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ABSTRACT 

Both macroscale connectome miswiring and microcircuit anomalies have been suggested to play a 
role in the pathophysiology of autism. However, an overarching framework that consolidates these 
macro and microscale perspectives of the condition is lacking. Here, we combined connectome-wide 
manifold learning and biophysical simulation models to understand associations between global 
network perturbations and microcircuit dysfunctions in autism. Our analysis established that autism 
showed significant differences in structural connectome organization relative to neurotypical controls, 
with strong effects in low-level somatosensory regions and moderate effects in high-level association 
cortices. Computational models revealed that the degree of macroscale anomalies was related to 
atypical increases of subcortical inputs into cortical microcircuits, especially in sensory and motor 
areas. Transcriptomic decoding and developmental gene enrichment analyses provided biological 
context and pointed to genes expressed in cortical and thalamic areas during childhood and 
adolescence. Supervised machine learning showed the macroscale perturbations predicted socio-
cognitive symptoms and repetitive behaviors. Our analyses provide convergent support that atypical 
subcortico-cortical interactions may contribute to both microcircuit and macroscale connectome 
anomalies in autism.  
 
KEYWORDS: autism; structural connectome manifold; computational neural dynamic circuit model; 
transcriptomic analysis; machine learning 
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INTRODUCTION 

Autism is one of the most common neurodevelopmental conditions, with persistent impairments that 
often challenge affected individuals, their families, health care, and educational system at large 133. 
Despite extensive research efforts, the conceptualization and management of autism continue to face 
significant challenges. A major difficulty in the neurobiological understanding of autism is that the 
condition impacts multiple scales of brain organization 4310. Contemporary neuroimaging studies 
suggested that autism is characterized by both macroscale anomalies in brain connectivity 638,10314 and 
local changes in microcircuit function such as excitation/inhibition imbalance 4,5,9,15317. However, we 
currently lack an overarching framework that can bridge the topographical changes at macroscale and 
microscale dysfunctions in autism pathophysiology. Here, we examine how atypical macroscale 
organization relates to microcircuit imbalances in autism. 

Systems neuroscience has recently gained unprecedented opportunities to interrogate the human brain 
at multiple scales in both health and disease 4,6,8,9,18. Although a wealth of studies in autism spectrum 
conditions have examined local disturbances in cortical morphology 12,19 and functional connectivity 
6,10,14,20,21 as well as mesoscale functional miswiring 22325, less is known about macroscopic changes 
in structural connectivity 26329. Previous studies observed atypical diffusivity parameters and 
streamline connections in local brain regions and pathways in autism 27,28. Such information can be 
inferred via diffusion magnetic resonance imaging (dMRI) and tractographic algorithms that 
reconstruct structural wiring 30335. Macroscale brain organization is increasingly studied using 
manifold learning techniques that projects high dimensional connectome descriptions into low 
dimensional representations. In neurotypical individuals, these techniques have gained significant 
traction to study large-scale principles of functional and microstructural neuroimaging data, owing to 
its advantage of representing complex pattern of brain connectivity in a compact analytical space 6,363

39. This approach, however, remains underexplored in the study of structural connectivity based on 
dMRI in general, and the assessment of structural wiring perturbations in autism in particular. 

A further deliverable of determining principles of structural connectivity is the ability to predict 
functional dynamics from structural information 18,40343. One class of methods simulates whole-brain 
functional dynamics via a network of anatomically connected neural masses 41343. In contrast to 
approaches that assess structure-function coupling statistically 44347, these models are governed by 
biophysically plausible parameters that are anchored in established models of neural circuit function 
18,40. A recent study in healthy young adults established that these models robustly simulate intrinsic 
functional networks from structural connectivity data, and model inversion approaches can be used 
to estimate regionally varying microcircuit parameters, specifically recurrent excitation/inhibition 
and external subcortical input into cortical microcircuits 18. Thus, applying these novel models to 
autism will lend additional insights into microcircuit-level correlates of macroscale connectivity 
perturbations.  

Our study aimed to understand the relationship between macro- and microscale perturbations in 
autism relative to neurotypical controls. We applied manifold learning techniques to dMRI data to 
generate low dimensional structural connectome representations 39,48, and used these to build a 
macroscale account of topographical structural divergence in autism. Biophysical computational 
simulations were then used to infer microcircuit-level imbalances at a regional level, specifically 
recurrent excitation/inhibition and excitatory subcortical input 18. We embedded our results in a 
neurobiological and neurodevelopmental context by decoding the macroscale patterns against post-
mortem maps of gene expression data 49351. Finally, we established associations between our 
macroscale findings and autism symptom severity via using supervised machine learning with five-
fold cross-validation. 
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RESULTS 

Our sample consisted of 47 individuals with autism and 37 neurotypical controls obtained from the 
two independent sites (see Table S1 for demographic information) from the Autism Brain Imaging 
Data Exchange initiative (ABIDE-II; http:/fcon_1000.projects.nitrc.org/indi/abide) 52,53. See Methods 
for details on participant selection, image processing, manifold generation, computational modeling, 
transcriptomic decoding, and statistical analysis as well as symptom prediction.  
 

Large-scale structural connectome manifolds in neurotypicals 

We estimated a cortex-wide structural connectome manifold using non-linear manifold learning 
(https://github.com/MICA-MNI/BrainSpace) 39. The template manifold was estimated from an 
unbiased and group representative structural connectome 54 to which individual manifolds were 
aligned (see Methods) 39. The three dimensions (henceforth, M1, M2, and M3) reflected the principle 
axes of variation in structural connectivity with 50.6% variance (Fig. 1A), whereby each cortical 
region is described by its position along these axes. The individual dimensions extended from 
somatomotor to visual areas (M1), differentiated lateral parietal and prefrontal cortices (M2), and 
showed a lateral to medial cortical axis (M3; Fig. 1B).  

  
Fig. 1 | Structural connectome manifolds. (A) Fiber tracts generated from dMRI, a cortex-wide structural connectome, 

and a scree plot describing connectome variance after identifying principal eigenvectors. The structural connectome 

reordered according to M1 is shown on the right side for better visualization. (B) Manifolds estimated from the structural 

connectome. Three dimensions (M1, M2, and M3) explained >50% of variance and corresponded to the clearest eigengap. 
Each data point (i.e., brain region) was represented in the three-dimensional manifold space with different color, and it 

was mapped onto the brain surface for visualization. (C) The t-statistics of the identified regions that showed significant 

between-group differences in these dimensions between individuals with autism and controls. Findings have been 

corrected for multiple comparisons at FDR < 0.05. Stratification of between-group differences effects along cortical 

hierarchical levels (i.e., middle column) 55 is presented in the radar plots. Abbreviation: FDR, false discovery rate. 

 
Connectome manifold distortions in autism 

Cortex-wide multivariate analyses compared manifolds spanned by M13M3 between individuals with 
autism and controls, using a model that controlling for age, sex, and site in addition to including group 
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effects. We observed macroscale distortions in autism in multiple networks, with primary effects in 
sensory and somatomotor as well as heteromodal association cortices (false discovery rate (FDR) < 
0.05; Fig. 1C). Stratifying effects according to a seminal model of neural organization that contains 
four cortical hierarchy levels (1: idiotypic; 2: unimodal association; 3: heteromodal association; 4: 
paralimbic) 55, we identified peak effects in idiotypic areas followed by unimodal and heteromodal 
association cortices. Similarly, when analyzing effects with respect to seven intrinsic functional 
communities 56, we also observed strongest between-group differences in somatomotor networks 
followed by higher-order systems such as the default-mode network (Fig. S1A).  

Expressing multivariate changes in terms of manifold expansion/contraction 57, we found regionally-
variable patterns with somatomotor and posterior cingulate cortices showing contractions while 
heteromodal association cortex underwent expansions in autism relative to controls (Fig. S1B). 
Similar findings were observed in both sites (Fig. S1C). In addition, we assessed the degree of head 
motion of each individual during the dMRI scan based on framewise displacement (FD), and found 
that the mean FD was not different between autism and controls (p > 0.3) (Fig. S2A). Notably, 
between-group differences in structural manifolds were virtually identical when additionally 
controlling for mean FD, indicating the head motion did not affect patterns of structural connectome 
perturbations in autism (Fig. S2B). Repeating analyses separately in children (age < 18) and adults 
(age g 18), effects in adults with autism were highest in higher-order frontoparietal/paralimbic areas 
while children with autism displayed strongest anomalies in somatomotor/idiotypic regions (Fig. S3), 
similar to age-stratified results in previous functional connectome findings 6.  

Prior research has suggested atypical cortical morphology in autism, showing anomalies in both 
cortical thickness and folding relative to controls 12,19, motivating an assessment of morphological 
effects on manifold findings. Correlating manifold distortions with cortical thickness and folding 
variations, we observed only marginal relations (p > 0.1; Fig. S4A). In addition, connectome manifold 
differences between autism and controls were still measurable when controlling for cortical thickness 
and curvature in the same model, indicating that structural connectome perturbations occurred above 
and beyond any potential variations in cortical morphology (Fig. S4B).  
 

Microcircuit parameters from biophysical network modeling 

Biophysical computational simulations 18 were employed to complement our macroscale findings by 
modelling atypical microcircuit-level functional dynamics in autism. By linking ensembles of local 
neural masses (i.e., theoretical cell population models for excitatory neurons which reciprocally 
inhibit each other; Fig 2A) with diffusion-derived long-range structural connectivity, our 
computational model simulated dynamic functional time-series, which allowed for the simulation of 
whole-brain functional connectivity. Notably, by iteratively tuning the parameters of the local neural 
masses, our simulation generated maximally similar functional connectivity patterns compared to 
experimental data, which also resulted in an optimal set of biophysical parameters (specifically, 
recurrent excitation/inhibition and excitatory subcortical/external input; see Methods).  

Here, we harnessed a relaxed mean-field model 18 with five-fold cross-validation to first evaluate the 
capacity of the structural connectome to simulate intrinsic functional dynamics, and then estimated 
regional microcircuit parameters. The optimal model indeed predicted functional connectivity 
(Pearson9s correlation coefficient r ~ 0.5 for training and r ~ 0.26 for test data), outperforming baseline 
correlations between structural and functional connectivity (r ~ 0.25 for training and r ~ 0.23 for test 
data) (Fig. 2A). Although predictions were similar in autism and controls (Fig. S5), the model 
suggested distinct microcircuit configurations across groups (Fig. 2B). Compared to controls, 
individuals with autism displayed large differences in recurrent excitation/inhibition and subcortical 
input in heteromodal association and paralimbic areas followed by lower-level idiotypic and 
unimodal association areas. Correlating these regional changes in microcircuit patterns (see Fig. 2B) 
with multivariate macroscale manifold anomalies (see Fig. 1C), we observed a significant correlation 
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between the overall degree of manifold distortion and increases in excitatory subcortical/external 
inputs (r = 0.2035 and p = 0.0010; determined using non-parametric spin tests that account for spatial 
autocorrelation 39,58) as well as marginal associations to increases in excitation/inhibition (r = 0.0704 
and p = 0.0770) (Fig. 2B).  

   

Fig. 2 | Microcircuit parameters and associations with macroscale findings. (A) A relaxed mean-field model was used 

to predict functional connectivity (FC) from structural connectivity (SC) and to estimate region specific microcircuit 

parameters i.e., recurrent excitation/inhibition �!  and subcortical/external input �! . A global coupling constant � is 

also estimated. Pearson9s correlations between FC and SC, and empirical and simulated FC are shown. Black lines indicate 

mean correlation and gray lines represent 95% confidence interval across cross-validation. (B) Microcircuit parameters 

of controls and differences of the parameters between individuals with autism and controls. Pearson9s correlations 

between t-statistics derived from the multivariate group comparison and the regional changes in microcircuit parameters 

are reported on the right side, constrained to regions showing significant between group differences in Fig 1.  

 

Transcriptomic association analysis 

We performed transcriptomic association analysis and developmental and disease enrichment 
analysis to explore potential neurobiological underpinnings of the above macroscale manifold 
findings (Fig. 3A). Specifically, we correlated the multivariate change pattern with post-mortem gene 
expression data from the Allen Institute for Brain Sciences (AIBS) 59,60. Significant gene lists after 
multiple comparisons correction (Data S1) were fed into a developmental gene expression analysis, 
which highlights developmental time windows across different brain regions in which these genes are 
strongly expressed (see Methods) 51. This analysis highlighted associations between the multivariate 
pattern of autism-related structural manifold distortions and genes expressed in early childhood and 
adolescence in thalamic as well as cortical areas (Fig. 3B). While these genes were also expressed in 
the cerebellum in later developmental stages, they were not significantly expressed in other 
subcortical regions such as the amygdala and striatum, nor in the hippocampus. In addition, we 
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performed disease enrichment analysis to associate the significance of the gene expressions with the 
log fold-changes of autism, schizophrenia, and bipolar disorder (see Methods) 61. Notably, autism 
showed most marked associations (T = -34.89 and p < 0.001) followed by schizophrenia (T = -8.93 
and p < 0.001) and bipolar disorder (T = 5.34 and p < 0.001) (Fig. 3C).  

  
Fig. 3 | Transcriptomic analysis to identify gene expression patterns. (A) Multivariate findings of manifold distortions, 

gene expression decoding, and cell-type specific expression analysis. (B) Developmental enrichment, showing strong 

associations with cortex and thalamus during early childhood and adolescence. Hexagon rings represent the significance 

at different thresholds (from p < 0.05 in the outer ring to 0.0001 in the center). The bar plot on the left side represents the 
log transformed p-values that averaged across all brain structures that reported on the right side. (C) Disease enrichment 

analysis for associating gene expressions with disease effects of autism, schizophrenia, and bipolar disorder. 

 

Associations to symptom severity 

We leveraged a supervised machine learning paradigm to predict symptom severity scores on the 
Autism Diagnostic Observation Schedule (ADOS 3 social cognition, communication, and repeated 
behavior/interest subscores and total score) 62 using structural connectome manifold information. 
Specifically, we employed elastic net regularization 63 with five-fold cross-validation (see Methods). 
The prediction procedure was performed 100 times with different set of training and test data to avoid 
subject selection bias. Structural connectome manifolds spanned by M13M3 significantly predicted 
total ADOS score (mean ± SD r = 0.4182 ± 0.0806; mean ± SD mean absolute error (MAE) = 2.6899 
± 0.2215; permutation-test p < 0.03), as well as ADOS subscores of social cognition (mean ± SD r = 
0.5295 ± 0.0620; mean ± SD MAE = 1.8195 ± 0.1604; permutation-test p < 0.003) and repeated 
behavior/interest subscores (mean ± SD r = 0.3269 ± 0.0856; mean ± SD MAE = 1.0007 ± 0.0847; 
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permutation-test p < 0.09) (Fig. 4). On the other hand, manifold features did not predict ADOS 
subscores in the communication domain (mean ± SD r = 0.0409 ± 0.0939; mean ± SD MAE = 1.5876 
± 0.1755; and permutation-test p > 0.6). Selected features were primarily found in 
premotor/somatomotor areas, lateral and medial prefrontal cortices, as well as retrosplenial areas.  

    
Fig. 4 | Associations between structural manifolds and autism symptoms. Probability of the selected brain regions 

across five-fold cross-validation for predicting ADOS scores is reported on the left top. Correlation between actual and 

predicted ADOS total and subscores are reported. Black line indicates mean correlation and gray lines represent 95% 

confidence interval for 100 iterations with different training/test dataset. Abbreviation: MAE, mean absolute error; ADOS, 

Autism Diagnostic Observation Schedule. 
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DISCUSSION 

Understanding autism pathophysiology remains challenging, and a major complexity lies in 
difficulties to consolidate neuroimaging findings of connectome miswiring with molecular and 
neurophysiological data that focus on identifying cortical microcircuit changes. By combining novel 
manifold learning and computational models of brain dynamics, our study established how 
perturbations in macroscale structural connectome features in autism may relate to microcircuit 
dysfunction. We identified macroscale changes in cortical networks in autism, with peak differences 
in somatosensory as well as heteromodal association cortex, particularly the posterior core of the 
default-mode network. Findings were remained virtually unchanged when controlling for head 
motion and underlying morphological changes such as cortical thickness and curvature and were 
consistent across included study sites. Using biophysical parameters derived from a large-scale 
computational circuit model, we found that these whole-brain findings were correlated to alterations 
in subcortical drive into cortical microcircuits, together with marginal alterations in 
excitation/inhibition. An association to subcortical structures was also supported by complementary 
post-mortem transcriptomic association and developmental as well as disease enrichment analyses, 
highlighting that the affected regions harbor genes expressed in cortical and thalamic areas in early 
childhood and adolescence in autism. Our findings, therefore, offer a novel perspective on the relation 
between subcortico-cortical interactions at macroscale and microcircuit reorganization in autism.  

The current work harnessed advanced manifold learning to compress high dimensional structural 
connectomes into a series of principal axes that describe spatial trends in connectivity changes across 
the cortical mantle in a data-driven manner. As such, our work brings a system level perspective to 
connectome reconfiguration in autism, which quantifies the integration and differentiation of brain 
subsystems in a continuous frame of reference. By offering a cortex-wide analysis of structural 
connectivity, our work extends prior diffusion MRI studies in autism that have shown atypical 
microstructure in fiber tracts underlying or interconnecting higher-order brain systems 13,29,64366 and 
work focusing on fibers mediating connectivity between sensorimotor and subcortical systems 7,67. 
Our findings are also consistent with prior graph-theoretical studies of structural connectome data in 
autism that highlight alterations in global as well as local efficiency across both lower-level and 
higher-order cortical systems 29,67371. In parallel, our findings provide new insights on potential 
structural substrates underlying a wide range of functional network anomalies reported in autism. 
6,72,73. Functional findings are somewhat heterogenous across studies and analytical approaches; yet 
prior studies have converged on an overall pattern characterized by cortico-cortical functional 
connectivity reductions, often affecting in associative regions such as default-mode network, together 
with patches of connectivity increases, particularly between sensorimotor cortices and subcortical 
nodes such as the thalamus 7,11,74,75. By highlighting both association cortices such as the default mode 
network as well as idiotypic and somatosensory systems, our work provides a potential consolidation 
of these distributed effects in a space governed by structural wiring. 

Histological studies have suggested several potential cellular substrates associated to connectome 
miswiring of autism including altered cortical lamination 76379 and columnar layout 80,81, together with 
atypical neuronal migration that can result in cortical blurring 77,82 and changes in spine density of 
cortical projection neurons 83,84. Such cellular changes likely impact on the functional organization of 
cortical microcircuits in autism, also suggested by molecular studies in animals 4,22325,85,86. These 
findings collectively support the imbalance in excitation and inhibition of cortical areas in autism 
4,9,16,22,87,88, which have been related to anomalies in cortical neurotransmitter systems 89392 and 
atypical subcortico-cortical interactions with subcortical structures such as thalamus modulating this 
balance 7,11,24,74,75,93. Here, we obtained support for perturbations in cortical microcircuit function 
from a network perspective, by leveraging a biophysically plausible computational model of brain 
function, which seeks to tune parameters to optimize the link between structural and connectomes 18. 
In recent work 18, these models were inverted to infer variations in the microcircuit level parameters 
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at a cortical regional level. Studying a cohort of healthy adults from the human connectome project 
dataset, the study mapped cortex-wide gradients of recurrent excitation/inhibition and of excitatory 
subcortical input, with a topography mirroring prior work showing gradients in laminar differentiation 
and synaptic organization in non-human primates 55,94. In the neurotypical individuals studied here, 
we could show similar spatial trends in excitation/inhibition and subcortical input as in the prior work 
with overall increased subcortical input but lower excitation/inhibition in association cortices, while 
sensorimotor areas showed higher excitation/inhibition. This correspondence is an important 
consideration given that the retrospective data aggregated and shared via ABIDE is not at par in terms 
of image quality and data volume with the human connectome project data on which these models 
were originally presented 18,95. Importantly, comparing microcircuit maps between individuals with 
autism and controls supported overall a relatively diffuse pattern of local microcircuit parameter 
changes, not necessarily pointing to a unified direction of cortical microcircuit alterations. However, 
the connectome-wide manifold distortions were found to correlate with increases in excitatory 
subcortical drive into cortical microcircuits level, especially in lower-level cortical hierarchical areas, 
even after controlling for spatial autocorrelations using non-parametric spin tests, and to marginally 
relate to increases in excitation and inhibition.  

Spatial decoding of macroscale distortion patterns with post-mortem gene expression maps provided 
potential etiological substrates of our findings. Recent studies in healthy brain organization 96,97, 
development 37, and disease 98,99 have shown that how such analyses can help understanding the 
relationship between macroscopic neuroimaging phenotypes and spatial variations at the molecular 
scale 100. In a prior study, similar approaches were used to identify genetic factors whose expression 
correlated to maps of cortical morphological variations in autism, and pointed to transcriptionally 
downregulated genes implicated in autism 101. In our study, similarly, developmental and disease 
enrichment analyses exhibited gene sets that were expressed in the cortex and thalamus during 
childhood and adolescence in autism by associating gene expression patterns with our macroscale 
findings, suggesting potential interactions between sensory-related subcortical areas and 
idiotypic/default-mode cortices. The thalamus relays afferent sensory inputs to the cortex and 
modulates efferent motor signals. Being a critical hub node in integrative cortico-cortical connectivity 
in both health and disease 102,103, the thalamus is furthermore recognized to regulate overall levels of 
cortical excitability 7,11. In other words, atypical excitatory input from thalamus would likely lead to 
altered perceptual input and may thus contribute to sensory abnormalities in autism 11. Indeed, it has 
been shown that abnormal functional connectivity between primary sensory cortices and subcortical 
regions affects the balance between sensory information processing and top-down feedback from 
higher-order cortices 104. Collectively, we can infer that the connectivity between thalamus and 
cortical areas extensively modulates brain-wide communication, which means abnormal 
thalamocortical connectivity likely affects multiple functional processes relevant to autism, including 
socio-cognitive impairments but also sensory anomalies 7,11,24.  

Our multilevel analyses were carried out in a fully unconstrained manner, yet findings pointed to a 
co-existence of connectional and microcircuit perturbations in heteromodal association regions 
(particularly posterior default-mode nodes) and even more strongly to idiotypic/somatomotor cortices. 
In addition to the widely recognized impairments in communication and socio-cognitive functions, 
individuals with autism show obvious deficits in sensorimotor behaviors 16,105 and these are subsumed 
under the <repetitive behaviors and interests= syndrome cluster - a core criterion for autism diagnosis. 
More broadly, autism is increasingly thought to be associated to early sensory anomalies, also 
formulated in the so-called <sensory-first= hypothesis 16, where atypical formation and maturation of 
sensory processing circuits in early development results in a perturbed development of higher-order 
networks mediating more integrative and socio-communicative functions 6,8. Stratifying our cohort 
into children and adults, we also observed more marked sensorimotor network perturbations in the 
former, while anomalies in heteromodal association and paralimbic areas were only visible in adults 
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with autism. Similar to recent work from our group that assessed functional hierarchy in autism 6, 
structural manifold features used in this study were particularly useful in predicting impairments in 
lower-level repetitive behavior symptoms as well as higher-order social and cognitive deficits, but 
not very sensitive in predicting atypical communication abilities. The inability of our approach to 
predict communication deficits remains to be investigated further, but it may potentially relate to 
other aspects of autism spectrum heterogeneity, including speech onset delay that affects only a 
subgroup of autism individuals and potentially associated compensatory mechanisms between 
sensory and language networks 1063108.  

Our study provides a novel perspective consolidating brain organization at multiple scales to 
conceptualize autism pathophysiology. Harnessing advanced connectomics, machine learning, and 
computational modeling, we could show macroscale structural connectome perturbations in 
somatosensory/idiotypic and default-mode/heteromodal association areas in autism, which are 
associated with behavioral symptoms at an individual subject level. These macroscale distortions 
were also found to relate to cortical microcircuit function in individuals with autism in an in silico 
model of brain function, in our cohort mostly visible as an increase in excitatory subcortical drive. 
Arguably, the modest sample size of this study warrants further replication of our findings in large, 
and ideally transdiagnostic cohorts, to also evaluate specificity of our findings and to further explore 
heterogeneity within the autism spectrum itself 106,107,109,110. Yet, these findings overall provide 
consistent support that atypical subcortico-cortical interactions, likely between thalamic and 
sensorimotor areas, contribute to large-scale network anomalies in autism and may suggest that 
connectivity anomalies of sensorimotor networks that mature early may cascade into an overall 
disorganization of cortico-cortical systems in autism. 

 

METHODS 

Participants 

We studied imaging and phenotypic data of 47 individuals with autism and 37 typically developing 
controls from the Autism Brain Imaging Data Exchange initiative (ABIDE-II; 
http:/fcon_1000.projects.nitrc.org/indi/abide) 52,53. Participants were taken from two independent 
sites: (1) New York University Langone Medical Center (NYU) and (2) Trinity College Dublin (TCD), 
which were the only sites that included children and adults with autism and neurotypical controls, 
with g10 individuals per group, and who had full MRI data (i.e. structural, functional, and diffusion) 
available. These 84 participants were selected from a total of 120 participants through the following 
inclusion criteria: (i) complete multimodal imaging data i.e., T1-weighted, resting-state functional 
MRI (rs-fMRI), and dMRI, (ii) acceptable cortical surface extraction, (iii) low head motion in the rs-
fMRI time series i.e., less than 0.3 mm framewise displacement. Individuals with autism were 
diagnosed by an in-person interview with clinical experts and gold standard diagnostics of Autism 
Diagnostic Observation Schedule (ADOS) 62 and/or Autism Diagnostic Interview-Revised (ADI-R) 
111. Neurotypical controls did not have any history of mental disorders. For all groups, participants 
who had genetic disorders associated with autism (i.e., Fragile X), psychological disorders comorbid 
with autism, contraindications to MRI scanning, and pregnant were excluded. The ABIDE data 
collections were performed in accordance with local Institutional Review Board guidelines, and data 
were fully anonymized. Detailed demographic information of the participants is reported in Table S1. 

 
MRI acquisition 

At the NYU site, multimodal imaging data were acquired using 3T Siemens Allegra. T1-weithed data 
were obtained using a 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) 
sequence (repetition time (TR) = 2,530 ms; echo time (TE) = 3.25 ms; inversion time (TI) = 1,100 
ms; flip angle = 7°; matrix = 256 × 192; and voxel size = 1.3 × 1.0 × 1.3 mm3). The rs-fMRI data 
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were acquired using a 2D echo planar imaging (EPI) sequence (TR = 2,000 ms; TE = 15 ms; flip 
angle = 90°; matrix = 80 × 80; number of volumes = 180; and voxel size = 3.0 × 3.0 × 4.0 mm3). 
Finally, dMRI data were obtained using a 2D spin echo EPI (SE-EPI) sequence (TR = 5,200 ms; TE 
= 78 ms; matrix = 64 × 64; voxel size = 3 mm3 isotropic; 64 directions; b-value = 1,000 s/mm2; and 
1 b0 image). 

At the TCD site, imaging data were acquired using 3T Philips Achieva. T1-weighted MRI were 
acquired using a 3D MPRAGE (TR = 8,400 ms; TE = 3.90 ms; TI = 1,150 ms; flip angle = 8°; matrix 
= 256 × 256; voxel size = 0.9 mm3 isotropic). The rs-fMRI data were aquired using a 2D EPI (TR = 
2,000 ms; TE = 27 ms; flip angle = 90°; matrix = 80 × 80; number of volumes = 210; and voxel size 
= 3.0 × 3.0 × 3.2 mm3). Finally, dMRI data were acquired using a 2D SE-EPI (TR = 20,244 ms; TE 
= 79 ms; matrix = 124 × 124; voxel size = 1.94 × 1.94 × 2 mm3; 61 directions; b-value = 1,500 s/mm2; 
and 1 number b0 image). 
 

Data preprocessing 

T1-weighted data were processed using FreeSurfer 1123117, which includes gradient nonuniformity 
correction, skull stripping, intensity normalization, and tissue segmentation. White and pial surfaces 
were generated through triangular surface tessellation, topology correction, inflation, and spherical 
registration to fsaverage. Rs-fMRI data were processed via C-PAC (https://fcp-indi.github.io) 118, 
including slice timing and head motion correction, skull stripping, and intensity normalization. 
Nuisance variables of head motion, average white matter and cerebrospinal fluid signal, and 
linear/quadratic trends were removed using CompCor 119. Band-pass filtering between 0.01 and 0.1 
Hz was applied, and rs-fMRI data were co-registered to T1-weighted data in MNI standard space with 
linear and non-linear transformations. The rs-fMRI data were mapped to subject-specific mid-
thickness surfaces and resampled to the Conte69 template. Finally, surface-based spatial smoothing 
with a full width at half maximum of 5 mm was applied. The dMRI data was processed using MRtrix 
30,31 including correction for susceptibility distortions, head motion, and eddy currents. Quality 
control involved visual inspection of T1-weighted data, and cases with faulty cortical segmentation 
were excluded. Data with a framewise displacement of rs-fMRI data >0.3 mm were also excluded 
120,121. 
 

Structural connectome manifold identification 

Structural connectomes were generated from preprocessed dMRI data using MRtrix 30,31. Anatomical 
constrained tractography was performed using different tissue types derived from the T1-weighted 
image, including cortical and subcortical grey matter, white matter, and cerebrospinal fluid 33. The 
multi-shell and multi-tissue response functions were estimated 35 and constrained spherical-
deconvolution and intensity normalization were performed 34. The tractogram was generated with 40 
million streamlines, with a maximum tract length of 250 and a fractional anisotropy cutoff of 0.06. 
Subsequently, spherical-deconvolution informed filtering of tractograms (SIFT2) was applied to 
reconstruct whole-brain streamlines weighted by the cross-section multipliers 32. The structural 
connectome was built by mapping the reconstructed cross-section streamlines onto the Schaefer atlas 
with 200 parcels 32,122 then log-transformed 123. 

Cortex-wide structural connectome manifolds were identified using BrainSpace 
(https://github.com/MICA-MNI/BrainSpace) 39. First, a template manifold was estimated using a 
group representative structural connectome, defined using a distance-dependent thresholding that 
preserves long-range connections 54. The group representative structural connectome was constructed 
using both autism and control data. A cosine similarity matrix, capturing similarity of connections 
among different brain regions, was constructed without thresholding the structural connectome and 
manifolds were estimated via diffusion map embedding (Fig. 1A3B). Diffusion map embedding is 
robust to noise and computationally efficient compared to other non-linear manifold learning 
techniques 124,125. It is controlled by two parameters ³ and t, where ³ controls the influence of the 
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density of sampling points on the manifold (³ = 0, maximal influence; ³ = 1, no influence) and t 
controls the scale of eigenvalues of the diffusion operator. We set ³ = 0.5 and t = 0 to retain the global 
relations between data points in the embedded space, following prior applications 6,38,39,48. In this new 
manifold, interconnected brain regions are closely located and regions with weak inter-connectivity 
located farther apart. After generating the template manifold, individual-level manifolds were then 
estimated and aligned to the template manifold via Procrustes alignment.  
 

Between-group differences in structural manifolds 

Multivariate analyses compared individuals with autism and controls in the manifold spanned by the 
first three structural eigenvectors, which explained more than 50% in structural connectome variance 
and corresponded to the elbow in the scree plot. Models controlled for age, sex, and site in addition 
to including the group factor. We corrected for multiple comparisons using the FDR procedure 126. 
Summary statistics were calculated based on an atlas of laminar differentiation and cortical hierarchy 
(Fig. 1C) 55 and a widely used community parcellation (Fig. S1A) 56. To simplify the multivariate 
manifold representations into a single scalar, we quantified manifold distance as the Euclidean 
distance between the center of template manifold and all data points (i.e., brain regions) in the 
manifold space for each individual after alignment (Fig. S1B) 57. Group averaged manifold distance 
was compared between individuals with autism and controls to assess the manifold-affected brain 
regions.  
 

Microscale neural dynamic modeling 

A large-scale biophysical dynamic circuit modeling was conducted to predict functional connectivity 
from structural connectome information and to estimate regional microcircuit parameters. 
Specifically, we harnessed a relaxed mean-field model that captures the link between cortical 
functional dynamics and structural connectivity derived from dMRI, and its modulation through 
region-specific microcircuit parameters 18. In comparison to other models that also include synapse-
level parameters, this model has a more synoptic scale, allowing for structure-function simulations 
with modest parametric complexity. For details on the model and its mathematical underpinnings, we 
refer to the original publication on the relaxed mean-field model 18 and earlier work on the use of 
(non-relaxed) mean-field models 40. In brief, these models approximate the dynamics of spiking and 
interconnected neural networks through a simplified one-dimensional equation. Mean-field models 
assume that neural dynamics of a given region are governed by (i) recurrent intra-regional input i.e., 
recurrent excitation/inhibition; (ii) inter-regional input, mediated by dMRI-based structural 
connections from other nodes, (iii) extrinsic input, mainly from subcortical regions, and (iv) neuronal 
noise 18. While the original (non-relaxed) mean-field models 40 assume these parameters to be 
constant across brain regions, the relaxed mean-field variant allows recurrent excitation/inhibition 
and subcortical/external input to vary. In the model, global brain dynamics of the network of 
interconnected local networks is described by the following three coupled nonlinear stochastic 
differential equations 18: 

	�� ! =	2	 ""

#$
+ 	�(1	 2	�!)�(�!) + 	��!(�)    (1) 

�(�!) = 	 %&"'	)

*'+,-.'/(%&"	3	))3
     (2) 

�! = 	���! + 	��3 �!4�! + 	�
4

     (3) 

For a given region �, �! in formula (1) represents the average synaptic gating variable, �(�!)	in 
formula (2) is the population firing rate, and �! in formula (3) is the total input current. The input 
current �! is determined by the recurrent connection strength �! (i.e., excitation/inhibition) and the 
excitatory input �! , such as from subcortical relays (i.e., subcortical/external input), and inter-
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regional signal flow. The latter is governed by �!4 , which represents the structural connectivity 
between regions �  and � , and the global coupling � . In equation (1), the �!  term refers to 
uncorrelated Gaussian noise, modulated by an overall noise amplitude �. Following prior work 18, 
we set parameters as J = 0.2609 nA, a = 270 n/C, b = 108 Hz, d = 0.154 s, r = 0.641, and �� = 0.1s.  

We fed the group representative structural connectivity matrix and group averaged functional 
connectivity matrix into the relaxed mean-field model optimization, which provided recurrent 
connection strengths � and excitatory subcortical inputs � for every cortical region, as well as a 
global coupling constant � and global noise amplitude �. Global and region-specific parameters 
were determined by maximizing the similarity between simulated and empirical functional 
connectivity, based on a previously developed algorithm for inverting neural mass models that 
leverages the well-established expectation-maximization algorithm 127,128. Pearson9s correlations 
between empirical functional connectivity and structural connectivity, and that with the simulated 
functional connectivity of control data were calculated to assess the quality of the microcircuit 
parameter estimation (Fig. 2A). These procedures were performed with a five-fold cross-validation 
framework with random separation of training and test data, and final microcircuit parameters were 
determined by averaging across cross-validations. 

The estimated recurrent excitation/inhibition and subcortical/external input parameters were 
compared between individuals with autism and controls. Pearson9s correlations were calculated 
between the differences in these model-derived parameters between groups and t-statistics of 
multivariate analysis (Fig. 2B) to evaluate the association between macroscale structural connectome 
reorganization and imbalances in microcircuit properties. Significances of spatial correlations were 
assessed via 1,000 spin test permutations with randomly rotated microcircuit parameters 58. 
 

Transcriptomic association analysis 

To provide additional neurobiological context of our findings, we assessed spatial correlations 
between the between-group differences in the structural manifold and gene expression patterns (Fig. 

3A). Initially, we correlated the t-statistics map derived from the multivariate group comparison and 
the post-mortem gene expression maps provided by Allen Institute for Brain Sciences (AIBS) using 
the Neurovault gene decoding tool 59,60. Neurovault implements mixed-effect analysis to estimate 
associations between the input t-statistic map and the genes of AIBS donor brains yielding the gene 
symbols associated with the input t-statistic map. Gene symbols that passed for a significance level 
of FDR-corrected p < 0.05 were considered for the subsequent analysis. In a second stage, gene lists 
that were significant were fed into enrichment analysis (Fig. 3B), which involved comparison against 
developmental expression profiles from the BrainSpan dataset (http://www.brainspan.org) using the 
cell-type specific expression analysis (CSEA) developmental expression tool 
(http://genetics.wustl.edu/jdlab/csea- tool-2) 51. As the AIBS repository is composed of adult post-
mortem datasets, it should be noted that the associated gene symbols represent indirect associations 
with the input t-statistic map derived from the developmental data. To explore whether the Neurovault 
derived genetic signature was associated with autism pathophysiology, we additionally performed 
disease enrichment analysis using previously published transcriptome findings for autism, 
schizophrenia, and bipolar disorder (Fig. 3C) 61. A robust linear regression model was constructed for 
linking the significance of the gene expressions (i.e., t-statistic) derived from Neurovault with log 
fold-change of autism, schizophrenia, and bipolar disorder, which share similar genetic variants 129. 
The fold-change represents the level to which a gene is over or under expressed in a particular 
condition 61. Guanine-cytosine (GC) content was controlled to avoid possible effects that related to 
genome size in microarray data 130,131. 
 

Symptom severity prediction 

We adopted a supervised machine learning framework with cross-validation to predict autism 
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symptoms as measured by ADOS scores 62. We aimed at predicting total ADOS scores, as well as 
subscores for social cognition, communication, and repeated behavior/interest (Fig. 4). We utilized 
five-fold cross-validation separating training and test data. Feature selection procedure was conducted 
using the training data (4/5 segments) and it was repeated 5 times with different segments of training 
data. Among a total of 600 (200 regions × 3 gradients) features, a set of features that could predict 
each ADOS score was identified using elastic net regularization (regularization parameter = 0.5), 
which shows good performance in feature selection at a given sparsity level compared to L1 (least 
absolute shrinkage and selection operator)- and L2 (ridge)-norm regularization methods 63. The 
features that were most frequently identified across the cross-validation iterations (>50%) were 
selected to predict each ADOS score. Linear regression model for predicting ADOS scores was 
constructed using the selected features controlled for age, sex, and site as independent variables 
within the training data (4/5 segments) and it was applied to the test data (1/5 segment) to predict 
their ADOS scores. Prediction procedure was repeated 100 times with different set of training and 
test data to avoid bias for separating subjects. The prediction accuracy was assessed by calculating 
Pearson9s correlation between the actual and predicted ADOS scores as well as their mean absolute 
error (MAE). 95% confidence interval of accuracy measures were also reported. Permutation-based 
correlations across 1,000 spin tests were conducted by randomly shuffling ADOS scores to check 
whether the prediction performance exceeded chance levels 58. 
 

Sensitivity and specificity analyses 

a) Site effects. The multivariate group comparison using structural connectome manifolds was 
performed for each site (NYU and TCD separately) to see the consistency of results across different 
sites (Fig. S1C).  

b) Head motion effects. To rule out whether the macroscale perturbations in autism related to head 
motions, we first calculated mean FD from dMRI for all participants (Fig. S2A). Two-sample t-test 
then assessed between-group differences in head motion. In addition, we repeated the multivariate 
manifold comparisons between groups while controlling for mean FD (Fig. S2B). 

c) Age effects. To assess the age-related effects on structural connectome manifolds, we performed 
multivariate group comparison in manifolds, controlled for sex and site, within children (age < 18) 
and adults (age g 18) cohorts separately (Fig. S3A).  

d) Associations to cortical morphology. Several studies have previously reported atypical cortical 
morphology in individuals with autism relative to controls 12,19. To assess whether these 
morphological variations contribute to our connectome results, we calculated Pearson correlations 
between multivariate findings and cortical morphology measures (i.e., cortical thickness and cortical 
curvature) between groups (Fig. S4A). We also repeated the multivariate manifold comparisons while 
controlling for cortical thickness and curvature, to evaluate whether the connectome-wide effects can 
be observed above and beyond potential variations in cortical morphology (Fig. S4B).  
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