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Abstract

B cells undergo rapid mutation and selection for antibody binding affinity when producing
antibodies capable of neutralizing pathogens. This evolutionary process can be intermixed with
migration between tissues, differentiation between cellular subsets, and switching between
functional isotypes. B cell receptor (BCR) sequence data has the potential to elucidate important
information about these processes. However, there is currently no robust, generalizable
framework for making such inferences from BCR sequence data. To address this, we develop
three parsimony-based summary statistics to characterize migration, differentiation, and isotype
switching along B cell phylogenetic trees. We use simulations to demonstrate the effectiveness
of this approach. We then use this framework to infer patterns of cellular differentiation and
isotype switching from high throughput BCR sequence datasets obtained from patients in a study
of HIV infection and a study of food allergy. These methods are implemented in the R package

dowser, available at https://bitbucket.org/kleinstein/dowser.
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Author summary

B cells produce high affinity antibodies through an evolutionary process of mutation and
selection during adaptive immune responses. Migration between tissues, differentiation to
cellular subtypes, and switching between different antibody isotypes can be important factors in
shaping the role B cells play in response to infection, autoimmune disease, and allergies. B cell
receptor (BCR) sequence data has the potential to elucidate important information about these
processes. However, there is currently no robust, generalizable framework for making such
inferences from BCR sequence data. Here, we develop three parsimony-based summary statistics
to characterize migration, differentiation, and isotype switching along B cell phylogenetic trees.
Using simulations, we confirm the effectiveness of our approach, as well as identify some
caveats. We further use these summary statistics to investigate patterns of cellular differentiation
in three HIV patients, and patterns of isotype switching in an individual with food allergies. Our

methods are released in the R package dowser: https://bitbucket.org/kleinstein/dowser.
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Introduction

The adaptive immune system in humans depends on B cells to produce antibodies capable of
neutralizing a wide array of pathogens. Antibody structures are initially expressed as B cell
receptors (BCRs) on the surfaces of B cells. BCRs are generated through random V(D)J
recombination and then subjected to repeated rounds of somatic hypermutation (SHM), cell
proliferation, and selection for antigen binding [1]. This evolutionary process, called affinity
maturation, creates many lineages of B cells that each descend from a single naive progenitor
cell. Cells within a clonal lineage differ predominately by point mutations. The genetic variation
within these clonal lineages has been long investigated using phylogenetic methods [2]. When
obtained through high throughput sequencing, BCR sequences have shown promise in
elucidating information about the adaptive immune response in humans, such as the sequence of
mutations that occur during antibody co-evolution with HIV [3], and the process of mutation and
selection during affinity maturation generally [4]. Other important biological processes may
occur as BCR sequences evolve, such as B-cell migration between tissues [5], differentiation into
cellular subsets [6], and antibody isotype class switching [7]. If these processes co-occur with

SHM, then in principle they can be investigated and inferred using phylogenetic techniques.

Migration and cellular differentiation in B cells can be viewed as analogous to geographic spread
of rapidly evolving viruses, the study of which — viral phylogeography — has advanced both in

theory and application in the past decade (e.g. Lemey ef al. 2009). For example, phylogeographic
methods have been used to determine the origin of the HIV pandemic [9], factors influencing the

recent Ebola epidemic [10,11], and the epidemic spread of Zika virus [12,13]. Modern
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phylogeographic analyses typically model phylogenetic sequence evolution [14], and changes in
geographic location within a unified framework [15,16]. Successfully developing a
phylogeographic framework for B cell lineages would enable the testing of new hypotheses

regarding the nature of evolution during affinity maturation.

There are serious challenges that must be addressed before using modern phylogeographic
methods on B cell repertoire datasets. Such techniques typically rely on molecular clock trees,
whose branch lengths represent elapsed time between nodes [15]. Accurately modelling
sequence change through time requires either data sampled at multiple time points, or prior
information about expected rate of sequence evolution. These are not frequently available for B
cell lineages. Data samples, particularly biopsies, are often only taken at a single time point
[5,17], and the variation of B cell mutation rate over time is largely unknown and likely
dependent on cell subset. Even using a Markov model to describe state changes along B cell
molecular phylogenies is not straightforward: B cell lineage trees frequently contain identical
sequences with different states. This results in state changes across zero-length branches, which
are not able to be fit within a Markov model framework. Further, modern phylogeographic
techniques often rely on Markov chain Monte Carlo sampling, which makes them
computationally intensive and impractical to apply to thousands of sequences. Unfortunately, B
cell bulk repertoires often contain millions of sequences, and individual lineages sometimes

contain thousands of unique sequences.

We propose that hypotheses about B cell migration and differentiation may be usefully

investigated using heuristic summary statistics that characterize the distribution of trait values
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98 along phylogenetic trees. Indeed, such heuristic approaches which do not depend on branch

99  length have historically been a popular means of testing hypotheses about migration between
100  populations [18-20]. While tree based summary statistics have been previously used to assess B
101  cell migration [5], differentiation [6], and isotype switching [7], these approaches have not been
102  tested through simulations and their general accuracy is unclear. To address this methodological
103  gap, we develop a set of maximum parsimony-based statistics that summarize the relative
104  distribution of B cell states along lineage trees within repertoires and introduce a framework for
105  assessing the significance of their difference from randomized trees. We demonstrate through
106  simulations that these tests relate intuitively to different regimes of migration and differentiation.
107  To demonstrate its utility, we use this framework to test hypotheses regarding differentiation of
108  cell types in HIV infection, and sequential class switching to IgE and IgG4. We introduce a
109  statistically principled and scalable means of analyzing the evolution of discrete traits in B cell
110  repertoires. We release these methods in the R package dowser.
111

112
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Methods

Predicting states of internal tree nodes

The goal of the discrete trait analysis framework presented here is to characterize the distribution
of predicted trait values along B cell lineage trees. Given an alignment of sequences inferred to
descend from the same naive ancestor (i.e. the same clonal family), lineage tree topologies and
branch lengths were estimated using maximum parsimony using dnapars v3.967 [21].
Importantly, the statistics presented here are not limited to tree topologies inferred through

maximum parsimony.

Maximum parsimony is also used to infer the discrete character states (e.g. cell subtype, isotype,
tissue) of internal nodes, given a tree in which each tip is associated with a given character state.
Nodes with different states from their immediate ancestors are counted as state changes. More
specifically, internal node states were reconstructed using the Sankoff dynamic programming
maximum parsimony algorithm [22], which, given a weight matrix for each type of state change,
determines the minimum number of state changes that must be made along the tree given the
states at the tips. The backtrace step of this algorithm can be used to determine a set of most
parsimonious internal node states. Often there are multiple such maximum parsimony sets. To
represent state changes across ambiguous internal node sets, trajectories with equal parsimony
were randomly chosen in the backtrace step of the Sankoff algorithm, beginning at the root of the
tree and moving towards the tips. This process is performed 100 times for each tree, and the

mean of each type of state change was reported.
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Strictly bifurcating B cell lineage trees frequently have clusters of nodes separated by zero-
length branches (soft polytomies), which represent a high degree of uncertainty in tree topology.
This uncertainty in the order of bifurcating nodes can result in a potentially large number of
uninformative state changes along the polytomy. Multiple steps were taken to minimize the
effects of random polytomy resolution (Supplemental File S1). Briefly, nodes within each
polytomy were first re-ordered to minimize the number of state changes along the tree. To
represent the uncertainty in the order of state changes, nodes within each polytomy were grouped
together into separate subtrees according to their predicted state. These state-specific subtrees
were then joined together in a balanced manner, ensuring that state changes could occur in any

direction among the states contained within the polytomy (Supplemental File S1).
Testing trait-phylogeny association

Analysis begins with a B-cell lineage tree topology with discrete character states (trait values)
associated with each tip, and internal node states reconstructed through maximum parsimony.
The goal of our discrete trait analysis framework is to determine how the distribution of discrete
character states along the internal nodes of a tree differs from its expectation if traits are
randomly distributed among the tips. The statistics introduced herein are shown graphically in
Fig 1. More formally, if there are m possible discrete character states, and o;; is the number of

state changes from type i to type j, the three statistics investigated are defined as:

PS = z z 01 )
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SCU = Oij (2)

= e 3
ui ;'r,quti 0yj

SP;;
The PS (parsimony score) statistic is the total number of state changes along a tree. The SC
(switch count) statistic from i to j is the number of state changes from state 7 to j. The SP (switch

proportion) statistic from i to j is the proportion of state changes from state i to ;.

We calculate the significance of these three statistics using a permutation test. This is done by
randomizing traits at the tips of the lineage tree, re-calculating each statistic on the permuted
tree, and repeating for a specified number of replicates. For each replicate, we calculate 6, which
is the difference between the statistic calculated on the observed tree and the same statistic
calculated on the permuted tree. If mean & > 0 (hereafter mean 9 is indicated by d), this indicates
the statistic is on average higher in observed trees than in permuted trees. For a one-tailed test,
we calculate the p value that & > 0 as the proportion of replicates in which 6 < 0. Similarly, we
calculate the p value that & < 0 as the proportion of replicates in which & > 0. For a two-tailed
test, we calculate the p value that 8 > 0 as the proportion of replicates in which & < 0, plus half of
the replicates in which 6 = 0. We refer to the calculation of these p values for the statistics in Eq_.

1-3 as the PS test, SC test, and SP test, respectively.
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These three statistical tests capture different aspects of how the distribution of characters
observed along a lineage tree differs from random association between tree topology and trait
values. The PS test determines the extent to which trait values are clustered together within the
tree. A significantly low PS statistic (i.e. 6 <0, p <0.05) indicates identical trait values are more
closely clustered together within the tree than expected from random association between tree
topology and trait values. By contrast, a significantly high PS statistic indicates identical trait
values are less clustered together than expected by chance. Variations of this test were previously

developed in [18] and applied in [23] to study spread of influenza.

While the PS test only determines a general association between trait values and tree topology,
the SC and SP tests are both aimed at determining whether a particular trait value is more
ancestral to another in the tree. A significantly high SC statistic (Eq. 2) from state i to state j
indicates a greater number of switches from state i to state j than expected from random
association between tree topology and trait values. The SC test was used by [19] in the context of
virus phylogeography, and by [6] to decompose the phylogenetic relationships among B cell
subtypes within HIV infection. The SC test, however, is not purely a metric of whether state i
tends to be more immediately ancestral to state j than expected. This is because trees with
randomized tip states often have more state changes events in general, hence 8 values tend to be
negative even when there is no polarity in the ancestor/descendant relationship among type i and

j (Fig 1B).

To normalize for changes in the total number of state changes between observed and permuted

trees, we introduce the SP test. A significantly high SP statistic (Eq. 2) from state i to state j

10
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indicates a greater proportion of switches from state 7 to state j than expected from a random
distribution of trait values at the tips. In contrast to the SC test, a significant association between
the tree and trait may exist, but only associations in which one trait is more often ancestral to the
other will give rise to a significantly high or low SP statistic (Fig 1C). Further, the denominator
of the SP statistic can be altered to test other hypotheses. For instance, to test whether a greater
proportion of state changes to state j come immediately from state i than expected by chance, one

can restrict the analysis to consider only state changes towards j.

Accounting for uncertainty in tree topology

To account for uncertainty in tree topology, we bootstrap multiple sequence alignments within
each clone [24]. This is performed by random sampling with replacement of the columns of a
multiple sequence alignment. Lineage tree topology and branch length estimation then proceeds
as before. Test statistics are calculated for each bootstrap replicate tree, and then for a single
permutation of the traits at that tree’s tips. Calculations for & values proceed as before, but with
each o;; value indexed for each replicate. This procedure is very similar to that proposed in [25]
and can in principle be extended to other sets of tree topologies, such the posterior distribution of

tree topologies generated by MCMC sampling under Bayesian phylogenetic inference.

From trees to repertoires

B cell repertoire datasets often consist of hundreds or thousands of B cell lineage trees. Often

hypotheses do not concern individual lineages, but instead the behavior of the collection of B cell

11
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lineages as a group. To characterize multiple B cell lineages, the observed and permuted
summary statistics are summed across all lineages for each bootstrap replicate. Additionally,
traits may be permuted among trees, which may increase statistical power and detect nonrandom

association among trait types within trees.

Simulations

We tested the performance of the three proposed statistics using simulations based on B cell
lineage trees estimated from an empirical dataset. Sequences were obtained from peripheral
blood samples taken from one subject at ten time points, from eight days before to 28 days after
influenza vaccination [26] (subject 420IV). Sequence preprocessing and clonal clustering are
described in [4]. Sequences were down-sampled by 50%, and only clones with >10 unique
sequences were retained. A total of 399 clones containing 11 to 370 (mean=26.2) unique
sequences remained. Tree topologies and branch lengths were estimated for each clone using
dnapars v3.967 [21] via the R package Alakazam v0.3.0 [27]. We simulated state changing
down each tree using a Markov model parametrized by initial frequencies z for each state,
relative rate parameters 7; for each pair of possible states i and j, and r, the average rate of state
changes per mutation per site. The mean value of this rate matrix was calculated as the sum of
the diagonal elements weighted by their initial state frequencies. All values of the matrix were
then divided by this mean and multiplied by 7. This calibration was performed so that 7*/ state
change events are expected to occur across a branch of length / mutations/site. For each tree, the
state at the germline node was randomly drawn based on each state’s = value. For each node after

the germline, the rate matrix is multiplied by the node’s ancestral branch length and

12


https://doi.org/10.1101/2020.05.30.124446
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.124446; this version posted May 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

249  exponentiated to give the probability of each state at the descendant node, given the state at the
250 node’s immediate ancestor. The state at the descendant node is randomly chosen based on these
251  probabilities. This process begins at the germline node and continues down the tree until each tip
252 node has a state. Because each tip corresponds to a sequence, this forms a dataset of sequences
253 paired with simulated discrete characters. Internal node states are not included in the final

254  simulated dataset used for analysis. Simulations were performed with two state models (4 and B)
255  that explored a large parameter space (7, = 0.5, 1; rs» = 0.1, 1, 10; » = 10, 25, 50, 100, 1000), and
256  four state models (4, B, C, D) that explored more complex patterns of state change at low overall
257  rate (r = 10). Twenty simulation repetitions were performed for each parameter combination.
258  Statistical tests were performed as described in Methods; however, to improve computational
259  efficiency simulation analyses did not use bootstrapped multiple sequence alignments, and

260 instead performed 100 permutations on a fixed maximum parsimony tree for each clone. Only
261  clones with more than one state type were analyzed.

262

263 Empirical datasets

264

265  We demonstrate the utility of the proposed discrete trait framework by analyzing two empirical
266  datasets. The first was aimed and understanding B cell differentiation during HIV infection, and
267  consists of BCR mRNA sequences taken from sorted populations of unswitched memory B cell
268 (MBC), CD19" MBC, CD19" MBC, and germinal center B cells (GCBC) from three HIV

269  viremic subjects (subject 1-3; [6]) Each dataset was subsampled to a maximum of 50,000 total
270  sequences, and only clones with more than 10 sequences were retained. Unique sequences

271  associated with more than one cell type were kept distinct. This resulted in 128, 197, and 174

13
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272 clones with a mean of 53, 38.6, and 31.8 unique sequences per clone, for subjects 1-3

273  respectively. State changes across all lineages for each subject were calculated over 100

274 bootstrap replicates.

275

276  The second dataset was aimed at understanding isotype switching patterns in human children,
277  and consists of BCR mRNA sequences obtained from peripheral blood samples taken from a
278  human child each year from age 1 to 3 years old [28]. Preprocessing, including grouping of
279  sequences into clonal clusters, is detailed in Supplemental File S2. Only clones with at least 4
280 unique sequences and more than one isotype were retained. Unique sequences associated with
281  more than one isotype were kept distinct so each sequence was associated with one isotype. This
282  resulted in 768 clones with a mean of 9.3 unique sequences each. State changes across all

283  lineages were calculated over 100 bootstrap replicates.

284

14
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Results

We outline three parsimony-based summary statistics to characterize the distribution of trait
values along B cell lineage trees (Fig 1). The significance of these statistics can be tested by
comparing observed values within the set of trees that comprise a repertoire to those obtained
from permuting trait values at the tree’s tips. The first statistic, the parsimony score (PS), is the
total number of trait value state changes that occurred along a lineage tree. A PS test with 8 <0
and p < 0.05 (i.e. a significantly low PS statistic) indicates the trait values cluster together in the
observed trees more often than expected by chance (Fig 1). We propose two other statistics
aimed at determining whether one state is more frequently the immediate ancestor to another
state than expected by chance. The switch count (SC) from state i to j is the number of state
changes that occurred from i to j [19], while the switch proportion (SP) from state i to j is the
proportion of state changes that occurred from i to j. An SC or SP test from i to j with & > 0 and p
< 0.05 indicates trait value i was more frequently immediately ancestral to state j than expected
by chance. We expect the SP test to be more sensitive to this relationship than the SC test
because it accounts for the increased number of state changes expected in randomized trees (Fig
1B-C). Similarly, an SP test from i to j with 6 < 0 and p < 0.05 indicates trait value i was less
ancestral to state j than expected (Fig 1B). All three of these tests may be used to characterize
individual lineages or entire B cell repertoires; in this paper we will focus exclusively on

repertoires.

Differentiating state change patterns with two states

15
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We used simulations to test the performance of our proposed tests. We model B cell
migration/differentiation using a Markov model with two states, 4 and B, and empirically-
derived linage tree topologies (Methods). Briefly, the pattern of state changes along a tree was
determined by the probability that the state at the root was 4 (z, = 0.5, 1; 7, = I — ), the
average rate of state change (» = 10, 25, 50, 100, 1000 changes/mutation/site), and the relative
rate of change from 4 to B (ra» = 0.1, 1, 10; 75a = 1/rap). These parameters represent a range of
slow, fast, biased, and unbiased state change patterns along a B cell lineage. Each simulation
resulted in a dataset of BCR sequences, each associated with a single trait value (4 or B)
resulting from the simulation process. The goal of our simulation analysis is to determine if the

summary statistics provide useful information about the mode and tempo of trait evolution.

We ran 20 simulation repetitions for each parameter combination, and tested the significance of
each of the proposed statistics to assess their statistical power. Our simulations are designed to
generate trees whose tip-states are more clustered together than if the tips states are randomly
distributed across the tree tips. Consistent with this expectation, 320/320 simulation repetitions in
which 7 < 1000 (i.e. overall rate of state change < 1000 changes/mutation/site) showed a
significantly low PS statistic regardless of other parameters (6 < 0; one-tailed p < 0.05;
Supplemental File S3). This confirms the PS test’s usability for detecting nonrandom
association between tree topology and trait values. However, at » = 1000, only 3/80 repetitions
showed a significantly low PS statistic (Supplemental File S3), indicating this relationship is

difficult to detect at high rates of state change.
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We used the same simulations to test whether the SC statistic was capable of detecting the
direction of state changes in B cell repertoires. A total of 300 simulation repetitions were
performed using parameters expected to give biased (directed) state changes; namely, with
lineages always beginning in 4 (7, = 1) and/or highly biased rates of state change from 4 to B
(ra» = 10). Surprisingly, only 3/300 of these simulations showed a significantly high SC from 4
to B (8 > 0; one-tailed p < 0.05; Supplemental File S4). By contrast, 186/300 showed a
significantly low SC from 4 to B (6 < 0; p < 0.05). This indicates that significantly high SC
statistics are highly conservative, while significantly low SC statistics are primarily driven by
overall phylogenetic association with a trait. This issue is likely exacerbated as dataset size
grows, hence the SC test is likely still useful for single lineages [19,20] or for detecting very
strong trends in large datasets [6]. However, given these results the SC test does not appear
appropriate as a general solution for detecting biased migration and differentiation in B cell

repertoire datasets.

We next tested whether biased state change patterns were detected by the SP test. To test this
method’s false positive error rate, we first investigated simulations with totally unbiased state
changes; namely, in which lineage trees were equally likely to begin at state 4 as B (7, = 0.5) and
had equal rates of state changes between 4 and B (ra» = rpa = 1). SP tests from A4 to B on these
datasets resulted in a roughly uniform distribution of p values at all tested migration rates (& > 0,
p <0.05 in 5/100; Fig 2A). This indicates that completely unbiased state changing is consistent
with the null hypothesis of this test. Simulations in which lineages always had state 4 at the root
(7« = 1) and/or the relative rate of state change was higher from A4 to B (ra» = 10) were expected

to give high SP statistics. At low overall rates of state change (» = 10), 55/60 of these simulations
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had significantly high SP statistics from 4 to B (8 > 0; p <0.05; Fig 2B-D). At higher rates of
state change (r = 25, 50, 100, or 1000), this relationship diminished in these simulations as the
distribution of trait values became less distinguishable from random association (Fig 2B-D).
These results indicate that, under this two state Markov model framework, a significantly high
SP statistic is associated with biased origination, biased rate of state change, or both depending

on the overall rate.

Finally, we used these simulated datasets to test whether the SP test is affected by biased data
sampling, as this potential bias is important for some other phylogeographic methods of trait
evolution e.g. [29]. We tested this by randomly discarding half of the sequences associated with
A in simulations with totally unbiased state change (7, = 0.5, 7a» = 75« = 1). Though SP tests from
A to B on these datasets gave a uniform p value distribution when all sequences were included
(Fig 2A), SP statistics became significantly high when half of 4 sequences were discarded (Fig
2e). This indicates that severely biased sampling may give a similar signature as biased
origination or state change for the SP test (Figs 2B-D). Biased sampling may be caused by a
variety of experimental factors, and applications of these statistics to empirical datasets will need

to carefully consider possible effects of biased data collection for each trait type.

Differentiating complex relationships among trait values

All the tests detailed above are extendable to data with more than two states; however, due to its

superior performance in two state simulations, we will focus in the rest of this study on the SP

test. The permutation step of the SP test usually permutes trait values within each tree separately
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(Methods). However, when more than two states are present it may be advantageous to
randomize trait value assignments among trees rather than just within each tree. This changes the
null hypothesis, which is now that the proportion of state changes observed is the same as that
expected if trait values are randomly distributed among all trees. Deviations from this null
hypothesis may be due not only to biased ancestor/descendant relationships within individual
trees, but also co-occurrence of trait values within different trees. To demonstrate the difference
between these two mechanisms, we performed simulations with four trait values: 4, B, C, and D.
To test the difference between simple association and biased ancestry, these simulations used
unbiased state change between A4 and B, and unidirectional state change from Cto D. Trees
began with states 4, B, or C in equal probability; state changes were allowed in both directions
from 4 to B and unidirectionally from C to D. For each repetition, the rate of state change (r) =
10, and relative rates were equal among allowed state changes. Performing the SP test on these
simulations while permuting among trees showed significantly higher SP statistics in both
directions between 4 and B, and between C and D than expected (20/20 for each; Fig 3A). This
indicates the SP test when permuting among trees detected the association between these trait
values but not the directionality of C to D state changes. In contrast, the SP test when permuting
only within trees correctly yielded a significantly high SP statistic from C to D in 19/20
simulations; further, no simulation yielded a significantly high SP statistic from D to C,
indicating a low false positive rate. No simulation using either permutation method showed a
significantly high SP statistic between unassociated trait values (e.g. 4 and C), indicating a low
false positive rate. These results indicate that permuting trait values within trees is a more
effective means of detecting biased ancestor/descendant relationships, while permuting between

trees is more appropriate for detecting associations among traits (Fig 3B).
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399  Differentiating constrained modes of state change

400

401 In some instances, there are known constraints to the direction that state changes can occur, such
402  as in isotype switching. Isotype-determining constant regions in humans are ordered as IgM/IgD,
403  1gG3, IgGl, IgAl, IgG2, 1gG4, IgE, IgA2. Human B cells begin with IgM/IgD, and because the
404  mechanism of class switching is irreversible, these events can only occur sequentially in the
405  order specified. For instance, IgA1 can switch to IgG4, but not to IgM or IgG1. This constraint
406 may be naturally incorporated into the Sankoff parsimony algorithm [22] by making impossible
407  isotype switches have an arbitrarily high weight. A frequent focus of isotype switching analysis
408 is whether a particular isotype (i.e. IgE) arises from direct switching from IgM or from

409  sequential switching from an intermediate isotype [30,31]. These types of hypotheses could be
410 investigated using the SP test.

411

412  To determine if the SP test can usefully distinguish between types of constrained relationships
413  among trait values, we simulated datasets to represent possible isotype switching patterns. As
414  above, datasets contained four trait values: 4, B, C, and D under different modes of evolution.
415  Because questions often focus on the origin of a particular isotype [30] we only counted state
416  changes leading to D when calculating SP statistics. Further, because state changes can only
417  occur in a particular direction, we permute trait values among trees in these tests to increase
418 power. While we previously showed that permuting among trees confuses biased association
419  with biased ancestry (Fig 3A), switching between these states can only occur in one direction.
420  Because of this, association between two states implies a direction of switching and among tree

421  permutation is justifiable. We first simulate direct switching in which trees always had state 4 at
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the root and only state changes from A to the other states were allowed (Fig 3C). We expected
these simulations to show a significantly high SP statistic only from A4 to D. Confirming this
expectation, all 20 of these simulations had a high SP statistic from 4 to D (8 > 0, p < 0.05; Fig
3C). We next simulated sequential switching, where arriving at state D requires transitioning
through B. All trees began in A4 and state changes were allowed from 4 to B and C, but D arose
only from B. We expected these simulations to show a significantly high SP statistic only from B
to D. All 20 of these simulations showed a significantly high SP statistic from B to D (6 >0, p <
0.05; Fig 3D). These results demonstrate that the SP test using constrained parsimony can
discriminate between simple hypotheses of isotype switch patterns, such as direct versus

sequential switching.

We next investigated whether the SP test can distinguish between more complex types of
constrained switching. We simulated irreversible isotype switching in which trees begin with
state 4, and only state changes moving alphabetically (4 to D) were allowed. Naively, we may
expect these simulations should show similar SP test results from 4, B, and C to D. However, all
20 of these simulation repetitions showed a significantly high SP statistic to D from B and C, but
not from 4 (Fig 3E). As a control, we simulated unconstrained switching in which trees begin
randomly at any state and may change between all states. Using a constrained parsimony model,
these simulations showed the same significantly high SP to D from B and C, but not from 4 (Fig
3F), indicating that this pattern is possibly an artifact of the constrained parsimony model. These
results demonstrate that, while the SP test outlined here can distinguish between simple types of
constrained state change, its relationship to more complex modes of constrained state change

such as irreversible evolution are difficult to predict, and should be interpreted cautiously.
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Differentiation of B cell subtypes during HIV infection

Over the course of the immune response, B cells differentiate into multiple cellular subsets with
distinct properties. Recent studies have focused on the role of T-bet, a transcription factor usually
associated with differentiation of T cells, in shaping B cell responses during infection. For
example, [6] used data from three HIV+ patients to demonstrate that CD19" memory B cells
(CD19"MBCs, a surrogate for T-bet+ B cells) represented earlier states in the affinity
maturation process than germinal center B cells (GCBCs), and to define the relationships among
other B cell subtypes including CD19" MBCs and un-switched MBCs. More specifically, [6]
used the SC test with trait values permuted among trees. However, the simulation analyses
performed here demonstrated the SC test is highly conservative, and that permuting among trees
may only detect unstructured association among trait values (Fig 3). It is therefore not clear
whether the relationship from CD19" MBCs to GCBCs observed in [6] was driven by biased
ancestor/descendant relationships among these cell types within trees. Our results above suggests
that the SP test using within tree permutation would be a more appropriate test of this

relationship.

We characterized the relationships among B cell subsets with the SP test using within tree
permutation for each of the three subjects. These analyses showed a significantly high SP
statistic from CD19" MBCs to GCBCs and to CD19'° MBCs in all three subjects (8 > 0, p <
0.025; Fig 4B-D). These analyses confirm the conclusions in [6] that CD19" MBCs are

significantly closer, cladistically, to the predicted germline sequence than GCBC sequences.
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Naively, one may interpret this as evidence that GCBC cells derive from CD19" MBCs.
However, because GCBCs are expected to have far higher mutation rates than MBCs, the
observed patterns are also consistent with early production of CD19" MBC from GCBCs,
followed by a near cessation of mutations in CD19" MBCs. This is consistent with the
conclusions of [6] that CD19" MBCs represent earlier stages in the GC reaction, rather than the
direction of differentiation. Overall, these SP tests confirm that the previously observed
relationships from CD19" MBCs and CD19' MBCs to GCBCs are driven by biased
ancestor/descendant relationships within trees rather than simply association in the same trees, as

may have been the case from the previously used SC tests with among tree permutations [6].

Sequential isotype switching to IgE and IgG4

Antibody isotypes are a major determinant of function. Of principle interest is characterizing
whether IgE antibodies, the primary antibody isotype associated with allergic response, arise
directly from IgM switching, or through sequential switching from another downstream isotype
[30,31]. Previous studies have shown evidence that IgE in mice and human adults arises from
sequential switching primarily from IgG [30,31], though a recent study in 27 humans in the first
three years of life found evidence of a greater association between IgA1 and IgE in children with
food allergy and eczema [28]. Specifically, [28] showed a higher number of shared clones
between IgE and IgA1 than between IgE and other isotypes in these subjects. A phylogenetic test
of this relationship would confirm that IgE and IgA1 sequences show a direct ancestor-

descendant relationship within these B cell trees rather than just being part of the same clone.
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We applied our discrete trait framework to determine the origins of IgE in a single subject (id =
2442) from [28]. This subject was selected due to reported history eczema, food allergy, and B
cell clones containing IgE and other isotypes [28]. Using an SP test in which only state changes
leading to IgE were considered and trait values were permuted among trees, we found a
significantly high SP statistic from IgA1 to IgE (Fig SB). No other isotype showed a
significantly high SP statistic to IgE. These results favor IgE arising from sequential switching
through IgA1 over direct switching from IgM in this subject. Performing a similar test using only
state changes leading to IgG4 revealed a significantly high SP statistic from IgG1 and IgG2 to
IgG4 (Fig SE). This pattern is similar to irreversible switching within the IgG family (Fig 3E).
As shown in simulation analyses, this test is not suited to infer relative rates of switching from
different isotypes if all kinds of switches are considered. However, these results are most
consistent with origin of 1gG4 through sequential switching with other IgG isotypes rather than
direct switching from IgM or sequential switching from IgA1. Overall, these results are
consistent with the conclusions of [28] that IgE arose preferentially through switching from IgAl
in this subject. Our results further suggest IgG4 arose preferentially via sequential switching

from other IgG subtypes in this subject.
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Discussion

Phylogenetic techniques have the potential to reveal important information about B cell
migration, class switching, and cellular differentiation. While great strides have been made using
phylogenetic models to study evolution and trait change generally, there are significant
challenges to translating these approach to B cells. As a step in this direction, hypotheses about
the ancestor/descendant relationships of B cell trait values may be usefully investigated using
heuristic approaches that are robust to uncertainties in branch length estimation. Here, we
introduce three maximum parsimony-based summary statistics to characterize the distribution of
trait values along phylogenetic trees. Significance of all of these statistics is tested by comparing
to statistics calculated on trees with permuted data. We demonstrate the efficacy of these tests
using simulations, and show that the SP test is the most useful for characterizing
ancestor/descendant relationships among trait values. We further demonstrate how these
statistics can test hypotheses about empirical B cell datasets by characterizing the relationship
between T-Bet+ memory B cells and germinal center B cells in three HIV+ patients, and the

class switching origins of IgE and IgG4 in a human subject over the first three years of life.

Simulations demonstrate that the SP test was uniquely able to determine the direction of biased
origination and state change among the approaches investigated. In simple simulations
containing two states (4 and B) a significantly high SP statistic from A to B was associated with
origination in 4 and biased state change from A4. This signal decreased as the overall rate of
switching increased. In more complex scenarios, the SP test was able to differentiate between

traits that were generated through biased state change in a particular direction versus traits that
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were simply associated with each other. The SP test was also able to distinguish between simple
modes of constrained evolution such as direct and sequential switching. These results indicate
the SP test may have broad utility in characterizing ancestor/descendant relationships among B

cell discrete traits.

We next used two datasets to demonstrate that the SP test could be used to derive meaningful
biological conclusions. In the first, we confirm that T-Bet+ memory B cells tend to be the
predicted immediate ancestors of GC B cells within lineages trees obtained from three HIV+
subjects. Though this relationship may primarily be due to differences in mutation rate over time
between memory and GC B cell subsets, this does confirm prior findings and demonstrates that
the T-Bet+ memory B cell subset represents an earlier state in the affinity maturation process,
possibly contributing to an impaired immune response to HIV [6]. We next characterized the
isotype switching patterns of sequences obtained from a human over the first three years of life
[28]. In this analysis, we found evidence of sequential switching from IgA1 to IgE, as well as
evidence of sequential switching from IgG subtypes to IgG4. Sequential switching from IgAl to
IgE is consistent with [28] but not other analyses performed on data taken from adults, which
favor sequential switching from IgG [30]. This possibly reflects differences in isotype switching
patterns between adults and children. Overall these results demonstrate that the discrete trait
analysis framework developed here can be used to test important hypotheses about B cell

differentiation and class switching.

There are a number of limitations with these methods. First, tree topologies were estimated using

maximum parsimony. While maximum parsimony is not a statistically consistent estimator of
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tree topology and is known to give inaccurate predictions over long branch lengths [32], it has
been shown to be an accurate estimator of tree topology in certain B cell applications [33], and is
widely used in B cell phylogenetic analysis [5,17]. In any case, the statistics presented here are
not limited to tree topologies inferred through maximum parsimony. The three statistics
proposed here (Eq. 1-3) are also based on maximum parsimony, and may have similar
inaccuracies over long branch lengths. Further, the statistical tests assume that the process of
state change is independent of the tree shape, when the two may be coupled e.g. [34]. This
assumption of independence is commonly made in discrete trait analysis e.g. [8] to enable
computational tractability, and because the actual link between tree shape and state change is
unknown or cannot be modelled. A significantly high SP statistic could be potentially caused by
factors other than biased state change. For instance, because tree branch lengths represent genetic
distance rather than time, it is possible that cell types with low mutation rates over time will
spuriously appear ancestral to those with high mutation rates. This effect likely underlies our
analysis of B cell subtypes in HIV. Finally, it is possible that SHM is actually occurring at
another, un-sampled site which is seeding the sites that were sampled. Overall, it is important to
carefully consider alternative explanations when trying to determine the biological basis for a

significantly high SP statistic.

An important limitation of the SP test is that it, like many other phylogeographic approaches e.g.
[29] is affected by biased data sampling. This may arise due to experimental factors that are
difficult to control. For instance, under-sampling a trait value may cause a spurious, significantly
high SP from that trait value. Previous analyses of viral migration have dealt with potential

sampling bias by performing tests across multiple down-sampling repetitions [9]. In practice, it
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577  can be difficult to know if B cells with certain trait values have been sampled proportionally to
578 their relative population sizes. However, if a type of B cell is known to be under-sampled in a
579 particular experiment, and is predicted to be the descendant of another B cell type, it can be

580 argued that this relationship is unlikely to be due to biased sampling (Fig 2E). Alternatively, if
581 multiple samples are tested it is possible that these samples will have a wide range of sequence
582  proportions belonging to different traits. If these differences in sequence proportions are

583  uncorrelated with SP test results, it could be argued that observed results are unlikely to be due to
584  consistent under-sampling of B cells with a particular trait value.

585

586  Our simulation analyses revealed that that the SP test is difficult to interpret when considering
587  complex constrained models such as irreversible isotype switching (Fig 3C-E). To recreate

588  isotype switching, we performed four state simulations in which only state changes proceeding in
589 the direction of state 4, B, C, and D were allowed. Unexpectedly, these simulations tended to
590 show a significantly low SP statistic from 4 to D, but a significantly high SP statistic for B and C
591 to D (Fig 3E). This biased trend is likely driven by the fact, due to constraints in the direction of
592  state change, randomized trees tend to have more switches from A4 than expected based on the
593 relative frequency of 4. This produces a significantly high SP for switches from 4 to D. An

594  alternative may be to use the SP statistic (Eq. 3) without comparing to a null distribution, which
595 is equivalent to comparing the relative frequency of each type of switch observed. However, the
596  observed switch frequency (SP statistic) is not proportional to the true relative rate of state

597 change in general. For instance, in the two state Markov model simulations presented here (Fig
598  2), the SP statistic alone is both positively and negatively related to the true relative rate of state

599 change, depending on other parameters (Supplemental File S5). Comparing SP statistics to
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those obtained from randomized trees (i.e. the SP test) usefully corrects this relationship in
unconstrained models (Fig 2), but not always in constrained ones (Fig 3C-E). Ultimately,
isotype switching is a complex, constrained process, and our analyses suggest the relative rates
of isotype switching inferred from B cell trees should be interpreted cautiously. We suspect a
general method for accurately estimating these rates will require a model-based approach, such

as a non-reversible Markov model.

Future methods to differentiate migration, differentiation, and isotype switching patterns in B
cells might improve upon the approach developed here by explicitly modeling these processes
along a phylogeny, incorporating branch length information, and better accounting for
uncertainty in tree topology. The heuristic approach introduced here crucially does not use
branch lengths to help predict internal node states of the tree. Ignoring this source of information
likely lowers power, but is possibly advantageous because the relationship between mutation rate
and time is not currently well understood, and likely varies by cell type. While the approach
developed here uses phylogenetic bootstrap replicates to account for uncertainty in tree topology
[24], this may also be done using a posterior distribution of topologies generated by MCMC
sampling. This was recently done for naive sequence inference in individual B cell lineages [35].
Phylogenetic bootstrapping has less desirable statistical properties than posterior distributions,
but is a widely used means of assessing reproducibility of tree topology and is more
computationally tractable for large datasets. Overall, though there is potential for improvement,
the approach introduced here effectively deals with important challenges such as incorporating
information across trees, accounting for uncertainty in tree topology, and scaling efficiently

when analyzing large datasets.
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623

624 A phylogenetic discrete trait analysis framework fills an important gap in B cell sequence

625  analysis. The proposed framework provides a principled, flexible, and scalable approach for
626  characterizing migration, class switching, and differentiation in a wide array of contexts. This
627  differs from other phylogenetic tools we developed recently, which used model-based

628  approaches for characterizing somatic hypermutation and clonal selection [4,36]. The methods
629 developed in this paper are available in the R package dowser, available at

630  https:/bitbucket.org/kleinstein/dowser as part of the Immcantation suite

631  (http://immcantation.org). Scripts for performing analyses in this manuscript are available at:

632  https://bitbucket.org/kleinstein/projects.

633

30


https://doi.org/10.1101/2020.05.30.124446
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.124446; this version posted May 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

634  Acknowledgements

635 K.B.H was supported through a PhARMA Foundation post-doctoral fellowship in informatics.
636  This work was funded in part by the European Research Council under the European Union’s
637  Seventh Framework Programme (FP7/2007-2013)/European Research Council grant agreement
638 number 614725-PATHPHYLODYN. This work was funded in part by National Institutes of
639  Health, National Institute of Allergy and Infectious Diseases grant RO1 AI104739.

640

641 Competing interests

642  S.H.K. receives consulting fees from Northrop Grumman.

643

31


https://doi.org/10.1101/2020.05.30.124446
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.124446; this version posted May 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a b c

A

O A

A A

O O

O O O
Stat.| & |pval.||Stat.| & |pval.||Stat.] & [pval.
PS | 041|054 || PS | -46 |0.002|| PS |-3.54 |0.004
S%b 0.68 | 0.27 SCab -2.3 1 0.03 SQ,:]b -0.76 | 0.28
SB[ 0.08 | 0.32 || SR, 0.003| 05 || SRyl 0.5 |0.024
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645  Fig 1: Hypothetical phylogenies used to illustrate tree/trait association statistics. Trait values at
646  internal nodes of the tree are predicted using maximum parsimony reconstruction given the trait
647  values at the tips, which are shown using different colors and shapes. Below each tree is a table of
648 0 and corresponding p values for PS, SC, and SP tests performed on each tree, calculated using
649 1000 permutations. Tests were performed on the tree topologies themselves - bootstrap replicates
650 were not performed. (a) No association between tip-trait values and tree: Distribution of traits
651  across this tree is indistinguishable from randomly distributed traits by any statistic used. (b) 7ip-
652  trait values clustered in tree: Association between trait and tree structure revealed by significantly
653  low PS statistic. This tree also has a significantly low switch count statistic from 4 to B (SCu).
654  Further, this tree has an identical switch proportion statistic (1/2) from 4 to B as from B to 4, which
655 is not significantly different from permuted data (SPuw). (¢) Biased ancestor/descendant
656  relationships among trait values: As in b, this tree also shows a significant relationship between
657  tree and trait distribution (PS). However, this tree also has a significantly high SP statistic from 4
658  to B (SPu). Only the SP test captures the directionality of this relationship.
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661

662  Fig 2: Distribution of SP test p values from 4 to B from two state simulation analyses in which
663  state change between state 4 and B was determined by the probability of starting in 4 (7.), relative
664  rate of migrating from 4 to B (ra»), and the average rate of state change (7). To the right of each
665  plot, possible starting states are circled, relative rates are shown by arrowhead size. (a) 7, = 0.5,
666  rap = 1, fully unbiased state change, shows roughly uniform distribution of p values at all tested
667 rates. (b) 7. = 1, rap = 1 shows low p values at low rates (10) but not at higher rates. (¢) z, = 0.5,
668 7. = 10 shows low p values at rates < 50. (d) 7, = 1, and r.» = 10 shows low p values at rates <
669  100. (e) @4 = 1, rap = 1 shows low p values at rate < 50 if 50% of 4 sequences are discarded.
670  Compared to (a), this shows that p values are sensitive to biased sampling of sequences. Red lines
671  show the cutoff of p value = 0.05.

672

673

33


https://doi.org/10.1101/2020.05.30.124446
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.124446; this version posted May 31, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a Permute among trees b Permute within trees
1 00 - —
]
® © 0.751 ® ©
v 050- v
D D —
0.254
T e oL D AT BL G DT
C Constrained parsimony d Constrained parsimony
o 1.004 —— —— ——
=
2 B—>C 075+ ®—cC
» l 0.50+ l
2B D B— D
o 254
) 0.25
S N AT B, O
> b D > b D
e Constrained parsimony f Constrained parsimony
1.00 = e—— —
B®—> C 0.75- B0 !
i>< ¥ 0.50- XC% !
B—D <>
0.25+
0.00- A T B T CI T T T
A B C
0 b D > b D
674 Switch type
675
676  Fig 3: Distribution of SP test p values from four state simulation analyses under multiple modes
677  of evolution diagrammed to the left of each plot. Twenty repetitions were performed in each
678  scenario. In simulations, possible starting states are circled and possible state changes are shown
679  with arrows. All allowed state changes occurred at the same relative rate and the total rate of state
680 changing () was 10 changes/mutation/site (see Fig 2). (a) Permuting trait values among trees
681 reveals low p values for all state changes between A4 and B, and C and D. (b) Permuting within
682  each tree reveals low p values from C to D, but not between 4 and B. Both a and b imposed no
683  constraints on the types of state changes allowed in the maximum parsimony algorithm. (¢) Direct
684  switching simulations result in low p values from 4 to D, but not from other states to D. (d)
685  Sequential switching simulations result in low p values from B to D but not from other states to D.
686  (e) Irreversible switching simulations result in low p values from B and C to D, but not from 4. (f)
687  Unconstrained switching simulations also result in low p values from B and C to D, but not from
688  A. The strange results of e and f are likely artefacts of the constrained parsimony algorithm, which
689  forbids reverse alphabetical state changes (e.g. D to C), used to count state changes in simulations
690 c-d.
691
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693
694  Fig 4: Analysis of B cell subtypes in three HIV+ subjects. (a) Example tree visualized using ggtree
695 [37,38] showing observed relationship between CD19" MBCs and GCBCs. Ambiguous node
696 states (“CD19"/GCBC” and “Any”) are also shown. (b-d) Direction of significant SP test 8 values
697  for subjects 1 (b), 2 (¢), and 3 (d). Arrows within each diagram show the direction of significantly
698  high (blue) or significantly low (red) SP statistics between CD19" MBCs, CD19" MBCs,
699  unswitched MBCs (Unsw), and GCBCs in each subject.
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702
703  Fig 5: Analysis of antibody isotypes from a single subject. (a) Example trees visualized using
704  ggtree [37,38] showing observed relationships between cells expressing BCRs with IgA1 and IgE,
705 and IgG1 and IgG4 isotypes. IgE and IgG4 are indicated on each tree using larger tip circles. (b)
706  Distribution of SP test & values to IgE from each of the other isotypes (different colors). (c)
707  Distribution of SP test & values to IgG4 from each of the other isotypes (different colors). State
708 changes in b and ¢ were calculated using constrained parsimony which forbids state changes that
709  violate the geometry of the Ig heavy chain locus, and SP tests were performed using permutation
710  among trees.
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