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Abstract

Age has a major effect on brain volume. However, the normative studies available are
constrained by small sample sizes, restricted age coverage and significant methodological
variability. These limitations introduce inconsistencies and may obscure or distort the
lifespan trajectories of brain morphometry. In response, we capitalised on the resources of
the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to
examine the age-related morphometric trajectories of the ventricles, the basal ganglia
(caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and
amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-
90 years. All subcortical structure volumes were at their maximum early in life; the volume of
the basal ganglia showed a gradual monotonic decline thereafter while the volumes of the
thalamus, amygdala and the hippocampus remained largely stable (with some degree of
decline in thalamus) until the sixth decade of life followed by a steep decline thereafter. The
lateral ventricles showed a trajectory of continuous enlargement throughout the lifespan.
Significant age-related increase in inter-individual variability was found for the hippocampus
and amygdala and the lateral ventricles. These results were robust to potential confounders
and could be used to derive risk predictions for the early identification of diverse clinical

phenotypes.
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Introduction

Over the last 20 years, studies using structural magnetic resonance imaging (MRI) have
confirmed that brain morphometric measures changes with age. In general, whole brain,
global and regional gray matter volumes increase during development and decrease with
aging (Brain Development Cooperative Group, 2012; Driscoll et al. 2009; Fotenos et al.
2005; Good et al. 2001; Pfefferbaum et al. 2013; Pomponio et al., 2019; Raz et al. 2005;
Raznahan et al. 2014; Resnick et al. 2003; Walhovd et al. 2011). However, most published
studies are constrained by small sample sizes, restricted age coverage and methodological
variability. These limitations introduce inconsistencies and may obscure or distort the
lifespan trajectories of brain structures. To address these limitations, we formed the Lifespan
Working group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA)
Consortium (Thompson et al. 2014, 2017) to perform large-scale analyses of brain
morphometric data extracted from MRI images using standardized protocols and unified

quality control procedures, harmonized and validated across all participating sites.

Here we focus on ventricular, striatal (caudate, putamen, nucleus accumbens), pallidal,
thalamic, hippocampal and amygdala volumes. Subcortical structures are crucial for normal
cognitive and emotional adaptation (Grossberg, 2009). The striatum and pallidum (together
referred to as basal ganglia) are best known for their role in action selection and movement
coordination (Calabresi et al. 2014) but they are also involved in other aspects of cognition
particularly memory, inhibitory control, reward and salience processing (Chudasama and
Robbins 2006; Richard et al. 2013; Scimeca and Badre 2012; Tremblay et al. 2015). The
role of the hippocampus has been most clearly defined in connection to declarative memory
(Eichenbaum, 2004; Shohamy and Turk-Browne 2013) while the amygdala has been
historically linked to affect processing (Kober et al. 2008). The thalamus is centrally located
in the brain and acts as a key hub for the integration of motor and sensory information with
higher-order functions (Sherman 2005; Zhang et al. 2010). The role of subcortical structures
extends beyond normal cognition because changes in the volume of these regions have
been reliably identified in developmental (Ecker et al. 2015; Krain and Castellanos 2006),
psychiatric (Kempton et al. 2011; Hibar et al. 2016; Schmaal et al. 2016; van Erp et al. 2016)

and degenerative disorders (Risacher et al. 2009).

Using data from 18,605 individuals aged 3-90 years from the ENIGMA Lifespan working
group we delineated the age-related trajectories of subcortical volumes from early to late life
in order to (a) identify periods of volume change or stability, (b) provide normative, age-

adjusted centile curves of subcortical volumes and (c) quantify inter-individual variability in
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subcortical volumes which is considered a major source of inter-study differences in age-

related trajectories derived from smaller samples (Dickie et al. 2013; Raz et al. 2010).

Materials and Methods

Study Samples

The study data comes from 88 samples and comprising 18,605 healthy participants, aged 3-
90 years, with near equal representation of men and women (48% and 52%) (Table 1,
Figure 1). At the time of scanning, participating individuals were screened to exclude the
presence of mental disorders, cognitive impairment or significant medical morbidity. Details
of the screening process and eligibility criteria for each research group are shown in Table
S1).

Neuroimaging

Detailed information on scanner vendor, magnet strength and acquisition parameters for
each sample are presented in Table S1. For each sample, the intracranial volume (ICV) and
the volume of the basal ganglia (caudate, putamen, pallidum, nucleus accumbens),
thalamus, hippocampus, amygdala and lateral ventricles were extracted using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu) from high-resolution Ts-weighted MRI brain scans (Fischl
et al. 2002, 2012). Prior to data pooling, images were visually inspected at each site to
exclude participants whose scans were improperly segmented. After merging the samples,
outliers were identified and excluded using Mahalanobis distances. In each sample, the
intracranial volume (Figure S1) was used to adjust the subcortical volumes via a formula
based on the analysis of the covariance approach: 'adjusted volume = raw volume — b x (ICV
— mean ICV)', where b is the slope of regression of a region of interest volume on ICV (Raz
et al. 2005). The values of the subcortical volumes were then harmonized between sites
using the ComBat method in R (Fortin, et al. 2017; 2018; Radua et al., 2019 this issue).
Originally developed to adjust for batch effect in genetic studies, ComBat uses an empirical
Bayes to adjust for inter-site variability in the data, while preserving variability related to the

variables of interest.

Fractional polynomial regression analyses

The effect of age on each ICV- and site-adjusted subcortical volume was modelled using
high order fractional polynomial regression (Royston and Altman 1994; Sauerbrei et al.
2006) in each hemisphere. Because the effect of site (and thus scanner and Freesurfer
version) were adjusted using ComBat, we only included sex as a covariate in the regression

models. Fractional polynomial regression is currently considered the most advantageous
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modelling strategy for continuous variables (Moore et al. 2011) as it allows testing for a wider
range of trajectory shapes than conventional lower-order polynomials (e.g., linear or
quadratic) and for multiple turning points (Royston and Altman 1994; Royston et al. 1999).
For each subcortical structure, the best model was obtained by comparing competing
models of up to three power combinations. The powers used to identify the best fitting model
were -2, -1, -0.5, 0.5, 1, 2, 3 and the natural logarithm (In) function. The optimal model
describing the association between age and each of the volumes was selected as the lowest
degree model based on the partial F-test (if linear) or the likelihood-ratio test. To avoid over-
fitting at ages with more data points, we used the stricter 0.01 level of significance as the
cut-off for each respective likelihood-ratio tests, rather than adding powers, until the 0.05
level was reached. For ease of interpretation we centred the volume of each structure so
that the intercept of a fractional polynomial was represented as the effect at zero for sex.
Fractional polynomial regression models were fitted using Stata/IC software v.13.1 (Stata
Corp., College Station, TX). Standard errors were also adjusted for the effect of site in the

FP regression.

We conducted two supplemental analyses: (a) we specified additional FP models separately
for males and females and, (b) we calculated Pearson’s correlation coefficient between
subcortical volumes and age in the early (6-29 years), middle (30-59 years), and late-life (60-
90 years) age-group. The results of these analyses have been included in the supplemental

material.

Inter-individual variability

Inter-individual variability was assessed using two complimentary approaches. First, for each
subcortical structure we compared the early (6-29 years), middle (30-59 years) and late-life
(60-90 years) age-groups in terms of their mean inter-individual variability; these groups
were defined following conventional notions regarding periods of development, midlife and

aging. The variance of each structure in each age-group was calculated as

2
Zei

ng

In

where e represents the residual variance of each individual (i) around the non-linear best
fitting regression line, and n the number of observations in each age-group (t). The residuals
(ei) were normally distributed suggesting good fit of the model without having over- or under-
fitted the data. Upon calculating the square root of the squared residuals we used the natural

logarithm to account for the positive skewness of the new distribution. Then the mean inter-
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individual variability between early (6-29 years), middle (30-59 years) and late-life (60-90
years) age-groups was compared using between-groups omnibus tests for the residual
variance around the identified best-fitting non-linear fractional polynomial model of each
structure. The critical alpha value was set at 0.003 following Bonferroni correction for
multiple comparisons.

The second approach entailed the quantification of the mean individual variability of each
subcortical structure through a meta-analysis of the standard deviation of the adjusted

volumes according to the method proposed by Senior et al. 2016.

Centile Curves

Reference curves for each structure by sex and hemisphere were produced from ICV- and
site-adjusted volumes as normalized growth centiles using the parametric Lambda (A), Mu
(v), Sigma (o) (LMS) method (Cole and Green, 1992) implemented using the Generalised
Additive Models for Location, Scale and Shape (GAMLSS) in R (http://cran.r-
project.org/web/packages/gamiss/index.html)(Rigby and Stasinopoulos, 2005; 2007). LMS
allows for the estimation of the distribution at each covariate value after a suitable
transformation and is summarized using three smoothing parameters, the Box-Cox power A,
the mean y and the coefficient of variation 0. GAMLSS uses an iterative maximum
(penalized) likelihood estimation method to estimate A, y and o as well as distribution
dependent smoothing parameters and provides optimal values for effective degrees of
freedom (edf) for every parameter (Indrayan, 2014). This procedure minimizes the
Generalized Akaike Information Criterion (GAIC) goodness of fit index; smaller GAIC values
indicate better fit of the model to the data. GAMLSS is a flexible way to derive normalized
centile curves as it allows each curve to have its own number of edf while overcoming

biased estimates resulting from skewed data.

Results

Fractional polynomial regression analyses

The volume of the caudate, putamen, globus pallidus and nucleus accumbens peaked early
during the first decade of life and showed a linear decline immediately thereafter (Figure 2,
Figures S2-S4). The age-related trajectories of the thalamic, hippocampal and amygdala
volumes followed a flattened, inverted U-curve (Figure 3, Figures S5-S6). Specifically, the
volumes of these structures were largest during the first 2-3 decades of life, remained largely
stable until the 6™ decade and declined gradually thereafter (Table S2). The volume of the

lateral ventricles bilaterally increased steadily with age (Figure S7). The smallest proportion
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of variance explained by age and its FP derivatives was noted in the right amygdala (7%)

and the largest in the lateral ventricles bilaterally (38%) (Table S2).

Striatal volumes correlated negatively with age throughout the lifespan with the largest
coefficients observed in the middle-life age-group (r=-0.39 to -0.20) and the lowest (|r|<0.05)
in the late-life age-group, particularly in the caudate. The volumes of the thalamus, the
hippocampus and the amygdala showed small positive correlations with age (r=0.16) in the
early-life age-group. In the middle-life age-group, the correlation between age and
subcortical volumes became more negative (r=-0.30 to -0.27) for the thalamus but remained
largely unchanged for the amygdala and the hippocampus. In the late-life age-group, the
largest negative correlation coefficients between age and volume were observed for the
hippocampus bilaterally (r=-0.44 to -0.39). The correlation between age and lateral
ventricular volumes bilaterally increased throughout the lifespan from r=0.19 to 0.20 in early-
life age-group to r= 0.40 to 0.45 in the late-life age-group (Table S3). No effect of sex was

noted for any pattern of correlation between subcortical volumes and age in any age-group.

Inter-individual variability: For each structure, the mean inter-individual variability in volume
in each age-group is shown in Table S5. Inter-individual variance was significantly higher for
the hippocampus, thalamus amygdala and lateral ventricles bilaterally in the late-life age-
group compared to both the early- and middle-life group. These findings were recapitulated

when data were analysed using a meta-analytic approach (Figure 4 and Figure S8).

Normative Centile Curves: Centile normative values for each subcortical structure stratified

by sex and hemisphere are shown in Tables S6-S8.

Discussion

We analysed subcortical volumes from 18,605 healthy individuals from multiple cross-
sectional cohorts to infer age-related trajectories between the ages of 3 to 90 years. Our
lifespan perspective and our large sample size complement and enrich previous literature on

age-related changes in subcortical volumes.

We found three distinct age-related trajectories. The volume of the lateral ventricles
increased monotonically with age. Striatal and pallidal volumes peaked in childhood and
declined thereafter. The volumes of the thalamus, hippocampuus and amygdala peaked
later and showed a prolonged period of stability lasting till the 6™ decade of life, before they

also started to decline. The trajectories defined here represent a close approximation to a
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normative reference dataset and are in line with findings from Pomponio et al (2019) who
also used harmonised multi-site MRI data from 10,323 individuals aged 3-96 years. Similar
findings were reported by Douaud and colleagues (2014) who analysed volumetric data from
484 healthy participants aged 8 to 85 years; they also noted the similarity in the age-related
trajectories of the thalamus, hippocampus and the amygdala. Our results also underscore
the acceleration in age-related decline from the 6" decade of life onwards. This effect
seemed relatively more pronounced for the hippocampus, compared to the other subcortical
regions, as observed in other studies (Jernigan et al. 2001; Pomponio et al. 2019; Raz et al.
2010).

The trajectories of subcortical volumes are shaped by genetic and non-genetic exposures,
biological or otherwise (Eyler et al. 2011; Somel et al. 2010; Wardlaw et al. 2011). Our
findings of high age-related inter-individual variability in the volumes of the thalamus,
hippocampus and amygdala suggest that these structures may be more susceptible to

person-specific exposures, or late-acting genes, particularly from the 6th decade onwards.

In medicine, biological measures from each individual are typically categorised as normal or
otherwise in reference to a population derived normative range. This approach is yet to be
applied to neuroimaging data, despite the widespread use of structural MRI for clinical
purposes and the obvious benefit of a reference range from the early identification of
deviance (Dickie et al. 2013; Pomponio et al. 2019). Alzheimer's disease provides an
informative example as the degree of baseline reduction in medial temporal regions, and
particularly the hippocampus, is one of the most significant predictors of conversion from
mild cognitive impairment to Alzheimer’s disease (Risacher et al. 2009). The data presented
here demonstrate the power of international collaborations within ENIGMA for analyzing very
large-scale datasets that could eventually lead to normative range for brain volumes for well-
defined reference populations. The unique strengths of this study are the availability of age-
overlapping cross-sectional data from healthy individuals, lifespan coverage and the use of
standardized protocols for volumetric data extraction across all samples. Study participants
in each site were screened to ensure mental and physical wellbeing at the time of scanning
using procedures considered as standard in designating study participants as healthy
controls. Although health is not a permanent attribute, it is extremely unlikely given the size

of our sample that our results could have been systematically biased by incipient disease.

A similar longitudinal design would be near infeasible in terms of recruitment and retention
both of participants and investigators. Although multisite studies have to account for
differences in scanner type and acquisition, lengthy longitudinal designs encounter similar

issues due to inevitable changes in scanner type and strength and acquisition parameters

12


https://doi.org/10.1101/2020.05.05.079475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.079475; this version posted May 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Short title: Subcortical trajectories throughout life

over time. In this study, the use of age-overlapping samples from multiple different countries
has the theoretical advantage of diminishing systematic biases reflecting cohort and period

effects (Glenn, 2003; Keyes et al. 2010) that are likely to operate in single site studies.

In conclusion, we used existing data to derive age-related trajectories of regional subcortical
volumes. The size and age-coverage of the analysis sample has the potential to
disambiguate uncertainties regarding developmental and aging changes in subcortical
volumes while the normative centile values could be further developed to derive clinically

meaningful predictors of risk of adverse health outcomes.
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Table 1. ENIGMA samples
Sample Age, Mean | Age, SD | Age Range Sample Male
(Years) (Years) (Years) Size (N) Female
(N) (N)
ADHD NF 13.4 0.9 12-15 12 6 6
AMC 23 3.4 17-32 94 60 34
Barcelona 1.5T 15 1.8 11-17 25 12 13
Barcelona 3T 14.5 2.2 11-17 37 18 19
Betula 62.5 12.8 26-81 263 123 140
BIG 284 14.3 13-82 1311 651 660
BIG 241 8.1 18-71 1275 537 738
BIL&GIN 26.7 7.7 18-57 451 219 232
CAMH 43.6 19.3 18-86 141 72 69
Cardiff 25.2 7.1 18-58 290 78 212
CEG 15.6 1.7 13-19 32 32 0
CIAM 26.1 4.8 19-40 27 13 14
CLIiNG 25.2 5.3 18-58 316 130 186
CODE 39.7 13.3 20-64 72 31 41
ENIGMA-HIV 247 4.5 19-33 30 15 15
ENIGMA-OCD (1) 14.9 2 12-17 6 2 4
ENIGMA-OCD (2) 34.5 12.7 18-61 23 11 12
ENIGMA-OCD (3) 38.9 10.9 26-63 20 8 12
ENIGMA-OCD (4) 39.5 12.4 26-63 17 3 14
ENIGMA-OCD (5) 33.9 9.3 24-53 19 6 13
ENIGMA-OCD (6) 39.7 8.2 24-53 17 8 9
ENIGMA-OCD (7) 31.5 10.9 20-56 22 8 14
FBIRN 37.6 11.3 19-60 173 123 50
FIDMAG 37.5 10.1 19-64 123 54 69
GSP 27.2 16.5 18-90 1996 882 1114
HMS 39.6 12.2 19-64 55 21 34
HUBIN 42 8.8 19-56 102 69 33
IMH 31.9 10.1 20-59 78 49 29
Indiana 1.5T 62.5 11.7 37-84 49 9 40
Indiana 3T 27.7 20.1 6-87 199 95 104
KaSP 275 5.7 20-43 31 14 17
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Table 1. ENIGMA samples
Sample Age, Mean | Age, SD | Age Range Sample Male
(Years) (Years) (Years) Size (N) Female
(N) (N)
MAS 78.4 4.7 70-90 528 240 288
MCIC 32.5 12.1 18-60 91 61 30
Melbourne 19.9 29 15-26 79 46 33
METHCT 26.5 6.8 18-53 59 45 14
NESDA 40.3 9.7 21-56 65 23 42
NeurolIMAGE 16.7 3.6 8-28 345 155 190
Neuroventure 13.7 0.6 12-15 130 55 75
NU 32.8 14.8 14-68 79 46 33
NUIG 36.1 11.6 18-58 92 53 39
NYU 31.1 8.7 19-52 49 29 20
Olin 36 13.1 21-87 590 236 354
Oxford 16.2 1.4 14-19 38 18 20
QTIM 22.6 3.4 16-30 306 92 214
Sao Paolo (3) 30.5 8.4 18-50 76 42 34
SCORE 25.5 4.3 19-39 44 17 27
SHIP-2 54.4 12 32-81 190 99 91
SHIP TREND 50 13.5 22-79 425 229 196
StagedDep 46.9 8.4 27-58 19 4 15
Stanford 37 10.6 19-61 40 13 27
STROKEMRI 45.2 22.1 18-78 52 19 33
Sydney 39.1 22.1 12-84 157 65 92
TOP 35.4 9.9 18-73 303 159 144
TS-Eurotrain 10.9 1.1 9-13 45 29 16
Tuebingen 40.5 11.9 24-61 50 22 28
UMCU 39.7 14.5 19-65 66 26 40
UNIBA 274 9.1 18-63 128 64 64
UPENN 36.3 14 16-85 176 77 99
Yale 14.2 23 10-18 22 11 11
Total 32.9 18.3 6-90 11550 5334 6216

N=number; SD= standard deviation; Abbreviations of sample names: ADHD-NF=Attention
Deficit Hyperactivity Disorder- Neurofeedback Study; AMC=Amsterdam Medisch Centrum;
Barcelona=University of Barcelona; Betula=Swedish longitudinal study on aging, memory,
and dementia; BIG=Brain Imaging Genetics; BIL&GIN=a multimodal multidimensional
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database for investigating hemispheric specialization; CAMH=Centre for Addiction and
Mental Health; Cardiff=Cardiff University; CEG=Cognitive-experimental and Genetic study
of ADHD and Control Sibling Pairs; CIAM=Cortical Inhibition and Attentional Modulation
study; CLiING=Clinical Neuroscience Goéttingen; CODE=formerly Cognitive Behavioral
Analysis System of Psychotherapy (CBASP) study; ENIGMA-HIV=Enhancing
Neurolmaging Genetics through Meta-Analysis-Human Immunodeficiency Virus Working
Group; ENIGMA-OCD=Enhancing Neurolmaging Genetics through Meta-Analysis-
Obsessive Compulsive Disorder Working Group; FBIRN=Function Biomedical Informatics
Research Network; FIDMAG=Fundacién para la Investigacion y Docencia Maria Angustias
Giménez; GSP=Brain Genomics Superstruct Project; HMS=Homburg Multidiagnosis Study;
HUBIN=Human Brain Informatics; IMH=Institute of Mental Health, Singapore;
Indiana=Indiana University School of Medicine; KaSP=The Karolinska Schizophrenia
Project; MAS=Memory and Ageing Study; MCIC=MIND Clinical Imaging Consortium formed
by the Mental lliness and Neuroscience Discovery (MIND) Institute now the Mind Research
Network; Melbourne=University of Melbourne; Meth-CT=methamphetamine use, University
of Cape Town; NESDA=The Netherlands Study of Depression and Anxiety;
NeuroIMAGE=Dutch part of the International Multicenter ADHD Genetics (IMAGE) study;
Neuroventure: the imaging part of the Co-Venture Trial funded by the Canadian Institutes of
Health Research (CIHR); NU=Northwestern University; NUIG=National University of Ireland
Galway; NYU=New York University; Olin=0lin Neuropsychiatric Research Center;
Oxford=Oxford University; QTIM=Queensland Twin Imaging; Sao Paulo=University of Sao
Paulo; SCORE: University of Basel Study; SHIP-2 and SHIP TREND=Study of Health in
Pomerania; Staged-Dep= Stages of Depression Study; Stanford=Stanford University;
StrokeMRI=Stroke Magnetic Resonance Imaging; Sydney=University of Sydney;
TOP=Tematisk Omrade Psykoser (Thematically Organized Psychosis Research); TS-
EUROTRAIN=European-Wide Investigation and Training Network on the Etiology and
Pathophysiology of Gilles de la Tourette Syndrome; Tuebingen=University of Tuebingen;
UMCU=Universitair Medisch Centrum Utrecht; UNIBA=University of Bari Aldo Moro;
UPENN=University of Pennsylvania; Yale=Yale University
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Figure 1. ENIGMA Lifespan Samples

Details of each sample are provided Table 1 and in the supplemental material. Abbreviations
are provided in Table 1.
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Figure 2. Fractional Polynomial Plots for the Volume of the Basal Ganglia

Fractional Polynomial plots of adjusted volumes (mm?®) against age (years) with a fitted

regression line (solid line) and 95% confidence intervals (shaded area).
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Figure 3. Fractional Polynomial Plots for the Volume of the Thalamus, Hippocampus

and Amygdala

Fractional Polynomial plots of adjusted volumes (mm?®) against age (years) with a fitted

regression line (solid line) and 95% confidence intervals (shaded area).
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Figure 4. Mean Inter-individual Variability of Subcortical Volumes
Mean individual variability for each subcortical structure was estimated by means of a meta-

analysis of the standard deviation of the adjusted volumes in each age-group.
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