

1 **Intra-host Variation and Evolutionary Dynamics of SARS-CoV-2**

2 **Population in COVID-19 Patients**

3

4 **Running Title:** SARS-CoV-2 Variation in COVID-19 Patients

5

6 Yanqun Wang^{1#}, Daxi Wang^{2,3#}, Lu Zhang^{4#}, Wanying Sun^{2,3,5#}, Zhaoyong Zhang^{1#}, Weijun
7 Chen^{5,6#}, Airu Zhu^{1#}, Yongbo Huang^{1#}, Fei Xiao⁷, Jinxiu Yao⁸, Mian Gan¹, Fang Li¹, Ling Luo¹,
8 Xiaofang Huang¹, Yanjun Zhang¹, Sook-san Wong¹, Xinyi Cheng^{2,9}, Jingkai Ji^{2,3,10}, Zhihua Ou^{2,3},
9 Minfeng Xiao^{2,3}, Min Li^{2,3,5}, Jiandong Li^{2,3,5}, Peidi Ren^{2,3}, Ziqing Deng^{2,3}, Huanzi Zhong^{2,3},
10 Huanming Yang^{2,11}, Jian Wang^{2,11}, Xun Xu^{2,12}, Tie Song¹³, Chris Ka Pun Mok^{1,14}, Malik Peiris^{1,14},
11 Nanshan Zhong¹, Jingxian Zhao^{1*}, Yimin Li^{1*}, Junhua Li^{2,3,9*}, Jincun Zhao^{1,4*}

12

13 ¹State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory
14 Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou
15 Medical University, Guangzhou, Guangdong, 510120, China.

16 ²BGI-Shenzhen, Shenzhen, 518083, China.

17 ³Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen,
18 518083, China.

19 ⁴Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical
20 University, Guangzhou, Guangdong, 510060, China.

21 ⁵BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.

22 ⁶BGI PathoGenesis Pharmaceutical Technology Co., Ltd , BGI-Shenzhen, Shenzhen, 518083,
23 China.

24 ⁷Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Biomedical
25 Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging. The Fifth
26 Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.

27 ⁸Yangjiang People's Hospital, Yangjiang, Guangdong, China.

28 ⁹School of Biology and Biological Engineering, South China University of Technology,
29 Guangzhou, China.

30 ¹⁰School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408,
31 China.

32 ¹¹James D. Watson Institute of Genome Science, Hangzhou, 310008, China.

33 ¹²Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen,
34 518120, China.

35 ¹³Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong,
36 511430, China.

37 ¹⁴The HKU–Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine,
38 the University of Hong Kong, Hong Kong SAR, 19406, China.

39

40 [#]These authors contributed equally to this work.

41

42 *Corresponding authors

43 Dr. Jincun Zhao, zhaojincun@gird.cn

44 Dr. Junhua Li, lijunhua@genomics.cn

45 Dr. Yimin Li, dryiminli@vip.163.com

46 Dr. Jingxian Zhao, zhaojingxian@gird.cn

47

48 **Keywords:** SARS-CoV-2, COVID-19, Intra-host, Variation

49 **ABSTRACT**

50 As of middle May 2020, the causative agent of COVID-19, SARS-CoV-2, has infected over 4
51 million people with more than 300 thousand death as official reports^{1,2}. The key to
52 understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of
53 mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a
54 few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and
55 their evolutionary dynamics remain mostly unknown. Here, using deep sequencing data, we
56 achieved and characterized consensus genomes and intra-host genomic variants from 32 serial
57 samples collected from eight patients with COVID-19. The 32 consensus genomes revealed the
58 coexistence of different genotypes within the same patient. We further identified 40 intra-host
59 single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in single patient, while ten
60 iSNVs were found in at least two patients or identical to consensus variants. Comparison of
61 allele frequencies of the iSNVs revealed genetic divergence between intra-host populations of
62 the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events
63 among intra-host transmissions. Nonetheless, we observed a maintained viral genetic diversity
64 within GIT, showing an increased population with accumulated mutations developed in the
65 tissue-specific environments. The iSNVs identified here not only show spatial divergence of
66 intra-host viral populations, but also provide new insights into the complex virus-host
67 interactions.

68

69 **MAIN**

70 From January 25 to February 10 in 2020, we collected a total of 62 serial clinical samples from
71 eight hospitalized patients (GZMU cohort) confirmed with SARS-CoV-2 infection using real-time
72 RT-qPCR (**Table S1**). All patients had direct contacts with confirmed cases during the early
73 stage of the outbreak. Most patients, except P15 and P62, had severe symptoms and received
74 mechanical ventilation in ICU, including the patient P01 who passed away eventually. The

75 patient P01 also showed much lower antibody (IgG and IgM) responses (**Table S1**) compared
76 to other patients. We then deep sequenced the 62 clinical samples using metatranscriptomic
77 and/or hybrid capture methods (**Table S1**). The numbers of SARS-CoV-2 reads per million
78 (SARS-CoV-2 RPM) among the metatranscriptomic data correlated well with the corresponding
79 RT-qPCR cycle threshold (Ct), reflecting a robust estimation of viral load ($R = 0.71$, $P = 6.7\text{e-}11$)
80 (**Fig. 1a**). The respiratory tract (RT: Nose, Sputum, Throat) and gastrointestinal tract (GIT: Anus,
81 Feces) samples showed higher SARS-CoV-2 RPMs compared to gastric mucosa and urine
82 samples (**Fig. 1b**). Furthermore, RT and GIT samples from two patients with mild symptoms
83 showed relatively low viral loads among their respective sample types. The data here may
84 reflect an active replication of SARS-CoV-2 in RT and GIT, especially in patients with severe
85 symptoms^{3,4}.

86 Here, using metatranscriptomic data, we obtained 32 consensus complete genomes
87 from the clinical samples with at least 60-fold sequence coverage (**Table S1 and Table S2**).
88 Comparing the assemblies to the reference sequence (GISAID accession: EPI_ISL_402119)
89 revealed 14 consensus variants (6 synonymous and 8 non-synonymous) located mostly in
90 ORF1ab, S and N genes (**Table S2**). Most of the consensus variants were also detected among
91 public sequences, including the widespread associated variants (C8782T and T28144C)
92 detected in four patients (P10, P13, P14 and P62). The novel consensus variant causes a
93 frameshift at the end of ORF8 in the patient P14, showing the phenotypic plasticity during the
94 evolution of SARS-CoV-2. Evolutionary relationships showed that the consensus SARS-CoV-2
95 genomes of the GZMU cohort belonged to distinct clades, including clades defined by T28144C
96 and A23403G, respectively (**Fig. 1c**). Remarkably, we observed distinct SARS-CoV-2 genomes
97 co-existed in the GIT samples of the patient (P08) with three nucleotide differences (**Fig. 1d and**
98 **Table S2**), suggesting independent replications of different SARS-CoV-2 genotypes within the
99 same host⁵.

100 Although plenty of polymorphic sites were identified among SARS-CoV-2 populations,
101 intra-host variant spectra of closely related viral genomes are mostly disguised by the
102 consensus sequences. We firstly examined the reproducibility of our experimental procedures
103 for allele frequency identification. Only a minor difference of alternative allele frequencies (AAFs)
104 was observed among biological replicates of two selected samples (**Fig. S1**), showing that the
105 estimated population composition was marginally affected by independent experimental
106 procedures. To control false discovery rate, we applied a stringent approach to detect iSNVs.
107 The iSNVs were identified from the 32 samples using metatranscriptomic data and then verified
108 using hybrid capture data, which are available for most (27/32) samples (**Table S3 and Table**
109 **S4**). Overall, we observed 1 to 23 iSNVs in six patients with a cut-off of 5% minor allele
110 frequency (**Fig. 2a and Fig. 2b**). When an iSNV was discovered in one patient, we reduced the
111 cut-off to 2% to detect that iSNV from the rest samples of the same patient (see methods). The
112 AAFs of iSNVs detected from the metagenomic data correlated well with those of the hybrid
113 capture data (Spearman's $\rho = 0.99$, $P < 2.2\text{e-}16$; **Fig. S2**). Furthermore, the numbers of the
114 observed iSNVs did not correlate with the sequencing coverage (**Fig. S3**), suggesting that the
115 coverage of metatranscriptomic data was sufficient to estimate intra-host variation in most
116 samples.

117 We further analyzed intra-host variation across genes for evidence of natural selection.
118 Overall, the 40 identified iSNV sites (10 synonymous iSNVs and 30 non-synonymous iSNVs)
119 distributed evenly across genomic regions (**Fig. 2c; Table S3**). High proportion of non-
120 synonymous iSNVs suggests that most iSNVs were either under frequent positive selection or
121 insufficient purifying selection. However, we did not observe significant difference in AAFs
122 between non-synonymous and synonymous iSNVs (**Fig. 2d**) and among codon positions (**Fig.**
123 **S4**), indicating a relaxed intra-host selection. It is likely that most of those non-synonymous
124 iSNVs will be removed by purifying selection and/or genetic drift in a longer timescale⁶.

125 Nonetheless, the exact functional and evolutionary relevance of the intra-host variants remain to
126 be explored.

127 One central task when estimating intra-host variation is to identify the source of iSNVs.
128 Overall, the distribution of the iSNVs among samples does not correlate well with the consensus
129 SNPs (**Fig. 2a**). Samples carrying the same consensus SNPs generally had different iSNVs,
130 particularly in P01, P10 and P13. Here, we classified the iSNVs into i) rare iSNVs (30/40)
131 detected in a single patient, and ii) common iSNVs (10/40) detected in at least two patients
132 and/or identical to consensus variants. The ten common iSNVs did not show significant higher
133 AAFs than the rare iSNVs (**Fig. 2e**). Notably, the ten common iSNVs include two iSNVs
134 (G11083T and C21711T) exclusively detected in the GIT populations of P01, P08 and P10
135 (**Table S4**). Among the common iSNVs, G11083T is the most widespread consensus variant
136 distributed in multiple lineages of SARS-CoV-2, suggesting that it might derive from recurring
137 mutations on distinct strains rather than the mutation on a single ancestral strain. Interestingly,
138 although G11083T was detected as an intra-host variant in the GIT samples of three patients, it
139 was not detected in the corresponding RT samples, indicating a recurrent mutation of this loci,
140 especially in the GIT population. Interestingly, G11083T locate in a region encoding a predicted
141 T-cell epitope⁷, suggesting that recurrent mutation may provide genetic plasticity to better adapt
142 against host defenses.

143 Using Shannon entropy, we observed a significantly higher genetic diversity within the
144 GIT samples than that of RT samples (Wilcoxon rank-sum test, $P = 1.4e-05$; **Fig. 3a and Table**
145 **S5**), reflecting an increased viral population size within the GIT samples. We further investigated
146 the genetic differentiation between the two places. Notably, no iSNVs was shared between RT
147 and GIT samples from the same patients, suggesting a clear genetic divergence among intra-
148 host viral populations. Here we used L1-norm distance to estimate genetic dissimilarity among
149 samples based on iSNVs and their AAFs and compared that between samples within and
150 among hosts (**Fig. 3b and Table S6**). As expected, genetic distances among samples from the

151 same host were smaller than those among inter-host samples (**Fig. 3b and Table S6**). Within
152 each host, the greatest genetic differentiation was observed among GIT samples and between
153 GIT and RT samples, while the differentiation among RT samples was relatively small. For
154 example, seven iSNVs were shared among the GIT samples of P01, while none of them was
155 observed in RT samples (**Fig. 2a**). It seems that the frequent genetic divergence between GIT
156 and RT populations is mostly driven by bottleneck events during distant intra-host transmissions.
157 However, the exact interaction mechanisms among intra-host populations require further
158 investigation.

159 Previous studies have revealed longitudinal evolution of intra-host populations in some
160 important RNA viruses⁸⁻¹⁰. We firstly compared the detected iSNVs among serial samples. All
161 the iSNVs of early GIT samples also presented in later GIT samples, while all the iSNVs
162 detected in RT samples disappeared in the following samples, suggesting that the viral genetic
163 diversity is better maintained in GIT. We further focused on the allele frequency dynamics of
164 GIT iSNVs of P01 and P08, respectively. Notably, most GIT iSNVs were remarkably stable and
165 showed continuous trends of AAFs across sampling dates. For example, within the GIT
166 population of P01, seven iSNVs showed continuous trends of allele frequency dynamics,
167 including four iSNVs with increased AAFs and two iSNVs with decreased AAFs across the three
168 sampling dates (**Fig. 4a**). Given their similar growth rates but distinct allele frequencies, it is
169 likely that more than two genetically related haplotypes co-existed in within P01. Similar patterns
170 were also observed in the GIT population of P08 (**Fig. 4b**). Notably, the dynamics of intra-host
171 variants changed the consensus allele (>50%) of three genomic loci (3160, 21711 and 28854)
172 of P08. Taken together, the iSNVs and their frequencies suggest that the viral populations in
173 GIT is more stable than those in RT. Nonetheless, in both P01 and P08, we observed increased
174 AAFs of C21711T and G11083T, suggesting that these two variants might be adaptively
175 selected, especially in the GIT. Whether viral adaptation is involved in the intra-host divergence
176 among distant populations warrants further investigation.

177 We further phased the proximal iSNVs into local haplotypes using paired-end mapped
178 reads (**Table S7**). Most minor haplotypes had one nucleotide difference from the dominant
179 haplotype of the same sample, suggesting that they might derive from the main strain of the
180 population. Nonetheless, we observed one exception in the GIT population of P01, covering the
181 variable sites of C21707T, C21711T and A21717G (**Fig. S5**). With the cut-off of 1%, one
182 dominant haplotype (T-C-A) and two minor haplotypes (T-T-A and T-T-G) were identified.
183 Despite that minor haplotype (T-T-A) was relatively stable (8%–10%), the proportion of the
184 dominant haplotype (T-C-A) decreased from 89% to 67%, while that of the minor haplotype (T-
185 T-G) increased from 2% to 22%. Based on the dynamics and nucleotide differences among
186 three haplotypes, we hypothesized that the minor haplotype (T-T-G) may derive from the
187 dominant haplotype (T-C-A) via the intermediate haplotype (T-T-A), showing a maintained
188 diversity within GIT population. More importantly, our observation supports that the mutated
189 viruses are capable to replicate and hence, accumulate more variants within GIT of the same
190 host, leading to an increased genetic diversity in the tissue specific environment.

191 Given the observations in patients with influenza⁸, stochastic process is the dominant
192 factor driving the intra-host population dynamics, which is especially the case during distant
193 intra-host transmissions. For SARS-CoV-2, one possible intra-host transmission route is from
194 the respiratory tract to the gastrointestinal epithelia. During the intra-host transmission,
195 population composition may change dramatically through random sampling when a novel sub-
196 population was established from a small group of viruses of a larger population¹³. This is
197 supported by the genetic divergence of intra-host variants between RT and GIT populations.
198 The stochastic process between and within intra-host populations seems to also attenuate the
199 efficacy of intra-host purifying selection, as shown by the even distribution of AAFs among
200 synonymous and non-synonymous iSNVs. However, under the traditional genetic population
201 theories, novel founder populations are expected to have a low genetic variation due to the
202 subsampling from the original population. In contrast, viral populations in GIT showed a higher

203 genetic diversity than those in RT, reflecting a larger effective viral population size in the GIT.
204 This result is also consistent with the high viral load in GIT (**Fig. 1b**). During the viral replication,
205 both RT and GIT populations showed evidence of generating intra-host variants. Our findings
206 further demonstrated that those novel and/or recurrent intra-host variants are better maintained
207 within GIT, and hence, leading to a higher level of genetic diversity and potentially larger
208 effective population size in GIT. In contrast, the intra-host variants seemed to be less stable in
209 RT, probably associated with a more dramatic genetic drift in RT populations. Differences in
210 other factors, such as host-cell entry, immune responses and microbial communities among
211 tissue specific environments, may further drive the structuring among intra-host population. On
212 the other hand, those differences may also drive viral adaptation, given the two GIT specific
213 non-synonymous iSNVs observed in our study. However, it is still challenging to fully
214 disentangle the influences of stochastic processes and natural selection, considering the
215 frequent confounding genetic signals of these two processes.

216 Intra-host variants were identified in many RNA viruses^{8,9,11-14}. Here, using deep
217 sequencing data of serial samples, we revealed the existence of intra-host variation within
218 COVID-19 patients, which is likely to be contributed by novel and/or recurring intra-host
219 mutations. Furthermore, our observation demonstrated a frequent genetic divergence between
220 GIT and RT samples, mostly driven by bottleneck events among intra-host transmissions.
221 Nonetheless, we observed a maintained viral genetic diversity within GIT, reflecting an
222 increased population with accumulated mutations developed in the tissue-specific environments.
223 Exact biological mechanisms of the intra-host population dynamics remain to be explored in
224 future. Our data presented here also reflects the evolutionary capacity of SARS-CoV-2 in
225 developing viral escape and drug resistance during infection. More broadly, these data provide
226 new insights into the complex virus-host interactions.

227

228

229 **METHODS**

230 **Patient enrollment and Ethics statement**

231 Eight pneumonia patients, referred as GZMU cohort, were confirmed with SARS-CoV-2
232 infection between January 25 to February 10 in 2020 and hospitalized at the first affiliated
233 hospital of Guangzhou Medical University (six patients), the fifth affiliated hospital of Sun Yat-
234 sen University (one patient), and Yangjiang People's Hospital (one patient). Serial samples
235 were collected, including nasal swabs, throat swabs, sputum, gastric mucosa, urine, plasma,
236 anal swabs and feces. The overall research plan was reviewed and approved by the Ethics
237 Committees of all the three hospitals. All the information regarding patients has been
238 anonymized.

239

240 **Real-time RT-qPCR and Metatranscriptomic sequencing**

241 A total of 62 serial clinical samples collected from eight patients with COVID-19 (**Table S1**) were
242 used for Real-time RT-qPCR. Clinical samples were subjected to RNA extraction using QIAamp
243 Viral RNA Mini Kit (Qiagen, Hilden, Germany). An in-house real-time RT-qPCR was performed
244 by targeting the SARS-CoV-2 RdRp and N gene regions (Zybio Inc.). Human DNA was
245 removed using DNase I and RNA concentration was measured using Qubit RNA HS Assay Kit
246 (Thermo Fisher Scientific, Waltham, MA, USA). DNA-depleted and purified RNA was used to
247 construct double-stranded DNA library using MGIEasy RNA Library preparation reagent set
248 (MGI, Shenzhen, China) following the protocol described in our previous study¹⁵. High
249 throughput sequencing of the constructed libraries was then carried out on the DNBSEQ-T7
250 platform (MGI, Shenzhen, China) to generate metatranscriptomic data of 100bp long paired-end
251 reads.

252

253 **Hybrid capture-based enrichment and sequencing**

254 For a subset of samples (**Table S1**), genomic content of SARS-CoV-2 was enriched from the
255 double-stranded DNA libraries mentioned above using the 2019-nCoVirus DNA/RNA Capture
256 Panel (BOKE, Jiangsu, China) as described in our previous study¹⁵. The SARS-CoV-2 content
257 enriched samples were used to construct DNA Nanoballs (DNBs) based libraries, which were
258 then sequenced using the same protocol described above.

259

260 **Data filtering and Genome assembly**

261 Data filtering was performed following the procedures described in previous research¹⁵. Briefly,
262 for both metatranscriptomic and hybrid capture data, sequence data of each sample were firstly
263 mapped to a pre-defined database comprising representative genomes of coronaviridae. The
264 mapped reads were then subject to the removal of low-quality, duplications, adaptor
265 contaminations and low-complexity to collect high quality coronaviridae-like reads. We also
266 compared the allele frequencies among the two data types when available, samples with
267 conflicted consensus alleles were removed. For the samples with 60-fold of metatranscriptomic
268 data, coronaviridae-like metatranscriptomic reads were used to generate consensus genomes
269 and identify intra-host variants. Full-length consensus genomes were generated from reads
270 mapped to the reference genome (GISAID accession: EPI_ISL_402119) using Pilon (v. 1.23)¹⁶.
271 To prevent false discovery, base positions reporting an alternative allele with the following
272 conditions were masked as N: 1) sequencing coverage less than 5-fold; 2) sequencing
273 coverage less than 10-fold and the proportion of reads with the alternative allele less than 80%.
274 The collected coronaviridae-like reads were also de novo assembled using SPAdes (v. 3.14.0)
275 with default settings¹⁷ with a maximum of 100-fold coverage of read data. Structural variations
276 between the de novo assemblies and consensus genomes, if any, were manually checked and
277 resolved based on read alignments. Nucleotide differences between the consensus sequences
278 and the reference genome were summarized into artificial Variant Call Format (VCF) files, which
279 were annotated using SnpEff (v.2.0.5)¹⁸ with default settings.

280

281 **Phylogenetic analysis**

282 Available consensus sequences of SARS-CoV-2 (**Table S8**) were collected from GISAID
283 database (<https://www.gisaid.org/>) on 5th April, 2020, after the removal of highly homologous
284 sequences, 122 representative virus strains (**Table S8**) were used to infer evolutionary
285 relationships with the assembled genomes. Within the GZMU cohort, only one genome was
286 selected when more than one identical genome was achieved from the same patient. The
287 assembled SARS-CoV-2 and selected representative genomes were aligned using MAFFT with
288 default settings. A maximum likelihood (ML) tree was inferred using the software IQ-TREE
289 (v.1.6.12)¹⁹, with the best fit nucleotide substitution model selected by ModelFinder from the
290 same software. The inferred ML tree was then visualized using the R package ggtree²⁰ (v.3.10).
291 Major branches and the defining nucleotide mutations were manually labelled.

292

293 **Summary of public consensus variants**

294 All the consensus sequences of the public strains were aligned with the reference genome
295 (GISAID accession: EPI_ISL_402119) using MAFFT (v.5.3)²¹ with default settings. Nucleotide
296 differences between the consensus sequences and the reference genome were summarized
297 into an artificial VCF file, which was then were annotated using SnpEff (v.2.0.5) with default
298 settings. The linkage disequilibrium among the identified consensus variants were estimated
299 using VCFtools (v.0.1.16).

300

301 **Calling of iSNVs**

302 Here, an intra-host single nucleotide variant (iSNV) was defined as the alternative allele co-
303 existed with the reference allele at identical genomic position within the same sample. To
304 minimize false discovery, iSNVs were identified on samples with at least 60-fold mean

305 metatranscriptomic sequencing coverage and then verified using hybrid-capture data when
306 available.

307 First, paired-end metatranscriptomic reads were mapped to the reference genome
308 (GISaid accession: EPI_ISL_402119) using BWA aln (v.0.7.16) with default parameters²².
309 Duplicated reads were marked using Picard MarkDuplicates (v. 2.10.10)
310 (<http://broadinstitute.github.io/picard>) with default settings. Base composition of each position
311 was summarized from the mapped reads using the software pysamstats (v. 1.1.2)
312 (<https://github.com/alimanfoo/pysamstats>), and then subject to iSNV site identification with
313 following criteria: 1) base quality larger than 20; 2) sequencing coverage of paired-end mapped
314 reads ≥ 10 ; 3) at least five reads support the minor allele 4) minor allele frequency $\geq 5\%$; 5)
315 strand bias ratio of reads with the minor allele and reads with major allele less than ten-fold. To
316 minimize false discoveries, sites with more than one alternative allele were filtered out.
317 Biological effects of the identified iSNVs were annotated using the SnpEff (v.2.0.5) with default
318 settings. Alternative allele frequencies (AAFs) at the identified iSNV sites were measured by the
319 proportion of paired-end mapped reads with alternative alleles. When an iSNV was detected in
320 one patient, the detection cut-off of that iSNV was reduced to 2% for the rest samples of the
321 same patient. Only the AAFs more than 2% with at least three reads were kept for the following
322 analyses. All the iSNVs were verified using hybrid capture data when available. At the iSNV
323 sites, the allele with higher frequency was defined as major allele, while one with less frequency
324 was defined as minor allele, regardless whether it is different from the reference allele. A
325 heatmap was generated to visualize the AAFs for all samples using the pheatmap package in R
326 (v.3.6.1). A subset of the identified iSNVs were validated by Sanger sequencing using the
327 protocol described in previous study¹⁵.

328

329 **Statistics of iSNVs**

330 The distribution of iSNVs among genetic components and patients were summarized and
331 visualized using the Python package matplotlib (v.3.2.1). Alternative allele frequencies on all
332 the detected iSNV sites were compared among patients. To avoid oversampling, for the patient
333 with more than sample, only the median AAF among all samples of that patient was used for
334 comparison. Alternative allele frequencies among synonymous and nonsynonymous variants
335 and among codon positions were compared using Wilcoxon rank sum test and visualized
336 through boxplot using the R package *ggplot* (v.3.3.0). For the iSNVs detected in patient P01 and
337 P08, the dynamics of AAFs was visualized across time points using the R package *ggplot*
338 (v.3.3.0).

339

340 **Genetic diversity**

341 Genetic diversity of each sample was estimated using Shannon entropy based on the AAF of
342 each iSNV, assuming that all iSNVs are independent from each other.

$$H(x) = - \sum_i^n P(i) \log_2 P(i)$$

343 where $P(i)$ is the AAF at variable site i .

344

345 **Genetic distance**

346 The genetic distance among samples was estimated using L1-norm distance in a pairwise
347 manner.

$$D = \sum_{k=1}^N \sum_{i=1}^n |p_i - q_i|$$

348 The L1-norm distance (D) between a pair of samples is the sum of distance across all the
349 variable sites (N). For each variable site, the distance is calculated between vectors (p and q for
350 each sample) comprising frequencies of all the four possible nucleotide bases ($n = 4$).

351

352 **Haplotype reconstruction**

353 Haplotypes of neighbor iSNV sites were reconstructed using mapped paired end reads.

354

355 **DATA AVAILABILITY**

356 Sequence data used in this study have been deposited in CNGB (<https://db.cngb.org/>) under

357 Project accession CNP0001004 and CNP0000997.

358

359 **DISCLOSURE STATEMENT**

360 No conflict of interest was reported by the authors.

361

362 **ACKNOWLEDGEMENTS**

363 This study was approved by the Health Commission of Guangdong Province to use patients'

364 specimen for this study. This study was funded by grants from The National Key Research and

365 Development Program of China (2018YFC1200100, 2018ZX10301403, 2018YFC1311900), the

366 emergency grants for prevention and control of SARS-CoV-2 of Ministry of Science and

367 Technology (2020YFC0841400) and Guangdong province (2020B111108001,

368 2018B020207013, 2020B111112003), the Guangdong Province Basic and Applied Basic

369 Research Fund (2020A1515010911), Guangdong Science and Technology Foundation

370 (2019B030316028), Guangdong Provincial Key Laboratory of Genome Read and Write

371 (2017B030301011), Guangzhou Medical University High-level University Innovation Team

372 Training Program (Guangzhou Medical University released [2017] No.159), National Natural

373 Science Foundation of China (81702047, 81772191, 91842106 and 8181101118), State Key

374 Laboratory of Respiratory Disease (SKLRD-QN-201715, SKLRD-QN-201912 and SKLRD-Z-

375 202007). We thank the authors for submitting the genome sequences to GISAID. We thank the

376 Guangdong Provincial Key Laboratory of Genome Read and Write and China National
377 GeneBank at Shenzhen for providing sequencing service. We thank the patients who took part
378 in this study.

379

380 **AUTHOR CONTRIBUTIONS**

381 J.Z., J.L., Y.L and J.Z conceived the study, Y.W et al collected clinical specimen and executed
382 the experiments. D.W., W.S., X.C. and J.J. analyzed the data. All the authors participated in
383 discussion and result interpretation. D.W., Y.W., M.P. and J.Z. wrote the manuscript. All authors
384 revised and approved the final version.

385

386 **DISCLOSURE STATEMENT**

387 No conflict of interest was reported by the authors

388

389 **REFERENCES**

390 1 Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat
391 origin. *Nature* **579**, 270-273, doi:10.1038/s41586-020-2012-7 (2020).

392 2 Velavan, T. P. & Meyer, C. G. The COVID-19 epidemic. *Trop. Med. Int. Health* **25**, 278-
393 280, doi:10.1111/tmi.13383 (2020).

394 3 Wang, W. *et al.* Detection of SARS-CoV-2 in Different Types of Clinical Specimens.
395 *Jama*, doi:10.1001/jama.2020.3786 (2020).

396 4 Chen, W. *et al.* Detectable 2019-nCoV viral RNA in blood is a strong indicator for the
397 further clinical severity. *Emerging microbes & infections* **9**, 469-473,
398 doi:10.1080/22221751.2020.1732837 (2020).

399 5 Wölfel, R. *et al.* Virological assessment of hospitalized patients with COVID-2019.
400 *Nature*, doi:10.1038/s41586-020-2196-x (2020).

401 6 Domingo, E., Sheldon, J. & Perales, C. Viral quasispecies evolution. *Microbiol. Mol.*
402 *Biol. Rev.* **76**, 159-216, doi:10.1128/mmbr.05023-11 (2012).

403 7 Grifoni, A. *et al.* A Sequence Homology and Bioinformatic Approach Can Predict
404 Candidate Targets for Immune Responses to SARS-CoV-2. *Cell host & microbe* **27**, 671-
405 680.e672, doi:10.1016/j.chom.2020.03.002 (2020).

406 8 McCrone, J. T., Woods, R. J., Martin, E. T. & Malosh, R. E. Stochastic processes
407 constrain the within and between host evolution of influenza virus. **7**,
408 doi:10.7554/eLife.35962 (2018).

409 9 Bull, R. A. *et al.* Contribution of intra- and interhost dynamics to norovirus evolution.
410 *Journal of virology* **86**, 3219-3229, doi:10.1128/jvi.06712-11 (2012).

411 10 Orton, R. J. & Wright, C. F. Estimating viral bottleneck sizes for FMDV transmission
412 within and between hosts and implications for the rate of viral evolution. **10**, 20190066,
413 doi:10.1098/rsfs.2019.0066 (2020).

414 11 Gire, S. K. *et al.* Genomic surveillance elucidates Ebola virus origin and transmission
415 during the 2014 outbreak. *Science* **345**, 1369-1372, doi:10.1126/science.1259657 (2014).

416 12 Chen, C. *et al.* Phylogenomic analysis unravels evolution of yellow fever virus within
417 hosts. **12**, e0006738, doi:10.1371/journal.pntd.0006738 (2018).

418 13 Grubaugh, N. D. *et al.* Genetic Drift during Systemic Arbovirus Infection of Mosquito
419 Vectors Leads to Decreased Relative Fitness during Host Switching. *Cell host & microbe*
420 **19**, 481-492, doi:10.1016/j.chom.2016.03.002 (2016).

421 14 Andersen, K. G. *et al.* Clinical Sequencing Uncovers Origins and Evolution of Lassa
422 Virus. *Cell* **162**, 738-750, doi:10.1016/j.cell.2015.07.020 (2015).

423 15 Xiao, M. *et al.* Multiple approaches for massively parallel sequencing of HCoV-19
424 genomes directly from clinical samples. *bioRxiv*, 2020.2003.2016.993584,
425 doi:10.1101/2020.03.16.993584 (2020).

426 16 Walker, B. J. *et al.* Pilon: an integrated tool for comprehensive microbial variant
427 detection and genome assembly improvement. *PLoS One* **9**, e112963,
428 doi:10.1371/journal.pone.0112963 (2014).

429 17 Bankevich, A. *et al.* SPAdes: a new genome assembly algorithm and its applications to
430 single-cell sequencing. *J. Comput. Biol.* **19**, 455-477, doi:10.1089/cmb.2012.0021 (2012).

431 18 Cingolani, P. *et al.* A program for annotating and predicting the effects of single
432 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*
433 strain w1118; iso-2; iso-3. *Fly* **6**, 80-92, doi:10.4161/fly.19695 (2012).

434 19 Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and
435 effective stochastic algorithm for estimating maximum-likelihood phylogenies.
436 *Molecular biology and evolution* **32**, 268-274, doi:10.1093/molbev/msu300 (2015).

437 20 Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r package for
438 visualization and annotation of phylogenetic trees with their covariates and other
439 associated data. *Methods Ecol. Evol.* **8**, 28-36, doi:10.1111/2041-210x.12628 (2017).

440 21 Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy
441 of multiple sequence alignment. *Nucleic Acids Res.* **33**, 511-518, doi:10.1093/nar/gki198
442 (2005).

443 22 Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler
444 transform. *Bioinformatics* **26**, 589-595, doi:10.1093/bioinformatics/btp698 (2010).

445

446

447 **FIGURE LEGEND**

448 **Figure 1. Sequence data from various sample types of patients with COVID-19**

449 **a**, SARS-CoV-2 RPM of meta-transcriptomic data plotted against RT-qPCR cycle threshold (Ct)
450 value for the clinical samples. **b**, Frequency distribution of samples based on SARS-CoV-2
451 reads per million (SARS-CoV-2 RPM). **c**, Maximum likelihood tree of consensus SARS-CoV-2
452 genomes using IQ-TREE (1,000 bootstrap replicates). Colors of dotted tips represent
453 geographic locations of samples. Node labels represent bootstrap values for each branch.
454 Nucleotide mutations that defines the branch were labelled outside the tree. **d**, Distribution of
455 consensus variants (in round circles) detected in GZMU cohort across the SARS-CoV-2
456 genome. Colors represent the biological effect of mutations. Non-synonymous variants are
457 denoted by green, synonymous variants by red, and frameshift by blue. EPI_ISL_402119 was
458 used as the reference sequence.

459

460 **Figure 2. Characteristics of iSNVs.**

461 **a**, Heatmap showing the alternative allele frequencies (AAFs) of intra-host single nucleotide
462 variants (iSNVs) and consensus variants among samples. The sample (e.g P01N0129) name
463 indicates patient number P01, sample type (N nasal swab, T throat swab, A anal swab, F feces,
464 S sputum) and collection date (01-27). **b**, The number of detected iSNVs per patient. **c**, Number
465 of iSNV sites among protein-encoding genes. **d**, Box plot showing the distribution of alternative
466 allele frequencies (AAFs) of non-synonymous and synonymous iSNVs. Each dot indicates the
467 median AAF among all the detected iSNVs of samples from same patient. **e**, Box plot showing
468 the distribution of AAFs of common and rare iSNVs. Each dot indicates the median AAF among
469 all the detected iSNVs of samples from same patient.

470

471 **Figure 3. Dynamics of iSNVs detected in SARS-CoV-2 infected patients.**

472 **a**, Box plot showing the distribution of genetic diversity among samples from gastrointestinal
473 tract (GIT) and respiratory tract (RT). **b**, Box plot showing the distribution of L1-norm distances
474 among samples from gastrointestinal tract (GIT) and respiratory tract (RT). Each dot represents
475 the genetic distance between a unique pair.

476

477 **Figure 4. Temporal dynamics of intra-host populations in patient P01 and P08.**

478 **a-b**, Alternative allele frequencies (AAFs) among sampling dates in patient P01 and P08. Days
479 post the first symptom date are shown in bracket. Combined iSNVs are the average frequency
480 of four similar iSNVs (A391T, A2275G, C25163A and T27817G). Colours represent different
481 iSNVs. Underlines represent common iSNVs.

482

483 **SUPPLEMENTARY INFORMATION**

484 **Figure S1. Correlation of estimated alternative allele frequencies between biological
replicates.**

486 **Figure S2. Correlation of estimated alternative allele frequencies between metagenomic
and hybrid capture data.**

488 **Figure S3. Correlation between sequencing depth and detected iSNVs.**

489 **Figure S4. Number of iSNV among three codon positions.**

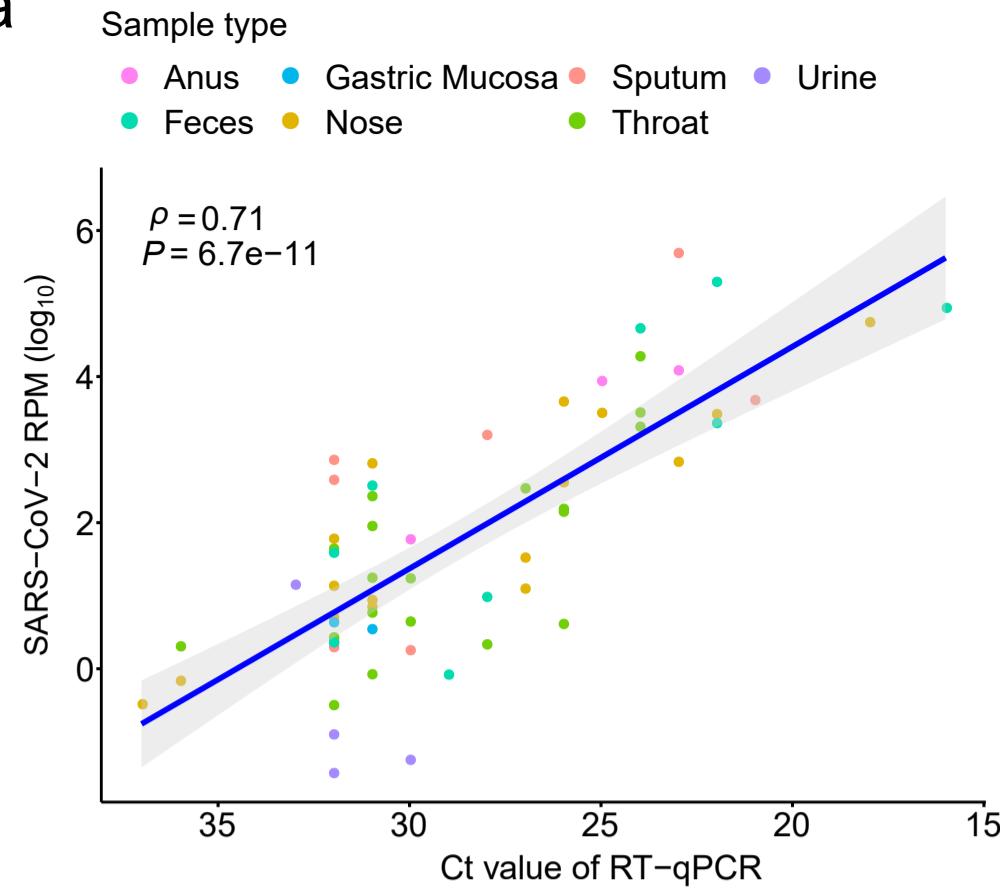
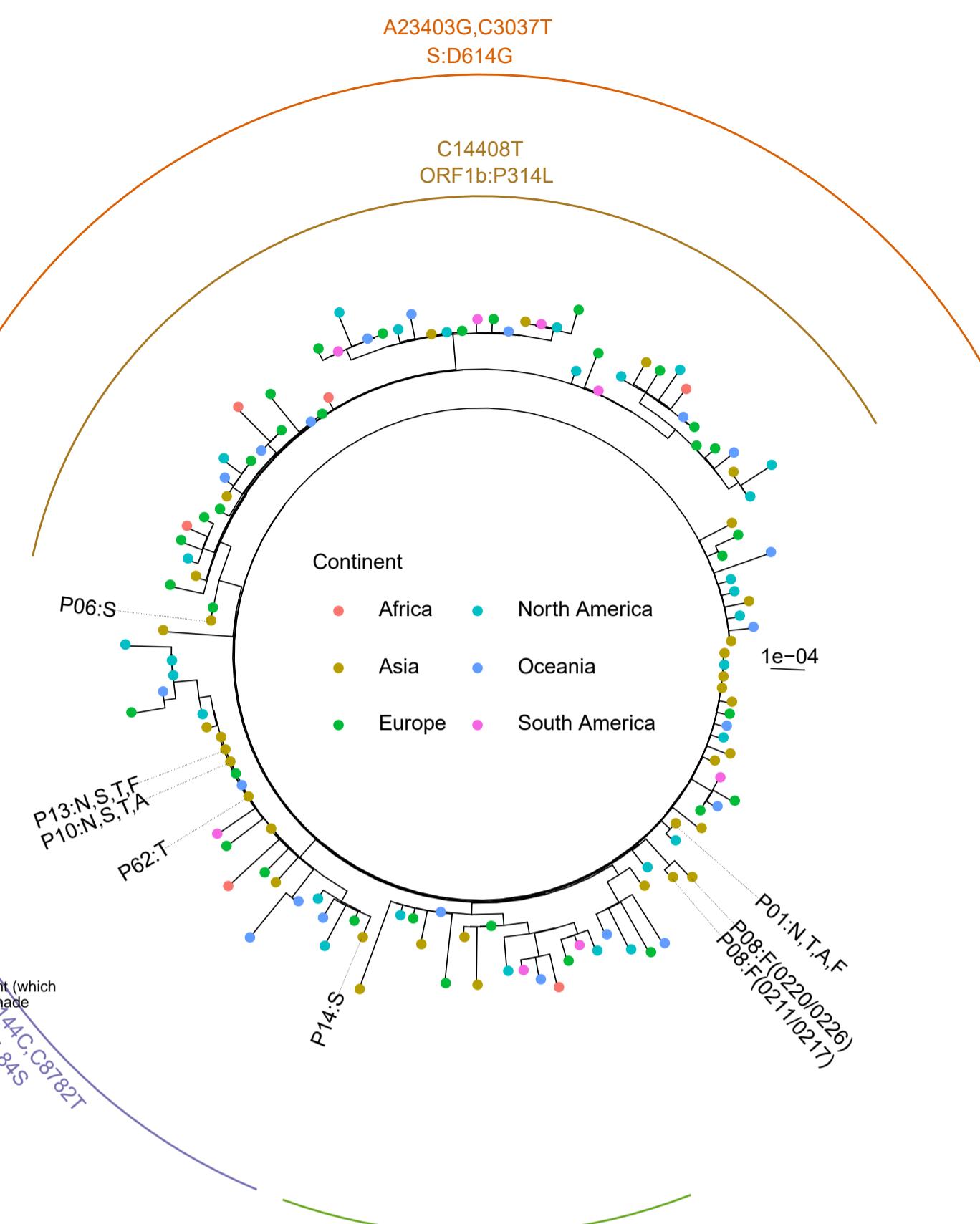
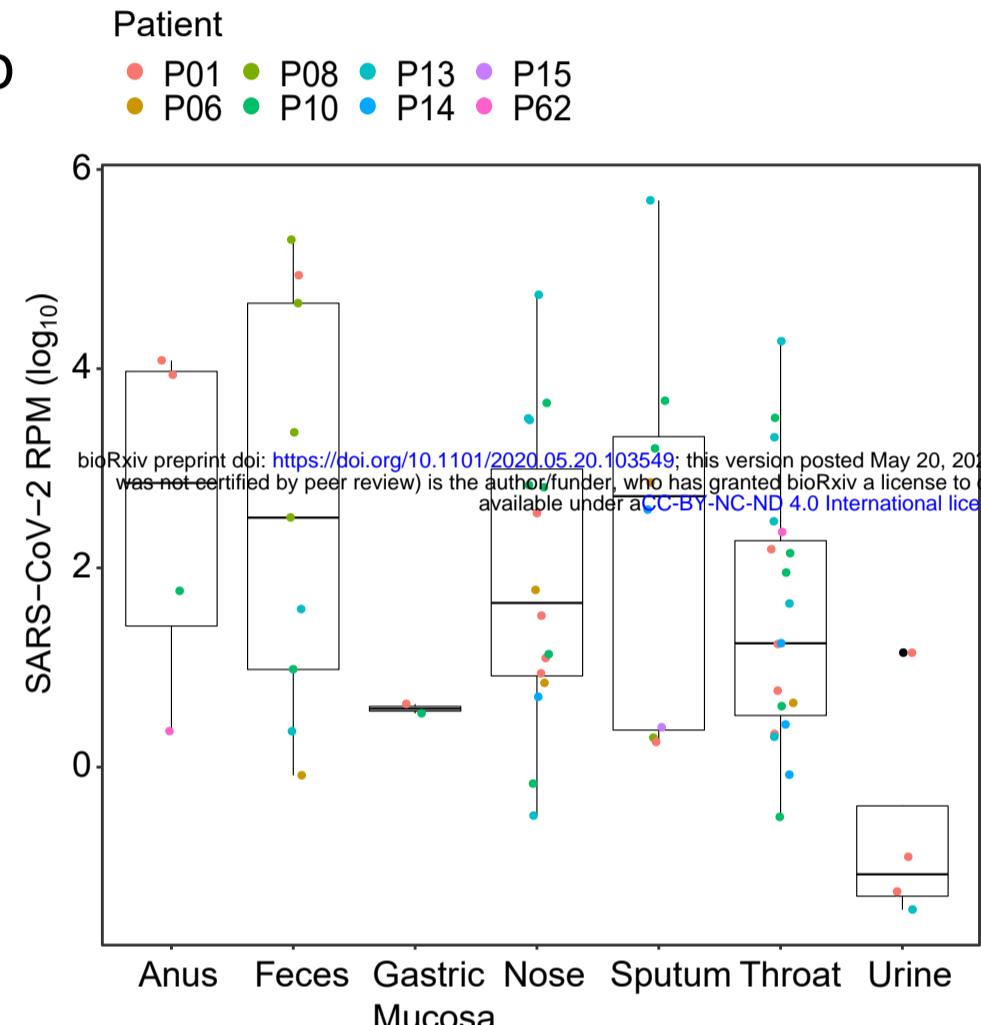
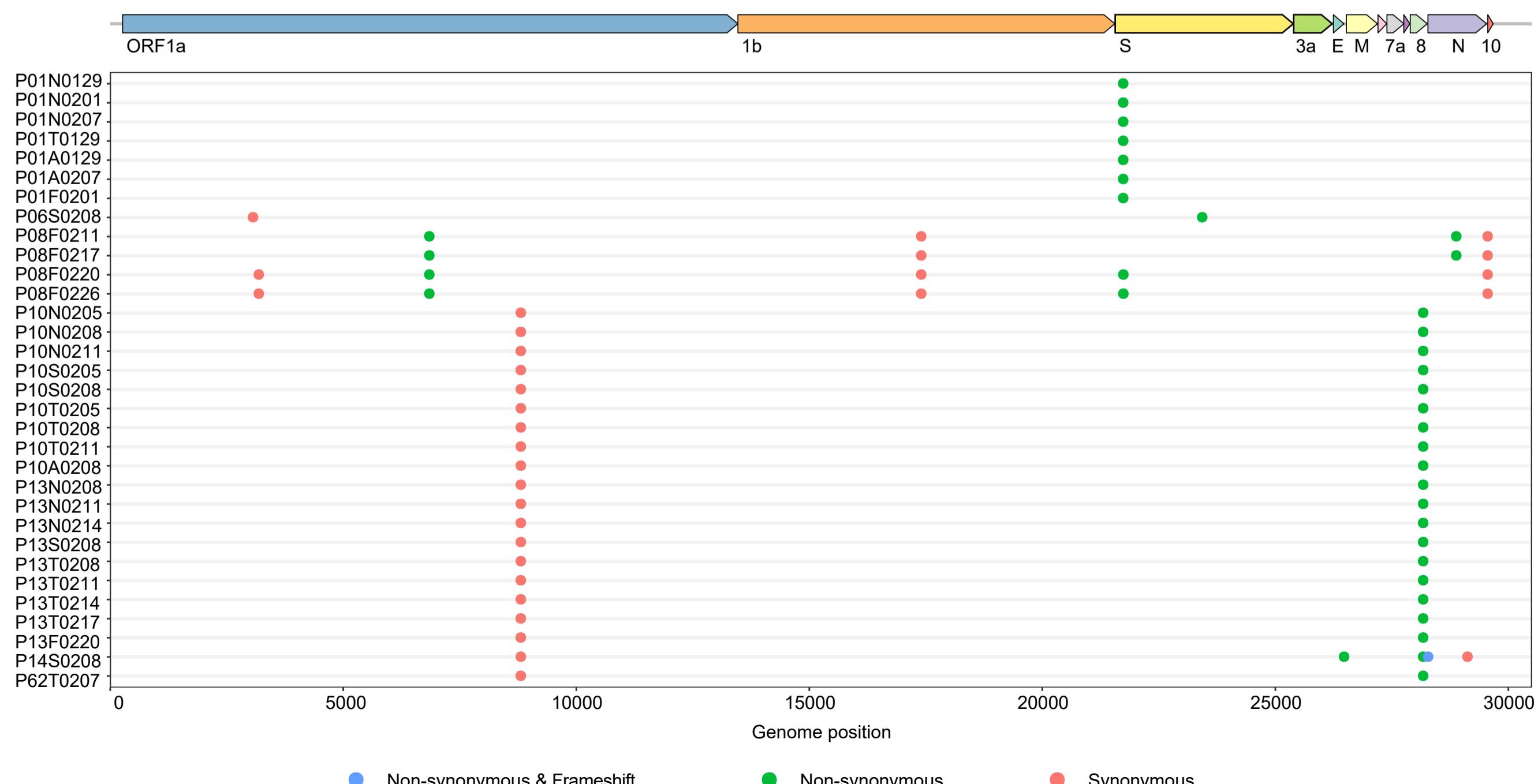
490 **Figure S5. Haplotype frequency of proximal iSNVs within the gastrointestinal tract of the
patient P01**

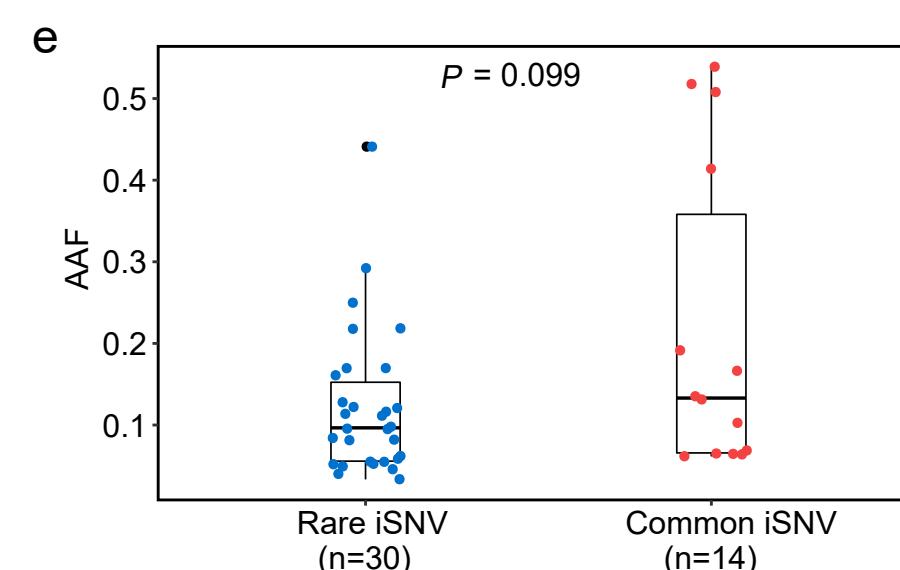
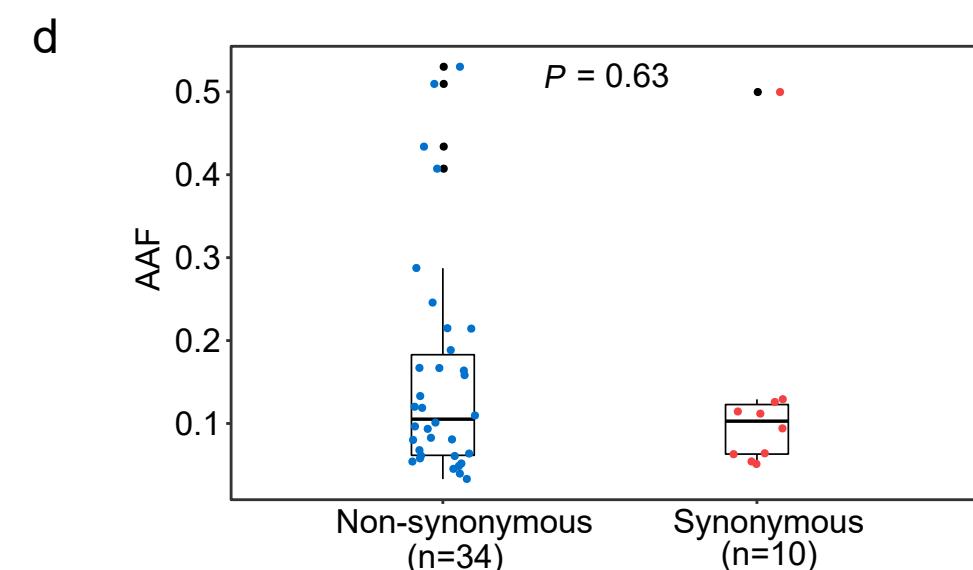
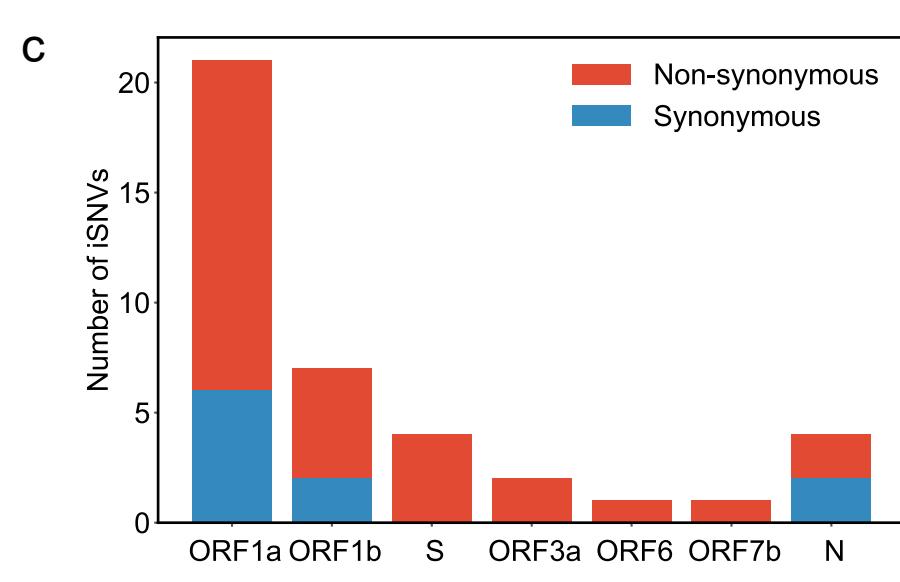
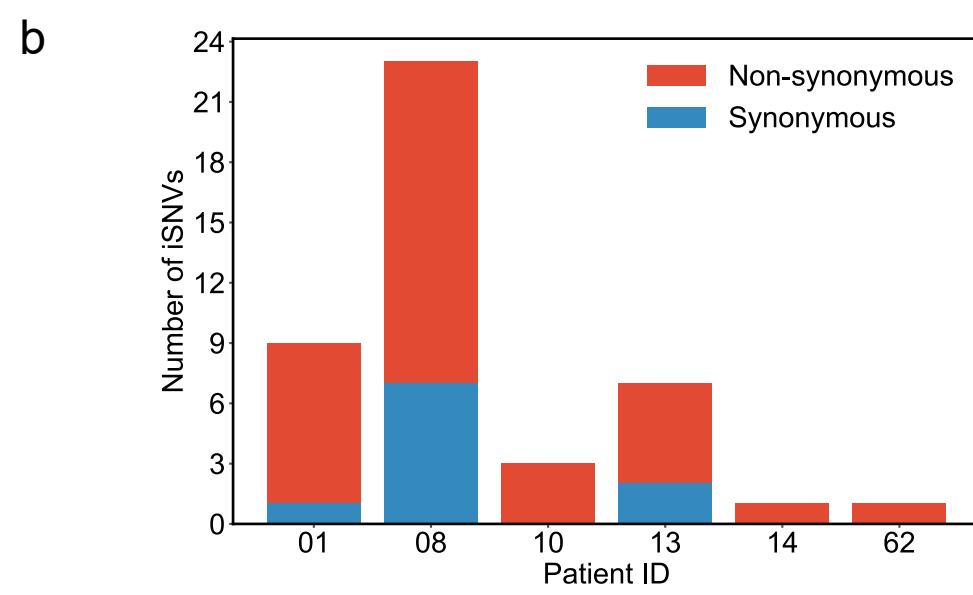
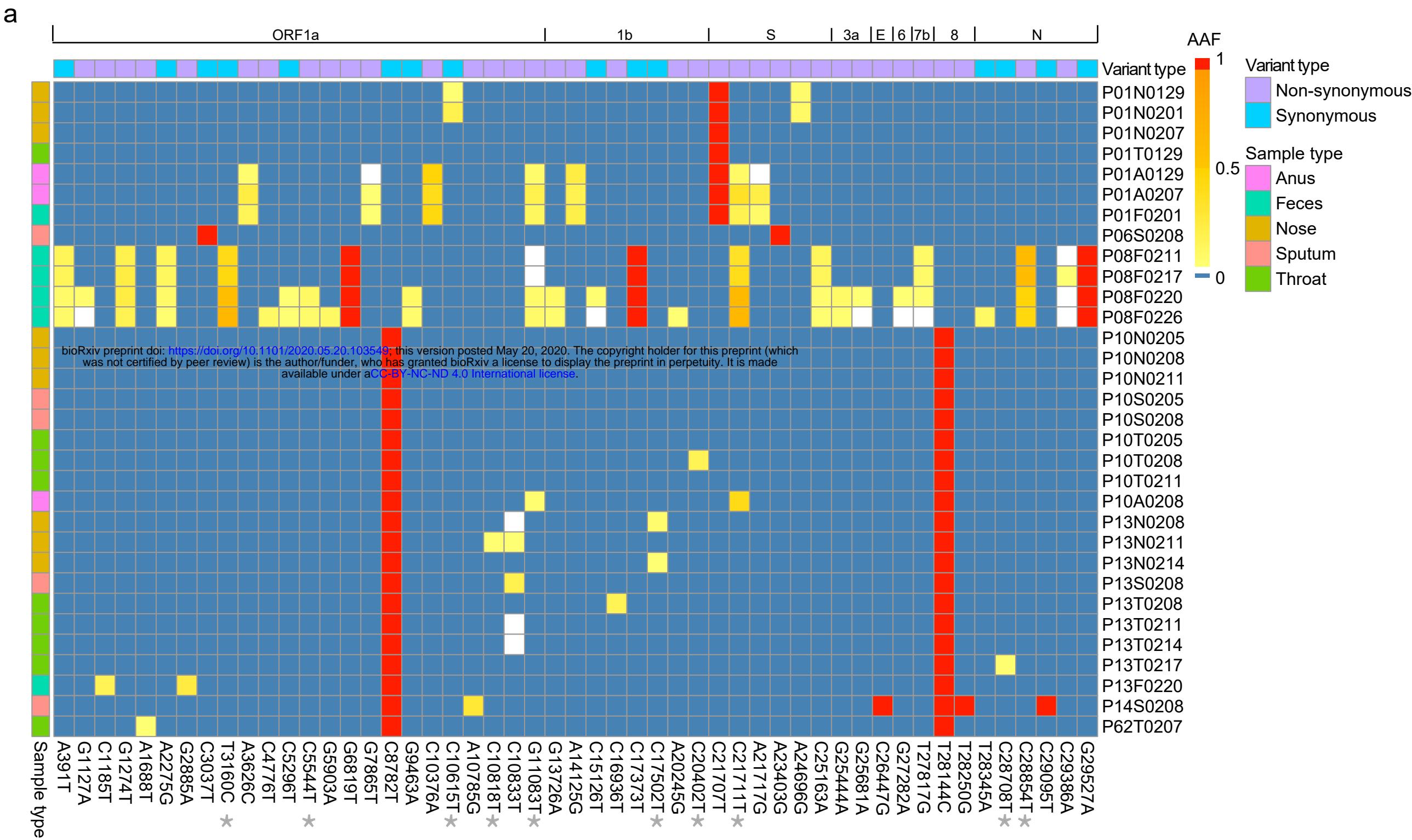
492

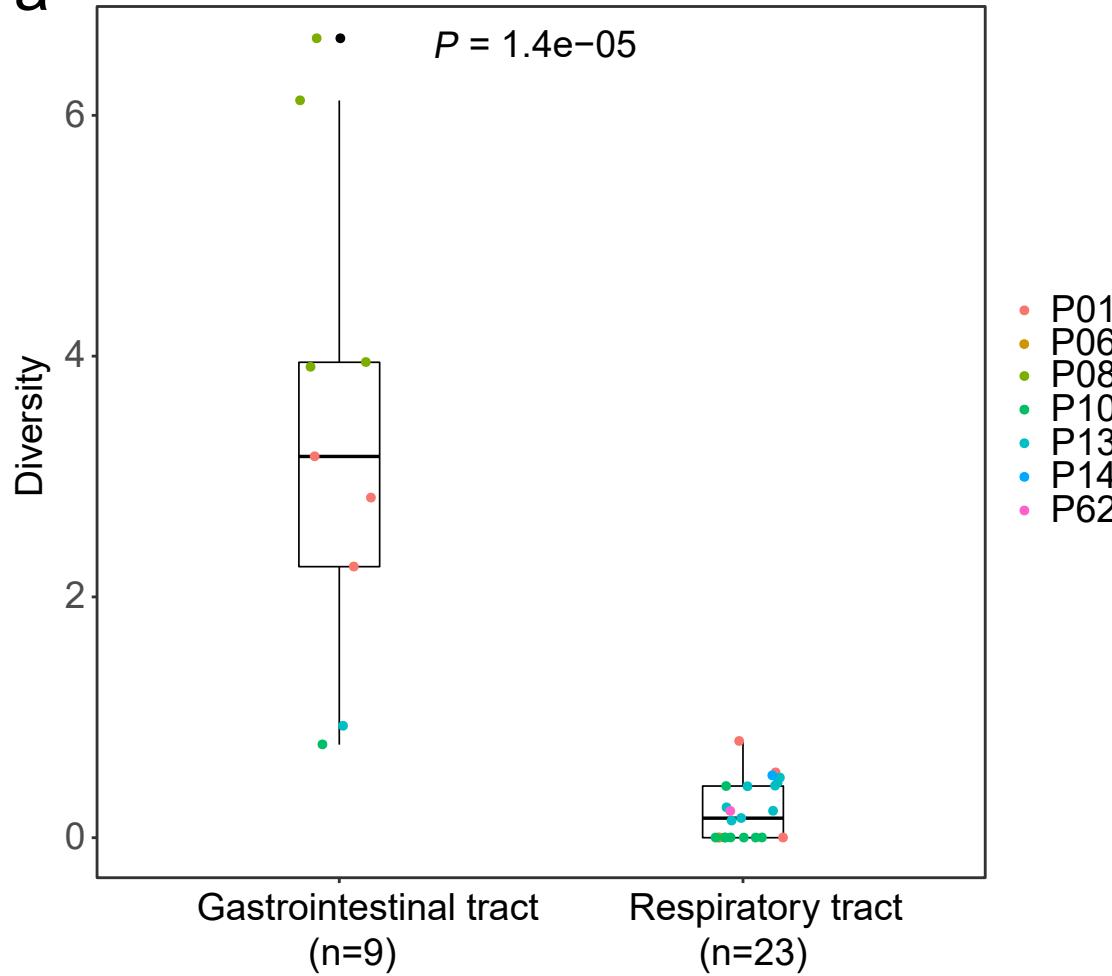
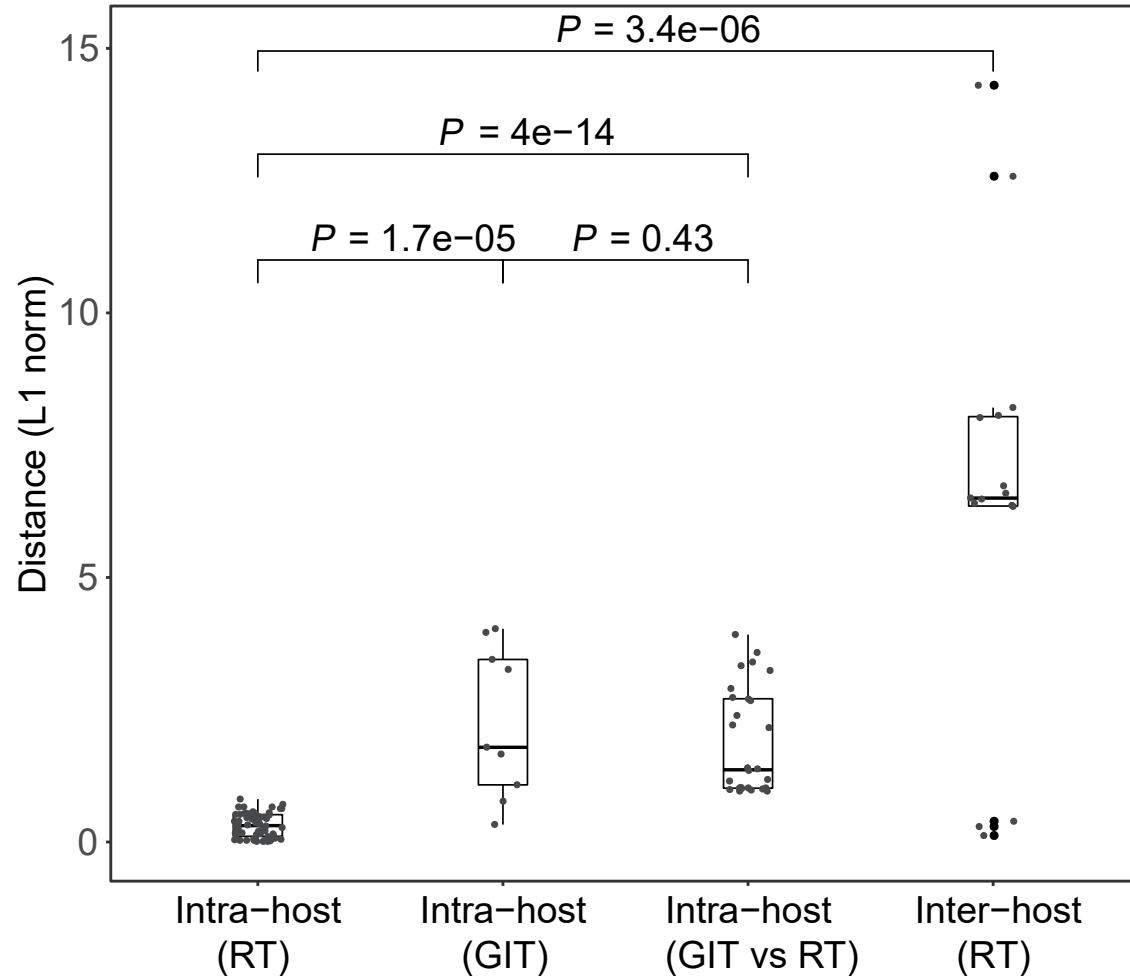
493 **Table S1. Summary of clinical samples and patients with COVID-19**

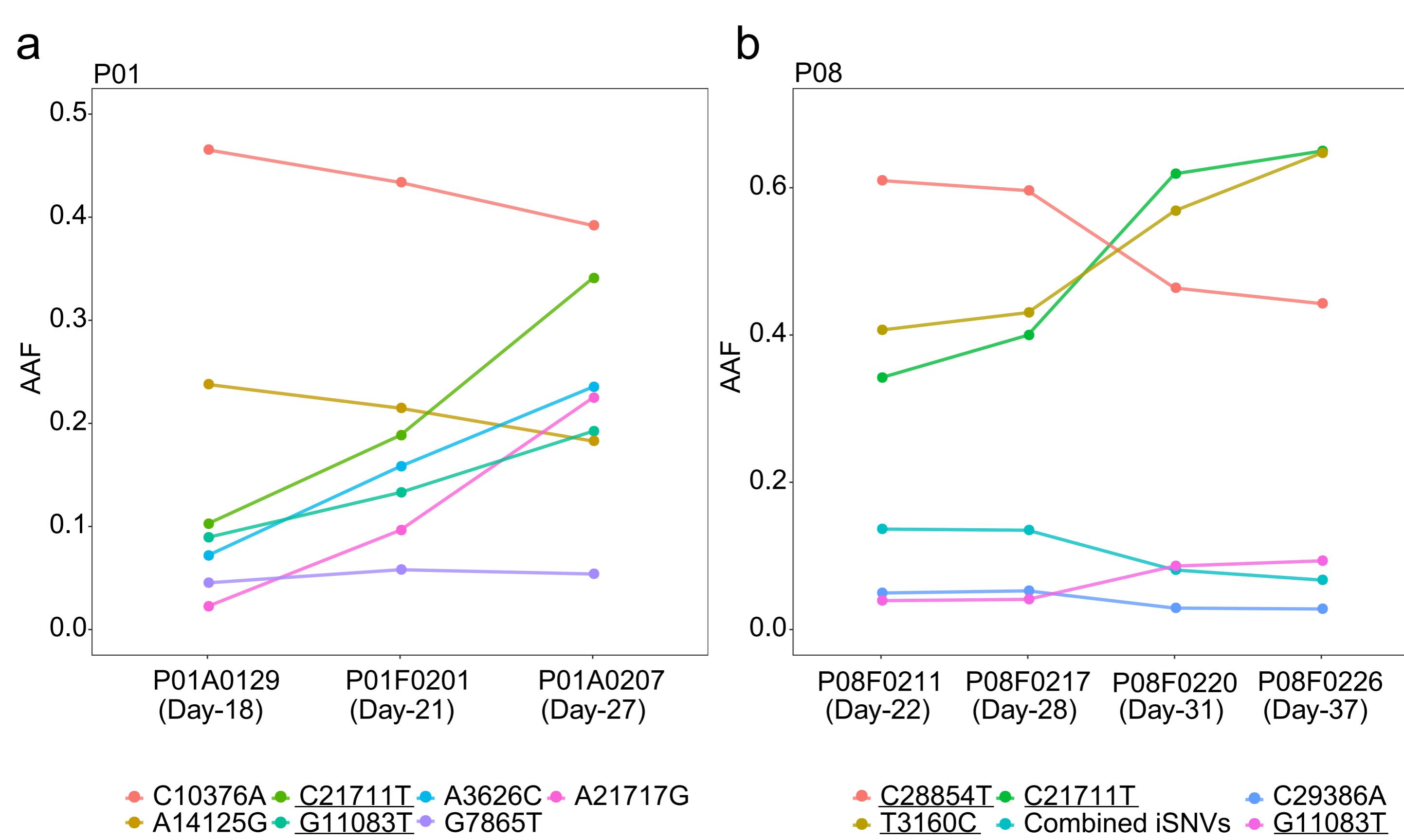
494 **Table S2. Genomic information of 32 SARS-CoV-2 samples**

495 **Table S3. List of intra-host single nucleotide variants within 32 SARS-CoV-2 samples**





496 **Table S4. Allele frequency of iSNVs detected from metatranscriptomic and/or hybrid
capture data**






498 **Table S5. Genetic diversity of 32 SARS-CoV-2 samples**



499 **Table S6. Genetic distance between paired samples**


500 **Table S7. Frequency of proximal iSNVs using paired-end mapped reads**

501 **Table S8. List of public genomes used for analysis**

a**c****b****d**

a**b**

