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ABSTRACT 
The vast net of fibres within and underneath the cortex is optimised to support the convergence of different levels of 
brain organisation. Here we propose a novel coordinate system of the human cortex based on an advanced model of 
its connectivity. Our approach is inspired by seminal, but so far largely neglected models of cortico-cortical wiring 
established by post mortem anatomical studies and capitalizes on cutting-edge neuroimaging and machine learning. 
The new model expands the currently prevailing diffusion MRI tractography approach by incorporation of additional 
features of cortical microstructure and cortico-cortical proximity. Studying several datasets, we could show that our 
coordinate system robustly recapitulates established sensory-limbic and anterior-posterior dimensions of brain 
organisation. A series of validation experiments showed that the new wiring space reflects cortical microcircuit 
features (including pyramidal neuron depth and glial expression) and allowed for competitive simulations of functional 
connectivity and dynamics across a broad range contexts (based on resting-state fMRI, task-based fMRI, and human 
intracranial EEG coherence). Our results advance our understanding of how cell-specific neurobiological gradients 
produce a hierarchical cortical wiring scheme that is concordant with increasing functional sophistication of human 
brain organisation. Our evaluations demonstrate the cortical wiring space bridges across scales of neural organisation 
and can be easily translated to single individuals. 
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INTRODUCTION 
Neuronal activity in the cortex is simultaneously constrained by both local columnar circuitry and large-scale 
networks1,2. It is generally assumed that this interaction emerges because individual neurons are embedded in a global 
context through an intricate web of short- and long-range fibres. Developing a better model of this cortical wiring 
scheme is a key goal of systems neuroscience, because it would serve as a blueprint for the mechanisms through which 
local influences on neural function impact on spatially distant sites, and vice versa. 

Post mortem histological and gene expression studies provide gold standard descriptions of how neurobiological and 
microstructural features are distributed across the cortex3–6. Histological and genetic properties of the brain often vary 
gradually together, mirroring certain processing hierarchies, such as the visual system7. This suggests that observed 
brain organisation may be the consequence of a set of consistent principles that are expressed across multiple scales 
(gene expression, cytoarchitecture, cortical wiring and macroscale function). Critically, full appreciation of how local 
and global features of brain organisation constrain neural function requires that multiple levels of brain organisation 
are mapped in vivo. To achieve this goal, our study capitalised on state-of-the-art magnetic resonance imaging (MRI) 
methods and machine learning techniques to build a novel model of the human cortical wiring scheme. We tested 
whether this model provides a meaningful description of how structure shapes macroscale brain function and the 
information flow between different systems. In particular, if our model successfully bridges the gap between micro- 
and macroscopic scales of neural organisation then it should describe local features of both cortical microcircuitry and 
its macroscale organisation and deliver meaningful predictions for brain function.  

Currently, the prevailing technique to infer structural connectivity in living humans is diffusion MRI tractography10,11. 
By approximating white matter fibre tracts in vivo10–12, tractography has advanced our understanding of structural 
networks in health13–15, disease16–18, and shaped our understanding of the constraining role of brain structure on 
function19–24. Diffusion MRI tractography, however, has recognised limitations25,26. Crucially, the technique does not 
explicitly model intracortical axon collaterals and superficial white matter fibres, short-range fibres contributing to 
>90% of all cortico-cortical connections27. To address this gap, our approach combines diffusion tractography with 
two complementary facets of cortical wiring, namely spatial proximity and microstructural similarity. Spatial 
proximity predicts short cortico-cortical fibres28,29, which transmit the most common type of neural information also 
referred to as <nearest-neighbour-or-next-door-but-one=30. Microstructural similarity is a powerful predictor of inter-
regional connectivity in non-human animals31, whereby the <structural model= of cortico-cortical connectivity 
postulates that connectivity likelihood between two regions is primarily governed by similarity in cytoarchitecture32–

35. We recently developed and histologically validated microstructure profile covariance analysis, which quantifies 
microstructural similarity between different cortical areas in vivo through a systematic comparison of intracortical 
myelin sensitive neuroimaging profiles7. These complementary features can be fused using manifold learning 
techniques, resulting in a more holistic, multi-scale representation of cortical wiring. This extends upon previous work, 
in which we and others have derived manifolds from single modalities to map gradual changes in functional 
connectivity or tissue microstructure7,36.  

Here, we generate a new coordinate system of the human cortex that is governed by complementary in vivo features 
of cortical wiring, expanding on traditional diffusion MRI tractography. Our wiring space incorporates advanced 
neuroimaging measures of cortical microstructure similarity, proximity, and white matter fibres, fused by non-linear 
dimensionality reduction techniques. We tested the neurobiological validity of our newly developed model by cross-
referencing it against post mortem histology and RNA sequencing data5,8,9. Furthermore, we assessed the utility of our 
model to understand macroscale features of brain function and information flow by assessing how well the model 
predicts resting-state connectivity obtained from functional MRI as well as directed descriptions of neural function 
and processing hierarchy provided by intracerebral stereo-electroencephalography. These experiments were 
complemented with a comprehensive battery of robustness and replication analysis, to assess the consistency and 
generalizability of the new wiring model across analytical choices and datasets.    
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RESULTS 
A multi-scale model of cortical wiring 

Cortical wiring was first derived from a Discovery subset of the Human Connectome Project dataset (HCP, n=100 
unrelated adults) that offers high resolution structural magnetic resonance imaging (MRI), diffusion MRI, and 
microstructurally sensitive T1w/T2w maps38 (Figure 1A, see Methods for details).  

 
Figure 1 | The multi-scale cortical wiring model. (A) Wiring features i.e., geodesic distance (GD), microstructure profile covariance (MPC), and 
diffusion-based tractography strength (TS) were estimated between all pairs of nodes. (B) Normalised matrices were concatenated and transformed 
into an affinity matrix. Manifold learning identified a lower dimensional space determined by cortical wiring. (C) Left. Node positions in this newly-
discovered space, coloured according to proximity to axis limits. Closeness to the maximum of the second eigenvector is redness, towards the 
minimum of the first eigenvector is greenness and towards the maximum of the first eigenvector is blueness. The first two eigenvectors are shown 
on the respective axes. Right. Equivalent cortical surface representation. (D) Calculation of inter-regional distances (isocontour lines) in the wiring 
space from specific seeds to other regions of cortex (left). Overall distance to all other nodes can also be quantified to index centrality of different 
regions, with more integrative areas having shorter distances to nodes (right). a.u.: arbitrary units.  
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The model integrated three complimentary features of structural connectivity, mapped between 200 spatially 
contiguous, evenly sized nodes: i) Geodesic distance (GD), calculated as the shortest path between two nodes 
stepping through white or grey matter voxels, reflects the spatial proximity and cortico-cortical wiring cost of two 
regions28; ii) Microstructure profile covariance (MPC), that is the correlation between myelin-sensitive imaging 
profiles taken at each node in the direction of cortical columns7, indexes architectonic similarity, the strongest 
predictor of projections in non-human primates31; iii) Tract strength (TS), based on tractography applied to diffusion-
weighted MRI, yields an estimate of the white matter tracts between each pair of nodes. Regional variations in the 
correspondence of wiring features, in terms of both magnitude and direction, highlight the necessity of multi-feature 
integration to provide a nuanced and expressive characterisation of a region9s structural connectivity (Figure S1). 

To integrate these features into a compact coordinate system governed by cortical wiring, we normalised and 
concatenated the inter-regional matrices, computed an affinity matrix, and performed manifold learning (Figure 1B, 
see Methods). Diffusion map embedding, a nonlinear dimensionality reduction technique, was selected as a fast and 
robust approach that provides a global characterisation while preserving local structure in a data-driven manner39. Two 
dominant eigenvectors explained approximately 60% of variance in wiring affinity, with the first illustrating a sensory-
fugal gradient (~35%) and the second an anterior-posterior gradient (~25%). These gradients represent principle axes 
of variation in cortical wiring (Figure 1C). The two-dimensional representation is hereafter referred to as the wiring 

space. Distances between two nodes in this new space provide a single integrative metric of cortical wiring affinity 
(Figure 1D). Nodes with high wiring affinity are close by, while dissimilar regions have a greater wiring distance. By 
taking the average wiring distance of each node, we found that the posterior cingulate, temporoparietal junction and 
superior temporal gyrus represent the integrative core of the wiring space (Figure 1D). In contrast, primary sensory 
areas, such as the calcarine sulcus and superior precentral gyrus, exhibit highly specialised cortical wiring. 

To evaluate generalizability, we reconstructed the wiring model in an independent dataset of 40 healthy adults scanned 
at our imaging centre (MICs cohort; see Methods for details). While imaging parameters were comparable to the main 
cohort, this replication cohort involved acquisition of quantitative T1 relaxometry data to index intracortical 
microstructure instead of T1w/T2w maps40–43. Regardless of these site-wise idiosyncrasies, our procedure produced 
highly similar wiring spaces (correlations between both sites for eigenvectors 1/2: r=0.93/0.84, Figure S2A). The 
wiring space was also conserved at an individual level (Figure S3A). The most prominent inter-individual shifts in 
nodal positioning were observed in superior temporal and superior parietal regions (Figure S3C). 

 

Neurobiological underpinnings  

We next evaluated the capacity of the new model to reflect local neurobiological features, by examining post mortem 

human histology and gene expression data. We generated cell-staining intensity profiles for each node from a high-
resolution volumetric reconstruction of a single Merker stained human brain8 (Figure 2A-C) and extracted gene 
expression from mRNA sequencing data in eleven neocortical areas, each matched to one node9,44 (Figure 2D-F). 
Cytoarchitectural similarity and gene co-expression were correlated to wiring distance (histology: r=-0.53, p<0.001 
Figure 2B; co-expression: r=-0.64, p<0.001). Furthermore, the above associations were robust even when additionally 
correcting for the influence of physical distance along the cortex (histology: partial r=-0.48, p<0.001; co-expression: 
partial r=-0.38, p<0.001).  

We hypothesised that the principle axes of the cortical wiring scheme would describe systematic variations in 
cytoarchitecture that reflect a region9s position in a neural hierarchy. It has previously been proposed that 
externopyramidisation is optimally suited to assess hierarchy-dependent cytoarchitecture because it tracks the laminar 
origin of projections, which signifies the predominance of feedback or feedforward processing5. 
Externopyramidisation was estimated from histological markers capturing the relative density and depth of pyramidal 
neurons45 (Figure 2A), the primary source of interregional projections. Increasing values reflect a shift from more 
infragranular feedback connections to more supragranular feedforward connections5,45. Multiple linear regression 
indicated that the eigenvectors of the wiring space explained substantial variance of externopyramidisation (r=0.69, 
pspin<0.001; Figure 2C) and was independent of regional variations in cortical morphology (Figure S4A). Notably, 
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the complete model that aggregated all wiring features (i.e., MPC, GD, TS) in a low dimensional space explained 
more variance in externopyramidisation than models constructed using alternative combinations or subsets of the 
wiring features (Table S1). Externopyramidisation gradually decreased along the second eigenvector, suggesting that 
our wiring space captures a posterior to anterior transition from feedforward to feedback processing. 

 

Figure 2 | Neurobiological substrates of the wiring space. (A) A 3D post mortem histological reconstruction of a human brain8 was used to 
estimate cytoarchitectural similarity and externopyramidisation. Here, we present a coronal slice, a drawing of cytoarchitecture46, magnified view 
of cortical layers in BigBrain and a staining intensity profile with example of calculation of externopyramidisation45. (B) Matrix and density plot 
depict the correlation between BigBrain-derived cytoarchitectural similarity and wiring distance between pairs of regions. (C) 

Externopyramidisation projected onto the cortical surface and into the wiring space. (D) mRNA-seq probes, assigned to eleven representative nodes 
(coloured as in Figure 1C, i.e. their position in the wiring space), provided good coverage of the space and enabled characterisation of cell-type 
specific gene expression patterns. Average cell-type specific gene expression patterns projected in the wiring space, with brighter colours signifying 
higher expression. (E) Equally spaced intercardinal axes superimposed on the wiring space, and below, line plots showing correlation of gene 
expression patterns with each of the axes. (F) Strongest axis of variation (i.e., maximum |r|) for each cell-type.  
 

We further explored how the broader cellular composition and microcircuitry relates to the layout of the wiring space. 
To do so, we estimated the expression of eight canonical cell-type gene sets in eleven cortical areas (see Methods) and 
found that these expression patterns accounted for significant variance in the macroscale organisation of cortical 
wiring (up to R2=0.83, Figure 2D, Table S2). By defining the strongest axis of variation for each cell-type in the 
wiring space, we discovered distinct spatial gradients of the cell-types, which together depicted the multiform cellular 
differentiation of the wiring space (Figure 2E-F). These findings established that the wiring space captures the 
organisation of neuronal and non-neuronal cells (Figure 2F), and offers a new line of evidence on the heightened 
expression of neuro-modulatory glia, such as astrocytes and microglia47,48, towards the transmodal areas. 
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Constraining role for functional architecture  

Thus far our analysis indicates that the wiring space successfully captures macroscale spatial trends in cortical 
organisation, and that is reflects underlying cytoarchitectonic and cellular microcircuit properties. Next, we tested 
the hypothesis that our wiring space also underpins the functional architecture of the brain using a series of analyses.  
 

First, we mapped well established intrinsic functional communities49 into the wiring space and inspected their relative 
distances (Figure 3A-C). We found that sensory networks were located in the lower (visual) and upper (somatomotor) 
left extremities of the new coordinate system. Sensory nodes spanned a broad range of wiring distances, reflecting 
transitions from specialised to integrative connectivity. In contrast, transmodal default, frontoparietal and limbic 
networks were located more towards the right extremities in the wiring space. The dorsal attention network created a 
frontier between sensory networks and the transmodal extremity, while the ventral attention also subsumed an 
intermediary position at the integrative core. Together, these analyses demonstrate how the relative positioning of 
functional communities in the structural wiring space underpins coordination within and between functional networks. 
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Figure 3 | From cortical wiring to functional connectivity. (A) Nodes in the wiring derived coordinate system coloured by functional 
community49, with the distribution of networks shown by density plots along the axes. (B) Wiring distance between nodes, ordered by functional 
community, revealed a modular architecture. (C) Violin plots show the average wiring distance for nodes in each functional community, with higher 
values being more specialised in their cortical wiring. (D) Using the boosting regression models from the Discovery dataset, we used features of 
the wiring space to predict z-standardised functional connectivity in a Hold-out sample. The model was enacted for each node separately. FC: 
functional connectivity. WD: wiring distance. ΔE1: difference on eigenvector 1. ΔE2: difference on eigenvector 2. (E) Mean squared error across 
nodes are shown in the wiring space and on the cortical surface. (F) Predictive accuracy of various cortical wiring models, involving the use of 
different features, multi-feature fusion, eigenvectors from diffusion map embedding and a linear or machine learning (ML) learner. (G) Mean 
squared error of the wiring space model stratified by functional community.  
 

Secondly, we assessed whether our wiring space can also predict macroscale functional brain connectivity. We used 
a supervised machine learning paradigm that applies adaptive boosting to predict functional connectivity based on 
relative distances of nodes in the wiring space (Figure 3D; see Methods). The new space, trained on the Discovery 
dataset, predicted resting-state functional connectivity in the independent Hold-out sample with high accuracy (mean 
squared error=0.49±0.19;  R2=0.51±0.20; Figure 3E), and outperformed learners trained on data from fewer cortical 
wiring features or learners trained on all modalities but without using manifold embedding (Figure 3F). Inspecting 
regional variations in predictive accuracy indicated that cortical wiring topography was more tightly linked to 
functional connectivity in sensory areas; systems upon which classical examples of the cortical hierarchy were 
developed50, while it tapered off towards transmodal cortex. Further expanding the wiring space to three 
eigenvectors/dimensions mildly decreased the average mean squared error, but resulted in larger variance across nodes 
and poorer predictive accuracy at the lower limits for the prediction of resting-state functional connectivity (mean 
squared error=0.44±0.21; R2=0.56±0.22). While accuracy was reduced, the two-dimensional model also provided 
state-of-the-art predictions of resting-state functional connectivity in individual participants of the Hold-out dataset 
(mean squared error=0.89±0.24, R2=0.16±0.17; Figure S3B).  

High predictive performance at the group- and individual subject level could be replicated in the independent MICs 
dataset, despite the smaller sample size (group-level split half testing mean squared error= 0.63±0.22, R2=0.37±0.22; 
Figure S2B; individual level: mean squared error= 1.06±0.46, R2=0.11±0.14).  

One important aspect of a structural wiring scheme may be its potential ability to simulate a broad functional range. 
As an additional proof of concept for the wiring model to be such a versatile framework, we showed that the wiring 
model could also predict functional connectivity across different task conditions, in both HCP and MICs subsamples 
(HCP: 7 tasks: mean squared error=0.64±0.22, R2=0.36±0.22 Figure S5. MICs: 3 tasks: mean squared 
error=0.89±0.21, R2=0.16±0.21). 
 

Large-scale organisation of directed coherence  

The above analyses showed that the wiring space robustly explains substantial aspects of macroscale functional 
organisation and connectivity. We next examined whether it can also account for a more direct measure of neural 
functional connectivity, by examining stereo-electroencephalographic recordings during resting wakeful rest in ten 
epileptic patients (who underwent multimodal imaging before the implantations, with imaging identical to the MICs 
dataset; Figure 4A). Patients presented with a similar wiring space solution as controls from the same sample (Figure 

S6; correlations between eigenvectors 1/2: r=0.83/0.82). In line with the above functional connectivity analysis, the 
wiring model explained substantial within sample variance in undirected coherence (R2=0.60±0.23; Figure 4B; 

Figure S7), especially in frequencies >15Hz (0.54<R2̅̅ ̅<0.68). We calculated the phase slope index within frequency 
bands as an estimate of unidirectional flow51. To highlight large-scale organisation and account for the incomplete 
coverage of electrodes in each participant, we clustered the wiring space into twelve macroscopic compartments 
(Figure 4C; see Methods for determination of k=12). We estimated the phase slope index between each pair of clusters 
and performed significance testing using a linear mixed effect model that included subject as a random effect. 
Decomposition of inter-cluster similarities in the phase slope index using a principle component analysis revealed a 
gradient running across the wiring space. The first principle component, accounting for 39% of variance, illustrated a 
transition in the patterns of directed coherence from the upper left to lower right of the wiring space, that is running 
from central to temporal and limbic areas (Figure 4D). The component loading was underpinned by varied expression 
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of cell-types (Figure 4D). Lasso regularisation showed that inhibitory neuron expression was the most important 
cellular feature in supporting this coherence-derived topography, followed by endothelial cells in highly regularised 
models. Together, inhibitory neuron and endothelial cell expression accounted for 44% of variance in component 
loading (p=0.04). The cell-types did not reach significance in explaining the component loading independently, 
emphasising the multivariate contribution of cell-types to spatial variations in electrophysiological oscillations. 
Robustness of the component loading and edge-wise phase slope index estimates were supported by a leave-one-
subject-out procedure (Figure S7).  
 

 
Figure 4 | Hierarchical information processing is organised along the wiring space. (A) Intracerebral implantations of ten epileptic patients 
were mapped to the cortical surface, and intracortical EEG contacts selected. We studied five minutes of wakeful rest. (B) Mean and standard 
deviation in the variance explained in undirected coherence by wiring space features using adaboost machine learning across all nodes. (C) Clusters 
of the wiring space. (D) Phase slope index (Ψ) was calculated for each pair of intra-subject electrodes, then cluster-to-cluster estimates were derived 
from a linear mixed effect model. Pearson correlation across Ψ estimates was used to measure the similarity of clusters, and the major axis of 
regional variation was identified via principle component analysis. i) Average Ψ spectra for each region coloured by loading on the first principle 
component (accounting for 39% of variance). ii) Component loadings presented in the wiring space and on the cortical surface illustrate a gradient 
from upper left regions, corresponding to central areas, toward lower right areas, corresponding to temporal and limbic areas. iii) Lasso 
regularisation demonstrates the contribution of cell-type specific gene expression (colours matching Figure 2) and externopyramidisation (red) to 
explain variance in the component loadings. For example, inhibitory neurons expression levels (green) are closely related to the component loading, 
as shown in the scatterplot. Shaded areas show the standard deviation in fitted least-squares regression coefficients across leave-one-observation-
out iterations. (E) The most influential frequencies on the component loading were identified through a correlation of average Ψ spectra (Figure 

4Di) with the component loading. For the global maxima and minima, we present cluster-to-cluster Ψ estimates, thresholded at p<0.05, 
suprathreshold edges plotted as a hierarchical schema and the hierarchical level of each cluster on the cortical surface and in the wiring space.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.01.08.899583doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899583
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

 
Finally, we examined the topology of large-scale networks of directed coherence in frequencies influencing the 
component loading, and specifically tested whether they met the criteria for hierarchical organisation 50 (Figure 4E). 
Both the 26-30Hz (beta) and 95-99Hz (high gamma) bands met criteria for hierarchy, insomuch that clusters could be 
placed in levels that depict unidirectional flow of oscillations from the top to bottom of the graph. The beta band was 
associated with an anterior-posterior wave, whereas high gamma band was related to limbic-to-prefrontal oscillations. 
These results support the hierarchical organisation of large-scale directed coherence, which propagate as waves of 
oscillations moving through the cortical wiring scheme, and also demonstrate the co-occurrence of hierarchies and 
that these are operationalised in different frequencies.  

 

DISCUSSION  
Based on advanced machine learning of multiple features sensitive to cortico-cortical wiring, our work identified a 
novel and compact coordinate system of human cortex. Our analysis established that cortical wiring is dominated by 
two principal axes, one running from sensory towards transmodal systems and one running from anterior to posterior. 
Critically, this novel space successfully accounted for both local descriptions of cortical microcircuitry as well as 
macroscale cortical functional dynamics measured by functional MRI and intracranial electrical recordings. By 
projecting post mortem histological and transcriptomic profiles into this newly discovered space, we could 
demonstrate how these axes are determined by intersecting cell-type specific and cytoarchitectural gradients. In 
addition to establishing these local neurobiological features, our findings support that the wiring-based space serves 
as a powerful scaffold within which macroscale cortical function can be understood. Using both non-invasive imaging 
in healthy individuals, and direct neuronal measurements in a clinical population, we demonstrated that the wiring-
derived manifold describes how neural function is hierarchically organised in both space and time. Our findings were 
replicable in different datasets and at the single subject level; moreover, a series of additional experiments showed 
that this novel representation outperformed conventional approximations of structural connectivity in their ability to 
predict function. Together, we have successfully identified a compact description of the wiring of the cortex that can 
help to ultimately understand how neural function is simultaneously constrained by both local and global features of 
cortical organisation. 
 

Our multivariate model of cortical wiring reflects an important extension on diffusion MRI tractography because it 
additionally incorporates spatial proximity and microstructural similarity, both features tap into generative principles 
of cortico-cortical connectivity as demonstrated by prior human and non-human animal studies32–35. The application 
of manifold learning to this enriched representation of cortical wiring helped to determine a low dimensional, yet 
highly expressive, depiction of cortical wiring. In other fields, notably genomics and data science more generally, 
embedding techniques have become widely adopted to identify and represent the structure in complex, high-
dimensional datasets9,39,52,53. In recent neuroimaging studies, several approaches have harnessed non-linear 
dimensionality reduction techniques to identify manifolds from single modalities, highlighting changes in 
microstructure and function at the neural system level7,36,54,55. The wiring space identified here captured both sensory-
fugal and anterior-posterior processing streams, two core modes of cortical organisation and hierarchies established 
by seminal tract-tracing work in non-human primates37,56. The anterior-posterior axis combines multiple local 
gradients and functional topographies, such as the ventral visual stream running from the occipital pole to the anterior 
temporal pole that implements a sensory–semantic dimension of perceptual processing57,58 and a rostro-caudal gradient 
in the prefrontal cortex that describes a transition from high-level cognitive processes supporting action preparation 
to those tightly coupled with motor execution56,59–61. The sensory-fugal axis represents an overarching organisational 
principle that unites these local processing streams. While consistent across species, the number of synaptic steps from 
sensory to higher-order systems has increased throughout evolution, supporting greater behavioural flexibility37 and 
decoupling of cognitive functioning from the here and now58. By systematically studying inter-nodal distances within 
the wiring derived space, it may be possible to gain a more complete understanding of the difference between 
specialised systems at the periphery and more centrally localised zones of multimodal integration, such as the temporo-
parietal junction and cingulate cortex. Many of these regions have undergone recent evolutionary expansion62, are 
sites of increased macaque-human genetic mutation rates63, and exhibit the lowest macaque-human functional 
homology64. In this context, the more complete model of cortical wiring provided here may play a critical role in 
advancing our understanding of how changes in cortical organisation have given rise to some of the most sophisticated 
features of human cognition.  
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Our new coordinate system reflects an intermediate description of cortical organisation that simultaneously tracks its 
microstructural underpinnings and also addresses the emergence of functional dynamics and hierarchies at the system 
level. Cross-referencing the new space with a 3D histological reconstruction of a human brain8 established close 
correspondence between our in vivo model and histological measurements. This work adds to the notion that 
cytoarchitecture and cortical wiring are inherently linked65,66, as variations in projections across cortical layers 
determine the layout of the cortical microcircuitry67. Feedforward connections often originate in supragranular layers 
(and terminate in lower layers in the target regions), while infragranular layers give rise to feedback projections 
flowing down the cortical hierarchy68–71. In this work, we observed an alignment between the cortical wiring scheme 
and a proxy for externopyramidisation45, which was sensitive to inter-areal differences in the depth of peak pyramidal 
neuron density that co-occurs with shifts from feedback to feedforward dominated connectivity profiles5. In addition 
to showing cytoarchitectonic underpinnings of the cortical microcircuitry, we capitalised on post mortem gene 
expression datasets derived from mRNA sequencing72, a technique thought to be more sensitive and specific than 
microarray transcriptomic analysis. This approach revealed that divergent gradients of cell-type specific gene 
expression underpin intercardinal axes of the new coordinate system, particularly of non-neuronal cell-types. 
Increased glia-to-neuron ratios in transmodal compartments of the new space may support higher-order cognitive 
functions, given comparative evidence showing steep increases in this ratio from worms to rodents to humans73–76. 
Astrocytes, in particular, exhibit morphological variability that may lend a cellular scaffold to functional complexity 
and transmodal processing73. For example, a uniquely human inter-laminar astrocyte was recently discovered with 
long fibre extensions, likely supporting long-range communication between distributed areas that may contribute to 
flexible, higher-order cognitive processing77.  
 

Our coordinate system also established how structural constraints relate to cortical dynamics and information flow 
throughout hierarchical and modular systems. We showed that functional communities are circumscribed within the 
wiring derived space, supporting dense within-network connectivity, and that their relative positions describe a 
progressive transition from specialised sensory wiring to an integrative attentional core and distributed transmodal 
networks. Region-to-region distances in the wiring space provided competitive predictions of resting-state functional 
connectivity data, both at the level of the group and of a single subject. Spatial proximity and microstructural similarity 
are critical elements of the predictive value of our models, highlighting intracortical and cytoarchitecturally-matched 
projections in shaping intrinsic functional organization. However, these dominant aspects of cortical wiring are often 
not considered by computational models that simulate functional connectivity from measures of diffusion-based 
tractography19,20,78. In addition to feature enrichment, the use of nonlinear dimensionality reduction enhanced the 
predictive performance by minimising the influence of noisy edges and magnifying effects from the most dominant 
axes of cortical wiring. Such a model led to maximal gains in predictive power in unimodal areas, likely owing to 
their more locally clustered, and hierarchically governed connectivity profiles79–81. Predictive performance decreased 
towards transmodal networks, a finding indicating that more higher-level systems may escape (currently measurable) 
structural constraints and convergence of multisynaptic pathways82. Such conclusions are in line with recent work 
showing that transmodal areas exhibit lower microstructure-function correspondence7 and reduced correlations 
between diffusion tractography and resting state connectivity83,84, potentially contributing to greater behavioural 
flexibility7,85. The hierarchical nature of the wiring space was further supported by analysing its correspondence to 
direct measurements of neural dynamics and information flow via intracerebral stereo-electroencephalography. The 
sources and relative distances of beta and gamma hierarchies align with previous studies. Beta oscillations emanate 
from the sensorimotor cortex, supporting the maintenance of the current sensorimotor set86,87, and time lagged 
coherence during rest occurs between distal areas88,89. In contrast, gamma oscillations are robustly associated with a 
limbic source and, nested in theta oscillations, facilitate limbic-prefrontal coupling88,90–92. Using a strict definition of 
hierarchy as the topological sequence of projections50,93, we demonstrated that the wiring space underpins large-scale, 
frequency-specific waves of oscillations propagating from anterior to posterior and from limbic to prefrontal. 
Furthermore, bridging across scales, we provide an additional line of evidence for the importance of inhibitory neurons 
for supporting specific frequencies of oscillations, such as the role of somatostatin for beta oscillations94. One key 
feature of the present framework, therefore, is that it provides a basis to quantitatively assess how the interplay of 
neuronal oscillations underpin complex cortical organisation. Even with limited spatial resolution, data-driven 
decomposition of the wiring space proved an effective model of electrophysiological organization, in line with recent 
work showing the modular architecture of electrocorticography95. 
 

Future studies should increase the resolution of the wiring space, which may be possible with ongoing efforts to 
generate robust estimates of white matter tracts from single voxels96. In lieu of a gold standard for cortical wiring in 
humans, the present work focused on equally balanced cortical wiring features, however, supervised learning 
techniques could reveal their relative importance for specific tasks or scales. As our results have shown, this novel 
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representation of cortical wiring provides a practical workspace to interrogate the coupling of brain structure and 
function, and to study links between microcircuit properties and macroscale hierarchies. As such, the wiring space can 
be a powerful tool for to study the mutli-scale complexities of brain development, aging and disease. 
 
METHODS  
Human Connectome project dataset 

a) Data Acquisition 

We studied data from 197 unrelated healthy adults from the S900 release of the Human Connectome Project (HCP; 
Glasser et al., 2013). The Discovery dataset included 100 individuals (66 females, mean±SD age=28.8±3.8 years) and 
the Hold-out dataset included 97 individuals (62 females, mean±SD age=28.5±3.7 years). MRI data were acquired on 
the HCP9s custom 3T Siemens Skyra equipped with a 32-channel head coil. Two T1w images with identical 
parameters were acquired using a 3D-MPRAGE sequence (0.7mm isotropic voxels, matrix=320×320, 256 sagittal 
slices; TR=2400ms, TE=2.14ms, TI=1000ms, flip angle=8°; iPAT=2). Two T2w images were acquired using a 3D 
T2-SPACE sequence with identical geometry (TR=3200ms, TE=565ms, variable flip angle, iPAT=2). A spin-echo 
EPI sequence was used to obtain diffusion weighted images, consisting of three shells with b-values 1000, 2000, and 
3000s/mm2 and up to 90 diffusion weighting directions per shell (TR=5520ms, TE=89.5ms, flip angle=78°, refocusing 
flip angle=160°, FOV=210×180, matrix=178×144, slice thickness=1.25mm, mb factor=3, echo spacing=0.78ms). 
Four rs-fMRI scans were acquired using multi-band accelerated 2D-BOLD echo-planar imaging (2mm isotropic 
voxels, matrix=104×90, 72 sagittal slices, TR=720ms, TE=33ms, flip angle=52°, mb factor=8, 1200 volumes/scan). 
Participants were instructed to keep their eyes open, look at fixation cross, and not fall asleep. Seven task-evoked 
fMRI scans (working memory, gambling, motor, language, social cognition, relational processing and emotion 
processing97) were acquired with the same echo-planar imaging sequence as rs-fMRI with a total run time of 24:23 
(min:sec). While T1w, T2w, diffusion scans and task-fMRI were acquired on the same day, rs-fMRI scans were split 
over two days (two scans/day). 

 

b) Data preprocessing 

MRI data underwent HCP9s minimal preprocessing98. Cortical surface models were constructed using Freesurfer 5.3-
HCP99–101, with minor modifications to incorporate both T1w and T2w102. Following intensity nonuniformity 
correction, T1w images were divided by aligned T2w images to produce a single volumetric T1w/T2w image per 
subject, a contrast ratio sensitive to cortical microstructure (Glasser and Van Essen, 2011). Diffusion MRI data 
underwent correction for geometric distortions and head motion98. BOLD timeseries were corrected for gradient 
nonlinearity, head motion, bias field and scanner drifts, then subjected to ICA-FIX for removal of additional noise103. 
The rs-fMRI data were transformed to native space and timeseries were sampled at each vertex of the MSMAll 
registered midthickness cortical surface104,105.  

 

c) Generation of the wiring features  

Cortical wiring features were mapped between 200 spatially contiguous cortical 8nodes9. The parcellation scheme 
preserves the boundaries of the Desikan Killany atlas106 and was transformed from fsaverage7 to subject-specific 
cortical surfaces via nearest neighbour interpolation. 
 

Geodesic distance 

Geodesic distance (GD) was calculated across subject-specific mid-cortical surface maps in native space. Exemplar 
vertices of each node were defined for each subject as the vertex with minimum Euclidian distance to the subject-
specific node centroid. For each node, we matched the exemplar vertex to the nearest voxel in volumetric space, then 
used a Chamfer propagation (imGeodesics Toolbox; https://github.com/mattools/matImage/wiki/imGeodesics) to 
calculate the distance to all other voxels travelling through a grey/white matter mask. This approach differs from 
previous implementations of geodesic distance28,29,36 by involving paths through the grey and white matter, allowing 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.01.08.899583doi: bioRxiv preprint 

https://github.com/mattools/matImage/wiki/imGeodesics
https://doi.org/10.1101/2020.01.08.899583
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

for jumps within gyri and interhemispheric projections107. We projected GD estimations back from volumetric to 
surface space, averaged within node and produced a 200☓200 GD matrix. 

 

 

Microstructure profile covariance 

The full procedure of the MPC approach may be found elsewhere7. In brief, we generated 12 equivolumetric surfaces 
between the outer and inner cortical surfaces108, and systematically sampled T1w/T2w values along linked vertices 
across the whole cortex. T1w/T2w intensity profiles were averaged within nodes, excluding outlier vertices with 
median intensities more than three scaled median absolute deviations away from the node median intensity. Nodal 
intensity profiles underwent pairwise Pearson product-moment correlations, controlling for the average whole-cortex 
intensity profile. The MPC matrix was absolutely thresholded at zero; remaining MPC values were then log-
transformed to produce a symmetric 200x200 MPC matrix. 
 

Tract strength 

Tractographic analysis was based on MRtrix3 (https://www.mrtrix.org). Response functions for each tissue type were 
estimated using the dhollander algorithm109. Fibre orientation distributions were modelled from the diffusion-weighted 
MRI with multi-shell multi-tissue spherical deconvolution110 and subsequently underwent multi-tissue informed log-
domain intensity normalisation. Anatomically constrained tractography was performed systematically by generating 
streamlines using second order integration over fibre orientation distributions with dynamic seeding111,112. Streamline 
generation was aborted when 40 million streamlines had been accepted. Using a spherical-deconvolution informed 
filtering of tractograms (SIFT2) approach, interregional tract strength (TS) was taken as the streamline count weighted 
by the estimated cross section112. A group-representative 200x200 TS matrix was generated using distance dependent 
consensus thresholding113. The approach involves varying the consensus threshold as a function of distance. The 
resulting connectivity matrix preserves the pooled edge length distribution of subject-level data as well as integral 
organisational features, such as long-range connections, while reducing false positive edges. The group-representative 
matrix contained 13.7% of possible edges.  
 

Correspondence of cortical wiring features 

To assess the complementariness of these features in characterising cortical wiring, we computed matrix-wide 
Spearman correlations between all feature pairs (MPC-GD, MPC-TS, GD-TS). We also assessed regional variations 
in feature correspondence at each node using Spearman correlations and the standard deviation in a multi-feature 
fingerprint (Figure S1). 

 

d) Building the wiring space 

Overview of approach 

The wiring space was built through the integration of MPC, GD, and TS. In an effort to provide our community access 
to the methods we used here, we have made normative manifold maps openly available (https://github.com/MICA-
MNI/micaopen/tree/master/structural_manifold) and incorporated all relevant functions and workflow into the 
BrainSpace toolbox (http://brainspace.readthedocs.io114). The procedure is as follows: 

i) Normalisation: Nonzero entries of the input matrices were rank normalised. Notably, rank normalisation was 
performed on the inverted form of the GD matrix i.e., larger values between closer regions. The less sparse 
matrices (GD and MPC) were rescaled to the same numerical range as the sparsest matrix (TS) to balance the 
contribution of each input measure.   

ii) Fusion: Horizontal concatenation of matrices and production of a node-to-node affinity matrix using row-wise 
normalised angle similarity. The affinity matrix thus quantifies the strength of cortical wiring between two 
regions. Alternative data fusion techniques, such similarity network fusion115 and joint embedding64, aim to 
identify similar motifs across modalities. A key outcome of those approaches is higher signal-to-noise ratio, 
however, unique network information provided by each modality would be minimised. Given our cross-modal 
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structural analyses highlighted special principles of cortical organisation are represented by each modality, we 
sought to use the concatenation approach that preserves distinct information in each modality. 

iii) Manifold learning: Diffusion map embedding was employed to gain a low dimensional representation of 
cortical wiring. Diffusion map embedding belongs to the family of graph Laplacians, which involve 
constructing a reversible Markov chain on an affinity matrix. Compared to other nonlinear manifold learning 
techniques, the algorithm is robust to noise and computationally inexpensive116,117. A single parameter ³ 
controls the influence of the sampling density on the manifold (³ = 0, maximal influence; ³ = 1, no influence). 
As in previous studies36,118, we set ³ = 0.5, a choice retaining the global relations between data points in the 
embedded space. Notably, different alpha parameters had little to no impact on the first two eigenvectors 
(spatial correlation of eigenvectors, r>0.99). We operationalised a random walker to approximate the likelihood 
of transitions between nodes, illuminating the local geometry in the matrix. Preservation of local geometry 
using the kernel critically differentiates diffusion maps from global methods, such as principle component 
analysis and multidimensional scaling. Local geometries are integrated into a set of global eigenvectors by 
running the Markov chain forward in time. The decay of an eigenvector provides an integrative measure of the 
connectivity between nodes along a certain axis. This lower dimensional representation of cortical wiring is 
especially interesting for interrogating the cortical hierarchy, which previous research suggests extends upon 
sensory-fugal and anterior-posterior axes. In the present study, the number of dimensions selected for further 
analysis was determined based on the variance explained by each eigenvector, where the cut-off point 
determined using the Cattell scree test. This resulted in two dimensions, which aligns with the hypothesised 
number of axes and, fortunately, can be readily interpreted. 

 

Key outcome metrics 

The wiring space represents the principle axes of variation in cortical wiring, as well as their interaction. We displayed 
the conversion from anatomical to wiring space using a three-part colourmap. The colour of each node was ascribed 
based on proximity to the limits of the wiring space; blue for closeness to the maximum of the first eigenvector, green 
for closeness to minimum of the first eigenvector, and redness represents closeness to maximum of the second 
eigenvector. 
 

The relative positioning of nodes in the wiring space informs on the strength of cortical wiring along the principle 
axes. We characterised the relative positioning of each pair of nodes with wiring distance and difference along each 
primary axis, which pertain to node-to-node proximity and axis-specific shifts, respectively. To calculate wiring 
distances, we triangulated the wiring space used a Delaunay approach and calculated geodesic distance between each 
node used the Fast Marching Toolbox (https://github.com/gpeyre/matlab-toolboxes/tree/master/). The average wiring 
distance of each node informs upon centrality within the space and reflects a region9s propensity to have many cortical 
connections.  
 
Neurobiological substrates of the wiring space 

a) Association to cytoarchitectural features. For the cytoarchitectonic maps, a 100μm resolution volumetric 
histological reconstruction of a post mortem human brain from a 65-year-old male was obtained from the open-access 
BigBrain repository8, on February 2, 2018 (https://bigbrain.loris.ca/main.php). Using previously defined surfaces of 
the layer 1/11 boundary, layer 4 and white matter119, we divided the cortical mantle into supragranular (layer 1/11 to 
layer 4) and infragranular bands (layer 4 to white matter). Staining intensity was sampled along five equivolumetric 
surfaces within the predefined supra- and infra-granular bands at 163,842 matched vertices per hemisphere, then 
averaged for each parcel. We estimated cytoarchitectural similarity of regions by performing the above MPC 
procedure on BigBrain derived intracortical profiles, as in previous work7. Externopyramidisation45, described as the 
<gradual shift of the weight of the pyramidal layers from the V to the IIIc,= was approximated as the product of the 
normalised peak intensity and the relative thickness of the supragranular layers, i.e.   
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Externopyramidisation =  max(ÿ�þÿ�ýÿþ�)mean(ÿ�þÿ�ýÿþ�)   ×  1 2 þ/ÿ���ÿýýĀĂþÿ�þ/ÿ���ÿýýāýā��  

Intensity and thickness quotients were independently rescaled between 0 and 1 across all regions to balance their 
contribution to the externopyramidisation metric. Higher values reflect higher intensity values and shallower depth 
of the peak layer.  

 

b) Cell-type specific gene expression. Cell-type specific gene lists were derived from an analysis of >60,000 single 
cells extracted from human adult visual cortex, frontal cortex, and cerebellum with single-nucleus Droplet-based 
sequencing (snDrop-seq) or single-cell transposome hypersensitive-site sequencing (scTHS-seq)120. We focused on 
eight canonical cell classes; astrocytes, endothelial cells, microglia, inhibitory neurons, excitatory neurons, 
oligodendrocytes, OPCs, and pericytes. Cell-type specific expression maps were calculated as the average of log2 
normalised gene expression across eleven neocortical areas in twelve human adult brains9,44. Areas were visually 
matched to the nearest parcel. Inter-regional co-expression was calculated as the inverse of Euclidean distance between 
cell-type specific gene expression.  
 

The influence of neurobiological similarities on relative positioning of nodes in the wiring space was tested by 
performing Spearman correlations of wiring distance with cytoarchitectural similarity and cell-type specific gene co-
expression patterns, with and without controlling for geodesic distance. We used multiple linear regressions to evaluate 
the variance explained in externopyramidisation and cell-type specific expression by the two wiring space 
eigenvectors. Significance values were corrected to account for spatial autocorrelation in the eigenvectors using spin 
testing and Moran spectral randomisation, respectively121,122, and was operationalised using BrainSpace114. Spectral 
randomisation was initialised using the geodesic distance matrix. As an additional control analysis, we tested the 
correspondence of the first two eigenvectors with features of cortical morphometry using the same procedure.  
 

The wiring space offers a dimensional approach to evaluate the concordance of gradients at multiple biological scales. 
To facilitate multi-scale comparisons, we generated 32 axes within the wiring space by creating inter-cardinal lines in 
5.625° steps. Linear polynomial equations, corresponding to each inter-cardinal line, were evaluated for 100 equally 
spaced x and y-values between the minimum and maximum range of the first and second eigenvectors, respectively. 
Nodes were assigned the values of the nearest point along each inter-cardinal line, based on Euclidean distance, thus 
the position of a node on each axis could be represented by an integer (1–100). The dominant axis of variation of any 
feature in wiring space can be classified as the axis of maximum correlation. P-values from the Spearman correlations 
were subjected to FDR correction to assess whether the dominant axis of variation was significant123.  

 
Association with functional MRI based connectivity  

Functional architecture 

The wiring space was reimagined as a completely dense network with edges weighted by wiring distance (Figure 3B). 
We mapped seven established functional communities49 into the group-level wiring space by assigning each node to 
the functional community that was most often represented by the underlying vertices.  
 

Predicting functional connectivity 

Individual functional connectomes were generated by averaging preprocessed timeseries within nodes, correlating 
nodal timeseries and converting them to z scores. For each individual, the four available rs-fMRI scans were averaged 
at the matrix level, then the connectomes were averaged within the Discovery and Hold-out samples separately. We 
estimated the variance explained in functional connectivity by the cortical wiring scheme using boosted regression 
trees124. Boosted regression trees produce a predictive model from the linear weighted combination of weaker base 
learners that each fit the mean response of a subsection of the predictor space. Weak estimators are built in a step-wise 
manner, with increasing focus on poorly explained sections of the predictor space. Optimisation of the learning rate 
and number of estimators is critical to model complex nonlinear relationships, implicitly model interactions between 
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predictors, and reduce overfitting. Overfitting was further reduced and predictive performance enhanced by using a 
random subset of data to fit each new tree. The present study specifically used the AdaBoost module of scikit-learn 
v0.21.3in Python3.5 and established the optimal number of estimators and the learning rate using internal five-fold 
cross-validation [maximum tree depth = 4, number of estimators = 6:2:20, learning rate = (0.01, 0.05, 0.1, 0.3, 1); see 
Figure S5B for node-wise hyperparameters]. We aimed to predict functional connectivity independently for each node 
based on wiring distance, difference along the first eigenvector and difference along the second eigenvector to all 
other nodes. Each feature was z-standardised before being entered in the model. Predictive accuracy was assessed as 
the mean squared error and R2 coefficient of determination of empirical and predicted functional connectivity. Given 
prior z-standardisation of features, a mean squared error of 1 would represent an error of one standard deviation from 
the true value. An R2 above 0 indicates predictive value of the model, where 1.0 is the maximum possible score. 
 
 

The procedure was repeated using functional connectivity across different tasks to demonstrate the flexibility of the 
wiring space in governing varied states of functional organisation. In line with previous work125, minimally-
preprocessed98 timeseries from each of the seven tasks were averaged within node, z-standardised, then concatenated 
together. Functional connectivity was estimated across all tasks as the inverse of Euclidean distance, because it is less 
biased by outliers than Pearson correlation, which are likely to occur during active task periods. Group-average task-
based functional connectivity matrices were generated for the Discovery and Hold-out groups. 
 

Replication of the wiring space in an independent dataset  

Independent replication was performed using locally acquired data from 40 healthy adults (MICs cohort; 14 females, 
mean±SD age=30.4±6.7, 2 left-handed) for whom quantitative T1 relaxation time mapping (qT1) images were 
available. All participants gave informed consent and the study was approved by the local research ethics board of the 
Montreal Neurological Institute and Hospital. MRI data was acquired on a 3T Siemens Magnetom Prisma-Fit with a 
64-channel head coil. A submillimetric T1-weighted image was acquired using a 3D-MPRAGE sequence (0.8mm 
isotropic voxels, 320x320 matrix, 24 sagittal slices, TR=2300ms, TE=3.14ms, TI=900ms, flip angle=9°, iPAT=2) and 
qT1 data was acquired using a 3D-MP2RAGE sequence (0.8mm isotropic voxels, 240 sagittal slices, TR=5000ms, 
TE=2.9ms, TI 1=940ms, T1 2=2830ms, flip angle 1=4°, flip angle 2=5°, iPAT=3, bandwidth=270 Hz/px, echo 
spacing=7.2ms, partial Fourier=6/8). The combination of two inversion images in qT1 mapping minimises sensitivity 
to B1 inhomogeneities42, and provides high intra-subject and inter-subject reliability126. A spin-echo EPI sequence 
was used to obtain diffusion weighted images, consisting of three shells with b-values 300, 700, and 2000s/mm2 and 
10, 40, and 90 diffusion weighting directions per shell, respectively  (TR=3500ms, TE=64.40ms, 1.6mm isotropic 
voxels, flip angle=90°, refocusing flip angle=180°, FOV=224×224 mm2, slice thickness=1.6mm, mb factor=3, echo 
spacing=0.76ms). One 7 min rs-fMRI scan was acquired using multi-band accelerated 2D-BOLD echo-planar imaging 
(TR=600ms, TE=30ms, 3mm isotropic voxels, flip angle=52°, FOV=240×240mm2, slice thickness=3mm, mb 
factor=6, echo spacing=0.54mms). Participants were instructed to keep their eyes open, look at fixation cross, and not 
fall asleep. 
 

The data preprocessing and construction of the wiring space were otherwise virtually identical to the original Human 
Connectome Project dataset, with a few exceptions. Microstructure profiles were sampled from qT1 images. Cortical 
surface estimation via FreeSurfer utilised two T1 scans, and surface models were manually edited for accuracy. All 
fMRI data underwent gradient unwarping, motion correction, fieldmap-based EPI distortion correction, brain-
boundary-based registration of EPI to structural T1-weighted scan, non-linear registration into MNI152 space, and 
grand-mean intensity normalization. The rs-fMRI data was additionally denoised using an in-house trained ICA-FIX 
classifier103,127 as well as spike regression. Timeseries were sampled on native cortical surfaces and resampled to 
fsaverage via surface-based registration.  
 

Intracranial EEG analyses in epileptic patients 
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A group of ten patients with drug-resistant focal epilepsy (one male, mean±SD age=28.9±7.9, all right-handed) were 
scanned using the same imaging protocol as the heathy controls from the Replication dataset. Patients furthermore 
underwent intracerebral stereo-electroencephalographic investigation as part of their presurgical evaluation, after the 
imaging. The protocol received prior approval from the MNI Institutional Review Board. The recordings were 
acquired with Nihon Khoden EEG amplifiers at a sampling rate of 2000Hz, using 1 single type of depth electrodes 
(DIXI electrodes with either 10 or 15 electrode). A board certified neurophysiologist (BF) selected epochs without 
ictal events, absent of artefacts, from periods of resting wakefulness with eyes closed during standardised conditions, 
resulting in 1-2 minutes of recording for each patient. 
 

Each depth electrode was mapped to a cortical parcel using with the following procedure. For each subject, cortical 
surfaces were extracted from the high-resolution pre-implantation T1-weighted using FreeSurfer6.0. Next, a clinical 
structural image, acquired during the implantation period on a Philips Medical Systems 1.5T MRI scanner, was 
transformed to the T1-weighted space using volume-based affine transformation with nearest neighbour interpolation. 
For seven patients, the clinical scan was a T1-weighted image (T1_3D_SENSE, slice thickness=0.78mm, number of 
slices=280, single echo, phase encoding steps=320, echo train length=320, TR=0.0079s, flip angle=6°, multi coil 
receiver coil, TE=0.0035s). For three subjects, the clinical scan was an Axial T2 scan (slice thickness=2mm, number 
of slices=242, single echo, echo train length=141, TR=2.8, flip angle=90°, multi coil receiver coil, TE=0.48s). Using 
tissue-type specific maps and individualised surface reconstructions, each electrode in grey matter was mapped to the 
nearest surface vertex, and labelled as the corresponding parcel, based on minimum geodesic distance from the 
centroid coordinate of the electrode to the cortical midsurface.  
 
Directed information processing  

Intracranial EEG signals were re-referenced to the average signal of white matter channels to remove scalp reference 
and suppress far-field potentials caused predominantly by volume conduction128. The auto spectral density of each 
channel, Pxx, and the cross power spectral density between pairs of within-subject channels, Pxy, were calculated with 
Welch9s method (59 overlapping blocks, 2s duration, 1s steps, weighted by Hamming window)129. These measures 
allow for the calculation of magnitude squared coherence between two signals130,131 �ýþ(Ā) = �(Ā)ýþ2  / �(Ā)ýý�(Ā)þþ 

In the above formula, Pxx and Pyy are power spectral density estimates and Pxy is the cross spectral density estimate. 
Coherence was evaluated in 0.77 Hz steps (n=129) from 0.5-100Hz. The 55-65 Hz range was not inspected due to 
power line noise at 60 Hz. We used boosting regression models to estimate variance explained in undirected coherence 
by the wiring space [see Predicting Functional Connectivity for details]. In contrast to the fMRI-analysis, however, 
only within-sample variance explained (R2) was examined.    

 

The temporal coupling of two signals was determined by the phase-slope index, using the formula: 

�ýþ =   ℑ (∑ �ýþ∗�∈� (Ā)�ýþ(Ā +  �Ā)) 

In the above formula, Cxy is complex coherence as defined above, ·f is the frequency resolution, ℑ(·) denotes taking 
the imaginary part and F is the set of frequencies over which the slope is summed51. We used a sliding window 
approach for defining frequency bands, using 4Hz bandwidth and 2Hz overlap from 1-100Hz, excluding the 55-65Hz 
range due to power line artefact. The phase slope index leverages the relationship between increasing phase difference 
with increasing frequency to establish the driver and respondent sources51. Given incomplete coverage of intracranial 
electrodes in each subject, we discretised the wiring space into a set of sub-sections using consensus k-means 
clustering. Consensus-based k-means clustering and converged on a stable solution of k=12 across 100 repetitions, 
provided the k range of 10-20132. 11 out of 12 clusters were represented in the intracranial data (Figure S7). We used 
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a linear mixed effect models to approximate the relationship between phase-slope index within each frequency band 
and cluster membership: 
 
 Ψ ~ categorical(EdgeType) + md + Δe1 + Δe2 + (1|subject) + (1|channelseed) + (1|channeltarget) + ε 

 
Here, Ψ stands for phase slope index and EdgeType was defined by the seed and target clusters, in such that the 
EdgeType of a connection from cluster 1 to cluster 2 would be 8129. EdgeType was a fixed effect, subject and channels 
were nested in the model with random intercepts. We also included wiring distance (md), difference on eigenvector 1 
(Δe1) and difference on eigenvector 2 (Δe2) as fixed effects to account for variations in the positioning on nodes within 
a cluster. We used the t-statistics of each EdgeType category as a measure of phase slope index between clusters, then 
vectorised the t-statistics across all frequency bands for each cluster and used Pearson correlations to estimate the 
similarity of cluster9s directed coherence patterns. For each cluster-to-cluster correlation, the phase slope index of that 
direct relationship was removed, thus the correlation indicates the similarity of phase slope index to all other clusters. 
A principle component analysis was used to extract the main axes of variation in the cluster similarity matrix. This 
component loading was cross-referenced with cell-type specific gene expression, with regions labelled by the 
corresponding cluster, as well as average externopyramidisation estimates for each cluster. Due to the limited number 
of observations to predictor variables, we opted for lasso regularisation and focused on high regularisation/sparsity 
models to characterise features importance133. The standard deviation in fitted least-squares regression coefficients 
was calculated using a leave-one-observation-out procedure, all of which used the range of lambdas from the full 
model. We performed a post-hoc multiple linear regression with the most sparse model to evaluate the variance 
explained in the component loading by few cellular features (adjusted R2). Next, we identified the most influential 
frequency bands to the component loading by performing Pearson correlations between the average phase slope index 
spectra with the component loading scores. Inspecting the frequency bands with maximum and minimum rho values, 
we performed significance thresholding of the cluster-to-cluster t-statistic matrices using the fixed effect p-values 
from the linear mixed effect model with an alpha level of 0.05. Standard deviations in the t-statistics were quantified 
across leave-one-subject-out iterations to ensure robustness of the direction and strength of the phase slope index 
estimates. Finally, we followed the criteria set forth by Felleman and van Essen (1991) to test whether the frequency-
specific phase slope index networks conformed to a hierarchical topology. We performed this in a <top-down= fashion 
by progressively adding clusters to lower levels of the model based on the driver-respondent relationships shown in 
the thresholded t-statistic matrices. First, clusters that only drive oscillations (i.e., positive t-statistics) were placed at 
the top level of the hierarchy, then the next level was populated by clusters that only respond to clusters in upper 
levels, and so forth. The internal consistency of the hierarchy is determined by whether all significant edges can be 
placed into the model with a constant flow of directed coherence from top to bottom. Preprocessing was performed 
using the FieldTrip toolbox134, while the cross-spectral density estimates, phase slope index (http://doc.ml.tu-
berlin.de/causality/) and linear models were estimated using MATLAB135.  
 
Code and data availability statements 

Preprocessed group-level matrices, normative manifold maps and integral scripts are openly available at  
https://github.com/MICA-MNI/micaopen/tree/master/structural_manifold 
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