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Abstract  34 

The human sensorimotor system has a remarkable ability to quickly and efficiently learn 35 

movements from sensory experience. A prominent example is sensorimotor adaptation, learning 36 

that characterizes the sensorimotor system’s response to persistent sensory errors by adjusting 37 

future movements to compensate for those errors. Despite being essential for maintaining and 38 

fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear. A 39 

component of sensorimotor adaptation is implicit (i.e., the learner is unaware of the learning 40 

process) which has been suggested to result from sensory prediction errors3the discrepancies 41 

between predicted sensory consequences of motor commands and actual sensory feedback. 42 

However, to date no direct neurophysiological evidence that sensory prediction errors drive 43 

adaptation has been demonstrated. Here, we examined prediction errors via 44 

magnetoencephalography (MEG) imaging of the auditory cortex during sensorimotor adaptation 45 

of speech to altered auditory feedback, an entirely implicit adaptation task. Specifically, we 46 

measured how speaking-induced suppression (SIS)--a neural representation of auditory 47 

prediction errors--changed over the trials of the adaptation experiment. SIS refers to the 48 

suppression of auditory cortical response to speech onset (in particular, the M100 response) to 49 

self-produced speech when compared to the response to passive listening to identical playback of 50 

that speech. SIS was reduced (reflecting larger prediction errors) during the early learning phase 51 

compared to the initial unaltered feedback phase. Furthermore, reduction in SIS positively 52 

correlated with behavioral adaptation extents, suggesting that larger prediction errors were 53 

associated with more learning. In contrast, such a reduction in SIS was not found in a control 54 

experiment in which participants heard unaltered feedback and thus did not adapt. In addition, in 55 

some participants who reached a plateau in the late learning phase, SIS increased (reflecting 56 

smaller prediction errors), demonstrating that prediction errors were minimal when there was no 57 

further adaptation. Together, these findings provide the first neurophysiological evidence for the 58 

hypothesis that prediction errors drive human sensorimotor adaptation. 59 

 60 

Introduction 61 

The sensorimotor system shows a remarkable ability to quickly and efficiently learn 62 

movements based on sensory feedback. Soon after perceiving sensory errors that arise from 63 

movements, the system updates future movements to compensate for the errors, a phenomenon 64 

called sensorimotor adaptation. What drives such an elegant learning process? Previous studies 65 

suggested that adaptation can be driven by both task errors (i.e., discrepancy between the action 66 

and the goal) and sesnory prediction errors (i.e., mismatches between the actual sensory 67 

consequences of a movement and those predicted from the motor commands driving that 68 

movement).  69 

In the speech domain, however, multiple lines of evidence suggest that speech 70 

sensorimotor adaptation to altered auditory feedback is implicit (i.e., participants are unaware of 71 

the learning), and hypothesized to be driven mainly by sensory prediction errors (Mazzoni & 72 

Krakauer, 2006).  For example, participants showed no difference in the amount of learning in 73 

response to formant-perturbed auditory feedback when instructed to compensate, to ignore the 74 
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feedback, or to avoid compensating (Keough et al., 2013; Munhall et al., 2009). Although 75 

behavioral studies have suggested that this unconscious minimizing of auditory prediction errors 76 

is the signal that drives speech sensorimotor adaptation, direct neurophysiological evidence of 77 

this process has not been demonstrated. 78 

A neural representation of auditory prediction errors is speaking-induced suppression 79 

(SIS) of the auditory cortex. Studies have reported that the auditory responses to self-produced 80 

speech are smaller (i.e., suppressed) than the responses to playback of the same speech sound, 81 

consistent with the idea that auditory responses arise from auditory prediction errors, which are 82 

small in the self-produced case (i.e., auditory feedback is predictable) and large in the passively 83 

heard case (i.e., auditory feedback is unpredictable). Thus, SIS demonstrates that, during 84 

speaking, the auditory system predicts and anticipates the arrival of auditory feedback of speech 85 

onset, resulting in a suppressed feedback comparison response, as compared to auditory 86 

responses during passive listening to playback when speech onset cannot be 87 

predicted/anticipated. Consistent with the idea, SIS was reduced when participants spoke with 88 

pitch-perturbed auditory feedback (e.g., Behroozmand & Larson, 2011; Chang et al., 2013) or 89 

voice-manipulated auditory feedback ("alien voice", e.g., Heinks-Maldonado et al., 2005, 2006; 90 

Houde et al., 2002). Importantly, this reduction in the suppression of auditory areas in response 91 

to perturbed auditory feedback are not unique to human speech, as they have also been observed 92 

in marmoset monkey vocal production (e.g., Eliades & Tsunada, 2018). 93 

Previously, reduction in a similar suppression effect (i.e., suppressed neural response in 94 

active movements compared to passive movements) has been found in Rhesus monkey 95 

cerebellum during sensorimotor adaptation (Brooks et al., 2015), but no such evidence has been 96 

documented in humans to date. One previous study that examined SIS during adaptation to first 97 

formant frequency shifts via electroencephalography (EEG) reported that SIS amplitude in the 98 

learning phase (i.e., during perturbed first formant) was not reduced compared to the pre-99 

adaptation baseline (Sato & Shiller, 2018). However, the negative finding could result from 100 

masking of SIS changes across all 80 feedback perturbation trials, as opposed to changes that 101 

may have occurred in early trials (e.g., initial 20 to 40 feedback perturbation trials) when most 102 

adaptation occurs (e.g., Kim & Max, 2021). Here, we used magnetoencephalography (MEG) 103 

imaging during repeated speech adaptation sessions to test the hypotheses that (1) SIS reduces 104 

during early phases of speech sensorimotor adaptation, and (2) the early SIS reduction may be 105 

distinct from SIS changes found in later phases of adaptation.  106 

 107 

 108 

Results 109 

Participants lay supine on the scanner bed of a whole-head, 275-channel 110 

biomagnetometer system (MEG; Omega 2000, CTF, Coquitlam, BC, Canada) for a total of four 111 

sessions (first and second speaking sessions, first and second listening sessions). During the first 112 

two sessions, participants were asked to read <Ed,= <end,= or <ebb= (60 trial blocks for 3 113 

different words = 180 total trials) that appeared on the screen. During these speaking sessions, 114 

participants heard their speech with the first formant frequency (Formant 1 or F1) shifted upward 115 

for some trials, which made their speech to sound like <Add,= <And,= and <Ab,= respectively. 116 

Specifically, after the first 20 trial blocks (i.e., baseline) which had no perturbation, the 150 Hz 117 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.22.563504doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.22.563504
http://creativecommons.org/licenses/by/4.0/


   

 

4 

 

up-shift perturbation was present from trial block 21 to 50. We categorized the first 15 trial 118 

blocks of the perturbed trials (21 3 45) as the early learning phase and the second 15 trial blocks 119 

(36-50) as the late learning phase.  120 

After the first session, participants were given a few minute-long break that included 121 

conversations with the experimenter, which allowed additional exposure to their unaltered 122 

auditory feedback (Figure 1). We then asked participants to repeat another speaking session. The 123 

rationale for this repeated session was that most adaptation occurs quickly, often in the first 10-124 

30 trials of the perturbation phase, but such a low number of trials does not provide enough 125 

power for the evoked potential analyses. Thus, to ensure an adequate number of trials for the 126 

early and late learning phases, an additional session was recorded. After completing two 127 

speaking sessions, participants were asked to listen to their recorded speech in the first two 128 

speaking sessions across the subsequent two sessions (i.e., listening sessions). During the 129 

listening sessions, participants saw the same stimuli (i.e., words) that they saw in the speaking 130 

sessions (see Methods for more details).  131 

 132 

 133 

Figure 1. Participants were asked to read words during the first two sessions (<speak=). In these sessions, 150 Hz up-134 

shift perturbation was present from the trial block 21 to 50. We categorized the first 15 trial blocks of the perturbed 135 

trials (21 3 45) as the early learning phase and the second 15 trial blocks (36-50) as the late learning phase. After the 136 

first session, we asked participants to repeat another speaking session after a few minute-long break. 137 

 138 

We averaged the acoustic and MEG data across the repeated sessions. As shown in 139 

Figure 2, source localization of trial-averaged data for each condition (speak, listen) and phase 140 

(baseline, early learning, and late learning) was conducted to determine peak activity (M100) 141 

location within the auditory cortex. We then computed the M100 amplitude differences between 142 

the listen and speak sessions to determine SIS for each condition and phase (see Methods for 143 

more details).  144 
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 145 

Figure 2. A representative participant’s source localization. NUTMEG (citation) identified a few MNI coordinates 146 

that showed clear M100 response shown in the coronal (A), sagittal (B), and transverse (C) planes. The MNI 147 

coordinate of the voxel with the most power in the auditory areas in each hemisphere was selected for analyses. D: 148 

The same participant’s for left auditory area coordinate selected shown in a surface-based rendering (BrainNet 149 

Viewer, Xia et al., 2013). 150 

 151 

 152 

 153 

 154 

 155 
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SIS was reduced during early learning and the reduction was positively correlated with 156 

adaptation 157 

  158 

Figure 3 A: The group average speech auditory-motor adaptation in which participants lowered their first formant 159 

frequency (F1) in response to the 150 Hz upshift F1 perturbation. B: The left auditory cortex responses (M100) in 160 

listen and speak conditions demonstrate that the amount of speaking-induced suppression (i.e., listen (black) 3 speak 161 

(orange)) is reduced during early learning (Early) compared to the baseline (Base). C: SIS was significantly reduced 162 

in the early and late learning phases compared to the baseline (left, r(12) = 0.583, p = 0.029). The amount of SIS 163 

reduction in the early learning phase was significantly correlated with the amount of early adaptation (middle). The 164 

amount of additional SIS reduction in the late learning phase also significantly correlated with the additional amount 165 

of adaptation in the phase (right, r(12) = 0.652, p = 0.011).  166 

 167 

Nearly all participants adapted in both speaking sessions (Fig. 3A), except for three 168 

participants who adapted in only one of the two sessions. Given that there was no evidence of 169 
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savings (i.e., changes in the baseline or learning behavior from repeating the task, see 170 

Supplemental Information 1), these participants were included in the analyses. The SIS analyses 171 

revealed that there was no right hemisphere SIS (see Supplemental Information 2), which is 172 

known to be variable across tasks and individuals (see Discussion for more details). On the other 173 

hand, most participants showed a clear suppression of left auditory activity in the speaking 174 

condition (compared to the listening condition) during the baseline phase (Fig. 3B, left). Hence, 175 

SIS refers to suppression of left auditory activity hereafter unless specified otherwise. 176 

We also found that the SIS response changed in the early and late learning phases (Fig. 177 

3B, middle and right), F(2, 28) = 5.131, p = 0.013. The post-hoc pairwise comparison test 178 

indicated that SIS response was significantly reduced in the early learning phase compared to the 179 

baseline (Fig. 3C, left), t(30.1) =2.749, p_adjusted = 0.026, demonstrating that there were large 180 

auditory prediction errors during the early learning phase. Additionally, we found that the 181 

amount of SIS reduction in the early learning phase was positively correlated with the amount of 182 

learning (in the early learning phase) across participants, r(12) = 0.583, p = 0.029 (Fig. 3C, 183 

middle).  184 

 185 

Further SIS reduction was positively correlated with (additional) late learning 186 

The SIS amplitude in the late learning phase was also significantly reduced compared to 187 

the baseline (Fig. 3C, left), t(30.1) = 2.591, p_adjust = 0.038. Importantly, we found that the SIS 188 

reduction from the baseline was not significantly correlated with the final amount of adaptation 189 

in the late learning phase, r(12) = 0.260, p = 0.370. This result was consistent with our 190 

hypothesis that most learning typically occurs in the early phase, and thus the late phase SIS 191 

reduction from baseline would not be able to capture most of the adaptation extent. Rather, late 192 

SIS reduction that accounts for early SIS changes (i.e., additional late SIS reduction from early 193 

SIS) is likely a predictor for late (additional) learning behaviors. Indeed, we found that additional 194 

SIS reduction in the late learning phase (i.e., late SIS relative to the early SIS) was significantly 195 

correlated with additional late adaptation, i.e., late adaptation relative to early adaptation r(12) = 196 

0.689, p = 0.001.  197 

It should be noted that one participant with the largest additional SIS reduction (and the 198 

largest additional adaptation) had a big impact on the correlation. The participant’s SIS reduction 199 

was indeed an outlier (outside of the 1.5 inter-quartile range above 75% percentile). After 200 

excluding the participant from the analysis, although the correlation was still positive, r(11) = 201 

0.430, it was no longer statistically significant, p = 0.142. Nonetheless, we included this 202 

participant’s data in this analysis because the SIS reduction for the participant (~12 z) was not 203 

too far from the maximum SIS reduction value found in the early learning data (~10 z). In fact, 204 

the participant’s data would not have been considered an outlier if it was found in the early 205 

learning phase. Additionally, when we imputed the participant’s data by replacing it with the 95th 206 

percentile of the group, the correlation was still statistically significant, r(12) = 0.652, p = 0.011, 207 

(see Fig. 3C, right). Lastly, a visual inspection of the participant’s behavioral data clearly 208 

indicated large additional learning that was not due to outliers in the adaptation data, consistent 209 

with the participant’s large SIS reduction (see Supplemental Information 3). 210 

Another interesting finding is that there were 8 participants whose SIS increased in the 211 

learning phase, which resulted in a near-complete SIS recovery (i.e., the late learning SIS 212 

response did not differ from the baseline SIS response, t(7) = 0.824, p = 0.437. Importantly, 213 

these participants also did not show a significant amount of additional learning in this phase 214 
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(compared to the early adaptation), t(7) = 2.082, p = 0.076 even though adaptation was largely 215 

incomplete (i.e., 14.88% of the perturbation size). Taken together, the relationship between 216 

additional SIS reduction and adaptation in the late learning phase also followed the same trend 217 

found in the early learning phase. That is, individuals who showed more reduction in SIS, also 218 

tended to show more learning, suggesting that larger adaptation was associated with larger 219 

prediction errors. In contrast, less learning or no learning behavior (e.g., reaching a plateau) was 220 

associated with smaller prediction errors (i.e., increases in SIS).  221 

 222 

SIS remained unchanged when there was no learning 223 

 224 

Figure 4. A control experiment in which no auditory perturbation was applied. As expected, participants did not 225 

show any changes in Formant 1, exhibiting, no learning (left). There was also no SIS change across the different 226 

phases (right). 227 

 228 

To ensure that SIS reduction was related to learning behaviors, we designed a control 229 

experiment in which there was no auditory perturbation (and thus no learning was expected). 230 

Here, participants also completed two speaking and two listening sessions. Other than the 231 

absence of the perturbation, the experimental setup and the analyses methods were identical to 232 

the main experiment. We found that participants did not adapt (Fig 4A) and SIS reduction also 233 

did not occur (i.e., SIS amplitudes did not change across the phases), F(2, 16) = 0.484, p = 0.625. 234 

Therefore, SIS remained unchanged when there was no learning. 235 

 236 

Discussion 237 

We used magnetoencephalography (MEG) imaging to examine auditory prediction errors 238 

during speech auditory-motor adaptation. Specifically, we measured Speaking-Induced 239 

Suppression (SIS)4suppression of auditory responses to self-produced speech compared to the 240 

responses to passively heard speech4is thought to represent auditory prediction errors. To fully 241 

capture SIS changes in the early learning phase during which most of adaptation typically 242 

occurs, we analyzed the early learning and late learning phases separately.  243 

 244 

Neurophysiological evidence that auditory prediction errors drive implicit adaptation  245 

 SIS was significantly reduced in the early learning phase during which adaptation 246 

occurred. In contrast, in a control experiment in which there was no perturbation (and thus no 247 

adaptation), such a SIS reduction was not found. In addition, the amount of SIS reduction was 248 
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positively correlated with the amount of adaptation, delineating a direct link between prediction 249 

errors (i.e., more SIS reduction) and adaptation. Together, our findings demonstrate that auditory 250 

prediction errors drive speech auditory-motor adaptation. Our findings are consistent with 251 

previous reports of speech adaptation being entirely implicit (e.g., Kim & Max, 2021; Lametti et 252 

al., 2020), which is thought to be driven by prediction errors (Haith & Krakauer, 2013; Mazzoni 253 

& Krakauer, 2006). In addition, speech adaptation also seems to be sensitive to auditory 254 

feedback delays (i.e., 100 ms delay can eliminate adaptation), which highlights the importance of 255 

prediction errors that require temporally precise comparison of prediction and the actual 256 

feedback (Max & Maffett, 2015; Shiller et al., 2020). More recently, a computational model, 257 

Feedback-Aware Control of Tasks in Speech (FACTS, Parrell et al., 2019) also generated 258 

simulations of adaptation driven by auditory prediction errors (K. S. Kim et al., 2023). 259 

To date, only one other study examined SIS during speech auditory-motor adaptation, but 260 

they reported no SIS changes during adaptation (Sato & Shiller, 2018). Although their finding 261 

may seem contradictory to the current study at first glance, it should be noted that in the previous 262 

study SIS amplitudes across the whole learning phase (80 trials) were averaged and analyzed 263 

together, which likely included SIS recovery response in the late phase as found in the current 264 

study’s late learning phase. Hence, it is possible that SIS reduction was present in the early 265 

learning phase, but such an effect may have been weakened by the late perturbation data. 266 

It should be noted that our findings do not necessarily reject the notion that task errors 267 

may also drive implicit speech adaptation. In upper limb visuomotor rotation, recent studies have 268 

demonstrated that task errors contribute to implicit adaptation (Albert et al., 2022; H. E. Kim et 269 

al., 2019; Leow et al., 2018, 2020; Miyamoto et al., 2020; Morehead & Xivry, 2021). Although it 270 

remains possible that other types of errors (in addition to prediction errors) may also influence 271 

speech adaptation, such evidence has not been documented (also see <What does SIS reflect?= 272 

below). 273 

Broadly, our findings provide the first neurophysiological evidence that prediction errors 274 

drive implicit adaptation in humans. Previously a similar suppression effect has been 275 

documented in the cerebellum of rhesus monkey during head movement adaptation (Brooks et 276 

al., 2015). In the study, cerebellar neuron activities, which are typically suppressed during 277 

voluntary movements compared to passive movements much like SIS, did not differ between the 278 

two conditions (voluntary vs. passive) during adaptation. Remarkably, this reduced suppression 279 

also recovered (i.e., suppression increased) towards later learning trials, directly in line with our 280 

result. Here, we expanded the previous finding by demonstrating that the extent of such 281 

suppression reduction (or recovery) was closely associated with implicit adaptation across 282 

individuals. 283 

 284 

Adaptation plateaus when prediction errors are minimal 285 

Another interesting aspect of our finding reveals a potential mechanism that causes 286 

adaptation to halt. In the past, several explanations for why adaptation is incomplete have been 287 

put forth, especially for speech adaptation which often plateaus around 20-40% (see Kitchen et 288 

al., 2022 for detailed discussion). Some have demonstrated that speech adaptation accompanies 289 

changes in perceptual boundaries which may contribute to incomplete adaptation (Lametti et al., 290 

2014; Shiller et al., 2009), but perceptual auditory targets do not seem to change throughout 291 

adaptation (K. S. Kim & Max, 2021) and preventing perceptual target shifts by playing back the 292 

participants’ baseline productions did not increase adaptation. Others argued that a conflict 293 

between unperturbed somatosensory feedback and perturbed auditory feedback may lead to 294 
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limited adaptation, but this account also lacks supporting evidence. In fact, preliminary data from 295 

our laboratory shows that even when somatosensory feedback becomes unreliable by oral 296 

application of lidocaine, adaptation behavior does not increase, suggesting that somatosensory 297 

feedback may not be a reason for incomplete adaptation.  298 

An idea that has been proposed by an upper limb reaching adaptation study is that 299 

consistency of errors modulates error sensitivity, which results in limited adaptation (e.g., Albert 300 

et al., 2021). This idea has not been directly examined in the context of speech adaptation, but it 301 

is plausible that the overall size of prediction errors may be modulated by feedback (or 302 

perturbation) consistency. Some studies have found that individuals with high perceptual 303 

(auditory) acuity measured by psychometric functions had a larger extent of adaptation (e.g., 304 

Daliri & Dittman, 2019), which may suggest a potential link between error sensitivity and 305 

adaptation. Nonetheless, several studies also documented no such relationship (e.g., Abur et al., 306 

2018; Alemi et al., 2021; Feng et al., 2011; Lester-Smith et al., 2020). 307 

Recently, another potential explanation, which is that adaptation is halted by prediction 308 

errors which quickly decrease throughout adaptation because of both the motor output changes 309 

and sensory prediction updates, has been put forth by a computational model, FACTS (K. S. Kim 310 

et al., 2023). In the simulation, the adaptive motor output produced lower F1 in response to F1 311 

upshift perturbation, resulting in perturbed sensory feedback to become more like the baseline 312 

sensory feedback (i.e., lower perturbed feedback in F1). Interestingly, the simulation showed that 313 

sensory prediction was also updated to predict perturbed auditory feedback (i.e., higher 314 

prediction in F1). Thus, prediction errors, the difference between lower perturbed feedback in F1 315 

and higher prediction in F1, became minimized throughout adaptation, eventually becoming a 316 

small amount that could no longer induce adaptation.  317 

Empirical evidence for the idea that minimal prediction errors may result in halting 318 

adaptation can be found in head movement adaptation of rhesus monkeys (Brooks et al., 2015). 319 

In the study, cerebellar neuron activities to the voluntary head movement became more 320 

suppressed (compared to passive movement) as adaptation plateaued. Critically, the authors 321 

argued that the neural response becoming more suppressed (or less <sensitive=) throughout 322 

learning demonstrates that sensory prediction was being rapidly updated to predict unexpected 323 

(perturbed) sensory feedback.  324 

Consistent with the previous finding, in the current study the late learning phase SIS 325 

increased (i.e., minimal prediction errors) in multiple participants who also showed plateaued 326 

adaptation in the phase (i.e., no additional learning). Furthermore, the observation that adaptation 327 

plateaued even though adaptation was largely incomplete (i.e., 14.88% of the perturbation size) 328 

can be best explained by the idea that sensory forward model updates (i.e., prediction updates) 329 

may have occurred throughout adaptation, minimalizing prediction errors. Thus, our findings add 330 

further support to the notion that incomplete adaptation may result from not only the motor 331 

output changes but also sensory prediction updates, which together minimize prediction errors. 332 

 333 

What does SIS reflect? 334 

SIS is typically viewed as a measure that reflects prediction errors given that it is reduced 335 

upon unexpected auditory feedback (e.g., pitch perturbation, alien voice). This view is also 336 

shared by other studies examining suppression of motor-evoked auditory responses (i.e., finger 337 

pressing a button), which is also reduced or absent in deviant (i.e., unpredicted) sounds (Knolle 338 

et al., 2013). In contrast to this view, a previous study from our laboratory argued that the SIS 339 

response may instead reflect target errors, discrepancies between an intended auditory target with 340 
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auditory feedback (Niziolek et al., 2013). The study found that production variability reduced 341 

SIS. The study looked at formants at vowel onset and found that the greater the onset formants 342 

deviated from the median formants, the more SIS was reduced. Additionally, this reduction in 343 

SIS correlated with the amount of subsequent within-utterance formant change that reduced 344 

variance from the median as the utterance progressed (<centering=). Under the assumption that 345 

the median formants are close to the intended auditory target (i.e., an ideal production), the study 346 

argued that SIS reflects target errors.  347 

However, our finding that SIS increased in 8 participants during the late learning phase 348 

cannot be easily explained by this account. Due to the SIS recovery, their late learning phase SIS 349 

response, which did not differ from their baseline SIS response, would be interpreted as minimal 350 

or no target errors according to the target error explanation for SIS. Nonetheless, these 351 

participants compensated for only 14.88% of the perturbation on average, presumably leaving a 352 

considerable discrepancy between any fixed auditory target and auditory feedback. Although 353 

previous studies have reported perceptual boundaries shifting towards the direction of 354 

perturbation during adaptation which may reduce target errors (Lametti et al., 2014; Shiller et al., 355 

2009), it has also been suggested that auditory targets, as opposed to perceptual boundaries, do 356 

not change throughout adaptation (K. S. Kim & Max, 2021).  In fact, a recent study has 357 

demonstrated that playing back the median production (i.e., the assumed auditory target) to 358 

participants throughout adaptation did not affect learning (LeBovidge et al., 2020), raising 359 

questions about whether auditory targets change during adaptation. 360 

On the other hand, if SIS indeed reflects prediction errors rather than target errors, this 361 

view offers a different interpretation of Niziolek et al. (2013). According to the view, reduced 362 

SIS in productions with greater deviations from the median production may have resulted from 363 

large signal-dependent noise that stemmed from both the lower neural and muscular motor 364 

systems (Harris & Wolpert, 1998; Jones et al., 2002). Because such noise cannot be predicted by 365 

cortical areas, observed auditory feedback would not match auditory prediction, leading to large 366 

auditory prediction errors. Hence, it is plausible that the reduced SIS found in those productions 367 

reflects larger prediction errors. This view would also imply that centering (i.e., subsequent 368 

within-utterance formant change) minimized prediction errors, rather than target errors.  369 

  370 

Neural correlates of auditory prediction errors 371 

In the current study, we estimated auditory prediction errors from activities in the 372 

auditory cortex, but a large body of evidence suggests that the cerebellum may be a neural 373 

substrate for forward models that generate sensory predictions (e.g., Blakemore et al., 1999, 374 

2001; Imamizu & Kawato, 2012; Kawato et al., 2003; Pasalar et al., 2006; Shadmehr, 2020; 375 

Shadmehr & Krakauer, 2008; Skipper & Lametti, 2021; Therrien & Bastian, 2019; Wolpert et 376 

al., 1998). Studies have also documented evidence that the cerebellum may also compute sensory 377 

prediction errors (e.g., Blakemore et al., 2001; Brooks et al., 2015; Cullen & Brooks, 2015). On 378 

the other hand, it has also been hypothesized that the cerebellum may work in concert with 379 

cortical areas to generate sensory prediction mechanisms and prediction errors (Blakemore & 380 

Sirigu, 2003; Haar & Donchin, 2020). In fact, the cerebellum is known to modulate activities in 381 

different cortical areas during active movements (e.g., the somatosensory cortex, Blakemore et 382 

al., 1999). Additionally, the cerebellum’s projection to the posterior parietal cortex (Clower et 383 

al., 2001) has been implicated for generating sensory prediction(e.g., Della-Maggiore et al., 384 

2004; Desmurget & Grafton, 2000; also see Blakemore & Sirigu, 2003 for a detailed review).  385 
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Is it possible that the cerebellum works in concert with the auditory cortex to compute 386 

auditory prediction errors? The cerebellum is certainly known for its involvement in auditory 387 

processing (e.g., Aitkin & Boyd, 1975, 1978; Ohyama et al., 2003) including speech perception 388 

(Ackermann et al., 2007; Mathiak et al., 2002; Schwartze & Kotz, 2016; Skipper & Lametti, 389 

2021). It is also known that the cerebellum projects to the medial geniculate body (MGB), and 390 

the resulting inhibition and/or potentiation of MGB neurons may lead to rapid plasticity of 391 

response fields of the primary auditory cortex, modulating auditory inputs (e.g., McLachlan & 392 

Wilson, 2017; Weinberger, 2011). Such rapid plasticity of the response fields may prepare the 393 

primary auditory cortex for discriminating different sounds (David et al., 2012), a function that 394 

may be involved in computing auditory prediction errors. Indeed, both the right cerebellar areas 395 

and bilateral superior temporal cortex were found to be active during speech response to 396 

unexpected auditory error (i.e., under the presence of auditory prediction errors, Tourville et al., 397 

2008). 398 

Although studies have suggested that there is no direct projection from the primary 399 

auditory area to the cerebellum in primates (e.g., Schmahmann & Pandya, 1991) and mice (e.g., 400 

Henschke & Pakan, 2020), others reported auditory fibers projecting from the association areas 401 

and superior temporal gyrus to the cerebellum in primates (e.g., Brodal, 1979). In addition, it is 402 

also known that cortical auditory areas project to the cerebellar hemisphere through the cerebro3403 

pontine pathways in some mammals including humans (e.g., Glickstein, 1997; Pastor et al., 404 

2008). Taken together, although the exact neural correlates of auditory prediction errors remain 405 

largely unclear, it is possible that they are also computed through pathways/loops that involve 406 

multiple cortical and cerebellar areas.  407 

It is also noteworthy that the baseline SIS activities were found to be most pronounced in 408 

the left auditory cortex, in line with the notion that the left hemisphere is dominant in speech and 409 

language perception (Curio et al., 2000; Houde et al., 2002). We also found SIS reduction only in 410 

the left auditory cortex, in line with a previous study that found prediction-related SIS effect only 411 

in the left hemisphere (Niziolek et al., 2013). One discrepancy in our finding from the previous 412 

study is that we did not find a significant SIS effect in the right hemisphere even during the 413 

baseline phase (see Supplemental Information 2). Given that the right hemisphere SIS is known 414 

to be highly variable across tasks and individuals (K. X. Kim et al., 2023), the discrepancy may 415 

have been due to the sampling issue. 416 

 417 

 418 

Methods 419 

 420 

Subjects  421 

Across the two experiments (adaptation and control, see below), twenty-seven adult subjects who 422 

were 18 years of age or older without any speech, language, and hearing disorders were 423 

recruited. All subjects were native speakers of American English with no known communication, 424 

neurological, or psychological disorders. In addition, they passed pure-tone hearing thresholds of 425 

≤ 20 dB HL for the octave frequencies between 500 and 4,000 Hz.  426 

Because four subjects participated in both experiments 1-2 months apart, we obtained data from 427 

31 sessions (21 sessions for adaptation and 9 sessions for control). Two of the four subjects 428 
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participated in the adaptation experiment first. In the adaptation experiment, 7 subjects were 429 

excluded from analyses for various reasons. One subject’s source could not be reliably localized, 430 

and three subjects could not finish the task due to fatigue. Two subjects showed <following= non-431 

adaptive behavior and one subject had atypical SIS response in the baseline, (SIS < 35 z). Here, 432 

we report adaptation experiment results from 14 subjects (mean age = 31.5, SD = 9.8 years old, 8 433 

females). For the control experiment, 1 subject was excluded because the subject’s MRI could 434 

not be obtained, leaving 8 subjects for data analyses (mean age = 34.4, SD = 8.3 years old, 3 435 

females). 436 

 437 

Tasks 438 

Adaptation 439 

During MEG data collection of the first two sessions, subjects were asked to read <Ed,= <end,= or 440 

<ebb= (60 trial blocks for 3 different words = 180 total trials) that appeared on the screen. During 441 

these speaking sessions, subjects heard their speech with the first formant frequency (Formant 1 442 

or F1) shifted upward for some trials (trial block 21 to 50, see below), which made their speech 443 

to sound more like <Add,= <And,= and <Ab,= respectively. The auditory perturbation, 150 Hz 444 

upshift, was applied through Feedback Utility for Speech Processing (FUSP, Kothare et al., 445 

2020) and the total feedback latency (i.e., hardware + software, K. S. Kim et al., 2020) was 446 

estimated to be about 19 ms. 447 

During the speaking sessions, the first 20 trial blocks (i.e., baseline) had no perturbation, while 448 

blocks 21 through 50 had a 150 Hz up-shift perturbation in the auditory feedback. We 449 

categorized the first 15 trial blocks of the perturbed trials (21 3 45) as the early learning phase 450 

and the second 15 trial blocks (36-50) as the late learning phase. In the passive listening 451 

condition, subjects heard the same auditory feedback that they received during the speaking 452 

condition (including the perturbed sounds) through the earphones. With a mean interstimulus 453 

interval of 3s and short breaks (roughly 20 seconds) every 30 utterances, the duration of each 454 

condition was approximately 10 3 12 minutes. Given that the adaptation task (speak) was 455 

repeated, we also checked whether there was any savings effect and found that there was no 456 

consistent effect of repeating adaptation (see Supplemental Information 1). 457 

Control 458 

We also designed a control experiment in which we applied 0 Hz perturbation (instead of 150 Hz 459 

perturbation) during early and late <learning= phases. All other details of the task remained 460 

identical to the adaptation experiment. 461 

MRI 462 

On a separate day, subjects also underwent an MRI scan, where a high-resolution T1-weighted 463 

anatomical MRI was acquired in each participant for source reconstruction. 464 

 465 

 466 
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 467 

MEG acquisition 468 

Subjects were placed in a 275-channel, whole-head biomagnetometer system (Omega 2000, 469 

CTF, Coquitlam, BC, Canada; sampling rate 1200 Hz; acquisition filtering 0.001-300 Hz) for a 470 

total of four sessions (two speaking and two listening sessions).  Subjects heard auditory 471 

feedback (or recorded auditory feedback during listening condition) through ER-3A ear-insert 472 

earphones (Etymotic Research, Inc., Elk Grove Village, IL) and a passive fiber optic microphone  473 

(Phone-Or Ltd., Or-Yehuda, Israel) was placed about an inch in front of their mouths to record 474 

speech responses. All stimulus and response events were integrated in real time with MEG 475 

timeseries via analog-to-digital input to the imaging acquisition software.  476 

Each subject lay supine with their head supported inside the helmet along the center of the sensor 477 

array. Three localizer coils affixed to the nasion, left peri-auricular, and right peri-auricular 478 

points determined head positioning relative to the sensor array both before and after each block 479 

of trials. We ensured that subjects’ head movements were smaller than 5 mm in every session. 480 

Co-registration of MEG data to each individual’s MRI image was performed using the CTF 481 

software suite (MISL Ltd., Coquitlam, BC, Canada; ctfmeg.com; version 5.2.1) by aligning the 482 

localizer coil locations to the corresponding fiducial points on the individual’s MRI. MRI images 483 

were exported to Analyze format and spatially normalized to the standard T1 Montreal 484 

Neurological Institute (MNI) template via Statistical Parametric Mapping (SPM8, Wellcome 485 

Trust Centre for Neuroimaging, London, UK). 486 

 487 

 488 

 489 

Data extraction and analyses 490 

First formant frequency (F1) 491 

The first formant frequency (F1) from each speech production was extracted through a custom 492 

MATLAB software, Wave Viewer (Raharjo et al., 2021). We then extracted F1 from the vowel 493 

midpoint (40% to 60% into the vowel) and averaged it for each utterance. In case of missing 494 

trials, we replaced the data point by using an interpolation method using four nearest neighboring 495 

trials as described in Kitchen et al. (2022). We replaced about 2.96% and 2.88% of the data for 496 

the adaptation and control experiments respectively. We normalized the data by subtracting the 497 

baseline F1 from the data (i.e., baseline = 6th to 20th trial blocks). The amount of learning in each 498 

phase was assessed by averaging the last 5 trial blocks (31st to 35th blocks for early learning and 499 

46th to 50th blocks for late learning).  500 

 501 

Speaking-induced suppression 502 

We first corrected distant magnetic field disturbances by calculating a synthetic third-order 503 

gradiometer, detrended using a DC offset across whole trials, and then filtered (4th order 504 
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Butterworth, bandpass 4 to 40 Hz) sensor data. One subject’s data in which we found additional 505 

noise caused by dental artifact through visual inspection was denoised using a dual signal 506 

subspace projection (DSSP, Cai, Kang, et al., 2019; Cai, Xu, et al., 2019). After pre-processing 507 

sensor data, separate datasets were created with trials during baseline, early learning, and late 508 

learning phases for speak and listen conditions. In these datasets, trials exceeding a 2 pT 509 

threshhold at any timepoint were rejected. In two subjects’ data, three channels were removed 510 

prior to threshold-based artifact rejection. The data was then averaged across all remaining 511 

channels. For the adaptation experiment, 3.97% of the speak session trials and 3.78% of the 512 

listen session trials were removed. For the control experiment, 7.18% and 7.55% of the trials 513 

were removed for speak and listen sessions, respectively. 514 

For each subject, a single-sphere head model was derived from the individual’s co-registered T1 515 

structural MRI using the CTF software suite (MISL Ltd., Coquitlam, BC, Canada; ctfmeg.com; 516 

version 5.2.1). Using the Champagne algorithm (Owen et al., 2012) and a lead field of 8mm 517 

resolution on the baseline listen data, we generated whole-brain evoked activity between 75 ms 518 

and 130 ms (after the auditory feedback onset), and determined the MNI coordinate with the 519 

most pronounced M100 response in the left and right auditory areas (i.e., the highest amplitude) 520 

for each subject. Although we only report the results from the left auditory area in the main text, 521 

the results for the right hemisphere can be found in the Supplemental Information 2. The median 522 

MNI coordinate across both adaptation and control experiments were [x = 356, y = 324, z = 0] 523 

and [x = 48, y = 316, z = 8] for the left and right auditory areas respectively. We then used a 524 

Bayesian adaptive beamformer (Cai et al., 2023) to extract time-series source activity focused on 525 

the obtained MNI coordinate across all phases (i.e., baseline, early, and late). From the final 526 

time-series z-scored data, we measured M100 peak by finding the maximum value between 75 3 527 

130 ms after the auditory signal. We then computed the difference between the listen and speak 528 

sessions to determine SIS: 529 

 530 ��� =  �100þ�ýþ�� − �100ý���ý 531 

 532 

 533 

 534 

Statistical analysis 535 

A linear mixed effects model was constructed for SIS with the different adaptation phases as 536 

fixed effects and subjects as a random effect using lme4 package in R (Bates et al., 2015). The 537 

Tukey test was used for post-hoc pairwise comparisons from the emmeans package in R (Lenth, 538 

2022). A Pearson’s correlation tested to examine relationships between the amount of adaptation 539 

and the SIS amplitudes.  540 

 541 

 542 

 543 
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Supplemental Information 1: Repeated adaptation session 815 

 816 

Unlike arm reaching adaptation studies showing that re-experiencing adaptation results in 817 

savings (e.g., Huang et al., 2011) or attenuation in case of implicit adaptation (Avraham et al., 818 

2021), we did not find any significant changes on the repeated adaptation session (2nd session, 819 

see Fig. S1A). The un-normalized baseline phase (before normalizing the baseline phase to 0 Hz) 820 

showed no significant difference across the two sessions, t(13) = -1.985, p = 0.069 (Fig. S1B, 821 

left), though the p-value was close to 0.05 due to two individuals whose baseline was much 822 

lower in the 2nd session than the 1st session. Nonetheless, there was no clear trend on whether 823 

these individuals learned more or less in the 2nd session. Indeed, the normalized adaptation data 824 

clearly shows that both the early and late phase data in the repeated adaptation session was not 825 

different from the initial adaptation (Fig. S1B, right). 826 

 827 

 828 
Fig. S1. A: Adaptation did not differ between the first and second sessions. B: The overall baseline also did not change in most 829 

participants (left). There were two participants whose baseline in the second session was reduced by more than 50 Hz, but as a 830 

group the baseline did not differ between the two sessions. Overall, participants as a group, there was no sign of savings or 831 

attenuation in the second session (right). 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 
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 843 

 844 

 845 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.22.563504doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.22.563504
http://creativecommons.org/licenses/by/4.0/


   

 

29 

 

Supplemental Information 2: Right hemisphere data 846 

 847 

Compared the left auditory cortex, the right hemisphere SIS activities were less pronounced. 848 

Multiple individuals did not show a clear SIS response in the right hemisphere even during the 849 

baseline phase in both the adaptation and control experiments (see Fig. S2). In addition, in the 850 

adaptation group, we did not observe a significant SIS reduction in adaptation phases in the right 851 

auditory cortex, F (2, 26) = 0.150, p = 0.862, in line with a previous study that found prediction-852 

related SIS effect only in the left hemisphere (Niziolek et al., 2013). We also did not find any 853 

significant SIS reduction in the control group’s right hemisphere activities, F (2, 16) = 0.854, p = 854 

0.444. It should be noted that one participant’s data in the adaptation group was excluded from 855 

analyses because source localization for the right hemisphere response was unreliable.  856 

 857 

 858 
Fig. S2. We did not find a significant SIS effect during the baseline in the right hemisphere. In addition, we did not observe any 859 

significant SIS reduction during adaptation.  860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 
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Supplemental Information 3: Outlier data  877 

 878 

One participant’s late learning phase SIS response was an outlier, which was imputed in our 879 

correlation analysis (see Results). One reason for keeping the data in our analysis was that the 880 

behavioral data also clearly indicated that the late learning response was not due to extreme 881 

points. As shown in Fig. S3, the participant clearly showed late learning. 882 

 883 
Fig. S3. A participant who had an outlier SIS response (i.e., a large SIS reduction) during the late learning phase also showed 884 

large adaptation in the same phase.  885 

 886 

 887 
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