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Abstract 
 
The integration of genetic data within large-scale social and health surveys provides new 
opportunities to test long standing theories of parental investments in children and within-family 
inequality.  Genetic predictors, called polygenic scores, allow novel assessments of young 
children’s abilities that are uncontaminated by parental investments, and family-based samples 
allow indirect tests of whether children’s abilities are reinforced or compensated.  We use over 
16,000 sibling pairs from the UK Biobank to test whether the relative ranking of siblings’ 
polygenic scores for educational attainment is consequential for actual attainments.  We find 
strong evidence of compensatory processes, on average, where the association between genotype 
and phenotype of educational attainment is reduced by over 20% for the higher-ranked sibling 
compared to the lower-ranked sibling.  These effects are most pronounced in high socioeconomic 
status areas.  We find no evidence that similar processes hold in the case of height or for relatives 
who are not full biological siblings (e.g. cousins).  Our results provide a new use of polygenic 
scores to understand processes that generate within-family inequalities and also suggest 
important caveats to causal interpretations the effects of polygenic scores using sibling-
difference designs.   
  

                                                
1 The authors gratefully acknowledge use of the facilities of the Center for Demography of Health and Aging at the 
University of Wisconsin-Madison, funded by NIA Center Grant P30 AG017266.  We thank members of the Social 
Genomics Working Group at University of Wisconsin and Benjamin Domingue for helpful comments.  This 
research has been conducted using the UK Biobank Resource under Application 57284.  Corresponding Author:  
Jason Fletcher, jason.fletcher@wisc.edu  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.06.137778doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.137778
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

A large social science literature has produced theoretical and empirical support that 
parental actions shape patterns of within-family inequalities over the life cycle (1-3).  
Theoretically, the key components of the question include parental attitudes about inequalities of 
outcomes of their children (4, 5) and the potential of differential returns to investment based on 
children’s talents (i.e. technologies of skill formation)(6-8). Separating these mechanisms has 
proven difficult.  Empirically, measurement limitations have been important bottlenecks in 
progress.  Ideally, researchers could use measures that (a) occur early in life so they represent 
endowments and (b) capture endowments of children that are not related to parental behaviors 
and investments (no feedback effects).  Typically, birth weight has been used in analyses that 
examine whether parents reinforce or compensate for children’s endowments (3, 9-11).  
However, focusing on birth weight is imperfect because it can be affected by parental behaviors 
and investments (12-16) and it limits the scope of analysis due to a focus on a single 
measurement.  This scope limitation occurs both in terms of life course outcomes that can be tied 
to birth weight as well as failing to examine parental responses to endowments that are not 
associated with birthweight.  Alternative measures, such as test scores (4) can be problematic 
because parents can shape these outcomes prior to research measurement and they may not be 
“early enough” to capture endowments—for example, before children acquire language skills.   

Summary genetic assessments (i.e. polygenic scores, PGS) have the capacity to overcome 
these empirical limitations, as these measures are fixed at conception—thus, they have no 
feedback effects and they can capture endowments tied to early outcomes.  PGS also provide the 
possibility of expanding the domains of analysis outside of birthweight.  Studies have begun to 
use these measures to show associations with early childhood outcomes (17), and some research 
has found evidence that PGS are associated with parental responses (18, 19).  However, fewer 
studies have incorporated these measures into analyses of within-family inequalities. Might 
parents use observable phenotypic downstream outcomes tied to PGS in their efforts to increase 
or decrease differences in later outcomes of their children?   We begin this direction of empirical 
analysis by linking two highly predictive PGS measures (education and height) to phenotypic 
outcomes in adulthood in a sample of over 16,000 sibling pairs from the UK Biobank.   

We propose that theoretical models of parental responses to children’s endowments can 
be assessed with PGS measures of siblings.  Because our data do not include measures of early 
life, we use an indirect test of the accumulated parental responses to their children’s abilities by 
comparing educational attainments of the siblings with their PGS measurements.  In order to 
provide an omnibus test of compensation vs. reinforcement, we test whether the relative ranking 
of PGS within sibling pairs is consequential for predicting adult outcomes. We focus on the case 
of education as an exemplar where parents may have the means and desire to shape inequalities 
in their children’s attainments (20) and the case of height, where they have neither, so that we 
have a negative test.  We hypothesize that if parents prefer, on average, for equalizing their 
children’s outcomes (i.e. compensatory behaviors), the PGS will be less predictive of attainment 
in the sibling with a higher relative rank.  If parents prefer, on average, to reinforce their 
children’s relative advantages, the PGS will be more predictive of attainment in the sibling with 
a higher relative rank.  We then explore whether these patterns differ by the socioeconomic 
status of the families.  A large literature has shown that parents in advantaged settings often 
show compensatory preferences and behaviors while parents in disadvantaged settings show 
reinforcing preferences and behaviors (11, 21, 22).  Therefore, we divide the families in our data 
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based on area-level socioeconomic status and estimate the relative ranking effects outlined 
above.  
 
Results  

We analyzed educational attainment in the full sample and a sibling sub-sample from 
respondents with European ancestry in the UK Biobank.  Siblings were matched based on 
kinship estimates of genetic relatedness (see Methods).  SI Appendix Table A1 provides 
descriptive statistics of the full sample and our sibling analysis sample.  Our baseline results 
conformed with other analyses (23-25) showing that the education attainment (EA)-PGS predicts 
educational attainment in the UKB sample (Table 1, Column 1), that these associations are 
retained in the sibling sub-sample (Table 1, Column 2) and that the association is reduced by 
>50% when family fixed effects are included (Table 1, Column 3).  Specifically, the association 
between a standard deviation increase in EA-PGS and EA falls from 0.91 years in Column 1 to 
0.44 years in Column 3. 

Sibling-difference analysis controls for influences shared by siblings growing up in the 
same household, including the portion of the PGS associated with genetic nurture (26, 27) that is 
shared among siblings.  However, unshared environmental factors, including parental actions to 
reinforce or compensate for sibling differences in PGS are retained in the PGS associations.  SI 
Table 2 presents average differences and correlations in sibling phenotype and genotype 
measures. As expected, sibling correlations in the genotype measures are r~0.5.  Correlations in 
EA and height are ~0.3. On average siblings differ in PGS by ~0.75 SD, 4 years of schooling, 
and 8 cm in height. 

 
In order to conduct an omnibus test of reinforcing vs. compensating processes in reaction 

to sibling differences in PGS, we add dyadic measures of relative ranking of PGS and age (see 
Methods) as well as an interaction between the indicator for higher relative ranking and PGS to 
predict EA.   

Table 2 shows that inclusion of the dyadic measures is consequential.  Conforming to the 
birth order literature, the older sibling (even accounting for age indicators (i.e. fixed effects)) 
attains over 0.5 years of schooling more than the younger sibling of the pair (28-30).2  The 
interaction between the indicator for higher ranked EA-PGS and the EA-PGS score is negative 
(p-value <0.09), so that the EA-PGS has a smaller association with attainment for siblings who 
are higher ranked within the sibship (See Figure 1).   This result suggests, on average, 
compensatory processes within families and a concomitant reduction in within-family 
inequalities in educational attainment.  

Table 2 Column 3 and 4 stratify the sibling analysis based on area (place of birth)-
estimates of socioeconomic status.  Results show that birth order effects are smaller in high SES 
areas, the gender gap is smaller in high SES areas, and the compensatory effects are much larger 
in high SES areas (p-value <0.05) (See Figures 2 and 3).   These results also show, in general, 
the importance of families for shaping links between genetic measures and social outcomes.  
 

Table 3 performs a negative test.  We hypothesized to find no effect of families and 
relative rank on genetic penetrance for the case of height.  The results suggest no effect and can 
rule out even modest size effects.  

                                                
2 We would have preferred to control for birth order, but the UKB only asked birth order information for a subset of 
the sample.   
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Table 4 performs a second negative test.  We form dyads in the data who are related (e.g. 
cousins) but are not full siblings (kinship <0.18).  We show that earlier results of impacts of 
relative rankings of PGS are absent in these related, non-sibling pairs.   
 
Discussion  

These results contribute to several literatures in the social and genetic sciences.  In the 
social sciences, the use of PGS to measure relative traits between siblings allows expanded 
analyses estimating the extent to which parents compensate or reinforce their children’s 
endowments.  Future work could expand this direction by estimating a larger set of domains of 
PGS as well as focusing on early life measurements of children’s outcomes.  A major limitation 
for this direction of inquiry is the modest sample of siblings in many datasets.   

Our results show lower levels of genetic penetrance for educational attainment for 
children who have higher PGS than their sibling.  This phenomenon is larger in places whose 
residents have higher socioeconomic status than in places with low socioeconomic status.  
Together, these results are consistent with parental preferences for equality among their children, 
which may be accomplished through compensating investments.   

The findings are also consequential for genetic analyses more broadly.  Some recent 
innovative analysis linking genetics to outcomes has taken seriously the confounding between 
children’s genetics and family background when explaining children’s later outcomes as adults, 
seeking to decompose PGS into direct (child) and indirect (parent) effects (26, 31, 32).  This 
work has been motivated, in part, by previous research that used sibling comparisons in PGS to 
predict education.  For example, some early use of educational attainment PGS (33) used sibling 
pairs to show that the PGS continued to predict education.  The implication was then drawn that 
the PGS contained some causal effects of genetics on important outcomes such as schooling.   

Later work has prioritized comparisons of between family estimates with within-family 
estimates to assure a lack of confounding by family background—using EA2 (34) and EA3(23) 
has been a bit more mixed, with the within-family analysis often reducing the estimates of 
genetic penetrance by 50% compared to between-family analysis.  However, even with these 
smaller effects, researchers have relied on this framework to show the likelihood of causal PGS 
effects on education and related outcomes (25, 35, 36).  New work (36) has discussed common 
issues in genetic analysis that can be overcome with family-based designs, including population 
stratification, assortative mating, and dynastic effects.  One commonality of these issues is that 
they are presumed to reflect shared effects on all children in a household that can be eliminated 
through sibling-comparisons or, alternatively, the use of parental genetic data.  Indeed, 
researchers have stated that sibling analysis “rules out purely social transmission as an 
explanation for the associations between children’s education-linked genetics and their 
attainment.”(25) 

However, while these may be the most common concerns for analysis linking genetics 
with outcomes, a rich set of theoretical models and empirical results from demography and 
adjacent social sciences suggest there are yet another set of complications that should be 
explored before claiming that genetic effects are causal.  In particular, families shape outcomes, 
parents react to children’s abilities and have preferences for their set of children’s outcomes.  
Other family members (who also often share genetics with the child/children) also contribute.  
An important outcome of these processes is the possibility of statistical interference between the 
outcomes of siblings(37), so that siblings designs both eliminate some empirical concerns but 
raise others.     
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The current results demonstrate that whatever causal effects exist between PGS and 
outcomes can be mediated through families, even with a sibling fixed effects design.  This 
suggests caution in interpreting sibling fixed effects models as “causal genetic effects” and 
reemphasizes that the value of this strategy is to control for shared environments but not produce 
causal estimates.  Indeed, our results suggest that within-sibling analysis of genetics and 
outcomes continue to reflect family processes rather than pure “genetic effects”.  Future work 
will need to incorporate additional strategies to separate “genetic” and “family” causal processes.  
 
Methods and Materials 

Data. We used data from the UK Biobank project(38). The participants, aged between 37 and 74 
years, were originally recruited between 2006 and 2010. These data are restricted, but one can 
gain access by following the procedures described in www.ukbiobank.ac.uk/register-apply/. 
Although siblings are not identified in the survey, respondents’ genetics can be used to measure 
genetic relatedness among all pairs of respondents.  We first use the UKB provided kinship file, 
listing all pairwise kinships among 100,000 pairs in the sample of nearly 500,000 individuals.  
We first choose pairs with kinship >0.2, which reflects first degree biological relatives 
(parents/siblings).  We then choose remaining pairs who are <13 years apart in age, leaving 
~22,000 sibling dyads.  We then chose to keep only one dyad from any family with more one 
dyad, leaving ~17,600 dyads.  We include only respondents of European ancestry in our analysis. 
Polygenic scores.  We constructed PGS for two traits for which large genome wide association 
studies (GWAS) are publicly available and do not contain UKB samples:  Height (39) and 
Educational Attainment(40).  We removed single-nucleotide polymorphisms (SNPs) in strong 
linkage disequilibrium (LD). We LD-clumped the GWAS summary data by PLINK(41), using 
1000 Genome Project Phase III European genotype data as reference. We used a LD window 
size of 1Mb and a pairwise r2 threshold of 0.1. We did not apply any p-value thresholding to 
select SNPs. Final weights were produced by using PRSice-2(42). The PGSs were normalized to 
have mean zero and SD one and oriented so that each PGS was positively correlated with its 
corresponding outcome.  
Phenotypes: Educational levels of the UK Biobank participants were measured by mapping each 
major educational qualification that can be identified from the survey measures to an 
International Standard Classification of Education (ISCED) category and imputing a years-of-
education equivalent for each ISCED category(43).  Height is measured standing height. 
Sibling variables.  We created three variables indicating the relative status of the members of 
sibling pairs.  First, we created an indicator for the sibling with the higher EA-PGS score.  
Second, we created an indicator for the sibling with the higher Height-PGS score.  Third, we 
created an indicator for the sibling who is older, due to well known birth order effects on 
educational attainment.(28-30) We note that self-reported birth order is only available for a 
subset of UKB respondents.  
Place based socioeconomic status.  The UKB does not contain information about childhood 
background socioeconomic status of the respondents.  Therefore we created information based 
on place of birth and year of birth to predict which places/years of birth had high vs. low (based 
on median) predicted educational attainment.  We split families based on whether neither sibling 
was born in a place/year with high predicted attainment vs. either sibling was born in a 
place/year with high predicted attainment.  The median predicted schooling was 13.65 years in a 
regression that had place of birth fixed effects and year of birth fixed effects.   
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Sample Characteristics: SI Table 1 presents descriptive statistics for the full sample and the 
analysis sub-sample of siblings. Educational attainment is slightly higher in the full sample and 
number of siblings (by definition) is higher in the sibling sample.  EA3 is slightly higher on 
average in the sibling sample but demographic characteristics are quite similar.   
Sample Characteristics for Falsification Exercise:  We created a second sample of related 
individuals who were not full biological siblings in order to develop a negative (falsification) test 
of the analysis.  To construct the sample, we used dyads with kinship measurements below 0.18 
and randomly chose one dyad in cases where a respondent was linked with multiple sample 
members.  Sample characteristics are shown in SI Table 3A and Dyadic Characteristics are 
shown in SI Table 4A.  
Analysis.  We tested associations using linear regression models.  We clustered standard errors 
at the family level.  We conducted sibling difference analysis using family fixed effects 
regression (44).  We control for sex, age indicators, and 20 genetic principal components.   
We controlled for age indicators (fixed effects) for the well documented secular increases in 
schooling over this time period.(45) 
 
We use regression analysis to link PGS to educational attainments in our results.  We compare 
results with and without sibling fixed effects and also with measures reflecting siblings’ relative 
position in the dyad based on EA3 and age.  That is, we regress educational attainment for 
respondent i in family f on demographic characteristics (age, sex), a polygenic score and controls 
for 20 principle components and a family-clustered error term:   

���������*+ = �. + �0�*+ + �2���*+ + ��*+ + �*+ 
We next add sibling fixed effects to the model.    

���������*+ = �. + �0�*+ + �2���*+ + �+ + ��*+ + �*+ 
Finally, we enrich the model with dyadic measures of relative position, namely an indicator for 
whether the respondent has a higher PGS than his/her sibling and the interaction between this 
indicator and PGS:  
 

���������*+ = �. + �0�*+ + �2���*+
+ �9���������*++�=���������*+ 7 ���*+ + �+ + ��*+ + �*+ 

 
Where the key coefficient is �=, which reflects differences in genetic penetrance based on 
relative ranking in the sibship on the PGS.  A positive coefficient would suggest that parents 
reinforce early evidence of a child’s ability (relative to his/her sibling) while a negative 
coefficient suggests that parents compensate.   It is possible that these effects vary by family 
socioeconomic status.3    Therefore, we stratify the model between families who were born in 
high socioeconomic status areas/years vs. low socioeconomic status areas/years.   
 

 
  

                                                
3 Unfortunately, the UKB is extremely limited in measurements of childhood experiences and has nearly no 
information about parents’ characteristics of the respondents (e.g. parental education, family socioeconomic status 
during childhood, etc).   
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Tables 
Table 1 

Associations between PGS-Education and Educational Attainment 
Comparing Between Family and Within Family Results X

Outcome Education Education Education

Sample Full Sibling Sibling

Fixed Effects? None None Sibling

PGS (std) 0.908*** 0.959*** 0.444***

(0.008) (0.026) (0.048)

Female -0.746*** -0.777*** -0.860***

(0.016) (0.055) (0.070)

Age Fixed Effects X X X

PC Controls (1-20) X X X

Observations 404,409 34,209 33,044

R-squared 0.068 0.063 0.669  
 Notes: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 2 
Within Family Associations between PGS-Education and Educational Attainment 

Including Sibling Dyad Measures of Relative Position 
Outcome Education Education Education

Sample Sibling High SES Place Low SES Place

Fixed Effects? Sibling Sibling Sibling

PGS (std) 0.389*** 0.433*** 0.353***

(0.082) (0.113) (0.119)

Female -0.857*** -0.626*** -1.083***

(0.070) (0.096) (0.103)

Older Sib of Pair 0.443*** 0.323*** 0.576***

(0.090) (0.122) (0.133)

Sib with larger PGS 0.124 0.183* 0.078

(0.076) (0.106) (0.108)

Larger X PGS -0.086* -0.179** -0.006

(0.050) (0.070) (0.073)

Age Fixed Effects X X X

PC Controls (1-20) X X X

Observations 33,044 16,810 16,234

R-squared 0.669 0.669 0.641

 
Notes: Robust standard errors in parentheses (clustered by family).  High SES Place:  
Families who grew up in places/years with above median predicted educational 
attainments.  Low SES place:  Families who grew up in places/years with below median 
predicted educational attainments.  *** p<0.01, ** p<0.05, * p<0.1 
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Table 3:  Falsification Exercise 
Within Family Associations between PGS-Height and Height 

Outcome Height Height Height Height 

Sample Full Sibling Sibling Sibling 

Fixed Effects? None None Sibling Sibling 

          

Height PGS (std) 2.516*** 2.557*** 2.151*** 2.154*** 

  (0.010) (0.034) (0.050) (0.085) 

Female  -13.319*** -13.295*** -13.468*** -13.467*** 

  (0.019) (0.065) (0.070) (0.070) 

Older Sib of Pair    0.019 

     (0.089) 

Sib with Larger PGS    -0.034 

     (0.075) 

Larger X PGS    0.052 

     (0.051) 

      

Age Fixed Effects X X X X 

PC Controls (1-20) X X X X 

      

Observations 402,320 34,036 32,700 32,700 

R-squared 0.600 0.598 0.901 0.901 

Robust standard errors in parentheses (clustered by family), *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Falsification Exercise 
Between-Relative Associations of PGS-Education, Educational Attainment, and Relative 

Rankings of PGS 
Outcome Education Education Education 

Sample Non Sibling Non Sibling Non-Sibling 

Fixed Effects? None Family Family 

        

PGS (std) 0.912*** 0.513*** 0.493*** 

 (0.018) (0.048) (0.053) 

Female  -0.638*** -0.709*** -0.709*** 

 (0.037) (0.052) (0.052) 

Older Relative of Pair  0.119* 0.120* 

  (0.063) (0.063) 

Relative with larger PGS  0.089 0.090 

  (0.060) (0.061) 

Larger X PGS    0.040 

    (0.046) 

    

Age Fixed Effects X X X 

PC Controls (1-20) X X X 

    

Observations 62,360 62,360 62,360 

R-squared 0.070 0.606 0.606 

Robust standard errors in parentheses (clustered by “family”), *** p<0.01, ** p<0.05, * p<0.1 
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Figures 
Figure 1 

Plot of Associations between EA-PGS and Educational Attainment 
Stratified by Whether Sibling has larger or smaller PGS than co-Sibling 

 
Notes:  Coefficients plotted from Table 2, Column 2.  Larger=1 refers to siblings 
who have larger values of PGS than their co-sibling.  Larger=0 refers to siblings 
who have smaller values of PGS than their co-sibling.  The outcome is 
educational attainment.  Same controls as Table 2.    
Command: Marginsplot from Stata 
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Figure 2 
Plot of Associations between EA-PGS and Educational Attainment 

Stratified by Whether Sibling has larger or smaller PGS than co-Sibling 
High SES Places 

 
Notes:  Coefficients plotted from Table 2, Column 3.  Larger=1 refers to siblings 
who have larger values of PGS than their co-sibling.  Larger=0 refers to siblings 
who have smaller values of PGS than their co-sibling.  The outcome is 
educational attainment.  Same controls as Table 2.    
Command: Marginsplot from Stata 
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Figure 1 
Plot of Associations between EA-PGS and Educational Attainment 

Stratified by Whether Sibling has larger or smaller PGS than co-Sibling 
Low SES Places 

 
Notes:  Coefficients plotted from Table 2, Column 4.  Larger=1 refers to siblings 
who have larger values of PGS than their co-sibling.  Larger=0 refers to siblings 
who have smaller values of PGS than their co-sibling.  The outcome is 
educational attainment.  Same controls as Table 2.    
Command: Marginsplot from Stata 
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Supplemental Information 
Appendix Tables 

Table 1A 
Comparison of Full UKB Sample and Sibling Analysis Sample 

  Full Sample         Sibling Sample       

Variable Obs Mean 
Std 
Dev Min Max Obs Mean 

Std 
Dev Min Max 

Education 399,442 13.8 5.1 7.0 20.0 33,815 13.6 5.1 7.0 20.0 

Female 403,183 0.54 0.5 0.0 1.0 34,095 0.58 0.5 0.0 1.0 

Age 403,183 56.8 8.0 39.0 73.0 34,095 57.0 7.3 40.0 70.0 

EA3 PGS (std) 403,183 0.00 1.0 -4.7 5.0 34,095 0.05 1.0 -3.7 4.0 

Number of Siblings 397,344 2.0 1.8 0.0 32.0 34,019 2.8 1.9 1.0 22.0 

PC 1 403,183 -12.4 1.6 -18.5 -6.1 34,095 -12.4 1.6 -18.3 -6.1 

PC 2 403,183 3.8 1.5 -2.0 9.5 34,095 3.8 1.5 -1.7 9.4 

PC 3 403,183 -1.6 1.6 -7.7 4.4 34,095 -1.6 1.6 -7.4 4.3 

PC 4 403,183 1.3 2.9 -10.1 12.8 34,095 1.5 2.9 -9.8 12.5 

PC 5 403,183 -0.7 6.7 -17.7 24.8 34,095 -0.5 6.9 -16.3 24.7 

PC 6 403,183 -0.4 1.6 -6.7 6.0 34,095 -0.4 1.6 -6.6 5.9 

PC 7 403,183 0.3 1.9 -17.7 11.5 34,095 0.3 1.8 -13.8 7.2 

PC 8 403,183 -0.5 2.0 -9.0 16.7 34,095 -0.5 1.9 -8.7 16.7 

PC 9 403,183 0.0 4.6 -36.6 12.6 34,095 0.3 4.4 -32.4 11.4 

PC 10 403,183 0.2 2.3 -11.3 11.4 34,095 0.2 2.2 -9.8 9.8 

PC 11 403,183 0.0 3.6 -11.0 20.3 34,095 0.0 3.5 -10.0 16.6 

PC 12 403,183 0.2 2.3 -11.3 10.9 34,095 0.2 2.3 -9.2 9.0 

PC 13 403,183 0.0 1.6 -7.2 7.2 34,095 0.0 1.6 -7.2 7.0 

PC 14 403,183 0.2 3.3 -14.1 18.2 34,095 0.2 3.2 -11.5 17.3 

PC 15 403,183 0.0 1.9 -13.8 9.6 34,095 0.0 1.8 -10.8 9.0 

PC 16 403,183 0.0 3.1 -27.8 20.5 34,095 0.1 3.0 -22.7 16.7 

PC 17 403,183 0.0 2.0 -9.9 8.7 34,095 0.0 1.9 -9.1 7.9 

PC 18 403,183 0.0 2.9 -16.6 21.2 34,095 0.0 2.8 -12.2 15.9 

PC 19 403,183 0.0 2.9 -11.7 14.6 34,095 0.0 2.7 -9.7 11.6 

PC 20 403,183 0.0 2.9 -12.6 14.9 34,095 0.1 2.7 -10.9 12.9 
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Table 2A 
Dyadic (Siblings) Measures 
Differences and Correlations 

    Differences       

Variable Obs Mean Std Dev Min Max Correlations 

 EA PGS (Std) 16,792 0.77 0.59 0.0 4.3 0.54 

 Height PGS (Std) 16,792 0.75 0.57 0.0 4.1 0.57 

 PC1 16,792 1.21 0.93 0.0 6.0 0.54 

 Education 16,522 4.14 4.24 0.0 13.0 0.32 

 Height   16,734 8.68 6.62 0.0 60.0 0.29 

 Age 16,792 4.25 2.75 0.0 12.0 0.76 
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Table 3A 
Descriptive Statistics for Relatives (Non-Full-Siblings) Sample 

Variable Obs Mean Std Dev Min Max 

Education 62,360 13.19 5.12 7.00 20.00 

Female 62,360 0.54 0.50 0.00 1.00 

Age 62,360 56.96 7.94 39.00 70.00 

EA3 PGS (std) 62,360 -0.02 1.00 -4.57 4.08 

Height PGS (std) 62,360 -0.02 1.00 -4.40 4.19 

Height (cm) 62,229 168.37 9.22 100.00 204.00 

Larger EA3 PGS than Relative 62,360 0.50 0.50 0.00 1.00 

Older Than Relative 62,360 0.50 0.50 0.00 1.00 

Number of Siblings 61,312 2.55 1.86 1.00 23.00 

PC 1 62,360 -12.40 1.59 -18.43 -6.10 

PC 2 62,360 3.79 1.50 -1.91 9.50 

PC 3 62,360 -1.62 1.56 -7.39 4.30 

PC 4 62,360 1.53 2.90 -10.14 12.46 

PC 5 62,360 -0.37 6.78 -16.02 24.79 

PC 6 62,360 -0.38 1.61 -6.72 5.94 

PC 7 62,360 0.27 1.82 -17.67 8.27 

PC 8 62,360 -0.46 1.93 -8.44 16.07 

PC 9 62,360 0.18 4.37 -33.88 11.36 

PC 10 62,360 0.19 2.19 -9.10 10.72 

PC 11 62,360 0.08 3.43 -10.62 17.37 

PC 12 62,360 0.14 2.28 -10.88 9.56 

PC 13 62,360 0.03 1.59 -6.88 6.78 

PC 14 62,360 0.21 3.15 -11.91 18.16 

PC 15 62,360 0.00 1.82 -12.26 8.53 

PC 16 62,360 -0.02 2.97 -22.79 18.16 

PC 17 62,360 0.00 1.87 -8.24 8.43 

PC 18 62,360 0.10 2.80 -12.22 17.61 

PC 19 62,360 -0.05 2.71 -11.39 11.43 

PC 20 62,360 0.13 2.70 -12.45 13.17 
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Table 4A 

Dyadic (Relatives, Non Full Siblings) Measures 
Differences and Correlations 

    Differences         

Variable Obs Mean Std Dev Min Max Correlations 

 EA3 (Std) 31180 1.0 0.77 0.0 5.2 0.20 

 Height PGS (Std) 31180 1.0 0.8 0.0 5.4 0.19 

 PC1 31180 1.6 1.22 0.0 9.9 0.20 

 Education 31180 5.0 4.4 0.0 13.0 0.16 

 Height   31049 10.0 7.32 0.0 73.5 0.10 

 Age 31180 8.4 6.67 0.0 30.0 0.09 
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