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Summary—Distributed neural population spiking patterns
in macaque inferior temporal (IT) cortex that support core visual
object recognition require additional time to develop for specific
(“late-solved”) images suggesting the necessity of recurrent
processing in these computations. Which brain circuit motifs are
most responsible for computing and transmitting these putative
recurrent signals to IT? To test whether the ventral prefrontal
cortex (VPFC) is a critical recurrent circuit node in this system,
here we pharmacologically inactivated parts of the vPFC and
simultaneously measured IT population activity, while monkeys
performed object discrimination tasks. Qur results show that
vPFC inactivation deteriorated the quality of the late-phase
(>150 ms from image onset) IT population code, along with
commensurate, specific behavioral deficits for “late-solved”
images. Finally, silencing vPFC caused the monkeys’ IT activity
patterns and behavior to become more like those produced by
feedforward artificial neural network models of the ventral
stream. Together with prior work, these results argue that fast
recurrent processing through the vPFC is critical to the
production of behaviorally-sufficient object representations in IT.

Keywords— Ventral PFC, inferior temporal cortex, core
object recognition, muscimol, deep neural networks, population
codes

INTRODUCTION

A goal of visual neuroscience is to identify and model the
brain circuitry that seamlessly solves the challenging
computational problem of rapid visual object categorization
(DiCarlo and Cox, 2007; Riesenhuber and Poggio, 2000;
Yamins and DiCarlo, 2016). Previous studies (Freiwald et al.,
2009; Hung et al., 2005; Kar et al.,, 2019; Logothetis and
Sheinberg, 1996; Majaj et al., 2015) show that the pattern of
neural activity in the primate inferior temporal (IT) cortex can
explicitly represent visual object identities. However, current
models of core object recognition fall short of fully explaining
both primates’ behavioral image by image difficulty patterns
(Geirhos et al., 2017; Rajalingham et al., 2018) and they fall
short of fully explaining the distributed population activity
patterns of IT neurons (Kar et al., 2019).

These models primarily belong to the family of deep
convolutional neural networks (DCNN) with predominantly
feedforward architectures. More recent models are beginning

to implement recurrent architectures (Kubilius et al., 2019;
Nayebi et al., 2018; Spoerer et al., 2017) but experimental data
to guide their development is needed. Toward that goal, we
have recently demonstrated (Kar et al., 2019) the critical role of
putative recurrent signals available at the late-phases of the
image evoked IT responses in enabling accurate core object
recognition, at least for some images. That study also
speculated that the lack of recurrent computations in the
feedforward DCNN models might have led to its poor
behavioral accuracy and poorer prediction of the late-phase IT
responses. But which recurrent circuit motifs in the primate
brain are most critical? within ventral stream? Within IT? Top-
down from regions downstream of IT (PFC, Amygdala, etc.)?
All of the above? Identifying these circuits and inferring their
computational functions is critical in developing the next
generation of models of the primate visual intelligence and
behaviors such as core object recognition.

Kar et al. (2019) determined, for each tested image, the
time when response patterns of the IT neuronal population
could sufficiently account for the monkey’s object recognition
performance on that image, referred to as the object solution
time (OST; one OST computed per image). They also
identified hundreds of images that critically relied on the early
(90-120 ms) and late (150-180 ms) phases of the IT responses
post image onset (Figure 1A). These results point to a targeted
disruption strategy that we executed here for testing the
aforementioned critical recurrent circuits. Specifically, if a
particular recurrent circuit motif is critical in core object
recognition, its disengagement should: 1) prevent the
emergence linearly-decodable object identity information in the
late-phase of the IT responses, with little or no effect on the
early phase. And, 2) result in a reduction in behavioral
performance for the late-solved images, with little or no effect
on behavior performance for the early-solved images. In this
study, we tested those two predictions for a circuit motif that is
recurrently connected to the ventral visual stream — the
ventral prefrontal cortex (VPFC).

Among the multiple downstream targets of IT, we chose to
first test vVPFC because: 1) it is downstream of IT, but has
strong recurrent anatomical connections to IT (Borra et al.,
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Figure 1. Motivation and Hypotheses. A. Temporal evolution of linearly decodable object identity
information in IT on an image-by-image basis. For each tested image, we measured the IT population
response vector (n=424 neural sites) across time (10 ms resolution). For each time point, we estimated
the linear decodable information (cross-validated across images). Each image achieved an IT solution
goodness (linear decode accuracy for object identity: d’) which matches the monkey’s behavioral
accuracy (avg. of d'=2.5 for the example images, shown as a gray shaded line) after different amounts
of processing time (object solution time, OST; gray histogram over; 1320 tested images). Using a range
of controls, Kar et al. (2019) concluded that images which exhibit longer OSTs (late-solved; red curves
shows two examples) likely require more recurrent processing (relative to images that exhibit shorter
OSTs; early solved images; blue curves shows two examples). B. Pharmacological inactivation of PFC
(ipsilateral to IT recording location) with simultaneous IT population recording. C. We divided the
experiments into two different sessions, without (gray boxes) and with (green boxes) muscimol
injections, conducted on consecutive days. We repeated each session in the same order after a
minimum gap of one day (empty boxes). We completed at least 10 sessions of each condition type. D.
Hypothesized effects of PFC inactivation. One hypothesis (Ho) is that the robustness of the IT object
codes for core object recognition (~200 ms of processing) does not rely at all on PFC, which predicts no
change in IT decodes or behavior for both early (blue bar) and late-solved (red bar) images. Another
hypothesis (H1) is that PFC plays an overall modulatory role in ventral stream computations, which
predicts deficits in IT population decode accuracies and behavior that are equal for both groups of
images. Finally, a third hypothesis (H2) is that PFC as a critical recurrence node in the brain circuitry for
core objection, which predicts larger IT population decoding deficits and larger behavioral deficits for
late-solved images. A mixture of Hy and H: is also possible (see open blue bars; also see Discussion for
alternative interpretations).
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2010; Webster et al., 1994; Yeterian et al., 2012), 2) following
object category learning, it has been shown to contain object-
category selective neurons(Freedman et al., 2001, 2003), 3)
previous studies have demonstrated changes in IT resulting
from lesion-based (Tomita et al., 1999), pharmacological
(Monosov et al., 2011) and thermal perturbation (Fuster et al.,
1985) of PFC, and 4) methods to silence PFC are
experimentally straightforward because PFC is downstream of
IT. Specifically, we here pharmacologically silenced (via
muscimol, a GABAA agonist) ~0.4 cm3 of ventral PFC in each
of two monkeys, and measured changes in IT population
activity at the multi-unit level (with chronically implanted Utah
arrays ipsilateral to the targeted vPFC, see Figure 1B) and the
corresponding changes in core object recognition performance.

Our results show that the inactivation of vPFC reduced the
quality of the late-phase IT population activity, as assessed by
linear decodability of object identities. We also observed
corresponding behavioral deficits during core object
recognition tasks — the deficits were significantly higher for
late-solved images. Interestingly, the inactivation of vPFC
caused the late-phase IT neural activity to become better
explained by feedforward DCNN models of the ventral stream.
These results argue that fast recurrent processing through the
ventral PFC is critical to the production of fully robust object
representation in IT and the core object recognition behavior
that it supports and that current computational models of the
ventral stream lack these computations.

RESULTS

As outlined above, we reasoned that, if recurrent processing
via the ventral PFC to the primate ventral stream is critical for
robust core object recognition, then inactivating parts of ventral
PFC should produce specific changes in the IT population
activity patterns and specific behavioral deficits. In particular,
the neural and behavioral deficits should be higher for “late-
solved” images — images that we have previously found not to
produce a fully formed IT population representation until
150-180 ms post stimulus onset (Kar et al. 2019; see
Introduction).

To test the role of VPFC we used pharmacological
inactivation of sub-regions of ventral PFC, as previously
anatomically landmarked, (Freedman et al., 2003; McKee et
al., 2014; Tomita et al., 1999), and identified in this study by
structural MRI (see Methods). Based on the expected locations
of object category-selective VPFC neurons (Freedman et al.,
2001, 2003), we first performed a single electrode
measurement survey (Figure S1,C-E) to locate vPFC sub-
regions that exhibited strong visual drive and coarse category
selectivity (see Methods). We then performed a second
structural MRI (now with markers inserted at these locations)
to ensure that the localized object-category selective VPFC
sites were anatomically consistent with previous reports
(Freedman et al., 2001, 2003).
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An assay for recurrent-dependent computation:
solved vs. late-solved images

early-

Previous studies (Hung et al., 2005; Majaj et al., 2015)
have demonstrated that object identity is linearly expressed in
the pattern of IT neural activity. Using linear decoders, we have
previously estimated the precise time it takes for the macaque
IT population to temporally evolve to this linearly explicit
pattern for each of 1320 images (Kar et al., 2019; briefly
illustrated in Figure 1A). We refer to this time as the object
solution time (OST). OST is an estimate (done per image) of
the amount of time needed to compute a behaviorally sufficient
neural population solution in IT. Longer OSTs, therefore,
suggest additional, putatively recurrent computations, beyond
what could be achieved by the early, feedforward IT responses.
In this study, our analyses primarily focus on comparing the
neural and behavioral effects of VPFC inactivation on the
images that are solved quickly (“early-solved” images, OST
range: 90-120 ms) with the effects on images that are solved
slightly later (“late-solved” images, OST range: 150-180 ms).

vPFC inactivation reduces IT late-phase population activity

We first explored the effect of vPFC inactivation on the
quality of the IT neural population patterns evoked by each
image. Upon visual inspection (Figure 2B), we observed that
vPFC inactivation did not produce a reduction in the (mean)
initial ~ (90-120ms) image-driven activity. However, vPFC
inactivation appeared to moderately reduce the later portion of
the IT responses ( i.e., starting around 140 ms after image
onset). To look more closely, we compared IT responses at two
specific time bins: early phase (90-120 ms; Figure 2C) and late
phase (150-180 ms; Figure 2D). We found that, across the
entire recorded IT population (n=153 sites), vPFC inactivation
produced no significant difference in the mean response
(averaged over all images) in the early phase (ARealy = -18 +
46.4 %, mean * s.e.m; paired t-test; t(152) = 0.5885, p =
0.5571). However, VvPFC inactivation produced a significant
reduction in mean late-phase (150-180 ms) IT responses
(averaged across images; ARlte = -31.83 = 10.4%, mean *
s.e.m; paired t-test; t(152) = 8.5906, p <0.0001). Also, we
noted that the time of the emergence of a drop in the mean IT
response (black vs. green line in Figure 2B) coincided with the
latencies of the VPFC neurons that we recorded at the targeted
injection sites (refer Figure S1E) as well as previously
measured latencies of neurons in this area (Freedman et al.,
2001, 2003). We note that these mean firing rate effects are
also consistent with prior causal perturbation studies in other
pairs of visually-driven cortical areas (see Discussion).

vPFC inactivation selectively disrupts the late-phase IT
population code

The neural representations that enable robust object
recognition are more subtle than the mean firing rates analyzed
above. Indeed, we previously reported that while many images
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Figure 2. Neural experiments and results. A. We measured neural responses from 153 sites in the
IT cortex across two monkeys while they performed a battery of core recognition tasks, with and without
muscimol injections in the ventral PFC (see Fig. 1C). B. Normalized mean IT firing rate in the two
conditions (Black = no-muscimol control condition; green = after muscimol injections in PFC). The
shades indicate s.e.m across images. C. We observed no significant differences across neurons at the
early-phase (90-120 ms) of the IT responses (ARealy = -18 + 46.4 %, mean £ s.e.m; paired t-test;
t(152) = 0.5885, p = 0.5571). D. We observed a small, but significant reduction in firing rates at the late-
phase (150-180 ms) of the IT responses (ARte = -31.83 + 10.4%, mean * s.e.m; paired t-test; {(152) =
8.5906, p <0.0001). Errorbars for C and D denote the standard deviation of responses across images
per neuron. E. Images (n=234) with late-OST (red bar) showed a significantly higher drop in IT
population decode accuracy (see Results) upon vVPFC inactivation, compared to the images (n=208)
with early-OST (blue bar). This comparison was made with all images that had a measured (behavioral)
d’ between 2 and 4, as measured in separate animals (Kar et al. 2019). Error bars denote s.e.m across
images. We quantified the strength of this interaction as the difference in the muscimol induced change
and we refer to that measure as §'T. F. The mean §'T was consistently less than 0 for images selected in

different ranges of behavioral accuracies. We also observed a negative trend for most, but not all
recognition sub-tasks (t-test, t(9) = 1.9718, p=0.0401). Error bars denotes bootstrap CI (95%). G.
Interaction strength was significantly stronger when we restricted the measurements to images where

the object center was in the contralateral visual filed (monkey N, ipsilateral §T:-2%, contralateral

8'T:-5.8%, permutation test of difference, p<0.001; monkey B, ipsilateral §'T: 0.1%, contralateral 5'T:-2%,
permutation test of difference, p<0.001). Error bars denotes bootstrap Cl (95%).
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evoke high mean firing rates in the IT cortex, a linearly-
readable solution of the foreground object in those images is
not present in that activity and emerges only later after subtle
changes in the neuron-by-neuron distributed population code
(Kar et al., 2019). Thus, we next aimed to examine the
temporal evolution of the quality of the IT population code for
early-solved versus late-solved images. Here, we assessed
“quality” as the ability of the population code to support a
linear readout of object identity for held-out test images (i.e.,
via cross-validation; See Methods). As outlined in the
Introduction, we sought to specifically test the hypothesis (Ha,
Figure 1c; right column) that vPFC feedback to the ventral
stream, is particularly critical to the development of late-phase
IT object solutions. This hypothesis predicts that vPFC
inactivation should induce more significant disruptions in the
quality of the IT population code for late-solved images
compared to the early-solved images at their corresponding
object solution times. To control for the behavioral accuracy
levels across images, we sub-selected images (out of the total
1320 tested images) for two groups, early-solved (208 images)
and late-solved (234 images), that all had a (pre-muscimol) d’
between 2 and 4 (as measured in an earlier study; Kar et al.
2019).

First, we observed that the quality of IT neural population
codes (as estimated by linear decode accuracies of object
identity) were significantly less accurate at later time points
after vPFC inactivation (>150 ms post image onset; median
reduction = -2.44%, t-test, t(441) =5.11, p<0.001; Figure S2).
Furthermore, to estimate whether the muscimol induced
change in IT linear decodability of objects was dependent on
the previously estimated OST values (Kar et al., 2019), we
compared the IT decode accuracies for the early and late solved
images at their corresponding OSTs (Figure 2E). We refer to
this difference (early minus late) in the muscimol induced

deficits as 6'T (as shown in Figure 2E). We observed that vPFC

inactivation disrupts the formation of IT solutions for the late
solved images more than it disrupts the formation of IT
solutions for the early solved images (AIT Population
Decodeaccuracy®® = 0.16% = 0.53 ; AIT Population
Decodeaccuracy’®® =-2% =+ 0.61, median * s.e.m ; t-test, #(441) =
2.4084, P = 0.0165; Figure 2E). Moreover, we found that this
effect persisted even with different behavioral accuracy level
choices (behavioral levels considered in d’: <2, 2-2.5, 2.5-3, >3

; corresponding 6T were, - 1.63%, -5.63%, -1.57%, -1.9%;

Figure 2F). Also, 6T was significantly less than zero
considering each of the ten tested objects (10 tasks, t-test, t(9)
= 1.9718, p=0.0401; Figure 2F). We observed that the 6T

values, when measured separately for each monkey, were
significantly more negative for images where the object center
was present in the contralateral hemifield (monkey N,

ipsilateral 6!T:-2.01%, contralateral 6!T:-5.8%, permutation test

Kar and DiCarlo, 2020

of difference, p<0.001; monkey B, ipsilateral 6T: 0.1%,

contralateral 6!T:-2%, permutation test of difference, p<0.001;

yellow bars; Figure 2G), compared to those in the ipsilateral
hemifield (purple bars; Figure 2G). Taken together, our results
demonstrate that vPFC inactivation disrupts the formation of IT
neural population solutions more strongly for images for which
those solutions take longer to develop, consistent with the
hypothesis that vPFC is part of the critical recurrent circuitry.

vPFC inactivation produces larger behavioral deficits for
late-solved images

As outlined in the Introduction, we hypothesized that if the
inactivation of vPFC (Figure 1D) disrupted behaviorally
critical recurrent computations (Hz), then we should expect to
see specific changes in IT population codes, and we should
also see specific changes in behavior. In particular, we should
observe a more significant muscimol induced behavioral
performance deficit for images with late OSTs (Hz; bottom left
panel, Figure 1C). The other possibilities are that we observe
no change (Ho; top right panel, Figure 1D) in behavioral
performance across images, or an overall shift in the behavioral
performance consistently across images with varied OSTs that
might indicate a global shift in arousal (Hi; middle right panel,
Figure 1D).

Identical to Kar et al. (2019), in each image, the primary visible
object belonged to one of 10 different object categories (Figure
3A). We divided the data collection into two types of sessions
— with and without muscimol injections — conducted on
consecutive days. These two session types were repeated in an
alternative sequence with at least one day of recovery after
each muscimol session (Figure 1C; experimental timeline).
This design confounds animal satiety and motivation with the
effects of muscimol. However, the visual hemifield bias of our
reported effects (see below) argue against it. In each session
(day), monkeys performed the following tasks sequentially: a
passive fixation task, a binary object discrimination task, a
second passive fixation task (see Methods). On the second
session (day), after the initial passive fixation task, we injected
a total of 10ul of muscimol at five depths (2 ul each) separated
by 0.5 mm in the previously localized ventral PFC area (see
Methods for details). We injected in the left hemisphere of
monkey B, and right hemisphere of monkey N. Given that the
top-down signals from vPFC (both hemispheres) are known to
reach both the left and right inferior temporal cortices (Tomita
et al., 1999), we have presented our results after the data was
pooled across both monkeys. Nevertheless, individual monkey
results were consistent with the pooled results (as shown in
Figure 3E).

First, we observed that there was a significant overall reduction
(APerformance = 6.03 + 0.3 %, (mean + SEM), paired t-test;
t(859) = 17.13, p <0.0001; Figure S3A) in performance across
all sessions after the muscimol injections. Consistent with
hypotheses Ha ( see Figure 1C), VvPFC inactivation caused a
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Figure 3. Behavioral experiments and results. A. We tested behavioral performance on 10 object
categories, where performance was derived from the corresponding 45 binary object discrimination
tasks with those 10 categories. B. Two example trials of the binary object discrimination task, showing
the timeline of events. Monkeys fixate on a central dot, then the test image at 8° containing one of ten
possible objects is shown for 100 ms (shown is a car (left trial) and a zebra (right trial)). After a 100-ms
delay, a canonical view of the target object and a distractor object (one of the other nine objects)
appears (randomly assigned on each ftrial to the left and right positions), and the monkey indicates
which object was present in the test image by making a saccade to one of the two choices. We
compared performance on sessions with and without muscimol injections in vPFC C. vPFC inactivation
resulted in a larger performance drop among images (n=234) with late-OST (red bar), compared to the
images (n=208) with early-OST (see Results for statistics). This comparison was made with all images
that had a measured d’ between 2 and 4. Error bars denote s.e.m across images. We quantified the

strength of this interaction as the difference in the muscimol induced change and we refer to that
measure as 68. D. We observed that the mean 68 was consistently less than 0 for images selected in

different ranges of behavioral accuracies. We also observed a negative trend for most, but not all
recognition sub-tasks (t-test, 1(9) = 2.6245, p=0.0276). Error bars denotes bootstrap Cl (95%). E. We
found that the interaction strength was significantly stronger when we restricted the measurements to

images where the object center was in the contralateral visual filed (monkey N, ipsilateral 68:-2%,
contralateral 6B:-4.8%, permutation test of difference, p<0.001; monkey B, ipsilateral 58: 0.1%,

contralateral 68:-3.3%, permutation test of difference, p<0.001). Error bars denotes bootstrap Cl (95%).
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significantly higher reduction in performance for late-solved
images compared with early solved images (APerformanceealy
= =-4.76% =% 0.45 ; APerformancelate =-7.4% = 0.5, median =
s.e.m ; t-test, #(441) = 2.3978, P = 0.0085) . We refer to the
difference in the behavioral deficits for the early vs. the late-

solved images as 6B (as shown in Figure 3C). We observed that

6B was consistently negative (i.c., greater behavioral deficits

for late-solved images compared to early-solved images) across
images grouped according to different behavioral accuracy
level choices (behavioral levels considered in d’: <2, 2-2.5,

2.5-3, >3; corresponding 68 were, - 4.24%, -1.9%, -2.23%,
-1.9%). Also, 68 was significantly less than zero considering
each of the ten tested objects (10 tasks, t-test, t(9) = 2.6245,
p=0.0276).

separately for each monkey were significantly higher for
images in which the object center was in the contralateral

We observed that the 6B values when measured

hemifield (monkey N, ipsilateral 6B:-2%, contralateral
68:-4.8%, permutation test of difference, p<0.001; monkey B,

ipsilateral 68: 0.1%, contralateral §8:-3.3%, permutation test of

difference, p<0.001; yellow bars; Figure 3E), compared to
those in the ipsilateral hemifield (purple bars; Figure 3E). We
also observed an overall increase in reaction times after
muscimol injections (ART = 46.3 = 2.1 ms; t-test; t(858) =
16.3729, p<0.001). Similar to the behavioral accuracy results,
we observed that vPFC inactivation increased reaction times,
and that this increase was significantly higher for late-solved
images than for early-solved images (ARTealy =-34 + 4,19 ms ;
ARThte = 55 + 3.9 ms, median £ s.e.m ; r-test, #(441) =
2.0488, P=0.04; Figure S3C).

Taken together, these results show that core object
discrimination in macaques is disrupted by inactivation of
ventral PFC, establishing this area as a critical component of
the brain circuitry that is involved in core object recognition.

Furthermore, the performance changes (deficits in accuracy
and reaction time) depended on the image being processed —
the deficits were more severe for images that more likely
depend on recurrent processing (as indexed by each image’s IT
object solution time; Kar et al. 2019). These behavioral results
are qualitatively consistent with the IT neural results (Figure 2)
under the assumption that the behavior is the consequence of
mechanisms that are approximated by linear read-out from IT
(Majaj et al., 2015).

Inactivation of vPFC causes the ventral stream to operate
more similarly to feedforward computational models

We have previously shown (Kar et al., 2019) that some
feedforward deep convolutional neural networks (specific
DCNNs) predict the early feedforward (~90-120 ms post image
onset) responses of the IT neurons quite well, but are far worse
at predicting the late-phase (~150-180 ms) IT responses. These
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prior results (and other work, see Discussion) suggest that the
early-phase IT responses are primarily the product of
feedforward computations, but that the late phase IT responses
are a more balanced mixture of feedforward and recurrent
computation (e.g., through vPFC, as suggested by the results
above). Under this hypothesis, the relatively weak ability of
these DCNN ventral stream models to explain the late-phase IT
responses is due to the lack of the appropriate recurrent
computations. If we assume that VPFC inactivation removes
those additional recurrent-computations (or blocks the
transmission of the results of those computations to IT), vPFC
inactivation should make the late-phase IT representations
revert to a more feedforward-only mode of operation. vPFC
inactivation should, therefore, make the top of the ventral
stream operate more like a feedforward only network.

To test this, we used a set of existing feedforward DCNN
models (refer Table 1, Methods), and we asked: does vPFC
inactivation cause the late-phase IT response to become better
explained/predicted by these feedforward models (Figure 4A).
We used standard measures of mapping the components of
feedforward models onto the responses of individual IT neural
sites (Kar et al., 2019; Schrimpf et al., 2018; Yamins et al.,
2014; see Methods), and we took the goodness of fit to be the
median predictivity across all recorded neural sites.
Remarkably, we observed that vPFC inactivation significantly
improved the match of the late phase (150-180 ms) IT
responses to the feedforward DCNN (AlexNet ‘fc7’)
predictions (median late-phase %EV: without muscimol =
21.98%, with muscimol = 28.28%; paired t-test across neurons;
t(152)=8.55, p<0.0001; Figure 4B, top panel; also see Figure
S4B). Consistent with this, we also found that the vPFC-
inactivation caused the late-phase IT responses to be more
similar to the early-phase IT responses, as measured by
correlation of image response rank order (early vs. late)
compared across the muscimol and no-muscimol conditions
(paired t-test; t(152)=7.24; p<0.001, see Methods). These
results were also consistent across multiple feedforward
models (see Figure S4C).

We also know from previous work (Rajalingham et al., 2018),
that the DCNN models of core object recognition fail to
explain primate behavior at an image-by-image level fully—
that is, those models do not fully explain and predict which
images primates perform well on and which images they
perform poorly on. Our results show that vPFC inactivation
changed the late phase IT population patterns such that they
became better matched to the “IT” layers of feedforward
DCNNSs. Taken together with prior work that tightly linked
primate object recognition behavior to patterns of IT
population activity (Majaj et al., 2015), we asked whether the
vPFC inactivation also changed the monkey image by image
behavior patterns. Indeed, we observed that vPFC inactivation
significantly, improved the image by image consistency
(normalized correlation, see Methods) between the monkeys’
object recognition behavior and the object recognition behavior
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Figure 4. Comparison with computational models: vPFC inactivation causes the ventral
stream to behave more like feedforward models. A. We showed 683 images to the monkey (fixated
passive viewing) while recording simultaneously from their IT cortex, with and without vPFC inactivation
(top panel). The dashed red line denotes the recurrently pathway between the ventral PFC and the
primate ventral stream. We compared the IT responses with and without vPFC inactivation to those of
the penultimate (‘IT’) layers of a feedforward DCNN model of the ventral stream (bottom panel) using
previously established methods (see Methods). We also compared the pattern of monkeys’ behavioral
responses (pattern of difficulty over images, see Rajalingham et al., 2018) with and without vPFC
inactivation to the model’'s behavioral pattern. In both types of comparison, the key measure is referred
to as predictivity as it assesses the goodness of model predictions on new images. B. Top panel:
Comparison of IT Predictivity (%EV) of Alexnet (‘fc7’) for early (90-120 ms) and late (150-180 ms)
responses, without (black) and with (green) vPFC inactivation. We observed that vPFC inactivation
resulted in a significant increase in the match of the late phase of the IT population pattern to the
feedforward DCNN “IT” population pattern. No significant changes were observed for early responses.
Error bars denote s.e.m across 153 neural sites. Bottom panel: We also observed that vPFC
inactivation resulted in a slight, but significant, increase in the match of the monkeys’ object recognition
behavior to the object recognition behavior of the feedforward models (match assessed as the
correlation (model vs monkey) of the image-by-image pattern of difficulty; see Methods).
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of the feedforward models. (Behavioral Predictivity without
VvPFC inactivation = 0.43, Behavioral Predictivity after vPFC
inactivation = 0.56; permutation test of difference; p < 0.0001;
Figure 4B right panel).

In sum, these results suggest that vPFC is a critical circuit node
that is recurrently modulating the population dynamics of IT.
Partially inactivating that node restricts the IT population
pattern from correctly evolving away from its initial
feedforward response pattern — leaving both the early and the
late IT population patterns reasonably well approximated by
current feedforward DCNN models of the ventral stream.

DISCUSSION

In this work, we investigated whether the recurrent circuit
connecting the macaque ventral prefrontal cortex (VPFC) to the
ventral visual pathway is critical for executing robust core
object recognition. We reasoned that if this bidirectional
circuitry is indeed critical, then silencing parts of it should
produce deficits in the quality of population activity recorded
in the IT cortex that is responsible for accurate core recognition
behavioral performance. More specifically, based on our prior
work (Kar et al. 2019), we hypothesized that we should
observe larger deficits for images that take slightly longer to
solve and thus their solutions are more likely dependent on
recurrent computations (late-solved images; benchmarked
earlier in Kar et al., 2019).

Consistent with this hypothesis, we observed that vPFC
inactivation produced deteriorations in the quality of the IT
population code and deteriorations in behavioral performance
that were significantly higher for the late-solved images
compared to the early-solved images. Furthermore, we found
that vPFC inactivation caused the late phase of the IT
population response and the monkey behavior to more closely
match the “IT” and behavioral responses of some of the
leading feedforward models of the ventral stream. Taken
together, these results suggest that vPFC is part of a recurrent
circuit that boosts the performance of the ventral stream
(relative to shallow feedforward DCNNs) by reshaping the
initial (early-phase; putatively feedforward only) neural
representations in IT cortex, resulting in corresponding
behavioral gains. Consistent with this, removal of vVPFC made
the ventral stream operate more like a shallow feedforward
system. When considered alongside prior work (Kar et al.,
2019), this vPFC circuitry is most critical for images that are
challenging for shallow feedforward computer vision systems.

Experimental guidance on developing new scientific
hypotheses of ventral stream function

Our current best understanding of neural processing along
the ventral stream is carried by specific models in the class of
feedforward deep artificial neural networks. These models are
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the current best scientific hypotheses of the ventral stream
because they have the highest overall prediction accuracy (a
primary test of a scientific hypothesis: Hempel, 1966; Popper,
1959) for image-evoked responses at all levels of the ventral
stream (mean accuracy in V1, V2, V4, IT; Schrimpf et al,,
2018). However, because these models do not perfectly predict
the image-evoked neural responses of these different areas of
the ventral stream (for comparison across different models, see
Schrimpf et al., 2018), multiple groups are working to develop
even more accurate scientific hypotheses (e.g., Kubilius et al.,
2019; Nayebi et al., 2018; Spoerer et al., 2017).

What components do these current models lack? Clearly,
the models are missing many things at the single “neuron”
level, such as voltage-gated channels to generate spikes,
dendritic trees, synaptic components, etc. But we motivated
this study by first asking, what critical network Ilevel
components are missing from these models?

Many studies and reviews have suggested the importance
of including recurrent circuits to improve such models (Kar et
al., 2019; Kietzmann et al., 2019; Lehky and Tanaka, 2016;
Tang et al., 2018).This idea is motivated on both anatomical
and functional grounds. For example, previous reports (Sugase
et al., 1999) have demonstrated that different forms of
information can be decoded from early and late responses in
IT, suggesting a potential role of intra-areal recurrent inputs to
shaping IT population response dynamics. Consistent with the
hypothesis that recurrent signals modify late-phase IT
population responses, Kar et al. (2019) showed that the ability
of feedforward DCNNs to predict the IT population pattern
significantly worsened as the IT response pattern evolved.
They also showed that this latter portion of the IT population
response pattern carries the linearly available object-identity
information for many specific images that enable primates to
successfully solve them, vastly outperforming shallow
feedforward DCNN computer vision models. In sum, the late
phase of the IT population response is likely important for
robust core recognition behavior, likely depends on recurrent
circuits, and it is largely missing from the current best models
of the ventral stream. Thus, to produce models of the ventral
stream that more closely mimic the mechanisms of the primate
brain, a proper form of recurrent network level processing is
needed.

But what type of recurrent processing is needed? To begin
to answer that question, we here started with an even more
basic question: what circuit nodes in the brain are computing
and carrying the recurrent signals that we see manifesting as a
temporal evolution of the IT late-phase responses? Prior work
suggests many potential sources of such signals, including
within ventral stream bidirectional pathways, as well as top-
down feedback from multiple downstream areas, including
vPFC, peri-rhinal cortex, amygdala, and striatum (for review
see Kravitz et al., 2013).  For reasons outlined in the
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Introduction, in this study we have specifically focussed on the
ventral PFC.

To test the functional importance of a downstream node
that is recurrently connected to a target region of interest, many
previous studies in the visual system (Bullier et al., 2001; Hupe
et al., 1998; Sandell and Schiller, 1982; Wang et al., 2000) have
used inactivation methods, similar the one deployed here. In
general, those studies report that this downstream manipulation
results in a decrease in responses of neurons in the upstream
cortical areas, which is analogous to the reduction (~30%) in
IT activity level that we have observed here (Figure 2B). For
instance, inactivation of area MT (feedback node) via cooling
led to a ~20-40% decrease in V1 and V2 responses (refer
Figure 1, 2 in Hupe et al., 1998). Focussing specifically on
VvPFC and IT, prior studies have confirmed that IT responses,
similar to other visual areas are modulated by feedback from
downstream areas. For example, Fuster et al. (1985) showed
that temporary lesions produced by cooling in dorsolateral PFC
affected color selectivity in IT neurons. Tomita et al. (1999)
performed anterior and posterior commissurectomies, and
observed that the responses of IT cortical neurons are
modulated by input from the prefrontal cortices, especially for
visual information in the contralateral visual field.

Our work is consistent with those studies in that IT
responses can be altered by vPFC. However, unlike the work
presented here, those earlier studies did not specifically
investigate the changes in the distributed IT population code or
primate behavior with respect to object recognition, that can
guide the development of new models of primate vision.
Specifically, that prior work did not engage on questions of the
quality of information for recognition behavior at an image by
image resolution, or the differential importance of recurrent
signals from vPFC as measured in the early vs. late responses
of the IT population. Because of this, prior work could not
distinguish between an overall modulatory role (Hi) and a
specific set of recurrent computations (similar to Hz). To our
knowledge, the current study is the first to causally test the
necessity of the vPFC to ventral stream recurrent circuit at such
fast (< 200 ms), but natural time scales, with simultaneous
large-scale neural and behavioral measurements. Here, we have
leveraged our previous findings (as resported in Kar et al.,
2019) to employ a targeted disruption strategy for identifying
critical recurrent circuits using pre-defined challenge images
(that take additional solution times in IT). Therefore, our
results provide evidence that feedback from vPFC does not
simply modulate IT (e.g., gain) — it specifically improves the
format of the distributed IT population code, and those
improvements are specific to the late phase of this code.

However, the results reported here do not identify the exact
circuitry involved in the re-entry of information from the vPFC
into the ventral stream. Previous anatomical studies have
shown that the feedforward projections that connect the ventral
stream to the prefrontal cortices originates in the anterior
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portions of the lower ventral bank and fundus of the STS (for a
review, see Kravitz et al., 2013) and mainly target areas 45A/B,
46v, and 121/1 in the ventrolateral prefrontal cortex (VLPFC).
On the other hand, feedback projections from these same areas
in the PFC are distributed across the inferior temporal cortical
areas TEO and TE (Gerbella et al., 2010). There is not much
evidence of direct connections between these areas in the PFC
and earlier visual areas (V1, V2, and V4). But, we cannot rule
out the possibility of indirect connections to the lower visual
areas via the frontal eye fields and other regions.

Each of these possible circuit motifs is a hypothesis that
must next be implemented as a set of neural network models
for future experimental testing. Our neural measurements (with
and without vPFC inactivation, as reported here) can be used to
select among such models. For instance, we can estimate the
weights of the feedback connections between VPFC and the
ventral stream nodes such that the model approximates the
neural firing rates at its IT layer (as measured here) upon
random (~0.4 cm3) lesions of the ventral PFC module.

Many studies (Ganis et al., 2007; Harth et al., 1987; Tang et
al., 2018) propose a cognitive role of the prefrontal feedback:
the idea that these recurrent connections carry an expectation
signal that augments the representation of object identity in the
IT cortex. Our results are consistent with this and other similar
conceptual theories. = However, those ideas are not specific
enough to be tested for individual images. That is, they do not
specific how to build an accurate image-computable neural
network model of the IT-to-PFC-to-IT circuit. =~ While the
results presented in this study do not provide a precise
blueprint for such a model, the temporal and image level
specificity that they build on is already useful for guiding the
development of new recurrent, image-computable models
(Kubilius et al., 2019) and the current results can further guide
the placement and simulation testing of a PFC node in such
models (see more below).

Role of vPFC in core object recognition behavior

Previous work (Freiwald et al., 2009; Hung et al., 2005;
Kar et al., 2019; Logothetis and Sheinberg, 1996; Majaj et al.,
2015) has linked neuronal responses in the inferior temporal
cortex to primate core object recognition behavior. For
instance, Majaj et al. (2015) experimentally rejected a large
number of alternative models that link ventral stream
population activity to core object recognition behavior (aka
“decoding models” or “linking models”) in support of a simple
linear weighted sum of IT response model. These models posit
that the mechanisms of core object recognition beyond IT are:
approximately linear sums of the activity levels of individual
IT neurons computed by neurons in PFC, peri-rhinal cortex, or
in the caudate. Using various combinations of model
parameters (e.g., numbers of neurons, amount of experience
with each object category, brain location of the downstream
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linear summing), multiple linking hypotheses can be
constructed. Our results do not narrow the space of hypotheses
to a single linking model. However, these experiments have
provide two architectural constraints for new models, and our
data can be used to falsify or support each such model. First,
vPFC is required to support core object recognition behavior
and therefore needs to be integrated into any future model of
such behavior. Second, feedback signals conveyed via the
recurrent connections between VPFC and the ventral stream
(most likely the IT cortex) are also necessary to support this
behavior. Below we speculate and discuss candidate linking
models that can be further developed and tested using our
results.

One possibility is that the downstream summing nodes (as
posited by previous studies) are vVPFC neurons and those vPFC
neurons drive the monkey’s behavior.  According to this
hypothesis, the vPFC is an additional, bidirectionally
connected node of processing that intervenes between IT and
behavior. This idea is conceptually simple, and it is motivated
by previous data from vPFC, including results showing that
category training in monkeys causes PFC neuronal responses
to become categorical-like (Freedman et al., 2001), which is
what would be expected if VPFC was the location of those
learned sums of IT neuronal responses described above. This
hypothesis predicts that vPFC inactivation should lead to an
equal decrease in behavioral performance for every image. An
alternate possibility, however, is that vVPFC neurons do not
drive behavior directly, but they instead transmit the product of
their computations to support upstream brain regions, such as
the IT cortex, which then drive behavior via other brain nodes
such as caudate. This second possibility is also consistent with
the prior work that demonstrated category selectivity in vPFC
neurons (Freedman et al., 2001). Our data do not
unequivocally resolve among these two possibilities.  Our
results that vPFC inactivation leads to larger deficits for late-
solved images (Figure 3C) is consistent with the second
possibility. However, the fact that vPFC inactivation also led to
significant deficits for early-solved images argues for some
element of the first possibility. Indeed, our results overall seem
to suggest that both ideas may be partially correct.

Experimentally, we speculate that large-scale neural
measurements in brain-regions like vPFC, collected
simultaneously in behaving monkeys (solving a wide variety of
recognition tasks), will be required to gain further insights.
Furthermore, feedback projection-specific causal perturbation
experiments (similar to Oguchi et al., 2015) will be necessary
to identify and functionally characterize some of these circuit
motifs. However, to drive further progress, we now need to
incorporate the circuit motifs and build specific artificial neural
network models motivated by these experimental results, test
their image by image predictions, eliminate models that do not
match the experimental data, and build new models. That
iterative cycle will ultimately lead to a complete, neurally
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mechanistic understanding of visual object recognition, from
images to behavior.

METHODS

Subjects

The nonhuman subjects in our experiments were two adult
male rhesus monkeys (Macaca mulatta).

Visual stimuli: generation

All stimuli used in this study were previously used in the Kar
et al. 2019 study. For a brief description of the stimuli (see
Figure S1B for example images), please refer below.

Generation of synthetic (“naturalistic”’) images: High-quality
images of single objects were generated using free ray-tracing
software (http://www.povray.org), similar to Majaj et al. (2015)
Each image consisted of a 2D projection of a 3D model
(purchased from Dosch Design and TurboSquid) added to a
random background. The ten objects chosen were bear,
elephant, face, apple, car, dog, chair, plane, bird and zebra
(Figure 3A). By varying six viewing parameters, we explored
three types of identity while preserving object variation,
position (x and ), rotation (X, y, and z), and size. All images
were achromatic with a native resolution of 256 x 256 pixels.

Generation of natural images(photographs): Images pertaining
to the 10 nouns, were download from http://cocodataset.org.
Each image was resized to 256 x 256 x 3 pixel size and
presented within the central 8°. We used the same images while
testing the feedforward DCNNS.

Primate behavioral testing

Active binary object discrimination task: We measured
monkey behavior from two male rhesus macaques. Images
were presented on a 24-inch LCD monitor (1920 % 1080 at 60
Hz) positioned 42.5 c¢cm in front of the animal. Monkeys were
head fixed. Monkeys fixated a white dot (0.2°) for 300 ms to
initiate a trial. The trial started with the presentation of a
sample image (from a set of 1360 images) for 100 ms. This
was followed by a blank gray screen for 100 ms, after which
the choice screen was shown containing a standard image of
the target object (the correct choice) and a standard image of
the distractor object. The monkey was allowed to view freely
the choice objects for up to 1500 ms and indicated its final
choice by holding fixation over the selected object for 400 ms.
Trials were aborted if gaze was not held within £2° of the
central fixation dot during any point until the choice screen
was shown.

Passive Fixation Task: During the passive viewing task,
monkeys fixated a white dot (0.2°) for 300 ms to initiate a trial.
We then presented a sequence of 5 to 10 images, each ON for
100 ms followed by a 100 ms gray (background) blank screen.
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This was followed by fluid reward and an inter trial interval of
500 ms, followed by the next sequence. Trials were aborted if
gaze was not held within +2° of the central fixation dot during
any point.

Eye Tracking: We monitored eye movements using video eye
tracking (SR Research EyeLink 1000). Using operant
conditioning and water reward, our 2 subjects were trained to
fixate a central white square (0.2°) within a square fixation
window that ranged from +2°. At the start of each behavioral
session, monkeys performed an eye-tracking calibration task
by making a saccade to a range of spatial targets and
maintaining fixation for 500 ms. Calibration was repeated if
drift was noticed over the course of the session.

Data collection: We divided the data collection into two
different sessions (with and without muscimol injections;
Figure 1B) conducted on consecutive days. These two sessions
were repeated in the same order with a minimum gap of one
day post the muscimol session (Figure 1C; experimental
timeline). On each session (day), monkeys performed the
following tasks sequentially: a passive fixation task, a binary
object discrimination task, a second passive fixation task. On
the second session (day), after the initial passive fixation task,
we injected a total of 10ul of muscimol at 5 depths (2 ul each)
separated by 0.5 mm in the previously localized ventral PFC
area (for details see below).

Behavioral Metrics

We have used a one-vs-all image level behavioral performance
metric (similar to the one used in Kar et al., 2019) to quantify
the behavioral performance of the monkeys as well as DCNNs
(described below). This metric estimates the overall
discriminability of each image containing a specific target
object from all other objects (pooling across all 9 possible
distractor choices).

Given an image of object ‘i’, and all nine distractor objects
(j # i) we computed the average performance per image as,

10 p i j#i
i Zj:l Pcimage
Performanceimage = — 5
where Pc refers to the fraction of correct responses for the

binary task between objects ‘i’ and ‘j’.

To compute the reliability of this vector, we split the trials per
image into two equal halves by resampling without
substitution. The median of the Spearman-Brown corrected
correlation of the two corresponding vectors (one from each
split half), across 1000 repetitions of the resampling was then
used as the reliability score (i.e. internal consistency).

Kar and DiCarlo, 2020

Large scale multi-electrode recordings and simultaneous
pharmacological inactivation

Surgical implant of chronic micro-electrode arrays: We
surgically implanted each monkey with a head post under
aseptic conditions. After behavioral training, we recorded
neural activity using 10 x 10 micro-electrode arrays (Utah
arrays; Blackrock Microsystems). A total of 96 electrodes
were connected per array. Each electrode was 1.5 mm long
and the distance between adjacent electrodes was 400 pm.
Before recording, we implanted each monkey multiple Utah
arrays in the IT cortex (monkey B: 2 arrays in left
hemisphere); monkey N: 2 arrays in the right hemisphere).
Array placements were guided by the sulcus pattern, which
was visible during surgery. The electrodes were accessed
through a percutaneous connector that allowed simultaneous
recording from all 96 electrodes from each array. Behavioral
testing was performed using standard operant conditioning
(fluid reward), head stabilization, and real-time video eye
tracking. All surgical and animal procedures were performed
in accordance with National Institutes of Health guidelines
and the Massachusetts Institute of Technology Committee on
Animal Care.

Surgical implant of PFC injection chamber: During the same
surgery, as the chronic array implant, we also placed a semi-
cylindrical chamber (Crist Instruments) over a craniotomy
targeting the prefrontal cortex, around the principal sulcus. We
placed the chambers in the left and right hemispheres of
monkey B and monkey N respectively. The chambers were
held in place by dental acrylic (methyl methacrylate) applied
around the chamber. We used previously reported anatomical
landmarks (Freedman et al., 2003; McKee et al., 2014; Tomita
et al., 1999), identified by an initial MRI, to guide the PFC
chamber placements.

PFC injection protocol: During the sessions with muscimol
injections, we first carefully scraped the dura for maximal
visibility and minimum resistance in the path of injection.
Then, we used an in-house set up to lower the injection
needles (30-32 gauge, small Hub RN Needle; Hamilton
Company) using a micro-syringe pump and controller
(Micro4™ World Precision Instruments). We started
approximately 4 mm below the estimated surface of the dura.
We injected 0.5 uL of muscimol (Smg/mL, Sigma Aldrich) at
that depth at a speed of 1000 nL/min and, waited for 3 mins
and pulled the needle up by ~0.5 mm. This was repeated for 5
depths in total. After the end of the final injection, we waited

for 30 mins before the start data collection.

bioRxiv 2020


https://doi.org/10.1101/2020.05.10.086959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.10.086959; this version posted May 12, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Electrophysiological Recording

During each recording session, band-pass filtered (0.1 Hz to
10 kHz) neural activity was recorded continuously at a
sampling rate of 20 kHz using Intan Recording Controller
(Intan Technologies, LLC). The majority of the data presented
here were based on multiunit activity. ~We detected the
multiunit spikes after the raw data was collected. A multiunit
spike event was defined as the threshold crossing when
voltage (falling edge) deviated by more than three times the
standard deviation of the raw voltage values. Of 384
implanted electrodes, 2 arrays ( left and right hemispheres for
monkey B and N respectively) x 96 electrodes X two
monkeys, we focused on the 153 most visually driven, and
reliable neural sites. Our array placements allowed us to
sample neural sites from different parts of IT, along the
posterior to anterior axis. However, for all the analyses, we did
not consider the specific spatial location of the site, and
treated each site as a random sample from a heterogencous
pool of IT neurons.

Neural recording quality metrics per site

Visual drive per neuron (d);, .): We estimated the overall

visual drive for each electrode. This metric was estimated by
comparing the image responses of each site to a blank (gray
screen) response.

, _ avg (Rimages) —avg (Rgray)
visual — !
— (02 2
\/ 5 (GRimages + R0 y)

Image rank-order response reliability per neural site (pslgeo):
To estimate the reliability of the responses per site, we
computed a Spearman-Brown corrected, split half (trial-based)
correlation between the rank order of the image responses (all

images).

Inclusion criterion for neural sites: For our analyses, we only
included the neural recording sites that had an overall
significant visual drive (d);,, ), and an image rank order
response reliability (pslﬁeo) that was greater than 0.6. Given
that most of our neural metrics are corrected by the estimated
noise at each neural site, the criterion for selection of neural
sites is not that critical. It was mostly done to reduce
computation time and eliminate noisy recordings.

Estimation of IT population decode accuracies at OST

To estimate what information downstream neurons could
easily “read” from a given IT neural population, we used a
simple, biologically plausible linear decoder (i.e., linear
classifiers), that has been previously shown to link IT
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population activity and primate behavior (Majaj et al., 2015).
Such decoders are simple in that they can perform binary
classifications by computing weighted sums (each weight is
analogous to the strength of synapse) of input features and
separate the outputs based on a decision boundary (analogous
to a neuron’s spiking threshold). Here we have used a support
vector machine (SVM) algorithm with linear kernels. The
SVM learning model generates a decoder with a decision
boundary that is optimized to best separate images of the
target object from images of the distractor objects. The
optimization is done under a regularization constraint that
limits the complexity of the boundary. We used L2 (ridge)
regularization, where the objective function for the
minimization comprises of an additional term (to reduce
model complexity),

2 )4
L2 (penalty) = ) Z ﬁjz
j=1

where f and p are the classifier weights associated with ‘p’
predictors (neurons). A stochastic gradient descent solver was
used to estimate 10 (one for each object) one-vs-all classifiers.
After training each of these classifiers with a set of 100
training images per object, we generated a class score (sc) per
classifier for all held out test images given by,

sc =Rp +bias

where R is the population response vector and the bias is
estimated by the SVM solver. The train and test sets were
pseudo-randomly chosen multiple times until we every image
of our image set was part of the held-out test set. Only the
responses from the no-muscimol conditions were treated as
training signal. All predictions were made either on held-out
responses from no-muscimol or muscimol conditions. We then
converted the class scores into probabilities by passing them
through a soffmax (normalized exponential) function.

eSCl‘

le=0] esci

i —

image —

In our previous study (Kar et al., 2019), object solution time

per image, OSTj,,,q,, Was defined as the time it takes for
linear IT population decodes to reach within the error margins
of the pooled monkey behavioral accuracy for that image.
Given that we have used the exact same images in this study,
we have used our previously estimated OST per image as the

time point of comparison of IT decode accuracy, Pl.im age (with
and without muscimol) per image. All reported values of IT
population decode accuracies are estimates of how well the
population decode accuracy was at the specific OST estimated
for the specific image.
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Estimating change in image-driven response rank order
(early vs late)

For each neuron we estimated the image response vector (')
at two specific time bins (early: 90-120 ms, and late: 150-180
ms; post image onset). To estimate the change in this vector
across time, we computed the noise corrected correlation

between the ! vectors estimated at the early and late time bins
respectively, as follows,

r(early,late)
Velearhy) *1/p(ny)

where r(early,late) is the correlation between the ri vectors
estimated at the early and late time bins, and p(early) and p
(late) are the split-half (across trial) reliability of these vectors
estimated independently at the corresponding time bins. We
computed these noise-corrected correlation values per neuron
for both the no-muscimol and muscimol conditions.

Binary object discrimination tasks with DCNNs

We have used the same linear decoding scheme mentioned
above (for the IT neurons) to estimate the object solution
strengths per image for the DCNNs. Briefly, we first obtained
an imagenet pre-trained DCNN (AlexNet). We then replaced
the last three layers (i.e., anything beyond ‘fc7’) of this
network with a fully connected layer containing 10 nodes
(each representing one of the 10 objects we have used in this
study). We then trained this last layer with a back-end
classifier (L2 regularized linear classifier; similar to the one
mentioned for IT) on a subset of images from our image-set.
These images were selected randomly from our imageset and
used as the train-set. The remaining images were then used for
the testing (such that there is no overlap between the train and
test images). Repeating this procedure multiple times allowed
us to use all images as test images providing us with the
performance of the model for each image.

Prediction of neural responses from Deep Convolutional
Neural Networks (DCNN) features

We modeled each IT neural site as a linear combination of the
DCNN model features. We first extracted the features per
image, from the DCNNs’ penultimate layers. Using a 10-fold
train/test split of the images, we then estimated the regression
weights (i.e., how we can linearly combine the model features
to predict the neural site’s responses) using a partial least
squares (MATLAB command: plsregress) regression
procedure, using 20 retained components. For each set of
regression weights estimated on a train imageset, we
generated the output of that ‘synthetic neuron’ for the held out
test set. The percentage of explained variance, IT predictivity
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(for more details refer Yamins et al., 2014) for that neural site,
was then computed by normalizing the 12 prediction value for
that site by the self-consistency of the image responses for that
site and the self-consistency of the regression weights (similar
to Kar et al. 2019) for that site (estimated by a Spearman
Brown corrected trial-split correlation score). Table 1 lists all
the models we have tested and the corresponding layers
treated as “model-IT”.

Tablel. DCNN model names and corresponding ‘model-IT’
layers used for IT predictivity comparisons (as shown in
Figure S4C).

Model Name Layer
AlexNet fc7
VGG-F fc7
VGG-S fc7

SqueezeNet pooll0
VGG16 fc7

ResNet18 pool5
VGG19 fc7
GooglLeNet pool5-7x7 sl
ResNet50 avg_pool
Inception-v3 avg_pool
ShuffleNet node 200

Mobilenet_v2 global average pooling2d 1

Xception avg_pool
Resnet101 pool5

Inception ResNet_v2 avg_pool

DenseNet 201 avg_pool

Data and code availability
At the time of publishing the data associated with all the

figures and the code used to generate the figures will be
available upon reasonable request.
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Figure S1. A. Estimation of object solution time. For each image (example image of a bear shown) presentation (100
ms), we counted multiunit spike events (see Methods for details), per site, in non overlapping 10 ms windows, post
stimulus onset to construct a single population activity vector per time bin. These population vectors (image evoked
neural features) were then used to train and test cross-validated linear support vector machine decoders (D) separately
per time bin. The decoder outputs per image (over time) were then used to perform a binary match to sample task, and
obtain neural decode accuracies at each time bin. The time at which the neural decodes equal the primate (monkey)
performance, is then recorded as the object solution time (OST) for that specific image. B. Six example images from
six different object categories. C. Sample neural response from a vPFC site (averaged across 10 repetitions and 80
images). D. Coarse category selectivity of an example vPFC neuron. Each curve is the average response per object
category (8 images per category, 10 repetitions per image). E. Distribution of onset latencies of 15 neural sites in
vPFC (7 in monkey B , 8 in monkey N).
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Figure S2. A. IT population decoding accuracies (percent correct) estimated independently for each monkey;
left panel: monkey B (78 sites); right panel: monkey N (75 sites) with (green) and without (black) vPFC
inactivation. We observe that in each monkey, the quality of the IT population code drops after vPFC
inactivation ~150 ms post image onset. B. Dependence of the drop in quality of IT population code, i.e.,
difference between the green and the black curves shown on the left; estimated on the pooled neural

population (153 sites). Error-bars denote s.e.m across images.
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Figure S3. A. Distribution of behavioral performances (percent correct) with (green) and without (black) vPFC
inactivation. There was a significant overall reduction (APerformance = 6.03 &+ 0.3 %, (mean + SEM), paired t-
test; 1(859) = 17.13, p <0.0001) in performance across all sessions after the muscimol injections. B. A
Performance across different bins of object solution times. APerformance was negatively correlated with object
solution times (Spearman R =-0.11; p = 0.0015; computed image by image). TheError-bars denote s.e.m across
images. C. vPFC inactivation increased reaction times, and that this increase was significantly higher for late-
solved (red) images than for early-solved (blue) images (ARTealy =-34 + 4.19 ms ; ARTlte =55 £ 3.9 ms,
median * s.e.m ; t-test, #(441) =2.0488, P = 0.04). Error-bars denote s.e.m across images.
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Figure S4. A. Predicting IT neural responses with DCNN features. Schematic of the DCNN neural fitting and prediction testing
procedure. This includes three main steps. Data collection: neural responses are collected for each image e.g. example neural site
is shown, across 10 ms timebins Late and early time window is demarcated. Mapping: We divide the images and the
corresponding neural features (RTRAN) into a 50-50 train-test split (shown for demonstration). For the train images, we compute
the image evoked activations (FTRAIN) of the DCNN model from a specific layer. We then use partial least square regression to
estimate the set of weights (w) and biases (/) that allows us to best predict RTRAIN from FTRAIN, Test Predictions: Once we have
the best set of weights (w) and biases (f) that linearly map the model features onto the neural responses, we generate the
predictions (MPRED) from this synthetic neuron for the test image evoked activations of the model FTEST. We then compare these
predictions with the held-out test image evoked neural features (RTEST) to compute the IT predictivity of the model. B.
Comparison of how well (in units of percentage of explained variance) Alexnet (‘fc7’) features predict the neural responses (153
sites across 2 monkeys) measured with and without PFC inactivation. % EV estimated post muscimol injections were
significantly higher than ones estimated without vPFC inactivation. Error-bars denote standard deviation across cross-validation
split repetitions. C. We observed that the difference in %EV (with and without vPFC inactivation) for the late-phase (150 - 180
ms) IT responses was significantly greater (muscimol > no-muscimol) than 0, for all 15 tested feedforward networks (plotted on
the x-axis; ranked in order of goodness of IT predictivity). Error bars denote s.e.m across 153 neural sites.
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