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Abstract

Human DNA-methylation data have been used to develop biomarkers of ageing -
referred to ‘epigenetic clocks’ - that have been widely used to identify differences
between chronological age and biological age in health and disease including
neurodegeneration, dementia and other brain phenotypes. Existing DNA methylation
clocks are highly accurate in blood but are less precise when used in older samples or
on brain tissue. We aimed to develop a novel epigenetic clock that performs optimally in
human cortex tissue and has the potential to identify phenotypes associated with
biological ageing in the brain. We generated an extensive dataset of human cortex DNA
methylation data spanning the life-course (n = 1,397, ages = 1 to 104 years). This
dataset was split into ‘training’ and ‘testing’ samples (training: n = 1,047; testing: n =
350). DNA methylation age estimators were derived using a transformed version of
chronological age on DNA methylation at specific sites using elastic net regression, a
supervised machine learning method. The cortical clock was subsequently validated in
a novel human cortex dataset (n = 1,221, ages = 41 to 104 years) and tested for
specificity in a large whole blood dataset (n = 1,175, ages = 28 to 98 years). We
identified a set of 347 DNA methylation sites that, in combination optimally predict age
in the human cortex. The sum of DNA methylation levels at these sites weighted by their
regression coefficients provide the cortical DNA methylation clock age estimate. The
novel clock dramatically out-performed previously reported clocks in additional cortical
datasets. Our findings suggest that previous associations between predicted DNA
methylation age and neurodegenerative phenotypes might represent false positives
resulting from clocks not robustly calibrated to the tissue being tested and for
phenotypes that become manifest in older ages. The age distribution and tissue type of
samples included in training datasets need to be considered when building and applying
epigenetic clock algorithms to human epidemiological or disease cohorts.
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Introduction

Advancing age is associated with declining physical and cognitive function, and is a
major risk factor for many human brain disorders including dementia and
neurodegenerative disease (Harper, 2014; Sierra, 2019). Understanding the biological
mechanisms involved in ageing will be a critical step towards preventing, slowing or
reversing age-associated phenotypes. Due to the substantial inter-individual variation in
age-associated phenotypes, there is considerable interest in identifying robust
biomarkers of ‘biological’ age, a quantitative phenotype that is thought to better capture
an individuals’ risk of age-related outcomes than actual chronological age (Jylhava et
al., 2019). Several data modalities have been used to generate estimates of biological
age; these include measures of physical fithess (e.g. muscle strength) (Sosnoff and
Newell, 2006), cellular phenotypes (e.g. cellular senescence) (Baker et al., 2011) and
genomic changes (e.g. telomere length) (Jylhava et al., 2017; Sanders and Newman,
2013).

Epigenetic mechanisms act to regulate gene expression developmentally via chemical
modifications to DNA and histone proteins (Bernstein et al., 2007), conferring cell-type-
specific patterns of gene expression and differing markedly between tissues and cell-
types (Mendizabal and Yi, 2016). There has been recent interest in the dynamic
changes in epigenetic processes over the life course, and a number of ‘epigenetic
clocks’ based on one specific epigenetic modification - DNA methylation (DNAm) - have
been developed that appear to be highly predictive of chronological age (Campisi and
Vijg, 2009; Horvath, 2013; Horvath et al., 2012, 2018; Knight et al., 2016; Oberdoerffer
and Sinclair, 2007; Simpkin et al., 2017). The landmark DNAm clock was developed by
Horvath (Horvath, 2013), who applied elastic net regression to lllumina DNAm array
data from a large number of samples derived from a range of tissues (n = ~ 8,000
across 51 tissue and cell types), and generated a predictor based on DNAm at 353 CpG
sites that is highly predictive of chronological age (Horvath, 2013). Given that changes
in DNAmM are known to index exposure to certain environmental risk factors for diseases

of old age (for example, tobacco smoking) (Elliott et al., 2014; Sugden et al., 2019), and
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variable DNAm is robustly associated with a number of age-associated disorders
(Chouliaras et al., 2018; Chuang et al., 2017; Smith et al., 2016), there has been
interest in the hypothesis that DNAm clocks might robustly quantify variation in
biological age. Horvath’s DNAm age clock, for example, has been widely applied to
identify accelerated epigenetic ageing - where DNAm age predictions deviate from
chronological age such that individuals appear older than they really are - in the context
of numerous health and disease outcomes (Horvath and Ritz, 2015; Levine et al., 2015;
Marioni et al., 2015; McCartney et al., 2018). Since age is a major risk factor for
dementia and other neurodegenerative brain disorders, there is particular interest in the
application of epigenetic clock algorithms to these phenotypes, especially as differential
DNAm has been robustly associated with diseases including Alzheimer’s disease and
Parkinson’s disease (Lunnon et al., 2014; Smith et al., 2016; Yu et al., 2015). Recent
studies have reported an association between accelerated DNAm age and specific
markers of Alzheimer’s disease neuropathology in the cortex (e.g. neuritic plaques,
diffuse plaques and amyloid-f3 load) (Levine et al., 2015, 2018). Furthermore, among
individuals with Alzheimer’s disease, DNAm age acceleration is associated with
declining global cognitive functioning and deficits in episodic and working memory
(Levine et al., 2015, 2018).

A major strength of existing epigenetic clocks is that they work relatively well across
different types of sample; the Horvath multi-tissue clock, for example, can accurately
predict age in multiple tissues across the life-course. However, as with any predictor,
the composition of the training data used to develop the clock influences the generality
of the model. To date, there has been limited research comparing the prediction
accuracy and potential bias of existing clock algorithms across different tissues and
ages. Recent analyses have highlighted potential biases when using Horvath'’s clock in
older samples (>~60 years) and in samples derived from certain tissues, especially the
central nervous system (El Khoury et al., 2019). This is important for the interpretation
of studies of possible relationships between accelerated epigenetic age and age-related
diseases affecting the human brain (e.g. dementia and neurodegenerative phenotypes);
reported associations between accelerated DNAmM age and disease may actually be a
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consequence of fitting a suboptimal predictor to available datasets. Potential
confounders include differential changes in DNAm with age across tissues, and the age
distribution of the samples used to train existing classifiers. Resolution of these biases
requires the construction of specific DNAm clocks developed using data generated on
the relevant tissue-type and including broad representation of the age spectrum they will
be used to interrogate. Recently, a number of tissue-specific DNA methylation clocks
have been described, including clocks designed for whole blood (Hannum et al., 2013;
Zhang et al., 2019), muscle (Voisin et al., 2019), bone (Gopalan et al., 2019) and
paediatric buccal cells (McEwen et al., 2019). Importantly, although these DNAm age
estimators have increased predictive accuracy within the specific tissues in which they
were built, they lose this precision when applied to other tissues (El Khoury et al., 2019).

We describe the development of a novel DNAm clock that is specifically designed for
application in DNA samples isolated from the human cortex and is accurate across the
lifespan including in tissue from elderly donors. We demonstrate that our clock
outperforms existing DNAm-based predictors developed for other tissues, minimising
the potential for spurious associations with ageing phenotypes relevant to the brain.

Materials and methods

Datasets used to develop the novel cortical DNAm age clock: To develop and
characterise our cortical DNAm age clock (“DNAmMClockcortical”) we collated an extensive
collection of DNAm data from human cortex samples (see Supplementary Table 1),
complementing datasets generated by our group (http://www.epigenomicslab.com) with
publicly available datasets downloaded from the Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) (Jaffe et al., 2016; De Jager et al., 2014; Lunnon et
al., 2014; Pidsley et al., 2014; Smith et al., 2018, 2019; Wong et al., 2019) (see
Supplementary Table 1). In each of these datasets DNAm was quantified across the
genome using the lllumina 450K DNA methylation array which covers >450,000 DNA
methylation sites as previously described (Pidsley et al., 2013). To optimise the
performance of the DNAmMClockcoriical and to avoid reporting over-fitted statistics, the
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samples were split into a “training” dataset (used to determine the DNAm sites included
in the model and their weighted coefficients) and a “testing” dataset (used to profile the
performance of the proposed model). To reduce the effects of experimental batch in our
model, we maximised the number of different datasets included in the training data by
combining the ten cohorts and randomly assigning individuals within them to either the
training or testing dataset in a 3:1 ratio (Table 1). In total, our training dataset (age
range = 1-108 years, median = 57 years; see Supplementary Fig. S1) comprised
DNAm data from 1,047 cortex samples (derived from 832 donors) and our testing
dataset (age range = 1-108 years, median = 56 years; see Supplementary Fig. S1)
comprised DNAm data from 350 cortex samples (derived from 323 donors). Individuals
with a diagnosis of Alzheimer’s disease and other major neurological phenotypes were
excluded from our analysis given the previous associations between them and
deviations in DNAm age (Levine et al., 2015, 2018).

Cortex validation dataset: An independent “validation” cortical dataset was generated
using post-mortem occipital (OCC) and prefrontal cortex (PFC) samples from the Brains
for Dementia Research (BDR) cohort. BDR was established in 2008 and is a UK-based
longitudinal cohort study with a focus on dementia research (Francis et al., 2018)
coordinated by a network of six dementia research centres based around the UK. Post-
mortem brains underwent full neuropathological dissection, sampling and
characterisation using a standardised protocol (Bell et al., 2008; Samarasekera et al.,
2013). DNA was isolated from cortical tissue samples using the Qiagen AllPrep
DNA/RNA 96 Kit (Qiagen, cat no.80311) following tissue disruption using BeadBug 1.5
mm Zirconium beads (Sigma Aldrich, cat no.Z763799) in a 96-well Deep Well Plate
(Fisher Scientific, cat n0.12194162) shaking at 2500rmp for 5 minutes. Genome-wide
DNA methylation was profiled using the lllumina EPIC DNA methylation array (lllumina
Inc), which interrogates >850,000 DNA methylation sites across the genome (Moran et
al., 2016). After stringent data quality control (see below) the final validation dataset
consisted of DNAm estimates for 800,916 DNAm sites profiled in 1,221 samples (632
donors; 610 PFC; 611 OCC; see Table 1 for more details). This dataset consists of
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predominantly elderly samples (age range = 41-104 years, median = 84 years; see
Supplementary Fig. S1).

Whole blood dataset: We recently generated DNAm data from whole blood obtained
from 1,175 individuals (age range = 28-98 years; median age = 59 years; see Table 1
for more details) included in the UK Household Longitudinal Study (UKHLS)
(https://www.understandingsociety.ac.uk/) (Hannon et al., 2018).The UKHLS was

established in 2009 and is a longitudinal panel survey of 40,000 UK households from
England, Scotland, Wales and Northern Ireland (Buck and McFall, 2011). For each
participant, non-fasting blood samples were collected through venipuncture; these were
subsequently centrifuged to separate plasma and serum, and samples were aliquoted
and frozen at —80°C. DNAm data were generated using the lllumina EPIC DNA
methylation array as described previously ((Hannon et al., 2018). After stringent QC
(see below) the whole blood dataset consisted of data for 857,071 DNAm sites profiled
in 1,175 samples (Hannon et al., 2018).

DNA methylation data pre-processing: Unless otherwise reported, all statistical analysis
was conducted in the R statistical environment (version 3.5.2; https://www.r-

project.org/). Raw data for all datasets were used, prior to any QC or normalisation, and
processed using either the wateRmelon (Pidsley et al., 2013) or bigmelon (Gorrie-Stone
et al., 2019) packages. Our stringent QC pipeline included the following steps: (1)
checking methylated and unmethylated signal intensities and excluding poorly
performing samples; (2) assessing the chemistry of the experiment by calculating a
bisulphite conversion statistic for each sample, excluding samples with a conversion
rate <80%; (3) identifying the fully methylated control sample was in the correct location
(where applicable); (4) multidimensional scaling of sites on the X and Y chromosomes
separately to confirm reported sex; (5) using the 65 SNP probes present on the lllumina
450K array and 59 on the lllumina EPIC array to confirm that matched samples from the
same individual (but different brain regions) were genetically identical and to check for
sample duplications and mismatches; (6) use of the pfilter() function in wateRmelon to
exclude samples with >1 % of probes with a detection P value > 0.05 and probes with


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063719; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

>1 % of samples with detection P value >0.05; (8) using principal component analysis
on data from each tissue to exclude outliers based on any of the first three principal
components; (9) removal of cross-hybridising and SNP probes (Chen et al., 2013). The
subsequent normalisation of the DNA methylation data was performed using the
dasen() function in either wateRmelon or bigmelon (Gorrie-Stone et al., 2019; Pidsley et
al., 2013).

Deriving a novel cortical DNAm age classifier: To build the DNAmClockcortical we
implemented an elastic net (EN) regression model, using the methodology described by
Horvath (2013). The EN model is designed for high dimensional datasets with more
features than samples and where the features are potentially highly correlated (Zou and
Hastie, 2005). As part of the methodology, the model selects the subset of features (i.e.
DNAm sites) that cumulatively produce the best predictor of a provided outcome. EN
was implemented in the R package GLMnet (Friedman et al., 2010). It uses a
combination of Ridge and LASSO (Least Absolute Shrinkage and Selection Operator)
regression. Ridge regression penalises the sum of squared coefficients and has an
(alpha) parameter of zero. LASSO regression penalises the sum of the absolute values
of the coefficients and has an a parameter of one. EN is a convex combination of ridge
and LASSO and, therefore, the elastic net a parameter was set to 0.5. The lambda
value (the shrinkage parameter) was derived using 10-fold cross-validation on the
training dataset (lambda = 0.0178). DNAm probes included in the analysis were limited
to sites which were present on both the Illumina EPIC and lllumina 450K arrays, with no
missing values across the training datasets (n probes = 383547). Previous analyses
have shown that the relationship between DNAm age (predicted age from epigenetic
age estimators) and chronological age is logarithmic between 0-20 years and linear
from 20 years plus (Horvath, 2013). Our data revealed a similar pattern and therefore
chronological age was transformed (Supplementary Fig. S2). A transformed version of
chronological age was regressed on DNAm levels at all included DNAm sites.

Implementing DNAm Age prediction: We applied the DNAmMCIlocKcortical (Comprising 347
DNAm sites) to the testing, validation and whole blood DNAm datasets. We then
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compared its performance to a number of existing DNAm clocks: Horvath’s original
multi-tissue clock (“DNAmMClockmut”; 353 DNAm sites) (Horvath, 2013), Zhang’s EN
blood-based DNAm clock (“DNAmMClocksicod”: 514 DNAmM sites) (Zhang et al., 2019) and
Levine’s ‘pheno age’ DNAm Clock (“DNAmMCIockpheno’; 513 DNAm sites) (Levine et al.,
2018). Briefly, to predict DNAm age using the DNAmClockwuti we applied the agep()
function in wateRmelon (Pidsley et al., 2013). Although this function does not contain
the custom normalisation method applied at the DNAm age calculator website

(https://DNAmMClock.genetics.ucla.edu/), both methods work similarly in brain and blood

studies, providing the data have been pre-processed adequately (El Khoury et al.,
2019).To predict age using the DNAmMClockpneno (Levine et al., 2018), we also applied
the agep() function, inputting a vector of the coefficients and the intercept using the data
provided in the supplementary material of Levine et al’'s manuscript. To predict DNAm
age with the DNAmMClockoiood, We used the authors’ published code (available on GitHub
https://github.com/gzhang314/DNAm-based-age-predictor) (Zhang et al., 2019).

Determining the predictive accuracy of different DNAm clocks: DNAm age was
estimated in the testing dataset (n = 350), validation dataset (n = 1221) and whole blood
dataset (n = 1175) using the DNAmClockcortical, DNAMClockmuiti, DNAMClocksicod @and
the DNAmMClockpheno. TO compare and evaluate the predictive accuracy of these DNAm
age predictors, estimates were assessed using two measures: Pearson’s correlation
coefficient (r; a measure indicating the strength of the linear relationship between the
actual (chronological age) and predicted (DNAm age) variables) and the root mean
squared error (RMSE; square root of the mean differences between the actual and

predicted variables) which quantifies the precision of the estimator.

Analysis against age: To test associations between DNAm age and chronological age,
we fitted regression models to each dataset. As a subset of donors included in the
testing and validation datasets had data from multiple cortical regions, we used mixed
effects linear regression models, implemented with the Ime4 and ImerTest packages,
where DNAmM age was regressed against chronological age as a fixed effect and
individual was included as a random effect. In the blood cohort, as there was only one
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sample per individual, we applied standard linear regression models. A second
regression model was also fitted which additionally tested for associations with an age-

squared term.

Data availability: The datasets used for the training and testing samples are available
for download from GEO (https://www.ncbi.nlm.nih.gov/geo/) using the following
accession numbers: GSE74193; GSE59685; GSE80970; GPL13534 and GSE43414.

The validation data are available from the authors upon reasonable request. The whole

blood DNA methylation data are available upon application through the European
Genome-Phenome Archive under accession code EGAS00001001232. Analysis scripts
used in this manuscript are available on GitHub (https://github.com/gzhang314/DNAmM-

based-age-predictor).

Results

Existing DNAm clock algorithms work sub-optimally in the human cortex, systematically
underestimating age in elderly individuals

The performance of DNAm clocks is influenced by the characteristics (e.g. specific
tissue type and age range) of the training data used to build the prediction algorithm.
Applying predictors to datasets that differ in terms of these characteristics may lead to
biases when estimating DNAm age, and confound phenotypic analyses using these
variables (El Khoury et al., 2019). We found that existing DNAm clocks (i.e. the
DNAmClockwmuri (Horvath, 2013) the DNAmMClocksiood (Zhang et al., 2019) and the
DNAmMCIockpneno (Levine et al., 2018)) do not perform optimally in human cortex tissue
(Supplementary Fig. S3), with notable differences between derived DNAm age and
actual chronological age (i.e. the derived values do not lie along the y = x line, see Fig.
1). In our testing dataset (n = 350 cortex samples; age range = 1 - 108 years; median
age = 57 years), the DNAmMClockmuti systematically overestimated DNAm age in
individuals over ~60, and systematically underestimated it in individuals below ~60
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years (Fig. 1A(ii) and Fig. 2A(ii)). In the elderly group, around 80% of samples had
lower predicted DNAm ages than their actual chronological age. These deviations were
also observed when looking at the mean differences between actual age and predicted
DNAm age (referred to as A (delta) age), such that A age was positive for younger ages
and vice versa for the elderly group (Supplementary Fig. S4A). Use of the
DNAmMClocksicod produced even more pronounced systematic underestimation of DNAm
age in adults, starting around 30 years (Fig. 1A(iii) and Fig. 2A(iii)), and this trend was
mirrored for A age (see Supplementary Fig. S4A). Finally, the DNAmMCIockpheno
severely under predicted age in the cortex, with 100% of samples being assigned a
lower DNAm age than the actual chronological age (Fig. 1A(iv), Fig. 2A(iv) and
Supplementary Fig. S4A(iv)). Similar biases in age prediction were seen in our
validation cohort (n = 1,221 cortex samples; age range = 41 years to 104 years; mean
age = 83.49 years), confirming the systematic underestimation of DNAm age in elderly
donors (see Fig. 1B and Fig. 2B). As with the other clocks, A age captured these
biases, with particularly poor performance evident when applying the DNAmMClockpheno
and the DNAmMClocksicod to this dataset, in which A age was consistently below zero
(where zero would represent perfect prediction; see Supplementary Fig. S4B).

Developing a novel DNAm clock for the human cortex based on 347 DNA methylation

sites

The composition of the training data used to build a predictor can influence the
generality of the model. Therefore, to alleviate the biases observed when applying
existing DNAm clocks to data generated on elderly human cortex samples, we focussed
on building a DNAm clock using relevant tissue samples from donors that spanned a
broad range of ages and included a large number of samples from elderly donors
(Supplementary Fig. S1). We developed our novel cortical DNAm clock
(DNAmMClockcortical) Using an elastic net regression, regressing chronological age against
DNAm levels across 383,547 sites quantified 1,047 cortex samples (see Methods).

This approach identified a set of 347 DNAm sites which in combination optimally predict
age in the human cortex. The sum of DNAm levels at these sites weighted by their

11
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regression coefficients provides the DNAmMCIlockcortica age estimate (see
Supplementary Table 2). Of note, the majority of sites selected for our cortex clock
were novel and not present in existing DNAm clock algorithms; only 5 of the sites
overlap with the DNAmMClockmuti (composed of 353 DNAm sites), 15 with the
DNAmMClocksiood (comprising 514 DNAm sites), and 5 with the DNAmMClockpheno
(comprising 513 DNAm sites) (see Supplementary Table 3).

Increased prediction accuracy of the novel cortex clock in cortical tissue compared to
existing DNAm clocks

We used the DNAmMClocKcortical to estimate DNAm age in both the testing (n = 350
cortex samples) and validation (n = 1221 cortex samples) datasets, and comparing the
estimates to those derived using DNAmMClockmuti, DNAMClockgiced and
DNAmMCIlockpheno. The DNAMClockcortical predicted age accurately in the testing dataset
and there was a strong correlation between DNAm age and age (r = 0.99; Table 2 and
Fig. 1A(i)). In the validation dataset, which consisted predominantly of elderly samples,
our clock also performed well and was highly correlated with age (r = 0.83),
outperforming DNAmMClockwmuti (r = 0.65), DNAmMClockgiood (r = 0.52), and
DNAmMCIlockpheno (r = 0.32) (see Table 2; Fig. 1B(i)). The most striking differences were
in the accuracy of the DNAmMCIlocKcortical in comparison to previously developed DNAmM
clocks; it outperformed the three other clocks we tested across all accuracy statistics in
both cortical datasets (Table 2). The biggest differences in accuracy can be seen in the
validation dataset (see Fig. 1B; Fig. 2B and Supplementary Fig. S4B), in which the
RMSE was 15 years more accurate when using the DNAmMClockcortical (RMSE: 5 years)
than the DNAmClockmuti (RMSE: 20 years), 28 years more accurate than the
DNAmMClocksieod (RMSE: 33 years) and 77 years more accurate than the
DNAmMCIlockpheno (RMSE: 82 years). The DNAMClockrneno Was consistently the most
inaccurate at estimating age in the cortical data sets (RMSE: testing 60 years; validation
82 years), followed by DNAmMClockgiood (RMSE: testing 19 years; validation 33 years)
and the DNAmClockmuuti (RMSE: testing: 10 years; validation 20 years) (see Table 2 for
more details).
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The relationship between age and DNAmMClock plateaus in old age

By definition, DNAm age is correlated with chronological age, meaning age is a
potential confounder for analyses of A age; not adequately controlling for age increases
the likelihood that false positive associations will be identified (El Khoury et al., 2019).
To assess associations between DNAmM age and chronological age we used a mixed
effects regression model (see Methods) and found that estimates from all four DNAm
age clocks were significantly associated with age in the testing dataset (Bonferroni P <
0.008, see Table 3). Many studies of A m age in health and disease control for age by
using a linear model to regress out its effect (Marioni et al., 2015; McKinney et al., 2018)
although one of the assumptions of this approach is that the prediction accuracy of the
DNAm clock is consistent across the life course. If the accuracy varies non-linearly with
chronological age, then simply including age as a linear covariate in association
analyses will not sufficiently negate the confounding effect of age. We therefore sought
to formally test the extent to which the prediction accuracy of the four clocks correlates
with age by including an age squared term in the regression model. In the testing
dataset all four clocks had a significant age squared term (Table 3), indicating that their
predictive accuracy varies as a function of age. Specifically, all clocks were associated
with a plateau where the difference between DNAmM age and chronological age
becomes larger as actual age increases (Fig. 2). Importantly, however, the coefficient
for the age squared term was smallest for the DNAmClockcorical (beta = -0.002, P =
1.94E-07), again highlighting that bespoke clocks can be used to minimise bias in

subsequent analyses.

The cortical clock loses accuracy when applied to non-cortical tissues

To assess the specificity of the novel cortex clock we next applied each of the DNAm
age clocks to a large whole blood DNAm dataset (n = 1175; age range = 28 - 98 years;

mean age = 57.96 years). Although the DNAmMClockcortica actually performed
remarkably well on whole blood (r = 0.88), with a similar predictive ability to the
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DNAmMClockmuti (r = 0.90) (Fig. 3 and Supplementary Fig. S5), there was a non-linear
relationship between DNAm age and age estimated using this clock and a systematic
under prediction of DNAm age in samples from people aged over 60 years (Fig. 3A(i)
and Fig. 3B(i)). The DNAmMClocksicod performed best on the blood dataset (r = 0.97),
outperforming the three other clocks (Table 4; Fig.3; Supplementary Fig. S5 and
Supplementary Fig. S6) and providing further support for the notion that epigenetic
clocks work optimally for the tissue-type on which they are calibrated.

Discussion

Existing DNAm age clocks have been widely utilised for predicting age and exploring
accelerated ageing in disease, although there is evidence of systematic underestimation
of DNAm age in older samples, particularly in the brain (El Khoury et al., 2019). We
developed a novel epigenetic age model specifically for human cortex - the cortical
DNAm clock (DNAmClockcortical) - built using an extensive collection of DNAm data from
>1000 human cortex samples. Our model dramatically outperforms existing DNAm-
based biomarkers for age prediction in data derived from the human cortex.

There are several potential causes of the systematic underestimation of DNAm age in
the cortex, especially in samples from elderly donors, when using existing DNAm clocks
such as Hovath’s DNAmMClockmut (Horvath, 2013), Zhang’s DNAmMCIlockgieod (Zhang et
al., 2019) and Levine’s DNAmMClockeneno (Levine et al., 2018). First, it may be a
consequence of the distribution of ages in the training data used in existing clocks;
these clocks were derived using samples containing a relatively small proportion of
samples from human brain and/or from older people. Second, as there is evidence for
cell-type and tissue specific patterns of DNAm (Mendizabal et al., 2019), the observed
imprecision may reflect a consequence of underfitting the model across tissues. Third,
the relationship between DNA methylation and age may not be linear across the
lifespan, and a non-linear model is needed to capture attenuated effects in older
samples. This would be comparable to the transformation required to accurately predict
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DNAm age for younger samples (0-20 years), where the association between age and
with DNA methylation is of larger magnitude.

Our data suggest that both tissue-specificity and the age of samples included in the
training dataset influence the precision of DNAm age estimators, as shown by the
increase in accuracy when using our cortical clock relative to existing clocks in human
cortex tissue samples. This notion is further supported by the accuracy we found using
the blood-based estimators on a large blood dataset. Our observations suggest that
tissue type has a major influence on the accuracy of DNAm age clocks, and to
accurately predict age it is important to use a clock calibrated specifically for the tissue
from which samples have been derived. Our data demonstrate that the performance of
existing DNAm clocks varies considerably across ages and is diminished in samples
from elderly donors. This is particularly important to consider when assessing DNAm
age in the context of diseases and phenotypes that are associated with older age such
as dementia and neurodegenerative disease. Our results show that it is important to use
a clock that has been trained using samples from the relevant age group; the training
data used in the development of the DNAmMCIlocKcorical included a good representation of
older samples, meaning it overcomes the systematic underestimation of DNAm age in
the elderly that was observed with existing clocks. The importance of developing tissue-
specific estimators is supported by other recently developed tissue-specific clocks
including DNAm age predictors for whole blood (Zhang et al., 2019), human skeletal
muscle (Voisin et al., 2019) and human bone (Gopalan et al., 2019), which all out
perform pan-tissue clocks in samples from the specific tissues in which they were
trained. It is known that DNA methylation patterns are distinct between tissue and cell
types (Mendizabal et al., 2019), and it is therefore not surprising that DNAm age
estimation models would differ in accuracy across tissue types. As technologies for
profiling DNAm in purified cell populations, future clocks should be developed for
specific cell-types to overcome issues of cellular heterogeneity in complex tissues such
as the brain.

15


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063719; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Although a pan-tissue estimator such as Horvath’s DNAmMClockwmuii has clear general
utility, the trade-off between accuracy and practicality needs to be taken into
consideration depending on the hypothesised question being tested. Applying one
model across multiple tissues may lead to a suboptimal fit (for example, when applying
a linear model where there is non-linearity). To assess the linearity of DNAm age
predictors we investigated the association between DNAm age, and age squared.
Adding the squared variable allowed us to more accurately model the effect of age,
which could have a non-linear relationship with DNAm age. The DNAmMCIockcortical Was
the most linear in terms of fitting DNAm age against actual age. Although age squared
terms were significantly associated with DNAm age in the testing data using all
estimators, the higher significance of the age squared term in the cortex-specific clock
suggests that of all the clocks, our model is the least biased. However, as indicated by
the relationship between DNAm and age squared, we need to consider the possibility
that fitting a linear model might not be the best approach, and to account for this
possibility we recommend that future age-acceleration analyses control for age squared

terms.

Due to the nature of DNAm clocks, A age estimated using existing clocks is highly
correlated with chronological age (El Khoury et al., 2019). If age is not controlled for it
could lead to spurious associations with health outcomes, which are driven by age and
not the variable of interest. Furthermore, as the prediction is less precise in older
individuals, even where DNAm is regressed on chronological age, the residual may still
be associated with age, potentially leading to false positive associations. Recent studies
have found associations between accelerated DNAm age in human brain and
neurodegenerative phenotypes (Levine et al., 2015, 2018). Our findings suggest that
previous associations with age-associated phenotypes may have been confounded by a
lack of robust calibration to estimate DNAm age in human cortex from elderly donors;
caution is warranted in interpreting reported results. While, DNAm age is a useful
indicator of age, it may not be the best indicator of health disparities between individuals
with brain disorders.
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In summary, we show that previous epigenetic clocks systematically underestimate age
in older samples and do not perform as well in human cortex tissue. We developed a
novel epigenetic age model specifically for human cortex. Our findings suggest that
previous associations between predicted DNAm age and neurodegenerative
phenotypes may represent false positives resulting from suboptimal calibration of
DNAm clocks for the tissue being tested and for phenotypes that manifest at older ages.
The age distribution and tissue type of samples included in training datasets need to be
considered when building and applying epigenetic clock algorithms to human
epidemiological or disease cohorts.
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FIGURE LEGENDS

Figure 1: Comparison of chronological age with DNA methylation age derived
using four DNA methylation age clocks. Shown are comparisons of chronological
age with predicted age in (A) the testing dataset (n = 350 cortical samples) and (B) the
validation dataset (n = 1221 cortical samples). DNAm age was predicted using four DNA

(ii) Horvath’'s DNAmClock

methylation age clocks: (i) our novel DNAmMClock Mult’

Cortical’

(iii) Zhang’s DNAmCIockBIOOd and (iv) Levine’s DNAmCIockPheno. The x-axis represents

chronological age (years) and the y-axis represents predicted age (years). Each point
on the plot represents an individual sample. Our cortical clock out-performed the three
alternative DNAm clocks across all accuracy statistics. DNA methylation age estimates
derived using the DNAmCIOCkMuIti (A(ii) testing and B(ii) validation) and the

DNAmCIockBIOOd (A(iii) testing and B(iii) validation) appear to have a non-linear

relationship with chronological age.

*DNAmMClock = Cortical DNA methylation age Clock; DNAmCIOCkMuIti = Multi-tissue

Cortical
DNA methylation age clock;
DNAmCIockBlood = Blood DNA methylation age clock and DNAmCIockPheno = Pheno Age

DNA methylation age clock.

Figure 2: The cortical DNA methylation age clock has elevated accuracy in human
cortex samples across the lifespan. Shown is the distribution of the error (DNA
methylation age - chronological age) for each age decile in (A) the testing dataset (n =
350 cortical samples) and (B) the validation dataset (n = 1221 cortical samples) for each

of the four DNA methylation age clocks: (i) our novel DNAmClock ; (ii) Horvath’s

Cortical’

DNAmMClock (iii) Zhang'’s DNAmCIockBIOOd and (iv) Levine’s DNAmCIockPheno.

Multi’
Deciles were calculated by assigning chronological age into ten bins and are
represented along the x-axis by the numbers one to ten, followed by brackets which
display the age range included in each decile. The ends of the boxes are the upper and
lower quartiles of the errors, the horizontal line inside the box represents the median
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deviation and the two lines outside the boxes extend to the highest and lowest
observations. Outliers are represented by points beyond these lines. The red horizontal

line represents perfect prediction (zero error). Our novel DNAmMClock A(i) testing

Cortical(
and B(i) validation) consistently had the smallest error across the age groups, shown by

the tightness of the boxplot distributions along the zero-error line. The DNAmCIockNIuIti

over-predicted younger ages (deciles 1-5 in A(ii)), shown by boxplots distributions
which are above the zero-error line, and under predicted older ages (deciles 8-10 in
A(ii) and deciles 1-10 in B(ii)), shown by boxplot distributions below the zero-error line.
The DNAmCIockBlood (A(iii) testing and By(iii) validation) and the DNAmCIockPhe (A(iv)

no
testing and B(iv) validation) consistently underpredicted age, with underprediction of
DNA methylation age increasing with chronological age.
*DNAmMClock = Cortical DNA methylation age Clock; DNAmCIOCkMuIti = Multi-tissue

Cortical
DNA methylation age clock;

DNAmCIockBIOO = Blood DNA methylation age clock and DNAmCIockPheno = Pheno Age

d

DNA methylation age clock

Figure 3: The blood based DNA methylation clock performs best in data derived
from whole blood samples. (A) Shown is a comparison of DNA methylation age
estimates against chronological age in a large whole blood dataset (n = 1175), where
DNAm age derived using four DNA methylation age clocks: (i) our novel

DNAmClock i) Horvath’s DNAmMClock ; (iii) Zhang’s DNAmMClock

Cortical; (") Multi’ and (IV)

Blood

Levine’s DNAmCIockPheno. The x-axis represents chronological age (years), the y-axis

represents predicted age (years). Each point on the plot represents an individual in the
whole blood dataset. Our novel clock does not predict as well in the cortex, although it
has a similar predictive ability to Horvath’s clock. The distribution of the error (DNA
methylation age - chronological age) is presented in (B) for each decile for each of the
four DNA methylation clocks. Deciles were calculated by assigning chronological age
into ten bins and are represented along the x-axis by the numbers one to ten, followed
by brackets which display the age range included in each decile. The ends of the boxes
are the upper and lower quartiles of the errors, the horizontal line inside the box
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represents the median deviation and the two lines outside the boxes extend to the
highest and lowest observations. Outliers are represented by points beyond these lines.
The red horizontal line represents perfect prediction (zero error).

*DNAmCIockCo ical = Cortical DNA methylation age Clock; DNAmCIOCkMuIti = Multi-tissue

DNA methylation age clock;

DNAmCIockBIOO = Blood DNA methylation age clock and DNAmCIockPheno = Pheno Age

d

DNA methylation age clock.
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TABLES
Table 1: Sample characteristics of the training (cortex), testing (cortex), validation (cortex) and whole blood datasets used

in the development and evaluation of our novel cortical DNA methylation clock.

Dataset Age (years) Sex (number) lllumina References for data
N Mean Median Range Female Male BeadCHIPArray
Training 1047 56.53 57 1-108 362 685 450K (Jaffe et al., 2016; De

Jager et al., 2014;
Lunnon et al., 2014;
Pidsley et al., 2014;
Smith et al., 2018,
2019; Wong et al.,
2019)

Testing 350 55.87 56 1-108 144 206 450K (Jaffe et al., 2016; De
Jager et al., 2014;
Lunnon et al., 2014;
Pidsley et al., 2014;
Smith et al., 2018,
2019; Wong et al.,
2019)

Validation 1221 83.49 84 41-104 577 644 EPIC -

Blood 1175 57.96 59 28-98 686 489 EPIC Hannon et al. (2018)
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Table 2 — Our novel cortex clock outperforms existing DNA methylation age algorithms in human cortex samples.

Accuracy statistics between DNAm age estimates and chronological age using our novel cortical clock, Horvath’s multi-

tissue clock (Horvath, 2013), Zhang'’s elastic net blood clock (Zhang et al., 2019) and Levine’s Pheno Age clock (Levine et

al., 2018) in both the testing (n = 350 cortical samples) and validation (n = 1221 cortical samples) datasets. RMSE = root

mean squared error (years). MAD = mean absolute deviation (years).

Testing dataset (n =350) Validation dataset (n = 1221)
. Pheno Age Cortical Multi-tissue Blood Pheno Age
Cortical Clock Multi-tissue Clock Blood Clock
Clock Clock Clock Clock Clock
Correlation (r) 0.99 0.96 0.95 0.8 0.83 0.65 0.52 0.32
RMSE (years) 3.58 9.52 18.86 60.16 5.12 20.12 33.46 82.28
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Table 4 — The cortex clock is less accurate at estimating DNA methylation age algorithms in blood compared to
cortex tissue samples. Although still compares well to existing clock algorithms. Accuracy statistics between
DNAm age estimates and chronological age using our novel cortical clock, Horvath’s multi-tissue clock (Horvath, 2013),
Zhang'’s elastic net blood clock (Zhang et al., 2019) and Levine’s Pheno Age clock (Levine et al., 2018) in our blood
dataset (n = 1175 whole blood samples). RMSE = root mean squared error (years). MAD = mean absolute deviation
(years).

Cortical Clock Multi-tissue Clock Blood Clock Pheno Age Clock
Correlation (r) 0.88 0.90 0.97 0.87
RMSE (years) 10.79 7.32 3.95 11.70
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Table 3 — The relationship between DNAm age and age (age and age?) using different DNAm clock algorithms.

DNAm age was estimated using our novel cortical clock, , Horvath’s multi-tissue clock (Horvath, 2013), Zhang'’s elastic net

blood clock (Zhang et al., 2019) and Levine’'s Pheno Age clock (Levine et al., 2018) in the “testing” dataset (n = 350

cortical samples), the “validation” dataset (n =1221 cortical samples) and the blood dataset (n =1175 whole blood

samples).
Testing dataset Validation dataset Blood dataset
Beta SE P Beta SE P Beta SE P
DNAm agevs age 1.137 0.034 2.86E-108 1.031 0.174 5.31E-09 0.585 0.063 5.37E-20
Cortical Clock
DNAm age vs age’ -0.002 0.000 1.94E-07 -0.002 0.001 0.028 0.000 0.001 0.702
DNAm agevs age 1.082 0.041 3.17E-83 0.683 0.164 3.51E-05 0.754 0.065 6.01E-30
Multi-tissue clock
DNAm age vs age’ -0.004 0.000 2.45E-21 -0.002 0.001 0.085 -0.001 0.001 3.71E-02
Blood Clock DNAm agevs age 0.821 0.034 1.30E-74 0.640 0.175 3.00E-04 1.145 0.046 9.50E-111
00 oc
DNAm age vs age’ -0.003 0.000 1.81E-21 -0.002 0.001 0.057 -0.002 0.000 8.47E-09
DNAm agevs age 0.571 0.069 3.19E-15 -0.351 0.229 0.127 0.631 0.085 1.86E-13
Pheno Age Clock
DNAm age vs age’ -0.002 0.001 4.47E-03 0.004 0.001 0.014 0.001 0.001 0.388

25


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063719; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance
of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011; 479:
232-236.

Bell JE, Alafuzoff I, Al-Sarraj S, Arzberger T, Bogdanovic N, Budka H, et al. Management of a
twenty-first century brain bank: experience in the BrainNet Europe consortium. Acta
Neuropathol. 2008; 115: 497-507.

Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007; 128: 669-681.

Buck N, McFall S. Understanding Society: design overview. Longitudinal and Life Course
Studies 2011

Campisi J, Vijg J. Does damage to DNA and other macromolecules play a role in aging? If so,
how? J. Gerontol. A, Biol. Sci. Med. Sci. 2009; 64: 175-178.

Chen Y, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of
cross-reactive probes and polymorphic CpGs in the lllumina Infinium HumanMethylation450
microarray. Epigenetics 2013; 8: 203-209.

Chouliaras L, Pishva E, Haapakoski R, Zsoldos E, Mahmood A, Filippini N, et al. Peripheral
DNA methylation, cognitive decline and brain aging: pilot findings from the Whitehall Il imaging
study. Epigenomics 2018; 10: 585-595.

Chuang Y-H, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B. Parkinson’s disease is
associated with DNA methylation levels in human blood and saliva. Genome Med. 2017; 9: 76.

El Khoury LY, Gorrie-Stone T, Smart M, Hughes A, Bao Y, Andrayas A, et al. Systematic
underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol.
2019; 20: 283.

Elliott HR, Tillin T, McArdle WL, Ho K, Duggirala A, Frayling TM, et al. Differences in smoking
associated DNA methylation patterns in South Asians and Europeans. Clin. Epigenetics 2014;
6: 4.

Francis PT, Costello H, Hayes GM. Brains for dementia research: evolution in a longitudinal
brain donation cohort to maximize current and future value. J. Alzheimers Dis. 2018; 66: 1635—
1644.

Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via
Coordinate Descent. J Stat Softw 2010; 33: 1-22.

Gopalan S, Gaige J, Henn BM. DNA methylation-based forensic age estimation in human bone.
BioRxiv 2019

Gorrie-Stone TJ, Smart MC, Saffari A, Malki K, Hannon E, Burrage J, et al. Bigmelon: tools for
analysing large DNA methylation datasets. Bioinformatics 2019; 35: 981-986.

Hannon E, Gorrie-Stone TJ, Smart MC, Burrage J, Hughes A, Bao Y, et al. Leveraging DNA-
Methylation Quantitative-Trait Loci to Characterize the Relationship between Methylomic
Variation, Gene Expression, and Complex Traits. Am. J. Hum. Genet. 2018; 103: 654—665.

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation
profiles reveal quantitative views of human aging rates. Mol. Cell 2013; 49: 359-367.

Harper S. Economic and social implications of aging societies. Science 2014; 346: 587-591.

26


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063719; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Horvath S, Oshima J, Martin GM, Lu AT, Quach A, Cohen H, et al. Epigenetic clock for skin and
blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging
(Albany, NY) 2018; 10: 1758-1775.

Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of
Parkinson’s disease patients. Aging (Albany, NY) 2015; 7: 1130-1142.

Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MPM, van Eijk K, et al. Aging effects on DNA
methylation modules in human brain and blood tissue. Genome Biol. 2012; 13: R97.

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14:
R115.

Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA
methylation across development, genotype and schizophrenia in the human frontal cortex. Nat.
Neurosci. 2016; 19: 40—47.

De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, et al. Alzheimer’s
disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat.
Neurosci. 2014; 17: 1156-1163.

Jylhava J, Jiang M, Foebel AD, Pedersen NL, Hagg S. Can markers of biological age predict
dependency in old age? Biogerontology 2019; 20: 321-329.

Jylhava J, Pedersen NL, Hagg S. Biological Age Predictors. EBioMedicine 2017; 21: 29-36.

Knight AK, Craig JM, Theda C, Baekvad-Hansen M, Bybjerg-Grauholm J, Hansen CS, et al. An
epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol.
2016; 17: 206.

Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated
with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging
(Albany, NY) 2015; 7: 1198-1211.

Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker
of aging for lifespan and healthspan. Aging (Albany, NY) 2018; 10: 573-591.

Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M, et al. Methylomic profiling
implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat. Neurosci. 2014; 17: 1164—
1170.

Marioni RE, Shah S, McRae AF, Ritchie SJ, Muniz-Terrera G, Harris SE, et al. The epigenetic
clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int. J.
Epidemiol. 2015; 44: 1388-1396.

McCartney DL, Stevenson AJ, Walker RM, Gibson J, Morris SW, Campbell A, et al.
Investigating the relationship between DNA methylation age acceleration and risk factors for
Alzheimer’s disease. Alzheimers Dement (Amst) 2018; 10: 429-437.

McEwen LM, O’Donnell KJ, McGill MG, Edgar RD, Jones MJ, Maclsaac JL, et al. The PedBE
clock accurately estimates DNA methylation age in pediatric buccal cells. Proc. Natl. Acad. Sci.
USA 2019

McKinney BC, Lin H, Ding Y, Lewis DA, Sweet RA. DNA methylation age is not accelerated in
brain or blood of subjects with schizophrenia. Schizophr. Res. 2018; 196: 39—44.

Mendizabal |, Berto S, Usui N, Toriumi K, Chatterjee P, Douglas C, et al. Cell type-specific
epigenetic links to schizophrenia risk in the brain. Genome Biol. 2019; 20: 135.

27


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063719; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Mendizabal I, Yi SV. Whole-genome bisulfite sequencing maps from multiple human tissues
reveal novel CpG islands associated with tissue-specific regulation. Hum. Mol. Genet. 2016; 25:
69-82.

Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG
sites of the human genome enriched in enhancer sequences. Epigenomics 2016; 8: 389-399.

Oberdoerffer P, Sinclair DA. The role of nuclear architecture in genomic instability and ageing.
Nat. Rev. Mol. Cell Biol. 2007; 8: 692—702.

Pidsley R, Viana J, Hannon E, Spiers H, Troakes C, Al-Saraj S, et al. Methylomic profiling of
human brain tissue' ' supports a neurodevelopmental origin for schizophrenia. Genome Biol.
2014; 15: 483.

Pidsley R, Y Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to
preprocessing lllumina 450K methylation array data. BMC Genomics 2013; 14: 293.

Samarasekera N, Al-Shahi Salman R, Huitinga |, Klioueva N, McLean CA, Kretzschmar H, et al.
Brain banking for neurological disorders. Lancet Neurol. 2013; 12: 1096—-1105.

Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related
disease, both, or neither? Epidemiol Rev 2013; 35: 112—-131.

Sierra F. Geroscience and the challenges of aging societies. Aging Med. 2019; 2: 132-134.

Simpkin AJ, Suderman M, Howe LD. Epigenetic clocks for gestational age: statistical and study
design considerations. Clin. Epigenetics 2017; 9: 100.

Smith AR, Smith RG, Condliffe D, Hannon E, Schalkwyk L, Mill J, et al. Increased DNA
methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s
disease brain. Neurobiol. Aging 2016; 47: 35—40.

Smith AR, Smith RG, Pishva E, Hannon E, Roubroeks JAY, Burrage J, et al. Parallel profiling of
DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic
variation in Alzheimer’s disease. Clin. Epigenetics 2019; 11: 52.

Smith RG, Hannon E, De Jager PL, Chibnik L, Lott SJ, Condliffe D, et al. Elevated DNA
methylation across a 48-kb region spanning the HOXA gene cluster is associated with
Alzheimer’s disease neuropathology. Alzheimers Dement. 2018; 14: 1580—-1588.

Sosnoff JJ, Newell KM. Are age-related increases in force variability due to decrements in
strength? Exp. Brain Res. 2006; 174: 86—-94.

Sugden K, Hannon EJ, Arseneault L, Belsky DW, Broadbent JM, Corcoran DL, et al.
Establishing a generalized polyepigenetic biomarker for tobacco smoking. Transl. Psychiatry
2019; 9: 92.

Voisin S, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, Coffey VG, et al. An epigenetic clock
for skeletal muscle. BioRxiv 2019

Wong CCY, Smith RG, Hannon E, Ramaswami G, Parikshak NN, Assary E, et al. Genome-wide
DNA methylation profiling identifies convergent molecular signatures associated with idiopathic
and syndromic autism in post-mortem human brain tissue. Hum. Mol. Genet. 2019; 28: 2201—-
2211.

Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, et al. Association of Brain DNA
methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of
Alzheimer disease. JAMA Neurol. 2015; 72: 15-24.

28


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063719; this version posted April 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Zhang Q, Vallerga CL, Walker RM, Lin T, Henders AK, Montgomery GW, et al. Improved
precision of epigenetic clock estimates across tissues and its implication for biological ageing.
Genome Med. 2019; 11: 54.

Zou H, Hastie T. Regularization and variable selection via the elastic net. J Royal Statistical Soc
B 2005

29


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

RMSE = 3.58
r=0.99

100

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27. 063719‘t ;

Predicted Age Cortical (years)

was not certified by peer review) is the author/funder, whg %anted bioRxiv a license to displ
available unde

rston posted April 28, 2020.

Y 4.0 International |ICEHS?5

Predicted Age Multi (years)
gl
o

N
o1

(o)) ~l (00]
o o o

Predicted Age Multi (years)

o))
o

40

0 30 60 90
Chronological Age (years)
B i
RMSE = 5.12
r=0.83
100
w
@
5
X
©
©
£ 80
@)
o
]
(@))
<
©
Qo
9
5 60
o
40 60 80 100

Chronological Age (years)

RMSE = 9.52
[ ]
r=0.96
* L]
° : ..o
'he copyright holder for this preprint (which e e o s o
ay the preprint in perpetuity. It is made 0o °/ ¥ 3% 00 ¢
tH
3
0 30 60 90

Chronological Age (years)

RMSE = 20.12
r=20.65

60 80
Chronological Age (years)

40

100

N (o))
o o

Predicted Age Blood (years)
N
o

70

Predicted Age Blood (years)
3 3

AN
o

RMSE = 18.86
r=0.95 .
} ° * )
T i,
. ¢ .t ":J’-:?%i.r .
PRI
. * * 0."’?‘J:. ®e
° ‘pﬂélfz . 1 e o .
. .: o M R T .
»o% LI
‘4?8&:" K *
.r ’b.; . .l
Y 4ol S
$. s ° e =. [ )
..-.'. ...o
o V8¢
. .j;.' *
L 14
0 30 60 90
Chronological Age (years)
RMSE = 33.46
r=0.52
. o. ] . ®
. o!..l"!:;: ‘. o
Se ° .' .'
it ':i::u!.* "
:l;!lo !;l:. ! |!f : |. e

R AN ,.I ., :
¢ goo o, . ®
40 60 80 100

Chronological Age (years)

40

Predicted Age Pheno (years)

—-40

60

—~ 40

L

@©

5

S

o 20

b

<

ol

5)

(@))

< O

©

2

Q

©

D

()_ _':2()
—-40

RMSE =60.16
r=0.8

0 30 60 90
Chronological Age (years)
RMSE = 82.28

r=0.32

«* 3 .
'.. ® ':o ¢ .:.o: i:.. .
. . : oo .: .: i: ':.' :'lz' .
R R X I
T T [THH (T 1 [T R
R 1 X !" ! | :Iu' LI
R 1111115
RSO Hign [l
RN D 1o T M L1 AR I
. o o $e s ;.l ..’ . H
40 60 80 100

Chronological Age (years)


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

Error Cortical (years)

Error Cortical (years)

A i I i v
30 30 30 30
20 20 . 20 20
10 ; ' 10 rlﬁrlﬁ' L ' 10| 10
6 W preprintHor: htps:/dol bl iar ) I anda ploF & Heense to dspiay {1 p&??fkéfﬁé%ﬁiﬁmmj |_TI_| é |‘L| 0 TES | 0
gare S SR =— :
-10 - —10 S =~ -10 : $$$ : % -10
-20 8 -20 S -20 $ ' o -20 :
g = y ) |
-30 = -30 ; -30 . o —30
= c
_40 § _40 8 _40 . 8 _40 | ° .
~50 = -50 D 50 & 5o |
S S S =
~60 h —60 E -60 £ -60 | '
-70 -70 -70 -70
-80 -80 -80 -80
-90 -90 -90 -90
-100 -100 -100 -100
q’(])%%(b\%/@y@qé\ ,Q%/\")\%%Q\/%‘& S ﬂ,")%%'b\%,@rv@qé\ ,@{0;\‘0\%,%“)\/,%‘9 K3 ﬂ,")%%'b\%,@rv@qé\ ,Q%/\")\%%Q\/%‘& & ﬂ,")%%'b\%,@rv@qé\ ,Q%'\")\ %“)\/%‘b\ S
W SN R PN I SR \9@% o SN S PN I SR \9.@% W SN R PN I S \9@% o SN R PN I S \9@%
Deciles of Chronological Age (years) Deciles of Chronological Age (years) Deciles of Chronological Age (years) Deciles of Chronological Age (years)
B i I i )Y
30 30 30 30
20| 20 20 20
10 é ‘ : 10] . 10 10
LN T 55 . :
-10 T T -10|E4 IJ__|'J_|J_| P __-10 : — -10
T g Ll e L .
-20 = =201 . | ‘—|—’I | | s —20 |J_-|,J—| . 8 -20 .
~30 L -30 . T 2 -30 | Aﬂ:——:Aﬂ "> -30] .
~40 = -40 .8 -40 T T = I%l § ~40|
-50 S -50 & -50 ' ' . I £ -50 : :
~-60 S -60 S —60 5 —60 Cor :
~70 W -70 i -70 [ -70 P :
— 1 1 .
-80 -80 -80 -80 ===
-90 -90 -90 -90 : | T’E'
-100 -100 -100 -100 o
-110 -110 -110 -110 '
\,\b‘\/ %& ‘b(\(o b«(\bg <o~@q, oL '\@b %@q q@q/ @b‘ \,\b‘\/ %& ‘b(\(o b«(\bg <o~@q, o2 '\@b %@q q@q/ @b‘ \,\b‘\/ %& ‘b(\(o b«(\bg <o~@q, o2 '\@b %@q q@q/ @b‘ \,\b‘\/ %& ‘b(\(o b«(\bg <o~@q, o2 '\@) & q@q/ @b‘

>
Deciles of Chronological Age (years)

>
Deciles of Chronological Age (years)

>
Deciles of Chronological Age (years)

>
Deciles of Chronological Age (years)


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

Predicted Age Cortical (years)

Error Cortical (years)

RMSE = 10.79 100 | RMSE = 7.32 100 | rRMSE =3.95 RMSE = 11.7
r=0.88 . . r=0.9 r=0.97 o r=0.87 ¢
100 .
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063719; this version postgd April 28, 2020. THe copyright holder for this preprint (which . .
was not certified by peer review) is the author/funder, who has grantgd bioRA&iv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 Ingérational license. 75 ..
~~ . ’U? @\
5 80 - S
) . Q 2
b L] . ) - N
— o
80 = . 3 c
) ) O
= 0 & 50
]
> 60 S S
S < <
©
3 Q 5
60 2 kS S
S k5 3
* 40 o a 25
40 ’ ’
40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100
Chronological Age (years) Chronological Age (years) Chronological Age (years) Chronological Age (years)
| I i v
30 . 30 ) 30 30 :
.
] . . ®
20 | .o 20| 20 20
— c T : : | : :
10 | : % 10 : @ 10 : . @ 10 , :
E ° CU 3 ° ° 8 ® «
Q b l = :
E 2 | E
0 2 o — S 0 — o O
. = o | | | = — c
: = ) o : | D
] E ° : E ° ° . e
~10 . = -10 ; 0 10 o 10
S S ' © © 9 ‘
. L ° LU =
-20 : -20 -20 w20 - |
-30 -30 -30 -30 ) [
-40 -40 -40 -40
‘b(b\ b&® bib\ @rb\ <0® Q)® 6\\ ’\rD ’\/\\ Q)® ‘b(b\ b&® bib\ @rb\ <0® Q)® 6\\ ’\rD ’\/\\ Q)® ‘b(b\ b&® bib\ @rb\ <0® Q)® 6\\ ’\rD ’\/\\ Q)® ‘b(b\ b&® bib\ @rb\ <0® Q)® 6\\ ’\rD ’\/\\ Q)®
¥ o ¥ & o o ¥ A s / ¥ o ¥ & o o ¥ A s / ¥ ¥ & o o ¥ A s / ¥ o ¥ & o o ¥ A s /
N\ SN\ A RO ¢ W e @ e o ¢ e W@ @ o o ¢ ¢ e W W@ @ @ o ¢

Deciles of Chronological Age (years) Deciles of Chronological Age (years) Deciles of Chronological Age (years) Deciles of Chronological Age (years)


https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/

