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ABSTRACT

Genome-wide association studies (GWAS) have been widely used to unravel connections between genetic

variants and diseases. Larger sample sizes in GWAS can lead to discovering more associations and more

accurate genetic predictors. However, sharing and combining distributed genomic data to increase the sample

size is often challenging or even impossible due to privacy concerns and privacy protection laws such as the

GDPR. While meta-analysis has been established as an effective approach to combine summary statistics of

several GWAS, its accuracy can be attenuated in the presence of cross-study heterogeneity. Here, we present

sPLINK (safe PLINK ), a user-friendly tool, which performs federated GWAS on distributed datasets while

preserving the privacy of data and the accuracy of the results. sPLINK neither exchanges raw data nor does

it rely on summary statistics. Instead, it performs model training in a federated manner, communicating only

model parameters between cohorts and a central server. We verify that the federated results from sPLINK are

the same as those from aggregated analyses conducted with PLINK. We demonstrate that sPLINK is robust

against heterogeneous data (phenotype and confounding factors) distributions across cohorts while existing

meta-analysis tools considerably lose accuracy in such scenarios. We also show that sPLINK achieves practical

runtime, in order of minutes or hours, and acceptable network bandwidth consumption for chi-square and

linear/logistic regression tests. Federated analysis with sPLINK, thus, has the potential to replace meta-analysis

as the gold standard for collaborative GWAS. The user-friendly, readily usable sPLINK tool is available at

https://exbio.wzw.tum.de/splink.
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1 Introduction

Genome-wide association studies (GWAS) test millions of single nucleotide polymorphisms (SNPs) to identify

possible associations between a specific SNP and disease1. They have led to considerable achievements over the

past decade including better comprehension of the genetic structure of complex diseases and the discovery of

SNPs playing a role in particular traits or disorders2, 3. GWAS sample size is an important factor in detecting

associations and larger sample sizes lead to identifying more associations and more accurate genetic predictors2, 4.

PLINK5 is a widely used open source software tool for GWAS. The major limitation of PLINK is that it can

only perform association tests on local data. If multiple cohorts want to conduct a collaborative GWAS to take

advantage of larger sample size, they can pool their data for a joint analysis (Figure 1); however, this is close

to impossible due to privacy restrictions and data protection issues, especially concerning genetic and medical

data. Hence, the field has established methods for meta-analysis of individual studies, where only the results and

summary statistics of the individual analyses have to be exchanged6 (Figure 1).
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There are several software packages such as METAL7, GWAMA8 and PLINK5 that implement different meta-

analysis models including fixed or random effect models9. Although meta-analysis approaches can protect the

privacy, they suffer from two main constraints: first of all, they rely on detailed planning and agreement of cohorts

on various study parameters such as meta-analysis model (e.g. fixed effect or random effect), meta-analysis

tool (e.g. METAL or GWAMA), heterogeneity metric (e.g. Cochran’s Q or the I2 statistic), the covariates to

be considered, etc4. Most importantly, the statistical power of meta-analysis can be adversely affected in the

presence of cross-study heterogeneity, leading to inaccurate estimation of the joint results and yielding misleading

conclusions10, 11.
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Figure 1. sPLINK vs. aggregated analysis and meta-analysis approaches: Aggregated analysis requires cohorts

to pool their private data for a joint analysis. Meta-analysis approaches aggregate the summary statistics from the

cohorts to estimate the combined p-values. In sPLINK, the cohorts extract the model parameters (e.g. Hessian

matrices) from the local data, which are aggregated to build a final model. sPLINK combines the advantages of

aggregated analysis and meta-analysis, i.e. robustness against heterogeneous data and preserving the privacy of

cohorts’ data. Yellow/blue color indicates case/control samples.

To address the aforementioned shortcomings, privacy-preserving collaborative GWAS can be developed

using homomorphic encryption12(HE), secure multi-party computation13(SMPC), and federated learning14, 15.

In HE, the cohorts encrypt their private data and share it with a single server, which performs operations on

the encrypted data from the cohorts to compute the association test results. In SMPC, there are a couple of

computing parties and the cohorts extract a separate secret share16 (anonymized chunk) from the private data and

send it to a computing party. The computing parties calculate intermediate results from the secret shares and

exchange the intermediate results with each other. Each computing party computes the final results given all

intermediate results. In federated learning, the cohorts extract model parameters (e.g. Hessian matrices) from the

private data and share the parameters with a central server. The server aggregates the parameters from all cohorts

to calculate the association test results.

Kamm et al.
17 and Cho et al.

18 proposed secure GWAS frameworks based on SMPC. The former developed

simple association tests including Cochran–Armitage and chi-square (χ2) and the latter implemented only

Cochran–Armitage test. Shi et al.
19 presented a secure SMPC-based logistic regression framework for GWAS.

These frameworks inherit the limitations of SMPC itself: They follow the paradigm of "move data to computation",

where they put the processing burden on a few computing parties. Consequently, they are computationally

expensive20 and are not scalable for large-scale GWAS. Moreover, they suffer from the colluding-parties
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problem17 in which, if the parties send the secret shares of the cohorts to each other, the whole private data of the

cohorts is exposed.

Lu et al.
21, Morshed et al.

22, and Kim et al.
23 developed secure chi-square test, linear regression, and logistic

regression using HE for GWAS, respectively. Similar to SMPC-based methods, they are not computationally

efficient since a single server carries out operations over encrypted data, causing considerable overhead24.

Additionally, HE-based methods introduce accuracy loss in the association test results22, 23. This is because HE

only supports addition and multiplication, and as a result, non-linear operations in regression tests should be

approximated using those two operations.

To address the limitations of HE/SMPC-based methods, the association tests can be implemented in a

federated fashion (Figure 1). Federated learning based methods follow the paradigm of "move computation to

data", distributing the heavy computations among the cohorts while performing lightweight aggregation (simple

operations such as addition and multiplication of the parameters) at the central server. There are previous GWAS

frameworks25–27 based on federated learning but they allow for only one association test (i.e. logistic regression)

and/or are not a user-friendly tool set like PLINK that can be easily deployed for GWAS.

In this paper, we present a novel federated tool set for GWAS called sPLINK (safe PLINK). Unlike PLINK,

sPLINK is applicable to distributed data while protecting the privacy. In sPLINK, the private data of cohorts never

leaves the site; instead, each cohort installs a local client software that processes local data, extracts the model

parameters, and shares only those (but not the data) with the central server (Section 2 and Supplementary B).

Contrary to existing HE/SMPC-based methods, sPLINK is computationally efficient since heavy computations

are distributed across the cohorts while simple aggregation is performed at the server. Compared to the current

federated GWAS tools, sPLINK not only provides a user-friendly and easy-to-use web interface but also supports

multiple association tests including logistic regression28, linear regression29, and chi-square (χ2)30 for GWAS

(Supplementary B).

The advantage of sPLINK over current meta-analysis approaches is two-fold: usability and robustness against

heterogeneity. sPLINK is easier to use for collaborative GWAS compared to meta-analysis. In sPLINK, a

coordinator initiates a collaborative study and invites the cohorts. The only decision the cohorts make is whether

or not to join the study. After accepting the invitation, the cohorts just select the dataset they want to employ in the

study (Section 2 and Supplementary A). More importantly, sPLINK is robust to data (phenotype and confounding

factors) heterogeneity. It gives the same results as aggregated analysis even if the phenotype distribution is

imbalanced or if confounding factors are distributed heterogeneously across cohorts. In contrast, meta-analysis

tools typically lose statistical power in such imbalanced or heterogeneous scenarios (Figure 2 and Section 3).

2 Methods

sPLINK implements a horizontal (sample-based) federated learning approach14, 15, 31 to preserve the privacy of

data. Federated learning is a type of distributed learning, where multiple cohorts collaboratively learn a joint

(global) model under the orchestration of a central server32. The cohorts never share their private data with the

server or the other cohorts. Instead, they extract local parameters from their data and send them to the server.

The server aggregates the local parameters from all cohorts to compute the global model parameters (or global

results), which, in turn, are shared with all cohorts. Specifically, sPLINK works with distributed GWAS datasets,

where samples are individuals and features are SNPs and categorical or quantitative phenotypic variables. While

the samples are different across the cohorts, the feature space is the same since sPLINK only considers SNPs and

phenotypic variables that are common among all datasets.

The functional workflow of sPLINK is as follows: the coordinator initializes the project, creates a project

token for each cohort, and sends the corresponding token to the cohort. Next, the cohorts join the project using

their username, password, and token, contributing their dataset to the study. After the cohorts joined, the project

is started automatically and the association test results are computed in a federated fashion. When the federated

analysis is completed, the cohorts and coordinator can have access to the results (more details on the functional

workflow of sPLINK can be found in Supplementary A).

From a technical point of view, sPLINK’s architecture consists of three main software components: client,

server, and web application (WebApp). The client package is installed on the local machine of each cohort

with access to the private data. It computes the model parameters from the local data and sends the parameters

to the server (Supplementary B). The server and WebApp packages are installed on a central server. The

former is responsible for aggregating the local parameters from all the cohorts to calculate the global parameters

(Supplementary B). The latter is employed to configure the parameters (e.g. association test) of the new study

(Supplementary A). sPLINK also provides a chunking capability to handle large datasets containing millions of
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Figure 2. Evaluation of sPLINK: We have artificially split datasets into smaller subsets mimicking balanced

and imbalanced scenarios. The aggregated analysis using PLINK, meta-analysis with several tools, and results

from sPLINK have been compared for each scenario. We observe that sPLINK agrees with the results of the

aggregated analysis in all scenarios, while meta-analyses suffer from imbalanced scenarios.

SNPs. The chunk size (configured by the coordinator) specifies how many SNPs should be processed in parallel.

Larger chunk sizes allow for more parallelism, and therefore less running time but require more computational

resources (e.g. CPU and main memory) from the local machines of the cohorts and the server. While we provide

a readily usable web service running at exbio server1, the server and WebApp packages can, of course, also be

installed by a cohort on an own web server.

3 Results

We first verify sPLINK by comparing its results with those from aggregated analysis conducted with PLINK

for all three association tests on a real GWAS dataset from the SHIP study33. We refer to this dataset as the

SHIP dataset, which comprises the records of 3699 individuals with serum lipase activity as phenotype. The

quantitative version represents the square root transformed serum lipase activity, while the dichotomous (binary)

version indicates whether the serum lipase activity of an individual is above or below the upper 25th percentile.

The SHIP dataset contains around 5 million SNPs and sex, age, smoking status (current-, ex-, or non-smoker),

and daily alcohol consumption (in g/day) as confounding factors (Table 1).

We employ the binary phenotype for logistic regression and the chi-square test, and the quantitative phenotype

for linear regression. We incorporate all four confounding factors in the regression models and no confounding

factor in the chi-square test. We horizontally (sample-wise) split the dataset into four parts, simulating four

different cohorts (with sample sizes of 1044, 1006, 941, and 708, respectively). PLINK computes the statistics

for each association test using the whole dataset while sPLINK does it in a federated manner using the splits of

the individual cohorts. To be consistent with PLINK, sPLINK calculates the same statistics as PLINK for the

association tests (Supplementary A).

1https://exbio.wzw.tum.de/splink
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Dataset Samples SNPs Adjustments Phenotype

SHIP 3699 ∼ 5M sex, age, smoking status, daily al-

cohol consumption

SLA, dichotomous (top 25th percentile, 934 cases,

2765 controls)

SLA, quantitative, Mean±SD 1.23±0.3

COPDGene 5343 ∼ 600K sex, age, smoking status, pack

years of smoking

COPD, dichotomous, (2811 cases, 2532 controls)

FEV1, quantitative, Mean±SD 2.993±0.635

Table 1. Description of datasets: The SHIP (Study of Health in Pomerania) and COPDGene (Genetic Epidemi-

ology of COPD) datasets are used to verify sPLINK and compare sPLINK with the existing meta-analysis tools.

COPD: chronic obstructive pulmonary disease, SLA: serum lipase activity, FEV1: forced expiratory volume in

one second
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Figure 3. ∆log10(p) between sPLINK and PLINK as well as the set of SNPs identified by sPLINK and PLINK

as significant for logistic regression (a) and (d), linear regression (b) and (e), and chi-square test (c) and (f),

respectively. For most of the SNPs, the difference is zero, indicating that sPLINK gives the same p-values as

PLINK. The negligible difference between p-values for the other SNPs can be attributed to differences in floating

point precision. sPLINK and PLINK also recognize the same set of SNPs as significant.

We compute the difference between the p-values (p) as well as Pearson correlation coefficient (ρ) of p-values

from sPLINK and PLINK. We use -log10(p) since the p-values are typically small and -log10(p) can be a better

indicator of small p-value differences. According to Figure 3a-c, the p-value difference is zero for most of the

SNPs. We also observe that the maximum difference is 0.162 for a SNP in the linear regression. sPLINK and

PLINK report 4.441×10−16 and 3.058×10−16 as p-values for the SNP, respectively. This negligible difference

can be attributed to inconsistencies in floating point precision.

The correlation coefficient of p-values from sPLINK and PLINK for all three tests is 0.99, which is consistent

with the results of p-value difference from Figure 3a-c. We also investigated the overlap of significantly associated

SNPs between sPLINK and PLINK. We consider a SNP as significant if its p-value is less than 5×10−8. PLINK

and sPLINK recognize the same set of SNPs as significant (Figure 3d-f). Notably, the identified SNPs have also

been implicated in a previous analysis of this dataset34. These results indicate that p-values computed by sPLINK

in a federated manner are the same as those calculated by PLINK on the aggregated data (ignoring negligible
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floating point precision error). In other words, the federated computation in sPLINK preserves the accuracy of

the results of the association tests.

Next, we compare sPLINK with some existing meta-analysis tools, namely PLINK, METAL, and GWAMA. To

do so, we leverage the COPDGene dataset (non-hispanic white ethnic group)35, which has an equal distribution

of case and control samples unlike the SHIP dataset (Table 1). COPDGene contains 5343 samples (ignoring

1327 samples with missing phenotype value) and around 600K SNPs. We utilized COPD (chronic obstructive

pulmonary disease) as the binary phenotype and included sex, age, smoking status, and pack years of smoking as

confounding factors36 (Table 1).
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Figure 4. Scenario I-V: The case-control ratio is the same (1.11) for all splits in the balanced scenario (I)

while the splits have different case-control ratio in the imbalanced scenarios (II-V). The distribution of all four

confounding factors is homogeneous across the splits.

Case Control Female Male Smoker Non−smoker

Split 1 Split 2 Split 3

N
um

be
r 

of
 s

am
pl

es
0

40
0

80
0

12
00

a) Phenotype

Split 1 Split 2 Split 3

0
40

0
80

0
12

00

b) Gender

Split 1 Split 2 Split 3

0
40

0
80

0
12

00

c) Smoking status

Split 1 Split 2 Split 3

20
60

10
0

P
ac

k 
ye

ar
s 

of
 s

m
ok

in
g

d) Pack years of smoking

Split 1 Split 2 Split 3

40
50

60
70

80
A

ge

e) Age

Figure 5. Scenario VI (Heterogeneous Confounding Factor): The phenotype distribution is the same and

balanced; the values of smoking status and age are homogeneously distributed; the distribution of gender and

pack years of smoking are slightly and highly heterogeneous across the splits, respectively.

To simulate cross-study heterogeneity37, we consider six different scenarios: Scenario I (Balanced), Scenario

II (Slightly Imbalanced), Scenario III (Moderately Imbalanced), Scenario IV (Highly Imbalanced), Scenario V

6/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.06.05.136382doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136382
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Severely Imbalanced), and Scenario VI (Heterogeneous Confounding Factor) (Figure 4 and Figure 5). In each

scenario, we partition the dataset into three splits with the same sample size of 1781. The distribution of all four

confounding factors is homogeneous (similar) across the splits for the first five scenarios. The splits have the

same (and balanced) case-control ratio in Scenario I and Scenario VI but their case-control ratio is different for

the imbalanced scenarios (Figure 4). In Scenario VI, the values of two confounding factors (i.e. smoking status

and age) are homogeneously distributed among the splits; however, the distribution of sex and pack years of

smoking is slightly and highly heterogeneous across the splits, respectively (Figure 5).

We obtain the summary statistics (e.g. minor allele, odds ratio, standard error, etc.) for each split to conduct

meta-analyses. The results are then compared to the federated analysis employing sPLINK. Figure 6a shows the

Pearson correlation coefficient of -log10(p) between each tool and the aggregated analysis for all six scenarios.

Figure 6b depicts the number of SNPs correctly identified as significant by the tools (true positives). We repeat

each scenario five times, where in each run the dataset is randomly partitioned into three splits (the same sample

size) according to the case-control ratio and confounding factor distributions as depicted in Figure 4 and Figure 5.
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Figure 6. (a) Pearson correlation coefficient (ρ) of -log10(p) between each tool and aggregated analysis and (b)

the number of SNPs correctly identified as significant (true positives) by each tool. The height of each bar in

(a) and (b) represents the average and median across the five runs, respectively. Error bars indicate the standard

deviation. F and R stand for fixed-effect and random-effect, respectively.

According to Figure 6a, the correlation of p-values between sPLINK and the aggregated analysis is ∼ 1.0

for all six scenarios, implying that sPLINK gives the same p-values as aggregated analysis regardless of how

phenotypes or confounding factors have been distributed across the cohorts. In contrast, the correlation coefficient

for the meta-analysis tools shrinks with increasing imbalance/heterogeneity, indicating loss of accuracy. Figure

6b illustrates that sPLINK correctly identifies all four significant SNPs in all scenarios. In the balanced scenario,

almost all meta-analysis tools perform well and recognize all significant SNPs. An exception is METAL, which

misses one of them. However, they miss more and more significant SNPs as the phenotype imbalance across the

splits increases. In the Highly Imbalanced and Severely Imbalanced scenarios, the meta-analysis tools cannot

recognize any significant SNP. This is also the case if the distribution of some confounding factors becomes

heterogeneous across the cohorts (Scenario VI). We checked the number of SNPs wrongly identified as significant

by the tools (false positives) too. sPLINK has no false positive in any of the scenarios and the meta-analysis tools

introduce zero or one false positive depending on the scenario.

Finally, we measure the runtime and network bandwidth consumption of sPLINK (Supplementary C) using

COPDGene dataset (5343 samples and ∼ 600K SNPs) partitioned into three splits of the same sample size.

sPLINK calculates the test results in 22 min, 56 min, and 3.5 h, exchanging total of 0.46 GB, 0.9 GB, and 8.33

GB traffic for chi-square, linear regression, and logistic regression, respectively. This indicates that sPLINK

achieves practical running time and acceptable network bandwidth usage for all three association tests. More

details and comparison between sPLINK and SMPC-based approaches can be found in Supplementary C.

Table 2 shows a concise comparison between sPLINK and state-of-the-art approaches. Unlike PLINK,

sPLINK protects the privacy of the cohorts’ data. sPLINK is also robust against the imbalance/heterogeneity

of phenotype/confounding factor distributions across the cohorts. That is, sPLINK always delivers the same

p-values as aggregated analysis and correctly identifies all significant SNPs independent of the phenotype or
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Tool/Study Privacy Robustness to heterogeneity Computationally efficient Linear regression Logistic regression

PLINK 7 3 3 3 3

Meta-analysis 3 7 3 3 3

Kamm et al.17 3 - 7 7 7

Cho et al.18 3 - 7 7 7

Morshed et al.22 3 - 7 3 7

Kim et al.23 3 - 7 7 3

GLORE25 3 - 3 7 3

sPLINK 3 3 3 3 3

Table 2. Comparison between sPLINK and state-of-the-art approaches.

confounding factor distribution in the cohorts. In contrast, the meta-analysis tools lose their statistical power in

imbalanced phenotype scenarios, leading to missing some or all significant SNPs. This is also the case even if the

phenotype distribution is balanced but the values of confounding factor(s) have heterogeneously been distributed

across the datasets. Compared to the existing SMPC, HE, or federated learning based approaches, sPLINK

is computationally efficient and supports multiple association tests including chi-square and linear/logistic

regression. Note that we explored the robustness to heterogeneity systematically only for tools offering chi-

square, linear and logistic regression models.

4 Discussion and Conclusion

We introduced sPLINK, a user-friendly federated tool set for GWAS. sPLINK preserves the privacy of the

cohorts’ data without sacrificing the accuracy of the test results. It supports multiple association tests including

chi-square, linear regression, and logistic regression. sPLINK is consistent with PLINK in terms of the input

data formats it supports and the results it reports to the user. We compared sPLINK to aggregated analysis

with PLINK as well as meta-analysis with METAL, GWAMA, and PLINK. While sPLINK is robust against the

heterogeneity of phenotype or confounding factor distributions across separate datasets, the statistical power of

the meta-analysis tools is attenuated in imbalanced/heterogeneous scenarios. We argued that sPLINK is easier

to use for collaborative GWAS compared to meta-analysis approaches thanks to its straightforward functional

workflow. We also showed that sPLINK achieves practical runtime, in order of minutes or hours, and acceptable

network usage for the association tests it supports.

The future development of sPLINK can go in several directions. We plan to implement the federated version

of more association tests38 or more machine learning algorithms including random forest39 or deep neural

networks (DNN)40 leveraged by the GWAS community in sPLINK. We will also investigate sPLINK’s potential

to tackle other open challenges in GWAS such as trans-ethnicity41, where the samples in the distributed datasets

are from different ethnic groups.

In conclusion, sPLINK is a novel and robust alternative to meta-analysis, which performs collaborative

GWAS in a federated and privacy-preserving manner. It has the potential to immensely impact the statistical

genetics community by addressing current challenges in GWAS including cross-study heterogeneity and, thus, to

replace meta-analysis as the gold standard for collaborative GWAS.
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A Functional workflow

The functional workflow of sPLINK (Figure 7) is comprised of the following steps:

1. Project creation: The coordinator creates the project (new study) through the Web interface. To this end,

he/she specifies project name, association test name, chunk size, and the list of confounding features (only

for regression tests). He/She also generates a unique project token for each cohort.

2. Cohort Invitation: The server sends the project token to each cohort for inviting them to the project.

3. Cohort joining: The cohorts use their corresponding username, password, and project token to join the

project. Next, they choose the dataset they want to employ in the study. To be consistent with PLINK,

sPLINK supports .bed (value of SNPs), .fam (sample IDs as well as gender and phenotype values), .bim

(chromosome number, name, and base-pair distance of each SNP), .cov (value of confounding factors),

and .pheno (phenotype values that should be used instead of those in .fam file) file formats as specified

in the PLINK manual42. For linear regression, phenotype values must be quantitative while for logistic

regression and chi-square, phenotype values have to be binary (control/case are encoded as 1/2).

4. Federated computation: In sPLINK, the association test results are computed by the client package

(running on the local machines of cohorts) and server package (running in the central server) in a federated

manner. The computation is iterative and consists of four general steps:

(a) Get global parameters: All clients obtain the required global model parameter values from the

server.

(b) Compute local parameters: Each client computes the local model parameter values using the local

data and global parameter values from the server.

(c) Post local parameters: The local parameter values are shared with the server.

(d) Aggregate local parameters: When the server receives the local parameters from all clients, it

starts the aggregation process. This involves simple logical operations such as equality check or

mathematical operations like addition, subtraction, or multiplication of scalar values or matrices.

The results of the aggregation process are the global model parameter values.

5. Result downloading: The final results are automatically downloaded for the cohorts but the coordinator

needs to download them manually through the web interface. Similar to PLINK, sPLINK reports minor

allele name (A1) and p-value (P) for all three association tests, chi-square (CHISQ), odds ratio (OR), minor

allele frequency in cases (F_A), and minor allele frequency in controls (F_U) for chi-square test, and

the number of non-missing samples (NMISS), beta (BETA), and t-statistic (STAT) for linear and logistic

regression tests.

B Computational workflow

The computational workflow of sPLINK involves six steps in common among all association tests as well as a

couple of steps specific to each association test (Figure 8). In the following, we provide an overview of each step.

1. Init: Each client i opens the files of the dataset selected by the cohort to be employed in the study and

creates its phenotype vector (Yi) and feature matrix (Xi), which includes the value of SNPs and confounding

factors. There is a separate feature matrix for each SNP but the phenotype vector is the same for all SNPs.

Assume a dataset containing three SNPs named SNP1, SNP2, and SNP3 and age and sex as confounding

features. There will be three different feature matrices, one feature matrix per SNP. For instance, the

feature matrix of SNP1 has three columns including SNP1, age, and sex values. Phenotype vector and

feature matrix are the private data of the cohorts. They cannot be shared with the coordinator or the other

cohorts. The aggregation process in the server just makes sure that all clients successfully initialized the

project.
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Figure 7. Functional workflow of sPLINK: the coordinator creates a new project and invites a set of cohorts

to join the project. The cohorts join the project and select the dataset. The project is started automatically,

when all cohorts joined. After the computation is done, the cohorts and coordinator can access the results. All

communications are performed in a secure channel over HTTPS protocol. The cohorts can use Linux distributions,

Microsoft Windows, or MacOS to run the client package.

2. SNP name: Each client extracts the SNP names from its .bim file. In the aggregation process, the server

computes the intersection of all SNP names. Only shared SNPs are considered in the computation of the

association test results.

3. Sample count: Each client i calculates its local sample count ni (number of samples in its dataset including

missing samples, which is the size of vector Yi). The server adds up the local sample counts from K clients

to compute the global sample count: n = ∑
i=K
i=1 ni

4. Non-missing sample count & allele count: In this step, SNPs are split into chunks which can be

processed in parallel. The chunking capability is provided to handle very large datasets containing millions

of SNPs. The clients compute the sample count after filtering out the missing values (value of -9 is

considered as missing). Likewise, they calculate the local allele count by counting the number of alleles

in each SNP. In the aggregation process, the server adds up the local non-missing sample count from the

clients to compute the global non-missing sample count. Next, it does the same for the local allele count

and calculates the global allele count. Finally, the server determines the global minor allele based on the

value of the global allele count.

5. Minor allele: The clients compare their local minor allele with the global minor allele. If they are the

same, they do nothing. Otherwise, they update the mapping of SNP values read from .bed file. Each SNP

value can be 0,1,2 or 3 (missing value). These values are encoded based on the minor allele name. If the

minor allele is changed, the value of the SNP needs to be swapped if it is 0 or 2. Thus, if a client’s minor

allele is different from global minor allele, it inverses the mapping of SNP values (0 → 2 and 2 → 0). The

aggregation in the server makes sure that all clients successfully completed this step.

6. Association test specific steps: In the following, we elaborate on the steps specific to each association test.

Regarding regression tests, sPLINK implements the federated versions of ordinary least squares (OLS)

linear regression and Newton-Raphson method based logistic regression.

Chi-square: The only test-specific step for chi-square test is Contingency table, where each client

i computes its local contingency table containing minor allele frequency for cases (pi), minor allele

frequency for controls (ri), major allele frequency for cases (qi), and major allele frequency for controls

(si). The server adds up the locally computed contingency tables from K clients to compute the global
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Figure 8. Computational workflow of sPLINK: six steps are common among all three association tests: (1) Init

in which the clients open the required files and prepare the dataset for computation; (2) SNP name, where the

clients share the SNP names from .bim file with the server; (3) Sample count in which each client sends the

number of the samples in the dataset considering those with missing values to the server; (4) Non-missing sample

count & allele count, where the clients share the sample count ignoring those with missing values as well as

the frequency of each allele with the server; (5) Minor allele in which the clients update the minor allele name

based on global minor allele and update the mapping of the SNP values accordingly; after the Minor allele step,

there are association test specific steps: Beta and Standard error steps for regression tests and Contingency table

for chi-square test. Logistic and linear regression compute beta and standard error in different ways, e.g. the

Beta step is iterative for logistic regression. The regression tests compute p-values from standard error values

while chi-square does it using the contingency table. The last step is Done, where the results from federated

computation are shared with the cohorts. Notice that the results from Non-missing sample count & allele count,

Minor allele, and association test specific steps are per SNP and they are computed chunk by chunk.

(observed) contingency table (Table 3). It also calculates an expected contingency table based on the

observed contingency table (Table 4).

Given the observed contingency table (O) and the expected contingency table (E), the server computes

odds ratio (OR), χ2, and p-value (P) as follows:

OR =
p× s

q× r
(1)

χ2 = ∑
(E −O)2

E
(2)

P = 1−Ft(χ
2
,1) (3)

where Ft is the cumulative distribution function (CDF) of χ2 distribution (degree of freedom is 1).

Linear regression: Beta and Standard error are two steps specific to linear regression test. In the Beta

step, each client i computes XT
i Xi and XT

i Yi, where XT
i is the transpose of Xi. In the aggregation process,

the server performs the following calculations (K is the number of clients):

XT X =
i=K

∑
i=1

XT
i Xi (4)
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Minor allele Major allele Total

Case p = ∑
i=K
i=1 pi q = ∑

i=K
i=1 qi p+q

Control r = ∑
i=K
i=1 ri s = ∑

i=K
i=1 si r+ s

Total p + r q + s n

Table 3. Global (observed) contingency table

Minor allele Major allele

Case
(p+q)×(p+r)

n

(p+q)×(q+s)
n

Control
(r+s)×(p+r)

n

(r+s)×(q+s)
n

Table 4. Expected contingency table

XTY =
i=K

∑
i=1

XT
i Yi (5)

β = (XT X)−1(XTY ) (6)

where ()−1 indicates the inverse matrix.

In the Standard error step, each client i calculates the local sum square error (SSEi) by having the global β
vector.

Ŷi = Xiβ (7)

SSEi = ∑(Yi − Ŷi)
2 (8)

and then the server calculates the global standard error vector (SE) as follows:

VAR = (
∑

i=K
i=1 SSEi

n−m−1
)(XT X)−1 (9)

SE =
√

diag(VAR) (10)

where n is global non-missing sample count, m is the number of features (1 + number of confounding

factors), and diag is the main diagonal of the matrix.

Given the standard error vector, the server computes the T statistic (T) and p-value (P) as follows:

T =
β

SE
(11)

DF = n−m−1 (12)

14/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2020. ; https://doi.org/10.1101/2020.06.05.136382doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136382
http://creativecommons.org/licenses/by-nc-nd/4.0/


P = 2× (1−Ft(|T |,DF)) (13)

in which DF is degree of freedom and Ft is the CDF of T distribution.

Logistic regression: Similar to linear regression, logistic regression has two specific steps: Beta and

Standard error. However, the Beta step is iterative in logistic regression (maximum number of iterations

is specified by the coordinator and its default value is 20). In each iteration, each client i computes local

gradient (∇i), Hessian matrix (Hi) and log-likelihood (Li) as follows:

Ŷi =
1

1+ e−Xiβ
(14)

∇i = XT
i (Yi − Ŷi) (15)

Hi = (XT
i ◦ (Ŷi ◦ (1− Ŷi))

T )Xi (16)

Li = ∑(Yi ◦ logŶi +(1−Yi)◦ log(1− Ŷi)) (17)

where β is the global beta vector from the previous iteration and ◦ indicates element-wise multiplication.

The server aggregates the local gradients, Hessian matrices and log-likelihood values from K cohorts as

follows:

∇ =
i=K

∑
i=1

∇i (18)

H =
i=K

∑
i=1

Hi (19)

L =
i=K

∑
i=1

Li (20)

Then, it updates the β values accordingly:

βnew = βold +H−1∇ (21)

where βold is the β value from the previous iteration. The server also compares the newly computed log-

likelihood value (L) with the one from the previous iteration(Lold). A difference less than a pre-specified

threshold indicates that the β values have converged.

In the Standard error step, the server shares the global β values with the clients. Each client i computes its

local Hessian matrix (Hi) using the global β . The server gets the local Hessian matrices from K cohorts

and applies the following formula to obtain the global standard error vector (SE):

SE =

√

diag

(

(

i=K

∑
i=1

Hi

)−1
)

(22)

Having standard error values, the server calculates T statistics (T) and p-value (P) as follows:

T =
β

SE
(23)

P = 1−Ft(|T |
2
,1) (24)

where Ft is CDF of χ2 distribution (degree of freedom is 1).

7. Done: The computation of association test results have been completed for all chunks and the results are

shared with all cohorts.
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C Runtime and network bandwidth usage

We measure the runtime (Figure 9a) and network bandwidth usage (Figure 9b) of sPLINK for each association

test using COPDGene dataset (5343 samples and ∼ 600K SNPs) partitioned into three splits of the same sample

size (1781). We use COPD in chi-square as well as logistic regression and FEV1 in linear regression as phenotype.

We include age, sex, smoking status, and pack years of smoking as confounding factors only for the regression

tests. The server and WebApp packages are running in a docker container (8 CPU cores and 32 GB of main

memory allocated) at exbio server. Three commodity laptops (4 cores and 16 GB of main memory) located at

Munich or Freising are running the client package and host the splits. They communicate with the server through

Internet with connection speeds of 100, 50, and 50 Mbps (megabits per second), respectively.
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Figure 9. Runtime of sPLINK (a) consists of processing time at cohorts, network communication time,

aggregation time at the server, and idle time. The computation time contributes the most in the runtime. The

network bandwidth consumption of sPLINK (b) is mainly due to sending model parameter values from the

cohorts to the server.

Figure 9a indicates the runtime of sPLINK, which is the sum of the computation time in cohorts, network time

to exchange the model parameters, aggregation time in the server, and idle time. During idle time, the aggregation

result is ready but the cohorts are not aware of that since they periodically (every 10 seconds) ping the server.

sPLINK computes the association test results for chi-square, linear regression, and logistic regression in 22 min,

56 min, and 3.5 h, respectively. Computation/aggregation time contributes the most/least to the total running

time as expected (ignoring idle time). Compared to Kamm et al.17, sPLINK is 5 times faster for chi-square test

(22 min vs. 110 min2 ) with less powerful hardware, larger sample size (5343 vs. 1080), and more number of

SNPs (∼ 600K vs. ∼ 263K). In contrast to Cho et al.18, sPLINK is faster by a factor of 3 (3.5 h vs. ∼ 10.3 h3)

comparing logistic regression test from sPLINK to Cochran–Armitage test implemented by that paper. Notice

that logistic regression is a more complex algorithm than the Cochran–Armitage test for trend43.

Figure 9b depicts the network usage consumption of sPLINK for each association test. The cohorts and

the server exchange total of 0.46 GB, 0.9 GB, and 8.33 GB traffic in chi-square, linear regression, and logistic

regression, respectively. Logistic regression has higher volume of traffic exchange since the computation of beta

coefficients are performed in an iterative fashion (maximum iteration count of 20). A fair comparison between

sPLINK and SMPC-based frameworks from the network communication aspect is tricky. This is because network

usage of sPLINK is independent of the sample size but linearly increases with the number of cohorts and SNPs

while it only depends on the sample size and the number of SNPs in SMPC-based frameworks. However, in

general, federated learning based approaches consume more network bandwidth than SMPC-based ones.

2The best result from Kamm et al.17 has been considered.
3This value was computed based on the authors’ claim that their runtime linearly depends on the sample size and it takes 80 days to

compute the results for a dataset with 1M individuals and 500k SNPs18.
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