bioRxiv preprint doi: https://doi.org/10.1101/2020.06.21.163741,; this version posted October 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Statistical Pitfalls in Brain Age Analyses

Ellyn R. Butler!, Andrew Chen?, Rabie Ramadan®, Trang T. Le*, Kosha Ruparel!, Tyler
M. Moore!, Theodore D. Satterthwaite!, Fengqing Zhang®, Haochang Shou?, Ruben C.
Gur!, Thomas E. Nichols*%7, and Russell T. Shinohara**2

!Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, 19104, USA
2Penn Statistics in Imaging and Visualization Endeavor, Center for Clinical Epidemiology
and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
PA, 19104, USA
3Mathematics Department, Temple University, Philadelphia, PA, 19122, USA
4Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical
Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
*Department of Psychology, Drexel University, Philadelphia, PA, 19104, USA
®Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University
of Oxford, OX3 7LF Oxford, United Kingdom
"FMRIB, Wellcome Centre for Integrative Neuroimaging

Abstract

Over the past decade, there has been an abundance of research on the difference between age and age
predicted using brain features, which is commonly referred to as the “brain age gap”. Researchers have
identified that the brain age gap, as a linear transformation of an out-of-sample residual, is dependent
on age. As such, any group differences on the brain age gap could simply be due to group differences on
age. To mitigate the brain age gap’s dependence on age, it has been proposed that age be regressed out
of the brain age gap. If this modified brain age gap (MBAG) is treated as a corrected deviation from
age, model accuracy statistics such as R? will be artificially inflated. Given the limitations of proposed
brain age analyses, further theoretical work is warranted to determine the best way to quantify deviation
from normality.
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Highlights:
e The brain age gap is an out-of-sample residual, and as such varies as a function of age.

e A recently proposed modification of the brain age gap, designed to mitigate the dependence on age,
results in inflated model accuracy statistics if used incorrectly.

e Given these limitations, we suggest that new methods should be developed to quantify deviation from
normal developmental and aging trajectories.
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1 Introduction

1 In the past decade, there has been an explosion of research devoted to estimating individuals’ ages using
2 features derived from magnetic resonance images (MRIs) of the brain (Franke & Gaser, 2019). From studies
s using diffusion-weighted features to complex functional connectivity metrics, the literature is extensive (Cole,
« 2020; Erus et al., 2015; Irimia, Torgerson, Goh, & Van Horn, 2015; Li, Satterthwaite, & Fan, 2018; Lin et
s al., 2016). While age is easily measured through more conventional means, assessing the appearance of the
¢ brain with respect to the natural patterns of development and aging provides a framework for dimension
7 reduction; from hundreds of thousands to millions of MRI measurements, these models aim to provide the
s age of the brain for each subject as a convenient summary measure. The predicted age from these models has
o been coined “brain age”, and the difference between age (sometimes referred to as “chronological age”) and
10 brain age is typically referred to as the “brain age gap”. Predicted ages are calculated using the following
u  fitted model:

Ai = f(Bi1, Bia, ..., Bip),

12 where A; is the predicted age of the ith subject, B;; is the jth brain feature for the ith subject, and f(-) is
13 some function of the brain features.

1 Brain age gap analysis was developed to address two major challenges in neuroscience and medicine:
15 high-dimensionality, and individual risk assessment. Neuroimaging data are high dimensional, with the
16 average T1-weighted scan containing approximately 1,200,000 voxels of brain tissue (Cosgrove, Mazure, &
v Staley, 2007). Importantly, different parts of the brain follow a variety of trajectories across the lifespan
18 (Coupé, Catheline, Lanuza, & Manjon, 2017; Gennatas et al., 2017; Kennedy et al., 2015). Therefore, in
19 order to better predict age, it is beneficial to use more brain features that complement each other (Varikuti
2 et al, 2018). The main motivation, however, behind brain age gap analyses has been to develop a single
2 number to represent an individual’s deviation from some normal trajectory (de Lange & Cole, 2020). This is
» an admirable goal, since deviating from a normal trajectory may be indicative of or predictive of debilitating
;3 disorders (Marquand, Rezek, Buitelaar, & Beckmann, 2016).

2 Researchers often test whether members of a group tend to have their age overestimated compared to
5 a control group, striving to assess whether the disorder is associated with the brain aging prematurely or
» lagging behind. For instance, Chung et al. (2018) asked if those at clinical high risk for psychosis had a
x larger brain age gap than healthy controls, and Liem et al. (2017) asked if the brain age gap differed across
;s groups with varying degrees of objective cognitive impairment. Typically, these models are developed using

2 regression or machine learning in one dataset, and are evaluated in a test set. The cross-validation process
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3 involves dividing the training set into k folds, estimating the model parameters on k — 1 folds, applying the
s fitted model to the remaining fold, and repeating until every participant in the training set has a predicted
3 age. This procedure helps avoid over-fitting and reporting an inflated model accuracy statistic. Finally, the
33 trained model is applied on a separate test set to predict age of each individual based on their brain features.
3 In this article, we note that the brain age gap, and a recently proposed modified version of it (Beheshti,
s Nugent, Potvin, & Duchesne, 2019; Chung et al., 2018; Liang, Zhang, & Niu, 2019; Smith, Vidaurre, Alfaro-
s Almagro, Nichols, & Miller, 2019), are not up to the task of quantifying deviation from a normal trajectory.
s The brain age gap is a linear transformation of an out-of-sample residual (subsequently referred to as a
s “prediction error”). As such, it is dependent on the outcome variable (i.e., age) (Le et al., 2018). Therefore,
3 differences in the brain age gap between groups may be due to differences in the brain, or due to differences
« in the age distributions across groups (Le et al., 2018; Smith et al., 2019). A recently proposed solution to
a1 this problem — regressing the brain age gap on age and taking the residuals from this model as a modified
« brain age gap that is orthogonal to age — creates new problems. In particular, if this new prediction error
i is treated as a deviation from a subject’s age, which it is not, metrics of model accuracy will be severely

4 inflated.

s 2 Known Limitations of the Brain Age Gap

s Brain age gap analyses have historically been based on the assumption that the difference between age and
«  predicted age does not vary as a function of age; however, recently several groups have pointed out that this
s assumption is false (Le et al., 2018; Liang et al., 2019; Smith et al., 2019). Smith et al. (2019) pointed out
w0 an extreme case of this error: when age has truly no relationship with brain features, the difference between
s age and predicted age (“brain age gap”) is a linear function of age, which implies that age explains 100%
si of the variance in the brain age gap. Smith et al. (2019) note that any subsequent analyses studying the
52 relationship between this gap and other metrics is equivalent to relating a linear transformation of age to
53 other metrics.

5 To flesh out the gravity of this observation, consider an example: If age does not vary as a function of any
ss of the brain parameters, all coefficients, aside from the intercept, will be close to zero with high probability,
ss and the intercept will be close to the mean age of the training sample. Let A; be the age of the ith subject,
s7 B;; the jth brain feature for the ith subject, ¢; random error, and A the mean age of the training sample.

ss The brain age model is thus:

Aj = Bo+ B1Bir + B2Bia + -+ + BpBip + € (1)
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o And the fitted values are:

A; = Bo+ B1Bis + B2Bin + -+ + BypBip ¥ A+ 0x Biy + 0 x B + -+ + 0 x By, = A. (2)

60 For simplicity, let’s assume that the coefficients are estimated to be exactly zero. Suppose the mean age
&1 of the training sample is 10 years old. Every person will have an estimated age of 10, so their brain age gap,
e A; — A;, will be 10 — A;. Thus, the brain age gaps are as follows: 15-year-olds have a brain age gap of -5,
63 10-year-olds have a brain age gap of 0, 5-year-olds have a brain age gap of 5, etc. Older participants are
e estimated as being younger than they are, and younger participants as older. The brain age gap is a linear
s transformation of a residual (i.e., ¢ = A; — A = —(/L — A;)), which by definition varies as a function of
e the outcome variable, in this case age. If the brain features are linearly independent of age, then testing for
o7 differences in the brain age gap is equivalent to testing, “Is the mean age of group A different from the mean
e age of group B?” When testing for differences on the brain age gap in general, the question being asked is
e similar to “Controlling for the brain features, is the mean age of group A different from the mean age of
o group B?” Because regression on the residuals of a previous model is not equivalent to multiple regression,
n  this description is not quite correct (Chen, Hribar, & Melessa, 2018; Freckleton, 2002). Thus, interpretation
7 of these residuals is difficult.

73 Even if age varies as a function of the brain parameters, the predicted age for every subject will still be
7 shrunk towards the mean age of the training sample. This is referred to as regression towards the mean, and
s was first documented by Sir Francis Galton in 1886 (Bland & Altman, 1994). As Liang et al. (2019) noted,
7 this phenomenon is a common feature of many good models. Therefore, older subjects will have negative
77 brain age gap estimates on average simply because they are older, while younger subjects will have positive
7z estimates on average.

70 It is important to note that regression towards the mean is not a failure, but a feature, of regression
s and related methods. If there is any randomness in a process, observations will tend towards the mean
s of the outcome variable rather than remain as extreme as they were upon initial sampling (Stigler, 1997).
2 Regression towards the mean is a feature of regression that is actively useful for prediction. Since age is
e known with certainty, the notion of predicting it makes the construction of a residual awkward. Thus,
@ as we continue to use age prediction as a means to reduce dimensionality, it is important to understand
s the limitations of using age as an outcome variable and subsequent associated analyses. Recognizing the
s dependence of the brain age gap on age, researchers have begun to develop methods to mitigate the age-
s dependence of the brain age gap (Beheshti et al., 2019; Le et al., 2018; Smith et al., 2019). Unfortunately,

e a misuse of residuals persists, resulting in a systematic overestimation of model accuracy.
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» 3 Risks of Using a Modified Brain Age Gap

o To mitigate the residuals’ dependence on age, some researchers apply the following algorithm (Beheshti et
a al., 2019; Chung et al., 2018; Liang et al., 2019; Smith et al., 2019) (see the appendix for details on Beheshti
e et al. (2019)’s method). First, a training sample is used to estimate a mapping f(-) from brain features
53 to age. Then, for a left out subject ¢ with brain data B;1, Bis,. .., Bip, the predicted age (“brain age”) is

o estimated as flz

Ai :f(Bi17Bi27"'7Bip)' (3)

s Then the ith subject’s brain age gap (BAG) is

BAG; = A; — A;. (4)

o Recognizing the brain age gap’s dependence on age, the researcher poses a linear model of the brain age gap

97 O age:

BAG; = a+vA; +9; (5)

¢ where estimated parameters & and 4 are found from a regression using training data, and ¢; is random error.

oo Thus, the effect of age is removed, producing the modified brain age gap (MBAG):

MBAG; = §; = BAG; — (& 4+ 44,), (6)

w0 which, as the prediction error from model (5), is approximately uncorrelated with age (only exactly uncorre-
o1 lated if test data is used to estimate o and ). Because MBAG has been interpreted as a corrected residual,
12 MBAG is added to (or subtracted from; equivalent in correlation, see Supplement) age. This new variable

103 is then referred to as the corrected predicted age:

AM = A; + MBAG,; = A+ a + 4A;. (7)

14 Because the researcher perceives this predicted age as corrected, they correlate it with age to assess their
s model’s accuracy in predicting age. We will refer to Af‘/f as the “modified predicted age” and will show below
s why this age estimation is flawed.

107 MBAG is by no means a more accurate measure of an out-of-sample residual, or prediction error (i.e.,

s the “brain age gap”). The brain age gap itself is more dependent on age the less the brain features are
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Table 1: Papers reporting inflated model accuracy statistics.

Paper Before Modification After Modification
Beheshti et al. (2019) Corr(4, A)? = .38 Corr(A, AM)2 = 88
Chung et al. (2018) Corr(A, A)? = .66 Corr(A, AM)? = 84
Liang et al. (2019) MAE = 1.57 MAE = 1.32

Smith et al. (2019) Corr(A4, A) = .06 Corr(A4, AM) = 99

Note: MAE = Mean Absolute Error.

109 associated with age. Again, consider the extreme case where age is independent of the brain features. Then,
uo  the brain age gap is completely determined by age, as explained in the previous section. If MBAG is treated
m  as an estimate of the deviation from age, the reported model accuracy (e.g., Corr(Ai,/le)2 = R?) will
uz  always be inflated relative to the true model accuracy, and often drastically so (see Table 1 for details on
us  papers that have reported inflated model accuracy statistics). When age has no true dependence on the
us  brain features, the population covariance between age and predicted age, Ai7 is zero. But when MBAG is
us treated as the deviation from age, A; + MBAG;, age and modified predicted age, Ai‘/f , have an approximately
ue  perfect correlation of 1.

17 In fact, the inflated correlation can be directly computed as a function of the sample estimates of the
us covariance between age and predicted age, the variance of age, and the variance of predicted age (see

uo  Supplement for derivations):

—4Var(A4) 4+ Cov(A, A)

Corr(A4, AM) =

\/Var(A) X (Var(/l) + 42Var(A4) — 25Cov (A4, A))

—1/2
=1+ ! (1—1r27)
N ~ /[ Var(A) 2 AA
Taa =" Var(A)
20 If & and 4 are estimated in the test set, equation (8) can be further simplified:
Var(A)

. ~1/2
Corriest (A, AM) = (1 + Var(A) (1- riﬁ) . (9)

1 The equation can be simplified even further if A is a linear estimator:

CorTiest, timear (A, AM) = (1412 ;(1 =12 ) 2. (10)

122 To illustrate the inflated correlation effect and confirm that equation 8 is correct, a series of simulations

123 were run to compare the transformations that researchers describe performing to the above equation using R
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124 version 3.6.2 (R Core Team, 2019). Training and testing sets of 10,000 samples were simulated from each of a
125 series of bivariate normal distributions, where the true correlation between age and brain was varied between
s 0 and 1, with the correlation between age and the modified predicted age, Afw , in the test set being the key
127 outcome measure recorded. All model parameters were estimated in the training set. Since there is only one
128 brain feature, the correlation between age and predicted age is the same as the correlation between age and
129 brain. Results using a single brain feature are detailed in Figure 1. A single brain feature was used so as to
10 have easy control over the correlation between age and predicted age, but note that this result generalizes
1 to any number of brain features. For a set of correlations between 0 and 1, the correlation between age and
1 the modified predicted age, AM, was calculated using the theoretical formulation in (8) (black line), and the
1 inflated correlation was obtained using the previously described transformations (pink dots). The identity
134 line is displayed to aid in visualizing that the inflated correlation is larger than the true correlation. The
15 simulations confirmed that the theoretical formulation in (8) is equivalent to the transformations researchers
136 have described. In addition, Figure 1 illustrates that the degree of inflation is much greater for models that
1w have lower values of Corr(A, A) than for models that have higher values of Corr(4, A).

138 Additional analyses were run using the Philadelphia Neurodevelopmental Cohort (PNC) to illustrate
139 the findings in brain MRI data. Sample details, neuroimaging protocols, and processing can be found in
o Calkins et al. (2015), Gur et al. (2020), and Satterthwaite et al. (2014). Briefly, participants ages 8-22
1w were recruited through their primary care providers in the Philadelphia area. Subjects were excluded for
12 the purposes of these analyses if their cognitive assessment was conducted more than a year before or after

13 their neuroimaging data was collected, or if their structural image did not pass stringent quality assurance
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s measures. 132 regional volume values were extracted using the Advanced Normalization Tools software
s package (Tustison et al., 2013; Wang & Yushkevich, 2013).

146 Elastic net models to predict age were built on youths ages 8-22 without a history of mental illness
w (“typically developing”). Hyperparameters were chosen using repeated five-fold cross validation on the
us  typically developing youth as implemented in the ‘caret’ package, version 6.0-86 (Kuhn, 2012). Then, a
1o linear regression of BAG on age was fit in the typically developing subjects (N = 317). Using the fitted
150 values for the parameters from these models, the transformations previously described were applied to youth
151 who met screening criteria for lifetime instance of a mental illness (N = 862). This real data example
152 confirmed the theoretical and simulation findings (see Figure 3). Prior to any modification, the correlation
153 between age (A) and predicted age (/i) was .773. After applying the modifications, the correlation became
154 .884. There were no differences between the typically developing youth and youth with a history of mental
155 illness on age (t = —1.05,p = 0.29), the brain age gap (t = 0.72,p = 0.47), or MBAG (¢t = 0.09, p = 0390).
16 Age and performance on the complex cognition tasks were highly associated (r = 0.54, p < .0001). After
157 regressing the brain features out of age and multiplying by negative one — or constructing the brain age gap
158 — this association weakened (r = —0.30, p < .0001). MBAG and performance on the complex cognition tasks
10 were not associated (r = —.01, p = 0.71). These results indicate that the association between cognition
1o and the brain age gap are driven by the association between age and cognitive performance. Prior work
1 highlighting group differences and correlations between brain age metrics and other variables should be

12 examined in light of these results.

w 4 Conclusion

1 We have shown that predicted age estimates (“brain age”) based on a regression adjustment of the brain age
165 gap result in a correlation between a modified predicted age and age never falling much below 0.9 regardless
s of the original predicted age and age correlation. Further, the interpretability of MBAG itself is limited by
w7 the fact that it is a prediction error from a regression to remove the effects of age from a residual obtained
168 through a regression to predict age. By virtue of these limitations, we suggest that the brain age gap and
1o the modified version may not provide useful information about precocity or delay in brain development. In
o light of this, we suggest that methods be developed specifically to answer questions about similarity between
1 brains of different age groups and diseased states.

172 Many other transformations have been developed to mitigate the downstream effects of BAG’s dependence
s on age (de Lange & Cole, 2020). Some are not susceptible to the inflated correlation issue described in this

wa  work. Methods include scaling the predicted age by the slope and intercept from the regression of predicted
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Figure 2: The inflated correlation finding was replicated in the Philadelphia Neurodevelopmental Cohort.
Plotted are values for age, predicted age, brain age gap, modified brain age gap and modified predicted age
in the subset of participants who met screening criteria for an instance of mental illness in their lifetime.
The identity line is displayed in panels A and D.
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ws  age on age (see (5) in de Lange and Cole (2020)), and including age as a covariate when testing for group
ws differences in BAG (Le et al., 2018). The former results in a new BAG estimate that is uncorrelated with
w7 age, and the latter ensures that any group differences found on BAG will be linearly independent of age.
s Note that, if all models had been built on the test set, controlling for age when testing for group differences
o on BAG is the two-step regression equivalent of including age as a covariate in a multiple regression with
180 brain features predicting age. The real question then becomes: to what extent do these methods quantify
11 advanced or delayed brain development? This question warrants further theoretical investigation.

182 Future research should also determine appropriate analytic methods to answer whether the brains of
183 patients with disorders are more similar to older healthy controls’ than age-matched healthy controls’ brains,
1a  and to evaluating the extent to which analyses of residuals as deviations from some trajectory exist in the
15 literature. Thus far, we are aware of a similar trend of predicting age using genetic features in attempt to
186 document differences in precocious and delayed genetic development (Sumner, Colich, Uddin, Armstrong,
17 & McLaughlin, 2019; Wolf et al., 2018). In the meantime, while previous studies have suggested that the
s brain age gap be used as biomarker in clinical trials (Cole et al., 2018), our findings suggest that further

19 methodological work is warranted.
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«  Beheshti et al. (2019) correlation

202 Beheshti et al. (2019) suggest subtracting & + 44; from A;, and calling this new value the corrected

203 predicted age:

Corr(A, A — (& +4A)) = Corr(A, A — 4A)

_ Cov(4, A—44)
\/ Var(4)Var(4 — 4.4)

—4Var(A) + Cov(A, A)
\/ Var(A) (var(A) +42Var(A) — 29Cov(A, A))

= Corr(A, AM).
204
205 Therefore, their method is equivalent to Eqn. 8.
296
»  Adding and subtracting MBAG from age results in the same
» inflated correlation with age
Moditified predicted age has been calculated in the literature as either MBAG; = A; —BAG,; or MBAG; =
A; + BAG;. In both cases, the main results from the paper applies since the correlation between age and

the modified predicted age using either formula is the same. We have that

Corr(A, A — MBAG) = Var(A) — Cov(A, MBAG)

’ V/Var(A) (Var(A) + Var(MBAG) — 2Cov(A, MBAG))
B Var(A)
B \/Var(A)? + Var(A)Var(MBAG)

Corr(4, A + MBAG) — Var(A4) + Cov(A, MBAG)

’ /Var(A) (Var(A) + Var(MBAG) + 2Cov(A4, MBAG))
B Var(A)
B V/Var(A4)?2 + Var(A)Var(MBAG)

= Corr(4, A — MBAG)

29 which follows from the fact that MBAG; is a residual from regression of BAG; on A; and thus MBAG; is
w0 orthogonal to A; or equivalently, Cov(4, MBAG) = 0. Note that this result is only approximate when the

sn regression of BAG on age is done in the training set.
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«»  Derivation of Equation (8)

303

Corr(A, AM) = Corr(A, A+ MBAG)
= Corr(A, A+ BAG — (& +9A4))
= Corr(4, A — a — 4A)

_ Cov(A,A-a-44)
\/Var(A)Var(A —a—4A)

, apply the definition of correlation

—4Var(A) + Cov(A, A)

\/Var(A) (Var(/l) + 42Var(A) — 24Cov(A4, A))

N Var(A) + Cov(A,A)
\/Var(A)Var(A) \/Var(A)Var(A)

\/1 {Var(A) (Var(fl) + 42 Var(A) — 29Cov (A4, A)H

Var(A)Var(A)
_ —@\/% + Corr(4, A)
e -
_’?m + T4
e (V) o e

N

2
+ [ Var(A) 9z [Var(4) . 2 .2
\/ L (/vam) 2 veraa T
& [Var(4)
Var(A) + TAA

= = factor the quadratic

—~

2
2 & [Var(4) —1/2
AA + TAA 7 Var A)) ) >
2
~ Var(A
( -7 Var A§ + TAA)

—1/2
1 2
1+ 2(1—7" i)

~  [Var(A)
(TAA -y Varui))

(
(
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«  Derivations of Equations (9) and (10)

306
The following derivation involves the algebraic manipulation of the sample estimates and not expectations.

Assuming that the linear regression of BAG on age has been estimated with the testing data, then

MBAG = BAG — H4BAG

A—A—Hy(A- A)

A—
A—A—HAA—FHAA

= A—Hj A — (A— HuA)

w7 where Hy = A(ATA)71AT is the hat matrix for the regression on age, A = [1L A], and R4 = I — Hy is the
s corresponding residual forming matrix.

300 We first note that

Cov(A, AM) = Cov(A4, A+ MBAG)
= Cov(A, A+ RAA)
= Var(A) + Cov(A, R4 A)

= Var(A)

a0 where the last equality holds due to the orthogonality of A and R 4.

Then, consider:

Var(AM) = Var(4 + MBAG)

= Var(A + R4 A)

~ Var(4) (Var({l) n Var(R,éA) )
Var(A) Var(A)
Var(A)
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s Then, Eqn. (9) is found as

Var(A)
Var(A)Var(AM)
Var(A)

\/Var(A)Var(A) H:ig’:i +(1-

TZA)]
Var(A) [ Var(4) o
ar ar 2
(Var(fl) u AA) >1

. ~1/2
B Var(A)

Corr(A, AM) =

For insight on the Var(A)/Var(A) term, note that shrinkage will generally mean this term is less than
one. Moreover, if A were found with a linear regression on the testing data, i.e. A = X(XTX)1XT A where

X are brain features, then this ratio is exactly the squared correlation,

Var(A) _ 2
Var(4) A4
sz producing Eqn. (10).
313
314 In this setting, when both brain age and MBAG are determined from testing data using linear regression,

1

us  the correlation of A and AM can never fall below ——L
1+0.52%(1—0.52)

~ 0.9177. Of course, in practice, held-out
as  training data is used to learn the brain-age relationship, so a regression prediction would instead have the
a7 form A = X(XIX:,) XL Ay, where X, and Aj, are held-in training data, but Var(fl)/Var(A) R ’I“ZA still
s provides a useful starting point for exploring the parameters in the expression for Corr(A4, AM ).

319

320 Finally, note that the equality of Var(A)/Var(A) and 7“3 4 holds not just for linear regression, but any lin-
s ear estimator. Specifically, if there exists an idempotent Hx (HxHx = I, H)T( = Hx) such that 1T Hx =1
» and A= Hx A, then

323
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Var(A) _ Var(HxA)
Var(A)  Var(A)
(HxA)T/N — (1THx A/N)?

Var(A)
 ATHxA/N — (1TA/N)QATHx A/N)
- Var(A)
_ Cov(A,Hx A)
~ Var(A4)
~ Cov(4, A)
~ Var(4)

B Var(A)
=\ Var(a) 44"
And thus
Var(A)
Var(A4) T
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