However, integrative
multi-modal approaches [33] could enable joint analysis of the transcriptome and protein levels when
filtering NP cells, and represent a promising future extension of our method.

Lastly, we note that mixscape’s binary classification of targeted cells likely represents an oversimplification
that can be improved with additional experimental data from large-scale future experiments. Genetic
perturbation with CRISPR/Cas9 introduces a diverse set at the cut site. As datasets increase in size, we
envision sufficient scale to characterize how each precise mutation has a unique (though potentially subtle)
effect on a cell’s molecular phenotype. Moreover, rapid molecular advances continue to enable the
simultaneous measurement of additional cellular components, such as chromatin state and gene expression
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[34-37]. Together, these data will enable systematic perturbation of gene structure and dosage, alongside
detailed characterization of multiple molecular modalities.
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SUPPLEMENTARY METHODS

Cell culture and Maintenance

THP-1 cell line was obtained from ATCC (TIB-202) and was grown at 37C in RPMI medium supplemented
with 10% FBS. To induce the expression of various immune checkpoint proteins cells were treated with
Decitabine (Sigma-Aldrich A3656,0.25uM) for three days, TGFf1 for two days (Thermo Fisher Scientific
PHG9204, 2.5ng/ml) and IFNYy for one day (R&D systems 284-IF-100, 10ng/ml). HEK293FT human
embryonic kidney (#R70007) cells were grown in DMEM medium supplemented with 10% FBS (D10).
The D10 medium for HEK293FT cells was additionally supplemented with 6mM L-glutamine (Thermo
Fisher Scientific, #25030081), ImM Sodium Pyruvate (Thermo Fisher Scientific, #11360070) and 0.1mM
MEM Non Essential Amino Acids (Thermo Fisher Scientific, #11140050). TrypLE (Thermo Fisher
Scientific, #12604039) was used to lift HEK293FT cells from plates during passaging. All cells were
passaged every two to three days and low passage cells were used for all experiments (p3-p12).

Flow Cytometry

After treatment, cells were centrifuged at 300g for five minutes and resuspended in 100ul of MACS buffer
(1X PBS, 0.5% BSA, 2mM EDTA). 5ul of FcX blocking reagent was added and cells were placed on ice
for 10 minutes. Next, antibodies were added directly into the mix and cells were kept on ice for another 30
minutes. Prior to flow cytometry (FACS), cells were passed through a 40um cell strainer (VWR, #10032-
802) to remove any cell clumps . The following FACS antibodies were used in these experiments at
concentrations recommended by the manufacturer: PD-L1 (BD Biosciences, #558017), PD-L2 (BioLegend,
#329606), CD86 (BioLegend, #305412). Compensation beads were used to overcome signal overlap
between fluorophores (BD Biosciences, #552843). To check and remove any dead or apoptotic cells DAPI
(Sigma Aldrich, #D9542-5MG) was added to the staining mix at a concentration of (0.4pg/1mL). All FACS
measurements were performed using the SONY SH800 cell sorter. FACS analyses and plots were made
using the FlowJo™ Software [38].

CITE-seq experiment
THP-1 cells were stimulated as described above or left unstimulated. At the end of the stimulation, cells
were collected by centrifugation at 300g for 5 minutes. Cells were resuspended in 100pl of staining buffer
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containing Syl of FcX blocking reagent and were placed on ice for 10 minutes. Next, 100ul of staining
buffer containing CITE-seq antibodies (0.5pg/antibody/sample) was added to the cells. The cells were
placed in the 4C fridge for 30 minutes to allow for antibodies to bind to their target protein. For the CITE-
seq experiment antibodies were conjugated in-house following the hyper Oligo-antibody conjugation
protocol as detailed here (https://cite-seq.com/protocol/). To keep track of the experimental condition
(stimulated vs unstimulated) and be able to detect and remove cell doublets, cells were aliquoted into three
tubes containing a uniquely barcoded hashing antibody. Cells were placed in the fridge for an additional 20
minutes. After staining was complete, all samples were washed three times with 1ml staining buffer to
remove all the excess unbound antibodies. Next, cells were resuspended in 200-300ul of 1X PBS and
counted using the Countess II Automated cell counter system. Immediately before loading to the 10x
Genomics instrument, cells from all experimental conditions were pooled at the appropriate concentration
(recovery of 10,000 cells per lane).

CITE-seq data library construction, sequencing and data analyses

We ran 1 lane of 10x Genomics 5° (Chromium Single Cell Immune Profiling Solution v1.0, #1000014,
#1000020, #1000151) aiming for 20,000 cell recovery per lane. Prior to the run, cell viability was
determined and cell numbers were estimated as previously described. To increase the number of cells
assayed we hashed them following the cell hashing protocol [25]. mRNA, hashtags (Hashtag-derived
oligos, HTOs) and protein (Antibody-derived oligos, ADTs) libraries were constructed by following 10x
genomics and CITE-seq protocols. All libraries were sequenced together on a Novaseq run. Sequencing
reads coming from the mRNA library were mapped to the hg/9 reference genome using the Cellranger
Software (V2.1.0). To generate count matrices for HTO and ADT libraries, the CITE-seq-count package
was used (https://github.com/Hoohm/CITE-seq-Count). Count matrices were then used as input into the
Seurat R package [28,39] to perform all downstream analyses.

Cells with low quality metrics, high mitochondrial gene content (> 10%) and low number of genes detected
(< 500) were removed. RNA counts were log-normalized using the standard Seurat workflow. ADT and
HTO counts were normalized using the centered log ratio transformation approach, with a margin = 2 (to
normalize across cells instead of across features). To identity cell doublets and assign experimental
conditions to cells, we used the HTODemux function. We performed PCA on the protein measurements,
observing a continuum in the level of PD-L1 up-regulation, and selected the top 200 genes whose
expression correlated with this continuum. These genes are shown in Figure 1D, where cells in both the
protein and RNA heatmaps are ordered based on their PC1 embedding values.

CITEO3 plasmid construction

To increase sgRNA targeting efficiency we switched the sgRNA scaffold on the CROP-seq plasmid
(addgene, #86708) with the optimized sgRNA scaffold as described in [40]. Moreover, we replaced the
puromycin resistance gene on the CROP-seq plasmid with a blasticidin resistance gene fused to eGFP
amplified from the pFUGW-EFS-V5-EGFP-2A-Bla-WPRE plasmid (addgene, #71215). Finally, we
removed Cas9 protein to decrease the size of our plasmid and achieve higher viral titer.

Inducible Cas9 THP-1 cell line

The THP-1-Cas9 inducible cell line was made by lentiviral transduction using the pCW-Cas9-puro plasmid
(addgene, #50661). Single cells were sorted into 96-well plates three days after puromycin selection to
obtain single cell clones. Single cell colonies were expanded for four weeks before assessing Cas9
expression. Protein lysates were obtained from ten clones before and after 24hrs of doxycycline treatment
(1pg/ml, Sigma-Aldrich D9891) to check Cas9 expression by westernblot. Briefly, cells were washed 2
times with ImL of ice-cold 1X PBS and resuspended in RIPA lysis buffer (Amresco, N653) supplemented
with a protease inhibitor cocktail (Bimake, B14001). Cas9 expression was verified by western blot using
GAPDH antibody as loading control (Cell signaling Technology, 2118S) and Flag antibody (Cell signaling
Technology, 14793S) to detect Cas9 protein. Protein bands were visualized using fluorescently labeled
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secondary antibodies (LI-COR, #925-32212 and #925-68073) and the Odyssey Imaging System. One of
the clones with the highest Cas9 expression was selected and used for all downstream experiments. To
minimize leakiness of our doxycycline inducible Cas9 system ,a TET-free FBS (VWR, 97065-310) was
used to grow these cells.

gRNA design, virus production and Cas9 dynamics
Guides webtool (http://guides.sanjanalab.org/#/) was used to predict gRNAs with high targeting efficiency

and low off-target effects [41]. 3-4 guides per gene were selected together with 10 guides predicted to have
no sequence similarity with the human genome (non-targeting controls). Guide oligos were synthesized
individually using IDT. Oligos were cloned into the CITEO3 vector as previously described [42]. Low
passage HEK293FT cells were transfected with MD2.G (addgene #12259), PAX2 (addgene #35002) and
the CITEO3 plasmids carrying gRNAs using Lipofectamine 2000 (Thermo Fisher Scientific, #11668030).
Media was replaced with DMEM + 10% FBS + 1% BSA (NEB, B9000S), 6 hours post-transfection. Viral
supernatants were harvested 48-72 hours post transfection by centrifugation (ten minutes, 3000 rpm, 4C)
and stored in a -80C freezer until used. To estimate the concentration of the virus, cells were infected with
increasing amounts of virus and three days post antibiotic selection, the percentage of dead and live cells
was calculated. In all experiments, cells were infected at low multiplicity of infection (MOI) to achieve one
gRNA insertion per cell.

To estimate how many days after Cas9 induction we have saturation of CRISPR-induced insertions and
deletions (INDELSs), we ran single gRNA experiments targeting PD-L.1 protein. Cas9 was induced with the
addition of doxycycline (1ug/mL) for one, three, five and seven days and we used TIDE [43] and Surveyor
assays (IDT, #706020) to estimate the percentage of cells with INDELs. As an independent method, we
also used flow cytometry to check PD-L1 expression and quantify the percentage of knockout cells (KO).
We found that after five days of Cas9 induction the percentage of cells with INDELSs stops increasing and
we have achieved the highest percentage of cells with low PD-L1 protein expression. Based on these
observations, we decided to treat cells with 1pg/mL of doxycycline for five days prior to running the
ECCITE-seq experiments.

ECCITE-seq pilot experiment

We ran an initial pilot experiment to validate our ability to accurately recover gRNA and plan experimental
design. We generated single gRNA cell lines for 20 gRNA, including PD-L1, IFNGR1, and non-targeting
controls, and performed individual infections. Next, we stimulated cells as previously described. We hashed
each cell line separately [25] prior to running our ECCITE-seq experiment. This experimental set up
enabled us to have two independent methods for encoding the perturbation received by each cell. Libraries
were sequenced on a NextSeq500. mRNA libraries were quantified using Cell Ranger (2.1.1; hgl9
reference), and normalized using standard log-normalization in Seurat. HTO and ADT libraries were
processed with CITE-seq-count (https://github.com/Hoohm/CITE-seq-Count), and normalized using the
centered log-ratio (CLR, across cells). Cells with high mitochondrial gene content (> 8%) were removed.
RNA counts were log-normalized using the standard Seurat workflow. ADT, HTO and GDO counts were
normalized using the centered log ratio transformation approach, with a margin = 2 (to normalize across
cells instead of across features).

We demultiplexed the cell hashing data using the MULTIseqDemux function adopted from [44], and
removed all classified doublets. We assigned gRNA identity using HTODemux in Seurat. To assess the
accuracy of gRNA classification, we examined each cell with an identified gRNA, and compared its
classification to its HTO-derived label. We observed an overall concordance of 99.4%. Concordant cells
were used for plotting PD-L1 expression in Figure 1E.

ECCITE-seq experimental setup
THP-1 Cas9-inducible cells were transduced with virus containing 111 guides at low MOI to obtain cells
with 1 gRNA. 24 hours post-transduction cells were centrifuged and resuspended in new media containing
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blasticidin (15ug/mL) to select for successfully transduced cells. Three days after antibiotic selection, media
was exchanged with fresh R10 containing blasticidin (15pg/mL) and doxycycline (1pug/mL) to induce Cas9
expression and INDEL formation. After five days of doxycycline treatment, cells were stimulated with
DAC, IFNy and TGFf1 for an additional three days or left unstimulated prior to running the 10x Genomics
experiment (Supplementary Figure 2A). The final pool of cells loaded onto the 10x Genomics chip
contained 10% of unstimulated cells and 90% of stimulated cells coming from four biological replicates.

Single cell ECCITE-seq library construction and sequencing

For the ECCITE-seq experiment, we run eight lanes of 10x Genomics 5’ (Chromium Single Cell Immune
Profiling Solution v1.0, #1000014, #1000020, #1000151) aiming for 10,000 cell recovery per lane. Prior to
the run, cell viability was determined and cell numbers were estimated as previously described. To keep
track of each biological replicate identity, samples were hashed following the cell hashing protocol [45].
mRNA, hashtags (Hashtag-derived oligos, HTOs), protein (Antibody-derived oligos, ADTs) and gRNA
(Guide-derived oligos, GDOs) libraries were constructed by following 10x genomics and ECCITE-seq
protocols. All libraries were sequenced together on two lanes of a NovaSeq run. Sequencing reads coming
from the mRNA library were mapped to the hgl9 reference genome using the Cellranger Software
(V2.1.1). To generate count matrices for HTO, ADT and GDO libraries, the CITE-seq-count package was
used (https://github.com/Hoohm/CITE-seq-Count). Count matrices were then used as input into the Seurat
R package [28,39] to perform all downstream analyses.

ECCITE-seq data pre-processing in Seurat

Cells with low quality metrics, high mitochondrial gene content (> 10%) and low number of genes detected
(< 100) were removed. RNA counts were log-normalized using the standard Seurat workflow. ADT, HTO
and GDO counts were normalized using the centered log-ratio transformation approach, with margin = 2
(normalizing across cells). To identity cell doublets and assign experimental conditions to cells, we used
the MULTIseqDemux function adopted from [44]. MULTIseqDemux-defined cell doublets and negatives
were removed from any downstream analyses. To assign a gRNA identity to each cell, we looked at the
GDO counts. If a cell had less than five counts for all gRNA sequences we classified it as negative. For all
other cells, we found the gRNA with the highest number of counts and assigned it to that cell. Cells that
had high counts for more than one gRNA were classified as doublets.

We checked the gRNA representation across all four biological replicates included in this experiment by
calculating the percentage of cells that belonged to each gRNA class within each biological replicate
(Supplementary Figure 2B). We removed replicate #4 (both stimulated and unstimulated cells) as it had a
skewed gRNA representation, likely due to long term cell culture. We also removed cells in target gene
classes where less than 10 total cells were detected, even after pooling across gRNA and replicates.

RNA-based clustering of single cells

To visualize cells based on an unsupervised transcriptomic analysis (Figure 2A), we first ran PCA using
2000 variable genes. The first 40 components were used as input for UMAP visualization in two-
dimensions [46]. We calculated cell-cycle scores using the CellCycleScoring function in Seurat v3.1 with
default parameters.

Calculating perturbation signatures for single cells

LetX = {xq,...,xy} represent a normalized single-cell dataset, with N cells.

For each cell x;, we perform the following procedure:

17


https://doi.org/10.1101/2020.06.28.175596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.28.175596; this version posted June 28, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1. Identify Y;, a subset of X consisting of cells that receive a ‘non-targeting” gRNA, and were
present in the same biological replicate r as x;

2. Identify the set {}’i,1» e yi,k} of nearest neighbors to x;, based on the top 40 principal
components described above. We set the hyperparameter k£ = 20 by default, and identified
neighbors using the Randomized Approximate Nearest Neighbors (RANN) algorithm [47].

3. Compute the average expression profile of this local neighborhood
S Y,

L k
4. Compute the ‘local’ perturbation signature: p; = X; — y;

This calculation is implemented in the CalcPerturbScore function in Seurat.

Clustering single cells based on their perturbation signature
Perturbation signatures were centered but not scaled using the ScaleData() function. We ran PCA using the

perturbation signatures of the top 2000 most variable genes defined using the RNA assay. The first 40
components were used as input for UMAP visualization in two-dimensions [46].

Estimating % of INDELs from scRNA-seq reads
We used Sinto (https://timoast.github.io/sinto/basic_usage.html) to extract all sequencing reads that

belonged to the perturbed and non-perturbed IFNGR2g?2 cells as well as the non-targeting control cells from
the cellranger possorted genome bam files. Bam files from all 10x Genomics lanes were merged to three
final bam files, one for each group (Non-targeting, knockout and non-perturbed). Samtools [48] was used
to create the index file used for visualization into IGV tools Software [49]. To quantify the percentage of
INDELS at the expected gRNA cut site, we used GenomicRanges, GenomicFeatures, GenomicAlignments,
Rsamtools and bedr R packages. First, a bed file was constructed to specify the gRNA cut site. Next, we
removed any reads that didn’t overlap our cut site. To ensure accurate INDEL quantification, we only
assessed reades that extended enough into the 3’ end of the gRNA sequence. We relied on the read cigar
string information to quantify the number of reads with frameshift or inframe mutations by looking at the
number of bases inserted/deleted (three or multiple of three = inframe, any other as frameshift). To calculate
the percentage of inframe and frameshift deletions we divided each class by the total number of reads post
filtering.

Mixture-model based classification of KO and NP cells

The objective of this procedure is to identify cells that received a targeting guide but exhibited no detectable
transcriptomic evidence of perturbation. We perform the following procedure independently, for each
targeted gene g.

1. We perform differential expression testing between all cells that receive gRNA targeting gene g, and
all cells that receive a NT gRNA. The gene set DEG represents the set of genes that pass a Bonferroni-
adjusted p-value threshold of 0.05. If DEG consists of fewer than five genes, we stop the procedure,
and label all cells as non-perturbed.

2. Let P9 = {plg ) s p;\q,}, represent a set of single-cell perturbation signatures for N cells, each of which

receives gRNA targeting gene g. Similarly, let PNT = {pNT, ..., pMT}, represent a set of single-cell
perturbation signatures for all M cells that receive a non-targeting gRNA.

3. For each cell, the perturbation signature is a vector, with length equal to the size of the DEG gene set.

We project this into a single dimension, representing a perturbation score s for each cell. We find that
reducing the dimensionality of these data substantially improves the robustness to overfitting in
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downstream analyses. To calculate the score, we first calculate a vector representing the difference in
the average perturbation signature of targeted and non-targeted cells. We then project each cell’s
perturbation signature onto this vector. Specifically:

Nt _ 3L, p"

Eiap] and P "

Let p? =
Then the perturbation score s for cell i is defined by:

—(pl) @’ - " )and
=o' @

4. We model the perturbation scores of non-targeting cells with a Gaussian distribution:
NT NT NT Ny SM SNT N DM (sNT— uNTy2
sNT~N@"T,oNT) where u"" ===-—and o= 2= —

5. We model the perturbation scores of targeted cells using a mixture of two Gaussian distributions. One
mode represents cells that resemble NT cells due to a lack of a detectable perturbation, and therefore is
parameterized by the previously measured u"and oNT

Ynp ~ N(uNT, GNT)
Yko ~ N(UKO, O'KO)

p(s9) = (1 - NN, oNT) + ON (uk9, cX0)

This requires estimating three parameters: the mean and standard deviation rate for the perturbation score
of KO cells (uf?, 0%9) and the mixing rate (or ‘perturbation rate’) 8. We learn these parameters using the
function normalmixEM from the mixtools package.

6. We calculate the probability that each cell i was successfully perturbed by a gRNA targeting gene g -

g 1
p(l)perturbedz sI_yNT

1 (L NT ) 1 -
1+ (—— o —
(O'NT\/ZTL' /JKO\/Zne

KO

om0y

2
"‘Q

N| =

7. All targeted cells with a perturbation probability > 0.5 are classified as KO cells, while the remainder
of cells are classified as NT cells.

8. Werepeat steps 1-7 until the classifications converge. In this manuscript, all analyses converged within
5 iterations.

At the conclusion of this procedure, each cell is assigned one of three identities:

e [f the cell received a NT gRNA, it retains its assignment as non-targeting (NT)

e [fthe cell received a targeting gRNA, and is classified in step 8 as NT, it is assigned a non-perturbed
(NP) Iabel

e If the cell received a targeting gRNA, and is classified in step 8 as KO, it receives a
perturbed/knock-out (KO) label.
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In addition to returning a KO or NP label, mixscape returns a perturbation probability (as defined in step 7)
for each targeted cell.

This calculation is implemented in the RunMixscape function in Seurat.

Benchmarking mixscape against MIMOSCA and MUSIC

MIMOSCA [19] and MUSIC [26] provide alternative computational frameworks for identifying non-
perturbed cells in single cell pooled CRISPR screens. We ran MIMOSCA using the model-fitting procedure
with default parameters, as specified in the ‘Computational Workflow’ section of the Github repository
README (https://github.com/asncd/MIMOSCA). MIMOSCA requires a gene expression matrix and a file
with all target gene classifications. For consistency, our gene expression matrix consisted of all genes used
to build our mixscape classification model. To run MIMOSCA we used default parameters, which
represented optimized values as described in the Perturb-seq publication
(sklearn.linear_model .ElasticNet(11_ratio = 0.5, alpha = 0.0005, max_iter = 10000).

Similarly to MIMOSCA, MUSIC requires the gene expression matrix and a file with all target gene
classifications. For consistency, our gene expression matrix consisted of all genes used to build our
mixscape classification model. MUSIC performs QC to remove low quality cells, and runs SAVER [50] on
the gene expression matrix to impute mRNA expression values. The newly imputed matrix, together with
the provided classifications, are used to classify cells. We ran MUSIC following the illustratrated example
in the Github repository README (https://github.com/bm?2-1ab/MUSIC, with default parameters.

For benchmarking analyses, prior to running the three methods, we randomly sampled 1,000 cells
expressing NT gRNA and re-labeled them as a new targeted gene class, representing a negative control
(NEG CTRL). These cells should all be classified as NP (Supplementary Figures 7,8).

Linear Discriminant Analysis-based dimensionality reduction
After removing non-perturbed cells, we apply Linear Discriminant Analysis (LDA), followed by UMAP

[46], to visualize the remaining cells in two dimensions. We apply LDA as an alternative linear reduction
technique to PCA. While PCA aims to identify a low-dimensional subspace that maximally retains variation
in a dataset, LDA aims to identify a low-dimensional subspace that maximally discriminates different
groups of the data. In our case, the input to LDA is a single-cell data matrix and a set of group labels (the
mixscape-derived classes).

In principle, we can use normalized gene expression as an input data matrix to LDA. However, this
approach can lead to overfitting, as the total number of genes may be of a similar magnitude to the total
number of cells. We therefore aimed to first reduce the dimensionality of our data in an unsupervised way,
while retaining the sources of variation that distinguished each perturbation. We performed the following
procedure for each targeted gene g:

1. From the previously computed set of perturbation signatures P, we extract all cells that are labeled
by mixscape as KO for gene g, along with all non-targeted cells.

2. We perform unsupervised PCA. As input features to PCA, we use the gene set DEG, as previously
calculated during mixscape classification.

3. We project this subspace onto all cells in the dataset.
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4. We retain the first 10 projected components for all cells, and expect that this subspace will retain
differences between KO and NT cells.

At the conclusion of this procedure, all retained components are used as input to linear discriminant analysis
using the 1da function in the MASS R package [51]. This procedure is implemented in the MixscapeLDA
function in Seurat.

The results from this function are used as input for 2D visualization with UMAP (Figure 3F). We found
that this procedure substantially improved the visualization and interpretability of ECCITE-seq data. We
observed that cells characterized by different perturbations separated visually in the 2D embedding, but
retained their global structure (for example, STAT1, JAK2, IFNGR1 and IFNGR2 are all upstream
regulators of the IFNy pathway, and these clusters are adjacent on the visualization). Moreover, as described
above, we randomly sampled 1,000 cells expressing NT gRNA and re-labeled them as a new targeted gene
class, representing a negative control (NEG CTRL). Despite receiving a different label in the LDA
procedure, these cells were indistinguishable from NT controls in the resulting embedding, demonstrating
that our procedure does not overfit the data (Supplementary Figure 9).

Differential expression and gene set enrichment analyses

We used FindMarkers() in Seurat to find differentially expressed genes between non-targeting cells and
cells that belonged to a targeted gene class. The top 20 genes from each class were used as input into the
heatmap in Figure 4A. Finally, this top300 list of genes from each class was used as input into the EnrichR
package [52,53] to run pathway analysis using the human WikiPathways database from 2019. Figure 4F
shows the top five enriched pathways with a p_value < 0.001 for CUL3 KO cells.

NRF?2 overexpression experiments

NRF?2 over-expression plasmid was purchased from Addgene (#21549). To transfect THP-1 cells,
GeneXplus reagent was used as recommended by the manufacturer. 24 hours post-transfection cells were
inspected under the microscope to verify reporter eGFP and dsRed proteins were expressed in the cells. 24-
48 hours post-transfection, cells were collected and washed with R10 media. Flow cytometry was used to
assess changes in PD-L1 protein expression as previously described.

JQ1 inhibitor experiments

THP-1 cells were treated with DMSO, JQ1 (1uM, 24 hours), JQ1 + IFNYy, Decitabine+TGFp1+IFNYy or
Decitabine+TGF1+IFNy +JQ1. PD-L1 expression was assessed by flow cytometry as previously
described.

Validation CRISPR screen

We designed new gRNAs using the guides webtool to target KEAPI, NRF2, BRD4 and CUL3 in order to
validate our ECCITE-seq findings. Plasmids containing the gRNAs were pooled at equal ng amounts and
the virus was produced as previously described. THP-1 cells were transduced at low MOI and cells were
selected with blasticidin for three days. After selection Cas9 expression was induced and cells were
stimulated as previously described. At the end of stimulation, cells were spun down, resuspended in 100ul
of MACS buffer containing Sul of FcX blocking reagent and placed on ice for ten minutes. Next, cells were
stained with a PD-L1 antibody for 30 minutes, washed with ImL of MACS buffer and passed through a
40uM cell strainer to remove cell clumps. The Sony SH100 sorter was used to sort the top 15% of cells
with the highest and lowest PD-L1 protein expression in two separate tubes containing Quick Extract buffer
(Epicenter). We amplified the gRNA sequence from the isolated genomic DNA as described in [54].
Samples we sequenced with a target recovery of 1000 reads per gRNA per sample. To quantify gRNA
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counts in each sample, we first made a gRNA reference fasta file and used it to map and quantify our reads
with Bowtie2 [55]. To analyze our data and find gRNAs enriched or depleted in our samples we used
MAUDE [56].

22


https://doi.org/10.1101/2020.06.28.175596
http://creativecommons.org/licenses/by-nc-nd/4.0/

A 4 ) sti ) (" Candidate genes ) 4 A
Unstim il = Known regulators c _S
= Predicted regulators oa
= NT controls 59
v &2
- i (O]
CITE-seq 3-4 guides per gene ECCITE-seq .
—> [:’»:’»:ﬁ:ﬁ] —> RN
LI, NP 3
Y 2
Pooled gRNA virus " >
X
Increasing > P@@@@@] :i %
PD-L1 protein &
L p ) _©00000)
B FACS D I\ )
100 _ . ] _ Unstim Stim
% 1 - ] ® Unstim : E
= 7 g @ stim
8. ® IFNGR1g2
3 ] z
% 4 '% OnT
E a}
‘c-) 20 -
4 2 5
o = . '_é‘ o
102 10% 20" 105 gl S5 10t s> o g 0.6 0.9 1.2
PD-L1 protein CD86 protein Sz PD-L1 protein
>
C CITE-seq
@ Unstim
i >
> > ® stim T ® PDL1g1
] ] o
o o 2 OnNT
e} o Y
x L
T D
3 [« 8
n T
23 0.6 0.9 1.2
- e PD-L1 protein

1 0.0 0.5 1.0 1.5 2.0 -
PD-L1 protein CD86 protein

Figure 1. CITE-seq and ECCITE-seq identify regulators of PD-L1 protein expression.
(A) Experimental design schematic. (B) Expression of PD-L1 (left) and CD86 (right) protein in stimulated (green) and control (grey) THP-1 cells, as measured by flow cytometry and (C)
CITE-seq. (D) Single-cell heatmap showing the z-scored expression of 200 genes whose expression correlates with CD86 and PD-L1 protein expression (Supplementary Methods). (E)

ECCITE-seq measurements of PD-L1 protein expression in cells that received gRNA targeting PD-L1 and IFNGR1, and non-targeting controls.
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Figure 2. Calculating local perturbation scores removes unwanted sources of variation.
(A) UMAP visualization of the ECCITE-seq dataset based on cellular transcriptomes. Cells are colored by biological replicate and cell cycle state. (B) Same as in A. Cells are split and colored
by their perturbation status. Black circle denotes a perturbation-specific cluster. (C) Same as in B. Top panel: example of three distinct cells expressing an IRF1 gRNA (red, blue, purple).
Bottom panel: their 20 nearest NT cell neighbors. Grey dots represent all remaining cells in the dataset. (D) UMAP visualization based on cellular perturbation scores. Black circles denote
perturbation-specific clusters. (E) UMAP visualization showing all IFNGR2g2 and NT cells. Black oval denotes a group of putative IFNGR2g2 knockout (KO) cells that cluster separately, but
a subset of targeted cells (outside the oval) appear to be non-perturbed (NP). (F) Violin plot showing PD-L1 protein expression in NT, NP, and KO cells. IFNGR2g2 KO cells exhibit low PD-L1
protein levels while IFNGR2g2 NP and NT cells express PD-L1 at identical levels. (G) Single-cell heatmap showing the mRNA expression of IFNy pathway related genes in NT, NP, and KO
cells. Gene expression is scaled (z-scored) across all single cells. For visualization purposes we downsampled our dataset to include 150 cells from each class shown in the heatmap. (H)
Interactive Genome Viewer (IGV) screenshot of a representative sample of reads mapping at the IFNGR2 gene locus (chr21: 34787276-34787299) targeted by IFNGR2g2 gRNA. CRISPR-in-
duced insertions and deletions (INDELs) are seen in reads as black lines (I = insertion). gRNA cut site is denoted with a black arrow. (I) Barplot showing the % of reads with no INDELs
(NID), inframe (IF) and frameshift (FS) mutations across NT, NP and KO cells. Only reads that overlapped the predicted cut site of IFNGR2g2 gRNA were used.
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Figure 4. BRD4 and CUL3 are negative regulators of PD-L1 expression.

(A) Single-cell mRNA expression heatmap showing 20 differentially-expressed genes for each mixscape-classified perturbation. For visualization purposes we downsampled our dataset to
include 30 cells from each class in the heatmap. (B) Violin plots of PD-L1 protein expression for all identified regulators. BRD4, CUL3 and MYC are negative regulators, while the remaining
are positive (p-value < 1le* in all cases). (C) Flow cytometry measurements of PD-L1 protein expression across experimental conditions. JQ1 inhibitor treatment (24 hours, 1uM) reduces
stimulation-induced PD-L1 expression. (D) Flow cytometry measurements of PD-L1 protein expression based on individual gRNA perturbations, validating our ECCITE-seq findings. (E) Violin
plots showing elevated expression of PD-L1 transcript in CUL3 KO cells, in comparison to non-targeting controls. (F) Barplot summarizing gene set enrichment analysis results for 300 genes
upregulated in CUL3 KO cells. Analysis was performed using the Human WikiPathways database from the EnrichR package, and reveals a strong enrichment for the NRF2 pathway.
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Figure 5. CUL3-KEAP1 complex indirectly regulates PD-L1 transcript levels by regulating NRF2 protein stability.

(A) Schematic representation describing two complementary modes of CUL3-mediated PD-L1 regulation. The CUL3-SPOP complex directly regulates PD-L1 protein stability through ubiquiti-
nation. The CUL3-KEAP1 complex regulates NRF2 protein stability, indirectly modulating NRF2-mediated PD-L1 transcription. (B) Validation pooled CRISPR screen results (2 biological
replicates) targeting KEAP1, SPOP, CUL3, BRD4, IFNGR1 and NRF2 (including 4 non-targeting gRNAs). gRNAs targeting KEAP1, SPOP, CUL3 and BRD4 (green) were enriched in cells express-
ing high levels of PD-L1 protein while NRF2 and IFNGR1 gRNAs were depleted (red). (C) Flow cytometry measurements of PD-L1 protein expression in NRF2-overexpressing (green) or
control (grey) THP-1 cells. Overexpression of NRF2 results in upregulation of PD-L1 protein when compared to control cells. Three independent replicates are shown.
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