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Abstract.

Despite global investment in One Health disease surveillance, it remains difficult—and often very
costly—to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can be
used to guide sampling prioritization, but predictions from any given model may be highly uncertain;
moreover, systematic model validation is rare, and the drivers of model performance are consequently
under-documented. Here, we use bat hosts of betacoronaviruses as a case study for the data-driven
process of comparing and validating predictive models of likely reservoir hosts. In the first quarter of
2020, we generated an ensemble of eight statistical models that predict host-virus associations and
developed priority sampling recommendations for potential bat reservoirs and potential bridge hosts for
SARS-CoV-2. Over more than a year, we tracked the discovery of 40 new bat hosts of betacoronaviruses,
validated initial predictions, and dynamically updated our analytic pipeline. We find that ecological trait-
based models perform extremely well at predicting these novel hosts, whereas network methods
consistently perform roughly as well or worse than expected at random. These findings illustrate the
importance of ensembling as a buffer against variation in model quality and highlight the value of
including host ecology in predictive models. Our revised models show improved performance and predict
over 400 bat species globally that could be undetected hosts of betacoronaviruses. Although 20 species of
horseshoe bats (Rhinolophus spp.) are known to be the primary reservoir of SARS-like viruses, we find at
least three-fourths of plausible betacoronavirus reservoirs in this bat genus might still be undetected. Our
study is the first to demonstrate through systematic validation that machine learning models can help
optimize wildlife sampling for undiscovered viruses and illustrates how such approaches are best
implemented through a dynamic process of prediction, data collection, validation, and updating.
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Introduction

Identifying likely reservoirs of zoonotic pathogens is challenging®. Sampling wildlife for the presence of
active or recent infection (i.e., seropositivity) represents the first stage of a pipeline for proper inference
of host species?, but sampling is often limited in phylogenetic, temporal, and spatial scale by logistical
constraints’. Given such restrictions, statistical models can play a critical role in helping to prioritize
pathogen surveillance by narrowing the set of plausible sampling targets, by either ruling out clades of
low-likelihood hosts*® or predicting high-risk clades®. For example, machine learning approaches have
generated candidate lists of likely, but unsampled, primate reservoirs of Zika virus, bat reservoirs of
filoviruses, and avian reservoirs of Borrelia burgdorferi7‘9.

At the same time, host predictions are rarely validated empirically™®. Occasional case studies suggest both
success and failures. For example, models predicted Eonycteris spelaea as an undetected bat host of
filoviruses’, which was later confirmed through field sampling in southeast Asia™*?. Similarly, models of
mosquito—Zika virus interactions predicted Culex quinquefasciatus as a likely vector™®, which was rapidly
validated through experimental competence trials'**>. A recent model of Nipah virus in India aso
predicted several bat species as undetected hosts’. However, experimental infection of the predicted
Rousettus aegyptiacus demonstrated that this species cannot support virus replication'®. Further, Nipah
virus was recently found circulating in Pipistrellus pipistrellus, a species with alow predicted probability
of being a host'. More generaly, predictions from most models remain either untested or
opportunistically validated, limiting insight into which approaches have greatest predictive accuracy.
Systematically validating predictions would provide critical insights into the broader utility (or inefficacy)
of different models in zoonosis research. Moreover, these modeling approaches are generally devel oped
in isolation; implementation of multiple modeling approaches collaboratively and simultaneously, as part
of a model-to-validation workflow, could reduce redundancy and apparent disagreement at the earliest
stages of pathogen tracing while advancing predictive analytics by addressing inter-model reliability.

Coronaviruses (CoVs) are an ideal family of viruses with which to compare and vaidate predictive
models of likely zoonotic reservoirs. CoVs are positive-sense, single-stranded RNA viruses that are
detected across mammals and birds'®. They have a broad host range, a high mutation rate, and the largest
genomes of any RNA viruses, but they have also evolved mechanisms for RNA proofreading and repair
to mitigate the deleterious effects of a high recombination rate acting over a large genome®™.
Consequently, CoVs fit the profile of viruses with high zoonotic potential. There are eight human CoV's
(three and five in the genera Alphacoronavirus and Betacoronavirus, respectively), of which three are
highly pathogenic in humans. SARS-CoV, MERS-CoV, and SARS-CoV-2. These are zoonctic and
widely agreed to have evolutionary originsin bats® 2.

Our collective experience with both SARS-CoV and MERS-CoV illustrates the difficulty of tracing
specific animal hosts of emerging viruses. During the 2002—2003 SARS epidemic, SARS-CoV was traced
to the masked palm civet (Paguma larvata)®, but the ultimate origin remained unknown for several years.
Horseshoe bats (family Rhinolophidae: genus Rhinolophus) were implicated as reservoir hosts in 2005,
but their SARS-like CoV's were not identical to circulating human strains®. Stronger evidence from 2017
placed the most likely evolutionary origin of SARS-CoV in Rhinolophus ferrumequinum or R. sinicus™.
Presently, there is even less certainty about the origins of MERS-CoV, although spillover to humans
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occurs relatively often through contact with dromedary camels (Camelus dromedarius). A virus with
100% nucleotide identity in a ~200 base pair region of the MERS-CoV polymerase gene was detected in
Taphozous perforatus (family Emballonuridae) in Saudi Arabia®®; however, based on spike gene
similarity, other sources treat HKU4 virus from Tylonycteris pachypus (family Vespertilionidae) in China
as the most closely related bat virus*?. Several bat CoV's have shown close phylogenetic relationships to

MERS-CoV, with a surprisingly broad geographic distribution from Mexico to China® 2.

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, a novel virus with presumed
evolutionary originsin bats. Although the earliest cases were linked to awildlife market®, contact tracing
was limited, and there has been no definitive identification of the wildlife contact that resulted in spillover
nor a true “index case.” The divergence time between SARS-CoV-2 and two of the closest-related bat
viruses (RaTG13 from Rhinolophus affinis and RmYNO2 from Rhinolophus malayanus) has been
estimated as 40-50 years®, suggesting that the main host(s) involved in spillover remain unknown.
Evidence of vira recombination in pangolins has been proposed but is unresolved®. SARS-like
betacoronaviruses have been recently isolated from Sunda pangolins (Manis javanica) traded in wildlife
markets**°, and these viruses have a very high amino acid identity to SARS-CoV-2, but only show a
~90% nucleotide identity with SARS-CoV-2 or Bat-CoV RaTG13*. None of these host species are
universally accepted as the origin of SARS-CoV-2 nor are any of the viruses a clear SARS-CoV-2
progenitor, and a “better fit” wildlife reservoir could likely still be identified. However, substantial gaps
in betacoronavirus sampling across wildlife limit actionable inference about plausible reservoir hosts and
bridge hosts for SARS-CoV-2%.

Building a predictive ensemble

Here, we use betacoronaviruses in bats as a case study for the data-driven process of comparing and
validating predictive models of likely reservoir hosts, with the ultimate aim to help prioritize surveillance
for known and future zoonotic viruses. We focused on betacoronaviruses rather than SARS-like CoV's
(subgenus Sarbecovirus) specificaly, as the latter are only characterized from a very small number of bat
species in publicly available data. This sparsity makes current modeling methods poorly suited to more
precisely infer potential reservoir hosts of sarbecoviruses specificaly. Instead, we used predictive models
to (1) identify bats (and other mammals) that may broadly host any betacoronavirus and (2) identify
species with ahigh viral sharing probability with the two Rhinolophus species carrying the earliest known
close viral relatives of SARS-CoV-2. In mid-2020, at the early stages of the COVID-19 pandemic, we
developed a standardized dataset of mammal—virus associations by integrating a previously published
edgelist®® with a targeted scrape of all GenBank accessions for Coronaviridae and their associated hosts.
Our final dataset spanned 710 host species and 359 virus genera, including 107 mammal hosts of
betacoronaviruses as well as hundreds of other (non-CoV) association records. We integrated our host—
virus data with a mammal phylogenetic supertree® and over 60 standardized ecological traits of bat
SPEci eg/ 4041

We then used these data to generate an ensemble of predictive models and drew on two popular
approaches to identify candidate bat reservoir hosts of betacoronaviruses (Table 1). Network-based
methods estimate a full set of “true” unobserved host—virus interactions based on a recorded network of
associations (here, pairs of host species and associated viral genera). These methods are increasingly
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popular as a way to identify latent processes structuring ecological networks**™, but they are often
confounded by sampling bias and often can only make predictions for species within the observed
network (i.e., those that have available virus data; in-sample prediction). In contrast, trait-based methods
use observed relationships concerning host traits to identify species that fit the morphological, ecological,
or phylogenetic profile of known host species of a given pathogen, and rank the suitability of unknown
hosts based on these trait characteristics®®. These methods may be more likely to recapitulate patterns in
observed host—pathogen association data (e.g., geographic biases in sampling, phylogenetic similarity in
host morphology), but they more easily correct for sampling bias and can predict host species without
known viral associations (i.e., out-of-sample prediction).

In total, we implemented eight different predictive models of host-virus associations, including four
network-based approaches, three trait-based approaches, and one hybrid approach using trait and
phylogenetic information to make network predictions. These efforts generated eight ranked lists of
suspected bat hosts of betacoronaviruses. Each ranked list was then scaled proportionally and
consolidated in an ensemble of recommendations for betacoronavirus sampling and broader eco-
evolutionary research. Next, approximately one year after our initial model ensemble, we reran our entire
analytic pipeline with new bat betacoronavirus detections, taking advantage of the recent proliferation of
published research on bat CoVs. This provided an unprecedented opportunity to rapidly compare model
performance, provide up-to-date predictions of likely but unsampled bat hosts, and critically assess model
accuracy in the context of ongoing sampling for bat CoVs.

Predicted bat reservoirs of betacor onaviruses

Our initial ensemble found wide variation in model performance; individual models explained 0-69% of
the variance in betacoronavirus positivity (mean of 25%), whereas the ensemble generally had improved
predictive capacity (R? = 42%; Supplemental Figure 1). The predictions of bat betacoronavirus hosts
derived from network- and trait-based modeling approaches displayed strong inter-model agreement
within each group but largely differed between groups (Figure 1). Of the 1,037 included bat species not
known to be infected by betacoronaviruses during our initial analysis in 2020 (against 79 known
positives), our models identified between 7 and 722 potential hosts based on a 10% omission threshold
(90% sensitivity). Applying this same threshold to our ensemble predictions, our initial models identified
371 bat species as likely undetected hosts. Importantly, only 48 suspect hosts were identified in-sample,
whereas we identified 323 suspect hosts out-of-sample, highlighting that most undiscovered hosts—and
in turn undiscovered betacoronaviruses—should be in unsampled bat species.

This multi-model ensemble predicted undiscovered betacoronavirus bat hosts with striking geographic
and taxonomic patterning (Figure 2). In-sample, predicted hosts were globally distributed and
recapitulated geographic patterns of known bat betacoronavirus hosts in Europe, the Neotropics, and
southeast Asia; however, our models also predicted high richness of likely bat reservoirs in North
America. Applying agraph partitioning agorithm (phylogenetic factorization) to the bat phylogeny*®, we
similarly found that both betacoronavirus positivity and in-sample predictions were, on average, lowest
for the superfamilies Noctilionoidea and Vespertilionoidea in the Yangochiroptera. This makes intuitive
sense, as these taxa do not include the groups known to harbor the vast majority of betacoronaviruses
detected in bats (e.g., Rhinolophus, Hipposideridag). In contrast, our out-of-sample predicted hosts were
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more starkly clustered in much of sub-Saharan Africa and southeast Asia (e.g., Vietnam, Myanmar, and
southern China), with no representation in the western hemisphere. Likewise, out-of-sample predictions
were lower in Neotropical bat families (e.g., Noctilionidae, Mormoopidae, Phyllostomidae), most
emballonurids, and primarily Neotropical molossids, whereas the Rhinolophus genus and most of the Old
World subfamily Pteropodinae were predicted to be more likely to host betacoronaviruses (Supplemental
Table1).

Because only trait-based models were capable of out-of-sample prediction, the differences in geographic
and taxonomic patterns of our predictions likely reflect distinctions between the network- and trait-based
modeling approaches. We suggest these should be considered as qualitatively different lines of evidence.
Network approaches proportionally upweight species with high observed vira diversity, recapitulating
sampling biases largely unrelated to coronaviruses (e.g., frequent screening for rabies lyssaviruses in the
common vampire bat Desmodus rotundus, which has been sampled in a comparatively limited capacity
for coronaviruses®™* ). Highly ranked species may also have been previously sampled without evidence
of betacoronavirus presence; for example, Rhinolophus luctus and Macroglossus sobrinus from Chinaand
Thailand, respectively, tested negative for betacoronaviruses, but detection probability was limited by
small sample sizes’®™. In contrast, trait-based approaches are constrained by their reliance on phylogeny,
ecological traits, and geographic covariates, all of which made models more likely to recapitul ate existing
spatia (i.e., clustering in southeast Asia) and taxonomic (i.e., the Rhinolophus genus) patterns. However,
out-of-sample predictions are, by definition, inclusive of unsampled bat hosts, which potentially offer
greater return on vira discovery investment.

M odel validation

Following this initial 2020 model ensemble, we used broad literature searches to systematically track
betacoronavirus-positive bat species that were missed in our initial data compilation (e.g., CoV sequences
that were not annotated to genus on GenBank>*>"). These searches also tracked the exponential increasein
data on bat CoVs stemming from the emergence of SARS-CoV-2 that were published after our first
model ensemble. A year after our initial data compilation (June 2021), we aso reran our initial scrape of
GenBank to identify new betacoronavirus-positive bats, limiting our search to matches to
Betacoronavirus (taxid: 694002) and Chiroptera (taxid: 9397); however, this did not recover any
additional positive host species not already recorded as positives in our updated data. We also mined
publically available metagenomic and transcriptomic datasets for evidence of betacoronavirus infection®-
" However, no published libraries contained evidence of betacoronaviruses (see Supplement). Lastly, we
analyzed the wildlife testing data from the USAID Emerging Pandemic Threats PREDICT program
collected from 2009-2019, which was publicly released in June 2021 and includes a number of
betacoronaviruses that were discovered during the program’s run (2009 to 2019) but have only published
and identified down to the genus level in the full release.

In total, we uncovered 40 novel bat hosts of betacoronaviruses that were either absent from our original
dataset or newly discovered after our initial analyses. This data update resulted in a total of 119 positive
bat species, and we continue to collate these records (https.//www.viralemergence.org/betacov). Of these
40 new hosts, the original ensemble correctly predicted only 24 (60% success rate), but some submodels
performed significantly better than others, including both network- and trait-based methods; Network-1
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identified 20 of the 21 in-sample novel hosts (95%), while Trait-1 identified 37 of the 40 novel hosts
(92.5%). The high performance of both of these top models, and their high performance on the training
data (Supplemental Figure 1), suggest both approaches contributed usefully to the initial ensemble.

The 40 newly discovered hosts also enabled us to develop a new kind of performance metric for machine
learning tasks with presence-only validation data (i.e, new “positives’ can be collected, while
“negatives’ are substantially more difficult to prove). If a model makes predictions at random, the
predicted prevalence of positives in the training data should be roughly the same as the success rate with
novel test data. For example, a “coin toss” model will estimate that approximately 50% of species are
betacoronavirus hosts and would likewise successfully identify approximately 50% of newly discovered
hosts. A high-performing model, on the other hand, will identify a higher proportion of newly discovered
hosts than expected at random. To evaluate how models perform in this regard, we developed a new
diagnostic called the training prevalence-test sensitivity curve (TPTSC) that can be applied to modeling
problems where training data are composed of a mix of true positives, true negatives, and false negatives,
but test data only include novel true positives (Figure 3). The TPTSC plots the assumed prevaence in the
training data against the sensitivity in the test data at every possible threshold from 0 to 1; these curves
can be treated like receiver-operator or precision-recall curves, where a higher area under the curve
(AUC) indicates better-than-random performance. Using the AUC-TPTSC scores, we found that trait-
based and hybrid models consistently performed extremely well (Trait-1: 0.80; Trait-2: 0.79; Trait-3:
0.73; Hybrid-1: 0.68), while network methods performed at-random or worse (Network-1: 0.58; Network-
2: 0.43; Network-3: 0.51; Network-4: 0.55). Accordingly, the ensemble performed comparably to the
trait-based models (AUC-TPTSC = 0.75).

These results have two key implications for future efforts to target sampling for putative reservoir hosts.
First, ensembling can be useful as a buffer against variation in model quality, particularly in settings when
the underlying drivers of model performance have yet to be identified. Second, and perhaps more
importantly, models failed to have better-than-random performance without trait data that characterized
bat ecology, even when they included phylogenetic data (e.g., Network-4). Part of this difference may
aso be attributable to the different scope of prediction: the response variable of trait-based models is
betacoronavirus presence, while betacoronavirus-relevant predictions were extracted from a broader set of
predictions made by the network models. However, this is contraindicated by the results of Hybrid-1,
which performed comparably to the other trait-based models. Therefore, we conclude that making
meaningful predictions about likely zoonotic reservoirs is best accomplished by incorporating detailed
information on host ecology. The vastly greater performance of trait-based models provides another
compelling reason, in addition to other One Health and conservation rationales, to better understand the
fundamental ecology and evolution of bats.

Dynamic prediction

Inclusion of these 40 novel bat hosts dramatically improved the performance of our predictive models.
When revised with new data, our eight individua models explained 8-73% of the variance in
betacoronavirus positivity (mean of 32%), with the ensemble R? increasing to 60% (Supplemental Figure
2). Using our previously applied 90% sensitivity threshold, our revised ensemble identified a more
narrow set of 311 bat species as likely undetected hosts of betacoronaviruses. Predictions from the initial
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and revised ensembles were strongly corrdlated (p = 0.97). However, after dynamically updating our
models, our revised ensemble lost 54 suspect reservoirs and gained 26 new suspect reservoirs (Figure
4A). Predicted reservoir species that were lost from the initial ensemble were dominated by members of
the Vespertillionidae, whereas new suspect hosts were gained in the Vespertillionidae, Hipposideridae,
and Molossidae.

Using the 40 newly discovered hosts, we were also able to tailor the updated ensemble responsively to
model performance. To do so, we weighted the rank averaging across models based on their AUC-TPTSC
score relative to the lowest performing model (Network-2). In doing so, we effectively dropped Network-
2 from the ensemble, a choice supported by the fact the model’ s predictions are substantially poorer than
expected at random. In the updated ensemble, this correction creates a marginal improvement in model
performance (unweighted ensemble: AUC-TPTSC = 0.755; weighted ensemble: AUC-TPTSC = 0.788).
Therefore, we applied this weighting to the ensemble of updated predictions in the final copy released
with this study.

This weighted revised ensemble identified 423 suspect bat hosts, dramatically expanding the scope of
plausible candidates for future virus discovery compared to the two prior unweighted ensembles (Figure
4B). Predictions from this final ensemble iteration were slightly less correlated with those from our initial
ensemble (p = 0.92), and these final predictions retained most suspect hosts from the original ensemble.
The top-ranked undiscovered hosts retained between our model updates included Murina leucogaster,
Myotis nattereri, M. blythii, Barbastella barbastellus, and Taphozous melanopogon in-sample, whereas
the top out-of-sample hosts consistent between ensembles included Macroglossus sobrinus, Rhinolophus
fumigatus, and R. marshalli (Figure 4C). Only 26 predicted hosts were lost, most of which were from the
Vespertilionidae and Rhinolophus genus. Of the 208 additional predicted hosts added to our fina
ensemble, most of these bat species were observed in the families Vespertilionidae (primarily the genus
Myotis), Pteropodidae (primarily the genus Pteropus), Molossidae (primarily the genera Chaerephon and
Mops), Hipposideridae (all in the genus Hipposideros), and Rhinolophidae, although we also identified
several new predicted betacoronavirus hosts in the families Nycteridae, Phyllostomidae, Emballonuridae,
and Mystacinidae. The top-ranked novel predicted in-sample hosts included Myotis myotis, Hipposideros
bicolor, and multiple Pteropus species (P. scapulatus, P. vampyrus, and P. hypomelanus), whereas the
most likely new out-of-sample hosts included multiple Myotis species (M. chinensis, M. altarium, and M.
bocagii), Pipistrellus rueppellii, Scotomanes ornatus, Neoromicia rendalli, and Rhinolophus landeri
(Figure4D).

For Rhinolophus bats specifically, our final ensemble identified 11 new suspect hosts, resulting in likely
hosts for over three quarters of the species in this genus that are not currently known to be infected by
betacoronaviruses (44 of 57 in our dataset), compared to 20 known hosts. Given the known roles of
rhinolophid bats as hosts of SARS-like CoVs'®#®, it is notable that our results suggest the diversity of
these viruses could be undescribed for around three-fourths of these potential reservoir bat species.

Asin our initia ensemble, we lastly evaluated geographic and taxonomic patterns in this finalized set of
predicted betacoronavirus hosts. Spatially, undiscovered bat hosts were globally distributed (in not only
the eastern but also western hemisphere) and especially concentrated within a more narrow band of
eguatorial sub-Saharan Africa and more starkly in Malaysia and Borneo (Figure 5A). Importantly, the
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geography of these predicted hosts contrasted with the distributions of both known bat hosts and likely
hosts from our initial ensemble, each of which instead showed a stronger hotspot in southern China. We
also identified distinct clades of high-risk bat hosts from the weighted revised ensemble (Figure 5B,
Supplemental Table 2). Both the Rhinolophus genus and subclades of the Pteropodidae again had greater
concentrations of predicted betacoronavirus hosts, although phylogenetic factorization now identified the
Old World molossids (i.e., genus Mops and Chaerophon) as particularly likely to host these viruses, even
though the Mollosidae as a whole have lower mean probabilities of betacoronavirus hosts.

These geographic hotspots and clade-specific patterns of predictions could be particularly applicable for
guiding future viral discovery and surveillance. On the one hand, betacoronavirus sampling in southeast
Asian bat taxa (especialy the genus Rhinolophus) may have a high success of vira detection (and
isolation) of sarbecoviruses specifically but may not substantially improve existing bat sampling gaps’.
On the other hand, discovery of novel betacoronaviruses in high-priority pteropodid clades, Old World
molossids, and Neotropical bats could significantly revise our understanding of the bat—virus association
network relative to the coevolutionary distribution of bat betacoronaviruses®. For example, predicted bat
hosts in the Neotropics may be unlikely reservoirs of sarbecoviruses (given their known distribution in the
eastern hemisphere) but would be expected to carry novel viruses from the subgenus Merbecovirus. Such
discoveries could be particularly important for global health security, given the surprising recent
identification of MERS-like viruses within the merbecoviruses in Mexican and Belizean bats™*® and the
likelihood that post-COVID research efforts will focus disproportionately on Asia despite the near-global
presence of bat betacoronavirus hosts.

Insightsinto SARS-CoV-2's emergence

Our work suggests that over 400 bats may host undiscovered betacoronaviruses and that these species can
be prioritized for sampling more efficiently via machine learning. Although our models do not target
sarbecoviruses specifically, these efforts may help find more SARS-like viruses in wildlife and may even
uncover the direct progenitor of SARS-CoV-2, particularly given that 44 species of horseshoe bats are
predicted to host undiscovered betacoronaviruses. However, our models provide otherwise limited
insights into the origins of SARS-CoV-2, given the likely role of non-bat bridge hosts in spillover to
humans™®®. We thus attempted a similar model ensemble in June 2020, using five of our eight models to
predict the broader mammal—virus network with a focus on potentia betacoronavirus bridge hosts. At the
time, only 30 non-bat hosts of betacoronaviruses were available in our data. Among the five models, we
found poor concordance in predictions (Supplemental Figure 3). Predictions were also heavily biased
towards well-studied and domesticated mammals (e.g., Ovis aries, Vulpes vulpes, Capra hircus, Procyon
lotor, Rattus rattus), indicating that sampling bias dwarfed biological signals. As such, we evaluated these
models as having limited value or consistency for an ensemble. This finding may be relevant given other
studies have also modeled susceptibility to SARS-CoV-2 across mammals; however, some have used
more detailed trait data and thus likely make better predictions at this broader taxonomic scal€®%

Instead of further calibrating this mammal-wide ensemble, we focused on the outputs of Trait-3, which
predicts how species should share viruses in nature based on their evolutionary history and geography. In
June 2020, we predicted the mammals expected to share viruses with Rhinolophus affinis and R.
malayanus, which hosted the two viruses (RaTG13 and RmYNO2) most relevant to SARS-CoV-2's
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origins known at that time®*® (a closer related virus, RpY N06, has since been discovered in R. pusillus™).

We predicted that these two bat species are disproportionately likely to share viruses with pangolins
(Pholidota) and carnivores (Carnivora), including civets (Viverridae), mustelids (Mustelidae), and cats
(Felidae; Supplemental Figure 4). These predictions have been broadly validated by the role of the
masked palm civet (Paguma larvata) in the original SARS-CoV outbreak®®, the discovery of SARS-
CoV-2-like viruses in the Sunda pangolin (Manis javanica)®, and extensive “spillback” of SARS-CoV-2
into captive big cats, domestic cats, and both farmed and wild mink®"%. Notably, only the association
between palm civets and SARS-CoV was present in the training data used for generating predictions from
Trait-3.

Given these successful predictions, we expect there might be potentia insights into SARS-CoV-2's
emergence when these predictions are paired with data on wildlife supply chains. Out of the top 30
species (Figure 6), two are known to have been traded in wildlife markets in Wuhan immediately before
the pandemic (the wild boar, Sus scrofa; the palm civet, Paguma larvata), as were two species closely
related to those in the top predictions (the Siberian weasel, Mustela siberica; the Northern hog badger,
Arctonyx albogularis)®. Another top species, the Burmese ferret badger (Melogale personata), was aso
reportedly of interest in the World Health Organization’s origins investigation”. Our models indicate that
any of these species would be expected to regularly share viruses with relevant Rhinolophus bats in
nature. Although bats use habitats differently than most of these likely bridge host species, opportunities
for contact exist: a recent study from Gabon found cohabitation among pangolins, bats, and other
mammals in burrows™. A number of species potentially implicated in the origins of SARS-CoV-2 could
therefore have plausibly acquired a progenitor to SARS-CoV-2 in nature, at some point prior to contact
with—and spillover into—humans (but see™). We suggest that this shortlist of species (Figure 6) may
therefore be a useful line of evidence for further investigations into the identity of potential bridge hosts,
especially in combination with experimental evaluation of susceptibility.

Conclusions

Our study is the first to demonstrate through predictive validation that machine learning models could
help optimize wildlife sampling for undiscovered viruses. As such, the growing toolkit of models that
predict host—pathogen interactions are likely to aid future efforts both to predict and prevent pandemics
and to trace the origins of novel infections after they emerge. However, these tools will work best if they
are implemented through a dynamic process of prediction, data collection, validation, and updating, as we
have implemented in this study. Although some studies have incidentally tested specific hypotheses (e.g.,
filovirus models and bat surveys™', henipavirus models and experimental infections**®, vector—virus
models and competence trials**™), predictions are almost never subject to systematic verification. Greater
dialogue between modelers and empiricists is necessary to confront this research gap. This s particularly
important when establishing species’ role as viral reservoirs rather than incidental hosts; susceptibility is
only one aspect of host competence*°. Future work, including longitudinal tracking of viral shedding
over space and time, isolation of live virus from wild animals, and experimental confirmation of viral
replication, can support more robust conclusions about whether predicted host species actualy play arole
in viral maintenance™ as well as inform related efforts to pinpoint and minimize risk factors for pathogen
spillover™™,
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Our study is also the first to benchmark the performance of a set of differently calibrated and designed
statistical models all trained for one host prediction task. We found a surprising range of model
performance, even among a set of models that all performed well on training data. This finding
underscores the need to incorporate long-term validation into similar studies and suggests there may be
key lessons about viral ecology to be learned from this kind of exercise. In our study, we found that
network models performed mostly at random in vaidation against new bat hosts, whereas trait-based
models were more successful in their predictions. Two explanations may underscore this difference in
model performance. First, models that successfully predict the broader mammal—virus network are likely
to vary in performance when subset to any given node. This may seem contradictory to the idea that
understanding the broader “rules of life” underpinning mammal—virus interactions will improve
predictions in specific cases. However, there are ways to combine the strengths of both network- and trait-
based approaches. In a closely related study, network predictions of zoonotic risk performed essentialy at
random, whereas a hybrid approach that embedded network predictions in targeted, trait-based models
performed better than any approach in isolation”. Future work should aim to develop and benchmark
these kinds of hybrid model approaches more extensively and treat exclusively network-driven
predictions with caution in the interim.

Second, models that integrate data on host ecology, evolution, and biogeography are likely to make more
powerful predictions than those that are mostly agnostic to biology. This has many broader implications.
Most importantly, it suggests that filling gaps in the basic biology of bats is a key step towards zoonotic
risk assessment and can benefit both pandemic prevention and bat conservation. In particular, high-
guality host genomes are critical to developing better predictive features, including genome composition
bias metrics, improved host phylogenetic trees, and immunological traits®*"*". Whole-genome
sequencing through initiatives such as the BatlK Project (https://batlk.ucd.ie) will expand the sparsely
available data on bat genomics and can facilitate other insights into the immune pathways used by bats to
harbor virulent viruses™®®2. Targeted sequencing could also identify endogenized viral elements in bat
genomes, shedding light on bat virus diversity and the evolution of bat immune systems®®. Large-scale
research networks, such as the Global Union of Bat Diversity Networks (https://gbatnet.blogspot.com)
and its member networks, will further facilitate efficient sample sharing and ensure proper partnerships
and equitable access and benefit sharing of knowledge across countries™®. Additionally, museum
specimens and historical collections offer important opportunities to retrospectively screen samples for
betacoronaviruses (thereby testing predictions), sequence tissue for assembly of host genomes, and
enhance our understanding of complex host-virus interactions®’.

Lastly, our iterative modeling of bat betacoronaviruses fits into a broader set of synergiesin One Health
research on bats, which can create win-win scenarios for conservation and outbreak prevention. For
example, North American bats are threatened by an emerging disease, white-nose syndrome®, which has
documented synzootic interactions with other bat coronaviruses™; at least seven North American bat
species that can be infected by the fungal pathogen (Eptesicus fuscus, Myatis ciliolabrum, M. lucifugus,
M. septentrionalis, M. veifer, M. volans, and Tadarida brasiliensis) are among the 423 bat species we
predict could be undiscovered betacoronavirus hosts. Although our predictions do not imply bat
susceptibility to SARS-CoV-2 specifically (and experimental infections of E. fuscus have been
unsuccessful®), efforts to minimize risks of SARS-CoV-2 “spillback” into novel bat reservoirs™™, as
well as to understand the dynamics of other bat coronaviruses, will both reduce zoonotic risk and help


https://doi.org/10.1101/2020.05.22.111344
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.111344; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

understand and counteract disease-related population declines. Similarly, conservationists have expressed
concern that negative framing of bats as the source of SARS-CoV-2 has impacted public and
governmental attitudes toward bat conservation®; this can fuel negative responses, including
indiscriminate culling (i.e., reduction of populations by slaughter), which has already occured in response
to COVID-19 even outside of Asia (where spillover likely occurred)®”. Evidence demonstrates that culling
has numerous negative consequences, not only threatening population viability®® but also possibly
increasing viral transmission within the very species that are targeted®*®. Bat conservation programs and
One Health practitioners must continue to work together to find sustainable solutions for humans to live
safely aongside wildlife and to communicate with the public about the ecological importance of these
highly vulnerable species and the science of pathogen spillover.
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Figures

Figure 1. Broad agreement across an ensemble of predictive modeling approaches. The pairwise
Spearman’ s rank correlations between models' ranked species-level predictions were generally substantial
and positive. Models are arranged in decreasing order of their mean correlation with other models.
Models that used trait data made more similar predictions to each other than to approaches using network
methods with the same data (A); network-based models that used some ecological data made more
similar predictions to all other models (Network-4, which uses phylogeny, and Hybrid-1, which uses both
phylogeny and trait data). All models that could make out-of-sample predictions used trait data (B) and
showed strong agreement.
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Figure 2. The geographic and evolutionary distribution of known and predicted bat hosts of
betacor onaviruses (initial ensemble predictions). Known hosts of betacoronaviruses (A, B) are found
worldwide, but particularly in southern Asia and southern Europe. Taxonomically, betacoronaviruses are
less common in two superfamilies of the Yangochiroptera, the Noctilionoidea and Vespertilionoidea
(clade 1). The predicted in-sample bat hosts (i.e., those with any viral association records; C, D) tend to
recapitulate observed geographic patterns of known hosts but with a higher concentration in the
Neotropics. Similarly, taxonomic patterns reflect those of known betacoronavirus hosts. In contrast, the
out-of -sample bat host predictions based on phylogeny and ecological traits (E, F) are mostly clustered in
Myanmar, Vietnam, and southern China, with none in the Neoctropics or North America. Predicted hosts
are likewise more common in the Rhinolophidae (clade 2) and subfamilies of Old World bats (clade 5)
and are rare in many Neotropical taxa (clades 1 and 7) and emballanurids (clades 3 and 4). In the
phylogenies, bar height indicates betacoronavirus positivity (B) or predicted rank (D, F; higher values
indicate lower proportional ranks). Colors indicate clades identified through phylogenetic factorization
(red indicates clades more likely to contain hosts, blue indicates less likely hosts; see Supplemental Table
1 for more information).
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Figure 3. Measuring model performance with novel data. Performance is based on the comparison of
total predicted prevalence (i.e., how many species are predicted positives?) with the sensitivity measured
from validation data (i.e., how many of the 40 new species are correctly identified?). The null expectation
for amodel with random performance is these should be equivaent (e.g., a coin toss model will say that
50% of al bats have a betacoronavirus, and will be right 50% of the time), while a model with strong
performance will be above that null expectation (thin grey line). (A) The training prevalence-test
sensitivity curve (TPTSC) is anovel diagnostic that is conceptually similar to the receiver-operator curve
(ROC), in that the modéd is evaluated at each possible scaled rank threshold between 0 and 1. (B) The
same anaysis, but only showing the point estimate of positivity created by each model’s internaly-
calibrated threshold. For model-guided sampling, the best model would be one that predicts a low-to-
medium positivity rate and has a disproportionately high sensitivity (i.e., in the upper left corner). Both
(A) and (B) show that the trait-based models (including the hybrid model) perform well, while the
network-only models perform roughly at-random or worse than random (i.e., close to the line); the
ensemble model, which includes al eight, performs comparably to the two best trait models and better
than six of the eight component models.
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Figure 4. Comparing bat betacor onavirus host prediction with dynamic model updates. Scatterplots
show bat species predictions from our original ensemble in 2020 against (A) the revised predictions after
updating models with 40 new hosts and (B) the final predictions from the weighted revised ensemble.
Species are colored by their status in the respective revised ensemble. Trendlines show alinear regression
fit between original and revised predictions against a 1:1 line, whereas dashed lines display the threshold
cutoffs from each ensemble. The top 10 in- and out-of-sample predictions from the original (C) and final
(D) ensemble. Asterisksindicate that five of the original top 10 in-sample predictions, and one of the top
10 out-of -sample predictions, have been empirically confirmed since the first iteration of our study.
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Figure 5. Predicted geographic and evolutionary hotspots of bat betacoronavirus hosts (updated
ensemble predictions). (A) In the weighted revised ensemble predictions, most predicted undiscovered
betacoronavirus hosts are found in sub-Saharan Africa and southeast Asia, especialy in Malaysia and
Borneo (and less in the high-elevation mainland hotspot where most reservoirs of SARS-like viruses are
currently known). Predicted hosts from this final ensemble were also most likely in the Rhinolophus
genus (clade 7), several subclades of the Pteropodidae (clades 5 and 6), and the Old World molossids
(clade 8), even though the Mollosidae as a whole had less likely hosts (clade 3). Bar height in the
phylogeny indicates predicted rank, and colors indicate clades identified through phylogenetic
factorization (red indicates clades more likely to contain hosts, blue indicates less likely hosts; see
Supplemental Table 2 for more information).
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Figure 6. Potential bridge hosts involved in SARS-CoV-2's emergence. Each dot represents predicted
species-level sharing probabilities with (A) Rhinolophus affinis and (B) Rhinolophus malayanus,
estimated according to the phylogeographic viral sharing model (Trait-3)'*". Each coloured point is a
mammal species. (Black points and error bars denote means and standard errors for each order; mammal
orders are arranged according to their mean sharing probability.) Tables below report the top 15 predicted
non-bat species for each; severa families are disproportionately represented, including pangolins
(Pholidota: Manidae), mustelids (Carnivora: Mustelidae),and civets (Carnivora: Viverridae). Notable
species are bolded: (a) the wild boar S. scrofa and palm civet P. larvata were both traded in wildlife
markets in Wuhan prior to the pandemic, as were (b) close relatives of the Greater hog badger, A. collaris
(the Northern hog badger, A. albogularis), and of the mountain weasel, M. altaica, and Malayan weasedl,
M. nudipes (the Siberian weasel, M. siberica). (c) SARS-CoV-2-like viruses have been found in traded
Sunda pangolins (M. javanica) outside of Wuhan, though the species was not reported in Wuhan. (d) The
ferret badger (M. personata) was aso reportedly of interest in the World Health Organization’s origins
investigation, which explored the role of wildlife farm supply chains.
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- (b) 1. Arctonyx collaris

2. Budorcas taxicolor
3. Viverra tangalunga

(c) 4. Manis javanica

(b) 5. Mustela altaica
6. Ursus thibetanus
7. Cynogale bennettii
8. Elaphodus cephalophus
9. Lutrogale perspicillata
10.
11.
12.
13.
14.
15.

Viverricula indica
Capricornis sumatraensis
Chimarrogale himalayica
Helarctos malayanus
Herpestes javanicus

Hylomys suillus

Mustelidae

Bovidae
Viverridae
Manidae
Mustelidae
Ursidae
Viverridae
Cervidae
Mustelidae
Viverridae
Bovidae
Soricidae
Ursidae
Herpestidae

Erinaceidae

Arctonyx collaris
2. Herpestes urva
3. Lutrogale perspicillata
Melogale personata
5. Viverra megaspila
6. Arctictis binfurong
7. Euroscaptor klossi
8. Lutra sumatrana
(a) 9.

10. Capricornis milneedwardsii

Sus scrofa

(c) 11. Manis javanica
12. Manis pentadactyla

(b) 13. Mustela nudipes

(a) 14. Paguma larvata

15. Panthera pardus

Mustelidae
Herpestidae
Mustelidae
Mustelidae
Viverridae
Viverridae
Talpidae
Mustelidae
Suidae
Bovidae
Manidae
Manidae
Mustelidae
Viverridae
Felidae
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Table 1. Scope and calibration of different predictive modeling approaches. Some methods use
pseudoabsences to expand the scale of prediction but still only analyze existing host—virus data, with no
out-of -sample inference, whereas other methods can predict freshly onto new data.

Prediction on hosts
Model approach Wlt.hO.Ut known Predictive extent and use of pseudoabsences
associations (out-of-
sample)
Networ k-based 1 No Only predicts link probabilities among species in the
k-Nearest neighbors association data
Network-based 2 Only predicts link probabilities among species in the
: . No .
Linear filter association data
Network-based 3 N Uses pseudoabsences to predict over all mammalsin
o} " .

Plug and play association data, using latent approach
Network-based 4 No Only predicts link probabilities among species in the
Scaled-phylogeny association data
Trait-based 1 Yes Uses pseudoabsences for dl bats in trait datato predict over all
Boosted regression trees species, including those without known associations
Tralt-_based 2 Uses pseudoabsences for al bats in trait datato predict over all
Bayesian additive Yes ecies, including those without known associations
regression trees SPeCIEs, 9
Trait-based 3 Yes Trains on a broader network, and predicts sharing probabilities
Neutral phylogeographic among any mammals in phylogeny and [UCN range map data
Hybrid 1 . Uses pseudoabsences for al bats in trait datato predict over all
Two-step kernel ridge Yes ies including th ithout k -
regression species, including those without known associations
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