

1 "Acute Respiratory Distress and Cytokine Storm in Aged, SARS-CoV-2 Infected African Green
2 Monkeys, but not in Rhesus Macaques"

3

4
5 ^{1,2}Robert V. Blair, ^{1,4}Monica Vaccari, ^{1,3}Lara A. Doyle-Meyers, ^{1,4}Chad J Roy, ^{1,3}Kasi Russell-
6 Lodrigue, ¹Marissa Fahlberg, ¹Chris J. Monjure, ^{1,4}Brandon Beddingfield, ⁵Kenneth S. Plante,
7 ⁵Jessica A. Plante, ⁵Scott C. Weaver, ^{1,2}Xuebin Qin, ¹Cecily C. Midkiff, ¹Gabrielle Lehmicke,
8 ¹Nadia Golden, ¹Breanna Threeton, ¹Toni Penney, ¹Carolina Allers, ¹Mary B Barnes, ¹Melissa
9 Pattison, ^{1,2}Prasun K Datta, ^{1,4}Nicholas J Maness, ¹Angela Birnbaum, ^{1,4}Tracy Fischer, ^{1,3}Rudolf
10 P. Bohm, *^{1,4}Jay Rappaport
11

12 ¹Tulane National Primate Research Center, Covington, LA

13 ²Tulane University School of Medicine, Department of Pathology and Laboratory Animal
14 Medicine, New Orleans, LA

15 ³Tulane University School of Medicine, Department of Medicine, New Orleans, LA

16 ⁴Tulane University School of Medicine, Department of Microbiology and Immunology, New
17 Orleans, LA

18 ⁵World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections
19 and Immunity, University of Texas Medical Branch, Galveston, TX

20

21

22 *To whom correspondence should be addressed:

23

24 Jay Rappaport, Ph.D.

25 Director and Chief Academic Officer

26 Tulane National Primate Research Center

27 18703 Three Rivers Road, Covington, LA 70433

28 jrappaport@tulane.edu

29 Tel. 985-871-6201

30 Fax. 985871, 6569

31

32 The authors have declared no conflict of interest exists

33 **Abstract**

34 **SARS-CoV-2 induces a wide range of disease severity ranging from asymptomatic**
35 **infection, to a life-threatening illness, particularly in the elderly and persons with comorbid**
36 **conditions. Among those persons with serious COVID-19 disease, acute respiratory distress**
37 **syndrome (ARDS) is a common and often fatal presentation. Animal models of SARS-**
38 **CoV-2 infection that manifest severe disease are needed to investigate the pathogenesis of**
39 **COVID-19 induced ARDS and evaluate therapeutic strategies. Here we report ARDS in**
40 **two aged African green monkeys (AGMs) infected with SARS-CoV-2 that demonstrated**
41 **pathological lesions and disease similar to severe COVID-19 in humans. We also report a**
42 **comparatively mild COVID-19 phenotype characterized by minor clinical, radiographic**
43 **and histopathologic changes in the two surviving, aged AGMs and four rhesus macaques**
44 **(RMs) infected with SARS-CoV-2. We found dramatic increases in circulating cytokines in**
45 **three of four infected, aged AGMs but not in infected RMs. All of the AGMs showed**
46 **increased levels of plasma IL-6 compared to baseline, a predictive marker and presumptive**
47 **therapeutic target in humans infected with SARS-CoV-2 infection. Together, our results**
48 **show that both RM and AGM are capable of modeling SARS-CoV-2 infection and suggest**
49 **that aged AGMs may be useful for modeling severe disease manifestations including**
50 **ARDS.**

51
52 **Introduction**

53
54 The coronavirus disease-2019 (COVID-19) pandemic, caused by the novel coronavirus, severe
55 acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has resulted in the deaths of hundreds
56 of thousands of people and has caused massive economic and health disruptions across the globe.
57 This unprecedented level of disruption has been driven by two main features of SARS-CoV-2: its
58 high rate of person-to-person transmissibility and the potential to cause severe, life-threatening,
59 pneumonia. Although severe disease is only seen in a small subset of infected people (1), it is
60 this outcome and minimal understanding of its pathogenesis that has resulted in global unrest.
61 Research into the causes and mechanisms of the most severe manifestations of COVID-19 is
62 needed to inform and facilitate the development of prophylactic and therapeutic approaches that
63 can prevent this life-threatening outcome.

64
65 Infection with SARS-CoV-2 and development of COVID-19 is accompanied by a mild
66 respiratory disease for most individuals. However, a small subset progress to develop severe
67 respiratory disease which, in some cases, is fatal (1). The most severely affected individuals
68 often present with a fever, cough, dyspnea, and bilateral radiographic opacities that, in the
69 majority of critically ill patients, progresses to acute respiratory distress syndrome (ARDS) (2).
70 The onset of ARDS is often associated with an increase in circulating pro-inflammatory
71 cytokines (3,4). Interleukin-6 (IL-6), in particular, has been shown to correlate with radiographic
72 scores in patients with SARS-CoV-2 infection (5). Worsening of disease can be seen in the
73 context of declining viral loads and markedly elevated cytokines suggesting a role for these
74 inflammatory responses in disease progression and immunopathology (6). Despite extensive
75 research during both the SARS-CoV and the Middle East respiratory syndrome (MERS)
76 outbreaks, the factors that drive this inflammatory response are still poorly understood.

77 Animal models have been used extensively during previous outbreaks of SARS-CoV (7-11) and
78 MERS (12-14) to model disease progression and to test vaccines and therapeutics. Nonhuman
79 primates (NHPs) are ideally suited to model respiratory human viral infections primarily because
80 of the similarities to human respiratory anatomy and immunologic responses when compared to
81 other animal species. Several NHP species have already been successfully employed to model
82 pathogenesis (15-19) and test vaccine candidates (20-23) for SARS-CoV-2. These prior studies
83 have shown NHPs are susceptible to infection and develop mild to moderate disease, but none
84 has been able to recapitulate the rapid clinical deterioration seen in people with severe disease
85 and ARDS. NHP models capable of recapitulating the entire spectrum of SARS-CoV-2
86 manifestations, from mild to severe disease, are urgently needed to not only test the efficacy of
87 vaccines and medical countermeasures that are currently being developed in response to COVID-
88 19, but to also investigate the pathogenesis and virus-host interactions of SARS-CoV-2. Age is a
89 well-established risk factor for severe disease and death in humans infected with SARS-CoV-2
90 (2,24,25), and therefore we challenged older RM and AGMs with SARS-CoV-2 to see if a
91 similar more severe disease phenotype was observed in aged cohorts.

92 Here we report the sudden and rapid health deterioration of two out of four aged AGMs
93 experimentally infected with SARS-CoV-2. The two affected animals developed pneumonia,
94 ARDS and increased plasma cytokines similar to the complications reported in 5-13% of
95 COVID-19 patients (26).

96 Results

97 **SARS-CoV-2 infection and viral kinetics in RM and AGM**

98 Four, aged, AGMs and four RM, thirteen to fifteen years of age, were exposed by two routes to
99 SARS-CoV-2 isolate USA-WA1/2020. Four animals were exposed via small particle aerosol
100 (AGM1, AGM4, RM3, RM4) and received an inhaled dose of approximately 2×10^3 TCID₅₀.
101 Four animals were exposed via multiple route installation (AGM 2, AGM3, RM1, RM2)
102 including conjunctival, intratracheal, oral, and intranasal exposure resulting in a cumulative dose
103 of 3.61×10^6 PFU (Supplemental Table 1). SARS-CoV-2 RNA was detectable in swabs obtained
104 from mucosal sites in all eight animals. For AGMs the viral RNA peaked between 3- and 7 days
105 post inoculation (DPI) and persisted throughout the course of the study in pharyngeal and nasal
106 swabs as well as bronchial brush samples (Figure 1). In RMs, viral RNA peaked earlier between
107 1- and 5 DPI. After peak, viral RNA loads in RM gradually declined to undetectable levels at all
108 sites by 21 DPI, except in nasal swabs which had detectable virus at necropsy in two out of four
109 RM. The highest levels of viral RNA were detected in the pharynx and nasal cavity with peaks
110 at 10^7 - 10^{11} and 10^8 - 10^9 in AGM and 10^6 - 10^8 and 10^5 - 10^{11} copies per swab in RM, respectively.
111 Rectal swabs contained high viral RNA loads similar to reports in humans (27,28); however,
112 with dissimilar kinetics in AGMs relative to virus detected in other sites, peaking between 7- and
113 14 DPI. Viral RNA was also detected in vaginal swabs of the two female AGMs in contrast to
114 reports in human subjects (29). Despite the 3 log difference in exposure dose, in comparing
115 aerosol and mulit-route viral challenge, no significant difference was observed in the viral RNA
116 loads or kinetics.

117 **ARDS in two SARS-CoV-2 infected aged AGMs**

118 After SARS-CoV-2 exposure, animals were followed up to four weeks post-infection with
119 regular clinical assessment that included physical exam, pulse oximetry, and plethysmography.
120 Clinical findings during the first 6 DPI included mild transient changes in SpO₂ and appetite with
121 one RM3 exhibiting mild intermittent fever (Supplemental Figure 1). At 7 DPI all animals
122 underwent a complete physical evaluation and an extensive sample collection protocol including
123 fluid (urine, CSF, BAL, and vaginal and rectal weks), stool, swab (buccal, nasal, and
124 pharyngeal), and bronchial brush collection, no remarkable findings were noted. That afternoon
125 (7 DPI), AGM1 developed mild tachypnea that progressed to severe respiratory distress in less
126 than 24 hours. On the morning of the 8th DPI, the animal was discovered recumbent and exam
127 findings included dyspnea, tachypnea, hypothermia, and an SpO₂ of 77% under oxygen
128 supplementation (Supplemental Figure 1). Between day 8- and 21 DPI, mild transient changes in
129 SpO₂ and appetite were noted in all remaining animals, RM3 continued to have mild intermittent
130 fever, and RM1 developed an intermittent cough. On 21 DPI all remaining animals underwent
131 another complete evaluation. During the morning exam on 22 DPI, AGM2 began exhibiting
132 tachypnea that progressed to severe respiratory distress by that afternoon. The onset, clinical
133 presentation, and rate of progression of disease in AGM2 was similar to AGM1 and included
134 dyspnea, tachypnea, hypothermia, and a SpO₂ of 77% on ambient air. After 22 DPI, no
135 significant clinical findings were observed in any of the remaining animals.

136 Thoracic radiographs for AGM1 and AGM2 revealed a diffuse alveolar pattern throughout the
137 right lung fields and a lobar sign in the caudal dorsal lung field. In AGM2 the left caudal lung
138 lobe also contained a mild alveolar pattern. These findings were in stark contrast to the
139 radiographs from the day before highlighting the rapid disease progression (Figure 2). The
140 radiographic presentation in severe human COVID-19 is similar and characterized by bilateral,
141 peripheral, ill-defined ground glass opacifications that more frequently involve the right lower
142 lobe (30). No radiographic changes were noted in AGM3 and AGM4. RM1 developed mild to
143 moderate radiographic opacities in the right caudal lung lobe by 11 DPI which gradually
144 resolved over time. RM2 revealed a small area of increased opacity in the ventral lung field at 11
145 DPI which was not observed on subsequent radiographs.

146 Rapid disease progression in AGM1 and AGM2 was associated with an elevated WBC, a mature
147 neutrophilia and a normal lymphocyte count that resulted in an elevated neutrophil-to-
148 lymphocyte ratio (NLR) (Supplemental Figure 2). These changes were not observed in the other
149 two AGM or in four RM. Mild lymphopenia was observed at acute time points in RM1-3;
150 however, in the absence of neutrophilia, the NLR was only mildly elevated (<4) in these animals.
151 Serum chemistries revealed hypoproteinemia, an elevated glucose, and mild to moderate
152 elevation in BUN for both animals with ARDS. Creatinine, and AST were also mildly elevated
153 in AGM1 indicating multiple organ dysfunction (Supplemental Figure 2). These chemistry
154 abnormalities were not observed in the two remaining AGMs or four RM. All four RM
155 developed mild hypoalbuminemia after infection, and three of the four developed mild
156 hyperglobulinemia. Elevated NLR has been identified as an independent risk factor for mortality
157 in hospitalized patients with SARS-CoV-2, and increased NLR significantly correlated with

158 elevations in AST, glucose, BUN, and creatinine in these patients (31). The constellation of
159 hematologic changes in AGM1 and AGM2 is therefore similar to the changes observed in human
160 COVID-19 patients with increased NLR; however in humans, increased NLR is often associated
161 with lymphopenia (32) which was not observed in these two animals.

162 Due to their rapidly declining clinical condition, AGM1 and AGM2 were euthanized at 8 and 22
163 DPI, respectively. All remaining animals (2 AGM and 4 RM) were euthanized at the study
164 endpoint between three- and four-weeks post infection. A complete necropsy was performed on
165 all animals.

166 Increased plasma cytokines in two AGMs with, and one without, ARDS

167 Increased plasma cytokines has been observed in a subgroup of patients with severe COVID-19
168 pneumonia (33). In these patients the disease progresses rapidly, and mortality is high. A panel
169 of cytokines was measured in plasma at baseline and during the course of infection. Interferon
170 gamma (IFN γ) responses increased at 1 week post infection in all of the AGMs and none of the
171 RM, as shown by the heat map (Figure 3A). IFN γ levels were higher in AGM1 and AGM2 and
172 were associated with viral RNA in the bronchial brushes at the same time point (1 week) (Figure
173 3B, C).

174 A group of cytokines similar to those observed in human COVID-19 was upregulated in the two
175 animals that progressed to ARDS (AGM1 and AGM2) at the time of necropsy compared to
176 baseline levels (Figure 3A and Supplemental Figure 3). Elevated markers included IFN γ , IL-6,
177 IL-4/IL-13, IL-8, IL-1 β and TNF α . AGM4 did not develop ARDS; however, this animal showed
178 a similar increase in cytokine concentrations, but with only a mild elevation of IL-6. AGM3 had
179 increased levels of IL-10 both at week 1 and necropsy and was notable for having the least
180 severe histopathologic changes of the AGMs. In contrast, RM only showed modest changes in
181 cytokine expression at one week post infection and necropsy, despite comparable peak viral
182 loads.

183 Antibody titers in SARS-CoV-2 infected AGM and RM

184 Binding IgG antibody to S1/S2 subunits of the spike (S) protein and nucleoprotein (NP) were
185 measured longitudinally for all animals by ELISA and Multiplexed Fluorometric ImmunoAssay
186 (MFIA), respectively. Antibodies were not detected prior to infection in any of the animals used
187 in this infection study. In AGM1 (euthanized 8 DPI) antibodies were not detected. In all other
188 animals antibodies to S and NP were detectable by 14 DPI except RM3 who did not have
189 detectable antibodies to S until 21 DPI. No significant differences in antibody responses were
190 noted by route or species. (Supplemental Figure 4).

191 Pulmonary pathology in AGMs with ARDS

192 Gross postmortem examination of AGM1 and AGM2 revealed severe consolidation and edema
193 in the right caudal lung lobe with generalized failure to collapse of the remaining lobes,
194 consistent with a bronchointerstitial pneumonia (Figure 4). In AGM2 (multiroute exposure)
195 pulmonary hemorrhage was also noted near the dorsal margin of the right caudal lung lobe (not
196 shown). AGM3 had multifocal pleural adhesions between the left caudal lung lobe and the

197 diaphragm that was interpreted as being unrelated to SARS-CoV-2 infection based on the
198 chronicity of the lesion and the history of the animal. RM1 had a focal pulmonary scar in the
199 right caudal lung lobe surrounded by acute hemorrhage (Supplemental Figure 5). The lungs of
200 the remaining animals (AGM4, RM2, RM3, and RM4) were grossly normal. No gross
201 abnormalities were noted outside the lungs in any of the eight animals.

202
203 Histopathologic findings in the lungs of AGM1 and AGM2 were similar and characterized by
204 alveoli that were filled with fibrin, hemorrhage, and proteinaceous fluid. Alveoli were
205 multifocally lined by hyaline membranes and/or type II pneumocytes, consistent with diffuse
206 alveolar damage. Bronchial and alveolar septal necrosis were present within severely affected
207 lung lobes characterized by a loss of epithelial lining cells and infiltration by neutrophils with
208 lesser numbers of lymphocytes and histiocytes (Figure 5A, B). In AGM1, type II pneumocytes
209 frequently exhibited atypia and occasionally contained mitotic figures. Regions of the lung from
210 AGM1 also had organization of intra-alveolar fibrin with infiltration by spindle cells and lining
211 by type II pneumocytes, consistent with early organizing pneumonia. Low numbers of
212 multinucleated giant cell syncytia were scattered throughout alveoli (Figure 5C). Fluorescent
213 immunohistochemistry identified low numbers of type II pneumocytes and alveolar macrophages
214 that were positive for SARS-CoV-2 nucleoprotein within the affected lungs from AGM1, but not
215 AGM2. (Figure 5D). AGM4 had multifocal, mild to moderate, interstitial pneumonia scattered
216 throughout all lung lobes characterized by a mixed infiltrate of neutrophils, lymphocytes, and
217 histiocytes. Multinucleated giant cell syncytia and atypical pneumocyte hyperplasia were rarely
218 observed in all lung lobes. AGM3 had scant inflammation in all lung lobes examined
219 (Supplemental Figure 6). Three out of four rhesus macaques (RM1, RM2, and RM4) had
220 microscopic evidence of aspiration pneumonia characterized by a foreign plant material within
221 bronchioles. Affected bronchioles were surrounded by mild (RM2 and RM4) or severe (RM1)
222 pyogranulomatous inflammation (Supplemental Figure 7). In RM1, microscopic examination of
223 the pulmonary scar noted grossly identified a markedly ectatic bronchiole surrounded by
224 pyogranulomatous inflammation in the pulmonary parenchyma adjacent to the scar (not shown).
225 This lesion was presumed to be secondary to aspiration, although no foreign material was
226 identified within the tissue section. The right middle lung lobe of RM3 had moderate
227 lymphocytic vasculitis with medial thickening of affected vessels. Viral load was not
228 significantly associated with pulmonary pathology in AGMs or RMs; however, the two animals
229 that developed diffuse alveolar damage showed higher viral loads in bronchi. Histopathologic
230 lesions in other tissues were mild and interpreted as not significant in all eight animals
231 (Supplemental Table 2).

232

233 Discussion

234

235 NHPs are ideal candidates for the modeling of human respiratory viral infections. Several recent
236 studies have been published utilizing AGMs (15,18) and RMs (16,17) to model SARS-CoV-2
237 infection and have shown both species are capable of modeling mild to moderate disease and are
238 useful for testing prospective vaccines and therapeutics. However, none of these prior studies
239 have been able to recapitulate the spontaneous, severe disease phenotype seen in a subset of
240 people with COVID-19. Our results show that following infection with SARS-CoV-2, aged

241 AGMs can spontaneously develop ARDS and a cytokine release syndrome similar to that
242 reported in humans with severe COVID-19 (33), which was not observed in RM of similar age.

243 Acute respiratory distress syndrome is defined by the rapid development (within 1 week of new
244 respiratory symptoms) of bilateral radiographic opacities, and respiratory failure not explained
245 by cardiac failure or fluid overload (34). Objective criteria that have been used for the diagnosis
246 and scoring of ARDS include the number of lung quadrants affected on radiographs, the
247 $\text{PaO}_2/\text{FiO}_2$ ratio, and measurements of positive end-expiratory pressure (PEEP) and pulmonary
248 compliance (35). Two of the AGMs in our study developed widespread radiographic opacities
249 and severe respiratory distress ($\text{SpO}_2 77\%$) that progressed over a 24-hour period. The rapid
250 progression of clinical disease in conjunction with pre-established humane endpoints, precluded
251 further diagnostics such as PEEP, pulmonary compliance, and echocardiogram; however
252 postmortem examination found no evidence of congestive heart failure. Taken together the
253 radiographic changes, impaired oxygenation, and the postmortem findings which included
254 diffuse alveolar damage, are consistent with a diagnosis of ARDS in both AGM1 and AGM2. Of
255 note, both of the animals that developed ARDS did so within 24 hours following routinely
256 scheduled sampling procedures which included anesthesia and bronchoalveolar lavage. It has
257 been our experience that these procedures are well tolerated, and procedure-related
258 complications are exceedingly rare (fatal complication within 48-hours of procedure after 2 of
259 11,431 procedures in animals ranging from 1-31 years of age, unpublished data). Furthermore,
260 AGM1 and AGM2 previously underwent the same routine sampling procedures one (AGM1:
261 preinfection) and three times (AGM2: preinfection, 7 DPI, and 14 DPI) without complication. In
262 our previous experience fatal complications have only occurred in animals that were severely
263 debilitated at the time of the procedure (one was CD8-depleted-SIV infected and the second was
264 infected with *Mycobacterium tuberculosis* CDC1551). The postmortem findings in these
265 debilitated animals that developed fatal complications were also distinct (no evidence of diffuse
266 alveolar disease) from the two AGMs reported herein. Therefore in our experience, routine
267 sampling procedures do not cause the severe COVID-19 phenotype observed in AGM1 and
268 AGM2, even in the rare cases where fatal complications occur.

269 Further, we found dramatic increases in plasma cytokines with progression of COVID-19 in
270 NHPs, which further contributes to the development of the COVID-19 phenotypes seen in these
271 infected AGMs and RM. The pathogenesis of ARDS is still poorly understood. ARDS has
272 multiple causes and several animal models have been utilized in the past to study this syndrome.
273 These include models of sepsis, hyperoxia, aerosolized toxin (36), and acid aspiration (37).
274 These models have highlighted the importance of the innate host immune response in the
275 development of acute lung injury. Proinflammatory cytokines including $\text{TNF}\alpha$, $\text{IL-1}\beta$, IL-8 , IL-6 ,
276 G-CSF , MCP-1 , and MIP-1 have been shown to be elevated during the acute phases of acute
277 lung injury (ALI) (38). In human COVID-19, circulating IL-6 has been shown to correlate with
278 radiographic abnormalities of pneumonia (3). Indeed, overexpression of several of these
279 cytokines were observed in both animals that progressed to ARDS. This differed from the
280 cytokine profile in the AGMs and RMs that reached study endpoint. Only a few cytokines (IL-6 ,
281 IL-8 and IL-10) were elevated in AGM3; whereas, AGM4 exhibited an intermediate phenotype
282 with increased levels of several cytokines ($\text{IFN}\gamma$, IL-8 , IL-13 , and IL-4) but only a mild increase

283 in IL-6. Interestingly, at 7 DPI all four AGMs had increased levels of IFN γ , with the two AGMs
284 that progressed having the highest plasma concentration. The IFN γ plasma levels in the AGMs at
285 7 DPI were positively associated with viral load in bronchial brush samples at the same time
286 ($p=0.015$, $R=0.97$, Pearson test) suggesting that viral load may be driving the IFN γ response.
287 Some groups have proposed that IFN γ production may be favorable to the virus through
288 upregulation of ACE2 from IFN γ stimulation (39). Thus, elevated IFN γ in plasma could be
289 explored as a potential predictive biomarker for advanced disease in people.

290 Several predisposing conditions are known to increase the likelihood of developing severe
291 disease in people following infection with SARS-CoV-2. Age (2), weight (40), and sex (2,41)
292 have been identified as potential predisposing factors for developing severe disease. All of the
293 AGMs included in our study were aged, with an estimated age of 16 years old. Both animals that
294 progressed to severe disease were also female and low weight. This differs from what is reported
295 in COVID-19 patients in which male gender (24,42) and obesity (40) have been shown to have a
296 higher prevalence of severe disease. The AGMs used in this infection study were also imported
297 from nondomestic sources. Detailed longitudinal information (e.g. medical history, housing, diet)
298 was not available for the AGMs as it was for the RM that were born at TNPRC. All of the AGMs
299 used in the study were found to be in excellent health upon importation, underwent an
300 unremarkable 90-day quarantine period, and were housed at the TNPRC for 10 months prior to
301 use. All animals were examined, and screened for viral, bacterial, and parasitic infections prior to
302 inclusion as subjects on this study. Although the animals were deemed clinically healthy at the
303 time of initiation of the study, there may have been historical factors that predisposed them to
304 enhanced COVID-19 disease.

305 Our findings in AGMs differ from previous reports through the identification of a severe
306 phenotype that exhibited rapid clinical decline, acute respiratory distress, and cytokine release
307 concurrently. Major differences in study design may account for the discrepancy between our
308 results and those of prior studies utilizing AGMs including the age of the animals and the strain
309 of virus that was used. Apart from the severe phenotype observed in two of the animals, our
310 findings are otherwise consistent with prior studies with the surviving AGMs showing mild
311 clinical disease, pathology, and prolonged viral shedding (15,18). The RMs in our study also
312 exhibited mild clinical disease and pathology with shorter viral shedding from mucosal sites
313 compared to the AGMs. We did not observe the moderate pathology reported by others, but our
314 study lacked necropsies at early time points wherein the majority of the pulmonary pathology
315 was described. Similarly, we did not observe the cytokine elevations in RM reported by others
316 following SARS-CoV-2 infection (16,17); however, in these prior studies cytokine elevations
317 were acute and transient, and therefore the one week post infection time point used in our study
318 may have been too late to capture these changes. Consistent with previous observations, viral
319 load in both AGMs and RMs was detectable in the lung, mouth, nose, throat, and rectum
320 following infection with SARS-CoV-2 supporting and adding to the prior work of others that
321 show even in the absence of severe disease RMs and AGMs still have utility for testing vaccines
322 and therapeutics that ameliorate disease and blunt viral shedding.

323 This study demonstrates that following exposure to SARS-CoV-2 aged AGMs develop a
324 spectrum of disease, from mild to severe COVID-19, which in some cases progress to ARDS.
325 The cytokine expression profile in the two animals that developed ARDS is similar to that seen
326 in the severe human disease phenotype. Animal models play a crucial role in elucidating the
327 early pathogenic mechanisms and virus-host interactions for emerging infectious diseases like
328 SARS-CoV-2. Animal models of both mild and severe disease manifestations of COVID-19 are
329 needed to aid with the identification of early clinical and immunological biomarkers that are
330 predictive of mortality and disease severity and to facilitate disease management. Our data
331 suggest that both RM and AGM are capable of modeling mild manifestations of SARS-CoV-2
332 infection and that aged AGMs may additionally be capable of modeling severe disease
333 manifestations including ARDS. Furthermore, aged AGMs may be very useful for investigating
334 the mechanisms of progression to severe COVID-19 observed with greater frequency in the
335 aging population.

336 **Methods**

337 **Virus**

338 The virus used for experimental infection was SARS-CoV-2; 2019-nCoV/USA-WA1/2020
339 (MN985325.1 (43)). Virus stock was prepared in Vero E6 cells and sequence confirmed by deep
340 sequencing. Plaque assays were performed in Vero E6 cells.

341 **Animals and procedures**

342 A total of eight animals, four aged (\approx 16 years of age), wild-caught AGM (2M, 2F) and four,
343 adult (13-15 years of age) RM (3M, 1F) were used in this study. Animals (n=4) were exposed to
344 SARS-CoV-2 either by small particle aerosol (44) or multiroute combination. The 4 animals
345 (AGM1, AGM4, RM3, RM4) were exposed by aerosol and received an inhaled dose of
346 approximately 2×10^3 TCID₅₀. The other four animals (AGM2, AGM3, RM1, RM2) were
347 exposed by inoculating a cumulative dose of 3.61×10^6 PFU through multiple routes (oral, 1 mL;
348 nasal, 1mL; intratracheal, 1 mL; conjunctival, 50 μ L per eye). Animals were observed for 21
349 days including twice daily monitoring. Pre- and postexposure samples included blood, CSF,
350 feces, urine, bronchioalveolar lavage, and mucosal swabs (buccal, nasal, pharyngeal, rectal,
351 vaginal, and bronchial brush). Blood was collected at postexposure days -14, 1, 3 (aerosol) or 4
352 (multiroute), 7, 14, 21, and at necropsy. CSF, feces, urine, bronchioalveolar lavage, and mucosal
353 swabs were collected at post exposure days -14, 7, 14, 21, and at necropsy. Physical exam,
354 plethysmography, and imaging (radiographs and PET/CT) occurred 7 days prior to exposure and
355 then weekly thereafter. Animals were euthanized for necropsy after three weeks post exposure,
356 or when humane end points were reached.

357 **Necropsy**

358 Postmortem examination was performed by a board-certified veterinary pathologist. Blood was
359 collected via intracardiac aspiration. Euthanasia was performed by intracardiac installation of 2
360 mL of sodium pentobarbital. CSF was collected from the atlanto-occipital space (cisterna
361 magna). Mucosal swabs were collected from the oral cavity, nasal cavity, pharynx, rectum, and

362 vagina. The pluck was removed in its entirety. The left and right lungs were photographed and
363 weighed separately. A bronchial brush was used to sample the mainstem bronchi of the right and
364 left lower lobes. Bronchoalveolar lavage was performed on the right caudal lung lobe. Samples
365 from the left anterior and caudal lung lobes were collected fresh and in media for further
366 processing. All right lung lobes were infused and stored in fixative for microscopic evaluation.
367 The remainder of the necropsy was performed routinely with collection of tissues in media,
368 fixative, or fresh.

369 Tissue samples were fixed in Z-fix (Anatech), embedded in paraffin and 5 um thick sections
370 were cut, adhered to charged glass slides and stained routinely. Tissue examined microscopically
371 included: nasal turbinate, nasopharynx, trachea, carotid artery, aorta, heart, tongue, salivary
372 gland, esophagus, stomach, duodenum, jejunum, pancreas, ileocecal junction, colon (ascending,
373 transverse, descending), rectum, liver, gall bladder, spleen, kidney, urinary bladder, thyroid,
374 pituitary, adrenal, lymph nodes (bronchial, mesenteric, submandibular, cervical, axillary,
375 inguinal, bronchial), tonsils (palatine, lingual), brain (olfactory bulb, frontal cortex, temporal
376 cortex, parietal cortex, occipital cortex, basal ganglia, cerebellum, brainstem), spinal cord
377 (cervical), and reproductive system (ovary, uterus, vagina or testis, seminal vesicle, prostate).

378 All slides were scanned on a Zeiss Axio Scan.Z1 digital slide scanner. Images and figures were
379 made using HALO software (Indica Labs).

380 **Histopathologic Scoring**

381 Pulmonary pathology was scored using two separate random forest tissue segmentation
382 algorithms trained by a veterinary pathologist to recognize fibrin and edema and cellular
383 inflammation using HALO software. Tissue sections from each of the right lung lobes was
384 segmented using the trained algorithms to quantify the percentage of tissue effected by fibrin and
385 edema or cellular inflammation. The percentage of inflammation was converted to a pathology
386 score based on the scoring system in the table below. The “Histopathology score” was made by
387 summating the fibrin and edema and cellular inflammation scores for each lobe.

Algorithm	Scores				
	0	1	2	3	4
Fibrin and edema	0-2%	2-5%	5-15%	15-30%	>30%
Cellular Inflammation	0-0.5	0.5-3	3-6%	6-12%	>12%

388

389 Semiquantitative scores were generated by a veterinary pathologist for lesions within other
390 tissues and specific tissue compartments within the lung. Lesions were scored based on severity
391 as either lacking a lesion (-) or being minimally (+), mildly (++) , moderately (+++), or severely
392 (++++) affected.

393

394 **Quantification of Swab Viral RNA**

395 Swab and bronchial brush samples were collected in 200 μ L of DNA/RNA Shield 1x (Cat.#
396 R1200, Zymo Research, Irvine, CA) and extracted for Viral RNA (vRNA) using the Quick-RNA
397 Viral kit (Cat.# R1034/5, Zymo Research). The Viral RNA Buffer was dispensed directly to the
398 swab in the DNA/RNA Shield. A modification to the manufacturers' protocol was made to insert
399 the swab directly into the spin column to centrifugate allowing all the solution to cross the spin
400 column membrane. The vRNA was the eluted (45 μ L) from which 5 μ L was added in a 0.1 mL
401 fast 96-well optical microtiter plate format (Cat #4346906, Thermo Fisher, CA) for a 20 μ L RT-
402 qPCR reaction. The RT-qPCR reaction used TaqPath 1-Step Multiplex Master Mix (Cat.#
403 A28527, Thermo Fisher) along with 2019-nCoV RUO Kit (Cat.# 10006713, IDTDNA,
404 Coralville, IA) a premix of forward and reverse primers and a FAM labeled probe targeting the
405 N1 amplicon of N gene of SARS2-nCoV19 (accession MN908947). The reaction master mix
406 were added using an X-stream repeating pipette (Eppendorf, Hauppauge, NY) to the microtiter
407 plates which were covered with optical film (cat. #4311971; Thermo Fisher), vortexed, and pulse
408 centrifuged. The RT-qPCR reaction was subjected to RT-qPCR a program of, UNG incubation at
409 25°C for 2 minutes, RT incubation at 50°C for 15 minutes, and an enzyme activation at 95°C for
410 2 minutes followed by 40 cycles of a denaturing step at 95°C for 3 seconds and annealing at
411 60°C for 30 seconds. Fluorescence signals were detected with an Applied Biosystems
412 QuantStudio 6 Sequence Detector. Data were captured and analyzed with Sequence Detector
413 Software v1.3 (Applied Biosystems, Foster City, CA). Viral copy numbers were calculated by
414 plotting Cq values obtained from unknown (i.e. test) samples against a standard curve
415 representing known viral copy numbers. The limit of detection of the viral RNA assay was 10
416 copies per reaction volume. A 2019-nCoV positive control (Cat.# 10006625, IDTDNA) were
417 analyzed in parallel with every set of test samples to verify that the RT-qPCR master mix and
418 reagents were prepared correctly to produce amplification of the target nucleic acid. A non-
419 template control (NTC) was included in the qPCR to ensure that there was no cross-
420 contamination between reactions.

421 **Immunohistochemistry**

422 Five sections of Formalin-fixed, paraffin-embedded lung were mounted on charged glass slides,
423 baked overnight at 56°C and passed through Xylene, graded ethanol, and double distilled water
424 to remove paraffin and rehydrate tissue sections. A microwave was used for heat induced epitope
425 retrieval. Slides were heated in a high pH solution (Vector Labs H-3301), rinsed in hot water and
426 transferred to a heated low pH solution (Vector Labs H-3300) where they were allowed to cool
427 to room temperature. Sections were washed in a solution of phosphate-buffered saline and fish
428 gelatin (PBS-FSG) and transferred to a humidified chamber. Tissues were blocked with 10%
429 normal goat serum (NGS) for 40 minutes, followed by a 60-minute incubation with the primary
430 antibodies (SARS-CoV-2 nucleoprotein, mouse IgG1 (Sino Biological, cat#40143-MM08);
431 ACE2, rabbit polyclonal (Millipore, cat# HPA000288); Iba-1, rabbit polyclonal (Wako, cat#
432 019-19741); or pancytokeratin, rabbit polyclonal (Dako, cat#Z0622)) diluted in NGS at a
433 concentration of 1:200 and 1:100, respectively). Slides were washed twice in PBS-FSG with
434 Tritonx100, followed by a third wash in PBS-FSG. Slides were transferred to the humidified
435 chamber and incubated, for 40 minutes, with secondary antibodies tagged with Alexa Fluor
436 fluorochromes and diluted 1:1000 in NGS. Following washes, DAPI (4',6-diamidino-2-

437 phenylindole) was used to label the nuclei of each section. Slides were mounted using a
438 homemade anti-quenching mounting media containing Mowiol (Calbiochem #475904) and
439 DABCO (Sigma #D2522) and imaged with a Zeiss Axio Slide Scanner.

440 **Cytokine Production in Plasma**

441 Plasma was collected by spinning and was thawed before use. Cytokines were measured using
442 Mesoscale Discovery using a V-Plex Proinflammatory Panel 1, 10-Plex (IFN- γ , IL-1 β , IL-2, IL-
443 4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF- α) (#K15049D, Mesoscale Discovery, Rockville,
444 Maryland) following the instructions of the kit. The plate was read on a MESO Quick Plex
445 SQ120 machine.

446 Heatmaps were generated using the ‘pheatmap’ package in R(45,46). Data were normalized by
447 dividing raw values at week 1 and necropsy by baseline values for each animal, followed by the
448 application of log2. Values below the limit of detection were replaced with the lowest limit of
449 detection value based on the standard curve for each run, or with the lowest value detected
450 during the run, whichever was smaller. Polar coordinate plots were generated using the ‘ggplot2’
451 package in R(47)(46), using the same normalized data shown in the heatmap. Scatterplots were
452 drawn using raw data points and display Pearson’s correlation coefficients.
453

454 **Detection of binding IgG antibody in plasma**

455 Serum samples collected at preinfection and at necropsy were tested for binding IgG antibodies
456 against SARS-CoV-2 S1/S2 proteins using an ELISA kit from XpressBio (cat# SP864C). The
457 assays were performed per directions of the manufacturer. In brief, the serum was diluted 1:50 in
458 Sample Diluent. One hundred microliters of diluted serum were pipetted into the wells of the
459 ELISA plate. The plate was covered and incubated at 37° C for 45 min. After incubation, the
460 wells were washed 5 times with 1X wash solution. One hundred microliters of Peroxidase
461 Conjugate were pipetted into each test well. The plate was covered and incubated at 37° C for 45
462 min. After incubation, the wells were washed 5 times with 1X Wash solution. One hundred
463 microliters of ABTS Peroxidase Substrate was pipetted into each test well. The plate was
464 incubated at room temperature for 30 minutes. The absorbance of the colorimetric reaction was
465 read at 405 nm. Samples were considered as positive if the difference between the absorbance on
466 the positive viral antigen well and the absorbance on the negative control antigen well was
467 greater or equal to 0.300.

468 Samples collected at preinfection and weekly post-infection until necropsy were tested for
469 detection of binding IgG antibodies against SARS-CoV-2 nucleoprotein (NP) by MFIA COVID-
470 Plex from Charles River Laboratories. The assays were performed per directions of the
471 manufacturer. Briefly, 25 μ L of 50-fold diluted samples, or control serum, were added to each
472 well containing 25 μ L of bead solution. The plate was covered and incubated at room
473 temperature at 650 rpm orbital shaking for 60 minutes. After incubation, the wells were washed
474 3 times with 200 μ L of MFIA assay buffer. Fifty microliters of MFIA assay buffer plus 50 μ L of
475 biotinylated anti-immunoglobulin (BAG) working dilution were added to each well. The plate
476 was covered and incubated at room temperature at 650 rpm orbital shaking for 30 minutes. After

477 incubation, the wells were washed twice as described above, and 50 μ L of MFIA assay buffer
478 plus 50 μ L of streptavidin-R-phycoerythrin (SPE) were added to each well. The plate was
479 covered and incubated at room temperature at 650 rpm orbital shaking for 30 minutes. After
480 incubation, the plate was washed 3 times as described above, and 125 μ L of MFIA assay buffer
481 were added to each well. Plates were read on a Bio-Plex® 200 System (Bio-Rad Laboratories,
482 Hercules, CA). MFIA scores were calculated using Bio-Plex Manager™ Software v6.2 (Bio-
483 Rad) as indicated by Charles River Laboratories. Samples were considered as positive if the
484 MFIA score was greater or equal to 3.0.

485 **Statistics**

486 Statistical tests were performed with Graphpad prism v8.4.3. The Mann-Whitney U test was used
487 to compare viral load between species and route of exposure. Pearson correlation test was used
488 to test correlation between cytokines and viral load.

489 **Study approval**

490 The Institutional Animal Care and Use Committee of Tulane University reviewed and approved
491 all the procedures for this experiment. The Tulane National Primate Research Center is fully
492 accredited by the AAALAC. All animals were cared for in accordance with the ILAR Guide for
493 the Care and Use of Laboratory Animals 8th Edition. The Tulane University Institutional
494 Biosafety Committee approved the procedures for sample handling, inactivation, and removal
495 from BSL3 containment.

496 **Data Availability**

497 The raw data supporting the findings and figures has been placed in a public data repository
498 which can be accessed here: <https://figshare.com/s/0436bb616239b57dc007> and will be made
499 public prior to publication. Material requests can be made to the Tulane National Primate
500 Research Center. Approved requests for materials will be released after completion of a material
501 transfer agreement.

502 **Author Contributions**

503 RVB was the lead pathologist, contributed to study design, analyzed data, and wrote the
504 manuscript. MV performed cytokine assay, composed figures, and contributed to writing the
505 manuscript. LADM was the project veterinarian, contributed to study design, and writing of the
506 IACUC and manuscript. CJR conceived and performed aerosol experiments and contributed to
507 writing the manuscript. KRL contributed to study design, IACUC protocol preparation, clinical
508 examinations, interpretation of clinical data, and manuscript review. MF analyzed cytokine data
509 and made figures. CJM processed and analyzed samples for RT-qPCR, contributed to writing the
510 manuscript. BB collected and analyzed data. KSP, JAP, SCW provided large preparations of
511 deep sequenced virus from the WRCEVA collection. XQ contributed reagents, to the conceptual
512 development of the study, and manuscript writing. CCM designed IHC panels and performed all
513 the staining. GL contributed to study design, provided administrative support, and aided with
514 sample processing and archiving. NG contributed to study design, study coordination, sample
515 processing, and SOP development. BT, TP contributed to sample processing including RT-

516 qPCR, fluids, swabs, and necropsy tissues. CA analysis and interpretation of antibody data and
517 revision of manuscript. MBB analysis and interpretation of antibody data. MP performed
518 antibody testing. PKD processed and analyzed viral load data and contributed to the writing of
519 the manuscript. NJM contributed to study design, analyzed data and contributed to writing the
520 manuscript. AB reviewed and optimized all technical SOPs and was responsible for safety of this
521 study. TF contributed to study design, planning, and writing of the manuscript. RPB contributed
522 to study design, analysis of clinical and imaging results, and writing the manuscript.
523 JR conceived, designed, and supported study, analyzed data, contributed to writing the
524 manuscript.

525 Acknowledgements

526 We would like to acknowledge Natalie Thornburg at the NCIRD for her help acquiring and
527 characterizing the viral stock used in this infection study. We would like to thank the NIH for
528 supporting this work through the TNPRC base grant (P51 OD011104 59) and grant R24
529 AI120942 to SCW. We would like to thank FastGrant for their funding support to TF.

530

531 References

- 532 1. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease
533 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese
534 Center for Disease Control and Prevention. *JAMA*. 2020;323(13):1239-1242.
- 535 2. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2
536 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet
537 Respir Med*. 2020;8(5):475-481.
- 538 3. Chien JY, Hsueh PR, Cheng WC, Yu CJ, Yang PC. Temporal changes in cytokine/chemokine
539 profiles and pulmonary involvement in severe acute respiratory syndrome. *Respirology*.
540 2006;11(6):715-722.
- 541 4. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and
542 consequences of cytokine storm and immunopathology. *Semin Immunopathol*. 2017;39(5):529-
543 539.
- 544 5. McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6
545 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease.
546 *Autoimmun Rev*. 2020;19(6):102537.
- 547 6. Weiss SR, Leibowitz JL. Coronavirus pathogenesis. *Adv Virus Res*. 2011;81:85-164.
- 548 7. Lawler JV, Endy TP, Hensley LE, et al. Cynomolgus macaque as an animal model for severe acute
549 respiratory syndrome. *PLoS medicine*. 2006;3(5):e149.
- 550 8. Smits SL, van den Brand JM, de Lang A, et al. Distinct severe acute respiratory syndrome
551 coronavirus-induced acute lung injury pathways in two different nonhuman primate species.
552 *Journal of virology*. 2011;85(9):4234-4245.
- 553 9. Clay CC, Donart N, Fomukong N, et al. Severe acute respiratory syndrome-coronavirus infection
554 in aged nonhuman primates is associated with modulated pulmonary and systemic immune
555 responses. *Immun Ageing*. 2014;11(1):4.
- 556 10. Greenough TC, Carville A, Coderre J, et al. Pneumonitis and multi-organ system disease in
557 common marmosets (*Callithrix jacchus*) infected with the severe acute respiratory syndrome-
558 associated coronavirus. *The American journal of pathology*. 2005;167(2):455-463.

559 11. Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic and research gaps:
560 Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy.
561 *Theranostics*. 2020;10(16):7448-7464.

562 12. Yeung ML, Yao Y, Jia L, et al. MERS coronavirus induces apoptosis in kidney and lung by
563 upregulating Smad7 and FGF2. *Nat Microbiol*. 2016;1:16004.

564 13. Baseler LJ, Falzarano D, Scott DP, et al. An Acute Immune Response to Middle East Respiratory
565 Syndrome Coronavirus Replication Contributes to Viral Pathogenicity. *The American journal of
566 pathology*. 2016;186(3):630-638.

567 14. de Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734)
568 treatment in the rhesus macaque model of MERS-CoV infection. *Proceedings of the National
569 Academy of Sciences of the United States of America*. 2020;117(12):6771-6776.

570 15. Woolsey C, Borisevich V, Prasad AN, et al. Establishment of an African green monkey model for
571 COVID-19. *bioRxiv*. 2020.

572 16. Singh DKea. SARS-CoV-2 infection leads to acute infection with dynamic cellular and
573 inflammatory flux in the lung that varies across nonhuman primate species. *bioRxiv*. 2020.

574 17. Munster VJ, Feldmann F, Williamson BN, et al. Respiratory disease in rhesus macaques
575 inoculated with SARS-CoV-2. *Nature*. 2020.

576 18. Hartman ALea. SARS-CoV-2 infection of African green monkeys results in mild respiratory
577 disease discernible by PET/CT imaging and prolonged shedding of infectious virus from both
578 respiratory and gastrointestinal tracts. *bioRxiv*. 2020.

579 19. Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a
580 nonhuman primate model. *Science*. 2020;368(6494):1012-1015.

581 20. van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-
582 2 pneumonia in rhesus macaques. *bioRxiv*. 2020.

583 21. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2.
584 *Science*. 2020;369(6499):77-81.

585 22. Yu J, Tostanoski LH, Peter L, et al. DNA vaccine protection against SARS-CoV-2 in rhesus
586 macaques. *Science*. 2020.

587 23. Erasmus JH, Khandhar AP, O'Connor MA, et al. An alphavirus-derived replicon RNA vaccine
588 induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates.
589 *Science translational medicine*. 2020.

590 24. Dudley JP, Lee NT. Disparities in Age-Specific Morbidity and Mortality from SARS-CoV-2 in China
591 and the Republic of Korea. *Clinical infectious diseases : an official publication of the Infectious
592 Diseases Society of America*. 2020.

593 25. Zhang X, Cai H, Hu J, et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2
594 infection with abnormal imaging findings. *Int J Infect Dis*. 2020;94:81-87.

595 26. Hu Y, Sun J, Dai Z, et al. Prevalence and severity of corona virus disease 2019 (COVID-19): A
596 systematic review and meta-analysis. *J Clin Virol*. 2020;127:104371.

597 27. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens.
598 *JAMA*. 2020.

599 28. To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal
600 saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational
601 cohort study. *Lancet Infect Dis*. 2020;20(5):565-574.

602 29. Qiu L, Liu X, Xiao M, et al. SARS-CoV-2 is not detectable in the vaginal fluid of women with
603 severe COVID-19 infection. *Clinical infectious diseases : an official publication of the Infectious
604 Diseases Society of America*. 2020.

605 30. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in
606 Wuhan, China: a descriptive study. *Lancet Infect Dis*. 2020;20(4):425-434.

607 31. Liu Y, Du X, Chen J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for
608 mortality in hospitalized patients with COVID-19. *J Infect*. 2020;81(1):e6-e12.

609 32. Fan BE, Chong VCL, Chan SSW, et al. Hematologic parameters in patients with COVID-19
610 infection. *Am J Hematol*. 2020;95(6):E131-E134.

611 33. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in
612 Wuhan, China. *Lancet*. 2020;395(10223):497-506.

613 34. Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale,
614 justification, and supplementary material. *Intensive Care Med*. 2012;38(10):1573-1582.

615 35. Raghavendran K, Napolitano LM. Definition of ALI/ARDS. *Crit Care Clin*. 2011;27(3):429-437.

616 36. Roy CJ, Ehrbar DJ, Bohorova N, et al. Rescue of rhesus macaques from the lethality of
617 aerosolized ricin toxin. *JCI insight*. 2019;4(1).

618 37. Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. *Am J Physiol Lung
619 Cell Mol Physiol*. 2008;295(3):L379-399.

620 38. O'Grady NP, Preas HL, Pugin J, et al. Local inflammatory responses following bronchial endotoxin
621 instillation in humans. *Am J Respir Crit Care Med*. 2001;163(7):1591-1598.

622 39. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated
623 Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.
624 *Cell*. 2020;181(5):1016-1035 e1019.

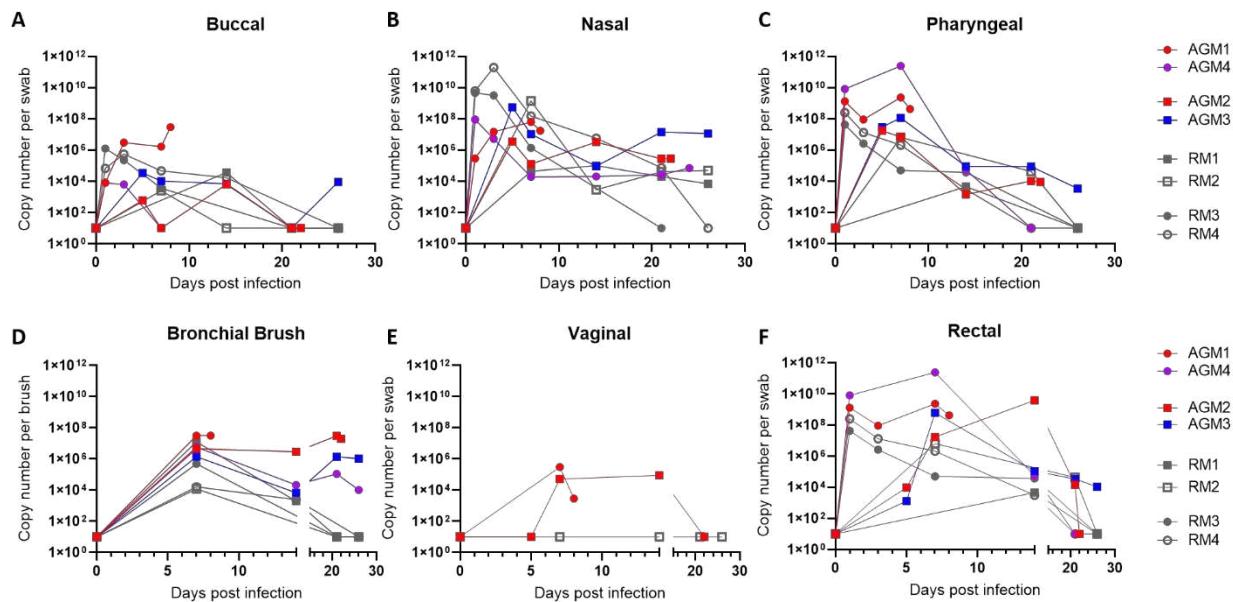
625 40. Simonnet A, Chetboun M, Poissy J, et al. High Prevalence of Obesity in Severe Acute Respiratory
626 Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. *Obesity (Silver
627 Spring)*. 2020;28(7):1195-1199.

628 41. Walter LA, McGregor AJ. Sex- and Gender-specific Observations and Implications for COVID-19.
629 *West J Emerg Med*. 2020;21(3):507-509.

630 42. Jin JM, Bai P, He W, et al. Gender Differences in Patients With COVID-19: Focus on Severity and
631 Mortality. *Front Public Health*. 2020;8:152.

632 43. Harcourt J, Tamin A, Lu X, et al. Severe Acute Respiratory Syndrome Coronavirus 2 from Patient
633 with Coronavirus Disease, United States. *Emerging infectious diseases*. 2020;26(6):1266-1273.

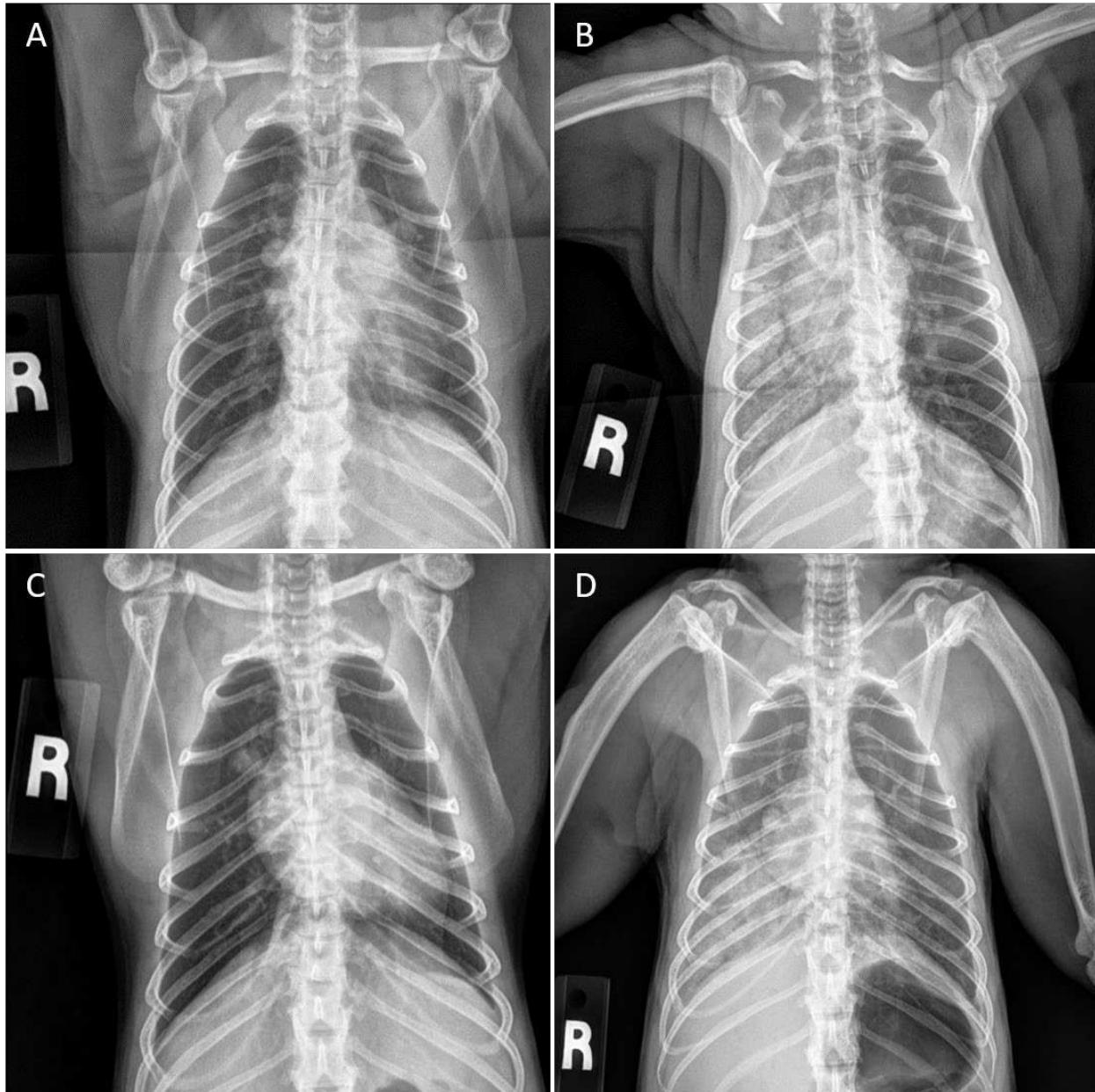
634 44. Hartings JM, Roy CJ. The automated bioaerosol exposure system: preclinical platform
635 development and a respiratory dosimetry application with nonhuman primates. *J Pharmacol
636 Toxicol Methods*. 2004;49(1):39-55.


637 45. Kolde R. pheatmap: Pretty Heatmaps. *R package version 1.012*. 2018.

638 46. Team RC. R: A language and environment for statistical computing. *R Foundation for Statistical
639 Computing*. 2019.

640 47. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016.

641


642

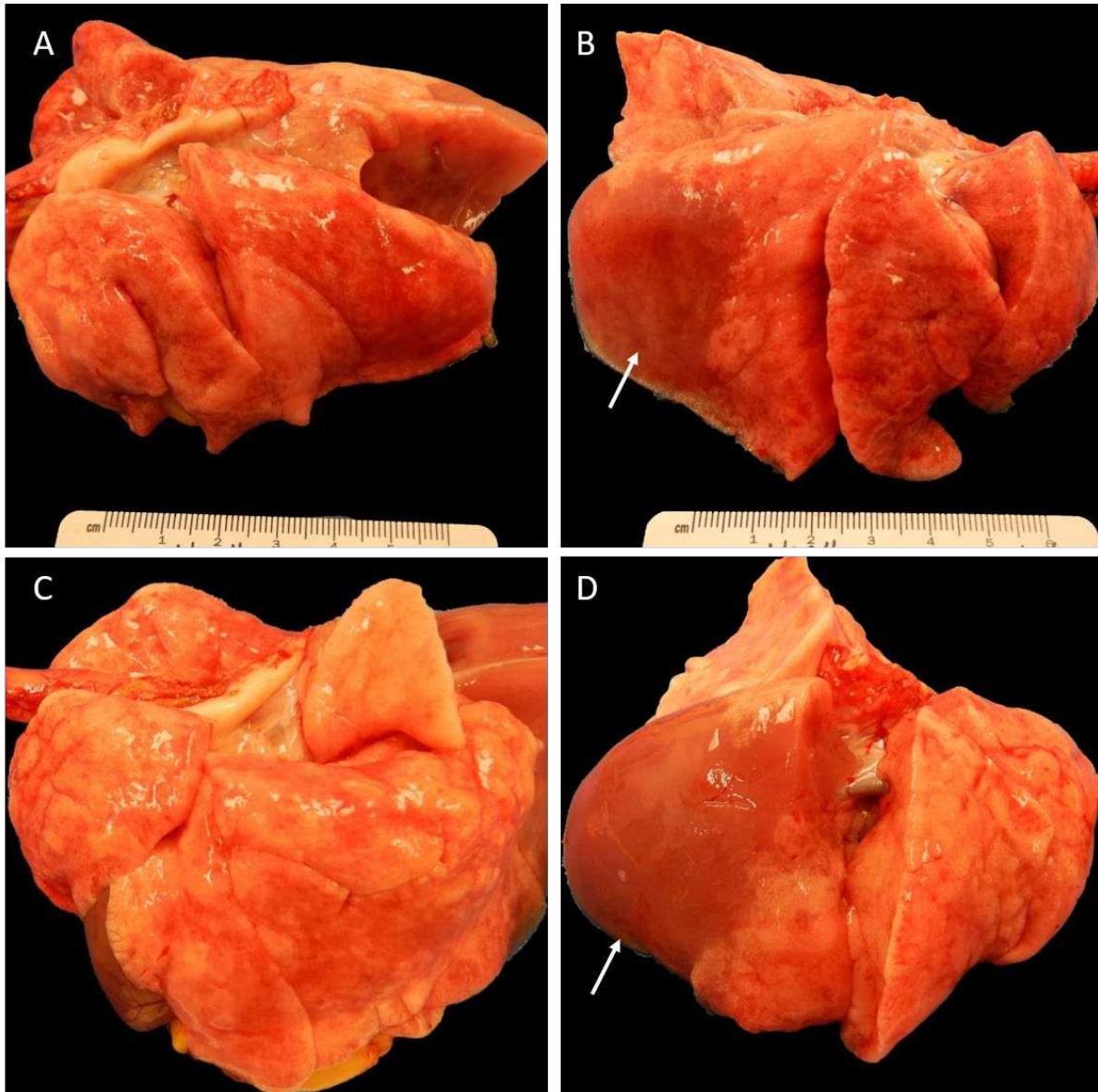
643

644 **Figure 1. Quantification of viral RNA loads from mucosal swabs.** All animals (4 African
645 green monkeys and 4 rhesus macaques) had detectable virus at mucosal sites. No significant
646 differences were noted in viral load between species and route of exposure (Mann-Whitney U
647 test). Animals with ARDS tended to high viral loads in bronchial brush samples. Circles:
648 aerosol exposure; Squares: multiroute exposure; Gray: Rhesus macaques; Color: AGM by
649 outcome. Red: developed ARDS; Purple: increased cytokines without ARDS; Blue: no cytokine
650 increase or ARDS.

651

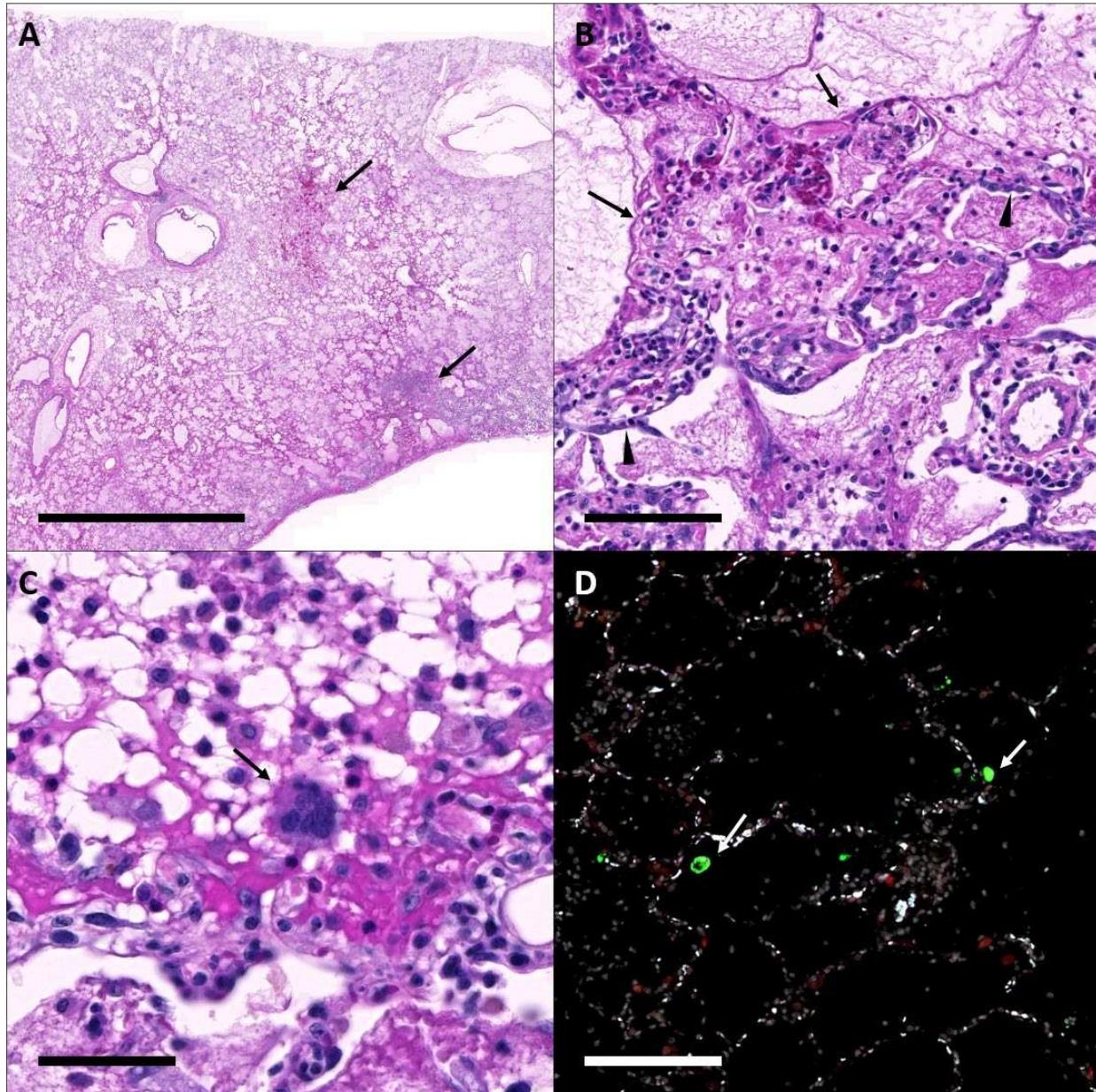
652

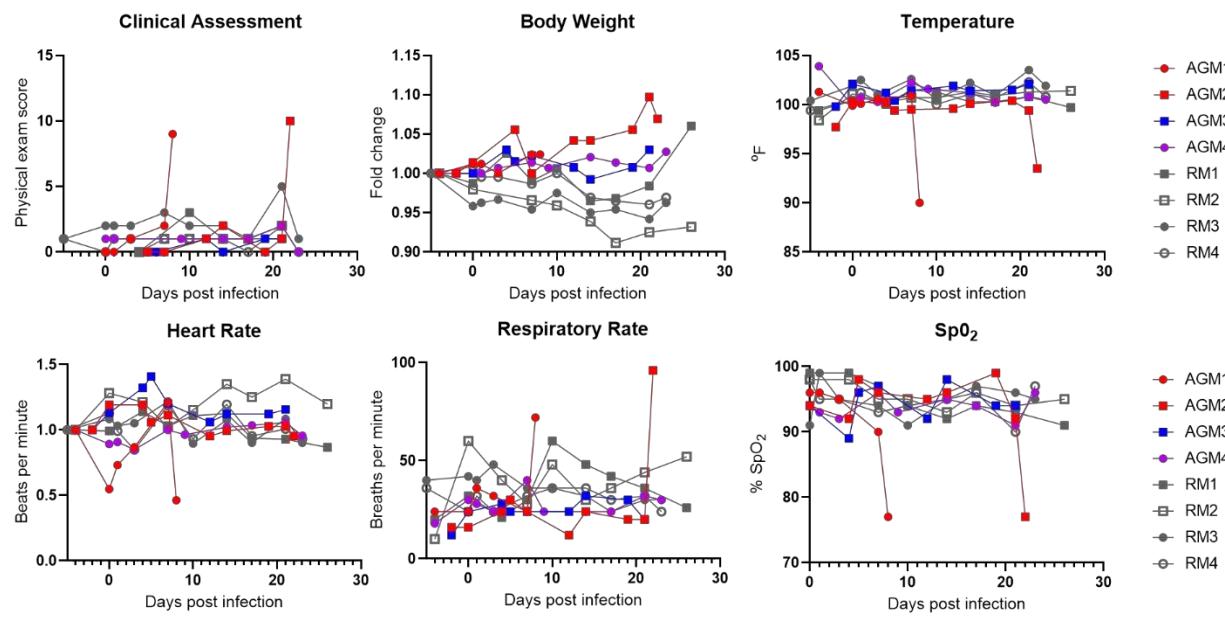
653 **Figure 2. Radiographic changes in SARS-CoV-2 infected AGMs with ARDS.** Radiographs
654 the day prior (A,C) and at the time of necropsy (B,D) in AGM1 (A,B) and AGM2 (C,D)
655 showing the rapid development of alveolar lung opacities within the lungs of both animals.


656

657

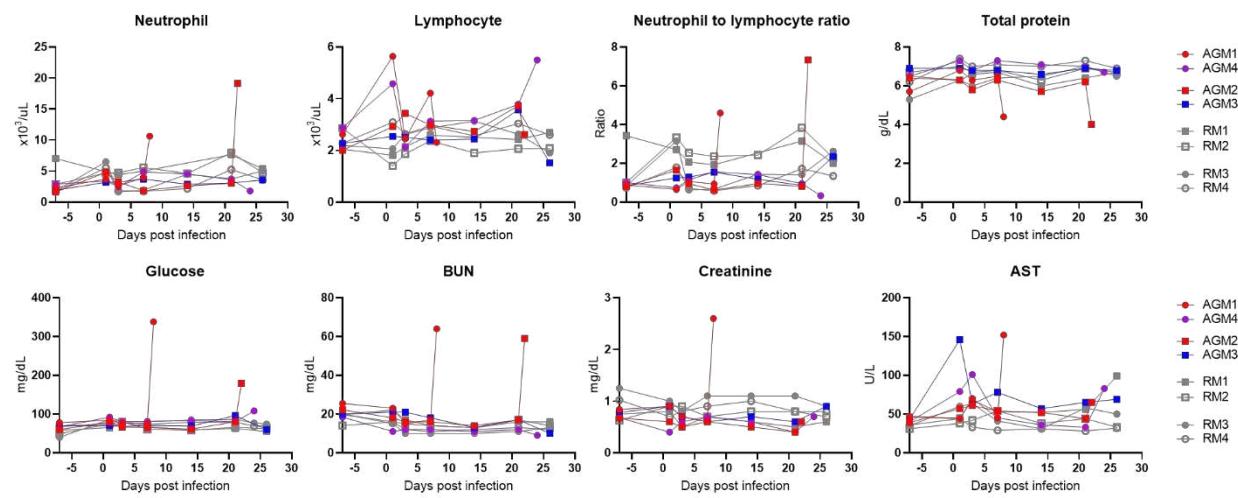
658 **Figure 3. Cytokine increase.** Heat map (A) showing changes in the levels of ten cytokines in
 659 plasma at week 1 and necropsy with respect to the baseline in AGMs and RM. Data are
 660 normalized (log2). B) Levels of IFNg (pg/ml) in plasma at baseline, week 1, and at necropsy.
 661 Column represents mean, error bars are SEM. C) Association between IFNg levels at week 1 and
 662 viral load in bronchiolar brushes (Pearson test).


663


664

665 **Figure 4. Gross pathologic findings of AGM with ARDS.** Both AGM1 (A,B) and AGM2
666 (C,D) have extensive consolidation of the right caudal lung lobe (B,D; arrows) with lesser
667 involvement of the right middle and cranial lung lobes. The left lung of AGM1 (A) fails to
668 collapse. The left lung of AGM2 (C) does not have gross abnormalities.

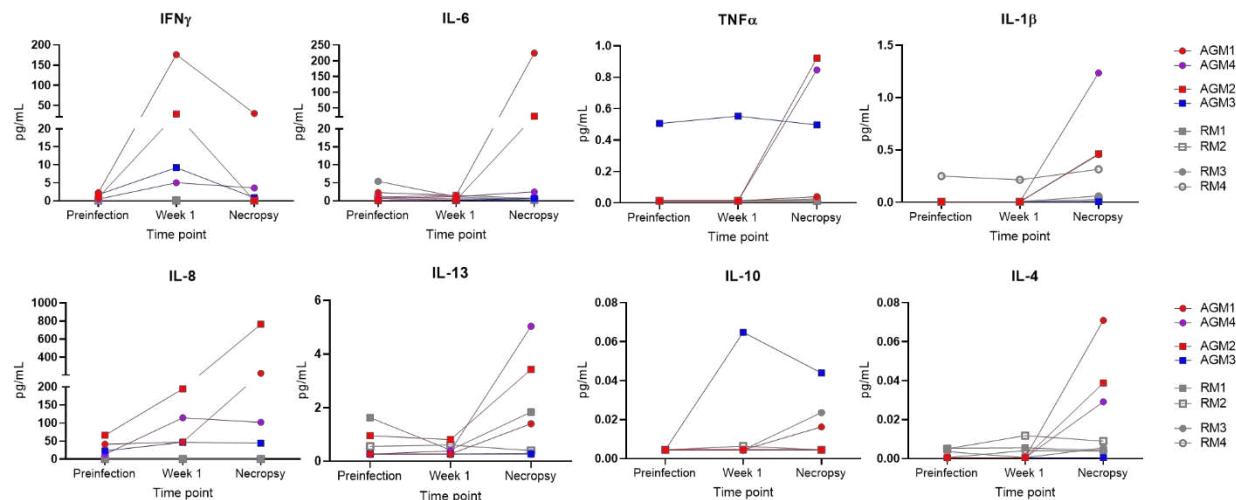
669


670
671 **Figure 5. Histopathology and fluorescent immunohistochemistry in AGM1.** (A) The right
672 lower lung lobe is filled with fibrin and edema with areas of hemorrhage and necrosis (arrows);
673 Bar = 5 mm. (B) Alveoli are variably lined by hyaline membranes (arrows) and type II
674 pneumocytes (arrowheads); Bar = 100 um. (C) Rare multinucleated syncytia (arrow) are
675 scattered throughout the affected lungs; Bar = 50 um. (D) Fluorescent immunohistochemistry for
676 COV-2 nucleoprotein (green, arrows) and ACE2 (red) identified low numbers of CoV-2 positive
677 cells within the affected lung lobes; Bar = 100 um. White: DAPI/nuclei; Green: CoV-2; Red:
678 ACE2 Blue: Empty.
679

680

681 **Supplemental Figure 1. Clinical parameters of African green monkeys and rhesus**
682 **macaques following exposure to SARS-CoV-2.** There were no significant differences in
683 clinical parameters leading up to development of ARDS in the two animals that progressed (red).
684 Progression to ARDS was associated with spike in physical exam scores, respiratory rate, and a
685 dramatic decline in SPO₂. Neither weight loss nor fever was associated with SARS-CoV-2
686 exposure in any of the 8 animals. Circles: aerosol exposure; Squares: multiroute exposure; Gray:
687 Rhesus macaques; Color: AGM by outcome. Red: developed ARDS; Purple: increased cytokines
688 without ARDS; Blue: no cytokine increase or ARDS.

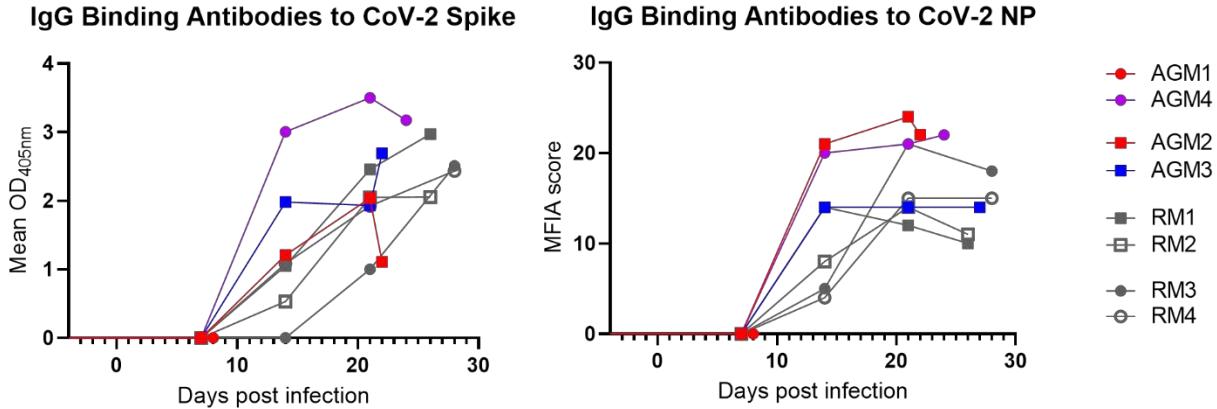
689



690

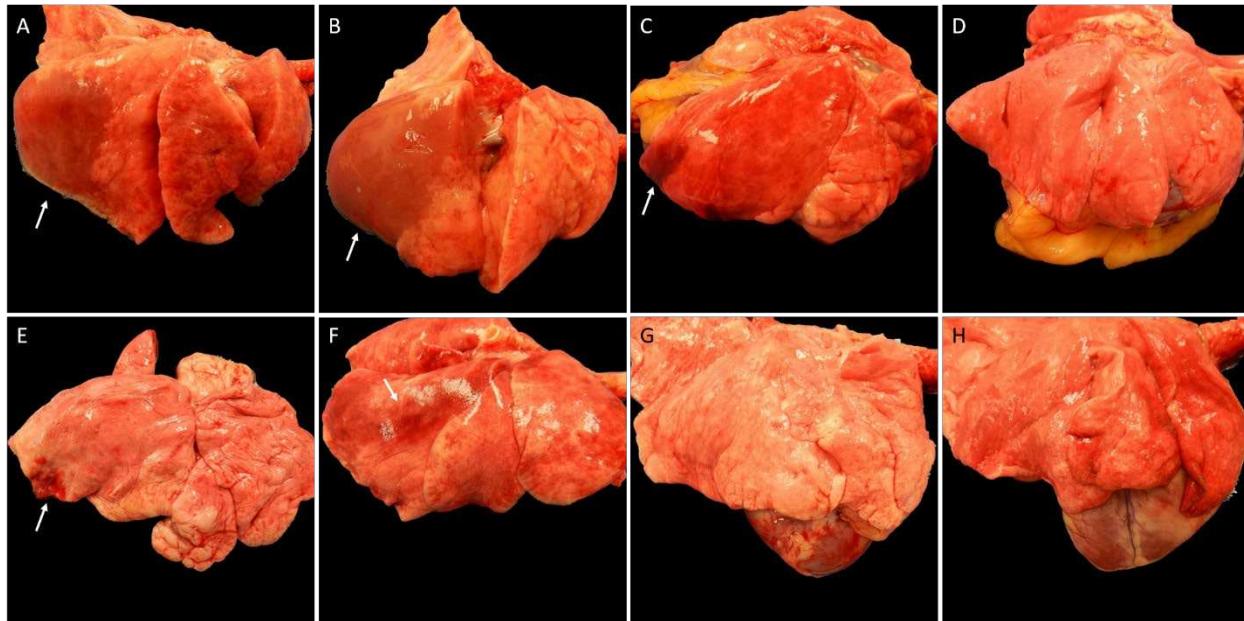
691 **Supplemental Figure 2. Hematologic and chemistry abnormalities in AGMs with ARDS.**

692 The animals that progressed to ARDS (red) only showed hematologic derangements at the
693 terminal timepoint after the onset of respiratory distress. Circles: aerosol exposure; Squares:
694 multiroute exposure; Gray: Rhesus macaques; Color: AGM by outcome. Red: developed ARDS;
695 Purple: increased cytokines without ARDS; Blue: no cytokine increase or ARDS.


696

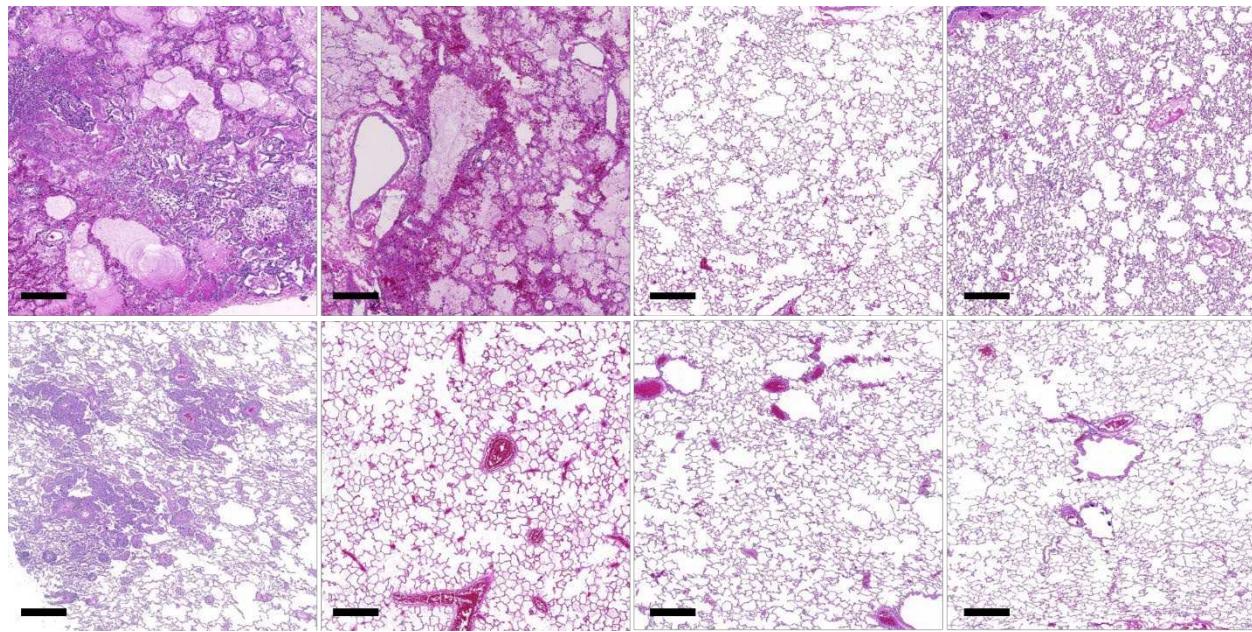
697

698 **Supplemental Figure 3. Serum cytokines in SARS-CoV-2 infected African green monkeys**
699 **and rhesus macaques.** AGMs exhibited higher levels of IFNg at one-week post infection
700 compared to rhesus macaques with the two animals (AGM1 and AGM2, red) that progressed
701 showing the highest elevation. At necropsy the two progressors had elevated IL-6, IL-1B, IL-8,
702 IL-13, and IL-4. AGM4 (purple) had a similar cytokine profile except with little elevation in IL-
703 6. AGM3 (blue) had elevated IL-10 one-week post infection and is notable for having the lowest
704 pathology scores of the four AGM. RM showed modest changes in serum cytokines at one-week
705 post infection and at necropsy. Circles: aerosol exposure; Squares: multiroute exposure; Gray:
706 Rhesus macaques; Color: AGM by outcome. Red: developed ARDS; Purple: increased cytokines
707 without ARDS; Blue: no cytokine increase or ARDS.

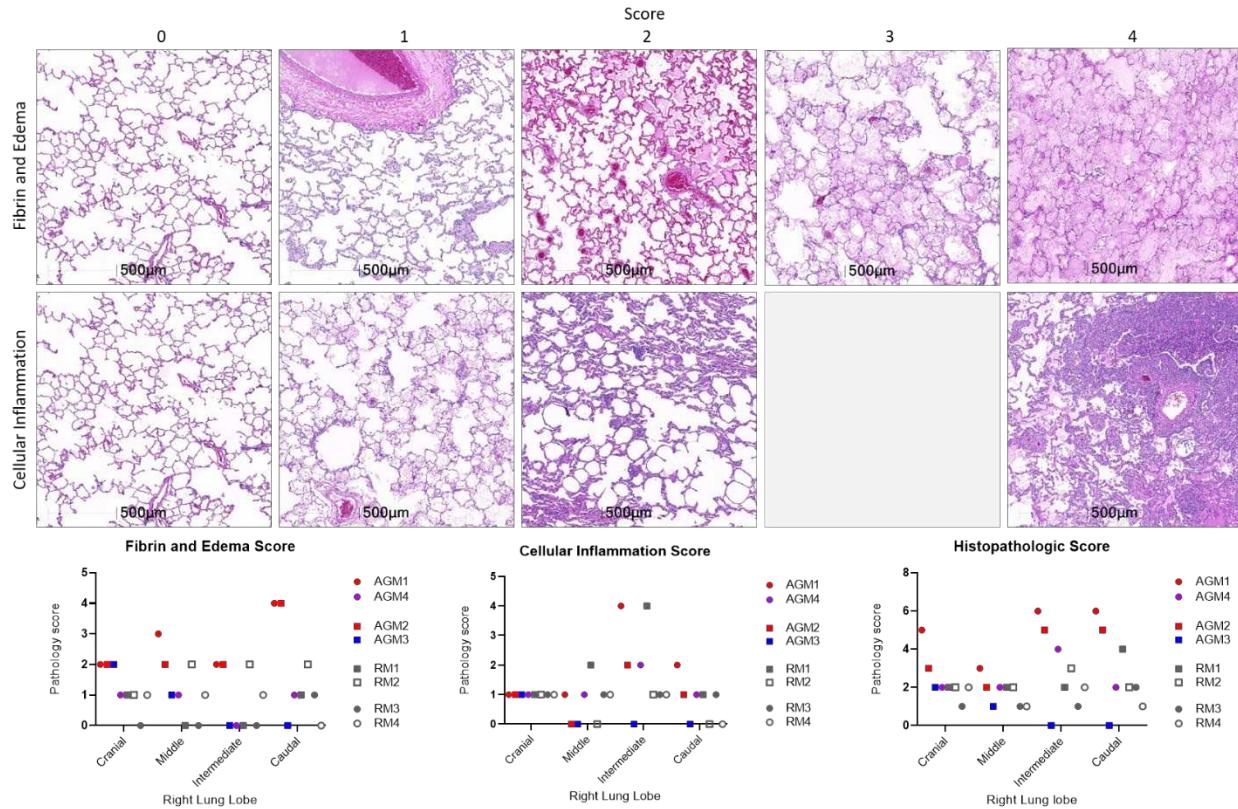

708

709

710 **Supplemental Figure 4. Kinetics of binding antibody responses in SARS-CoV-2 infected**
711 **African green monkeys and rhesus macaques.** Circles: aerosol exposure; Squares: multiroute
712 exposure; Gray: Rhesus macaques; Color: AGM by outcome. Red: developed ARDS; Purple:
713 increased cytokines without ARDS; Blue: no cytokine increase or ARDS.


714

715


716 **Supplemental Figure 5. Gross pathology of the right lung lobes of SARS-CoV-2 infected**
717 **African green monkeys and rhesus macaques.** There is extensive consolidation of the right
718 lower lung lobes of AGM1 (A) and AGM2 (B) with lesser involvement of the middle and
719 anterior lobes. AGM3 (C) has focal area of hemorrhage along the caudodorsal margin of the
720 right lower lobe. No gross abnormalities are visible in AGM 4 (D). E-H, Rhesus macaques. RM1
721 (E) has a scar along the caudodorsal margin of the right lower lobe surrounded by acute
722 hemorrhage. RM2 (F) has red mottling of the dorsal margin of the right lower and anterior lung
723 lobes. No gross abnormalities are visible in RM3 and RM4 (G and H). Arrows point to the lesion
724 described for each animal.

725

726

727 **Supplemental Figure 6. Histopathology of the right caudal lung lobes of SARS-CoV-2**
728 **infected African green monkeys and rhesus macaques.** Representative images of the
729 histopathology of the right caudal lung lobe from AGM (top row, left to right AGM1-4) and RM
730 (bottom row, left to right RM1-4). H&E, Bar=500um.

731

732 **Supplemental Figure 7. Histopathologic scoring of pulmonary inflammation.** Whole slide
733 images of tissue sections from each lung lobe were analyzed for fibrin/edema and cellular
734 inflammation using HALO's Tissue Classifier module. Top row: representative images of
735 fibrin/edema scores 0-4. Middle row: representative images of cellular inflammation scores 0-2
736 and 4. Graphs illustrate the score of inflammation in each of the right lung lobes. The
737 Histopathologic Score is the aggregate score of Fibrin/Edema and Cellular Inflammation.

738

ID	Species	Source	Age (yr)	Sex	Weight (kg)	Exposure (dose)
AGM1	<i>Chlorocebus aethiops sabaeus</i>	Wild caught, St. Kitts	16	F	4.3	Aerosol (2x10 ³ TCID ₅₀)
AGM2	<i>Chlorocebus aethiops sabaeus</i>	Wild caught, St. Kitts	16	F	3.9	Multiroute (3.61x10 ⁶ PFU)
AGM3	<i>Chlorocebus aethiops sabaeus</i>	Wild caught, St. Kitts	16	M	6.9	Multiroute (3.61x10 ⁶ PFU)
AGM4	<i>Chlorocebus aethiops sabaeus</i>	Wild caught, St. Kitts	16	M	7.5	Aerosol (2x10 ³ TCID ₅₀)
RM1	<i>Macaca mulatta</i>	Born at TNPRC	14	M	16.7	Multiroute (3.61x10 ⁶ PFU)
RM2	<i>Macaca mulatta</i>	Born at TNPRC	13	F	6.9	Multiroute (3.61x10 ⁶ PFU)
RM3	<i>Macaca mulatta</i>	Born at TNPRC	13	M	11.6	Aerosol (2x10 ³ TCID ₅₀)
RM4	<i>Macaca mulatta</i>	Born at TNPRC	15	M	11	Aerosol (2x10 ³ TCID ₅₀)

739

740 **Supplemental Table 1. Animal information including species, source, route of exposure,**
741 **and demographic information from each animal in the study.**

742

743

	Pulmonary lesions													Lymphoid hyperplasia	
	Bronchopneumonia	Diffuse alveolar damage	Interstitial pneumonia	Vasculitis	Squamous metaplasia	Rhinitis	Pharyngitis	Tracheitis	Myocarditis	Pancreatitis	Gastritis	Typhlitis	Colitis	Nephritis	
AGM1	-	++++	-	-	-	++	++	-	-	-	-	+++	++	++	
AGM2	-	++++	-	-	++	-	+	++	-	+	++	+	++	+	+++
AGM3	-	-	++	-	-	-	-	-	-	-	-	++	-	+++	
AGM4	-	-	++	-	-	-	++	++	-	-	-	++	-	++	
RM1	++++	-	+++	-	-	-	++	++	+	-	-	++	++	-	+++
RM2	+	-	++	-	-	+++	++	++	-	-	-	++	++	-	+++
RM3	-	-	+	+++	++++	-	-	-	+	-	++	++	++	-	+++
RM4	+	-	-	-	-	-	+	+	++	-	-	+++	+++	-	+++

744 **Supplementary Table 2. Table of histopathologic findings.** Histopathologic changes including
 745 localization of inflammation in the lung, morphologic diagnoses, and their semiquantitative
 746 severity assigned by a pathologist as follows: - : absent; +: minimal; ++: mild; +++: moderate;
 747 +++++: severe. Squamous metaplasia refers to respiratory epithelium of the nasal turbinates.