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Abstract. 
 
Despite global investment in One Health disease surveillance, it remains difficult—and often very 
costly—to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can be 
used to guide sampling prioritization, but predictions from any given model may be highly uncertain; 
moreover, systematic model validation is rare, and the drivers of model performance are consequently 
under-documented. Here, we use bat hosts of betacoronaviruses as a case study for the data-driven 
process of comparing and validating predictive models of likely reservoir hosts. In the first quarter of 
2020, we generated an ensemble of eight statistical models that predict host-virus associations and 
developed priority sampling recommendations for potential bat reservoirs and potential bridge hosts for 
SARS-CoV-2. Over more than a year, we tracked the discovery of 40 new bat hosts of betacoronaviruses, 
validated initial predictions, and dynamically updated our analytic pipeline. We find that ecological trait-
based models perform extremely well at predicting these novel hosts, whereas network methods 
consistently perform roughly as well or worse than expected at random. These findings illustrate the 
importance of ensembling as a buffer against variation in model quality and highlight the value of 
including host ecology in predictive models. Our revised models show improved performance and predict 
over 400 bat species globally that could be undetected hosts of betacoronaviruses. Although 20 species of 
horseshoe bats (Rhinolophus spp.) are known to be the primary reservoir of SARS-like viruses, we find at 
least three-fourths of plausible betacoronavirus reservoirs in this bat genus might still be undetected. Our 
study is the first to demonstrate through systematic validation that machine learning models can help 
optimize wildlife sampling for undiscovered viruses and illustrates how such approaches are best 
implemented through a dynamic process of prediction, data collection, validation, and updating. 
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Introduction 
 
Identifying likely reservoirs of zoonotic pathogens is challenging1. Sampling wildlife for the presence of 
active or recent infection (i.e., seropositivity) represents the first stage of a pipeline for proper inference 
of host species2, but sampling is often limited in phylogenetic, temporal, and spatial scale by logistical 
constraints3. Given such restrictions, statistical models can play a critical role in helping to prioritize 
pathogen surveillance by narrowing the set of plausible sampling targets, by either ruling out clades of 
low-likelihood hosts4,5 or predicting high-risk clades6. For example, machine learning approaches have 
generated candidate lists of likely, but unsampled, primate reservoirs of Zika virus, bat reservoirs of 
filoviruses, and avian reservoirs of Borrelia burgdorferi7–9. 
 
At the same time, host predictions are rarely validated empirically10. Occasional case studies suggest both 
success and failures. For example, models predicted Eonycteris spelaea as an undetected bat host of 
filoviruses7, which was later confirmed through field sampling in southeast Asia11,12. Similarly, models of 
mosquito–Zika virus interactions predicted Culex quinquefasciatus as a likely vector13, which was rapidly 
validated through experimental competence trials14,15. A recent model of Nipah virus in India also 
predicted several bat species as undetected hosts2. However, experimental infection of the predicted 
Rousettus aegyptiacus demonstrated that this species cannot support virus replication16. Further, Nipah 
virus was recently found circulating in Pipistrellus pipistrellus, a species with a low predicted probability 
of being a host17. More generally, predictions from most models remain either untested or 
opportunistically validated, limiting insight into which approaches have greatest predictive accuracy. 
Systematically validating predictions would provide critical insights into the broader utility (or inefficacy) 
of different models in zoonosis research. Moreover, these modeling approaches are generally developed 
in isolation; implementation of multiple modeling approaches collaboratively and simultaneously, as part 
of a model-to-validation workflow, could reduce redundancy and apparent disagreement at the earliest 
stages of pathogen tracing while advancing predictive analytics by addressing inter-model reliability. 
 
Coronaviruses (CoVs) are an ideal family of viruses with which to compare and validate predictive 
models of likely zoonotic reservoirs. CoVs are positive-sense, single-stranded RNA viruses that are 
detected across mammals and birds18. They have a broad host range, a high mutation rate, and the largest 
genomes of any RNA viruses, but they have also evolved mechanisms for RNA proofreading and repair 
to mitigate the deleterious effects of a high recombination rate acting over a large genome19. 
Consequently, CoVs fit the profile of viruses with high zoonotic potential. There are eight human CoVs 
(three and five in the genera Alphacoronavirus and Betacoronavirus, respectively), of which three are 
highly pathogenic in humans: SARS-CoV, MERS-CoV, and SARS-CoV-2. These are zoonotic and 
widely agreed to have evolutionary origins in bats20–23. 
 
Our collective experience with both SARS-CoV and MERS-CoV illustrates the difficulty of tracing 
specific animal hosts of emerging viruses. During the 2002–2003 SARS epidemic, SARS-CoV was traced 
to the masked palm civet (Paguma larvata)24, but the ultimate origin remained unknown for several years. 
Horseshoe bats (family Rhinolophidae: genus Rhinolophus) were implicated as reservoir hosts in 2005, 
but their SARS-like CoVs were not identical to circulating human strains21. Stronger evidence from 2017 
placed the most likely evolutionary origin of SARS-CoV in Rhinolophus ferrumequinum or R. sinicus25. 
Presently, there is even less certainty about the origins of MERS-CoV, although spillover to humans 
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occurs relatively often through contact with dromedary camels (Camelus dromedarius). A virus with 
100% nucleotide identity in a ~200 base pair region of the MERS-CoV polymerase gene was detected in 
Taphozous perforatus (family Emballonuridae) in Saudi Arabia26; however, based on spike gene 
similarity, other sources treat HKU4 virus from Tylonycteris pachypus (family Vespertilionidae) in China 
as the most closely related bat virus27,28. Several bat CoVs have shown close phylogenetic relationships to 
MERS-CoV, with a surprisingly broad geographic distribution from Mexico to China29–32,. 
 
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, a novel virus with presumed 
evolutionary origins in bats. Although the earliest cases were linked to a wildlife market23, contact tracing 
was limited, and there has been no definitive identification of the wildlife contact that resulted in spillover 
nor a true “index case.” The divergence time between SARS-CoV-2 and two of the closest-related bat 
viruses (RaTG13 from Rhinolophus affinis and RmYN02 from Rhinolophus malayanus) has been 
estimated as 40-50 years33, suggesting that the main host(s) involved in spillover remain unknown. 
Evidence of viral recombination in pangolins has been proposed but is unresolved33. SARS-like 
betacoronaviruses have been recently isolated from Sunda pangolins (Manis javanica) traded in wildlife 
markets34,35, and these viruses have a very high amino acid identity to SARS-CoV-2, but only show a 
~90% nucleotide identity with SARS-CoV-2 or Bat-CoV RaTG1336. None of these host species are 
universally accepted as the origin of SARS-CoV-2 nor are any of the viruses a clear SARS-CoV-2 
progenitor, and a “better fit” wildlife reservoir could likely still be identified. However, substantial gaps 
in betacoronavirus sampling across wildlife limit actionable inference about plausible reservoir hosts and 
bridge hosts for SARS-CoV-237. 
 
Building a predictive ensemble 
 
Here, we use betacoronaviruses in bats as a case study for the data-driven process of comparing and 
validating predictive models of likely reservoir hosts, with the ultimate aim to help prioritize surveillance 
for known and future zoonotic viruses. We focused on betacoronaviruses rather than SARS-like CoVs 
(subgenus Sarbecovirus) specifically, as the latter are only characterized from a very small number of bat 
species in publicly available data. This sparsity makes current modeling methods poorly suited to more 
precisely infer potential reservoir hosts of sarbecoviruses specifically. Instead, we used predictive models 
to (1) identify bats (and other mammals) that may broadly host any betacoronavirus and (2) identify 
species with a high viral sharing probability with the two Rhinolophus species carrying the earliest known 
close viral relatives of SARS-CoV-2. In mid-2020, at the early stages of the COVID-19 pandemic, we 
developed a standardized dataset of mammal–virus associations by integrating a previously published 
edgelist38 with a targeted scrape of all GenBank accessions for Coronaviridae and their associated hosts. 
Our final dataset spanned 710 host species and 359 virus genera, including 107 mammal hosts of 
betacoronaviruses as well as hundreds of other (non-CoV) association records. We integrated our host–
virus data with a mammal phylogenetic supertree39 and over 60 standardized ecological traits of bat 
species7,40,41.  
 
We then used these data to generate an ensemble of predictive models and drew on two popular 
approaches to identify candidate bat reservoir hosts of betacoronaviruses (Table 1). Network-based 
methods estimate a full set of “true” unobserved host–virus interactions based on a recorded network of 
associations (here, pairs of host species and associated viral genera). These methods are increasingly 
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popular as a way to identify latent processes structuring ecological networks42–44, but they are often 
confounded by sampling bias and often can only make predictions for species within the observed 
network (i.e., those that have available virus data; in-sample prediction). In contrast, trait-based methods 
use observed relationships concerning host traits to identify species that fit the morphological, ecological, 
or phylogenetic profile of known host species of a given pathogen, and rank the suitability of unknown 
hosts based on these trait characteristics8,45. These methods may be more likely to recapitulate patterns in 
observed host–pathogen association data (e.g., geographic biases in sampling, phylogenetic similarity in 
host morphology), but they more easily correct for sampling bias and can predict host species without 
known viral associations (i.e., out-of-sample prediction).  
 
In total, we implemented eight different predictive models of host-virus associations, including four 
network-based approaches, three trait-based approaches, and one hybrid approach using trait and 
phylogenetic information to make network predictions. These efforts generated eight ranked lists of 
suspected bat hosts of betacoronaviruses. Each ranked list was then scaled proportionally and 
consolidated in an ensemble of recommendations for betacoronavirus sampling and broader eco-
evolutionary research. Next, approximately one year after our initial model ensemble, we reran our entire 
analytic pipeline with new bat betacoronavirus detections, taking advantage of the recent proliferation of 
published research on bat CoVs. This provided an unprecedented opportunity to rapidly compare model 
performance, provide up-to-date predictions of likely but unsampled bat hosts, and critically assess model 
accuracy in the context of ongoing sampling for bat CoVs. 
 
Predicted bat reservoirs of betacoronaviruses  
 
Our initial ensemble found wide variation in model performance; individual models explained  0–69% of 
the variance in betacoronavirus positivity (mean of 25%), whereas the ensemble generally had improved 
predictive capacity (R2 = 42%; Supplemental Figure 1). The predictions of bat betacoronavirus hosts 
derived from network- and trait-based modeling approaches displayed strong inter-model agreement 
within each group but largely differed between groups (Figure 1). Of the 1,037 included bat species not 
known to be infected by betacoronaviruses during our initial analysis in 2020 (against 79 known 
positives), our models identified between 7 and 722 potential hosts based on a 10% omission threshold 
(90% sensitivity). Applying this same threshold to our ensemble predictions, our initial models identified 
371 bat species as likely undetected hosts. Importantly, only 48 suspect hosts were identified in-sample, 
whereas we identified 323 suspect hosts out-of-sample, highlighting that most undiscovered hosts—and 
in turn undiscovered betacoronaviruses—should be in unsampled bat species. 
 
This multi-model ensemble predicted undiscovered betacoronavirus bat hosts with striking geographic 
and taxonomic patterning (Figure 2). In-sample, predicted hosts were globally distributed and 
recapitulated geographic patterns of known bat betacoronavirus hosts in Europe, the Neotropics, and 
southeast Asia; however, our models also predicted high richness of likely bat reservoirs in North 
America.  Applying a graph partitioning algorithm (phylogenetic factorization) to the bat phylogeny46, we 
similarly found that both betacoronavirus positivity and in-sample predictions were, on average, lowest 
for the superfamilies Noctilionoidea and Vespertilionoidea in the Yangochiroptera. This makes intuitive 
sense, as these taxa do not include the groups known to harbor the vast majority of betacoronaviruses 
detected in bats (e.g., Rhinolophus, Hipposideridae). In contrast, our out-of-sample predicted hosts were 
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more starkly clustered in much of sub-Saharan Africa and southeast Asia (e.g., Vietnam, Myanmar, and 
southern China), with no representation in the western hemisphere. Likewise, out-of-sample predictions 
were lower in Neotropical bat families (e.g., Noctilionidae, Mormoopidae, Phyllostomidae), most 
emballonurids, and primarily Neotropical molossids, whereas the Rhinolophus genus and most of the Old 
World subfamily Pteropodinae were predicted to be more likely to host betacoronaviruses (Supplemental 
Table 1).  
 
Because only trait-based models were capable of out-of-sample prediction, the differences in geographic 
and taxonomic patterns of our predictions likely reflect distinctions between the network- and trait-based 
modeling approaches. We suggest these should be considered as qualitatively different lines of evidence. 
Network approaches proportionally upweight species with high observed viral diversity, recapitulating 
sampling biases largely unrelated to coronaviruses (e.g., frequent screening for rabies lyssaviruses in the 
common vampire bat Desmodus rotundus, which has been sampled in a comparatively limited capacity 
for coronaviruses31,47–49). Highly ranked species may also have been previously sampled without evidence 
of betacoronavirus presence; for example, Rhinolophus luctus and Macroglossus sobrinus from China and 
Thailand, respectively, tested negative for betacoronaviruses, but detection probability was limited by 
small sample sizes50–52. In contrast, trait-based approaches are constrained by their reliance on phylogeny, 
ecological traits, and geographic covariates, all of which made models more likely to recapitulate existing 
spatial (i.e.,  clustering in southeast Asia) and taxonomic (i.e., the Rhinolophus genus) patterns. However, 
out-of-sample predictions are, by definition, inclusive of unsampled bat hosts53, which potentially offer 
greater return on viral discovery investment.  
 
Model validation 
 
Following this initial 2020 model ensemble, we used broad literature searches to systematically track 
betacoronavirus-positive bat species that were missed in our initial data compilation (e.g., CoV sequences 
that were not annotated to genus on GenBank52,54). These searches also tracked the exponential increase in 
data on bat CoVs stemming from the emergence of SARS-CoV-2 that were published after our first 
model ensemble. A year after our initial data compilation (June 2021), we also reran our initial scrape of 
GenBank to identify new betacoronavirus-positive bats, limiting our search to matches to 
Betacoronavirus (taxid: 694002) and Chiroptera (taxid: 9397); however, this did not recover any 
additional positive host species not already recorded as positives in our updated data. We also mined 
publically available metagenomic and transcriptomic datasets for evidence of betacoronavirus infection55–

57. However, no published libraries contained evidence of betacoronaviruses (see Supplement). Lastly, we 
analyzed the wildlife testing data from the USAID Emerging Pandemic Threats PREDICT program 
collected from 2009-2019, which was publicly released in June 2021 and includes a number of 
betacoronaviruses that were discovered during the program’s run (2009 to 2019) but have only published 
and identified down to the genus level in the full release. 
 
In total, we uncovered 40 novel bat hosts of betacoronaviruses that were either absent from our original 
dataset or newly discovered after our initial analyses. This data update resulted in a total of 119 positive 
bat species, and we continue to collate these records (https://www.viralemergence.org/betacov). Of these 
40 new hosts, the original ensemble correctly predicted only 24 (60% success rate), but some submodels 
performed significantly better than others, including both network- and trait-based methods: Network-1 
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identified 20 of the 21 in-sample novel hosts (95%), while Trait-1 identified 37 of the 40 novel hosts 
(92.5%). The high performance of both of these top models, and their high performance on the training 
data (Supplemental Figure 1), suggest both approaches contributed usefully to the initial ensemble. 
 
The 40 newly discovered hosts also enabled us to develop a new kind of performance metric for machine 
learning tasks with presence-only validation data (i.e., new “positives” can be collected, while 
“negatives” are substantially more difficult to prove). If a model makes predictions at random, the 
predicted prevalence of positives in the training data should be roughly the same as the success rate with 
novel test data. For example, a “coin toss” model will estimate that  approximately 50% of species are 
betacoronavirus hosts and would likewise successfully identify approximately 50% of newly discovered 
hosts. A high-performing model, on the other hand, will identify a higher proportion of newly discovered 
hosts than expected at random. To evaluate how models perform in this regard, we developed a new 
diagnostic called the training prevalence-test sensitivity curve (TPTSC) that can be applied to modeling 
problems where training data are composed of a mix of true positives, true negatives, and false negatives, 
but test data only include novel true positives (Figure 3). The TPTSC plots the assumed prevalence in the 
training data against the sensitivity in the test data at every possible threshold from 0 to 1; these curves 
can be treated like receiver-operator or precision-recall curves, where a higher area under the curve 
(AUC) indicates better-than-random performance. Using the AUC-TPTSC scores, we found that trait-
based and hybrid models consistently performed extremely well (Trait-1: 0.80; Trait-2: 0.79; Trait-3: 
0.73; Hybrid-1: 0.68), while network methods performed at-random or worse (Network-1: 0.58; Network-
2: 0.43; Network-3: 0.51; Network-4: 0.55). Accordingly, the ensemble performed comparably to the 
trait-based models (AUC-TPTSC = 0.75).  
 
These results have two key implications for future efforts to target sampling for putative reservoir hosts. 
First, ensembling can be useful as a buffer against variation in model quality, particularly in settings when 
the underlying drivers of model performance have yet to be identified. Second, and perhaps more 
importantly, models failed to have better-than-random performance without trait data that characterized 
bat ecology, even when they included phylogenetic data (e.g., Network-4). Part of this difference may 
also be attributable to the different scope of prediction: the response variable of trait-based models is 
betacoronavirus presence, while betacoronavirus-relevant predictions were extracted from a broader set of 
predictions made by the network models. However, this is contraindicated by the results of Hybrid-1, 
which performed comparably to the other trait-based models. Therefore, we conclude that making 
meaningful predictions about likely zoonotic reservoirs is best accomplished by incorporating detailed 
information on host ecology. The vastly greater performance of trait-based models provides another 
compelling reason, in addition to other One Health and conservation rationales, to better understand the 
fundamental ecology and evolution of bats. 
 
Dynamic prediction 
 
Inclusion of these 40 novel bat hosts dramatically improved the performance of our predictive models. 
When revised with new data, our eight individual models explained 8–73% of the variance in 
betacoronavirus positivity (mean of 32%), with the ensemble R2 increasing to 60% (Supplemental Figure 
2). Using our previously applied 90% sensitivity threshold, our revised ensemble identified a more 
narrow set of 311 bat species as likely undetected hosts of betacoronaviruses. Predictions from the initial 
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and revised ensembles were strongly correlated (ρ = 0.97). However, after dynamically updating our 
models, our revised ensemble lost 54 suspect reservoirs and gained 26 new suspect reservoirs (Figure 
4A). Predicted reservoir species that were lost from the initial ensemble were dominated by members of 
the Vespertillionidae, whereas new suspect hosts were gained in the Vespertillionidae, Hipposideridae, 
and Molossidae.  
 
Using the 40 newly discovered hosts, we were also able to tailor the updated ensemble responsively to 
model performance. To do so, we weighted the rank averaging across models based on their AUC-TPTSC 
score relative to the lowest performing model (Network-2). In doing so, we effectively dropped Network-
2 from the ensemble, a choice supported by the fact the model’s predictions are substantially poorer than 
expected at random. In the updated ensemble, this correction creates a marginal improvement in model 
performance (unweighted ensemble: AUC-TPTSC = 0.755; weighted ensemble: AUC-TPTSC = 0.788). 
Therefore, we applied this weighting to the ensemble of updated predictions in the final copy released 
with this study. 
 
This weighted revised ensemble identified 423 suspect bat hosts, dramatically expanding the scope of 
plausible candidates for future virus discovery compared to the two prior unweighted ensembles (Figure 
4B). Predictions from this final ensemble iteration were slightly less correlated with those from our initial 
ensemble (ρ = 0.92), and these final predictions retained most suspect hosts from the original ensemble. 
The top-ranked undiscovered hosts retained between our model updates included Murina leucogaster, 
Myotis nattereri, M. blythii, Barbastella barbastellus, and Taphozous melanopogon in-sample, whereas 
the top out-of-sample hosts consistent between ensembles included Macroglossus sobrinus, Rhinolophus 
fumigatus, and R. marshalli (Figure 4C). Only 26 predicted hosts were lost, most of which were from the 
Vespertilionidae and Rhinolophus genus. Of the 208 additional predicted hosts added to our final 
ensemble, most of these bat species were observed in the families Vespertilionidae (primarily the genus 
Myotis), Pteropodidae (primarily the genus Pteropus), Molossidae (primarily the genera Chaerephon and 
Mops), Hipposideridae (all in the genus Hipposideros), and Rhinolophidae, although we also identified 
several new predicted betacoronavirus hosts in the families Nycteridae, Phyllostomidae, Emballonuridae, 
and Mystacinidae. The top-ranked novel predicted in-sample hosts included Myotis myotis, Hipposideros 
bicolor, and multiple Pteropus species (P. scapulatus, P. vampyrus, and P. hypomelanus), whereas the 
most likely new out-of-sample hosts included multiple Myotis species (M. chinensis, M. altarium, and M. 
bocagii), Pipistrellus rueppellii, Scotomanes ornatus, Neoromicia rendalli, and Rhinolophus landeri 
(Figure 4D). 
 
For Rhinolophus bats specifically, our final ensemble identified 11 new suspect hosts, resulting in likely 
hosts for over three quarters of the species in this genus that are not currently known to be infected by 
betacoronaviruses (44 of 57 in our dataset), compared to 20 known hosts. Given the known roles of 
rhinolophid bats as hosts of SARS-like CoVs18,21,50, it is notable that our results suggest the diversity of 
these viruses could be undescribed for around three-fourths of these potential reservoir bat species. 
 
As in our initial ensemble, we lastly evaluated geographic and taxonomic patterns in this finalized set of 
predicted betacoronavirus hosts. Spatially, undiscovered bat hosts were globally distributed (in not only 
the eastern but also western hemisphere) and especially concentrated within a more narrow band of 
equatorial sub-Saharan Africa and more starkly in Malaysia and Borneo (Figure 5A). Importantly, the 
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geography of these predicted hosts contrasted with the distributions of both known bat hosts and likely 
hosts from our initial ensemble, each of which instead showed a stronger hotspot in southern China. We 
also identified distinct clades of high-risk bat hosts from the weighted revised ensemble (Figure 5B, 
Supplemental Table 2). Both the Rhinolophus genus and subclades of the Pteropodidae again had greater 
concentrations of predicted betacoronavirus hosts, although phylogenetic factorization now identified the 
Old World molossids (i.e., genus Mops and Chaerophon) as particularly likely to host these viruses, even 
though the Mollosidae as a whole have lower mean probabilities of betacoronavirus hosts.  
 
These geographic hotspots and clade-specific patterns of predictions could be particularly applicable for 
guiding future viral discovery and surveillance. On the one hand, betacoronavirus sampling in southeast 
Asian bat taxa (especially the genus Rhinolophus) may have a high success of viral detection (and 
isolation) of sarbecoviruses specifically but may not substantially improve existing bat sampling gaps5. 
On the other hand, discovery of novel betacoronaviruses in high-priority pteropodid clades, Old World 
molossids, and Neotropical bats could significantly revise our understanding of the bat–virus association 
network relative to the coevolutionary distribution of bat betacoronaviruses38. For example, predicted bat 
hosts in the Neotropics may be unlikely reservoirs of sarbecoviruses (given their known distribution in the 
eastern hemisphere) but would be expected to carry novel viruses from the subgenus Merbecovirus. Such 
discoveries could be particularly important for global health security, given the surprising recent 
identification of MERS-like viruses within the merbecoviruses in Mexican and Belizean bats31,58 and the 
likelihood that post-COVID research efforts will focus disproportionately on Asia despite the near-global 
presence of bat betacoronavirus hosts. 
 
Insights into SARS-CoV-2’s emergence 
 
Our work suggests that over 400 bats may host undiscovered betacoronaviruses and that these species can 
be prioritized for sampling more efficiently via machine learning. Although our models do not target 
sarbecoviruses specifically, these efforts may help find more SARS-like viruses in wildlife and may even 
uncover the direct progenitor of SARS-CoV-2, particularly given that 44 species of horseshoe bats are 
predicted to host undiscovered betacoronaviruses. However, our models provide otherwise limited 
insights into the origins of SARS-CoV-2, given the likely role of non-bat bridge hosts in spillover to 
humans59,60. We thus attempted a similar model ensemble in June 2020, using five of our eight models to 
predict the broader mammal–virus network with a focus on potential betacoronavirus bridge hosts. At the 
time, only 30 non-bat hosts of betacoronaviruses were available in our data. Among the five models, we 
found poor concordance in predictions (Supplemental Figure 3). Predictions were also heavily biased 
towards well-studied and domesticated mammals (e.g., Ovis aries, Vulpes vulpes, Capra hircus, Procyon 
lotor, Rattus rattus), indicating that sampling bias dwarfed biological signals. As such, we evaluated these 
models as having limited value or consistency for an ensemble. This finding may be relevant given other 
studies have also modeled susceptibility to SARS-CoV-2 across mammals; however, some have used 
more detailed trait data and thus likely make better predictions at this broader taxonomic scale61,62 
 
Instead of further calibrating this mammal-wide ensemble, we focused on the outputs of Trait-3, which 
predicts how species should share viruses in nature based on their evolutionary history and geography. In 
June 2020, we predicted the mammals expected to share viruses with Rhinolophus affinis and R. 
malayanus, which hosted the two viruses (RaTG13 and RmYN02) most relevant to SARS-CoV-2’s 
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origins known at that time23,63 (a closer related virus, RpYN06, has since been discovered in R. pusillus64). 
We predicted that these two bat species are disproportionately likely to share viruses with pangolins 
(Pholidota) and carnivores (Carnivora), including civets (Viverridae), mustelids (Mustelidae), and cats 
(Felidae; Supplemental Figure 4). These predictions have been broadly validated by the role of the 
masked palm civet (Paguma larvata) in the original SARS-CoV outbreak65,66, the discovery of SARS-
CoV-2-like viruses in the Sunda pangolin (Manis javanica)34, and extensive “spillback” of SARS-CoV-2 
into captive big cats, domestic cats, and both farmed and wild mink67,68. Notably, only the association 
between palm civets and SARS-CoV was present in the training data used for generating predictions from 
Trait-3. 
 
Given these successful predictions, we expect there might be potential insights into SARS-CoV-2’s 
emergence when these predictions are paired with data on wildlife supply chains. Out of the top 30 
species (Figure 6), two are known to have been traded in wildlife markets in Wuhan immediately before 
the pandemic (the wild boar, Sus scrofa; the palm civet, Paguma larvata), as were two species closely 
related to those in the top predictions (the Siberian weasel, Mustela siberica; the Northern hog badger, 
Arctonyx albogularis)69. Another top species, the Burmese ferret badger (Melogale personata), was also 
reportedly of interest in the World Health Organization’s origins investigation70. Our models indicate that 
any of these species would be expected to regularly share viruses with relevant Rhinolophus bats in 
nature. Although bats use habitats differently than most of these likely bridge host species, opportunities 
for contact exist: a recent study from Gabon found cohabitation among pangolins, bats, and other 
mammals in burrows71. A number of species potentially implicated in the origins of SARS-CoV-2 could 
therefore have plausibly acquired a progenitor to SARS-CoV-2 in nature, at some point prior to contact 
with—and spillover into—humans (but see72). We suggest that this shortlist of species (Figure 6) may 
therefore be a useful line of evidence for further investigations into the identity of potential bridge hosts, 
especially in combination with experimental evaluation of susceptibility. 
 
Conclusions 
 
Our study is the first to demonstrate through predictive validation that machine learning models could 
help optimize wildlife sampling for undiscovered viruses. As such, the growing toolkit of models that 
predict host–pathogen interactions are likely to aid future efforts both to predict and prevent pandemics 
and to trace the origins of novel infections after they emerge. However, these tools will work best if they 
are implemented through a dynamic process of prediction, data collection, validation, and updating, as we 
have implemented in this study. Although some studies have incidentally tested specific hypotheses (e.g., 
filovirus models and bat surveys7,11, henipavirus models and experimental infections2,16, vector–virus 
models and competence trials13–15), predictions are almost never subject to systematic verification. Greater 
dialogue between modelers and empiricists is necessary to confront this research gap. This is particularly 
important when establishing species’ role as viral reservoirs rather than incidental hosts; susceptibility is 
only one aspect of host competence1,10. Future work, including longitudinal tracking of viral shedding 
over space and time, isolation of live virus from wild animals, and experimental confirmation of viral 
replication, can support more robust conclusions about whether predicted host species actually play a role 
in viral maintenance16 as well as inform related efforts to pinpoint and minimize risk factors for pathogen 
spillover73,74. 
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Our study is also the first to benchmark the performance of a set of differently calibrated and designed 
statistical models all trained for one host prediction task. We found a surprising range of model 
performance, even among a set of models that all performed well on training data. This finding 
underscores the need to incorporate long-term validation into similar studies and suggests there may be 
key lessons about viral ecology to be learned from this kind of exercise. In our study, we found that 
network models performed mostly at random in validation against new bat hosts, whereas trait-based 
models were more successful in their predictions. Two explanations may underscore this difference in 
model performance. First, models that successfully predict the broader mammal–virus network are likely 
to vary in performance when subset to any given node. This may seem contradictory to the idea that 
understanding the broader “rules of life” underpinning mammal–virus interactions will improve 
predictions in specific cases. However, there are ways to combine the strengths of both network- and trait-
based approaches. In a closely related study, network predictions of zoonotic risk performed essentially at 
random, whereas a hybrid approach that embedded network predictions in targeted, trait-based models 
performed better than any approach in isolation75. Future work should aim to develop and benchmark 
these kinds of hybrid model approaches more extensively and treat exclusively network-driven 
predictions with caution in the interim. 
 
Second, models that integrate data on host ecology, evolution, and biogeography are likely to make more 
powerful predictions than those that are mostly agnostic to biology. This has many broader implications. 
Most importantly, it suggests that filling gaps in the basic biology of bats is a key step towards zoonotic 
risk assessment and can benefit both pandemic prevention and bat conservation. In particular, high-
quality host genomes are critical to developing better predictive features, including genome composition 
bias metrics, improved host phylogenetic trees, and immunological traits62,76–79. Whole-genome 
sequencing through initiatives such as the Bat1K Project (https://bat1k.ucd.ie) will expand the sparsely 
available data on bat genomics and can facilitate other insights into the immune pathways used by bats to 
harbor virulent viruses80–82. Targeted sequencing could also identify endogenized viral elements in bat 
genomes, shedding light on bat virus diversity and the evolution of bat immune systems83,84. Large-scale 
research networks, such as the Global Union of Bat Diversity Networks (https://gbatnet.blogspot.com) 
and its member networks, will further facilitate efficient sample sharing and ensure proper partnerships 
and equitable access and benefit sharing of knowledge across countries85,86. Additionally, museum 
specimens and historical collections offer important opportunities to retrospectively screen samples for 
betacoronaviruses (thereby testing predictions), sequence tissue for assembly of host genomes, and 
enhance our understanding of complex host–virus interactions87.  
 
Lastly, our iterative modeling of bat betacoronaviruses fits into a broader set of synergies in One Health 
research on bats, which can create win–win scenarios for conservation and outbreak prevention. For 
example, North American bats are threatened by an emerging disease, white-nose syndrome88, which has 
documented synzootic interactions with other bat coronaviruses89; at least seven North American bat 
species that can be infected by the fungal pathogen (Eptesicus fuscus, Myotis ciliolabrum, M. lucifugus, 
M. septentrionalis, M. velifer, M. volans, and Tadarida brasiliensis) are among the 423 bat species we 
predict could be undiscovered betacoronavirus hosts. Although our predictions do not imply bat 
susceptibility to SARS-CoV-2 specifically (and experimental infections of E. fuscus have been 
unsuccessful90), efforts to minimize risks of SARS-CoV-2 “spillback” into novel bat reservoirs91–95, as 
well as to understand the dynamics of other bat coronaviruses, will both reduce zoonotic risk and help 
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understand and counteract disease-related population declines. Similarly, conservationists have expressed 
concern that negative framing of bats as the source of SARS-CoV-2 has impacted public and 
governmental attitudes toward bat conservation96; this can fuel negative responses, including 
indiscriminate culling (i.e., reduction of populations by slaughter), which has already occured in response 
to COVID-19 even outside of Asia (where spillover likely occurred)97. Evidence demonstrates that culling 
has numerous negative consequences, not only threatening population viability98 but also possibly 
increasing viral transmission within the very species that are targeted99,100. Bat conservation programs and 
One Health practitioners must continue to work together to find sustainable solutions for humans to live 
safely alongside wildlife and to communicate with the public about the ecological importance of these 
highly vulnerable species and the science of pathogen spillover. 
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Figures 
 

Figure 1. Broad agreement across an ensemble of predictive modeling approaches. The pairwise
Spearman’s rank correlations between models’ ranked species-level predictions were generally substantial
and positive. Models are arranged in decreasing order of their mean correlation with other models.
Models that used trait data made more similar predictions to each other than to approaches using network
methods with the same data (A);  network-based models that used some ecological data made more
similar predictions to all other models (Network-4, which uses phylogeny, and Hybrid-1, which uses both
phylogeny and trait data). All models that could make out-of-sample predictions used trait data (B) and
showed strong agreement. 
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Figure 2. The geographic and evolutionary distribution of known and predicted bat hosts of 
betacoronaviruses (initial ensemble predictions). Known hosts of betacoronaviruses (A, B) are found 
worldwide, but particularly in southern Asia and southern Europe. Taxonomically, betacoronaviruses are 
less common in two superfamilies of the Yangochiroptera, the Noctilionoidea and Vespertilionoidea 
(clade 1). The predicted in-sample bat hosts (i.e., those with any viral association records; C, D) tend to 
recapitulate observed geographic patterns of known hosts but with a higher concentration in the 
Neotropics. Similarly, taxonomic patterns reflect those of known betacoronavirus hosts. In contrast, the 
out-of-sample bat host predictions based on phylogeny and ecological traits (E, F) are mostly clustered in 
Myanmar, Vietnam, and southern China, with none in the Neotropics or North America. Predicted hosts 
are likewise more common in the Rhinolophidae (clade 2) and subfamilies of Old World bats (clade 5) 
and are rare in many Neotropical taxa (clades 1 and 7) and emballanurids (clades 3 and 4). In the 
phylogenies, bar height indicates betacoronavirus positivity (B) or predicted rank (D, F; higher values 
indicate lower proportional ranks). Colors indicate clades identified through phylogenetic factorization 
(red indicates clades more likely to contain hosts, blue indicates less likely hosts; see Supplemental Table 
1 for more information). 
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Figure 3. Measuring model performance with novel data. Performance is based on the comparison of
total predicted prevalence (i.e., how many species are predicted positives?) with the sensitivity measured
from validation data (i.e., how many of the 40 new species are correctly identified?). The null expectation
for a model with random performance is these should be equivalent (e.g., a coin toss model will say that
50% of all bats have a betacoronavirus, and will be right 50% of the time), while a model with strong
performance will be above that null expectation (thin grey line). (A) The training prevalence-test
sensitivity curve (TPTSC) is a novel diagnostic that is conceptually similar to the receiver-operator curve
(ROC), in that the model is evaluated at each possible scaled rank threshold between 0 and 1. (B) The
same analysis, but only showing the point estimate of positivity created by each model’s internally-
calibrated threshold. For model-guided sampling, the best model would be one that predicts a low-to-
medium positivity rate and has a disproportionately high sensitivity (i.e., in the upper left corner). Both
(A) and (B) show that the trait-based models (including the hybrid model) perform well, while the
network-only models perform roughly at-random or worse than random (i.e., close to the line); the
ensemble model, which includes all eight, performs comparably to the two best trait models and better
than six of the eight component models. 
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Figure 4. Comparing bat betacoronavirus host prediction with dynamic model updates. Scatterplots 
show bat species predictions from our original ensemble in 2020 against (A) the revised predictions after 
updating models with 40 new hosts and (B) the final predictions from the weighted revised ensemble. 
Species are colored by their status in the respective revised ensemble. Trendlines show a linear regression 
fit between original and revised predictions against a 1:1 line, whereas dashed lines display the threshold 
cutoffs from each ensemble. The top 10 in- and out-of-sample predictions from the original (C) and final 
(D) ensemble. Asterisks indicate that five of the original top 10 in-sample predictions, and one of the top 
10 out-of-sample predictions, have been empirically confirmed since the first iteration of our study. 
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Figure 5. Predicted geographic and evolutionary hotspots of bat betacoronavirus hosts (updated
ensemble predictions). (A) In the weighted revised ensemble predictions, most predicted undiscovered
betacoronavirus hosts are found in sub-Saharan Africa and southeast Asia, especially in Malaysia and
Borneo (and less in the high-elevation mainland hotspot where most reservoirs of SARS-like viruses are
currently known). Predicted hosts from this final ensemble were also most likely in the Rhinolophus
genus (clade 7), several subclades of the Pteropodidae (clades 5 and 6), and the Old World molossids
(clade 8), even though the Mollosidae as a whole had less likely hosts (clade 3). Bar height in the
phylogeny indicates predicted rank, and colors indicate clades identified through phylogenetic
factorization (red indicates clades more likely to contain hosts, blue indicates less likely hosts; see
Supplemental Table 2 for more information). 
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Figure 6. Potential bridge hosts involved in SARS-CoV-2’s emergence. Each dot represents predicted 
species-level sharing probabilities with (A) Rhinolophus affinis and (B) Rhinolophus malayanus, 
estimated according to the phylogeographic viral sharing model (Trait-3)101. Each coloured point is a 
mammal species. (Black points and error bars denote means and standard errors for each order; mammal 
orders are arranged according to their mean sharing probability.) Tables below report the top 15 predicted 
non-bat species for each; several families are disproportionately represented, including pangolins 
(Pholidota: Manidae), mustelids (Carnivora: Mustelidae),and  civets (Carnivora: Viverridae). Notable 
species are bolded: (a) the wild boar S. scrofa and palm civet P. larvata were both traded in wildlife 
markets in Wuhan prior to the pandemic, as were (b) close relatives of the Greater hog badger, A. collaris 
(the Northern hog badger, A. albogularis), and of the mountain weasel, M. altaica, and Malayan weasel, 
M. nudipes (the Siberian weasel, M. siberica). (c) SARS-CoV-2-like viruses have been found in traded 
Sunda pangolins (M. javanica) outside of Wuhan, though the species was not reported in Wuhan. (d) The 
ferret badger (M. personata) was also reportedly of interest in the World Health Organization’s origins 
investigation, which explored the role of wildlife farm supply chains.  
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Table 1. Scope and calibration of different predictive modeling approaches. Some methods use 
pseudoabsences to expand the scale of prediction but still only analyze existing host–virus data, with no 
out-of-sample inference, whereas other methods can predict freshly onto new data.  
 

Model approach 

Prediction on hosts 
without known 

associations (out-of-
sample) 

Predictive extent and use of pseudoabsences 

Network-based 1  
k-Nearest neighbors 

No 
Only predicts link probabilities among species in the 

association data 

Network-based 2  
Linear filter  

No 
Only predicts link probabilities among species in the 

association data 

Network-based 3  
Plug and play  

No 
Uses pseudoabsences to predict over all mammals in 

association data, using latent approach 

Network-based 4 
Scaled-phylogeny 

No 
Only predicts link probabilities among species in the 

association data 

Trait-based 1 
Boosted regression trees  

Yes 
Uses pseudoabsences for all bats in trait data to predict over all 

species, including those without known associations 

Trait-based 2  
Bayesian additive 
regression trees 

Yes 
Uses pseudoabsences for all bats in trait data to predict over all 

species, including those without known associations 

Trait-based 3 
Neutral phylogeographic 

Yes 
Trains on a broader network, and predicts sharing probabilities 
among any mammals in phylogeny and IUCN range map data 

Hybrid 1 
Two-step kernel ridge 
regression 

Yes 
Uses pseudoabsences for all bats in trait data to predict over all 

species, including those without known associations 
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