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Summary—Distributed neural population spiking patterns 

in macaque inferior temporal (IT) cortex that support core visual 

object recognition require additional time to develop for specific 

(“late-solved”) images suggesting the necessity of recurrent 

processing in these computations. Which brain circuit motifs are 

most responsible for computing and transmitting these putative 

recurrent signals to IT? To test whether the ventral prefrontal 

cortex (vPFC) is a critical recurrent circuit node in this system, 

here we pharmacologically inactivated parts of the vPFC and 

simultaneously measured IT population activity, while monkeys 

performed object discrimination tasks. Our results show that 

vPFC inactivation deteriorated the quality of the late-phase 

(>150 ms from image onset) IT population code, along with 

commensurate, specific behavioral deficits for “late-solved” 

images. Finally, silencing vPFC caused the monkeys’ IT activity 

patterns and behavior to become more like those produced by 

feedforward artificial neural network models of the ventral 

stream. Together with prior work, these results argue that fast 

recurrent processing through the vPFC is critical to the 

production of behaviorally-sufficient object representations in IT.  

Keywords— Ventral PFC, inferior temporal cortex, core 

object recognition, muscimol, deep neural networks,  population 

codes 

INTRODUCTION  

A goal of visual neuroscience is to identify and model the 

brain circuitry that seamlessly solves the challenging 

computational problem of rapid visual object categorization 

(DiCarlo and Cox, 2007; Riesenhuber and Poggio, 2000; 

Yamins and DiCarlo, 2016). Previous studies (Freiwald et al., 

2009; Hung et al., 2005; Kar et al., 2019; Logothetis and 

Sheinberg, 1996; Majaj et al., 2015) show that the pattern of 

neural activity in the primate inferior temporal (IT) cortex can 

explicitly represent visual object identities. However, current 

models of core object recognition fall short of fully explaining 

both primates’ behavioral image by image difficulty patterns 

(Geirhos et al., 2017; Rajalingham et al., 2018) and they fall 

short of fully explaining the distributed population activity 

patterns of IT neurons (Kar et al., 2019). 

These models primarily belong to the family of deep 

convolutional neural networks (DCNN) with predominantly 

feedforward architectures. More recent models are beginning 

to implement recurrent architectures (Kubilius et al., 2019; 

Nayebi et al., 2018; Spoerer et al., 2017) but experimental data 

to guide their development is needed. Toward that goal, we 

have recently demonstrated (Kar et al., 2019) the critical role of 

putative recurrent signals available at the late-phases of the 

image evoked IT responses in enabling accurate core object 

recognition, at least for some images. That study also 

speculated that the lack of recurrent computations in the 

feedforward DCNN models might have led to its poor 

behavioral accuracy and poorer prediction of the late-phase IT 

responses. But which recurrent circuit motifs in the primate 

brain are most critical? within ventral stream? Within IT? Top-

down from regions downstream of IT (PFC, Amygdala, etc.)? 

All of the above? Identifying these circuits and inferring their 

computational functions is critical in developing the next 

generation of models of the primate visual intelligence and 

behaviors such as core object recognition.  

Kar et al. (2019) determined, for each tested image, the 

time when response patterns of the IT neuronal population 

could sufficiently account for the monkey’s object recognition 

performance on that image, referred to as the object solution 

time (OST; one OST computed per image). They also 

identified hundreds of images that critically relied on the early 

(90-120 ms) and late (150-180 ms) phases of the IT responses 

post image onset (Figure 1A). These results point to a targeted 

disruption strategy that we executed here for testing the 

aforementioned critical recurrent circuits.  Specifically, if a 

particular recurrent circuit motif is critical in core object 

recognition, its disengagement should: 1) prevent the 

emergence linearly-decodable object identity information in the 

late-phase of the IT responses, with little or no effect on the 

early phase. And, 2) result in a reduction in behavioral 

performance for the late-solved images, with little or no effect 

on behavior performance for the early-solved images. In this 

study, we tested those two predictions for a circuit motif that is 

recurrently connected to the ventral visual stream — the 

ventral prefrontal cortex (vPFC).   

Among the multiple downstream targets of IT, we chose to 

first test vPFC because:  1) it is downstream of IT, but has 

strong recurrent anatomical connections to IT (Borra et al., 

bioRxiv 2020

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.10.086959doi: bioRxiv preprint 

mailto:kohitij@mit.edu
https://doi.org/10.1101/2020.05.10.086959
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kar and DiCarlo, 2020

bioRxiv 2020

Figure 1. Motivation and Hypotheses. A. Temporal evolution of linearly decodable object identity 

information in IT on an image-by-image basis. For each tested image, we measured the IT population 

response vector (n=424 neural sites) across time (10 ms resolution). For each time point, we estimated 

the linear decodable information (cross-validated across images). Each image achieved an IT solution 

goodness (linear decode accuracy for object identity: d’) which matches the monkey’s behavioral 

accuracy (avg. of d’=2.5 for the example images, shown as a gray shaded line) after different amounts 

of processing time (object solution time, OST; gray histogram over; 1320 tested images). Using a range 

of controls, Kar et al. (2019) concluded that images which exhibit longer OSTs (late-solved; red curves 

shows two examples) likely require more recurrent processing (relative to images that exhibit shorter 

OSTs; early solved images; blue curves shows two examples). B. Pharmacological inactivation of PFC 

(ipsilateral to IT recording location) with simultaneous IT population recording. C. We divided the 

experiments into two different sessions, without (gray boxes) and with (green boxes) muscimol 

injections, conducted on consecutive days. We repeated each session in the same order after a 

minimum gap of one day (empty boxes). We completed at least 10 sessions of each condition type. D. 

Hypothesized effects of PFC inactivation. One hypothesis (H0) is that the robustness of the IT object 

codes for core object recognition (~200 ms of processing) does not rely at all on PFC, which predicts no 

change in IT decodes or behavior for both early (blue bar) and late-solved (red bar) images. Another 

hypothesis (H1) is that PFC plays an overall modulatory role in ventral stream computations, which 

predicts deficits in IT population decode accuracies and behavior that are equal for both groups of 

images. Finally, a third hypothesis (H2) is that PFC as a critical recurrence node in the brain circuitry for 

core objection, which predicts larger IT population decoding deficits and larger behavioral deficits for 

late-solved images. A mixture of H1 and H2 is also possible (see open blue bars; also see Discussion for 

alternative interpretations). 
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2010; Webster et al., 1994; Yeterian et al., 2012),  2) following 

object category learning, it has been shown to contain object-

category selective neurons(Freedman et al., 2001, 2003), 3) 

previous studies have demonstrated changes in IT resulting 

from lesion-based (Tomita et al., 1999), pharmacological 

(Monosov et al., 2011) and thermal perturbation (Fuster et al., 

1985) of PFC, and 4) methods to silence PFC are 

experimentally straightforward because PFC is downstream of 

IT. Specifically, we here  pharmacologically silenced (via 

muscimol, a GABAA agonist) ~0.4 cm3 of ventral PFC in each 

of two monkeys, and measured changes in IT population 

activity at the multi-unit level (with chronically implanted Utah 

arrays ipsilateral to the targeted vPFC, see Figure 1B) and the 

corresponding changes in core object recognition performance.  

Our results show that the inactivation of vPFC reduced the 

quality of the late-phase IT population activity, as assessed by 

linear decodability of object identities. We also observed 

corresponding behavioral deficits during core object 

recognition tasks — the deficits were significantly higher for 

late-solved images. Interestingly, the inactivation of vPFC 

caused the late-phase IT neural activity to become better 

explained by feedforward DCNN models of the ventral stream. 

These results argue that fast recurrent processing through the 

ventral PFC is critical to the production of fully robust object 

representation in IT and the core object recognition behavior 

that it supports and that current computational models of the 

ventral stream lack these computations.  

RESULTS 

As outlined above, we reasoned that, if recurrent processing 

via the ventral PFC to the primate ventral stream is critical for 

robust core object recognition, then inactivating parts of ventral 

PFC should produce specific changes in the IT population 

activity patterns and specific behavioral deficits. In particular, 

the neural and behavioral deficits should be higher for “late-

solved” images — images that we have previously found not to 

produce a fully formed IT population representation until 

150-180 ms post stimulus onset (Kar et al. 2019; see 

Introduction). 

To test the role of vPFC we used pharmacological 

inactivation of sub-regions of ventral PFC, as previously 

anatomically landmarked, (Freedman et al., 2003; McKee et 

al., 2014; Tomita et al., 1999), and identified in this study by 

structural MRI (see Methods). Based on the expected locations 

of object category-selective vPFC neurons (Freedman et al., 

2001, 2003), we first performed a single electrode 

measurement survey (Figure S1,C-E) to locate vPFC sub-

regions that exhibited strong visual drive and coarse category 

selectivity (see Methods). We then performed a second 

structural MRI (now with markers inserted at these locations) 

to ensure that the localized object-category selective vPFC 

sites were anatomically consistent with previous reports 

(Freedman et al., 2001, 2003). 

An assay for recurrent-dependent computation:  early-

solved vs. late-solved images 

Previous studies (Hung et al., 2005; Majaj et al., 2015) 

have demonstrated that object identity is linearly expressed in 

the pattern of IT neural activity. Using linear decoders, we have 

previously  estimated the precise time it takes for the macaque 

IT population to temporally evolve to this linearly explicit 

pattern for each of 1320 images (Kar et al., 2019; briefly 

illustrated in Figure 1A). We refer to this time as the object 

solution time (OST). OST is an estimate (done per image) of 

the amount of time needed to compute a behaviorally sufficient 

neural population solution in IT. Longer OSTs, therefore, 

suggest additional, putatively recurrent computations, beyond 

what could be achieved by the early, feedforward IT responses. 

In this study, our analyses primarily focus on comparing the 

neural and behavioral effects of vPFC inactivation on the 

images that are solved quickly (“early-solved” images, OST 

range: 90-120 ms) with the effects on images that are solved 

slightly later (“late-solved” images, OST range: 150-180 ms). 

 

vPFC inactivation reduces IT late-phase population activity 

We first explored the effect of vPFC inactivation on the 

quality of the IT neural population patterns evoked by each 

image.  Upon visual inspection (Figure 2B), we observed that 

vPFC inactivation did not produce a reduction in the (mean) 

initial  (90-120ms) image-driven activity. However, vPFC 

inactivation appeared to moderately reduce the later portion of 

the IT responses ( i.e., starting around 140 ms after image 

onset). To look more closely, we compared IT responses at two 

specific time bins: early phase  (90-120 ms; Figure 2C) and late 

phase (150-180 ms; Figure 2D). We found that, across the 

entire recorded IT population (n=153 sites), vPFC inactivation 

produced no significant difference in the mean response 

(averaged over all images) in the early phase (�Rearly = -18  

46.4 %, mean  s.e.m; paired t-test; t(152) = 0.5885, p = 

0.5571). However, vPFC inactivation produced a significant 

reduction in mean late-phase (150-180 ms) IT responses 

(averaged across images; �Rlate = -31.83  10.4%, mean  

s.e.m; paired t-test; t(152) = 8.5906, p <0.0001). Also, we 

noted that the time of the emergence of a drop in the mean IT 

response (black vs. green line in Figure 2B) coincided with the 

latencies of the vPFC neurons that we recorded at the targeted 

injection sites (refer Figure S1E) as well as previously 

measured latencies of neurons in this area (Freedman et al., 

2001, 2003).   We note that these mean firing rate effects are 

also consistent with prior causal perturbation studies in other 

pairs of visually-driven cortical areas (see Discussion). 

vPFC inactivation selectively disrupts the late-phase IT 

population code 

 The neural representations that enable robust object 

recognition are more subtle than the mean firing rates analyzed 

above. Indeed, we previously reported that while many images 
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Figure 2. Neural experiments and results. A. We measured neural responses from 153 sites in the 

IT cortex across two monkeys while they performed a battery of core recognition tasks, with and without 

muscimol injections in the ventral PFC (see Fig. 1C). B. Normalized mean IT firing rate in the two 

conditions (Black = no-muscimol control condition; green =  after muscimol injections in PFC). The 

shades indicate s.e.m across images.  C. We observed no significant differences across neurons at the 

early-phase (90-120 ms) of the IT responses (�Rearly = -18  46.4 %, mean  s.e.m; paired t-test; 

t(152) = 0.5885, p = 0.5571). D. We observed a small, but significant reduction in firing rates at the late-

phase (150-180 ms) of the IT responses (�Rlate = -31.83  10.4%, mean  s.e.m; paired t-test; t(152) = 

8.5906, p <0.0001). Errorbars for C and D denote the standard deviation of responses across images 

per neuron. E. Images (n=234) with late-OST (red bar) showed a significantly higher drop in IT 

population decode accuracy (see Results) upon vPFC inactivation, compared to the images (n=208) 

with early-OST (blue bar). This comparison was made with all images that had a measured (behavioral) 

d’ between 2 and 4, as measured in separate animals (Kar et al. 2019). Error bars denote s.e.m across 

images. We quantified the strength of this interaction as the difference in the muscimol induced change 

and we refer  to that measure as !IT. F. The mean !IT was consistently less than 0 for images selected in 

different ranges of behavioral accuracies. We also observed a negative trend for most, but not all 

recognition sub-tasks (t-test, t(9) = 1.9718, p=0.0401). Error bars denotes bootstrap CI (95%). G. 

Interaction strength was significantly stronger when we restricted the measurements to images where 

the object center was in the contralateral visual filed (monkey N, ipsilateral !IT:-2%, contralateral 

!IT:-5.8%, permutation test of difference, p<0.001; monkey B, ipsilateral !IT: 0.1%, contralateral !IT:-2%, 

permutation test of difference, p<0.001). Error bars denotes bootstrap CI (95%). 
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evoke high mean firing rates in the IT cortex, a linearly-

readable solution of the foreground object in those images is 

not present in that activity and emerges only later after subtle 

changes in the neuron-by-neuron distributed population code 

(Kar et al., 2019).  Thus, we next aimed to examine the 

temporal evolution of the quality of the IT population code for 

early-solved versus late-solved images.  Here, we assessed 

“quality” as the ability of the population code to support a 

linear readout of object identity for held-out test images (i.e., 

via cross-validation; See Methods). As outlined in the 

Introduction, we sought to specifically test the hypothesis (H2, 
Figure 1c; right column) that vPFC feedback to the ventral 

stream, is particularly critical to the development of late-phase 

IT object solutions. This hypothesis predicts that vPFC 

inactivation should induce more significant disruptions in the 

quality of the IT population code for late-solved images 

compared to the early-solved images at their corresponding 

object solution times. To control for the behavioral accuracy 

levels across images, we sub-selected images (out of the total 

1320 tested images) for two groups, early-solved (208 images) 

and late-solved (234 images), that all had a (pre-muscimol) d’ 

between 2 and 4 (as measured in an earlier study; Kar et al. 

2019). 

 First, we observed that the quality of IT neural population 

codes (as estimated  by linear decode accuracies of object 

identity) were significantly less accurate at later time points 

after vPFC inactivation (>150 ms post image onset; median 

reduction = -2.44%, t-test, t(441) =5.11, p<0.001; Figure S2). 

Furthermore, to estimate whether the muscimol induced 

change in IT linear  decodability of objects was dependent on 

the previously estimated OST values (Kar et al., 2019), we 

compared the IT decode accuracies for the early and late solved 

images at their corresponding OSTs (Figure 2E). We refer to 

this difference (early minus late) in the muscimol induced 

deficits as !IT (as shown in Figure 2E). We observed that vPFC 

inactivation disrupts the formation of IT solutions for the late 

solved images more than it disrupts the formation of IT 

solutions for the early solved images (�IT Population 

Decodeaccuracyearly = 0.16%  0.53 ; �IT Population 

Decodeaccuracylate =-2%  0.61, median  s.e.m ; t-test, t(441))=)

2.4084, P)= 0.0165; Figure 2E). Moreover, we found that this 

effect persisted even with different behavioral accuracy level 

choices (behavioral levels considered in d’: <2, 2-2.5, 2.5-3, >3 

; corresponding !IT were, - 1.63%, -5.63%, -1.57%, -1.9%; 

Figure 2F). Also, !IT was significantly less than zero 

considering each of the ten tested objects (10 tasks, t-test, t(9) 

= 1.9718, p=0.0401; Figure 2F). We observed that the !IT 

values, when measured separately for each monkey, were 

significantly more negative for images where the object center 

was present in the contralateral hemifield (monkey N, 

ipsilateral !IT:-2.01%, contralateral !IT:-5.8%, permutation test 

of difference, p<0.001; monkey B, ipsilateral !IT: 0.1%, 

contralateral !IT:-2%, permutation test of difference, p<0.001; 

yellow bars; Figure 2G), compared to those in the ipsilateral 

hemifield (purple bars; Figure 2G). Taken together, our results 

demonstrate that vPFC inactivation disrupts the formation of IT 

neural population solutions more strongly for images for which 

those solutions take longer to develop, consistent with the 

hypothesis that vPFC is part of the critical recurrent circuitry. 

vPFC inactivation produces larger behavioral deficits for 

late-solved images 

      As outlined in the Introduction, we hypothesized that if the 

inactivation of vPFC (Figure 1D) disrupted behaviorally 

critical recurrent computations (H2), then we should expect to 

see specific changes in IT population codes, and we should 

also see specific changes in behavior. In particular, we should 

observe a more significant muscimol induced behavioral 

performance deficit for images with late OSTs (H2; bottom left 

panel, Figure 1C). The other possibilities are that we observe 

no change (H0; top right panel, Figure 1D) in behavioral 

performance across images, or an overall shift in the behavioral 

performance consistently across images with varied OSTs that 

might indicate a global shift in arousal (H1; middle right panel, 

Figure 1D). 

Identical to Kar et al. (2019), in each image, the primary visible 

object belonged to one of 10 different object categories (Figure 

3A). We divided the data collection into two types of sessions  

— with and without muscimol injections — conducted on 

consecutive days. These two session types were repeated in an 

alternative sequence with at least one day of recovery after 

each muscimol session (Figure 1C; experimental timeline). 

This design confounds animal satiety and motivation with the 

effects of muscimol. However, the visual hemifield bias of our 

reported effects (see below) argue against it. In each session 

(day), monkeys performed the following tasks sequentially: a 

passive fixation task, a binary object discrimination task, a 

second passive fixation task (see Methods). On the second 

session (day), after the initial passive fixation task, we injected 

a total of 10 l of muscimol at five depths (2 l each) separated 

by 0.5 mm  in the previously localized ventral PFC area (see 

Methods for details). We injected in the left hemisphere of 

monkey B, and right hemisphere of monkey N. Given that the 

top-down signals from vPFC (both hemispheres) are known to 

reach both the left and right inferior temporal cortices (Tomita 

et al., 1999), we have presented our results after the data was 

pooled across both monkeys. Nevertheless, individual monkey 

results were consistent with the pooled results (as shown in 

Figure 3E).  

First, we observed that there was a significant overall reduction 

( Performance = 6.03 ± 0.3 %, (mean ± SEM), paired t-test; 

t(859) = 17.13, p <0.0001; Figure S3A) in performance across 

all sessions after the muscimol injections. Consistent with 

hypotheses H2 ( see Figure 1C),  vPFC inactivation caused a  

±
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Figure 3. Behavioral experiments and results. A. We tested behavioral performance on 10 object 

categories, where performance was derived from the corresponding 45 binary object discrimination 

tasks with those 10 categories. B. Two example trials of the binary object discrimination task, showing 

the timeline of events. Monkeys fixate on a central dot, then the test image at 8° containing one of ten 

possible objects is shown for 100 ms (shown is a car (left trial) and a zebra (right trial)). After a 100-ms 

delay, a canonical view of the target object and a distractor object (one of the other nine objects) 

appears (randomly assigned on each trial to the left and right positions), and the monkey indicates 

which object was present in the test image by making a saccade to one of the two choices. We 

compared performance on sessions with and without muscimol injections in vPFC C. vPFC inactivation 

resulted in a larger performance drop among images (n=234) with late-OST (red bar), compared to the 

images (n=208) with early-OST (see Results for statistics). This comparison was made with all images 

that had a measured d’ between 2 and 4. Error bars denote s.e.m across images. We quantified the 

strength of this interaction as the difference in the muscimol induced change and we refer  to that 

measure as !B. D.  We observed that the mean !B was consistently less than 0 for images selected in 

different ranges of behavioral accuracies. We also observed a negative trend for most, but not all 

recognition sub-tasks (t-test, t(9) = 2.6245, p=0.0276). Error bars denotes bootstrap CI (95%). E. We 

found that the interaction strength was significantly stronger when we restricted the measurements to 

images where the object center was in the contralateral visual filed (monkey N, ipsilateral !B:-2%, 

contralateral !B:-4.8%, permutation test of difference, p<0.001; monkey B, ipsilateral !B: 0.1%, 

contralateral !B:-3.3%, permutation test of difference, p<0.001).  Error bars denotes bootstrap CI (95%). 
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significantly higher reduction in  performance for late-solved 

images compared with early solved images (�Performanceearly 

= )=-4.76%  0.45 ; �Performancelate  =-7.4%  0.5, median  

s.e.m ; t-test, t(441))=) 2.3978, P)= 0.0085) . We refer to the 

difference in the behavioral deficits for the early vs. the late-

solved images as !B (as shown in Figure 3C). We observed that 

!B  was consistently negative (i.e., greater behavioral deficits 

for late-solved images compared to early-solved images) across 

images grouped according to different behavioral accuracy 

level choices (behavioral levels considered in d’: <2, 2-2.5, 

2.5-3, >3; corresponding !B were, - 4.24%, -1.9%, -2.23%, 

-1.9%). Also, !B was significantly less than zero considering 

each of the ten tested objects (10 tasks, t-test, t(9) = 2.6245, 

p=0.0276).  We observed that the !B values when measured 

separately for each monkey were significantly higher for 

images in which the object center was in the contralateral 

hemifield (monkey N, ipsilateral !B:-2%, contralateral 

!B:-4.8%, permutation test of difference, p<0.001; monkey B, 

ipsilateral !B: 0.1%, contralateral !B:-3.3%, permutation test of 

difference, p<0.001; yellow bars; Figure 3E), compared to 

those in the ipsilateral hemifield (purple bars; Figure 3E). We 

also observed an overall increase in reaction times after 

muscimol injections (�RT = 46.3  2.1 ms; t-test; t(858) = 

16.3729, p<0.001). Similar to the behavioral accuracy results, 

we observed that vPFC inactivation increased reaction times, 

and that this increase was significantly higher for late-solved 

images than for early-solved images (�RTearly =-34  4.19 ms ; 

�RTlate  = 55  3.9 ms, median  s.e.m ; t-test, t(441)) =)

2.0488, P)= 0.04; Figure S3C).  

Taken together, these results show that core object 

discrimination in macaques is disrupted by inactivation of 

ventral PFC, establishing this area as a critical component of 

the brain circuitry that is involved in core object recognition.  

Furthermore, the performance changes (deficits in accuracy 

and reaction time)  depended on the image being processed — 

the deficits were more severe for images that more likely 

depend on recurrent processing (as indexed by each image’s IT 

object solution time; Kar et al. 2019).   These behavioral results 

are qualitatively consistent with the IT neural results (Figure 2) 

under the assumption that the behavior is the consequence of 

mechanisms that are approximated by linear read-out from IT 

(Majaj et al., 2015).  

Inactivation of vPFC causes the ventral stream to operate 

more similarly to feedforward computational models  

We have previously shown (Kar et al., 2019) that some 

feedforward deep convolutional neural networks (specific 

DCNNs) predict the early feedforward (~90-120 ms post image 

onset) responses of the IT neurons quite well, but are far worse 

at predicting the late-phase (~150-180 ms) IT responses.  These 

prior results (and other work, see Discussion) suggest that the 

early-phase IT responses are primarily the product of 

feedforward computations, but that the late phase IT responses 

are a more balanced mixture of feedforward and recurrent 

computation (e.g., through vPFC, as suggested by the results 

above).  Under this hypothesis, the relatively weak ability of 

these DCNN ventral stream models to explain the late-phase IT 

responses is due to the lack of the appropriate recurrent 

computations. If we assume that vPFC inactivation removes 

those additional recurrent-computations (or blocks the 

transmission of the results of those computations to IT), vPFC 

inactivation should make the late-phase IT representations 

revert to a more feedforward-only mode of operation.  vPFC 

inactivation should, therefore, make the top of the ventral 

stream operate more like a feedforward only network.   

To test this, we used a set of existing feedforward DCNN 

models (refer Table 1, Methods), and we asked:  does vPFC 

inactivation cause the late-phase IT response to become better 

explained/predicted by these feedforward models (Figure 4A). 

We used standard measures of mapping the components of 

feedforward models onto the responses of individual IT neural 

sites (Kar et al., 2019; Schrimpf et al., 2018; Yamins et al., 

2014; see Methods), and we took the goodness of fit to be the 

median predictivity across all recorded neural sites. 

Remarkably, we observed that vPFC inactivation significantly 

improved the match of the late phase (150-180 ms) IT 

responses to the feedforward DCNN (AlexNet ‘fc7’) 

predictions (median late-phase %EV: without muscimol = 

21.98%, with muscimol = 28.28%; paired t-test across neurons; 

t(152)=8.55, p<0.0001; Figure 4B, top panel; also see Figure 

S4B).  Consistent with this, we also found that the vPFC-

inactivation caused the late-phase IT responses to be more 

similar to the early-phase IT responses, as measured by 

correlation of image response rank order (early vs. late) 

compared across the muscimol and no-muscimol conditions 

(paired t-test; t(152)=7.24; p<0.001, see Methods). These 

results were also consistent across multiple feedforward 

models (see Figure S4C). 

We also know from previous work (Rajalingham et al., 2018), 

that the DCNN models of core object recognition fail to 

explain primate behavior at an image-by-image level  fully— 

that is, those models do not fully explain and predict which 

images primates perform well on and which images they 

perform poorly on. Our results show that vPFC inactivation 

changed the late phase IT population patterns such that they 

became better matched to the “IT” layers of feedforward 

DCNNs. Taken together with  prior work that tightly linked 

primate object recognition behavior to patterns of IT 

population activity (Majaj et al., 2015), we asked whether the 

vPFC inactivation also changed the monkey image by image 

behavior patterns. Indeed, we observed that vPFC inactivation 

significantly, improved the image by image consistency 

(normalized correlation, see Methods) between the monkeys’ 

object recognition behavior and the object recognition behavior 

± ± ±

±

±

± ±
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Figure 4. Comparison with computational models:  vPFC inactivation causes the ventral 

stream to behave more like feedforward models.  A. We showed 683 images to the monkey (fixated 

passive viewing) while recording simultaneously from their IT cortex, with and without vPFC inactivation 

(top panel). The dashed red line denotes the recurrently pathway between the ventral PFC and the 

primate ventral stream. We compared the IT responses with and without vPFC inactivation to those of 

the penultimate (‘IT’) layers of a feedforward DCNN model of the ventral stream (bottom panel) using 

previously established methods (see Methods).  We also compared the pattern of monkeys’ behavioral 

responses (pattern of difficulty over images, see Rajalingham et al., 2018) with and without vPFC 

inactivation to the model’s behavioral pattern. In both types of comparison, the key measure is referred 

to as predictivity as it assesses the goodness of model predictions on new images.  B. Top panel: 

Comparison of IT Predictivity (%EV) of Alexnet (‘fc7’) for early (90-120 ms) and late (150-180 ms) 

responses, without (black) and with (green) vPFC inactivation. We observed that vPFC inactivation 

resulted in a significant increase in the match of the late phase of the IT population pattern to the 

feedforward DCNN “IT” population pattern. No significant changes were observed for early responses. 

Error bars denote s.e.m across 153 neural sites. Bottom panel: We also observed that vPFC 

inactivation resulted in a slight, but significant, increase in the match of the monkeys’ object recognition 

behavior to the object recognition behavior of the feedforward models (match assessed as the  

correlation (model vs monkey) of the image-by-image pattern of difficulty; see Methods). 
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of the feedforward models.  (Behavioral Predictivity without 

vPFC inactivation = 0.43, Behavioral Predictivity after vPFC 

inactivation = 0.56; permutation test of difference; p < 0.0001;  

Figure 4B right panel).  

In sum, these results suggest that vPFC is a critical circuit node 

that is recurrently modulating the population dynamics of IT. 

Partially inactivating that node restricts the IT population 

pattern from correctly evolving away from its initial 

feedforward response pattern — leaving both the early and the 

late IT population patterns reasonably well approximated by 

current feedforward DCNN models of the ventral stream.  

DISCUSSION 

In this work, we investigated whether the recurrent circuit 

connecting the macaque ventral prefrontal cortex (vPFC) to the 

ventral visual pathway is critical for executing robust core 

object recognition. We reasoned that if this bidirectional 

circuitry is indeed critical, then silencing parts of it should 

produce deficits in the quality of population activity recorded 

in the IT cortex that is responsible for accurate core recognition 

behavioral performance. More specifically, based on our prior 

work (Kar et al. 2019), we hypothesized that we should 

observe larger deficits for images that take slightly longer to 

solve and thus their solutions are more likely dependent on 

recurrent computations (late-solved images; benchmarked 

earlier in Kar et al., 2019). 

Consistent with this hypothesis, we observed that vPFC 

inactivation produced deteriorations in the quality of the IT 

population code and deteriorations in behavioral performance 

that were significantly higher for the late-solved images 

compared to the early-solved images. Furthermore, we found 

that vPFC inactivation caused the late phase of the IT 

population response and the monkey behavior to more closely 

match the “IT” and behavioral responses of some of the 

leading feedforward models of the ventral stream.  Taken 

together, these results suggest that vPFC is part of a recurrent 

circuit that boosts the performance of the ventral stream 

(relative to shallow feedforward DCNNs) by reshaping the 

initial (early-phase; putatively feedforward only) neural 

representations in IT cortex, resulting in corresponding 

behavioral gains. Consistent with this, removal of vPFC made 

the ventral stream operate more like a shallow feedforward 

system. When considered alongside prior work (Kar et al., 

2019), this vPFC circuitry is most critical for images that are 

challenging for shallow feedforward computer vision systems.  

Experimental guidance on developing new scientific 

hypotheses of ventral stream function  

Our current best understanding of neural processing along 

the ventral stream is carried by specific models in the class of 

feedforward deep artificial neural networks.  These models are 

the current best scientific hypotheses of the ventral stream 

because they have the highest overall prediction accuracy (a 

primary test of a scientific hypothesis: Hempel, 1966; Popper, 

1959) for image-evoked responses at all levels of the ventral 

stream (mean accuracy in V1, V2, V4, IT; Schrimpf et al., 

2018).  However, because these models do not perfectly predict 

the image-evoked neural responses of these different areas of 

the ventral stream (for comparison across different models, see 

Schrimpf et al., 2018), multiple groups are working to develop 

even more accurate scientific hypotheses (e.g., Kubilius et al., 

2019; Nayebi et al., 2018; Spoerer et al., 2017).  

What components do these current models lack? Clearly, 

the models are missing many things at the single “neuron” 

level, such as voltage-gated channels to generate spikes, 

dendritic trees, synaptic components, etc.  But we motivated 

this study by first asking, what critical network level 

components are missing from these models?  

Many studies and reviews have suggested the importance 

of including recurrent circuits to improve such models  (Kar et 

al., 2019; Kietzmann et al., 2019; Lehky and Tanaka, 2016; 

Tang et al., 2018).This idea is motivated on both anatomical 

and functional grounds. For example, previous reports (Sugase 

et al., 1999) have demonstrated that different forms of 

information can be decoded from early and late responses in 

IT, suggesting a potential role of intra-areal recurrent inputs to 

shaping IT population response dynamics. Consistent with the 

hypothesis that recurrent signals modify late-phase IT 

population responses, Kar et al. (2019) showed that the ability 

of feedforward DCNNs to predict the IT population pattern 

significantly worsened as the IT response pattern evolved.  

They also showed that this latter portion of the IT population 

response pattern carries the linearly available object-identity 

information for many specific images that enable primates to 

successfully solve them, vastly outperforming   shallow 

feedforward DCNN computer vision models. In sum, the late 

phase of the IT population response is likely important for 

robust core recognition behavior, likely depends on recurrent 

circuits, and it is largely missing from the current best models 

of the ventral stream. Thus, to produce models of the ventral 

stream that more closely mimic the mechanisms of the primate 

brain, a proper form of recurrent network level processing is 

needed.  

But what type of recurrent processing is needed?  To begin 

to answer that question, we here started with an even more 

basic question: what circuit nodes in the brain are computing 

and carrying the recurrent signals that we see manifesting as a 

temporal evolution of the IT late-phase responses? Prior work 

suggests many potential sources of such signals, including 

within ventral stream bidirectional pathways, as well as top-

down feedback from multiple downstream areas, including 

vPFC, peri-rhinal cortex, amygdala, and striatum (for review 

see Kravitz et al., 2013).  For reasons outlined in the 
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Introduction, in this study we have specifically focussed on the 

ventral PFC. 

To test the functional importance of a downstream node 

that is recurrently connected to a target region of interest, many 

previous studies in the visual system (Bullier et al., 2001; Hupe 

et al., 1998; Sandell and Schiller, 1982; Wang et al., 2000) have 

used inactivation methods, similar the one deployed here. In 

general, those studies report that this downstream manipulation 

results in a decrease in responses of neurons in the upstream 

cortical areas, which is analogous to the reduction (~30%) in 

IT activity level that we have observed here (Figure 2B).  For 

instance, inactivation of area MT (feedback node) via cooling 

led to a ~20-40% decrease in V1 and V2 responses (refer 

Figure 1, 2 in Hupe et al., 1998). Focussing specifically on 

vPFC and IT, prior studies have confirmed that IT responses, 

similar to other visual areas are modulated by feedback from 

downstream areas. For example, Fuster et al. (1985) showed 

that temporary lesions produced by cooling in dorsolateral PFC 

affected color selectivity in IT neurons. Tomita et al. (1999) 

performed anterior and posterior commissurectomies, and 

observed that the responses of IT cortical neurons are 

modulated by input from the prefrontal cortices, especially for 

visual information in the contralateral visual field. 

Our work is consistent with those studies in that IT 

responses can be altered by vPFC. However, unlike the work 

presented here, those earlier studies did not specifically 

investigate the changes in the distributed IT population code or 

primate behavior with respect to object recognition, that can 

guide the development of new models of primate vision. 

Specifically, that prior work did not engage on questions of the 

quality of information for recognition behavior at an image by 

image resolution, or the differential importance of recurrent 

signals from vPFC as measured in the early vs. late responses 

of the IT population. Because of this, prior work could not 

distinguish between an overall modulatory role (H1) and a 

specific set of recurrent computations (similar to H2). To our 

knowledge, the current study is the first to causally test the 

necessity of the vPFC to ventral stream recurrent circuit at such 

fast (< 200 ms), but natural time scales, with simultaneous 

large-scale neural and behavioral measurements. Here, we have 

leveraged our previous findings (as resported in Kar et al., 

2019) to employ a targeted disruption strategy for identifying 

critical recurrent circuits using pre-defined challenge images 

(that take additional solution times in IT). Therefore, our 

results provide evidence that feedback from vPFC does not 

simply modulate IT (e.g., gain) — it specifically improves the 

format of the distributed IT population code, and those 

improvements are specific to the late phase of this code. 

However, the results reported here do not identify the exact 

circuitry involved in the re-entry of information from the vPFC 

into the ventral stream. Previous anatomical studies have 

shown that the feedforward projections that connect the ventral 

stream to the prefrontal cortices originates in the anterior 

portions of the lower ventral bank and fundus of the STS (for a 

review, see Kravitz et al., 2013) and mainly target areas 45A/B, 

46v, and 12r/l in the ventrolateral prefrontal cortex (VLPFC). 

On the other hand, feedback projections from these same areas 

in the PFC are distributed across the inferior temporal cortical 

areas TEO and TE (Gerbella et al., 2010). There is not much 

evidence of direct connections between these areas in the PFC 

and earlier visual areas (V1, V2, and V4). But, we cannot rule 

out the possibility of indirect connections to the lower visual 

areas via the frontal eye fields and other regions.  

Each of these possible circuit motifs is a hypothesis that 

must next be implemented as a set of neural network models 

for future experimental testing. Our neural measurements (with 

and without vPFC inactivation, as reported here) can be used to 

select among such models. For instance, we can estimate the 

weights of the feedback connections between vPFC and the 

ventral stream nodes such that the model approximates the 

neural firing rates at its IT layer (as measured here) upon 

random (~0.4 cm3) lesions of the ventral PFC module.  

Many studies (Ganis et al., 2007; Harth et al., 1987; Tang et 

al., 2018) propose a cognitive role of the prefrontal feedback: 

the idea that these recurrent connections carry an expectation 

signal that augments the representation of object identity in the 

IT cortex. Our results are consistent with this and other similar 

conceptual theories.   However, those ideas are not specific 

enough to be tested for individual images.  That is, they do not 

specific how to build an accurate image-computable neural 

network model of the IT-to-PFC-to-IT circuit.  While the 

results presented in this study do not provide a precise 

blueprint for such a model, the temporal and image level 

specificity that they build on is already useful for guiding the 

development of new recurrent, image-computable models 

(Kubilius et al., 2019) and the current results can further guide 

the placement and simulation testing of a PFC node in such 

models (see more below). 

Role of vPFC in core object recognition behavior 

Previous work (Freiwald et al., 2009; Hung et al., 2005; 

Kar et al., 2019; Logothetis and Sheinberg, 1996; Majaj et al., 

2015) has linked neuronal responses in the inferior temporal 

cortex to primate core object recognition behavior. For 

instance, Majaj et al. (2015) experimentally rejected a large 

number of alternative models that link ventral stream 

population activity to core object recognition behavior (aka 

“decoding models” or “linking models”) in support of a simple 

linear weighted sum of IT response model. These models posit 

that the mechanisms of core object recognition beyond IT are: 

approximately linear sums of the activity levels of individual 

IT neurons computed by neurons in PFC, peri-rhinal cortex, or 

in the caudate. Using various combinations of model 

parameters (e.g., numbers of neurons, amount of experience 

with each object category, brain location of the downstream 
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linear summing), multiple linking hypotheses can be 

constructed. Our results do not narrow the space of hypotheses 

to a single linking model. However, these experiments have 

provide two architectural constraints for new models, and our 

data can be used to falsify or support each such model. First, 

vPFC is required to support core object recognition behavior 

and therefore needs to be integrated into any future model of 

such behavior. Second, feedback signals conveyed via the 

recurrent connections between vPFC and the ventral stream 

(most likely the IT cortex) are also necessary to support this 

behavior. Below we speculate and discuss candidate linking 

models that can be further developed and tested using our 

results.  

One possibility is that the downstream summing nodes (as 

posited by previous studies) are vPFC neurons and those vPFC 

neurons drive the monkey’s behavior.  According to this 

hypothesis, the vPFC is an additional, bidirectionally 

connected node of processing that intervenes between IT and 

behavior. This idea is conceptually simple, and it is motivated 

by previous data from vPFC, including results showing that 

category training in monkeys causes PFC neuronal responses 

to become categorical-like (Freedman et al., 2001), which is 

what would be expected if vPFC was the location of those 

learned sums of IT neuronal responses described above. This 

hypothesis predicts that vPFC inactivation should lead to an 

equal decrease in behavioral performance for every image. An 

alternate possibility, however, is that vPFC neurons do not 

drive behavior directly, but they instead transmit the product of 

their computations to support upstream brain regions, such as 

the IT cortex, which then drive behavior via other brain nodes 

such as caudate.  This second possibility is also consistent with 

the prior work that demonstrated category selectivity in vPFC 

neurons (Freedman et al., 2001).   Our data do not 

unequivocally resolve among these two possibilities.  Our 

results that vPFC inactivation leads to larger deficits for late-

solved images (Figure 3C) is consistent with the second 

possibility. However, the fact that vPFC inactivation also led to 

significant deficits for early-solved images argues for some 

element of the first possibility.  Indeed, our results overall seem 

to suggest that both ideas may be partially correct. 

Experimentally, we speculate that large-scale neural 

measurements in brain-regions like vPFC, collected 

simultaneously in behaving monkeys (solving a wide variety of 

recognition tasks), will be required to gain further insights. 

Furthermore, feedback projection-specific causal perturbation 

experiments (similar to Oguchi et al., 2015) will be necessary 

to identify and functionally characterize some of these circuit 

motifs. However, to drive further progress, we now need to 

incorporate the circuit motifs and build specific artificial neural 

network models motivated by these experimental results, test 

their image by image predictions, eliminate models that do not 

match the experimental data, and build new models.  That 

iterative cycle will ultimately lead to a complete, neurally 

mechanistic understanding of visual object recognition, from 

images to behavior. 

METHODS 

Subjects  

The nonhuman subjects in our experiments were two adult 

male rhesus monkeys (Macaca mulatta).  

Visual stimuli: generation  

All stimuli used in this study were previously used in the Kar 

et al. 2019 study. For a brief description of the stimuli (see 

Figure S1B for example images), please refer below.  

Generation of synthetic (“naturalistic”) images:  High-quality 

images of single objects were generated using free ray-tracing 

software (http://www.povray.org), similar to Majaj et al. (2015) 

Each image consisted of a 2D projection of a 3D model 

(purchased from Dosch Design and TurboSquid) added to a 

random background. The ten objects chosen were bear, 

elephant, face, apple, car, dog, chair, plane, bird and zebra 

(Figure 3A).  By varying six viewing parameters, we explored 

three types of identity while preserving object variation, 

position (x and y), rotation (x, y, and z), and size. All images 

were achromatic with a native resolution of 256 × 256 pixels. 

Generation of natural images(photographs): Images pertaining 

to the 10 nouns, were download from http://cocodataset.org. 

Each image was resized to 256 x 256 x 3 pixel size and 

presented within the central 8 . We used the same images while 

testing the feedforward DCNNs. 

Primate behavioral testing 

 Active binary object discrimination task: We measured 

monkey behavior from two male rhesus macaques. Images 

were presented on a 24-inch LCD monitor (1920 × 1080 at 60 

Hz) positioned 42.5 cm in front of the animal. Monkeys were 

head fixed. Monkeys fixated a white dot (0.2°) for 300 ms to 

initiate a trial. The trial started with the presentation of a 

sample image (from a set of 1360 images) for 100 ms. This 

was followed by a blank gray screen for 100 ms, after which 

the choice screen was shown containing a standard image of 

the target object (the correct choice) and a standard image of 

the distractor object. The monkey was allowed to view freely 

the choice objects for up to 1500 ms and indicated its final 

choice by holding fixation over the selected object for 400 ms. 

Trials were aborted if gaze was not held within ±2° of the 

central fixation dot during any point until the choice screen 

was shown. 

Passive Fixation Task: During the passive viewing task, 

monkeys fixated a white dot (0.2°) for 300 ms to initiate a trial. 

We then presented a sequence of 5 to 10 images, each ON for 

100 ms followed by a 100 ms gray (background) blank screen. 

∘
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This was followed by fluid reward and an inter trial interval of 

500 ms, followed by the next sequence. Trials were aborted if 

gaze was not held within ±2° of the central fixation dot during 

any point.  

Eye Tracking: We monitored eye movements using video eye 

tracking (SR Research EyeLink 1000). Using operant 

conditioning and water reward, our 2 subjects were trained to 

fixate a central white square (0.2°) within a square fixation 

window that ranged from ±2°. At the start of each behavioral 

session, monkeys performed an eye-tracking calibration task 

by making a saccade to a range of spatial targets and 

maintaining fixation for 500 ms. Calibration was repeated if 

drift was noticed over the course of the session. 

Data collection: We divided the data collection into two 

different sessions (with and without muscimol injections; 

Figure 1B) conducted on consecutive days. These two sessions 

were repeated in the same order with a minimum gap of one 

day post the muscimol session (Figure 1C; experimental 

timeline). On each session (day), monkeys performed the 

following tasks sequentially: a passive fixation task, a binary 

object discrimination task, a second passive fixation task. On 

the second session (day), after the initial passive fixation task, 

we injected a total of 10 l of muscimol at 5 depths (2 l each) 

separated by 0.5 mm  in the previously localized ventral PFC 

area (for details see below). 

Behavioral Metrics 

We have used a one-vs-all image level behavioral performance 

metric (similar to the one used in Kar et al., 2019) to quantify 

the behavioral performance of the monkeys as well as DCNNs 

(described below). This metric estimates the overall 

discriminability of each image containing a specific target 

object from all other objects (pooling across all 9 possible 

distractor choices). 

Given an image of object ‘ ’, and all nine distractor objects 

( )  we computed the average performance per image as,  

    , 

where  refers to the fraction of correct responses for the 

binary task between objects ‘ ’ and ‘ ’. 

To compute the reliability of this vector, we split the trials per 

image into two equal halves by resampling without 

substitution. The median of the Spearman-Brown corrected 

correlation of the two corresponding vectors (one from each  

split half), across  1000 repetitions of the resampling was then 

used as the reliability score (i.e. internal consistency). 

Large scale multi-electrode recordings and simultaneous 

pharmacological inactivation  

Surgical implant of chronic micro-electrode arrays: We 

surgically implanted each monkey with a head post under 

aseptic conditions. After behavioral training, we recorded 

neural activity using 10 × 10 micro-electrode arrays (Utah 

arrays; Blackrock Microsystems). A total of 96 electrodes 

were connected per array. Each electrode was 1.5 mm long 

and the distance between adjacent electrodes was 400 µm. 

Before recording, we implanted each monkey multiple Utah 

arrays in the IT cortex (monkey B: 2 arrays in left 

hemisphere); monkey N: 2 arrays in the right hemisphere). 

Array placements were guided by the sulcus pattern, which 

was visible during surgery. The electrodes were accessed 

through a percutaneous connector that allowed simultaneous 

recording from all 96 electrodes from each array. Behavioral 

testing was performed using standard operant conditioning 

(fluid reward), head stabilization, and real-time video eye 

tracking. All surgical and animal procedures were performed 

in accordance with National Institutes of Health guidelines 

and the Massachusetts Institute of Technology Committee on 

Animal Care. 

Surgical implant of PFC injection chamber: During the same 

surgery, as the chronic array implant, we also placed a semi-

cylindrical chamber (Crist Instruments) over a craniotomy 

targeting the prefrontal cortex, around the principal sulcus. We 

placed the chambers in the left and right hemispheres of 

monkey B and monkey N respectively. The chambers were 

held in place by dental acrylic (methyl methacrylate) applied 

around the chamber. We used previously reported anatomical 

landmarks (Freedman et al., 2003; McKee et al., 2014; Tomita 

et al., 1999), identified by an initial MRI, to guide the PFC 

chamber placements. 

PFC injection protocol: During the sessions with muscimol 

injections, we first carefully scraped the dura for maximal 

visibility and minimum resistance in the path of injection. 

Then, we used an in-house set up to lower the injection 

needles (30-32 gauge, small Hub RN Needle; Hamilton 

Company) using a micro-syringe pump and controller 

(Micro4TM World Precision Instruments). We started 

approximately 4 mm below the estimated surface of the dura. 

We injected 0.5 uL of muscimol (5mg/mL, Sigma Aldrich) at 

that depth at a speed of 1000 nL/min and, waited for 3 mins 

and pulled the needle up by ~0.5 mm. This was repeated for 5 

depths in total. After the end of the final injection, we waited 

for 30 mins before the start data collection.  
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Electrophysiological Recording 

During each recording session, band-pass filtered (0.1 Hz to 

10 kHz) neural activity was recorded continuously at a 

sampling rate of 20 kHz using Intan Recording Controller 

(Intan Technologies, LLC). The majority of the data presented 

here were based on multiunit activity.  We detected the 

multiunit spikes after the raw data was collected.  A multiunit 

spike event was defined as the threshold crossing when 

voltage (falling edge) deviated by more than three times the 

standard deviation of the raw voltage values. Of 384 

implanted electrodes, 2 arrays ( left and right hemispheres for 

monkey B and N respectively) × 96 electrodes × two 

monkeys, we focused on the 153 most visually driven, and 

reliable neural sites. Our array placements allowed us to 

sample neural sites from different parts of IT, along the 

posterior to anterior axis. However, for all the analyses, we did 

not consider the specific spatial location of the site, and 

treated each site as a random sample from a heterogeneous 

pool of IT neurons. 

Neural recording quality metrics per site 

Visual drive per neuron ( ): We estimated the overall 

visual drive for each electrode. This metric was estimated by 

comparing the image responses of each site to a blank (gray 

screen) response. 

 

Image rank-order response reliability per neural site  ( ): 

To estimate the reliability of the responses per site, we 

computed a Spearman-Brown corrected, split half (trial-based) 

correlation between the rank order of the image responses (all 

images). 

Inclusion criterion for neural sites: For our analyses, we only 

included the neural recording sites that had an overall 

significant visual drive ( ), and an image rank order 

response reliability ( ) that was greater than 0.6. Given 

that most of our neural metrics are corrected by the estimated 

noise at each neural site, the criterion for selection of neural 

sites is not that critical. It was mostly done to reduce 

computation time and eliminate noisy recordings. 

Estimation of IT population decode accuracies at OST 

To estimate what information downstream neurons could 

easily “read” from a given IT neural population, we used a 

simple, biologically plausible linear decoder (i.e., linear 

classifiers), that has been previously shown to link IT 

population activity and primate behavior (Majaj et al., 2015). 

Such decoders are simple in that they can perform binary 

classifications by computing weighted sums (each weight is 

analogous to the strength of synapse) of input features and 

separate the outputs based on a decision boundary (analogous 

to a neuron’s spiking threshold). Here we have used a support 

vector machine (SVM) algorithm with linear kernels. The 

SVM learning model generates a decoder with a decision 

boundary that is optimized to best separate images of the 

target object from images of the distractor objects. The 

optimization is done under a regularization constraint that 

limits the complexity of the boundary. We used L2 (ridge) 

regularization, where the objective function for the 

minimization comprises of an additional term (to reduce 

model complexity), 

L2 (penalty) =   

where  and p are the classifier weights associated  with ‘p’ 

predictors (neurons). A stochastic gradient descent solver was 

used to estimate 10 (one for each object) one-vs-all classifiers. 

After training each of these classifiers with a set of 100 

training images per object, we generated a class score ( ) per 

classifier for all held out test images given by,  

       

where R is the population response vector and the bias is 

estimated by the SVM solver. The train and test sets were 

pseudo-randomly chosen multiple times until we every image 

of our image set was part of the held-out test set. Only the 

responses from the no-muscimol conditions were treated as 

training signal. All predictions were made either on held-out 

responses from no-muscimol or muscimol conditions. We then 

converted the class scores into probabilities by passing them 

through a softmax (normalized exponential) function. 

 

In our previous study (Kar et al., 2019), object solution time 

per image,  was defined as the time it takes for 

linear IT population decodes to reach within the error margins 

of the pooled monkey behavioral accuracy for that image. 

Given that we have used the exact same images in this study, 

we have used our previously estimated OST per image as the 

time point of comparison of IT decode accuracy,  (with 

and without muscimol) per image. All reported values of  IT 

population decode accuracies are estimates of how well the 

population decode accuracy was at the specific OST estimated 

for the  specific image. 
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Estimating change in image-driven response rank order 

(early vs late) 

For each neuron we estimated the image response vector ( ) 

at two specific time bins (early: 90-120 ms, and late: 150-180 

ms; post image onset). To estimate the change in this vector 

across time, we computed the noise corrected correlation 

between the vectors estimated at the early and late time bins 

respectively, as follows, 

 , 

where r(early,late) is the correlation between the vectors 

estimated at the early and late time bins, and (early) and 

(late) are the split-half (across trial) reliability of these vectors 

estimated independently at the corresponding time bins. We 

computed these noise-corrected correlation values per neuron 

for both the no-muscimol and muscimol conditions. 

Binary object discrimination tasks with DCNNs   

We have used the same linear decoding scheme mentioned 

above (for the IT neurons) to  estimate the object solution 

strengths per image for the DCNNs. Briefly, we first obtained 

an imagenet pre-trained DCNN (AlexNet). We then replaced 

the last three layers (i.e., anything beyond ‘fc7’) of this 

network with a fully connected layer containing 10 nodes 

(each representing one of the 10 objects we have used in this 

study). We then trained this last layer with a back-end 

classifier (L2 regularized linear classifier; similar to the one 

mentioned for IT) on a subset of images from our image-set. 

These images were selected randomly from our imageset and 

used as the train-set. The remaining images were then used for 

the testing (such that there is no overlap between the train and 

test images). Repeating this procedure multiple times allowed 

us to use all images as test images providing us with the 

performance of the model for each image. 

Prediction of neural responses from Deep Convolutional 

Neural Networks (DCNN) features 

We modeled each IT neural site  as a linear combination of the 

DCNN model features. We first extracted the features per 

image, from the DCNNs’ penultimate layers. Using a 10-fold 

train/test  split of the images, we then estimated the regression 

weights (i.e., how we can linearly combine the model features 

to predict the neural site’s responses) using a partial least 

squares (MATLAB command: plsregress) regression 

procedure, using 20 retained components. For each set of 

regression weights estimated on a train imageset, we 

generated the output of that ‘synthetic neuron’ for the held out 

test set. The percentage of explained variance, IT predictivity 

(for more details refer Yamins et al., 2014) for that neural site, 

was then computed by normalizing the r2 prediction value for 

that site by the self-consistency of the image responses for that 

site and the self-consistency of the regression weights (similar 

to Kar et al. 2019) for that site (estimated by a Spearman 

Brown corrected trial-split correlation score). Table 1 lists all 

the models we have tested and the corresponding layers 

treated as “model-IT”.  

Table1. DCNN model names and corresponding ‘model-IT’ 

layers used for IT predictivity comparisons (as shown in 

Figure S4C).  

Data and code availability 

At the time of publishing the data associated with all the 

figures and the code used to generate the figures will be 

available upon reasonable request. 

÷
r i

÷
r i

r (earl y, l a te)

Ã (earl y) * Ã (y, y)

÷
r i

Ã Ã

Model Name Layer

AlexNet fc7

VGG-F fc7

VGG-S fc7

SqueezeNet pool10

VGG16 fc7

ResNet18 pool5

VGG19 fc7

GoogLeNet pool5-7x7_s1

ResNet50 avg_pool

Inception-v3 avg_pool

ShuÿeNet node_200

Mobilenet_v2 global_average_pooling2d_1

Xception avg_pool

Resnet101 pool5

Inception ResNet_v2 avg_pool

DenseNet 201 avg_pool
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Figure S1. A. Estimation of object solution time. For each image (example image of a bear shown) presentation (100 
ms), we counted multiunit spike events (see Methods for details), per site, in non overlapping 10 ms windows, post 
stimulus onset to construct a single population activity vector per time bin. These population vectors (image evoked 
neural features) were then used to train and test cross-validated linear support vector machine decoders (D) separately 
per time bin. The decoder outputs per image (over time) were then used to perform a binary match to sample task, and 
obtain neural decode accuracies at each time bin. The time at which the neural decodes equal the primate (monkey) 
performance, is then recorded as the object solution time (OST) for that specific image. B. Six example images from 
six different object categories. C. Sample neural response from a vPFC site (averaged across 10 repetitions and 80 
images). D. Coarse category selectivity of an example vPFC neuron. Each curve is the average response per object 
category (8 images per category, 10 repetitions per image). E. Distribution of onset latencies of 15 neural sites in 
vPFC (7 in monkey B , 8 in monkey N).
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Figure S2. A. IT population decoding accuracies (percent correct) estimated independently for each monkey; 
left panel: monkey B (78 sites); right panel: monkey N (75 sites) with (green) and without  (black) vPFC 
inactivation. We observe that in each monkey, the quality of the IT population code drops after vPFC 
inactivation ~150 ms post image onset. B. Dependence of the drop in quality of IT population code, i.e., 
difference between the green and the black curves shown on the left; estimated on the pooled neural 
population (153 sites). Error-bars denote s.e.m across images.   

Figure S3.  A. Distribution of behavioral performances (percent correct) with (green) and without (black) vPFC 

inactivation. There was a significant overall reduction ( Performance = 6.03 ± 0.3 %, (mean ± SEM), paired t-

test; t(859) = 17.13, p <0.0001) in performance across all sessions after the muscimol injections. B. 

Performance across different bins of object solution times. Performance was negatively correlated with object 
solution times (Spearman R = -0.11; p = 0.0015; computed image by image). TheError-bars denote s.e.m across 
images. C. vPFC inactivation increased reaction times, and that this increase was significantly higher for late-

solved (red) images than for early-solved (blue) images (�RTearly =-34  4.19 ms ; �RTlate  = 55  3.9 ms, 

median  s.e.m ; t-test, t(441))=)2.0488, P)= 0.04). Error-bars denote s.e.m across images. 
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Figure S4. A. Predicting IT neural responses with DCNN features. Schematic of the DCNN neural fitting and prediction testing 
procedure. This includes three main steps. Data collection: neural responses are collected for each image e.g. example neural site 
is shown, across 10 ms timebins Late and early time window is demarcated. Mapping: We divide the images and the 
corresponding neural features (RTRAIN) into a 50-50 train-test split (shown for demonstration). For the train images, we compute 
the image evoked activations (FTRAIN) of the DCNN model from a specific layer. We then use partial least square regression to 

estimate the set of weights ( ) and biases ( ) that allows us to best predict RTRAIN from FTRAIN. Test Predictions: Once we have 

the best set of weights ( ) and biases ( ) that linearly map the model features onto the neural responses, we generate the 
predictions (MPRED) from this synthetic neuron for the test image evoked activations of the model FTEST. We then compare these 
predictions with the held-out test image evoked neural features (RTEST) to compute the IT predictivity of the model. B. 
Comparison of how well (in units of percentage of explained variance) Alexnet (‘fc7’) features predict the neural responses (153 
sites across 2 monkeys) measured with and without PFC inactivation. % EV estimated post muscimol injections were 
significantly higher than ones estimated without vPFC inactivation. Error-bars denote standard deviation across cross-validation 
split repetitions. C. We observed that the difference in %EV (with and without vPFC inactivation) for the late-phase (150 - 180 
ms) IT responses was significantly greater (muscimol > no-muscimol) than 0, for all 15 tested feedforward networks (plotted on 
the x-axis; ranked in order of goodness of IT predictivity). Error bars denote s.e.m across 153 neural sites.
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