

1 **The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins**

2
3 Carina Conceicao^{*1}, Nazia Thakur^{*1}, Stacey Human¹, James T. Kelly¹, Leanne Logan¹,
4 Dagmara Bialy¹, Sushant Bhat¹, Phoebe Stevenson-Leggett¹, Adrian K. Zagrajek¹, Philippa
5 Hollinghurst^{1,2}, Michal Varga¹, Christina Tsirigoti¹, John A. Hammond¹, Helena J. Maier¹, Erica
6 Bickerton¹, Holly Shelton¹, Isabelle Dietrich¹, Stephen C. Graham³, Dalan Bailey^{*1}

7
8 ¹The Pirbright Institute, Woking, Surrey, GU24 0NF, UK

9 ² Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of
10 Surrey, Guildford, GU2 7XH, UK

11 ³ Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2
12 1QP, UK

13
14 * These authors contributed equally to the work

15 [†]Corresponding author: dalan.bailey@pirbright.ac.uk

16
17 **Abstract**

18
19 SARS-CoV-2 emerged in late 2019, leading to the COVID-19 pandemic that continues to
20 cause significant global mortality in human populations. Given its sequence similarity to SARS-
21 CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have
22 originated in Chiroptera species in China. However, whether the virus spread directly to
23 humans or through an intermediate host is currently unclear, as is the potential for this virus
24 to infect companion animals, livestock and wildlife that could act as viral reservoirs. Using a
25 combination of surrogate entry assays and live virus we demonstrate that, in addition to human
26 ACE2, the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2
27 receptors, despite divergence in the amino acids at the Spike receptor binding site on these
28 proteins. Of the twenty-two different hosts we investigated, ACE2 proteins from dog, cat and
29 rabbit were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the
30 least efficiently used receptors. The absence of a significant tropism for any of the three
31 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor
32 usage likely shifted during zoonotic transmission from bats into people, possibly in an
33 intermediate reservoir. Interestingly, while SARS-CoV-2 pseudoparticle entry was inefficient
34 in cells bearing the ACE2 receptor from bats or birds the live virus was still able to enter these
35 cells, albeit with markedly lower efficiency. The apparently broad tropism of SARS-CoV-2 at
36 the point of viral entry confirms the potential risk of infection to a wide range of companion
37 animals, livestock and wildlife.

38
39 **Introduction**

40
41 The β-coronavirus SARS-CoV-2 emerged in late 2019, causing a large epidemic of respiratory
42 disease in the Hubei province of China, centred in the city of Wuhan [1]. Subsequent
43 international spread has led to an ongoing global pandemic, currently responsible for 8 million
44 infections and over 435,000 deaths (as of 11th June 2020, John Hopkins University statistics;
45 <https://coronavirus.jhu.edu/map.html>). As for SARS-CoV, which emerged in China in late
46 2002, and MERS-CoV, which emerged in Saudi Arabia in 2012, the original animal reservoir
47 of zoonotic coronaviruses is thought to be bats [2]. Spill-over into humans is suspected or
48 proven to be facilitated through an intermediate host, e.g. civets for SARS-CoV [2] or camels

49 for MERS-CoV [3]. For SARS-CoV-2, a bat origin is supported by the 2013 identification of a
50 related coronavirus RaTG13 from *Rhinolophus affinis* (intermediate horseshoe bat), which is
51 96% identical at the genome level to SARS-CoV-2 [1]. Identifying the animal reservoir of
52 SARS-CoV-2, and any intermediate hosts via which the virus ultimately spread to humans,
53 may help to understand how, where and when this virus spilled over into people. This
54 information could be vital in identifying future risk and preventing subsequent outbreaks of
55 both related and unrelated viruses. Concurrent to this, there is also a need to understand the
56 broader host tropism of SARS-CoV-2 beyond its established human host, in order to forewarn
57 or prevent so-called reverse zoonoses, e.g. the infection of livestock or companion animals.
58 The latter could have serious implications for disease control in humans and consequently
59 impact on animal health and food security as we seek to control the COVID-19 pandemic.
60

61 The process of viral transmission is complex and governed by a range of factors that in
62 combination determine the likelihood of successful infection and onward spread. The first
63 barrier that viruses must overcome to infect a new host, whether that be typical (of the same
64 species as the currently infected host) or atypical (a new species) is entry into the host cell.
65 Entry is governed by two opposing variables; the first being efficient virus binding to the host
66 cell and the second being host-mediated inhibition of this process, e.g. through virus-specific
67 neutralising antibodies. In the case of SARS-CoV-2, it is likely that in late 2019 the entire global
68 population was immunologically naïve to this virus, although there is debate as to whether pre-
69 existing immunity to the endemic human-tropic coronaviruses, e.g. OC43 and HKU1, provides
70 any cross-protective antibodies to help mitigate disease symptoms [4]. To compound this, the
71 rapid global spread of SARS-CoV-2, combined with emerging molecular data [5, 6], have
72 clearly demonstrated that SARS-CoV-2 is efficient at binding to and entering human cells.
73 However, how widely this host-range or receptor tropism extends and the molecular factors
74 defining atypical transmission to non-human hosts remain the subject of intense investigation.
75

76 Coronavirus entry into host cells is initiated by direct protein-protein interactions between the
77 virally encoded homo-trimeric Spike protein, a class I transmembrane fusion protein found
78 embedded in the virion envelope, and proteinaceous receptors or sugars on the surface of
79 host cells [7]. The high molecular similarity of β-coronaviruses, specifically SARS-CoV,
80 allowed the rapid identification of angiotensin-converting enzyme 2 (ACE2) as the
81 proteinaceous receptor for SARS-CoV-2 [8, 9] and structural studies characterising Spike
82 bound to ACE2 have quickly followed [5, 6, 10, 11]. These studies have identified a high affinity
83 interaction between the receptor binding domain (RBD) of Spike and the N-terminal peptidase
84 domain of ACE2, which for SARS-CoV has been shown to determine the potential for cross-
85 species infection and ultimately, pathogenesis [12].
86

87 The availability of ACE2 gene sequences from a range of animal species enables the study of
88 receptor tropism of SARS-CoV-2 Spike. This can be used to predict whether receptor usage
89 is likely to be a driving factor in defining the host range of this virus, either through
90 computational predictions based on ACE2 sequence conservation [13] or, more directly, with
91 functional experimental investigation [1]. In this paper, we examined whether ACE2 from 22
92 different species of livestock, companion animals and/or wildlife could support the entry of
93 SARS-CoV-2, alongside human ACE2. Using two distinct assays we identified that SARS-
94 CoV-2 has a broad receptor tropism for mammalian ACE2 proteins including those from
95 hamster, pig and rabbit. Efficient infection via these ACE2 receptors was subsequently
96 confirmed using live SARS-CoV-2 virus. Interestingly, receptors that were unable to support

97 particle entry in pseudotype assays, e.g. chicken ACE2, were still able to support live virus
98 entry at a high multiplicity of infection. This research has identified vertebrate species where
99 cell entry is most efficient, allowing prioritisation of *in vivo* challenge studies to assess disease
100 susceptibility. Combining this with increased surveillance and improved molecular diagnostics
101 could help to prevent future reverse zoonoses.

102

103

104 **Results**

105

106 **The SARS-CoV-2 binding site on ACE2 is highly variable**

107

108 Recent structural and functional data have shown that SARS-CoV, SARS-CoV-2 and other β -
109 coronavirus (lineage B clade 1) Spike proteins bind the same domain in ACE2 to initiate viral
110 entry [5, 6, 8-10]. We thus hypothesised that SARS-CoV-2 could use the ACE2 receptor to
111 infect a range of non-human, non-bat hosts. To this end we synthesised expression constructs
112 for human ACE2 as well as orthologues from 22 other vertebrate species, including nine
113 companion animals (dogs, cats, rabbits, guinea pigs, hamsters, horses, rats, ferrets,
114 chinchilla), seven livestock species (chickens, cattle, sheep, goats, pigs, turkeys, buffalo), four
115 bat species (horseshoe bat, fruit bat, little brown bat and flying fox bat), and two species
116 confirmed or suspected to be associated with previous coronavirus outbreaks (civet and
117 pangolin). There is 62 to 99% sequence identity between these proteins at the amino acid
118 level (76-99% when excluding the two bird sequences) and their phylogenetic relationships
119 are largely consistent with vertebrate phylogeny, although the guinea pig sequence was more
120 divergent than predicted (**Fig.1A**). Examining the conservation of amino acids at the SARS-
121 CoV-2 binding site on the surface of the ACE2 protein revealed a high degree of variation
122 across mammalian taxa (**Fig.1B,C**), suggesting that SARS-CoV-2 receptor binding may vary
123 between potential hosts. This variation was also evident when aligning the 23 ACE2
124 sequences included in our study, which identified a number of highly variable residues within
125 the overlapping SARS-CoV and SARS-CoV-2 binding sites, including Q24, D30, K31, H34,
126 L79 and G354 (**Fig.1D**). Our first step was to ensure efficient and equivalent surface
127 expression of these ACE2 proteins on target cells. To this end their N-terminal signal peptides
128 were replaced with a single sequence from the commercially available pDISPLAY construct
129 (**Fig.1E**). In addition, the ectodomain was fused with a HA-epitope tag to allow the specific
130 detection of surface expressed protein. Western blot of whole cell lysates together with flow
131 cytometric analysis of cell surface expression confirmed that in the majority of cases the 23
132 ACE2 proteins were expressed to similar levels, thereby allowing side-by-side comparison of
133 their usage by SARS-CoV-2 (**Fig.1F,G; Sup.Fig.1**). The marked exceptions were flying fox
134 bat and guinea pig ACE2 (**Fig.1F,G**) where protein expression and cell-surface presentation
135 were barely detectable. The cause of this poor expression is unknown, potentially arising due
136 to errors in the ACE2 sequences available for these species. Since the available sequence
137 accuracy for these two genes would need to be explored further these two ACE2 proteins
138 were excluded from our subsequent experiments.

139

140 **Receptor screening using surrogate entry assays identifies SARS-CoV-2 Spike as a** 141 **pan-tropic viral attachment protein**

142

143 To examine the capacity of SARS-CoV-2 to enter cells bearing different ACE2 proteins we
144 used two related approaches. The first, based on the widely employed pseudotyping of

145 lentiviral particles with SARS-CoV-2 Spike [9], mimics particle entry. The second approach,
146 based on a quantitative cell-cell fusion assay we routinely employ for the morbilliviruses [14],
147 assesses the capacity of Spike to induce cell-cell fusion following receptor engagement. In
148 both assays we used a codon-optimised SARS-CoV-2 Spike expression construct as the
149 fusogen, demonstrating robust and sensitive detection of either entry or fusion above
150 background (**Sup.Fig.2A,B**). Supportive of our technical approach, replacing the human
151 ACE2 signal peptide with that found in pDISPLAY had no effect on pseudotype entry or cell-
152 cell fusion (**Sup.Fig.2**). In addition, SARS-CoV-2 entry was shown only with human ACE2, but
153 not aminopeptidase N (APN) or dipeptidyl peptidase 4 (DPP4), the β-coronavirus group I and
154 MERS-CoV receptors, respectively (**Sup.Fig.2**), indicating high specificity for both assays.
155 Using the classical pseudotype approach, which models particle engagement with receptors
156 on the surface of target cells, we demonstrated that SARS-CoV-2 Spike has a relatively broad
157 tropism for mammalian ACE2 receptors. Indeed, we observed that pangolin, dog, cat, horse,
158 sheep and water buffalo all sustained higher levels of entry than was seen with an equivalent
159 human ACE2 construct (**Fig.2A**; left heatmap, first column). In contrast, all three bat ACE2
160 proteins we analysed (fruit bat, little brown bat and horseshoe bat) sustained lower levels of
161 fusion than was seen with human ACE2, as did turkey and chicken ACE2, the only non-
162 mammalian proteins tested. In accordance with previously published data on SARS-CoV and
163 SARS-CoV-2 usage of rodent ACE2 [1, 15], rat ACE2 did not efficiently support SARS-CoV-2
164 particle entry. However, we observed that the ACE2 from hamsters did support pseudoparticle
165 entry, albeit less efficiently than human ACE2.

166 In the separate cell-cell fusion assay, which provides both luminescence and fluorescence-
167 based monitoring of syncytia formation, a similar trend was observed with expression of
168 chinchilla, rabbit, hamster, pangolin, dog, cat, horse, pig, sheep, goat, water buffalo and cattle
169 ACE2 proteins on target cells all yielding higher signals than target cells expressing human
170 ACE2 (**Fig.2A**; left heatmap, second column). Similar to the pseudotype assay, expression of
171 all three bat ACE2 proteins resulted in less cell-cell fusion than that seen with human ACE2.
172 Example micrographs of GFP-positive SARS-CoV-2 Spike-induced syncytia are provided in
173 **Sup.Fig.3**. The heatmaps presented in **Fig.2A** represent the average results from three
174 independent pseudotype and cell-cell assay receptor usage screens (with representative data
175 sets shown in **Sup.Fig.4**).

176 Combining the results from all six screens demonstrates a significant degree of concordance
177 between the two experimental approaches. The only marked outlier is rabbit ACE2, which
178 repeatedly generated higher signals relative to human ACE2 in the cell-cell fusion assay
179 (**Fig.2B**). Although the high correlation (Pearson $r=0.73$) was unsurprising, given that both
180 approaches rely on the same Spike-ACE2 engagement, fusogen activation and membrane
181 fusion process (albeit at virus-cell or cell-cell interfaces), there were some marked differences
182 in sensitivity. For the pseudotype system there was little appreciable evidence for particle entry
183 above background levels with ferret, rat, chicken, turkey or horseshoe bat ACE2, either in
184 vector control (pDISPLAY) transfected cells (**Fig.2A**; bottom row) or in ACE2-transfected cells
185 infected with a 'no glycoprotein' pseudoparticle control, NE (**Sup.Fig.4**). However, in the cell-
186 cell system all of these receptors permitted Spike-mediated fusion, above the background
187 levels seen in pDISPLAY transfected cells (**Fig.2A**) or in effector cells not expressing SARS-
188 CoV-2 Spike (**Sup.Fig.4**; No Spike), albeit at levels significantly lower than that seen for
189 human ACE2. This suggests that these receptors, whose structures are clearly not optimal for
190 SARS-CoV-2 entry, are still bound by the Spike protein.

191 To facilitate comparison with existing data for SARS-CoV, we performed all the above
192 experiments side-by-side with SARS-CoV pseudotype and cell-cell assays (**Fig.2A**, right
193 heatmap and **Sup.Fig.2,4**). While the receptor usage profile of SARS-CoV correlates
194 significantly with SARS-CoV-2, both in terms of pseudotype entry (**Sup.Fig.5A**; $r=0.86$) and
195 cell-cell fusion (**Sup.Fig.5B**; $r=0.78$), there were interesting divergences. In general, for SARS-
196 CoV there was a better correlation between pseudotype entry and cell-cell fusion (**Fig.2B,C**;
197 Pearson $r=0.73$ [SARS-CoV-2] versus $r=0.90$ [SARS-CoV]), with no obvious outliers and less
198 variation between the two assays when examining receptors with low levels of associated
199 fusion, e.g. horseshoe bat ACE2 (**Fig.2A**). These differences may be due to the differing levels
200 of fusion seen with both viruses as well as the methodological approach taken. In our
201 experiments SARS-CoV-2 Spike is demonstrably more fusogenic than SARS-CoV, possibly
202 due to the presence of a furin-cleavage site between S1 and S2 [16]. Alongside a similar
203 restriction for bird and bat ACE2 proteins, our side-by-side comparison also identified
204 instances of varying restriction, specifically ferret, fruit bat and civet ACE2 which appear to be
205 preferentially used by SARS-CoV (**Fig.2A** and **Sup.Fig.5B**). In summary, using two distinct
206 technical approaches that monitor Spike-mediated receptor usage in a biologically relevant
207 context we provide evidence that SARS-CoV-2 has a broad tropism for mammalian ACE2s.
208 These assays demonstrate correlation between ACE2 protein sequence and fusion by SARS-
209 CoV or SARS-CoV-2 Spike protein, plus evidence of a low affinity of SARS-CoV Spike proteins
210 for bird or rat ACE2 and varying levels of bat ACE2 utilisation.

211 **A cognate ACE2 receptor is required for SARS-CoV-2 infection.**

212

213 High throughput and robust, surrogate assays for SARS-CoV-2 viral entry only serve to model
214 this process and can never completely replace live virus experiments. To this end, and in order
215 to examine the permissiveness of non-human cell lines in our cell culture collection
216 (**Sup.Table.1**) to SARS-CoV-2, we experimentally infected a range of animal cells including
217 those established from birds, canids, rodents, ruminants and primates with SARS-CoV-2
218 isolated from a patient in the UK (SARS-CoV-2 England-2/2020). Infection at a low MOI
219 (0.001) failed to generate infectious virus in any of the cells tested, apart from two monkey cell
220 lines (Vero E6 and Marc 145), in line with primate cells being used widely to propagate SARS-
221 CoV-2 [17] (**Fig.3A**). Repeat infections at a higher MOI (1) in a subset of these cells (PK15,
222 RK13, DF-1 and BHK-21) established evidence for a very low level of virus production only in
223 the porcine cell line PK15 (**Fig.3B**). Subsequent qPCR analysis of ACE2 mRNA levels in the
224 whole panel of cell lines, assayed using a novel panel of species-specific ACE2 primers
225 (**Sup.Table.4**), identified only two cell lines (Vero E6 and Marc 145) with Ct values less than
226 25, providing a strong correlative link between ACE2 receptor expression and successful virus
227 infection.

228

229 We next sought to correlate the receptor usage results from our surrogate entry assays (**Fig.2**)
230 with live virus infections. The hamster kidney cell line BHK-21, which we established as
231 refractory to SARS-CoV-2 infection (**Fig.3A,B**), was transfected with vector alone (pDISPLAY)
232 or a restricted panel of ACE2 constructs (hamster, human, horseshoe bat, rabbit, pig and
233 chicken) representing the spectrum of receptor usage (**Fig.2A**). Concurrent to the infections,
234 the expression of ACE2 in equivalently transfected cells was confirmed by western blot, flow
235 cytometry and SARS-CoV-2 pseudotype infections (**Sup.Fig.6A-D** and **Sup.Fig.1**). Of note,
236 for the live virus infections the high MOI (1) inoculum was removed after 1 hour with the cells
237 thoroughly washed prior to incubation at 37 °C. Accordingly, in the BHK-21 cells transfected

238 with carrier plasmid we saw very little evidence for virus infection and/or virus production,
239 confirming these cells do not natively support SARS-CoV-2 infection (**Fig.3C**). For the
240 receptors where we had previously seen high levels of cell-cell fusion (hamster, pig and rabbit)
241 we observed robust viral replication (**Fig.3C**). Surprisingly, the two receptors included because
242 of their 'poor' usage by SARS-CoV-2 Spike (horseshoe bat and chicken ACE2, **Fig.2A**) were
243 still able to support viral replication, albeit to a lower level. Of note, regardless of the ACE2
244 species expressed we saw very little evidence of cytopathic effect in the infected BHK-21 cells
245 (**Sup.Fig.6E**), despite the release of infectious virus into the supernatant (**Sup.Fig.6F**). Lastly,
246 focusing on the unexpected observation that chicken ACE2 permitted SARS-CoV-2 entry into
247 cells, we investigated whether chicken DF-1 cells over-expressing ACE2 could support viral
248 replication. Whilst western blot and flow cytometry demonstrated successful ACE2 over-
249 expression (**Sup.Fig.6B,D**) we did not see any evidence of viral replication in these cells,
250 either because of inefficient chicken ACE2 receptor usage or a post-entry block to SARS-CoV-
251 2 replication (**Fig.3D**). In summary, SARS-CoV-2 is able to use a range of non-human ACE2
252 receptors to enter cells. Furthermore, when a cognate ACE2 is provided the virus can replicate
253 efficiently in the normally refractory hamster cell line BHK-21.

254

255 Discussion

256

257 Recognising animals at risk of infection and/or identifying the original or intermediate hosts
258 responsible for the SARS-CoV-2 pandemic are important goals for ongoing COVID-19
259 research. In addition, there is a requirement to develop appropriate animal models for infection
260 that, if possible, recapitulate the hallmarks of disease seen in people. Importantly, high-
261 resolution structures of human ACE2 in complex with the Spike RBD [5, 6, 10, 11] can help
262 us to understand the genetic determinants of SARS-CoV-2 host-range and pathogenesis. In
263 particular, differences in receptor usage between closely related species provides an
264 opportunity to pinpoint amino acid substitutions at the interaction interface that inhibit Spike
265 protein binding and thus fusion.

266

267 One example of closely related ACE2 sequences differing in their utilisation by SARS-CoV-2
268 Spike comes from the comparison of rat and hamster ACE2. Although a number of animal
269 models have been investigated for SARS-CoV-2, including non-human primates, ferrets and
270 cats [18, 19], the use of small animals, in particular rodents, has proved more challenging as
271 murine and rat ACE2 support lower levels of β-coronavirus entry [1, 15]. For SARS-CoV this
272 problem was circumvented with the development of transgenic mice expressing human ACE2
273 [20] or mouse-adapted SARS-CoV [21, 22]. Consistent with previously published data on
274 SARS-CoV rodent ACE2 interactions, we showed that rat ACE2 does not support SARS-CoV-
275 2 mediated fusion (**Fig.2A**). However, our finding that hamster ACE2 allows entry of SARS-
276 CoV-2 (**Fig.2A**) indicates this animal is a suitable model for infection, consistent with recent *in*
277 *vivo* studies demonstrating experimental infection of these animals [23]. Comparison of the
278 hamster and rat sequences (**Fig.4A**) identified multiple substitutions at the RBD interaction
279 interface that might explain this variable receptor tropism (listed as hamster to rat): Q24K,
280 T27S, D30N, L79I, Y83F, K353H. Except for L79I, which is similarly substituted in pangolin
281 and pig ACE2, all of these substitutions are likely to reduce Spike RBD binding. Q24K and
282 Y83F substitutions would both result in the loss of hydrogen bonds with the side chain of
283 SARS-CoV-2 RBD residue N487 (**Fig.4B**). Residue D30 is acidic in all ACE2 proteins that are
284 efficiently utilised by SARS-CoV-2 Spike, and its substitution to asparagine would remove the
285 salt bridge formed with K417 of the RBD. Lastly, the T27S substitution would remove the

286 threonine side chain methyl group that sits in a hydrophobic pocket formed by the side chains
287 of RBD residues F456, Y473, A475 and Y489. Thus, multiple substitutions are predicted to
288 inhibit Spike binding to rat ACE2 when compared with the closely related hamster protein. Of
289 note, the hamster cell lines we used in our study (BHK-21 and CHO) are likely refractory to
290 infection simply because they express low levels of ACE2 mRNA (**Fig.3A**, qPCR data).
291 Interestingly, the high level of cell-cell fusion seen with rabbit ACE2 indicates that lagomorphs
292 may also represent a good model organism for SARS-CoV-2 pathogenesis.
293

294 A second example of different receptor usage between closely related species can be seen
295 with bat ACE2 (**Fig.2A, 4A**). The apparent lack of tropism for bat ACE2 proteins we observed
296 was surprising as there is previous evidence of SARS-CoV-2 infection of bat ACE2 expressing
297 cells *in vitro* [1] and *in vitro* binding experiments suggest that the SARS-CoV-2 RBD binds bat
298 ACE2 with high affinity [24]. Since the exact origin of SARS-CoV-2 is currently unknown, but
299 widely accepted to be a Chiroptera species, we included ACE2 proteins from a broad range
300 of bats in our study. While none support SARS-CoV-2 fusion to the same levels as humans,
301 there are dramatic differences in the ability of SARS-CoV-2 Spike to utilise ACE2 from
302 horseshoe bats versus fruit bats and little brown bats (**Fig.2A**). As discussed earlier, the
303 closest known relative of SARS-CoV-2, RaTG13, was isolated from intermediate horseshoe
304 bat (*Rhinolophus affinis*). Unfortunately, the ACE2 sequence from this species was not
305 available for use in our study; however, we did include an ACE2 from the closely related least
306 horseshoe bat (*Rhinolophus pusillus*). Although this protein supported the lowest levels of
307 fusion of any bat ACE2 tested in our study, it still supported a low level of SARS-CoV-2
308 replication with live virus (**Fig.3C**). As in rat ACE2, horseshoe bat and fruit bat ACE2 have a
309 lysine residue at position 24 that would disrupt hydrogen bonding to N487 of the SARS-CoV-
310 2 RBD and introduce a charge (**Fig.4A,B**). Little brown bats have the hydrophobic residue
311 leucine at this position, which could not form the hydrogen bond to N487 but which is present
312 in ACE2 from several species that support high levels of fusion, suggesting that loss of the
313 hydrogen bond is less deleterious to Spike protein binding than introduction of the lysine
314 positive charge. Fruit bats conserve a T27 whereas little brown bats have the bulkier isoleucine
315 residue and horseshoe bats have a bulky charged lysine residue in this position, both of which
316 are likely to clash with the F456-Y473-A475-Y489 hydrophobic pocket of the RBD, with the
317 lysine substitution likely to be more deleterious due to the introduction of the positive charge.
318 Like rats, horseshoe bat N30 would be unable to form a salt bridge with RBD K417.
319 Substitution of Q42 with glutamate in little brown bat may be detrimental to Spike binding as
320 it would disrupt the hydrogen bond to the backbone carbonyl oxygen of RBD residue G446.
321 The other substitutions between bat ACE2 proteins and other mammals are likely to be benign.
322 Little brown bats, horseshoe bats, pangolins and horses all share a serine as ACE2 residue
323 34, suggesting that serine in this position does not abolish Spike binding, and it is likely that
324 the threonine at this position (fruit bat ACE2) would likewise be tolerated. Similarly, the Y41H
325 substitution present in little brown bat ACE2 is also present in horse ACE2, suggesting that it
326 does not prevent binding. Therefore, all bat ACE2 proteins have substitutions that impair
327 SARS-CoV-2 Spike binding to different degrees, but it seems likely that the E30N substitution
328 (shared only by rat ACE2) is the most likely cause of the severely impaired binding of SARS-
329 CoV-2 Spike to horseshoe bat ACE2.
330

331 Interestingly, a similarly 'poor' tropism for bat ACE2 was also reported for SARS-CoV following
332 its emergence in 2002 [25]. Specifically, coronaviruses closely related to SARS-CoV that were
333 isolated directly from bats were shown to not efficiently use either human or civet ACE2 [25].

334 This is consistent with large shifts in receptor usage occurring during coronavirus species
335 jumps, either directly into humans or more likely via intermediate reservoirs. During the SARS-
336 CoV epidemic, where civets were identified as the intermediate reservoir of infection, a shifting
337 pattern of increasing and decreasing ACE2 usage was observed in individual isolates of
338 SARS-CoV taken from civets and humans (although they shared ~99% similarity to each
339 other), providing evidence for adaptation to individual host receptors [12, 26] with a particular
340 focus on differential adaptation to human ACE2 residues K31 (T31 in civets) and K353.
341 Interestingly, correlation analysis of SARS-CoV and SARS-CoV-2 pseudotype entry
342 highlighted civet ACE2 as being strongly favoured by SARS-CoV, perhaps a legacy of this
343 period of adaptation in an intermediate host (**Sup.Fig.4A**). Although data analysis of this type
344 between related viruses might represent a mechanism for identifying intermediate reservoirs,
345 similar outliers that favoured SARS-CoV-2 entry were not evident in our study. Unfortunately,
346 the lack of similarly closely related SARS-CoV-2 isolates from this outbreak's origin in Hubei
347 makes detailed interpretation of this virus's adaptation to human ACE2 difficult at this time.
348 Recently, pangolins were demonstrated to harbour SARS-related coronaviruses, implicating
349 these animals as the potential intermediate [27]. Although this hypothesis is supported by our
350 receptor usage data, these isolates are probably too dissimilar from SARS-CoV-2 (90% at the
351 genomic level) to have been the immediate source of the current pandemic. Based on our
352 findings (**Fig.2A**) it is theoretically possible that several different animals could have acted as
353 the intermediate host for this virus. However, without original isolates from Hubei it may not
354 be possible to easily identify the animal or animals that seeded the original epidemic.
355

356 A third example of ACE2 usage by SARS-CoV-2 differing dramatically between closely related
357 species is dog and ferret. It was surprising that entry of SARS-CoV-2 pseudotypes into cells
358 was heavily restricted by ferret ACE2 (c. 1% of human levels, **Fig.2A**), despite this animal
359 developing established signs of infection following experimental challenge [19] and its clear
360 potential for use as an animal model [18]. Substitution of G354 in dog ACE2 with the bulky,
361 charged residue arginine in ferret is likely to decrease binding efficiency, although we note
362 that pangolin ACE2 has a His residue in this position and retains binding to Spike (**Fig.4A,B**).
363 Similarly, substitution of L79 in dog ACE2 with histidine in ferret would be likely to disrupt
364 hydrophobic interactions with the side chain of Spike F486. Comparison of mammalian ACE2
365 receptors usage by SARS-CoV versus SARS-CoV-2 can also be coupled to inspection of the
366 available ACE2:RBD co-structures [5, 6, 10, 11, 28] to obtain further molecular insights into
367 Spike binding. The long arginine side chain of SARS-CoV residue 426, which is the structural
368 equivalent to SARS-CoV-2 N439, makes a salt bridge with E329 of human ACE2 and interacts
369 with the side chain of ACE2 Gln325. This results in a larger binding footprint for SARS-CoV
370 on human ACE2 when compared to SARS-CoV-2 (see, for example, Figure 3 in [6]). It is
371 therefore striking that ferret ACE2 is not used efficiently by SARS-CoV-2 for fusion, while ferret
372 ACE2 can support SARS-CoV-mediated fusion. The enhanced usage may arise from a salt
373 bridge being formed between ferret ACE2 residue E325 and SARS-CoV R426, which is not
374 possible in SARS-CoV-2 where the equivalent residue is asparagine. This additional salt
375 bridge may therefore 'rescue' some of the binding loss caused by the deleterious substitutions
376 listed above. For ferret ACE2 the dichotomy between established *in vivo* infection but poor
377 receptor usage *in vitro* is perplexing. However, it is consistent with our observation that chicken
378 ACE2 can support SARS-CoV-2 infection at high MOI (**Fig.3C**) and suggests that low levels
379 of SARS-CoV-2 Spike-mediated fusion are sufficient for cell entry. The widespread availability
380 of ferrets as an animal model of infection could represent an excellent opportunity to study in-

381 host adaptation of SARS-CoV-2 to the ACE2 receptor, mimicking the steps that lead up to the
382 establishment of intermediate reservoirs in the wild.

383
384 While not as dramatic as for the species listed above, differences in SARS-CoV-2 receptor
385 utilisation are also seen for cat versus civet ACE2. The most likely candidate causative
386 substitution in civet ACE2 is K31T, where a complementary long-range charge interaction with
387 RBD E484 is lost. In SARS-CoV the entire loop between residues 460–472 (equivalent to
388 SARS-CoV-2 residues 473–486) is reordered and there is not a glutamate or aspartate residue
389 in this local vicinity. We would therefore not predict cat ACE2 to bind SARS-CoV Spike more
390 strongly than civet ACE2, consistent with our fusion assay data.

391
392 In the process of finalising this manuscript two papers were released as preprints, also
393 examining the receptor usage of various non-human ACE2s with surrogate virus entry assays
394 (lentiviral pseudotypes) [29, 30]. While these studies did not perform corresponding
395 examination of cell-cell fusion or follow up experiments with SARS-CoV-2 live virus there is a
396 strong correlation between their findings and ours, namely the broad tropism of SARS-CoV-2
397 Spike. Notably, all three research data sets concur that human and several non-human ACE2
398 proteins support similar levels of utilisation by SARS-CoV-2 Spike, in contrast to a recent
399 report that claimed preferential binding to the human ACE2 protein [31]. One interesting
400 conclusion, drawn specifically from our technical approach, is that pseudotype assays alone
401 may not fully capture the receptor tropism of SARS-CoV-2. Like Li et al. [29], we observed
402 very little evidence of SARS-CoV-2 pseudoparticle entry into cells expressing chicken ACE2;
403 nevertheless, live virus was able to enter and replicate in equivalent cells, albeit to a lesser
404 extent than with human ACE2. There are various interpretations for this result, including roles
405 for additional host factors involved in entry such as the recently identified SARS-CoV-2 Spike-
406 neurophilin-1 interaction [32]. Another explanation is that SARS-CoV-2 Spike is not correctly
407 presented on the surface of HIV pseudotypes (either numerically or spatially) and this
408 therefore might not confer full wild-type-virus-like infectivity to lentiviral pseudoparticles. This
409 could be especially important for coronaviruses which contain other envelope viral proteins E
410 and M, which spontaneously form VLPs when expressed with Spike. Unfortunately, while
411 VLPs may more accurately reflect the number and conformation of viral proteins in the live
412 virus particle they cannot easily be manipulated to encode a reporter gene, such as Firefly
413 luciferase. As such our cell-cell system or indeed live virus may therefore be more appropriate
414 for probing low affinity interactions between atypical host ACE2s and coronavirus Spike
415 proteins. While more evidence is required to examine the significance of cell-cell spread
416 (syncytia formation) of SARS-CoV-2 *in vitro* and *in vivo*, the quantitative assay we have
417 developed promises to be a robust tool for supporting these efforts. Similarly, examining
418 whether the polybasic cleavage site found in SARS-CoV-2 Spike provides a selective
419 advantage to this virus, e.g. by allowing enhanced spread of the virus through cell-cell fusion,
420 is the source of ongoing investigations in our laboratory. Similar trends have been observed
421 for related murine and bovine coronaviruses [33-36] and our quantitative cell-cell assay may
422 also prove useful in characterising this aspect of the viral life cycle.

423
424 Using both live virus and quantitative assays that model Spike-receptor usage we have
425 demonstrated that SARS-CoV-2 has a broad tropism for mammalian ACE2s. These findings
426 are supported by results from experimental challenge infections, including cats that are
427 susceptible to infection and chickens that are not [19], as well as evidence of community-
428 based reverse zoonotic infections observed in cats and dogs [37, 38]. At the time of writing,

429 the epidemiological significance of these infections remains to be determined, for example
430 whether they represent one-off spill-over events without onward transmission, or alternatively
431 evidence for the existence of animal reservoirs. The latter scenario would have significant
432 epidemiological implications to human populations recovering from the first wave of the SARS-
433 CoV-2 pandemic. Interestingly, certain animals where we demonstrated efficient receptor
434 usage, e.g. pigs and dogs (**Fig.2A**), appear less susceptible to experimental challenge [19]. It
435 should be noted that particle entry represents only the first step in zoonotic spill-over; indeed,
436 multiple virus-host interactions contribute to define virus host-range and pathogenesis. It may
437 be that the intra-cellular environment of specific hosts cannot sustain SARS-CoV-2 infection,
438 either through the absence of an important virus-host interaction or the presence of effective
439 mechanisms of innate immune restriction. In this case SARS-CoV-2 may enter cells efficiently
440 but fail to replicate to significant levels to support onward transmission, bring about clinical
441 signs or induce immunopathological sequelae. In conclusion, SARS-CoV-2 exhibits a broad
442 tropism for mammalian ACE2s. More thorough investigation, including heightened virus
443 surveillance and detailed experimental challenge studies, are required to ascertain whether
444 livestock and companion animals could act as reservoirs for this disease or as targets for
445 reverse zoonosis.

446

447 **Methods**

448

449 **Cell lines**

450 Cell lines representing a broad range of animal species were used to determine the host
451 range/tropism of SARS-CoV-2 (**Sup.Table.1**) (Cell Culture Central Services Unit, The
452 Pirbright Institute). Cells were maintained in complete medium supplemented with either 10%
453 horse or BVDV/FMDV-negative foetal bovine serum (FBS) (Gibco), 1% non-essential amino
454 acids, 1mM sodium pyruvate solution (Sigma-Aldrich), 2mM L-Glutamine (Sigma-Aldrich) and
455 1% Penicillin/Streptomycin, 10,000U/mL (Life Technologies Ltd). Additional supplements and
456 cell culture medium for each cell line are summarised in **Sup.Table.1**. All cells were incubated
457 at 37°C in a humidified atmosphere of 5% CO₂.

458

459 *Cells used for entry studies or fusion assays:* HEK293T cells stably expressing a split *Renilla*
460 luciferase-GFP plasmid (rLuc-GFP 1-7) and BHK-21 cells were maintained in DMEM-10%:
461 Dulbecco's Modified Eagle's Medium, DMEM (Sigma-Aldrich) supplemented with 10% FBS
462 (Life Science Production), 1% 100mM sodium pyruvate (Sigma-Aldrich), 1% 200mM L-
463 Glutamine (Sigma-Aldrich), and 1% Penicillin/Streptomycin, 10,000U/mL (Life Technologies
464 Ltd). Stable cell lines were generated, as described previously, using a lentiviral transduction
465 system under 1µg/mL puromycin (Gibco) selection (Thakur 2020, manuscript in preparation
466 and [39]).

467

468 **Viruses and virus titre quantification**

469 SARS-CoV-2 England-2/2020 was isolated from a patient in the UK and a passage 1 stock
470 was grown and titred in Vero E6 cells by PHE (kindly provided to The Pirbright Institute by
471 Prof. Miles Carroll). A master stock of virus was passaged to P2 in Vero E6 at a MOI of 0.001
472 in DMEM/2% FBS and used for all virus assays, following a freeze-thaw cycle at -80°C. Stocks
473 were titred by plaque assay on Vero E6 cells using a 1xMEM/0.8% Avicel/2% FBS overlay,
474 fixed using formaldehyde and stained using 0.1% Toluidine Blue. All infections were performed
475 in ACDP HG3 facilities by trained personnel.

476

477 **Plasmids**

478 Codon optimised ACE2-expressing plasmids from a range of animal species were synthesised
479 and cloned into pDISPLAY (BioBasic) (**Sup.Table.2**). A codon optimised SARS-CoV protein
480 sequence was synthesised and cloned into pcDNA3.1+ (BioBasic) while the pCAGGS plasmid
481 expressing codon optimised SARS-CoV-2 was obtained from NIBSC, UK (**Sup.Table.3**).
482

483 **Infections**

484 *Initial screen*: Cells listed in **Sup.Table.1** were seeded at a density of 1×10^5 cells/well in a 24-
485 well plate (Nunc) and 24h later infected with SARS-CoV-2 England-2/2020. Briefly, media was
486 removed and the cells washed once with complete DMEM supplemented with 2% FBS. Cells
487 were then infected at MOI 0.001 and incubated at 37°C for 1h. Following this, inoculum was
488 removed, cells washed twice with PBS, complemented with cell maintenance media and
489 incubated for 72h at 37°C. Supernatant was collected at 72 h post infection and frozen at -
490 80°C until required. Cells were fixed with formaldehyde for 30 mins and then stained with 0.1%
491 Toluidine Blue (Sigma-Aldrich).
492

493 *Receptor usage screen*: BHK-21 and DF-1 cells were plated at 1×10^5 cells/well in 24-well
494 plates (Nunc). The following day, cells were transfected with 500ng of a subset of ACE2
495 expression constructs (human, hamster, rabbit, pig, chicken, horseshoe bat) or mock
496 transfected with an empty vector (pDISPLAY) in OptiMEM (Gibco) using TransIT-X2
497 transfection reagent (Mirus) according to the manufacturer's recommendations. Following this,
498 cells were infected at MOI 1 as described above and supernatants collected at 72h post
499 infection and frozen at -80°C until required.
500

501 **SARS-CoV-2 and SARS-CoV pseudoparticles infections**

502 *Pseudoparticle generation*: Lentiviral based pseudoparticles were generated in HEK293T
503 producer cells, seeded in 6-well plates at 7.5×10^5 /well one day prior to transfecting with the
504 following plasmids: 600ng p8.91 (encoding for HIV-1 gag-pol), 600ng CSFLW (lentivirus
505 backbone expressing a firefly luciferase reporter gene) and either 25ng of SARS-CoV-2 Spike
506 or 500ng SARS-CoV in OptiMEM (Gibco) (**Sup.Table.3**) with 10µL PEI, 1µg/mL (Sigma)
507 transfection reagent. No glycoprotein controls (NE) were also set up using empty plasmid
508 vectors (25ng pCAGGS for SARS-CoV-2 and 500ng pcDNA3.1 for SARS-CoV) and all
509 transfected cells were incubated at 37°C, 5% CO₂. The following day, the transfection mix was
510 replaced with DMEM-10% and pooled harvests of supernatants containing SARS-CoV-2
511 pseudoparticles (SARS-CoV-2 pps) and SARS-CoV pseudoparticles (SARS-CoV pps) were
512 taken at 48 and 72h post transfection, centrifuged at 1,300 x g for 10 mins at 4°C to remove
513 cellular debris, aliquoted and stored at -80°C. HEK293T target cells transfected with 500ng of
514 a human ACE2 expression plasmid (Addgene) were seeded at 2×10^4 in 100µL DMEM-10% in
515 a white-bottomed 96-well plate (Corning) one day prior to infection. SARS-CoV-2 pp and
516 SARS-CoV pp along with their respective NE controls were titrated 10-fold on target cells and
517 incubated for 72h at 37°C, 5% CO₂. To quantify firefly luciferase, media was replaced with
518 50µL Bright-Glo™ substrate (Promega) diluted 1:2 with serum-free, phenol red-free DMEM,
519 incubated in the dark for 2 mins and read on a Glomax Multi+ Detection System (Promega).
520

521 *Receptor usage screens*: BHK-21 cells were seeded in 48-well plates at 5×10^4 /well in DMEM-
522 10% one day prior to transfection with 500ng of different species ACE2-expression constructs
523 or empty vector (pDISPLAY) (**Sup.Table.2**) in OptiMEM and TransIT-X2 (Mirus) transfection
524 reagent according to the manufacturer's recommendations. The next day, cells were infected

525 with SARS-CoV-2 pp/SARS-CoV pp equivalent to 10^6 - 10^7 relative light units (RLU), or their
526 respective NE controls at the same dilution and incubated for 48h at 37°C, 5% CO₂. To
527 quantify Firefly luciferase, media was replaced with 100µL Bright-Glo™ substrate (Promega)
528 diluted 1:2 with serum-free, phenol red-free DMEM. Cells were resuspended in the substrate
529 and 50µL transferred to a white-bottomed plate in duplicate. The plate was incubated in the
530 dark for 2 mins then read on a Glomax Multi+ Detection System (Promega) as above. CSV
531 files were exported onto a USB flash drive for analysis. Biological replicates were performed
532 three times.

533

534 **Cell-cell fusion assays**

535 HEK293T rLuc-GFP 1-7 [40] effector cells were transfected in OptiMEM (Gibco) using Transit-
536 X2 transfection reagent (Mirus), as per the manufacturer's recommendations, with SARS-
537 CoV-2 (250ng), SARS-CoV (1000ng) (**Sup.Table.3**) or mock-transfected with empty plasmid
538 vector (pCAGGS for SARS-CoV-2 and pcDNA3.1+ for SARS-CoV). BHK-21 target cells were
539 co-transfected with 500ng of different ACE2-expressing constructs (**Sup.Table.2**) and 250ng
540 of rLuc-GFP 8-11 plasmid. For SARS-CoV-2 cell-cell fusion assays, target cells were also
541 transfected with 25ng of transmembrane protease serine 2 (TMPRSS2) for 48h. SARS-CoV-
542 2 effector cells were washed once with PBS and resuspended in phenol red-free DMEM-10%.
543 SARS-CoV effector cells were washed twice with PBS and incubated with 3µg/ml of TPCK-
544 treated trypsin (Sigma-Aldrich) for 30 mins at 37°C before resuspending in phenol red-free
545 DMEM-10%. Target cells were washed once with PBS and harvested with 2mM EDTA in PBS
546 before co-culture with effector cells at a ratio of 1:1 in white 96-well plates to a final density of
547 4×10^4 cells/well in phenol red-free DMEM-10%. Quantification of cell-cell fusion was measured
548 based on *Renilla* luciferase activity, 18h (SARS-CoV-2) or 24h (SARS-CoV) later by adding
549 1µM of Coelenterazine-H (Promega) at 1:400 dilution in PBS. The plate was incubated in the
550 dark for 2 mins then read on a Glomax Multi+ Detection System (Promega) as above. CSV
551 files were exported onto a USB flash drive for analysis. GFP fluorescence images were
552 captured every 2h for 24h using an Incucyte S3 real-time imager (Essen Bioscience, Ann
553 Arbor, MI, USA). Cells were maintained under cell culture conditions as described above.
554 Assays were set up with three or more biological replicates for each condition, with each
555 experiment performed three times.

556

557 **Western blotting**

558 BHK-21 cells were transfected using Transit-X2 transfection reagent (Mirus), as per the
559 manufacturer's instructions with 500ng of different ACE2-expression constructs (**Sup.Table.2**)
560 or mock-transfected with empty plasmid vector (pDISPLAY). All protein samples were
561 generated using 2x Laemmli buffer (Bio-Rad) and reduced at 95°C for 5 mins 48h post-
562 transfection. Samples were resolved on 7.5% acrylamide gels by SDS-PAGE, using semi-dry
563 transfer onto nitrocellulose membrane. Blots were probed with mouse anti-HA primary
564 antibody (Miltenyi Biotech) at 1:1,000 in PBS-Tween 20 (PBS-T, 0.1%) with 5% (w/v) milk
565 powder overnight at 4°C. Blots were washed in PBS-T and incubated with anti-mouse
566 secondary antibody conjugated with horseradish peroxidase (Cell Signalling) at 1:1,000 in
567 PBS-T for 1h at room temperature. Membranes were exposed to Clarity Western ECL
568 substrate (Bio-Rad Laboratories) according to the manufacturer's guidelines and exposed to
569 autoradiographic film.

570

571 **Flow cytometry**

572 BHK-21 cells were transfected using Transit-X2 transfection reagent (Mirus), as per the
573 manufacturer's instructions with 500ng of each ACE2-expression construct (**Sup.Table.2**) or
574 mock-transfected with empty plasmid vector (pDISPLAY) for 48h. Cells were resuspended in
575 cold PBS and washed in cold stain buffer (PBS with 1% BSA (Sigma-Aldrich), 0.01% NaN₃
576 and protease inhibitors (Thermo Scientific)). Cells were stained with anti-HA PE-conjugated
577 antibody (Miltenyi Biotech) at 1:50 dilution for 1×10⁶ cells for 30 mins on ice, washed twice
578 with stain buffer and fixed in 2% paraformaldehyde for 20 mins on ice. Fixed cells were
579 resuspended in PBS before being analysed using the MACSQuant® Analyzer 10 (Miltenyi
580 Biotech) and the percentage of PE-positive cells was calculated by comparison with unstained
581 and stained mock-transfected samples. Positive cells were gated as represented in **Sup.Fig.1**
582 and the same gating strategy was applied in all experiments.
583

584 **RNA extraction and ACE2 qPCR quantification**

585 Total cellular RNA was extracted from cell lines in **Sup.Table.1** using a QIAGEN RNeasy RNA
586 extraction kit and mRNA was then detected with SYBR-green based qPCR, using a standard
587 curve for quantification on a Quant studio 3 thermocycler. Luna® Universal qPCR Master Mix
588 (NEB) was used to quantify mRNA levels for each cell line. RNA was first transcribed using
589 SuperScript II Reverse Transcriptase (Thermo Fisher), with oligo dT primers and 50ng of input
590 RNA in each reaction. All the reactions were carried out following the manufacturer's
591 instructions and in technical duplicate, with the melt curves analysed for quality control
592 purposes. Conserved cross-species ACE2 primers used for each cell line are found in
593 **Sup.Table.4**.
594

595 **Structural analysis**

596 Molecular images were generated with an open source build of PyMOL (Schrödinger) using
597 the crystal structure of SARS-CoV-2 RBD in complex with human ACE2 (PDB ID 6M0J) [10]
598 that had been further refined by Dr Tristan Croll, University of Cambridge
599 (<https://twitter.com/CrollTristan/status/124061755510919168>). To analyse the conservation
600 of mammalian ACE2 receptor sequences, representative sequences were identified via a PSI-
601 BLAST [41] search of the UniRef90 database [42] and filtering for the class mammalia
602 (taxid:40674). The selected sequences were aligned using MAFFT [43] and evolutionary
603 conservation of amino acids was mapped onto the ACE2 structure using ConSurf [44].
604

605 **Phylogenetic analysis**

606 ACE2 amino acid sequences were translated from predicted mRNA sequences or protein
607 sequences (**Sup.Table.2**). The predicted guinea pig mRNA sequence was more divergent
608 than expected and contained a premature stop codon. For the purposes of this research, five
609 single nucleotides were added, based on the most closely related sequence (chinchilla), to
610 allow a full-length mature protein to be synthesised. It is not clear if the guinea pig has a
611 functional ACE2, or if the quality of the genomic data is very low, but overall confidence in this
612 sequence is low. The other divergent sequence was turkey as the 3' end was not homologous
613 with other vertebrate ACE2 receptors. This appeared to be a mis-annotation in the genome
614 as the 3' end showed very high identity to the collectrin gene. The missing 3' of the gene was
615 found in the raw genome data and assembled with the 5' region to make a full ACE2 sequence.
616 Twenty-three nucleotide base pairs were missing between these regions; these were taken
617 from chicken as the most closely related sequence. Phylogenetic analysis of the final dataset
618 was inferred using the Neighbor-Joining method [45] conducted in MEGA7 [46] with

619 ambiguous positions removed. The tree is drawn to scale and support was provided with 500
620 bootstraps.

621

622 **Data handling and statistical analysis**

623 GraphPad Prism v8.2.1 (GraphPad Software) was used for graphical and statistical analysis
624 of data sets. Flow cytometry data was analysed using FlowJo software v10.6.2 (BD).

625

626 **Author Contributions:** Conceptualisation: DB, HJM, EB; Methodology: DB, CC, NT, JAH, ID,
627 HS, SCG; Investigation: CC, NT, SH, JK, LL, DaB, SB, PSL, AD, PH, MV, CT, JAH, HS, ID,
628 SCG, DB; Resources: DB, ID, HS; Writing—Original Draft Preparation: DB, CC, NT, SCG;
629 Writing—Review and Editing: All authors; Project Administration: DB, CC, NT; Funding
630 Acquisition: DB.

631

632 **Acknowledgements:** We would like to thank the following for assistance establishing the
633 SARS-CoV pseudotype systems: Ed Wright (University of Sussex), Nigel Temperton and
634 Simon Scott (University of Kent), Brian Willett (University of Glasgow Centre for Virus
635 Research), Emma Bentley and Giada Mattiuzzo (National Institute for Biological Standards
636 and Control [NIBSC]) and Michael Letko (National Institute of Allergy and Infectious Diseases).
637 We also acknowledge the support of Nadine Lewis (BioBasic) for help with gene synthesis as
638 well as the The Pirbright Institute's Flow Cytometry Facility and The Pirbright Institute Cell
639 Servicing Unit.

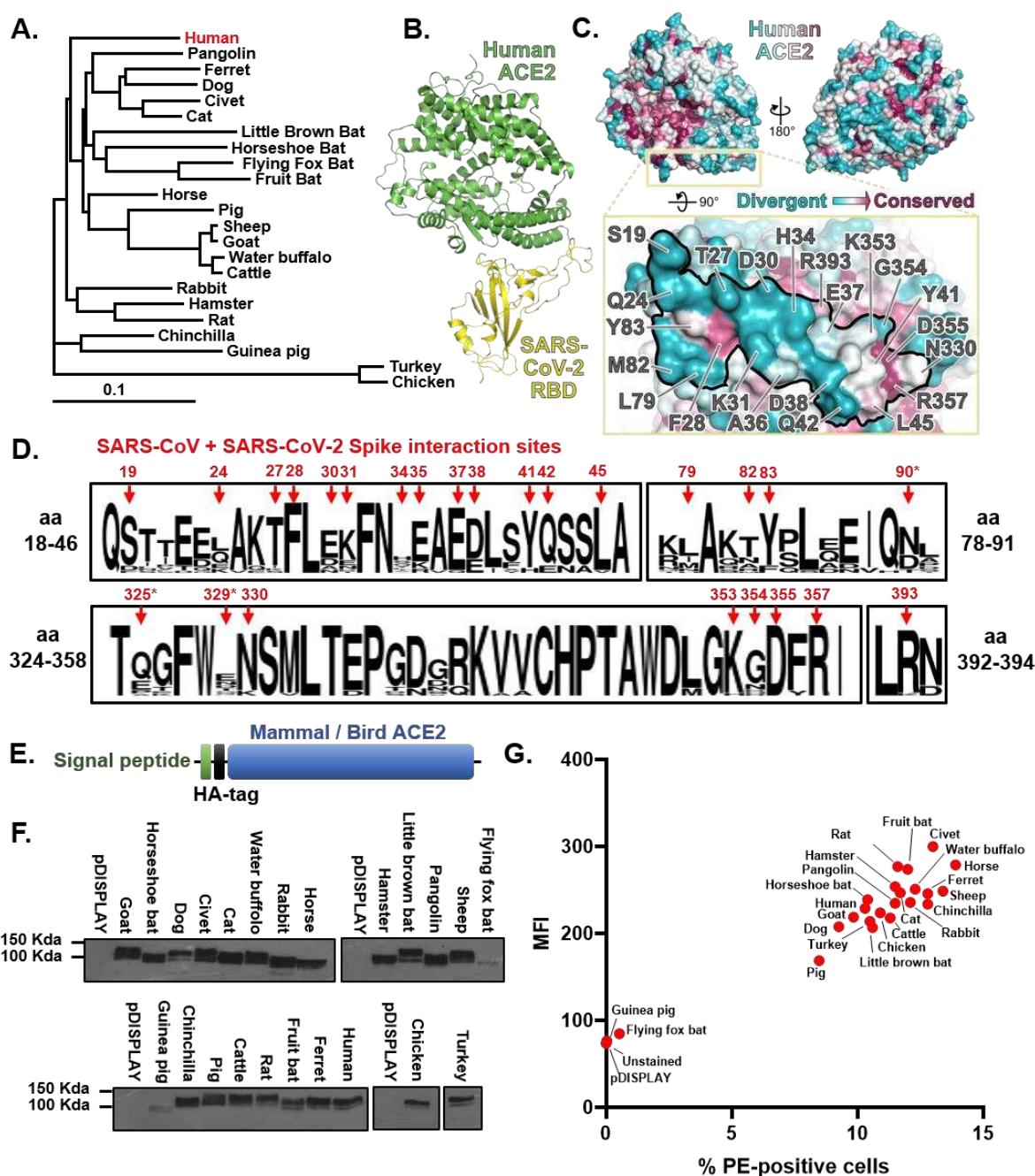
640

641 **Funding:** This work was supported by the following grants to DB: a UK Research and
642 Innovation (UKRI; www.ukri.org) Medical Research Council (MRC) New Investigator
643 Research Grant (MR/P021735/1), a UKRI Biotechnology and Biological Sciences Research
644 Council (BBSRC, www.ukri.org) project grant (BB/R019843/1) and Institute Strategic
645 Programme Grant (ISPG) to The Pirbright Institute (BBS/E/I/00007034, BBS/E/I/00007030
646 and BBS/E/I/00007039) and an Innovate UK Department for Health and Social Care project
647 (SBRI Vaccines for Global Epidemics – 795 Clinical; Contract 971555 ‘A Nipah vaccine to
648 eliminate porcine reservoirs and safeguard human health’). SCG is a Sir Henry Dale Fellow,
649 jointly funded by the Wellcome Trust and the Royal Society (098406/Z/12/B).

650

651 **Competing Interests Statement:** The authors declare no competing interests. The funders
652 played no role in the conceptualisation, design, data collection, analysis, decision to publish,
653 or preparation of the manuscript.

654


655 **Materials & Correspondence:** Correspondence and material requests to Dr. Dalan Bailey
656 (dalan.bailey@pirbright.ac.uk).

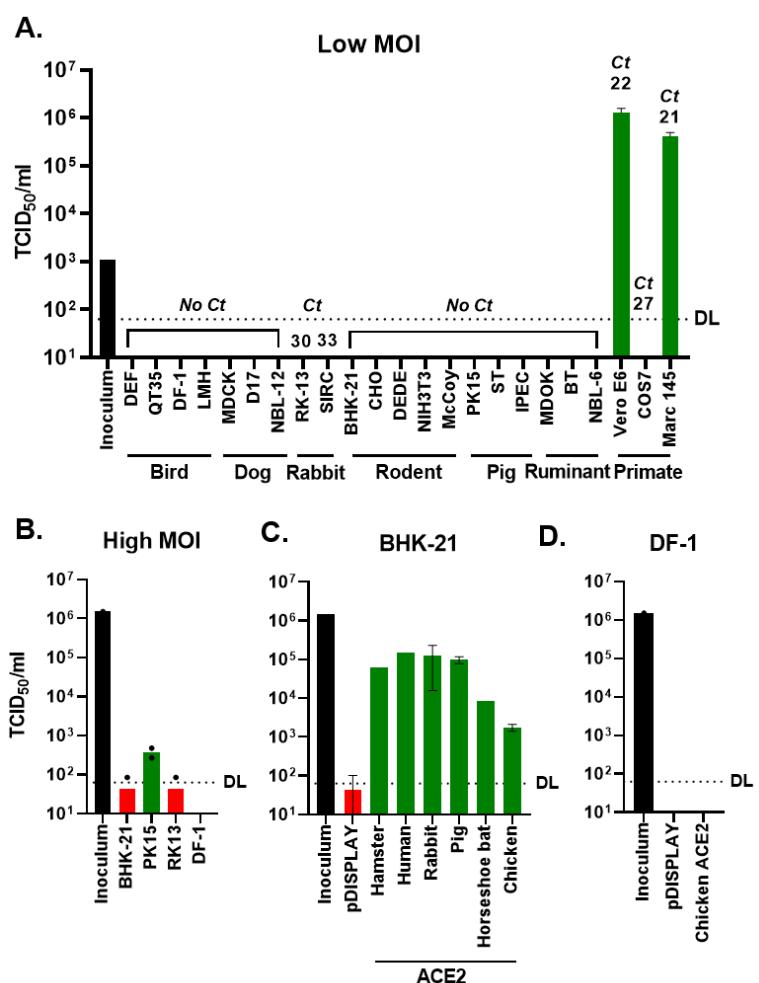
657

658

659 **Figure Legends:**

660

661 **Figure 1: The SARS-CoV-2 binding site on ACE2 is highly variable.** **(A)** A phylogenetic
662 tree of ACE2 proteins assembled using the Neighbor-Joining method [45] conducted in
663 MEGA7 [46] with ambiguous positions removed. The tree is drawn to scale and support was
664 provided with 500 bootstraps. **(B)** Structure of human ACE2 ectodomain (green) in complex
665 with the receptor binding domain (RBD) of SARS-CoV-2 [10]. **(C)** Conservation of mammalian
666 ACE2 amino acid residues mapped onto the surface of the ACE2 ectodomain [10], coloured
667 from blue (divergent) to purple (conserved) and two orientations. Inset depicts the SARS-CoV-
668 2 binding region of ACE2 (outlined), with residues that contact the SARS-CoV-2 RBD
669 highlighted [6]. **(D)** WebLogo [47] plots summarising the amino acid divergence within the
670 mammalian and bird ACE2 sequences characterised in this study. The single letter amino acid
671 (aa) code is used with the vertical height of the amino acid representing its prevalence at each

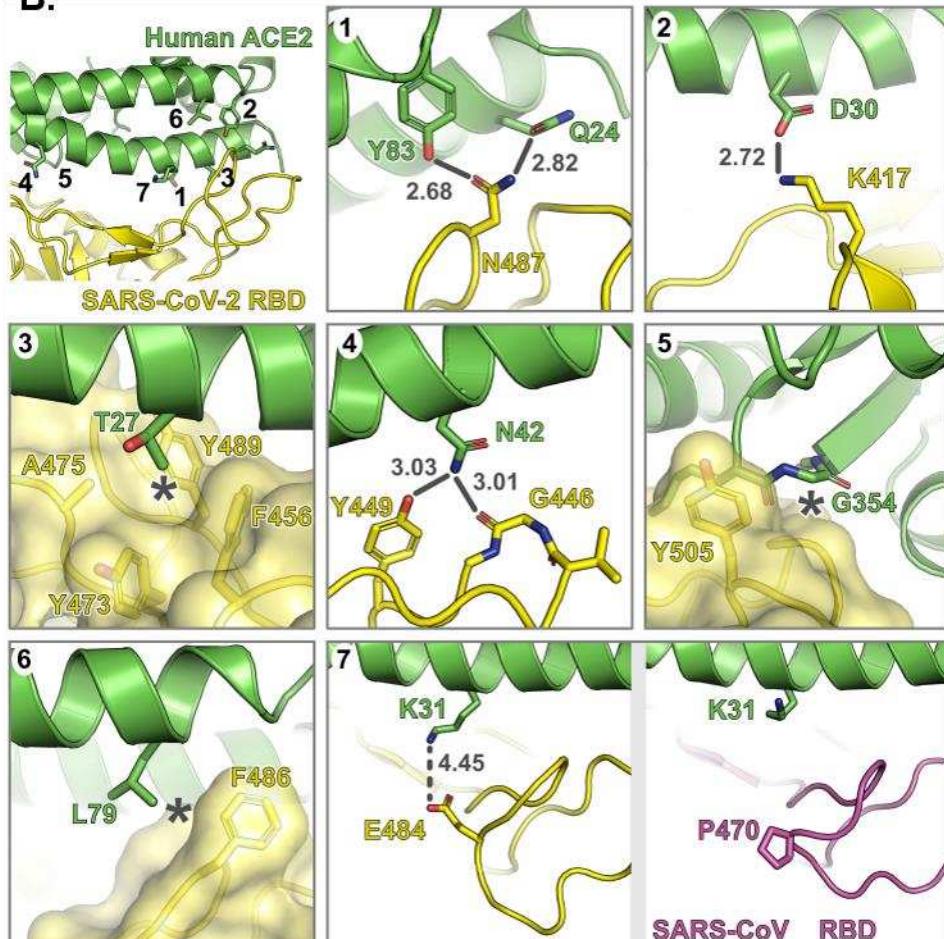

672 position in the polypeptide (aa 18-46, 78-91, 324-358 and 392-394 are indicated). The aa sites
 673 bound by SARS-CoV and SARS-CoV-2 Spike [11] are indicated by red arrows. **(E)** ACE2
 674 sequences were cloned into the pDISPLAY expression construct in frame with an N-terminal
 675 signal peptide (the murine Ig κ-chain leader sequence) and HA-tag. **(F)** Expression of
 676 individual mammal or bird ACE2 proteins was confirmed at a whole cell level by western blot.
 677 **(G)** Flow cytometry was performed to examine surface expression of each ACE2 protein on
 678 non-permeabilised cells. For gated cells the percentage positivity and mean fluorescence
 679 intensity (MFI) are plotted.
 680

681 **Figure 2: Receptor screening using surrogate entry assays identifies SARS-CoV-2**
 682 **Spike as a pan-tropic viral attachment protein. (A)** A heatmap illustrating the receptor
 683 usage profile of SARS-CoV-2 and SARS-CoV in pseudotype entry and cell-cell fusion assays
 684 with various mammalian and bird ACE2s. The data in each row is normalised to the signal
 685 seen for human ACE2 (top), with results representing the mean percentage calculated from
 686 three separate experiments performed on different days. A vector only control (pDISPLAY)
 687 was added to demonstrate specificity. Mammalian and bird ACE2s are organised, top-to-
 688 bottom based on their phylogenetic relationship (rectangular cladogram, left). **(B/C)** For both
 689 SARS-CoV-2 and SARS-CoV the respective cell-cell and pseudotype assay percentages for

690 each ACE2 protein (relative to human ACE2) were plotted on an XY scatter graph, the
691 Pearson correlation calculated, and a linear line of regression fitted together with 95%
692 confidence intervals. The x and y error bars denote the standard deviation from the three
693 experimental repeats performed on separate days.

694

Figure 3: A cognate ACE2 receptor is required for SARS-CoV-2 infection. (A) Various cell lines derived from birds, dogs, rabbits, rodents, pigs, ruminants and primates were experimentally infected with SARS-CoV-2 at a MOI of 0.001. At 72 hours post infection the supernatants from cells were harvested and titred by TCID-50. For each cell-line RNA from uninfected cells was also extracted and RT-qPCR was performed to detect ACE2 mRNA, with the value above each line indicating the cycle when PCR positivity was achieved (Ct; cycle threshold). (B) Four of the same cell lines were infected again, this time at high MOI (1). (C) BHK-21 hamster cells were transiently transfected with ACE2 expression constructs (or a vector control [pDISPLAY]) before being infected with SARS-CoV-2 at high MOI (1). (D) Similarly, DF-1 cells were transfected with a chicken ACE2 expression construct or a vector control (pDISPLAY) and infected at high MOI (1). For all high MOI experiments supernatant samples were harvested at 48 hpi for titration by TCID-50. The detection limit for the TCID-50 (DL) is indicated. In all experiments the initial inoculum used for infection was titred and infections were performed in duplicate, with error bars denoting standard deviation from the mean.


710

A.

Phylogenetic relationship	Host	SAR S-CoV-1																								SAR S-CoV-2			
		24	27	31	34	37	38	41	42	45	79	82	83	90	325	329	330	335	354	355	357	393	393	393	393	393	SAR S-CoV-1	SAR S-CoV-2	
19	24	27	28	30	31	34	35	37	38	41	42	45	79	82	83	330	353	354	355	357	393	393	393	393	393	393	393	393	393
Human	S	Q	T	F	D	K	H	E	D	Y	Q	L	L	M	Y	N	Q	E	N	K	G	D	R	R	Human	Human			
Chinchilla	S	Q	T	F	D	N	E	K	E	D	Y	Q	L	L	A	Y	N	Q	Q	N	K	D	D	R	R	Chinchilla	Chinchilla		
Rabbit	S	L	T	F	E	K	Q	E	E	D	Y	Q	L	L	T	Y	N	Q	E	N	K	G	D	R	R	Rabbit	Rabbit		
Hamster	S	Q	T	F	D	K	Q	E	E	D	Y	Q	L	L	N	Y	N	Q	G	N	K	G	D	R	R	Hamster	Hamster		
Rat	S	K	S	F	N	K	Q	E	E	D	Y	Q	L	L	N	F	N	P	T	N	H	G	D	R	R	Rat	Rat		
Turkey	D	E	T	F	A	E	V	R	E	D	Y	E	Y	E	L	N	R	F	D	A	T	N	K	N	D	R	R	Turkey	Turkey
Chicken	D	E	T	F	A	E	V	R	E	D	Y	E	Y	E	L	N	R	F	D	E	T	N	K	N	D	R	R	Chicken	Chicken
Pangolin	S	E	T	F	E	K	S	E	E	E	Y	Q	L	L	I	N	Y	N	Q	E	N	K	H	D	R	R	Pangolin	Pangolin	
Ferret	S	L	T	F	E	K	Y	E	E	E	Y	Q	L	L	H	T	Y	D	E	Q	N	K	R	D	R	R	Ferret	Ferret	
Dog	S	L	T	F	E	K	Y	E	E	E	Y	Q	L	L	T	Y	D	Q	G	N	K	G	D	R	R	Dog	Dog		
Civet	S	L	T	F	E	K	Y	E	E	E	Y	Q	L	L	T	Y	D	Q	E	N	K	G	D	R	R	Civet	Civet		
Cat	S	L	T	F	E	K	Y	E	E	E	Y	Q	L	L	T	Y	D	Q	E	N	K	G	D	R	R	Cat	Cat		
Little brown bat	S	K	I	F	E	N	S	K	E	D	H	E	L	L	T	Y	N	P	N	N	K	G	D	R	R	Little brown bat	Little brown bat		
Horseshoe bat	S	K	K	F	N	D	S	E	E	D	Y	E	Q	L	L	I	N	T	E	N	K	G	D	R	R	Horseshoe bat	Horseshoe bat		
Fruit bat	S	L	T	F	E	K	T	E	E	D	Y	Q	L	L	T	Y	D	E	E	K	K	G	D	R	R	Fruit bat	Fruit bat		
Horse	S	L	T	F	E	K	S	E	E	H	Q	L	L	T	Y	N	E	N	K	G	D	R	R	R	Horse	Horse			
Pig	S	Q	T	F	E	K	H	E	E	D	Y	Q	L	L	M	T	Y	N	Q	D	N	K	G	D	R	R	Pig	Pig	
Sheep	S	Q	T	F	E	K	H	E	E	D	Y	Q	L	L	M	T	Y	N	Q	N	N	K	G	D	R	R	Sheep	Sheep	
Goat	S	Q	T	F	E	K	H	E	E	D	Y	Q	L	L	M	T	Y	N	Q	D	N	K	G	D	R	R	Goat	Goat	
Water Buffalo	S	Q	T	F	E	K	H	E	E	D	Y	Q	L	L	M	T	Y	N	Q	D	N	K	G	D	R	R	Water buffalo	Water buffalo	
Cattle	S	Q	T	F	E	K	H	E	E	D	Y	Q	L	L	M	T	Y	N	Q	D	N	K	G	D	R	R	Cattle	Cattle	

<40% SAR S-CoV-2 pseudotype entry relative to human ACE2
40-75% SAR S-CoV-2 pseudotype entry relative to human ACE2
>75% SAR S-CoV-2 pseudotype entry relative to human ACE2

B.

711 **Figure 4: Substitutions at the interface between SARS-CoV-2 RBD and mammalian**
712 **ACE2 proteins impact receptor utilisation.** (A) Residues of mammalian ACE2 sequences
713 used in this study that are predicted to interact with the RBD SARS-CoV and -2, based on the
714 structures of human ACE2 in complex with SARS-CoV [28] and SARS-CoV-2 [6]. Differences
715 between closely-related species that may impact RBD binding are highlighted. (B) Interface
716 between human ACE2 (green) and SARS-CoV-2 RBD (yellow). Insets 1 to 7 show molecular
717 interactions discussed in the main text. Bonds that may be disrupted are shown as grey lines,
718 with bond distances in grey text, and hydrophobic interactions that may be disrupted are

719 marked with asterisks. The right and left hand panels of inset 7 show human ACE2 in complex
720 with (left) SARS-CoV-2 [10] or (right) SARS-CoV RBD [28].

721

722

723 **References**

- 725 1. Zhou, P., X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R.D. Jiang, M.Q. Liu, Y. Chen, X.R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F.X. Zhan, Y.Y. Wang, G.F. Xiao, and Z.L. Shi, *A pneumonia outbreak associated with a new coronavirus of probable bat origin*. *Nature*, 2020. **579**(7798): p. 270-273.
- 726 2. Li, W., Z. Shi, M. Yu, W. Ren, C. Smith, J.H. Epstein, H. Wang, G. Crameri, Z. Hu, H. Zhang, J. Zhang, J. McEachern, H. Field, P. Daszak, B.T. Eaton, S. Zhang, and L.F. Wang, *Bats are natural reservoirs of SARS-like coronaviruses*. *Science*, 2005. **310**(5748): p. 676-9.
- 727 3. Azhar, E.I., S.A. El-Kafrawy, S.A. Farraj, A.M. Hassan, M.S. Al-Saeed, A.M. Hashem, and T.A. Madani, *Evidence for camel-to-human transmission of MERS coronavirus*. *N Engl J Med*, 2014. **370**(26): p. 2499-505.
- 728 4. Huang, A.T., B. Garcia-Carreras, M.D.T. Hitchings, B. Yang, L. Katzelnick, S.M. Rattigan, B. Borgert, C. Moreno, B.D. Solomon, I. Rodriguez-Barraquer, J. Lessler, H. Salje, D.S. Burke, A. Wesolowski, and D.A.T. Cummings, *A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease*. *medRxiv*, 2020.
- 729 5. Shang, J., G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, and F. Li, *Structural basis of receptor recognition by SARS-CoV-2*. *Nature*, 2020. **581**(7807): p. 221-224.
- 730 6. Wang, Q., Y. Zhang, L. Wu, S. Niu, C. Song, Z. Zhang, G. Lu, C. Qiao, Y. Hu, K.Y. Yuen, Q. Wang, H. Zhou, J. Yan, and J. Qi, *Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2*. *Cell*, 2020. **181**(4): p. 894-904.e9.
- 731 7. Li, F., *Receptor recognition mechanisms of coronaviruses: a decade of structural studies*. *J Virol*, 2015. **89**(4): p. 1954-64.
- 732 8. Hoffmann, M., H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.H. Wu, A. Nitsche, M.A. Müller, C. Drosten, and S. Pöhlmann, *SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor*. *Cell*, 2020. **181**(2): p. 271-280.e8.
- 733 9. Letko, M., A. Marzi, and V. Munster, *Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses*. *Nat Microbiol*, 2020. **5**(4): p. 562-569.
- 734 10. Lan, J., J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, and X. Wang, *Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor*. *Nature*, 2020. **581**(7807): p. 215-220.
- 735 11. Yan, R., Y. Zhang, Y. Li, L. Xia, Y. Guo, and Q. Zhou, *Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2*. *Science*, 2020. **367**(6485): p. 1444-1448.
- 736 12. Wu, K., G. Peng, M. Wilken, R.J. Geraghty, and F. Li, *Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus*. *J Biol Chem*, 2012. **287**(12): p. 8904-11.
- 737 13. Qiu, Y., Y.B. Zhao, Q. Wang, J.Y. Li, Z.J. Zhou, C.H. Liao, and X.Y. Ge, *Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2*. *Microbes Infect*, 2020.
- 738 14. Abdullah, N., J.T. Kelly, S.C. Graham, J. Birch, D. Gonçalves-Carneiro, T. Mitchell, R.N. Thompson, K.A. Lythgoe, N. Logan, M.J. Hosie, V.N. Bavro, B.J. Willett, M.P. Heaton, and D. Bailey, *Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential*. *J Virol*, 2018. **92**(23).
- 739 15. Li, W., T.C. Greenough, M.J. Moore, N. Vasilieva, M. Somasundaran, J.L. Sullivan, M. Farzan, and H. Choe, *Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2*. *J Virol*, 2004. **78**(20): p. 11429-33.
- 740 16. Walls, A.C., Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, and D. Veesler, *Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein*. *Cell*, 2020. **181**(2): p. 281-292.e6.
- 741 17. Matsuyama, S., N. Nao, K. Shirato, M. Kawase, S. Saito, I. Takayama, N. Nagata, T. Sekizuka, H. Katoh, F. Kato, M. Sakata, M. Tahara, S. Kutsuna, N. Ohmagari, M. Kuroda, T. Suzuki, T.

775 Kageyama, and M. Takeda, *Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells*.
776 Proc Natl Acad Sci U S A, 2020. **117**(13): p. 7001-7003.

777 18. Kim, Y.I., S.G. Kim, S.M. Kim, E.H. Kim, S.J. Park, K.M. Yu, J.H. Chang, E.J. Kim, S. Lee, M.A.B.
778 Casel, J. Um, M.S. Song, H.W. Jeong, V.D. Lai, Y. Kim, B.S. Chin, J.S. Park, K.H. Chung, S.S. Foo,
779 H. Poo, I.P. Mo, O.J. Lee, R.J. Webby, J.U. Jung, and Y.K. Choi, *Infection and Rapid Transmission*
780 *of SARS-CoV-2 in Ferrets*. Cell Host Microbe, 2020. **27**(5): p. 704-709.e2.

781 19. Shi, J., Z. Wen, G. Zhong, H. Yang, C. Wang, B. Huang, R. Liu, X. He, L. Shuai, Z. Sun, Y. Zhao, P.
782 Liu, L. Liang, P. Cui, J. Wang, X. Zhang, Y. Guan, W. Tan, G. Wu, H. Chen, and Z. Bu, *Susceptibility*
783 *of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2*. Science, 2020.
784 **368**(6494): p. 1016-1020.

785 20. Netland, J., D.K. Meyerholz, S. Moore, M. Cassell, and S. Perlman, *Severe acute respiratory*
786 *syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice*
787 *transgenic for human ACE2*. J Virol, 2008. **82**(15): p. 7264-75.

788 21. Day, C.W., R. Baric, S.X. Cai, M. Frieman, Y. Kumaki, J.D. Morrey, D.F. Smee, and D.L. Barnard,
789 *A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in*
790 *vitro and in vivo*. Virology, 2009. **395**(2): p. 210-22.

791 22. Roberts, A., D. Deming, C.D. Paddock, A. Cheng, B. Yount, L. Vogel, B.D. Herman, T. Sheahan,
792 M. Heise, G.L. Genrich, S.R. Zaki, R. Baric, and K. Subbarao, *A mouse-adapted SARS-coronavirus*
793 *causes disease and mortality in BALB/c mice*. PLoS Pathog, 2007. **3**(1): p. e5.

794 23. Sia, S.F., L.M. Yan, A.W.H. Chin, K. Fung, K.T. Choy, A.Y.L. Wong, P. Kaewpreedee, R. Perera,
795 L.L.M. Poon, J.M. Nicholls, M. Peiris, and H.L. Yen, *Pathogenesis and transmission of SARS-*
796 *CoV-2 in golden hamsters*. Nature, 2020.

797 24. Tai, W., L. He, X. Zhang, J. Pu, D. Voronin, S. Jiang, Y. Zhou, and L. Du, *Characterization of the*
798 *receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD*
799 *protein as a viral attachment inhibitor and vaccine*. Cell Mol Immunol, 2020. **17**(6): p. 613-620.

800 25. Ren, W., X. Qu, W. Li, Z. Han, M. Yu, P. Zhou, S.Y. Zhang, L.F. Wang, H. Deng, and Z. Shi,
801 *Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus*
802 *and SARS-like coronavirus of bat origin*. J Virol, 2008. **82**(4): p. 1899-907.

803 26. Li, F., *Structural analysis of major species barriers between humans and palm civets for severe*
804 *acute respiratory syndrome coronavirus infections*. J Virol, 2008. **82**(14): p. 6984-91.

805 27. Zhang, T., Q. Wu, and Z. Zhang, *Probable Pangolin Origin of SARS-CoV-2 Associated with the*
806 *COVID-19 Outbreak*. Curr Biol, 2020. **30**(7): p. 1346-1351.e2.

807 28. Li, F., W. Li, M. Farzan, and S.C. Harrison, *Structure of SARS coronavirus spike receptor-binding*
808 *domain complexed with receptor*. Science, 2005. **309**(5742): p. 1864-8.

809 29. Li, Y., H. Wang, X. Tang, D. Ma, C. Du, Y. Wang, H. Pan, Q. Zou, J. Zheng, L. Xu, M. Farzan, and
810 G. Zhong, *Potential host range of multiple SARS-like coronaviruses and an improved ACE2-Fc*
811 *variant that is potent against both SARS-CoV-2 and SARS-CoV-1*. bioRxiv, 2020.

812 30. Zhao, X., D. Chen, R. Szabla, M. Zheng, G. Li, P. Du, S. Zheng, X. Li, C. Song, R. Li, J.-T. Guo, M.
813 Junop, H. Zeng, and H. Lin, *Broad and differential animal ACE2 receptor usage by SARS-CoV-2*.
814 bioRxiv, 2020.

815 31. Piplani, S., P.K. Singh, D.A. Winkler, and N. Petrovsky, *In silico comparison of spike protein-*
816 *ACE2 binding affinities across species; significance for the possible origin of the SARS-CoV-2*
817 *virus*. arXiv, 2020. **arXiv:2005.06199**.

818 32. Daly, J.L., B. Simonetti, C. Antón-Plágaro, M. Kavanagh Williamson, D.K. Shoemark, L. Simón-
819 Gracia, K. Klein, M. Bauer, R. Hollandi, U.F. Greber, P. Horvath, R.B. Sessions, A. Helenius, J.A.
820 Hiscox, T. Teesalu, D.A. Matthews, A.D. Davidson, P.J. Cullen, and Y. Yamauchi, *Neuropilin-1 is*
821 *a host factor for SARS-CoV-2 infection*. bioRxiv, 2020.

822 33. Belouzard, S., V.C. Chu, and G.R. Whittaker, *Activation of the SARS coronavirus spike protein*
823 *via sequential proteolytic cleavage at two distinct sites*. Proc Natl Acad Sci U S A, 2009. **106**(14):
824 p. 5871-6.

825 34. Bickerton, E., H.J. Maier, P. Stevenson-Leggett, M. Armesto, and P. Britton, *The S2 Subunit of*
826 *Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism*. J Virol, 2018. **92**(19).

827 35. Gombold, J.L., S.T. Hingley, and S.R. Weiss, *Fusion-defective mutants of mouse hepatitis virus*
828 *A59 contain a mutation in the spike protein cleavage signal*. J Virol, 1993. **67**(8): p. 4504-12.

829 36. Yoo, D.W., M.D. Parker, and L.A. Babiuk, *The S2 subunit of the spike glycoprotein of bovine*
830 *coronavirus mediates membrane fusion in insect cells*. Virology, 1991. **180**(1): p. 395-9.

831 37. Thomas HC Sit, Christopher J Brackman, Sin Ming Ip, Karina WS Tam, Pierra YT Law, Esther
832 MW To, Veronica YT Yu, Leslie D Sims, Dominic NC Tsang, Daniel KW Chu, Ranawaka APM
833 Perera, Leo LM Poon, and Malik Peiris, *Canine SARS-CoV-2 infection*. PREPRINT (Version 1)
834 available at Research Square, 2020. <https://doi.org/10.21203/rs.3.rs-18713/v1>.

835 38. Zhang, Q., H. Zhang, K. Huang, Y. Yang, X. Hui, J. Gao, X. He, C. Li, W. Gong, Y. Zhang, C. Peng,
836 X. Gao, H. Chen, Z. Zou, Z. Shi, and M. Jin, *SARS-CoV-2 neutralizing serum antibodies in cats: a*
837 *serological investigation*. bioRxiv, 2020.

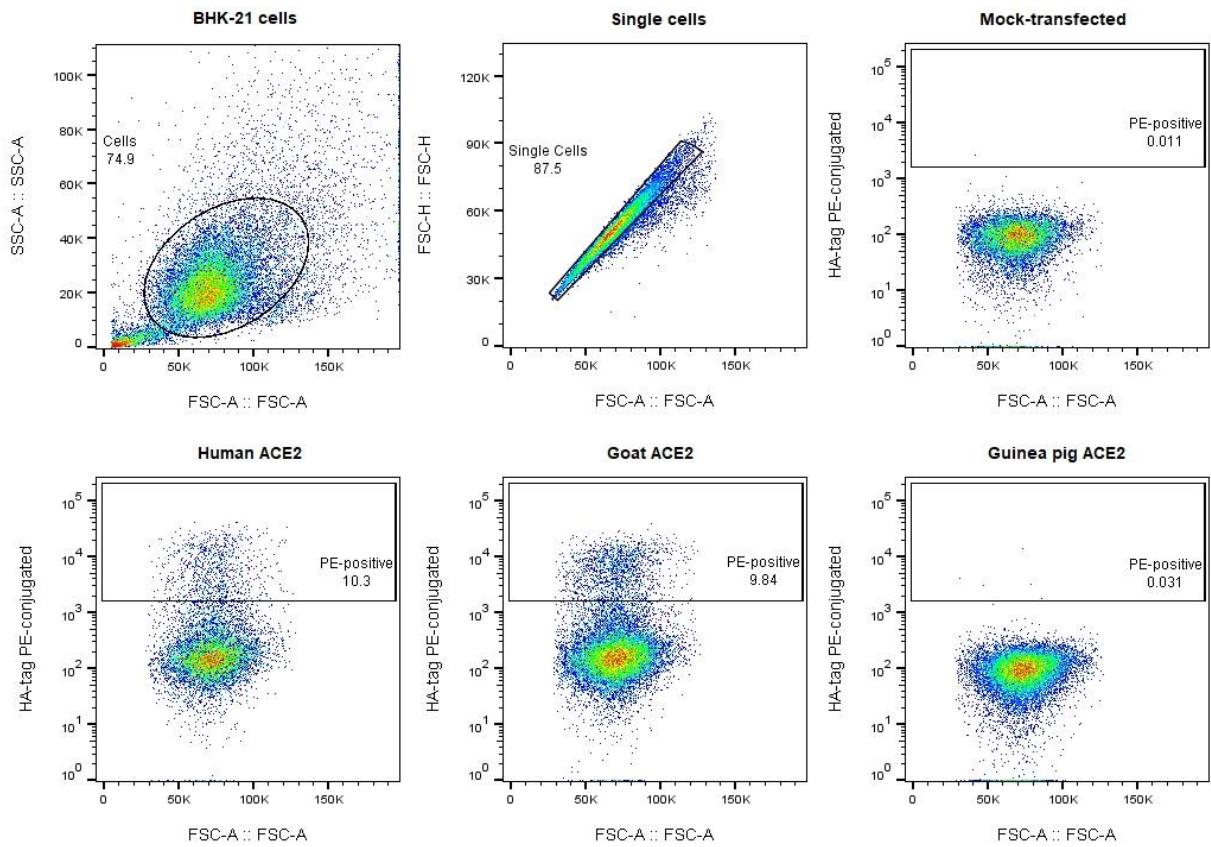
838 39. Birch, J., N. Juleff, M.P. Heaton, T. Kalbfleisch, J. Kijas, and D. Bailey, *Characterization of ovine*
839 *Nectin-4, a novel peste des petits ruminants virus receptor*. J Virol, 2013. **87**(8): p. 4756-61.

840 40. Ishikawa, H., F. Meng, N. Kondo, A. Iwamoto, and Z. Matsuda, *Generation of a dual-functional*
841 *split-reporter protein for monitoring membrane fusion using self-associating split GFP*. Protein
842 Eng Des Sel, 2012. **25**(12): p. 813-20.

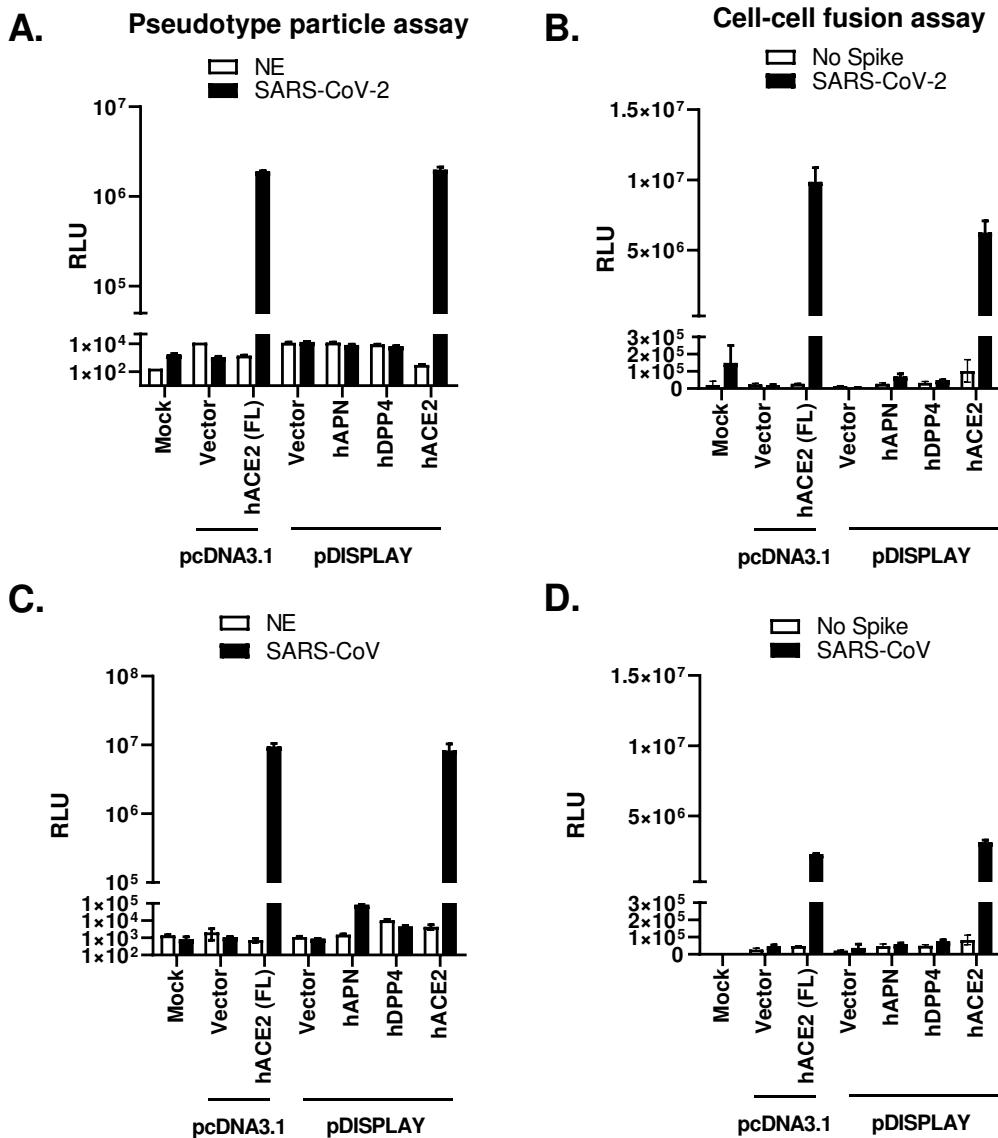
843 41. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman,
844 *Gapped BLAST and PSI-BLAST: a new generation of protein database search programs*. Nucleic
845 Acids Res, 1997. **25**(17): p. 3389-402.

846 42. Suzek, B.E., Y. Wang, H. Huang, P.B. McGarvey, and C.H. Wu, *UniRef clusters: a comprehensive*
847 *and scalable alternative for improving sequence similarity searches*. Bioinformatics, 2015.
848 **31**(6): p. 926-32.

849 43. Katoh, K., K. Misawa, K. Kuma, and T. Miyata, *MAFFT: a novel method for rapid multiple*
850 *sequence alignment based on fast Fourier transform*. Nucleic Acids Res, 2002. **30**(14): p. 3059-
851 66.

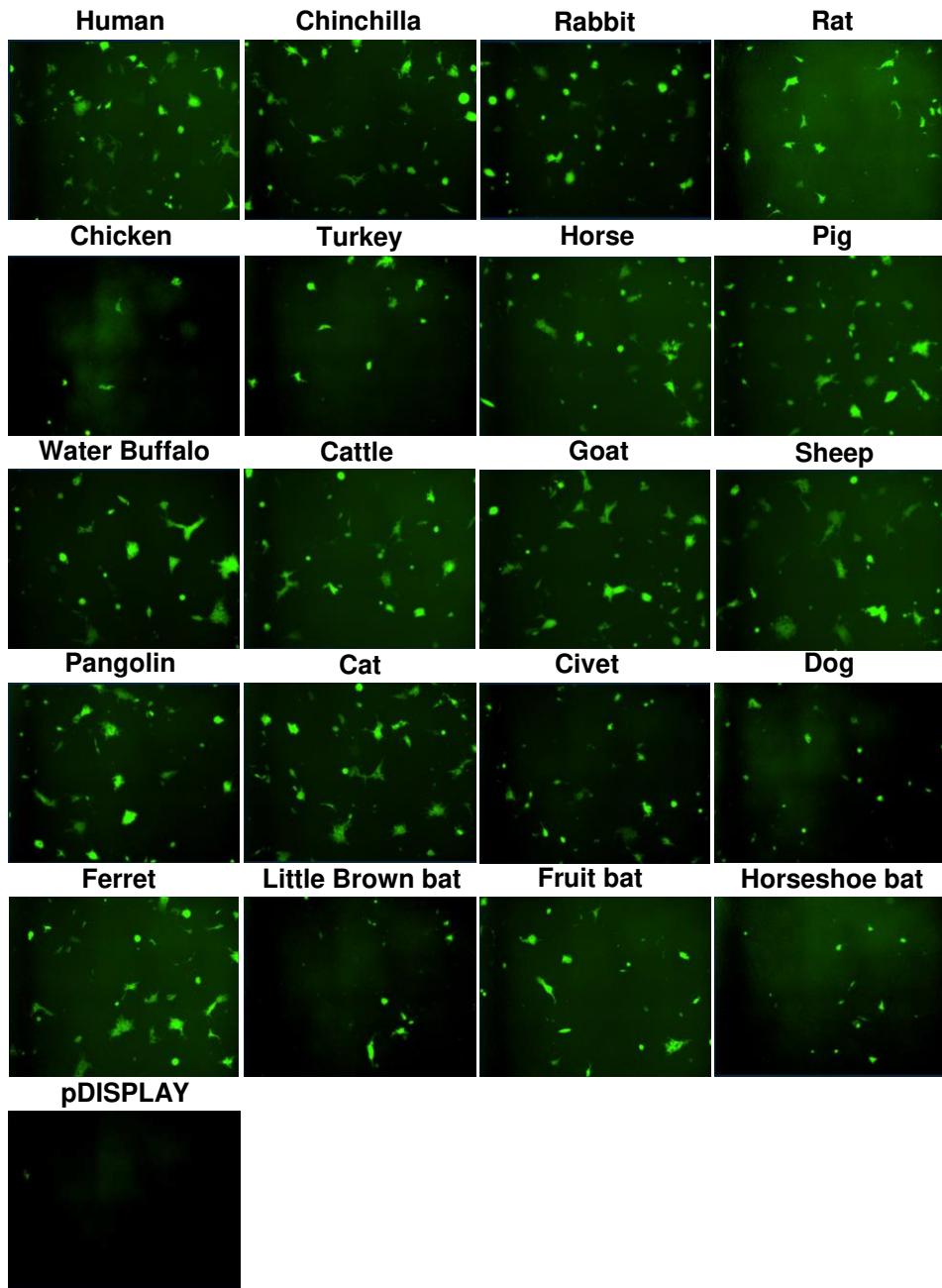

852 44. Ashkenazy, H., S. Abadi, E. Martz, O. Chay, I. Mayrose, T. Pupko, and N. Ben-Tal, *ConSurf 2016:*
853 *an improved methodology to estimate and visualize evolutionary conservation in*
854 *macromolecules*. Nucleic Acids Res, 2016. **44**(W1): p. W344-50.

855 45. Saitou, N. and M. Nei, *The neighbor-joining method: a new method for reconstructing*
856 *phylogenetic trees*. Mol Biol Evol, 1987. **4**(4): p. 406-25.

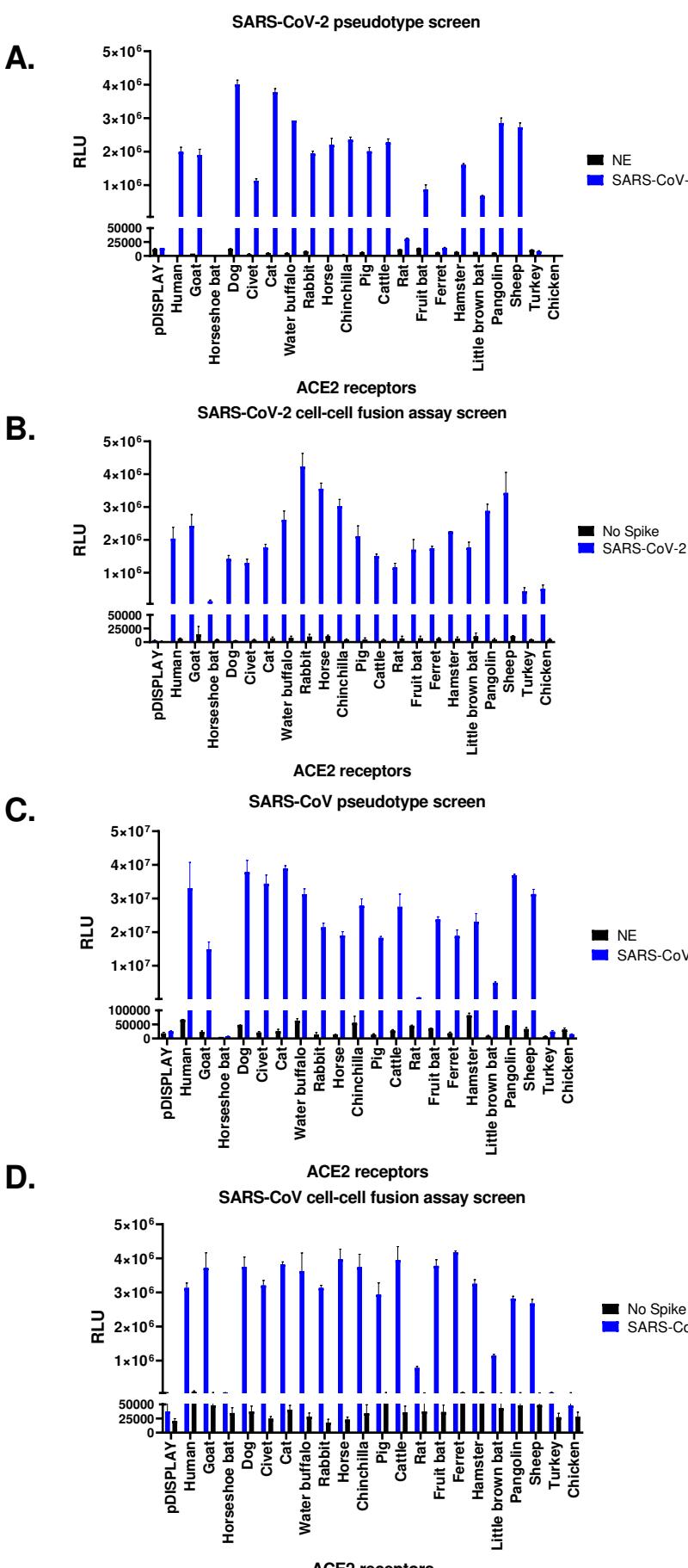

857 46. Kumar, S., G. Stecher, and K. Tamura, *MEGA7: Molecular Evolutionary Genetics Analysis*
858 *Version 7.0 for Bigger Datasets*. Mol Biol Evol, 2016. **33**(7): p. 1870-4.

859 47. Crooks, G.E., G. Hon, J.M. Chandonia, and S.E. Brenner, *WebLogo: a sequence logo generator*.
860 Genome Res, 2004. **14**(6): p. 1188-90.

861

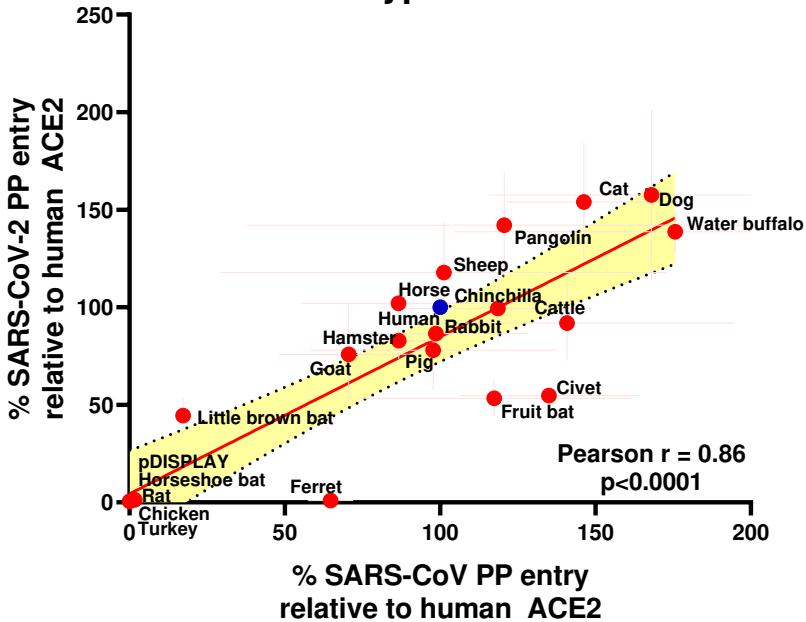


Supplemental Figure 1: Gating strategy for flow cytometry analysis of ACE2-expressing constructs. BHK-21 cells were transfected with a panel of species-specific ACE2-expressing constructs (see **Sup.Table.2**). Cells were surface stained with anti-HA PE conjugated antibody. Live and singlet BHK-21 were gated as PE-positive, relative to mock-transfected cells (**top panel**). Representative datasets are shown for human, goat and guinea pig ACE2 surface staining (**bottom panel**).

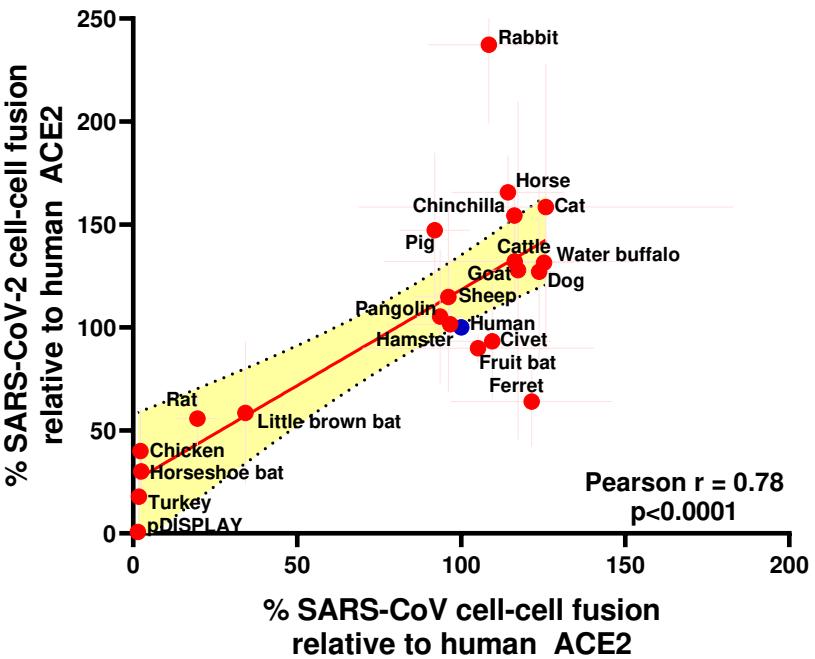


Supplemental Figure 2: Establishment of SARS-CoV-2 and SARS-CoV entry assays. (A-D)

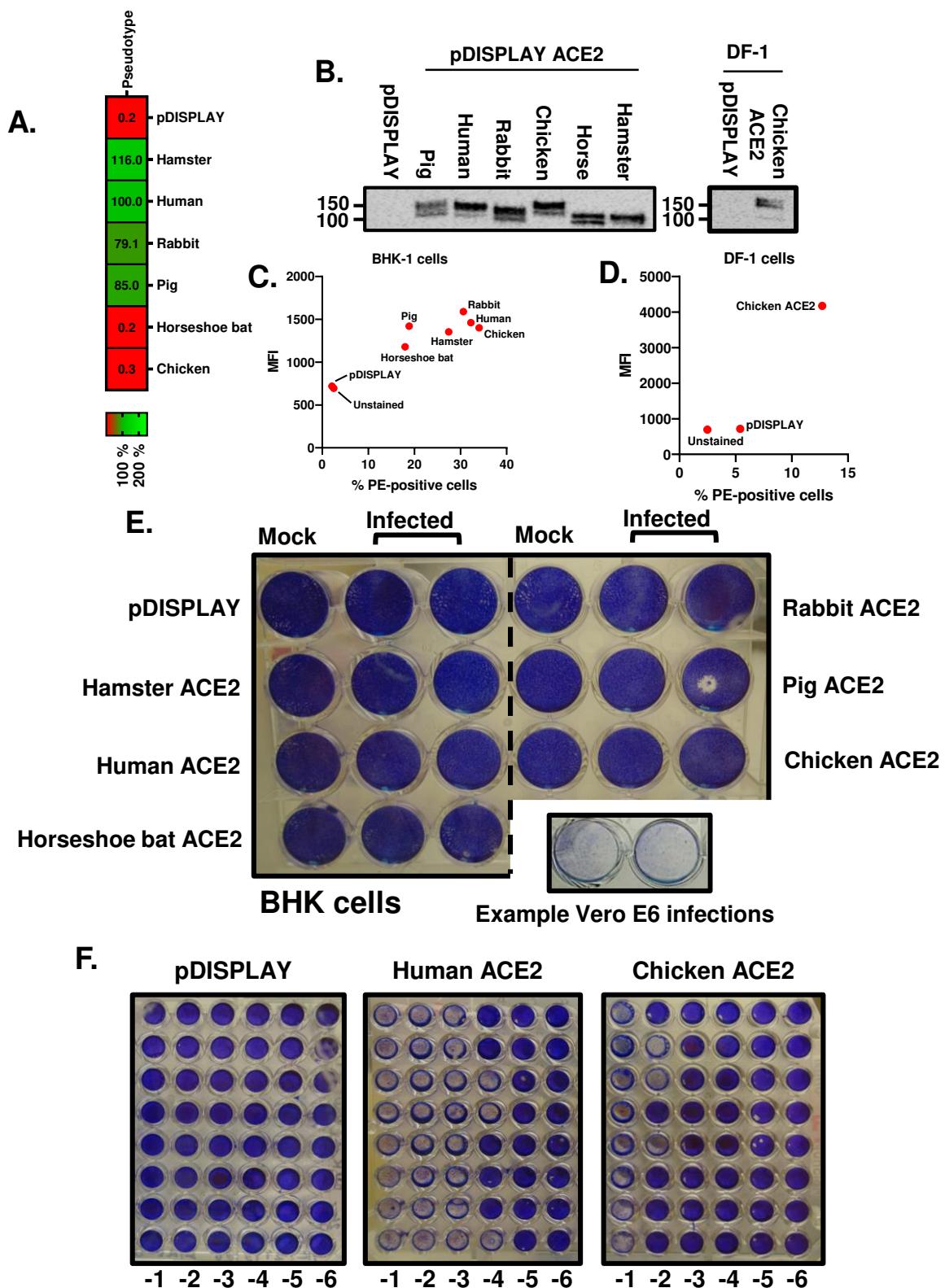
Pseudotype and cell-cell fusion assays were established for SARS-CoV-2 (A,B) and SARS-CoV (C,D) using multiple internal controls. For the pseudotype assays non-enveloped (NE) lentiviral particles were generated, i.e. vector plasmid in place of a viral glycoprotein, to examine background levels of pseudoparticle entry. For the cell-cell fusion assay mock-transfected effector cells were used (No Spike) to examine background levels of cell-cell fusion. In all subsequent experiments 'NE' and 'No Spike' controls were compared against SARS-CoV-2 pseudoparticles or SARS-CoV-2 Spike expressing effector cells (see **Sup.Fig.3**). To validate our pDISPLAY approach cells were transfected with expression constructs for full length human ACE2 (hACE2 [FL]) or a human ACE2 where the signal peptide was replaced with the murine Ig κ -chain leader sequence (hACE2). In both instances the corresponding vector controls, pcDNA3.1 and pDISPLAY, were separately transfected for comparison. The specificity of the SARS-CoV-2 and SARS-CoV assays were further confirmed by comparing hACE2-mediated fusion to human aminopeptidase N (hAPN) or dipeptidyl peptidase 4 (hDPP4) fusion, the coronavirus group I and MERS-CoV receptors, respectively. Lastly, in all assays target cells representing un-transfected cells (Mock) were also included. For pseudotype and cell-cell fusion assays, luciferase assays were performed in duplicate and triplicate, respectively with the error bars denoting standard deviation.



Supplemental Figure 3: Syncytia formation following SARS-CoV-2 Spike expression. Effector cells expressing half of a split luciferase-GFP reporter and SARS-CoV-2 Spike were mixed with target cells expressing ACE2 proteins from the indicated hosts and the corresponding half of the reporter (see Methods). A vector only control was also included (pDISPLAY). Representative micrographs of GFP-positive syncytia formed following co-culturing are shown. Images were captured using an Incucyte live cell imager (Sartorius).


Supplemental Figure 4: SARS-CoV-2 and SARS-CoV receptor usage screening. As per **Sup. Fig.2** NE and No Spike controls were included in all assays, as well as a vector only control (pDISPLAY). For pseudotype and cell-cell fusion assays, luciferase assays were performed in duplicate and triplicate, respectively with the error bars denoting standard deviation. Representative data sets from individual experiments are shown; however, the heat-maps and XY correlative plots in **Fig.2** and **Sup. Fig.5** summarise the results from three independent experiments performed on separate days.

A. Pseudotype correlation



B.

Cell-cell fusion correlation

Supplemental Figure 5: Correlating SARS-CoV-2 and SARS-CoV pseudotype and cell-cell fusion receptor usage. The receptor usage data for SARS-CoV-2 and SARS-CoV was examined by separately comparing the pseudotype (A) or cell-cell fusion (B) assay results on XY scatter plots. The Pearson correlation was calculated and a linear line of regression fitted together with 95% confidence intervals. The x and y error bars denote the standard deviation from three experimental repeats performed on separate days. All values are plotted relative to the entry or cell-cell fusion recorded for human ACE2 (blue circles).

Supplemental Figure 6: Experimental infection of cell lines over-expressing vertebrate ACE2 proteins. (A) SARS-CoV-2 pseudotype entry was assayed in BHK-21 transfected cells overexpressing ACE2 from the indicated species. Pseudotype infections were performed in triplicate and the mean value plotted on a heat map following normalisation to human ACE2. Similarly transfected target cells were lysed and the ACE2 expression analysed by western blot (B) or flow cytometry (C). Equivalent experiments were performed for DF-1 cells (B; right panel, D). (E) In parallel, BHK-21 cells were transfected with various ACE2-expression constructs and infected with SARS-CoV-2 at an MOI of 1. Cells were fixed and stained at 48 hpi. (F) Prior to fixation the supernatants from infected BHK-21 cells were removed for quantification of released virus by TCID-50. Representative images of these titrations, performed on Vero E6 cells, are shown (vector only control [pDISPLAY] as well as human and chicken ACE2).

Supplemental Table 1: Cell lines utilised in this study to quantify ACE2 mRNA levels and to assess virus permissibility.

Cell line	Species	Organism	Cell type	Media and supplements
MDCK	Canine	<i>Canis familiaris</i>	Kidney, epithelial	EMEM
D17	Canine	<i>Canis familiaris</i>	Lung, epithelial	EMEM
NBL-2	Canine	<i>Canis familiaris</i>	Kidney, epithelial	EMEM
LLC-RK1	Rabbit	<i>Oryctolagus cuniculus</i>	Kidney, epithelial	Medium 199: horse serum, 1.12 g/L sodium bicarbonate
RK-13	Rabbit	<i>Oryctolagus cuniculus</i>	Kidney, epithelial	EMEM
SIRC	Rabbit	<i>Oryctolagus cuniculus</i>	Cornea, fibroblast	EMEM
BHK-21	Hamster	<i>Mesocricetus auratus</i>	Kidney, fibroblast	EMEM
CHO	Hamster	<i>Cricetulus griseus</i>	Ovary, epithelial-like	Hams F-12K: 20 mM HEPES
DEDE	Hamster	<i>Cricetulus griseus</i>	Lung, fibroblast	McCoys 5a medium: 1.12 g/L sodium bicarbonate
NBL-6	Horse	<i>Equus caballus</i>	Skin, fibroblast	EMEM
DF-1	Chicken	<i>Gallus gallus</i>	Embryo, fibroblast	DMEM
LMH	Chicken	<i>Gallus gallus</i>	Liver, epithelial	Waymouth's medium
BT	Bovine	<i>Bos taurus</i>	Turbinate	DMEM
MDOK	Sheep	<i>Ovis aries</i>	Kidney, epithelial	EMEM
LLC-PK1	Pig	<i>Sus scrofa</i>	Kidney, epithelial	Medium 199
IPEC-J2	Pig	<i>Sus scrofa</i>	Intestinal porcine enterocytes, epithelial	Hams F-12: 20 mM HEPES, 1% insulin/transferrin/selenium (ITS)
PK15	Pig	<i>Sus scrofa</i>	Kidney, epithelial	EMEM
ST	Pig	<i>Sus scrofa</i>	Testis, fibroblast	EMEM
COS7	Monkey	<i>Cercopithecus aethiops</i>	Kidney, fibroblast	DMEM
Vero E6	Monkey	<i>Cercopithecus aethiops</i>	Kidney, epithelial	DMEM
Marc 145	Monkey	<i>Cercopithecus aethiops</i>	Kidney, epithelial	DMEM
McCoy	Mouse	<i>Mus musculus</i>	Fibroblast	EMEM
NIH3T3	Mouse	<i>Mus musculus</i>	Embryo, fibroblast	DMEM
Duck embryo fibroblast	Duck	<i>Anas platyrhynchos domesticus</i>	Embryo, fibroblast	EMEM
QT35	Quail	<i>Coturnix coturnix</i>	Muscle, fibroblast	EMEM

Supplemental Table 2: Codon optimised ACE2-expression plasmids used in this study for receptor usage screens.

Common name	Scientific name	Plasmid	Accession number
Human (full length protein)	<i>Homo sapiens</i>	pcDNA3.1	BAB40370.1
Human	<i>Homo sapiens</i>	pDISPLAY	BAB40370.1
Domestic cat	<i>Felis catus</i>	pDISPLAY	AAX59005.1
Domestic dog	<i>Canis lupus familiaris</i>	pDISPLAY	ACT66277.1
European rabbit	<i>Oryctolagus cuniculus</i>	pDISPLAY	XP002719891.1
Horse	<i>Equus caballus</i>	pDISPLAY	XP001490241.1
Guinea pig	<i>Cavia porcellus</i>	pDISPLAY	XM023562040.1
Long-tailed chinchilla	<i>Chinchilla lanigera</i>	pDISPLAY	XM013506974.1
Goat	<i>Capra hircus</i>	pDISPLAY	AHI85757.1
Masked palm civet	<i>Paguma larvata</i>	pDISPLAY	AAX63775.1
Water buffalo	<i>Bubalus bubalis</i>	pDISPLAY	XP006041602.1
Least horseshoe bat	<i>Rhinolophus pusillus</i>	pDISPLAY	ADN93477.1
Leschenault's rousette fruit bat	<i>Rousettus leschenaultii</i>	pDISPLAY	BAF50705.1
Little brown bat	<i>Myotis lucifugus</i>	pDISPLAY	XP023609438.1
Large Flying Fox bat	<i>Pteropus vampyrus</i>	pDISPLAY	XP011361275.1
Pig	<i>Sus crofa</i>	pDISPLAY	NP001116542.1
Cattle	<i>Bos taurus</i>	pDISPLAY	NP001019673.2
Brown rat	<i>Rattus norvegicus</i>	pDISPLAY	NP001012006.1
Domestic ferret	<i>Mustela putorius furo</i>	pDISPLAY	BAE53380.1
Chinese hamster	<i>Cricetulus griseus</i>	pDISPLAY	XP027288607.1
Malayan pangolin	<i>Manis javanica</i>	pDISPLAY	XP017505752.1
Sheep	<i>Ovis aries</i>	pDISPLAY	XP011961657.1
Chicken	<i>Gallus gallus</i>	pDISPLAY	QE050331.1
Turkey	<i>Meleagris gallopavo</i>	pDISPLAY	XP019467554.1

Supplemental Table 3: β-coronavirus glycoproteins used in this study for receptor usage screens.

Glycoprotein	Virus isolate	Backbone	Accession number	Source/ Reference
SARS-CoV-2 Spike	Wuhan-Hu-1	pCAGGS	MN908947.3	NIBSC, CFAR cat no. 100976
SARS-CoV-1 Spike	ShanghaiQXC2	pcDNA3.1+ with C-terminus FLAG tag	AAR86775.1	Synthesised from NCBI sequence

Supplementary Table 4: qPCR primer sets used in this study to quantify ACE2 mRNA levels.

Primer set	Target species	Target cell line	Forward primer (5'-3')	Reverse primer (5'-3')
1	Bird	DEF QT-35 DF-1 LMH	TCCATGAAGCAGTAGGT GAAAT	CTCCACTTCTCCAGCAT GTAAG
2	Rodent	BHK-21 CHO DEDE NIH3T3 McCoy	GTTAGAGAAGTGGAGG TGGATG	TGCAGGGTCACAGTAT GTTT
3	Primate	Vero E6 COS7 Marc 145	CCCTTGGACAGAAACC AAAC	TTTCCCAGAACATCCTTGA GTCAT
	Rabbit	RK-13 SIRC		
4	Pig	PK15 ST IPEC	GAAGGGTGACTTCAGG ATCAA	GCCATGTCTACTGGAT GTG
	Ruminant	MDOC BT NBL-6		
	Dog	MDCK D17 NBL-12		