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Abstract

The integration of genetic data within large-scale social and health surveys provides new
opportunities to test long standing theories of parental investments in children and within-family
inequality. Genetic predictors, called polygenic scores, allow novel assessments of young
children’s abilities that are uncontaminated by parental investments, and family-based samples
allow indirect tests of whether children’s abilities are reinforced or compensated. We use over
16,000 sibling pairs from the UK Biobank to test whether the relative ranking of siblings’
polygenic scores for educational attainment is consequential for actual attainments. We find
strong evidence of compensatory processes, on average, where the association between genotype
and phenotype of educational attainment is reduced by over 20% for the higher-ranked sibling
compared to the lower-ranked sibling. These effects are most pronounced in high socioeconomic
status areas. We find no evidence that similar processes hold in the case of height or for relatives
who are not full biological siblings (e.g. cousins). Our results provide a new use of polygenic
scores to understand processes that generate within-family inequalities and also suggest
important caveats to causal interpretations the effects of polygenic scores using sibling-
difference designs.
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Introduction

A large social science literature has produced theoretical and empirical support that
parental actions shape patterns of within-family inequalities over the life cycle (1-3).
Theoretically, the key components of the question include parental attitudes about inequalities of
outcomes of their children (4, 5) and the potential of differential returns to investment based on
children’s talents (i.e. technologies of skill formation)(6-8). Separating these mechanisms has
proven difficult. Empirically, measurement limitations have been important bottlenecks in
progress. Ideally, researchers could use measures that (a) occur early in life so they represent
endowments and (b) capture endowments of children that are not related to parental behaviors
and investments (no feedback effects). Typically, birth weight has been used in analyses that
examine whether parents reinforce or compensate for children’s endowments (3, 9-11).
However, focusing on birth weight is imperfect because it can be affected by parental behaviors
and investments (12-16) and it limits the scope of analysis due to a focus on a single
measurement. This scope limitation occurs both in terms of life course outcomes that can be tied
to birth weight as well as failing to examine parental responses to endowments that are not
associated with birthweight. Alternative measures, such as test scores (4) can be problematic
because parents can shape these outcomes prior to research measurement and they may not be
“early enough” to capture endowments—for example, before children acquire language skills.

Summary genetic assessments (i.e. polygenic scores, PGS) have the capacity to overcome
these empirical limitations, as these measures are fixed at conception—thus, they have no
feedback effects and they can capture endowments tied to early outcomes. PGS also provide the
possibility of expanding the domains of analysis outside of birthweight. Studies have begun to
use these measures to show associations with early childhood outcomes (17), and some research
has found evidence that PGS are associated with parental responses (18, 19). However, fewer
studies have incorporated these measures into analyses of within-family inequalities. Might
parents use observable phenotypic downstream outcomes tied to PGS in their efforts to increase
or decrease differences in later outcomes of their children? We begin this direction of empirical
analysis by linking two highly predictive PGS measures (education and height) to phenotypic
outcomes in adulthood in a sample of over 16,000 sibling pairs from the UK Biobank.

We propose that theoretical models of parental responses to children’s endowments can
be assessed with PGS measures of siblings. Because our data do not include measures of early
life, we use an indirect test of the accumulated parental responses to their children’s abilities by
comparing educational attainments of the siblings with their PGS measurements. In order to
provide an omnibus test of compensation vs. reinforcement, we test whether the relative ranking
of PGS within sibling pairs is consequential for predicting adult outcomes. We focus on the case
of education as an exemplar where parents may have the means and desire to shape inequalities
in their children’s attainments (20) and the case of height, where they have neither, so that we
have a negative test. We hypothesize that if parents prefer, on average, for equalizing their
children’s outcomes (i.e. compensatory behaviors), the PGS will be less predictive of attainment
in the sibling with a higher relative rank. If parents prefer, on average, to reinforce their
children’s relative advantages, the PGS will be more predictive of attainment in the sibling with
a higher relative rank. We then explore whether these patterns differ by the socioeconomic
status of the families. A large literature has shown that parents in advantaged settings often
show compensatory preferences and behaviors while parents in disadvantaged settings show
reinforcing preferences and behaviors (11, 21, 22). Therefore, we divide the families in our data
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based on area-level socioeconomic status and estimate the relative ranking effects outlined
above.

Results

We analyzed educational attainment in the full sample and a sibling sub-sample from
respondents with European ancestry in the UK Biobank. Siblings were matched based on
kinship estimates of genetic relatedness (see Methods). SI Appendix Table A1 provides
descriptive statistics of the full sample and our sibling analysis sample. Our baseline results
conformed with other analyses (23-25) showing that the education attainment (EA)-PGS predicts
educational attainment in the UKB sample (Table 1, Column 1), that these associations are
retained in the sibling sub-sample (Table 1, Column 2) and that the association is reduced by
>50% when family fixed effects are included (Table 1, Column 3). Specifically, the association
between a standard deviation increase in EA-PGS and EA falls from 0.91 years in Column 1 to
0.44 years in Column 3.

Sibling-difference analysis controls for influences shared by siblings growing up in the
same household, including the portion of the PGS associated with genetic nurture (26, 27) that is
shared among siblings. However, unshared environmental factors, including parental actions to
reinforce or compensate for sibling differences in PGS are retained in the PGS associations. SI
Table 2 presents average differences and correlations in sibling phenotype and genotype
measures. As expected, sibling correlations in the genotype measures are r~0.5. Correlations in
EA and height are ~0.3. On average siblings differ in PGS by ~0.75 SD, 4 years of schooling,
and 8 cm in height.

In order to conduct an omnibus test of reinforcing vs. compensating processes in reaction
to sibling differences in PGS, we add dyadic measures of relative ranking of PGS and age (see
Methods) as well as an interaction between the indicator for higher relative ranking and PGS to
predict EA.

Table 2 shows that inclusion of the dyadic measures is consequential. Conforming to the
birth order literature, the older sibling (even accounting for age indicators (i.e. fixed effects))
attains over 0.5 years of schooling more than the younger sibling of the pair (28-30).> The
interaction between the indicator for higher ranked EA-PGS and the EA-PGS score is negative
(p-value <0.09), so that the EA-PGS has a smaller association with attainment for siblings who
are higher ranked within the sibship (See Figure 1). This result suggests, on average,
compensatory processes within families and a concomitant reduction in within-family
inequalities in educational attainment.

Table 2 Column 3 and 4 stratify the sibling analysis based on area (place of birth)-
estimates of socioeconomic status. Results show that birth order effects are smaller in high SES
areas, the gender gap is smaller in high SES areas, and the compensatory effects are much larger
in high SES areas (p-value <0.05) (See Figures 2 and 3). These results also show, in general,
the importance of families for shaping links between genetic measures and social outcomes.

Table 3 performs a negative test. We hypothesized to find no effect of families and
relative rank on genetic penetrance for the case of height. The results suggest no effect and can
rule out even modest size effects.

* We would have preferred to control for birth order, but the UKB only asked birth order information for a subset of
the sample.
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Table 4 performs a second negative test. We form dyads in the data who are related (e.g.
cousins) but are not full siblings (kinship <0.18). We show that earlier results of impacts of
relative rankings of PGS are absent in these related, non-sibling pairs.

Discussion

These results contribute to several literatures in the social and genetic sciences. In the
social sciences, the use of PGS to measure relative traits between siblings allows expanded
analyses estimating the extent to which parents compensate or reinforce their children’s
endowments. Future work could expand this direction by estimating a larger set of domains of
PGS as well as focusing on early life measurements of children’s outcomes. A major limitation
for this direction of inquiry is the modest sample of siblings in many datasets.

Our results show lower levels of genetic penetrance for educational attainment for
children who have higher PGS than their sibling. This phenomenon is larger in places whose
residents have higher socioeconomic status than in places with low socioeconomic status.
Together, these results are consistent with parental preferences for equality among their children,
which may be accomplished through compensating investments.

The findings are also consequential for genetic analyses more broadly. Some recent
innovative analysis linking genetics to outcomes has taken seriously the confounding between
children’s genetics and family background when explaining children’s later outcomes as adults,
seeking to decompose PGS into direct (child) and indirect (parent) effects (26, 31, 32). This
work has been motivated, in part, by previous research that used sibling comparisons in PGS to
predict education. For example, some early use of educational attainment PGS (33) used sibling
pairs to show that the PGS continued to predict education. The implication was then drawn that
the PGS contained some causal effects of genetics on important outcomes such as schooling.

Later work has prioritized comparisons of between family estimates with within-family
estimates to assure a lack of confounding by family background—using EA2 (34) and EA3(23)
has been a bit more mixed, with the within-family analysis often reducing the estimates of
genetic penetrance by 50% compared to between-family analysis. However, even with these
smaller effects, researchers have relied on this framework to show the likelihood of causal PGS
effects on education and related outcomes (25, 35, 36). New work (36) has discussed common
issues in genetic analysis that can be overcome with family-based designs, including population
stratification, assortative mating, and dynastic effects. One commonality of these issues is that
they are presumed to reflect shared effects on all children in a household that can be eliminated
through sibling-comparisons or, alternatively, the use of parental genetic data. Indeed,
researchers have stated that sibling analysis “rules out purely social transmission as an
explanation for the associations between children’s education-linked genetics and their
attainment.”(25)

However, while these may be the most common concerns for analysis linking genetics
with outcomes, a rich set of theoretical models and empirical results from demography and
adjacent social sciences suggest there are yet another set of complications that should be
explored before claiming that genetic effects are causal. In particular, families shape outcomes,
parents react to children’s abilities and have preferences for their set of children’s outcomes.
Other family members (who also often share genetics with the child/children) also contribute.
An important outcome of these processes is the possibility of statistical interference between the
outcomes of siblings(37), so that siblings designs both eliminate some empirical concerns but
raise others.
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The current results demonstrate that whatever causal effects exist between PGS and
outcomes can be mediated through families, even with a sibling fixed effects design. This
suggests caution in interpreting sibling fixed effects models as “causal genetic effects” and
reemphasizes that the value of this strategy is to control for shared environments but not produce
causal estimates. Indeed, our results suggest that within-sibling analysis of genetics and
outcomes continue to reflect family processes rather than pure “genetic effects”. Future work
will need to incorporate additional strategies to separate “genetic” and “family” causal processes.

Methods and Materials

Data. We used data from the UK Biobank project(38). The participants, aged between 37 and 74
years, were originally recruited between 2006 and 2010. These data are restricted, but one can
gain access by following the procedures described in www.ukbiobank.ac.uk/register-apply/.
Although siblings are not identified in the survey, respondents’ genetics can be used to measure
genetic relatedness among all pairs of respondents. We first use the UKB provided kinship file,
listing all pairwise kinships among 100,000 pairs in the sample of nearly 500,000 individuals.
We first choose pairs with kinship >0.2, which reflects first degree biological relatives
(parents/siblings). We then choose remaining pairs who are <13 years apart in age, leaving
~22,000 sibling dyads. We then chose to keep only one dyad from any family with more one
dyad, leaving ~17,600 dyads. We include only respondents of European ancestry in our analysis.
Polygenic scores. We constructed PGS for two traits for which large genome wide association
studies (GWAS) are publicly available and do not contain UKB samples: Height (39) and
Educational Attainment(40). We removed single-nucleotide polymorphisms (SNPs) in strong
linkage disequilibrium (LD). We LD-clumped the GWAS summary data by PLINK(41), using
1000 Genome Project Phase III European genotype data as reference. We used a LD window
size of 1Mb and a pairwise r* threshold of 0.1. We did not apply any p-value thresholding to
select SNPs. Final weights were produced by using PRSice-2(42). The PGSs were normalized to
have mean zero and SD one and oriented so that each PGS was positively correlated with its
corresponding outcome.

Phenotypes: Educational levels of the UK Biobank participants were measured by mapping each
major educational qualification that can be identified from the survey measures to an
International Standard Classification of Education (ISCED) category and imputing a years-of-
education equivalent for each ISCED category(43). Height is measured standing height.

Sibling variables. We created three variables indicating the relative status of the members of
sibling pairs. First, we created an indicator for the sibling with the higher EA-PGS score.
Second, we created an indicator for the sibling with the higher Height-PGS score. Third, we
created an indicator for the sibling who is older, due to well known birth order effects on
educational attainment.(28-30) We note that self-reported birth order is only available for a
subset of UKB respondents.

Place based socioeconomic status. The UKB does not contain information about childhood
background socioeconomic status of the respondents. Therefore we created information based
on place of birth and year of birth to predict which places/years of birth had high vs. low (based
on median) predicted educational attainment. We split families based on whether neither sibling
was born in a place/year with high predicted attainment vs. either sibling was born in a
place/year with high predicted attainment. The median predicted schooling was 13.65 years in a
regression that had place of birth fixed effects and year of birth fixed effects.
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Sample Characteristics: SI Table 1 presents descriptive statistics for the full sample and the
analysis sub-sample of siblings. Educational attainment is slightly higher in the full sample and
number of siblings (by definition) is higher in the sibling sample. EA3 is slightly higher on
average in the sibling sample but demographic characteristics are quite similar.

Sample Characteristics for Falsification Exercise: We created a second sample of related
individuals who were not full biological siblings in order to develop a negative (falsification) test
of the analysis. To construct the sample, we used dyads with kinship measurements below 0.18
and randomly chose one dyad in cases where a respondent was linked with multiple sample
members. Sample characteristics are shown in SI Table 3A and Dyadic Characteristics are
shown in SI Table 4A.

Analysis. We tested associations using linear regression models. We clustered standard errors
at the family level. We conducted sibling difference analysis using family fixed effects
regression (44). We control for sex, age indicators, and 20 genetic principal components.

We controlled for age indicators (fixed effects) for the well documented secular increases in
schooling over this time period.(45)

We use regression analysis to link PGS to educational attainments in our results. We compare
results with and without sibling fixed effects and also with measures reflecting siblings’ relative
position in the dyad based on EA3 and age. That is, we regress educational attainment for
respondent 7 in family f on demographic characteristics (age, sex), a polygenic score and controls
for 20 principle components and a family-clustered error term:
educationif = ﬁO + ,BlXif + BZPGSlf + Ple + eif

We next add sibling fixed effects to the model.

educationif = ﬁO + ,BlXif + BZPGSlf + Ff + Ple + eif
Finally, we enrich the model with dyadic measures of relative position, namely an indicator for
whether the respondent has a higher PGS than his/her sibling and the interaction between this
indicator and PGS:

educationif = BO + IBIXif + ﬁZPGSlf
+ BsLargerPGS;s+pB,LargerPGS;s * PGS;s + Fr + PCiy + &

Where the key coefficient is f3,, which reflects differences in genetic penetrance based on
relative ranking in the sibship on the PGS. A positive coefficient would suggest that parents
reinforce early evidence of a child’s ability (relative to his/her sibling) while a negative
coefficient suggests that parents compensate. It is possible that these effects vary by family
socioeconomic status.” Therefore, we stratify the model between families who were born in
high socioeconomic status areas/years vs. low socioeconomic status areas/years.

? Unfortunately, the UKB is extremely limited in measurements of childhood experiences and has nearly no
information about parents’ characteristics of the respondents (e.g. parental education, family socioeconomic status
during childhood, etc).
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Tables
Table 1
Associations between PGS-Education and Educational Attainment
Comparing Between Family and Within Family Results

Outcome Education Education Education
Sample Full Sibling Sibling
Fixed Effects? None None Sibling
PGS (std) 0.908*** 0.959** 0.444***
(0.008) (0.026) (0.048)
Female -0.746*** -0.777* -0.860***
(0.016) (0.055) (0.070)
Age Fixed Effects X X X
PC Controls (1-20) X X X
Observations 404,409 34,209 33,044
R-squared 0.068 0.063 0.669

Notes: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1


https://doi.org/10.1101/2020.06.06.137778
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.06.137778; this version posted June 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 2
Within Family Associations between PGS-Education and Educational Attainment
Including Sibling Dyad Measures of Relative Position

Outcome Education Education Education
Sample Sibling High SES Place Low SES Place
Fixed Effects? Sibling Sibling Sibling
PGS (std) 0.389*** 0.433** 0.353***
F (0.082) F (0.113) d (0.119)
Female -0.857*** -0.626*** -1.083***
F (0.070) F (0.096) d (0.103)
Older Sib of Pair 0.443** 0.323** 0.576***
F 0.000) F (0.122) d (0.133)
Sib with larger PGS F 0124 0.183* d 0.078
F (0.076) F (0.106) d (0.108)
Larger X PGS -0.086* -0.179* d -0.006
F ©0.050) F (0.070) d (0.073)
Age Fixed Effects X X X
PC Controls (1-20) X X X
Observations F 33044 F 16,810 ¥ 16,234
R-squared F 0669 F 0.669 d 0.641

Notes: Robust standard errors in parentheses (clustered by family). High SES Place:
Families who grew up in places/years with above median predicted educational
attainments. Low SES place: Families who grew up in places/years with below median
predicted educational attainments. *** p<0.01, ** p<0.05, * p<0.1
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Table 3: Falsification Exercise
Within Family Associations between PGS-Height and Height

Outcome Height Height Height Height
Sample Full Sibling Sibling Sibling
Fixed Effects? None None Sibling Sibling
Height PGS (std) 2.516*** 2.557*** 2.151*** 2.154***
(0.010) (0.034) (0.050) (0.085)
Female -13.319*** -13.295*** -13.468*** -13.467***
(0.019) (0.065) (0.070) (0.070)
Older Sib of Pair 0.019
(0.089)
Sib with Larger PGS -0.034
(0.075)
Larger X PGS 0.052
(0.051)
Age Fixed Effects X X X X
PC Controls (1-20) X X X X
Observations 402,320 34,036 32,700 32,700
R-squared 0.600 0.598 0.901 0.901

Robust standard errors in parentheses (clustered by family), *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Falsification Exercise
Between-Relative Associations of PGS-Education, Educational Attainment, and Relative

Rankings of PGS
Outcome Education Education Education
Sample Non Sibling  Non Sibling  Non-Sibling
Fixed Effects? None Family Family
PGS (std) 0.912*** 0.513*** 0.493***
(0.018) (0.048) (0.053)
Female -0.638*** -0.709*** -0.709***
(0.037) (0.052) (0.052)
Older Relative of Pair 0.119* 0.120*
(0.063) (0.063)
Relative with larger PGS 0.089 0.090
(0.060) (0.061)
Larger X PGS 0.040
(0.046)
Age Fixed Effects X X X
PC Controls (1-20) X X X
Observations 62,360 62,360 62,360
R-squared 0.070 0.606 0.606

Robust standard errors in parentheses (clustered by “family”), *** p<0.01, ** p<0.05, * p<0.1
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Figures
Figure 1
Plot of Associations between EA-PGS and Educational Attainment
Stratified by Whether Sibling has larger or smaller PGS than co-Sibling

Predictive Margins with 95% Cls
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Notes: Coefficients plotted from Table 2, Column 2. Larger=1 refers to siblings
who have larger values of PGS than their co-sibling. Larger=0 refers to siblings
who have smaller values of PGS than their co-sibling. The outcome is
educational attainment. Same controls as Table 2.

Command: Marginsplot from Stata
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Figure 2
Plot of Associations between EA-PGS and Educational Attainment
Stratified by Whether Sibling has larger or smaller PGS than co-Sibling
High SES Places
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Notes: Coefficients plotted from Table 2, Column 3. Larger=1 refers to siblings
who have larger values of PGS than their co-sibling. Larger=0 refers to siblings
who have smaller values of PGS than their co-sibling. The outcome is
educational attainment. Same controls as Table 2.

Command: Marginsplot from Stata
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Figure 1
Plot of Associations between EA-PGS and Educational Attainment
Stratified by Whether Sibling has larger or smaller PGS than co-Sibling
Low SES Places
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Notes: Coefficients plotted from Table 2, Column 4. Larger=1 refers to siblings
who have larger values of PGS than their co-sibling. Larger=0 refers to siblings
who have smaller values of PGS than their co-sibling. The outcome is
educational attainment. Same controls as Table 2.

Command: Marginsplot from Stata
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Supplemental Information

Appendix Tables
Table 1A
Comparison of Full UKB Sample and Sibling Analysis Sample
Full Sample Sibling Sample
Std Std

Variable Obs Mean Dev Min Max | Obs Mean Dev Min Max

Education 399,442 13.8 51 7.0 20.0 33,815 13.6 5.1 7.0 20.0
Female 403,183 0.54 0.5 00 1.0 34,095 0.58 0.5 0.0 1.0
Age 403,183 56.8 8.0 39.0 73.0 34,095 57.0 7.3 40.0 70.0
EA3 PGS (std) 403,183 0.00 1.0 47 5.0 34,095 0.05 1.0 -3.7 4.0
Number of Siblings 397,344 20 1.8 0.0 32.0 34,019 2.8 1.9 1.0 22.0
PC 1 403,183 -12.4 16 -185 -6.1 34,095 -12.4 1.6 -18.3 -6.1
PC 2 403,183 3.8 1.5 -20 95 34,095 3.8 1.5 -1.7 9.4
PC3 403,183 -1.6 1.6 7.7 44 34,095 -1.6 1.6 -7.4 4.3
PC 4 403,183 1.3 29 -10.1 128 34,095 1.5 29 -9.8 12.5
PC5 403,183 -0.7 6.7 -17.7 248 34,095 -0.5 6.9 -16.3 247
PC6 403,183 -0.4 1.6 -6.7 6.0 34,095 -0.4 1.6 -6.6 5.9
PC7 403,183 0.3 1.9 177 115 34,095 0.3 1.8 -13.8 7.2
PC 8 403,183 -0.5 20 -9.0 16.7 34,095 -0.5 1.9 -8.7 16.7
PC9 403,183 0.0 46 -36.6 126 34,095 0.3 4.4 -32.4 11.4
PC 10 403,183 0.2 23 -113 114 34,095 0.2 2.2 -9.8 9.8
PC 11 403,183 0.0 36 -11.0 203 34,095 0.0 3.5 -10.0 16.6
PC 12 403,183 0.2 23 -11.3 109 34,095 0.2 2.3 -9.2 9.0
PC 13 403,183 0.0 1.6 12 7.2 34,095 0.0 1.6 -7.2 7.0
PC 14 403,183 0.2 3.3 -141 18.2 34,095 0.2 3.2 -11.5 17.3
PC 15 403,183 0.0 19 -138 96 34,095 0.0 1.8 -10.8 9.0
PC 16 403,183 0.0 3.1 -27.8 20.5 34,095 0.1 3.0 -22.7 16.7
PC 17 403,183 0.0 20 99 87 34,095 0.0 1.9 -9.1 7.9
PC 18 403,183 0.0 29 -16.6 21.2 34,095 0.0 2.8 -12.2 15.9
PC 19 403,183 0.0 29 117 146 34,095 0.0 2.7 -9.7 11.6
PC 20 403,183 0.0 29 -12.6 14.9 34,095 0.1 2.7 -10.9 12.9
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Table 2A
Dyadic (Siblings) Measures
Differences and Correlations

Differences
Variable Obs Mean Std Dev Min Max Correlations
EA PGS (Std) 16,792 0.77 0.59 0.0 4.3 0.54
Height PGS (Std) 16,792 0.75 0.57 0.0 4.1 0.57
PC1 16,792 1.21 0.93 0.0 6.0 0.54
Education 16,522 4.14 4.24 0.0 13.0 0.32
Height 16,734 8.68 6.62 0.0 60.0 0.29
Age 16,792 4.25 2.75 0.0 12.0 0.76
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Table 3A
Descriptive Statistics for Relatives (Non-Full-Siblings) Sample

Variable Obs Mean Std Dev Min Max

Education 62,360 13.19 5.12 7.00 20.00
Female 62,360 0.54 0.50 0.00 1.00
Age 62,360 56.96 7.94 39.00 70.00
EA3 PGS (std) 62,360 -0.02 1.00 -4.57 4.08
Height PGS (std) 62,360 -0.02 1.00 -4.40 4.19
Height (cm) 62,229 168.37 9.22 100.00 204.00
Larger EA3 PGS than Relative 62,360 0.50 0.50 0.00 1.00
Older Than Relative 62,360 0.50 0.50 0.00 1.00
Number of Siblings 61,312 2.55 1.86 1.00 23.00
PC 1 62,360 -12.40 1.59 -18.43 -6.10
PC 2 62,360 3.79 1.50 -1.91 9.50
PC3 62,360 -1.62 1.56 -7.39 4.30
PC4 62,360 1.53 2.90 -10.14 12.46
PC5 62,360 -0.37 6.78 -16.02 24.79
PC6 62,360 -0.38 1.61 -6.72 5.94
PC7 62,360 0.27 1.82 -17.67 8.27
PC8 62,360 -0.46 1.93 -8.44 16.07
PC9 62,360 0.18 4.37 -33.88 11.36
PC 10 62,360 0.19 2.19 -9.10 10.72
PC 11 62,360 0.08 3.43 -10.62 17.37
PC 12 62,360 0.14 2.28 -10.88 9.56
PC 13 62,360 0.03 1.59 -6.88 6.78
PC 14 62,360 0.21 3.15 -11.91 18.16
PC 15 62,360 0.00 1.82 -12.26 8.53
PC 16 62,360 -0.02 2.97 -22.79 18.16
PC 17 62,360 0.00 1.87 -8.24 8.43
PC 18 62,360 0.10 2.80 -12.22 17.61
PC 19 62,360 -0.05 2.71 -11.39 11.43
PC 20 62,360 0.13 2.70 -12.45 13.17
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Table 4A
Dyadic (Relatives, Non Full Siblings) Measures
Differences and Correlations

Differences
Variable Obs Mean Std Dev Min Max Correlations
EA3 (Std) 31180 1.0 0.77 0.0 5.2 0.20
Height PGS (Std) 31180 1.0 0.8 0.0 54 0.19
PC1 31180 1.6 1.22 0.0 9.9 0.20
Education 31180 5.0 4.4 0.0 13.0 0.16
Height 31049 10.0 7.32 0.0 73.5 0.10
Age 31180 8.4 6.67 0.0 30.0 0.09
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