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The emergence of a novel strain of betacoronavirus, SARS-CoV-

2, has led to a pandemic that has been associated with hundreds

of thousands of deaths. Research is ongoing around the world to

create vaccines and therapies to minimise rates of disease spread

and mortality. Crucial to these efforts are molecular char-

acterisations of neutralising antibodies to SARS-CoV-2. Such

antibodies would be valuable for measuring vaccine efficacy,

diagnosing exposure, and developing effective biotherapeutics.

Here, we describe our new database, CoV-AbDab, which al-

ready contains data on over 380 published/patented antibodies

and nanobodies known to bind to at least one betacoronavirus.

This database is the first consolidation of antibodies known to

bind SARS-CoV-2 and other betacoronaviruses such as SARS-

CoV-1 and MERS-CoV. We supply relevant metadata such as

evidence of cross-neutralisation, antibody/nanobody origin, full

variable domain sequence (where available) and germline as-

signments, epitope region, links to relevant PDB entries, ho-

mology models, and source literature. Our preliminary anal-

ysis exemplifies a spectrum of potential applications for the

database, including identifying characteristic germline usage

biases in receptor-binding domain antibodies and contextual-

ising the diagnostic value of the SARS-CoV binding CDRH3s

through comparison to over 500 million antibody sequences

from SARS-CoV serologically naive individuals. Community

submissions are invited to ensure CoV-AbDab is efficiently up-

dated with the growing body of data analysing SARS-CoV-2.

CoV-AbDab is freely available and downloadable on our web-

site at http://opig.stats.ox.ac.uk/webapps/coronavirus.
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Introduction

To respond effectively to the recent Severe Acute Respira-

tory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, it is

essential to understand the molecular basis for a successful

immune response to coronavirus infection (1). In particular,

characterising the B-cell response is important as the identi-

fication of potent neutralising antibodies could pave the way

for effective treatments, aid in prior exposure diagnosis, or

assist in predicting vaccine efficacy (2–5).

Molecular characterisations of binding/neutralising antibod-

ies to SARS-CoV-2 antigens are only just beginning to

emerge. However, the SARS-CoV-2 and SARS-CoV-1 (the

virus responsible for the 2003 epidemic) spike protein re-

ceptor binding domains (RBDs) target the same human re-

ceptor and share high sequence and structural homology (2).

As a result, collating data on SARS-CoV-1 binders may

lead to the identification of potent cross-neutralising antibod-

ies, as suggested in some early SARS-CoV-2 studies (6, 7).

Solved crystal and cryo-EM structures indicate a relatively

discrete set of neutralising RBD epitopes (possibly resulting

from substantial glycan coverage (8)), with paratopes tend-

ing to span both the heavy and light chain complementarity-

determining regions (6, 9–12).

Other SARS-CoV-2 surface proteins also display homology

to more distantly related betacoronaviruses such as the Mid-

dle East Respiratory Syndrome coronavirus (MERS-CoV).

Therefore, knowledge of antibodies that bind to MERS-CoV

antigens could be relevant in treating SARS-CoV-2 infec-

tion, and indeed the anti-MERS-CoV combination therapy

REGN3048/REGN3051 is already being trialled on SARS-

CoV-2 patients in the USA (13).

Given this, a central database facilitating molecular-

level comparisons between published and patented anti-

coronavirus antibodies would be a valuable tool in the fight

against COVID19. This resource would also act as a central

hub to consolidate knowledge and coordinate efforts to iden-

tify novel antibodies that neutralise SARS-CoV-2. As the

number of known binders builds up over time, researchers

could harness this repository for many purposes, including

deriving crucial sequence/structural patterns that distinguish

neutralising from non-neutralising SARS-CoV-2 binders (1),

or deducing independent neutralising epitopes exploitable by

combination therapies.

We have built CoV-AbDab, a new database that aims to doc-

ument molecular information and metadata on all published

or patented anti-coronavirus antibodies.

Data Sources

Academic papers and patents containing coronavirus-binding

antibodies were primarily sourced by querying PubMed,

BioRxiv, MedRxiv, GenBank, and Google Patents with rele-

vant search terms. Several review articles were helpful in en-

suring maximal coverage, in particular those by Coughlin and

Prabhakar (14), Du et al. (15), Zhou et al. (16), Shanmugaraj

et al. (17), and Jiang et al. (18). If the variable domain se-

quence was available, ANARCI (19) was used to number se-

quences in the IMGT (20) numbering scheme, and to assign

V and J gene origins. In some cases we could source germline

assignments and/or CDR3 sequences from the source litera-

ture for antibodies where the full Fv sequence was not sup-

plied. Our Structural Antibody Database (21), which tracks

all antibody structures submitted to the Protein Data Bank

(22) (PDB), was mined to identify relevant solved structures.
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Our antibody/nanobody homology modelling tool, ABody-

Builder (23), was used to generate full Fv region structural

models where no solved structures were available.

Contents

CoV-AbDab is an effort to document all coronavirus bind-

ing/neutralising antibodies and nanobodies reported in aca-

demic publications and commercial patents. Where possible,

the following information is documented for each entry:

1. The published name of the antibody/nanobody

2. Antigens that the antibody/nanobody has been proven to

bind and/or neutralise.

3. The protein domain targeted by the antibody/nanobody

(e.g. spike protein receptor binding domain)

4. The developmental origin of the antibody/nanobody (e.g.

engineered/naturally raised, species information, etc.)

5. Sequence information including: (a) the entire variable

domain sequence for the antibody/nanobody, highlighting the

CDR3 regions, and (b) V and J gene germline assignments.

6. Links to any available structures involving the anti-

body/nanobody

7. (If Fv sequence available) A homology model of the anti-

body/nanobody

8. References to the primary literature on the anti-

body/nanobody

9. Timestamps to show when the antibody/nanobody was

added and last updated

10. Any steps we are taking to follow up on the entry (e.g. to

source its sequence and/or add further metadata)

As of 14th May 2020, CoV-AbDab contains 385 entries

across 46 publications (6, 7, 9, 11, 12, 24–64) and 19 patents.

Of these, 156 entries are associated with MERS-CoV, 149

are associated with SARS-CoV-1, and 105 are associated

with SARS-CoV-2 (each entry may be tested against mul-

tiple coronaviruses). It lists 263 unique full variable domain

antibody/nanobody sequences and 56 links to relevant PDB

structures, which include coronavirus spike proteins bound

to their native receptors (35, 65–72). We are continuing to

contact authors to confirm whether missing sequences can

be recovered and added to existing entries. If sequences have

been lost or cannot be released, they have been removed from

the database and confirmed as such in a separate list on the

CoV-AbDab homepage.

Analysis

The following analysis was carried out on the CoV-AbDab

database as of 10th May 2020. For clarity, we use the term

"SARS-CoV-1" to refer specifically to the virus that caused

the 2003 epidemic, and "SARS-CoV" to refer to binders to

SARS coronaviruses in a general sense.

Developmental Origins and Targets. We first analysed

the developmental origins of antibody/nanobody binders to

SARS CoV-1/2 (Figure 1a) and MERS-CoV (Supplemen-

tary Figure 1a). The vast majority of the SARS-CoV an-

tibody binders have human genetic origin (88.5% with se-

b
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Fig. 1. Donut charts showing (a) the origins of all identified SARS-CoV-1/2 binders
and (b) the protein targets of identified SARS-CoV-1/2 binders. Spike protein
binders are further classified by targeted domain. Equivalent plots for MERS-CoV
binders are available in Supplementary Figure 1. S = Spike protein, NP = Nucleo-
capsid protein, E = Envelope protein, Unk = Unknown, NTD = N-Terminal Domain,
RBD = Receptor Binding Domain, S1 = Spike protein S1 domain, S2 = Spike protein
S2 domain.

quence information aligned to human germlines), and de-

rive from a mixture of isolated B-cells from infected or con-

valescent patients, transgenic mice, or recombinant human

immune or non-immune phage display libraries. We soon

expect the proportion from infected human B cells to in-

crease, as papers characterising and panning the adaptive im-

mune responses of SARS-CoV-2 patients continue to emerge

(24–26). A relatively small portion of antibodies were de-

tected by challenging mice with SARS antigens, and a few

of these were subsequently humanised. All but one SARS-

CoV binding nanobody was obtained using phage display.

MERS-CoV antibodies followed a similar distribution of ori-

gins, but nanobodies were sourced from the B-cells of in-

fected/convalescent camels or immunised llamas (Supple-

mentary Figure 1b).

We also evaluated the distribution of protein targets (and epi-

tope regions, for spike protein binders) for all anti-SARS-

CoV1/2 (Figure 1b) and anti-MERS-CoV (Supplementary

Figure 1b) antibodies/nanobodies. The spike (S) protein

is known to mediate coronaviral entry into cells through a

biochemical signal initiated by RBD-ACE2 (SARS-CoV) or

RBD-DPP4 (MERS-CoV) binding (65, 71). Therefore, anti-

bodies/nanobodies that can attach to this domain are of par-

ticular pharmacological interest, as they may block a crucial

step of the viral reproductive cycle, neutralising the infection.

This bias was strongly reflected in the observed coronavirus

protein targets, with 72.9% of SARS-CoV binders and 58.3%

of MERS-CoV binders attacking the spike protein RBD. A

few other S protein domains were represented, such as the S2

domain and N-Terminal Domain, as well as some binders to

the nucleocapsid and envelope proteins.

2 | bioRχiv Raybould et al. | Coronavirus Antibody Database

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.15.077313doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.077313
http://creativecommons.org/licenses/by/4.0/


D
R
A
F
T

V1-26 (M), V2-9-2 (M), 
V1-58, V2-26, V3-9, 
V3-20, V3-21, V3-30-3, 
V3-49, V3-53, V4-59

V6-1
V3-66

V3-13

V3-11

V3-7

V1-69

V1-53 (M)

V3-72V1-5 (M)

V3-33
V1-18

V3-23

V1-2

V3-30
V3-30

V1-2

V3-23

V1-18
V3-33

V1-5 (M)

V3-72 V1-69

V3-7

V3-11

V3-13

V1-58, V2-26, V3-9, V3-20, 

V3-21, V3-30-3, V3-49, 

V3-53, V3-66, V4-59

All Targets anti-RBD

a

b

All Targets anti-RBD

V1-69

V3-23 V4-39

V4-2 (R)

V2-5

V3-30

V4-59

V1-3
V1-18
V3-11
V3-15

V3-21
V3-48

V1-12 (M), V1-15 (M), V1-66 (M), 
V1-26 (M), V2-6-7 (M), V5-6-4 (M), 
V5-9-3 (M), V5-9-2 (M), V10-1 (M), 
V11-2 (M), V1-2, V1-46, V3-9, 
V3-30-3, V4-4, V4-34, V6-1

V1-69

V3-23
V4-39

V4-2 (R) V2-5

V3-30

V1-3

V1-18

V3-15

V3-21

V5-6-4 (M)

V2-6-7 (M)

V5-9-2 (M)

V5-9-3 (M)
V1-2

V1-46
V3-9

V3-30-3
V4-34

V6-1

Fig. 2. Pie charts showing the distributions of IGHV gene usage in (a, LHS) SARS-CoV binding antibodies, (a, RHS) SARS-CoV Receptor Binding Domain (RBD) binding
antibodies, (b, LHS) MERS-CoV binding antibodies, and (b, RHS) MERS-CoV RBD binding antibodies. Monoclonal antibody 80R and its five closely-related variants were
counted as a single entry in both SARS plots. All germlines are human, unless appended with M (Murine) or R (Rhesus).

At the time of writing, sequence information has been re-

leased for three antibodies (CR3022, S309, and S315) and

one nanobody (VHH-72) that have been proven to neutralise

SARS-CoV-2. These all target the RBD, and can cross-

neutralise SARS-CoV-1.

Genetic Origins. In constructing our database, we evalu-

ated/collected the gene transcript origins of as many of the

anti-SARS-CoV and anti-MERS-CoV antibodies as possible.

Here, we analyse IGHV gene usage, as this transcript encodes

two of the three heavy chain complementarity determining

regions (CDRH1 and CDRH2). Analysis of the CDRH3 re-

gion, which lies at the junction of IGHV, IGHD, and IGHJ

genes, is performed in the next section.

Figure 2a shows the distribution of IGHV genes in SARS-

CoV binding antibodies against all targets (left-hand-side),

and after filtering only for antibodies known to bind the RBD

(right-hand-side). In both cases, over half of the antibod-

ies compromise one of four V genes: IGHV3-30, IGHV1-2,

IGHV3-23, and IGHV1-18. The dominant V gene, IGHV3-

30, was identified in spike protein binders from five in-

dependent investigations — Pinto et al. (6), Sui et al.

(34), Hwang et al. (35), and patents WO2008060331A2

and CN1903878A — and is present in around 21% of

RBD binders (monoclonal antibody 80R and its variants are

counted as a single source). IGHV3-30 has been found to be

unusually abundant in several recent B-cell sequencing inves-

tigations (26, 74–76). IGHV1-2 (75, 76) and IGHV1-18 (76)

have also been implicated.

In marked contrast to the SARS data, anti-MERS-CoV

RBD antibodies (Figure 2b) are disproportionately (37.2%)

sourced from the IGHV1-69 locus. These antibodies derive

from eight independent investigations — Wang et al. (47),

Niu et al. (48), Chen et al. (51), Ying et al. (60), Jiang et

al. (61), Tang et al. (62), and patents WO2015179535 and

WO2019039891. The IGHV1-69 transcript is commonly ob-
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Fig. 3. WebLogo (73) plots showing the entropy and distribution of residues at each IMGT (20) CDRH3 position for (a) SARS-CoV Receptor Binding Domain (RBD) binding
antibodies, and (b) MERS-CoV RBD binding antibodies.

served in broadly neutralising antibody responses, for exam-

ple to the influenza hemagglutinin stem domain (77).

CDRH3 Analysis. We then analysed the CDRH3 regions

of anti-SARS-CoV and anti-MERS-CoV antibodies. Over-

all, we traced 54 distinct SARS-CoV RBD binding anti-

body CDRH3 sequences and 75 distinct MERS-CoV RBD

binding antibody CDRH3 sequences. The non-redundant

CDRH3 length distributions are shown in Supplementary

Figure 2. SARS-CoV RBD binders are spread between

CDRH3 lengths 8 and 20 (median: 16, mean: 14.87 ± 3.56),

while the CDRH3s of MERS-CoV RBD binders lie between

lengths 5 and 26 (median: 18, mean: 16.17 ± 4.14). The

longer average lengths for MERS-CoV binders are consistent

with the observed IGHV gene distribution, as broadly neu-

tralising IGHV1-69 antibodies tend to have longer CDRH3s

(21).

To see whether RBD binding CDRH3s displayed any se-

quence biases, we used WebLogo plots (73) to visualise

residue/position distributions (Figure 3). The MERS-CoV

RBD binders displayed slightly higher homology at central

loop positions, but neither showed a strong signal that im-

plicates a particular interaction type. The SARS-CoV RBD

binders have a slight tendency to exploit a poly-tyrosine tail

towards the end of the CDRH3, hinting at a role for the IGHJ6

germline that bears this motif. IGHJ6 was independently im-

plicated in a clone convergent in four of six SARS-CoV-2

patients in the study by Nielsen et al. (26).

Finally, we evaluated the closest sequence identity match be-

tween all SARS-CoV binding CDRH3s and the over 500

million CDRH3s in our Observed Antibody Space (OAS)

database (78). The OAS database is a regularly updated

project to catalogue all publicly available immune repertoire

sequencing experiments (currently over 60 studies), provid-

ing cleaned amino acid sequence datasets binned by indi-

vidual and other useful metadata. We assume that the vast

majority of this sampled population is serologically naive to

SARS-CoV-1 and SARS-CoV-2, given both the high infec-

tion rate and that there is currently no evidence to suggest

that exposure to common cold coronaviruses yields SARS-

CoV cross-reactive antibodies (79). It follows that the pres-

ence of CDRH3s shown to bind SARS-CoV but that have

high sequence identity matches to OAS may be less useful

for diagnosing SARS-CoV-2 exposure. Table 1 contains all

CDRH3s for which we obtained 100% identity matches to

a CDRH3 in OAS. A table showing all maximum sequence

identity matches is available as Supplementary File 1 and the

full dataset (with OAS metadata for matches) is available as

Supplementary File 2.

We observed that 10/69 (14.4%) SARS-CoV binding

CDRH3s had 100% sequence matches to at least one se-

quence in OAS, while 45/69 (65.2%) had at least one

80% or greater sequence identity match. The mean se-

quence identity match was 83%. Interestingly, two of the

CDRH3s with 100% matches (ARDPLGYCSSTSCSYFDY:

3C7/5E10/6B1, ARGDSSGYYYYFDY: S304) were found
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SARS-CoV-1/2 Binding

CDRH3 Sequence

Epitope Maximum %

SeqID to OAS

CDRH3

Matches

(Studies)

Of which IGHV

Matches

(Studies)

Isotypes

ARDGYGSGSDYYYYYYMDV RBD 100 6 (2) 1 (1) G,M

ARDYDILTGYSNYYGMDV RBD 100 1 (1) 0 (0) M

ARDPLGYCSSTSCSYFDY RBD 100 13 (3) 1 (1) M

ARGDSSGYYYYFDY RBD 100 139 (11) 0 (0) D,G,M

AKATTVTTYFDY S Unk 100 7 (1) 5 (1) M

ARGISPFYFDY RBD 100 1 (1) 0 (0) M

ARGDFYWFDP S NTD 100 1 (1) 0 (0) M

ARDRSYYLDY RBD 100 12 (2) 2 (1) M

AGGRYLDY RBD 100 11 (1) 0 (0) Bulk

AGGTYLDY S Unk 100 2 (2) 1 (1) M

Table 1. The ten SARS-CoV binding antibody CDRH3s from CoV-AbDab that matched with 100% sequence identity to a CDRH3 sequence in the OAS database. A full table
showing all CDRH3s with their closest matches to an OAS sequence is available as SI Table 1. RBD = Receptor-Binding Domain, Spike protein, SeqID = Sequence Identity,
OAS = Observed Antibody Space database (78), Unk = Unknown.

to be proximal to sequences isolated in the recent Stanford

SARS-CoV-2 patient serum investigation (26). Exact clonal

matches (V gene + high CDRH3 identity) were consider-

ably rarer, implying full clonotyping may need to be per-

formed on SARS-CoV-2 repertoires in order to identify gen-

uine responding antibodies. Conversely, some CDRH3s from

SARS-CoV-2 neutralising antibodies found in SARS-CoV-

1 (mAb S309 (6)) and SARS-CoV-2 (mAb 32D4 (25)) re-

sponding repertoires have considerably lower than average

closest sequence identity matches to OAS (70% and 67% re-

spectively).

Community Contributions

We have attempted to identify all existing published infor-

mation on SARS-CoV and MERS-CoV binding antibodies,

however encourage users to inform us of any historical in-

vestigations we may have missed. We are also reaching out

to authors of new studies characterising coronavirus binding

antibodies to send us their data in Excel or CSV format. Data

and queries may be sent to us by email (opig@stats.ox.ac.uk).

Minimum requirements for addition to our database are the

full antibody/nanobody variable domain sequence, binding

or neutralising data for at least one specified coronavirus pro-

tein, and a link to a relevant preprint, publication, or patent.

Through these submissions and our own efforts to track the

scientific literature, we hope to provide a central community

resource for coronavirus antibody sequence and structural in-

formation.

Usage

Currently, the database can be queried by a search term (e.g.

SARS-CoV-2) and ordered by any metadata field for maxi-

mum interpretability. Users can download the entire database

as a CSV file and bulk download all ANARCI numberings,

IMGT-numbered PDB files, and IMGT-numbered homology

models.

Accessibility

CoV-AbDab is free to access and down-

load without registration and is hosted at

http://opig.stats.ox.ac.uk/webapps/coronavirus.

Patents

CoV-AbDab uses the following patents as a primary source

of antibody/nanobody sequences: CN1664100, CN1903878,

CN100374464, CN104447986, CN106380517, EP2112164,

KR101828794, KR101969696, KR20190122283,

KR20200020411, US7396914, WO2005/012360,

WO2005/054469, WO2005/060520, WO2006/095180,

WO2008/035894, WO2015/179535, WO2016/138160, and

WO2019039891.
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