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Abstract

Circulating proteins are prognostic for human outcomes including cancer, heart failure,
brain trauma and brain amyloid plaque burden. A deep serum proteome survey
recently revealed close associations of serum protein networks and common diseases.
The present study reveals unprecedented number of individual serum proteins that
overlap genetic signatures of diseases emanating from different tissues of the body.
Here, 55,932 low-frequency and common exome-array variants were compared with
4782 protein measurements in the serum of 5457 individuals of the deeply annotated
AGES Reykjavik cohort. At a Bonferroni adjusted P-value threshold < 2.16x10-1°, 5553
variants affecting levels of 1931 serum proteins were detected. These associated variants
overlapped genetic loci for hundreds of complex disease traits, emphasizing the
emerging role for serum proteins as biomarkers of and potential causative agents of

multiple diseases.

Large-scale genome-wide association studies (GWASs) have expanded our knowledge of the
genetic basis of complex disease. As of 2018, approximately 5687 GWASs have been
published revealing 71,673 DNA variants to phenotype associations'. More recently, exome-
wide genotyping arrays have linked rare and common variants to many complex traits. For
example, 444 independent risk variants were identified for lipoprotein fractions across 250
genes”. Despite the overall success of GWAS, the common lead SNPs rarely point directly to
a clear causative polymorphism, making determination of the underlying disease mechanism
difficult*®. Regulatory variants affecting mRNA and/or protein levels and structural variants
like missense mutations can point directly to the causal candidate. Alteration of the amino
acid sequence may affect protein activity and/or influence transcription, translation, stability,

processing and secretion of the protein in question’. Thus, by integrating intermediate traits
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like mRNA and/or protein levels with genetics and disease traits, the identification of the

causal candidates can be enhanced>®.

Proteins are arguably the ultimate players in all life processes in disease and health, however,
high throughput detection and quantification of proteins has been hampered by the limitations
of available proteomic technologies. Recently, a custom-designed Slow-Off rate Modified
Aptamer (SOMAmer) protein profiling platform was developed to measure 4782 proteins
encoded by 4137 human genes in the serum of 5457 individuals from the AGES Reykjavik
study (AGES-RS)', resulting in 26.1 million individual protein measurements. Various
metrics related to the performance of the proteomic platform including aptamer specificity,
assay variability and reproducibility have already been described!’. We demonstrated that the
human serum proteome is under strong genetic control'?, in line with findings of others
applying identical or different proteomics technologies!!"!2. Moreover, serum proteins were
found to exist in regulatory groups of network modules composed of members synthesized in
all tissues of the body, suggesting that system level coordination or homeostasis is mediated
to a significant degree by thousands of proteins in blood. Importantly, the deep serum and
plasma proteome is associated with and prognostic for various diseases as well as human life

Spanlo,13—19.

Here, we regressed levels of 4782 proteins on 55,932 low-frequency and common variants
from the HumanExome BeadChip exome array, in sera from 5457 individuals of the deeply
phenotyped AGES-RS cohort. Further cross-referencing of all significant genotype-to-protein
associations to hundreds of genetic loci for various disease endpoints and clinical traits,
demonstrated profound overlap between the genetics of circulating proteins and disease

related phenotypes. We highlight how triangulation of data from different sources can link
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genetics, protein levels and disease(s), in order to cross-validate one another and point to

potentially causal relationship between proteins and complex disease(s).

Using genotype data from an exome array (HumanExome BeadChip) enriched for structural
variants and tagged for many GWAS risk loci (Methods), the effect of low-frequency and
common variants on the deep serum proteome was examined. Quality control filters?’, and
exclusion of monomorphic variants reduced the available variants to 72,766. Additionally, we
excluded variants at minor allele frequency (MAF) < 0.001 as they provide insufficient power
for single-point association analysis?!. This resulted in 55,932 low-frequency and common
variants that were tested for association to each of the 4782 human serum protein
measurements using linear regression analysis adjusted for the confounders age and sex
(Methods). The current platform targets the serum proteome arising largely from active or
passive secretion, ectodomain shedding, lysis and/or cell death!®?, Figure 1a highlights the
classification of the protein population targeted by the aptamer-based profiling platform,
showing over 70% of the proteins are secreted or single pass transmembrane (SPTM)

receptors.

Applying a Bonferroni corrected significance threshold of P < 2.16x1071° (0.05/55932/4137)
we detected 5553 exome array variants that were associated with variable levels of 1931
serum proteins (Supplementary Table 1 and Fig. 1b). These protein quantitative trait loci
(pQTLs) were cis and/or trans acting including several frans acting hotspots with pleiotropic
effects on multiple co-regulated proteins (Fig. 1b). When compared to other protein classes,
secreted proteins were enriched for pQTLs (53.2% vs. 43.6%, FET P = 1.8x107),
underscoring that proteins destined for the systemic environment are under stronger genetic
control than other proteins detected by the platform. Next, we cross-referenced all the 5553

pQTLs with a comprehensive collection of genetic loci associated with diseases and clinical
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traits from the curated PhenoScanner database?, revealing profound overlap of pQTLs with
known GWAS loci, or 60% of all pQTLs linked to at least single trait (Supplementary
Tables 1 and 2). Moreover, we observed a significant correlation between the number of
serum proteins affected by a given variant and the number of associated phenotypes
(Spearman p = 0.570, P < 0.001) (Fig. 2a). When we exclude the many associations driven by
variants located at chromosome 6 (Supplementary Table 1), the correlation was weaker yet
significant (Spearman p = 0.22, P < 0.001). In summary, this suggests that greater regulatory
pleiotropy of pQTLs is associated with greater chance of disease trait pleiotropy, which
agrees well with recent gene expression eQTL studies linked to common disease traits>*?>.
Figure 2b highlights an example of a pleiotropic effect at the locus rs2251219 affecting
several proteins and sharing genetics with different diseases and traits. Table 1 highlights a
selected set of pQTLs that share genetics with diseases of different etiologies including
disorders of the brain, metabolism, immune and cardiovascular systems and cancer. In the

sections that follow we specify examples of serum pQTLs overlapping disease risk loci and

demonstrate how triangulation of data from different sources can cross-validate one another.

Variable levels of the anti-inflammatory protein TREM2 were associated with two distinct
genomic regions at P < 2.16x107'° (Fig. 3a). This included the missense variant rs75932628
(NP_061838.1: p.R47H) in TREM2 at chromosome 6 (Fig. 3b), known to confer a strong risk
of late-onset Alzheimer’s disease (LOAD)?°. The variant was also associated with IGFBPL1
(P = 3x10'®) in serum (Supplementary Table 1), which has recently been implicated in
axonal growth?’. Intriguingly, the region at chromosome 11 associated with soluble TREM2
levels harbors variants adjacent to the genes MS4A4A and MS4A6A including rs610932
known to influence genetic susceptibility for LOAD?® (Table 1, Fig. 3a, b). The variant
rs610932 was also associated with the proteins GLTPD2 and AAGALT (Supplementary
Table 1). The alleles increasing risk of LOAD for both the common variant rs610932 and the
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low-frequency variant rs75932628 were associated with low levels of soluble TREM2 (Fig.
3b). Consistently, we find that the high-risk allele for rs75932628 was associated with
accelerated mortality post incident LOAD in the AGES-RS (Fig. 3¢). It is of note that the
levels of TREM2 in the cerebrospinal fluid (CSF) reflect the activity of brain TREM?2-
triggered microglia*?, while high levels of CSF TREM2 have been associated with improved
cognitive functioning’. Figure 3d highlights the correlation relationship (Spearman rank)
between the different proteins affected by the LOAD risk loci at chromosomes 6 and 11. The
accumulated data show a directionally consistent effect at independent risk loci for LOAD
converging on the same causal candidate TREM?2. In summary, these results demonstrate that
the effect of genetic drivers on major brain-linked disease like LOAD can be readily detected
in serum to both inform on the causal relationship and the directionality of the risk mediating
effect. This would also suggest that serum may be an accessible proxy for microglia function

and cognition.

Variable levels of the cell adhesion protein SVEPI are associated with variants located at
chromosomes 1 and 9 (Supplementary Table 1 and Fig. 4a). Genetic associations to SVEP1
levels at chromosome 9 include the low-frequency missense variant rs111245230 in SVEP1
(NP_699197.3: pD2702G) (Fig. 4b), which was recently linked to coronary heart disease
(CHD), blood pressure and type-2-diabetes (T2D)*!. Overall, we found eight different
missense mutations in SVEP] that were associated with SVEP1 serum levels
(Supplementary Table 1). The risk allele C of rs111245230 was associated with elevated
levels of SVEP1 in CHD and T2D patients compared to a group of controls free of either
disease (Fig. 4¢). Furthermore, high SVEP1 levels were positively correlated with systolic
blood pressure (B = 2.10, P = 4x107'?) (Fig. 4¢), but not with diastolic blood pressure (B =
0.115, P = 0.413). Consistently, higher serum levels of SVEP1 were associated with increased

mortality post-incident CHD in the AGES-RS (HR = 1.27, P = 9x10) (Fig. 4d). The variants
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at chromosome 1 linked to SVEP1 levels (Fig. 4a), have not previously been linked to any
disease. Our data triangulation links genetics, protein levels and disease(s) and indicates that

SVEP1 may be a point of intervention to therapeutically target CHD and T2D.

The ILMN exome array contains a number of tags related to previous GWAS findings>2,
including many risk loci for cancer. For example, 21 loci associated with melanoma*® and 50
loci associated with colorectal cancer®*. The exome array variant rs910873 located in an
intron of the GPI transamidase gene PIGU was previously linked to melanoma risk*. The
reported candidate gene PIGU is the gene most proximal to the lead SNP rs910873 and may
be a novel candidate gene involved in melanoma. However, a more biologically relevant
candidate is the agouti-signaling protein (ASIP) gene that is located 314kb downstream of the
lead SNP rs910873. ASIP is a competitive inhibitor of MC1R?®, and is thus strongly
biologically implicated in melanoma risk®’. We found that the melanoma risk allele for
rs910873 was associated with elevated ASIP serum levels (P = 3x107'7°) and the variant had
no effect on other proteins measured with the current proteomic platform (Fig. Sa,
Supplementary Table 1 and Table 1). Interestingly, the pQTL rs910873 is also an eQTL for
ASIP gene expression in skin?*, showing directionally consistent effect on the mRNA and
protein. Our data point to the ASIP protein underlying the risk at rs910873, thus providing
supportive evidence for the hypothesis that ASIP mediated inhibition of MCI1R results in
suppression of melanogenesis and increased risk of melanoma*®. An additional example is the
colorectal cancer locus at rs1800469%, which is a proxy to the pQTL rs2241714 (r*=0.978)
(Table 1 and Fig. Sb). While, the TMEMO91 gene was the reported candidate gene for the
melanoma risk at the rs1800469 (Table 1), we find that the risk variant affected three proteins
in either cis or trans, notably B3AGNT2, B3GNTS8 and TGFB1 (Fig. 5b). Intriguingly, all three
proteins have previously been implicated in colorectal cancer*’*?. Although we cannot rule

out PIGU or TMEM91 as candidate genes for melanoma or colorectal cancer risk,
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respectively, these results provide alternate, experimentally supported and perhaps more

biologically relevant candidates.

We report here that 60% of the serum proteome that is under genetic control shares genetics
with reported clinical traits including major diseases emanating from different tissues of the
body. This is in line with a recent population-scale survey of human induced pluripotent stem
cells, demonstrating that pQTLs are 1.93-fold enriched in disease risk variants compared to a
1.36-fold enrichment for eQTLs!2, underscoring the added value in pQTL mapping. We
reaffirm widespread associations between genetic variants and their cognate proteins as well
as distant trans-acting effects on serum proteins and demonstrate that many proteins are often
involved in mediating the biological effect of a single causal variant affecting complex
disease. It remains a possibility that the influence of some structural variants on protein levels
reflect effects mediated by regulatory variants that are in linkage disequilibrium with the
pQTL of interest. In addition, protein coding variants may cause technical artifacts in both
affinity proteomics and mass spectrometry****, However, systematic conditional and
colocalization analyses in causality testing using the aptamer-based technology have shown

that pQTLs driven by common missense variants being artefactual is an unlikely event'!'*

We note that with the ever-increasing availability of large-scale omics data aligned with the
human genome, cross-referencing different datasets can result in findings that occurred by
sheer chance. Hence, a systematic colocalization analysis has been proposed in causality tests
between intermediate traits and disease endpoints46. This is, however, not feasible for
application of the exome array given its sparse genomic coverage. Instead, multi-omics data
triangulation to infer consistency in directionality, the approach used in the present study, can
enhance confidence in the causal call and offer insights and guidelines for experimental

follow-up studies. For the serum proteins TREM?2, SVEP1, ASIP and other examples
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highlighted in the presented study (see Table 1), further colocalization analyses and tests of
causality are warranted. We previously asserted that serum proteins are intimately connected
to and mediate global homeostasis'®. The accumulated data show that serum proteins are
under strong genetic control and closely associated with diseases of different aetiologies,
which in turn suggests that serum proteins may be significant mediators of systemic

homeostasis in human health and disease.

METHODS

Study population

Participants aged 66 through 96 are from the Age, Gene/Environment Susceptibility
Reykjavik Study (AGES-RS) cohort*’. AGES-RS is a single-center prospective population-
based study of deeply phenotyped subjects (5764, mean age 75+6 years) and survivors of the
40-year-long prospective Reykjavik study (n~18,000), an epidemiologic study aimed to
understand aging in the context of gene/environment interaction by focusing on four biologic
systems: vascular, neurocognitive (including sensory), musculoskeletal, and body
composition/metabolism. Descriptive statistics of this cohort as well as detailed definition of
the various disease end-points and relevant phenotypes measured have been published!*’.
The AGES-RS was approved by the NBC in Iceland (approval number VSN-00-063), and by

the National Institute on Aging Intramural Institutional Review Board, and the Data

Protection Authority in Iceland.
Genotyping platform

Genotyping was conducted using the exome-wide genotyping array Illumina HumanExome-
24 v1.1 Beadchip for all the 5457 subjects with protein data. The exome array was enriched
for exonic variants selected from over 12,000 individual exome and whole-genome sequences

from different study populations*, and includes as well tags for previously described GWAS

9.
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hits, ancestry informative markers, mitochondrial SNPs and human leukocyte antigen tags®2.
A total of 244,883 variants were included on the exome array. Genotype call and quality
control filters including call rate, heterozygosity, sex discordance and PCA outliers were
performed as previously described>?°. Variants with call rate <90% or with Hardy—Weinberg
P values <1x107 were removed from the study. 72,766 variants were detected in at least one
individual of the AGES-RS cohort. Of these variants, 55,932 had a minor allele frequency >
0.001 and were examined for association against each of the 4782 human serum protein

measurements (see below).

Protein measurements

Each protein has its own detection reagent selected from chemically modified DNA libraries,
referred to as Slow Off-rate Modified Aptamers (SOMAmers)*®. We designed an expanded
custom version of the SOMApanel platform to include proteins known or predicted to be
found in the extracellular milieu, including the predicted extracellular domains of single- and
certain multi-pass transmembrane proteins'’. The new aptamer-based platform measures
5034 protein analytes in a single serum sample, of which 4782 SOMAmers bind specifically
to 4137 human proteins (some proteins are detected by more than one aptamer) and 250
SOMAmers that recognize non-human targets (47 non-human vertebrate proteins and 203
targeting human pathogens). Only human protein targets were analyzed in the present study.
The levels of the 4782 peripheral proteins in 5457 serum samples from the AGES-RS were
determined at Somal.ogic Inc. (Boulder, US). Direct validation of 779 SOMAmers (mass
spectrometry) and inferential validation (proximal genetic cis effects, biomarker and pQTL
replication studies) across different study populations and proteomic technologies indicated
consistent target specificity across the platform'?. To avoid batch or time of processing
biases, both sample collection and sample processing for protein measurements were

randomized and all samples run as a single set'®. The 5034 SOMAmers that passed quality

-10-


https://doi.org/10.1101/2020.05.06.080440
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.080440; this version posted May 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

control had median intra-assay and inter-assay coefficient of variation, CV < 5%.
Hybridization controls were used to correct for systematic variability in detection and
calibrator samples of three dilution sets (40%, 1% and 0.005%) were included so that the

degree of fluorescence was a quantitative reflection of protein concentration.
Statistical analysis

Prior to the analysis of the proteins measurements, we applied a Box-Cox transformation on
all proteins to improve normality, symmetry and to maintain all protein variables on a similar
scale®. In the association analysis, we obtained residuals after controlling for sex and age and
for all single-variant associations to serum proteins tested under an additive genetic model
applying linear regression analysis. We applied Bonferroni correction for multiple
comparisons by adjusting for the 55,932 variants and 4137 human proteins targeted: single
variant associations with P < 2.16x1071° were considered significant. For the associations of
individual proteins to different phenotypic measures we used linear or logistic regression or
Cox proportional hazards regression, depending on the outcome being continuous, binary or a
time to an event. Given consistency in terms of sample handling including time from blood
draw to processing (between 9-11 am), same personnel handling all specimens and the ethnic

homogeneity of the population we adjusted only for age and sex in all our regression analyses.
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Figure Legends

Figure. 1. Classification of the target protein population and genomic locations of
observed pQTLs. a. Pie chart showing the relative distribution (percentage) of the different
protein classes targeted by the present proteomics platform, with secreted proteins (38.4%)
and single pass transmembrane (SPTM) receptors (32.2%) dominating the target protein
population. Protein classes were manually curated based on information from the SecTrans,
Gene Ontology (GO) and Swiss-Prot databases, and were composed of secreted proteins (e.g.
cytokines, adipokines, hormones, chemokines and growth factors), SPTM receptors (e.g.
tyrosine and serine/threonine kinase receptors), multi-pass transmembrane (MPTM) receptors
(e.g. GPCR, ion channels, transporters), enzymes (intracellular), kinases, nuclear hormone
receptors, structural molecules, transcriptional regulators and signal transducers. b. The
genomic locations of all significant pQTLs (P < 2.16x1071%), where the start position of the
protein encoding gene is shown on the y-axis and the location of the pSNP at the x-axis. Cis
acting effects appear at the diagonal while frans acting pQTL effects including frans hot spots

(highlighted on top of the graph) show up off-diagonally.

Fig. 2. Pleiotropy of variants affecting many proteins and disease traits. a. The 5553
pQTLs were cross-referenced against risk loci for hundreds of diseases and relevant traits
from the PhenoScanner®® database. The database consists of disease and clinical trait data
including that from the UKBB, GRASP and GWAS catalogue databases. A significant
correlation between number of proteins affected and number of traits at shared GWAS and
pQTL loci (Spearman rank correlation tho = 0.57, P<0.0001). Outliers above 150 are not
shown on the y-axis. b. Circos plot showing the pleiotropy of the locus rs2251219
(Supplementary Tables 1 and 2) affecting 14 proteins in cis and trans and sharing genetics

with various diseases of different etiologies. Lines going from rs225121show links to
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genomic locations of the protein encoding genes affected while numbers refer to

chromosomes.

Fig. 3. Effects of distinct risk loci for LOAD converge on the protein TREMZ2. a. The
Manbhattan plot highlights variants at two distinct chromosomes associated with serum
TREM2 levels at P < 2.16x1071 (indicated by the horizontal line). The y-axis shows the -
(logio) of the P-values for the association of each genetic variant on the exome array present
along the x-axis. Variants at both chromosomes 6 and 11 associated with TREM2 have been
independently linked to risk of LOAD including the rs75932628 (NP_061838.1: p.R47H) in
TREM2 at chromosome 6 and the variant rs610932 at chromosome 11. b. Boxplot of the
trans effect of the well-established GWAS risk locus rs610932 for LOAD on TREM2 serum
levels (upper panel), where the LOAD risk allele G (highlighted in bold) is associated with
lower levels of TREM2. Similarly, the LOAD causing p.R47H mutation was associated with
low levels of TREM2 (lower panel). c. TREM2p.R47H carriers demonstrated lower survival
probability post-incident LOAD compared to TREM2p.R47R carriers (P = 0.04). d. The
figure shows the Spearman rank correlation among the four serum proteins affected by the

two distinct LOAD risk loci.

Fig. 4. Variants affecting SVEP1 levels are associated with CHD and T2D. a. The
Manbhattan plot reveals variants at chromosomes 1 and 9 associated with serum SVEP1 levels
at genome- P < 2.16x107!9 (indicated by the horizontal line). The y-axis shows the -(logio) of
the P-values for the association of each genetic variant on the exome array present along the
x-axis. b. One of the variants associated with SVEP1 levels and underlying the peak at
chromosome 9 is the low-frequency CHD risk variant rs111245230 (NP_699197.3:
pAsp2702Gly). The CHD risk allele C (highlighted in bold) is associated with high serum
SVEP1 levels. ¢. Serum levels of SVEP1 were associated with CHD (P = 8x10”), T2D (P =

1x10™*) and systolic blood pressure (P = 4x1071?) in the AGES-RS, all in a directionally
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consistent manner. d. Consistent with the directionality of the effects described above, we
find that high levels of SVEP1 were associated with higher rates of mortality post-incident

CHD.

Figure S. a. The melanoma risk allele A (highlighted in bold) for the variant rs910873 is
associated with high serum levels of ASIP. b. The pQTL rs2241714 is a proxy for the
colorectal cancer associated variant rs1800469 (7> = 0.978) (Supplementary Table 2), located
within the gene B9D2 and proximal to TMEM91 which is the reported candidate gene at this
locus (see Table 1). The variant rs2241714 (and rs1800469) regulate three serum proteins,

B3GNT?2 (in trans), BAGNTS (in cis) and TGFB1 (in cis).
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Table 1 | Selected examples of exome array variants affecting serum protein levels and complex disease. CHD, coronary heart disease;
VTE, venous thromboembolism; CKD, chronic kidney disease; T2D, type 2 diabetes; VAT, visceral adipose tissue; LOAD, late-onset
Alzheimer’s disease; SLE, systemic lupus erythematous; IBD, inflammatory bowel disease; AMD, age-related macular degeneration; N/A, not
applicable. All reported effects are genome-wide significant at P < 2.16x10°'°,

Disease Disease trait PMID or pQTL GWAS lead SNP(s)* Function Mapped #Proteins Example of cis and/or
class database pSNPP GWAS locus®  affected trans affected proteins?
Cardiovascular

CHD 28714975 rs12740374 rs12740374 3-UTR CELSR2 8 C1QTNF1, IGFBP1

VTE UKBB, 28373160  rs2343596 rs16873402, rs4602861 Intron ZFPM2 7 VEGFA, DKK1

Stroke 26708676 rs653178 1653178 Intron ATXN2 2 THPO, CXCL11
Metabolic

T2D 22885922 rs7202877 rs7202877 Intergenic CTRBI 5 CTRBI1, PRSS2, CPB1

VAT 20935629 rs9491696 rs9491696 Intron RSPO3 1 RSPO3

Triglyceride 21386085 1$2266788 1s2266788 3'-UTR APOAS5 4 APOAS, PCSK7, ANGPTL3
CNS

LOAD 21460840 rs610932 rs610932 3-UTR MS4A6A 3 TREM2, GLTPD2

Parkinson 21738487 rs6599389 rs6599389 Intron GAK 1 IDUA

Schizophrenia 25056061 rs3617 153617 Q315K ITIH3 8 ITIH3, JAKMIP3
Inflammatory

SLE, T1D 26502338 rs2304256 152304256 V362F TYK2 2 ICAMI1, ICAMS5

Crohn’s, IBD 21102463 rs11209026 rs11209026 R381Q IL23R 1 IL23R

AMD 2355636 rs10737680 rs10737680 Intron CFH 22 CFH, CFHR1, CFB
Cancer

Colorectal 24836286 rs2241714 rs1800469 1M TMEMO91 3 B3GNT2, TGFBI1

Lung 18978787 rs3117582 rs3117582 Intron APOM 10 MICB, ISG15

Melanoma 18488026 rs910873 rs910873 Intron PIGU 1 ASIP

“Protein QTLs overlapping GWAS lead SNPs using the PhenoScanner database*. No SNP proxies were applied except when the lead pSNP was not in the
query then we used the best proxy (r*>0.8 between markers). "The functional annotation of pQTLs was obtained from the PhenoScanner database®. “Reported
causal candidates are from the GWAS Catalog®. The definition of cis vs. trans effects is somewhat arbitrary depending on the window size chosen across
the protein gene in question. However, all affected proteins located at other chromosomes than the pQTL location, were considered trans acting and are
highlighted in bold letters. All significant pQTLs are listed in Supplementary Table 1 and the overlap with GWAS risk loci summarized in Supplementary
Table 2.

-18-


https://doi.org/10.1101/2020.05.06.080440
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.080440; this version posted May 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

3.9%
Y _2.4%
. Enzymes
. Kinases
0,
0.4% . wPTs
Nuclear Hormone Receptors

Secreted Proteins
Signal Transducers

SPTM Receptors

38.4%
Structural Molecules

Transcription Regulator

2.1%

APOE FUT2
HRG. PF4V1 HLA ABO VTN

| | W\”/

O
=
T

H ! . 3 0
gi. .:.- L) i v 5 R :.-' 2
m: L _i N L -' } : L] w . ol .I :I . L]
Tof - 2 S P S-S 3 : : . o
17 4 .5&i * - : i | 27 T |b . ¥ oe® e " s i
164 . 8% | RO I R H | o o ceno ol 4o d oaeilet,
c 157, . : s "4 * e o T
-9 14 - ¥ - :- ot ® . : o . *a . [ ) R R : - . ‘-'
."ﬁ 13+ .ge B . » apase ole . e e o "0 o]
g e C [] . | ] Ld ] - .
o 12 v | o e Y . } re . o % Y . . : . .
Q. 11...‘!- . I . e[e 1 o °F e | Sl B e
"g 101 e+, d ¥ : . i S L S ERLEEE
L] L] - 4 K
-— 9 L - -
1) . . o |y 4w . . . P et el O
® a_v A o . L. o " o .' o . .l
ool ol o 4o . X . e E)
- PP . . b . 4 . ¥
o L& N Mo " . e N . . .
1. L L T - . w » FL g . . v F
O 6 ad |o - 8 '?ff', eo, B eal a . 4 .
by * g " -y . y 'K ol & v o A ] e Yee -, h
5T. . > |a ¢ P : L
o L . .
4’1. ag | ™ g e i 4 ! . . . [ ¢ L i'
T S I R R L
S R N A A R N RN RN
, -.: RCE g J N RO e
i . . R H. . . "ea
: RIS SEEY SR S )
o 'Sﬁ R P Y RTINS . T K L wh’ .E
il Ve o gcl. Jiele o | ood et L,
1 2 3 4 5 6 7 8 ] 0 11 12 13 14 15 16 17 181920 2122

Protein QTL position

Figure 1

-19-


https://doi.org/10.1101/2020.05.06.080440
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.080440; this version posted May 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Number of traits per variant

13

[AS

All datasets
p=0.570
1504 , °
100 1
v .
) i i“‘i*
04
123456 7 8 9 10510
Numer of proteins per variant
Figure 2

‘&

5

WO TVIRR iy uy
¥

i \\\“

1 22
19 % 7
A® mwi i
o W
SR
s
& B
£
s,
.
#;
%,
"G 4] /
&y
o Utpggy

8

-20-

FYHAD

x

>
ﬂ!lﬂw &

e
L)

1

Height
Body mass index
Waist circumference

Schizophrenia
Bipolar disorder
Major depression

Reticulocyte count


https://doi.org/10.1101/2020.05.06.080440
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.080440; this version posted May 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

a b
: 3
1259 P = 2x10-107
]
2
. =
100 : ID—: -1
> -2
3 3
4 ) —T
- chr 17 GG GA AA
s " rs610932
g L ]
- P = 1x10-10
2
50 % 1
m 0
- Foo
25 -2
- -3 —
““““ RO Chr. 6 q_ﬁ“\ qbf‘@
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 2122 TREMZ pArg47HIS
Chromosome rs75932628

4 _
3
TREM2 survival curves e
Value

. 1007
= TREM2(R47R) — TREM2
O 801
m
S 60 — GLTPD2
= TREM2(R47H)
T 40
= =i A4GALT
g 20/
ZE IGFBL1
65 70 75 80 85 90 95 100 5 » © =
a6 L @m
Age (years) N Z = =
- N
Figure 3

21-


https://doi.org/10.1101/2020.05.06.080440
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.080440; this version posted May 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

a b
201
P =2x10-1
. 2
15 ; by 1 *
2 L
. ol
o D -1
[=]
‘gm * . 2
T

chr. 9 <( <G L

SVEP1: p.Asp2702Gly
rs111245230

8 10 11 12 13 14 15 16 17 1819202122

! 9
Chromosome

P =8x10° P =1x104 P =4x10-12 HR =1.27, P =9x10°

-
o
o

Q
3
3

SVEP1 low

SVEP1
o
SVEP1
o
|
SVEP1
o
|
Survival probability
o
Pl

SVEP1 high
— 24— 2| 0.00
6“0\% © & D ,\%og,b(gb‘@ &0 0 3 6 9 12
Sy © o Systolic BP Time of follow-up (years)
Figure 4

22-


https://doi.org/10.1101/2020.05.06.080440
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.06.080440; this version posted May 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

a b
P = 31077 Cis and trans pQTLs z: 22"10'24
r.
: B3GNT2 3
2 24
- B3GNT8
% 1 ; ‘ TGFB1 E 14
<0 G 0+H
-1 i m_1q4
- ‘ TMEM91 24
rs1800469 Chr. 19 -37 3- 34
Al o rs2241714 © & ] SAR RS
rs910873 GWAS Colorectal Cancer rs2241714 rs2241714 rs2241714
Figure 5

23-


https://doi.org/10.1101/2020.05.06.080440
http://creativecommons.org/licenses/by-nd/4.0/

