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Abstract 

Background: Descending thoracic aortic aneurysms and dissections can go undetected until severe and 

catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection. 

Methods: This study generated a plasma proteomic dataset from 75 patients with descending type B 

dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard 

statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish 

Type B from DTAA cases. Quantitatively similar proteins were clustered based on linkage distance from 

hierarchical clustering and ML models were trained with uncorrelated protein lists across various linkage 

distances with hyperparameter optimization using 5-fold cross validation. Permutation importance (PI) 

was used for ranking the most important predictor proteins of ML classification between disease states 

and the proteins among the top 10 PI protein groups were submitted for pathway analysis. Results: Of 

the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin 

(HPX), were significantly different at an adjusted p-value <0.01 between Type B and DTAA cases. The 

highest performing model on the training set (Support Vector Classifier) and its corresponding linkage 

distance (0.5) were used for evaluation of the test set, yielding a precision-recall area under the curve of 

0.7 to classify between Type B from DTAA cases. The five proteins with the highest PI scores were 

immunoglobulin heavy variable 6-1 (IGHV6-1), lecithin-cholesterol acyltransferase (LCAT), coagulation 

factor 12 (F12), HPX, and immunoglobulin heavy variable 4-4 (IGHV4-4). All proteins from the top 10 

most important correlated groups generated the following significantly enriched pathways in the plasma 

of Type B versus DTAA patients: complement activation, humoral immune response, and blood 

coagulation. Conclusions: We conclude that ML may be useful in differentiating the plasma proteome of 

highly similar disease states that would otherwise not be distinguishable using statistics, and, in such 

cases, ML may enable prioritizing important proteins for model prediction. 

Introduction 

Thoracic aortic aneurysms arise due to dysregulated growth and remodeling of the aorta in the segment 

spanning from the aortic root to the diaphragm1, which predispose the vessel wall to dissection and 

rupture. Aortic dissections occur when there is a loss of integrity, also described as a tear, in the intimal 

layer of the blood vessel. This tearing results in the formation of a 8false lumen9 in the medial layer of 

the vessel, allowing aberrant blood flow patterns, risk of aneurysm formation/rupture, risk of 

thrombosis, and reduced perfusion of downstream tissues, all of which are associated with substantial 

morbidity and mortality2. The incidence of thoracic aortic aneurysms and thoracic aortic aneurysm 

dissections (TAAD) has risen over the past several decades, with an approximate doubling of new events 

between 19823 and 20064 (from 5.9 to 10.1 events per 100,000 individuals, respectively). Increased 

incidence may be attributed to a combination of improved diagnosis as well as increased prevalence of 

risk-factors such as atherosclerosis, hypertension, and an aging population4. TAADs are further 

categorized by anatomical region into ascending aneurysms and Stanford type A dissections or 

descending (DTAA) and Stanford type B dissections (Type B). Descending TAAD, also termed Type B 

dissection can be driven by both syndromic (e.g., hereditary genetic conditions such as familial TAAD, 

Ehlers-Danlos and Marfan syndromes) and non-syndromic/sporadic (as yet undescribed genetic causes, 

atherosclerosis, and hypertension)1. Syndromic causes of descending TAAD are rare, and a majority of 

descending TAAD events occur absent any a priori indicators of patient risk. While imaging is a highly 

effective means of detecting and diagnosing TAAD, the low prevalence of TAAD in the general 

population renders the cost-benefit ratio of such a screening approach prohibitive.  
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Circulating biomarkers capable of detecting the presence of descending thoracic aneurysm and risk for 

type B dissection would provide a valuable and cost-effective tool to screen for risk and flag individuals 

from the general population for more detailed follow up and diagnosis. To date, there are a large 

proportion of TAAD studies focused on ascending disease, but differences in etiology and other aspects 

of descending disease warrant focused attention on mechanisms and biomarkers for disease cases in 

this specific region. Since many times Type B dissections occur absent of predisposing aneurysm 

formation5, determining whether there are distinguishing biomarkers for these unique type B cases will 

be an important consideration. Dissection-specific biomarkers could also assist in evaluating the 

progression of descending aneurysms (DTAA) and predicting likelihood for imminent dissection risk.  

 

A number of studies have explored possible biomarkers for thoracic aortic aneurysms and dissections 

and are the subject of a recent and thorough review6. A smaller handful of studies focused specifically 

on descending thoracic aortic disease7. Among markers studied thus far, many have shown preliminary 

promise including d-dimer, matrix metalloproteinases, certain collagen chains, smooth muscle cell 

proteins, and various inflammatory markers such including the somewhat general inflammatory marker 

CRP. These studies have all focused on biomarkers to distinguish aneurysm and/or dissection from 

normal and/or cases of acute coronary distress not caused by aneurysm or dissection. Biomarkers that 

can distinguish aneurysm from dissection may also be of clinical interest, as these molecules could aid in 

therapeutic decisions regarding timing of surgical intervention as aneurysmal tissue progresses toward 

increasing likelihood for dissection and degeneration. Our recent proteomic analysis of aneurysmal 

versus dissected descending thoracic aortic tissue found numerous proteins that were differentially 

expressed between the two groups8, however it is unclear whether any of these tissue-derived proteins 

would be altered in the circulation and indicative of the two disease states.  

 

Machine learning (ML) is a promising tool for automated classification of groups from proteomics data9. 

ML can take any collection of input data and estimate a mathematical function that predicts a 

categorical outcome, such as the presence or absence of a disease, or a continuous measure like age.  

Unlike statistical models, which allow for a quantitative measure of confidence for a relationship, ML 

can find patterns in unwieldy data with nonlinear interactions10. ML is also helpful when there are more 

input variables than number of subjects10. Thirdly, ML model interpretation methods can be used to 

reveal which proteins are relevant for differentiating between two similar diseases11. The application of 

ML to healthcare has enabled discovery of biomarkers associated with cancer, COVID-19 disease 

severity12–15, and subtypes of diseases16.  ML model interpretation or feature selection methods can be 

used to reveal which proteins are relevant for model prediction, and prior work suggests that clustering 

of similar proteins as a feature selection technique before applying ML methods enables accurate 

disease classification11. These successes in the application of ML have led us to explore whether ML 

models given inputs of plasma proteins could distinguish between aneurysm and dissection.   

 

The goal of the current work was to leverage ML to distinguish the plasma proteomes from two similar 

diseases not otherwise distinguishable using a standard statistical approach and provide preliminary 

insight into mass spectrometry detectable, circulating proteomic signatures capable of separating them. 

Toward this goal, we profiled the plasma proteomes of individuals with DTAA and Type B and applied 

ML strategies to identify protein features best able to discriminate between them.  

 

Methods 

Sample Collection and Study Design 

Patients with descending thoracic aortic disease were selected retrospectively from a biorepository of 

aortic disease patients hosted by Dr. Milewicz and team at the University of Texas, Houston. All patients 
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with a well-preserved plasma sample and an isolated diagnosis of DTAA or Type B dissection were 

selected for proteomic analysis. Blood samples were collected prior to surgery and held in the patient9s 
room or nurse9s station until transported by the research nurse to our laboratory (in the same day). On 
receipt, each sample was logged into the computerized biorepository database and labeled with a 

unique bar-coded identity number and processed into plasma within two hours. The collection tubes 

were gently inverted 8 – 10 times and then centrifuged at 1650 RCF for 25 minutes at 22°C. The plasma 

layer of each tube was transferred to labeled 2ml cryovial tubes (0.5mL per tube) and frozen at -80°C 

until further use. One aliquot per patient was shipped on dry ice to the proteomics research team at 

Cedars-Sinai Medical Center for plasma proteomic sample preparation and analysis. All patients included 

in this study provided informed consent and their recruitment and participation was approved by the 

institutional review boards of UT Houston. 

 

Sample Preparation for Liquid Chromatography Mass Spectrometry 

Proteins from 5uL of plasma were processed for protein denaturation, reduction, alkylation, and tryptic 

digestion using the manufacturer protocols for the Protifi (Farmingdale, NY) S-Trap protein sample 

preparation workflow. Resulting peptides were quantified by BCA assay and 2uL of peptide suspension 

from each sample was pooled to make a master mix used for quality control monitoring purposes and 

for generation of peptide assay libraries for peptide and protein identification from individual DIA-MS 

samples (see below).   

 

Mass Spectrometry Acquisition  

Individual plasma samples. Mass spectrometry data were acquired on an Orbitrap Exploris 480 

(ThermoFisher, Bremen, Germany) instrument with LC separation on an Ultimate 3000 HPLC system 

using a trap-elute set up on a 150 mm long, 0.3 mm inner diameter reversed phase column 

(Phenomenex, Luna Polar C18 3 um). A binary analytical gradient using 0.1 % formic acid in water 

(mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B) was delivered as follows at 9.5 

uL/min: start at 1% B and hold for 2 minutes, ramp to 4%B in 30 seconds, ramp to 12% B over 20 

minutes, ramp to 27% B in 24 minutes, ramp to 45% B over 16 minutes (60 minutes total). A separate 

cleaning equilibration method ran at 98% B for 8 minutes and equilibrated at 2% B for 2 minutes.  

 

The peptides eluted from the analytical column into a Newomics M3 8-nozzle emitter and 

electrosprayed at 3 kV into a 300°C ion transfer tube temperature.  The mass spectrometer was 

operated in data independent acquisition (DIA) mode acquiring an MS1 scan for 100msec on all ions 

between 400-1100 m/z and then completing a series of 25msec MS/MS fragment scans on 50 equally 

spaced 12 m/z width precursor isolation windows. Orbitrap resolution and normalized AGC target were 

60,000 and 200% for MS1 and 15,000 and 400% for MS2. Collision energy for HCD fragmentation was 

set to 30%. The acquisition sequence included repeated sampling of pooled digest to monitor MS QC as 

well as evenly spaced samples of pooled plasma from across the 3 x 96-well digestion plates to monitor 

digestion QC.  

 

Gas Phase Fractionation based Library Generation 

A sample pool was used to generate a spectral library specific to this sample type and analytical 

platform. Gas phase fractionation limits the scope of the mass spectrometer to a narrow m/z range thus 

exhaustively fragmenting the corresponding peptide ions and maximizing the probability of their 

identification and incorporation in the generated library. Multiple injections probing different narrow 

m/z ranges are compiled to cover the entire range of interest (400 to 1000 m/z). Two complementary 

approaches were used to generate this library: data dependent acquisition (DDA) of peptides within 120 

m/z wide mass ranges (400 to 520 m/z, 520 to 640 m/z & 880 - 1000 m/z) in duplicate; and data 
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independent acquisition (DIA) using 1 m/z wide isolation windows covering 40 m/z at a time (400 to 440 

m/z, 440 to 480 m/z & 960 to 1000 m/z). Other than the mass ranges and isolation window widths the 

method settings were matched to the data acquisition method. 

 

Proteomic Dataset Generation 

Library construction. Gas phase fractionated DIA and DDA runs were analyzed using the FragPipe 

platform17. For DIA mode, DIA-Umpire was first used to extract pseudospectra18. DIA pseudospectra and 

DDA spectra were searched separately using the FragPipe workflow to perform spectral matching, PSM 

probability scoring and then spectral library generation against a Uniprot Human FASTA predicted 

protein sequence database. Search settings were as follows: mass errors were set to +/-8 ppm for 

precursor and fragment masses in DDA and +/- 1 m/z for the same masses in the DIA datasets. 

Carbamidomethylation of cysteine was set as static and methionine oxidation, phosphorylations of 

serine, threonine, and tyrosine, N-terminal acetylation, pyroQ, pyroC, and pyroE, were selected as 

variable modifications. Peptides identified at 1% FDR were compiled into a spectral library with 

EasyPQP. Spectral libraries from the DDA and DIA runs were merged at the level of the final library tsv 

document. We assumed that a DIA-based peptide identification would provide the best representation 

of the fragments and their relative intensities for identification within a subsequent DIA run. Thus, only 

the unique peptides from the DDA library not seen in the DIA runs were appended to the DIA library. 

The final library contained 8,819 precursors and 407 proteins.  

 

Individual subject peptide and protein quantification. Individual DIA runs were processed using DIA-NN12 

by searching against the sample-specific libraries (described above) using double pass mode and match 

between runs. Retention time-based normalization setting was used and maxLFQ calculated protein 

intensities, provided in the main DIANN output matrices, were used for further analysis. 

 

Data Cleaning 

Peptides and proteins with at least one missing or zero value were removed from further analysis, 

reducing the number of peptides from 8,243 to 1,549 and proteins from 357 to 238 quantified across all 

samples. Forty proteins with multiple Uniprot identifiers in their group were removed, resulting in 198 

proteins measured across all samples. Only patients with complete demographic and sample collection 

data (i.e., age, sex, race) were carried forward for analysis and four patients were removed who had 

duplicate rows between both peptide and protein datasets, resulting in 137 patients. Peptide and 

protein quantities were log2 transformed across each sample and corrected for batch effects using 

pyComBat19.   

 

Statistical Analysis 

Data cleaning, analysis, and model training were performed in Python version 3.7.11 (SciKit-Learn20, 

SciPy21, seaborn22, Matplotlib23, Plotly24, and Statsmodels25). Volcano plots were used to visualize the 

presence of any differentially expressed proteins and peptides between diseases. Log2 fold changes (FC) 

were calculated by subtracting the log2 mean quantity for each protein in the control group from the 

log2 mean quantity in the disease group. P-values were determined using independent two-sample t-

tests with Benjamini-Hochberg (BH) multiple hypothesis testing correction. Age was compared between 

groups using a Wilcoxon Rank Sum Test due to non-normal distribution (Shapiro-Wilks p-value <0.05). 

Fisher9s Exact Test was used to compare categorical variables (sex and ethnicity) between groups. BH 

adjusted p-values <0.01 were considered statistically significant. To avoid test data leak into train data 

when performing feature selection26, t-tests were performed only on the 80% train set to select 

significantly different peptides between groups, and then the prediction was made on the 20% test data 

filtered for these features.  
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Machine Learning and Feature Importance 

To account for the presence of correlated proteins within our dataset, we grouped quantitatively similar 

proteins using hierarchical clustering analysis before performing model interpretation to generate a list 

of uncorrelated protein groups ranked by their level of importance when classifying between disease 

states. Using only the 80% train set to avoid biasing the feature selection method with test data26, we 

calculated the Spearman correlation coefficients between each protein pair, converted the correlation 

matrix to a condensed distance matrix, and applied Ward9s linkage to cluster proteins based on distance. 
In the dendrogram, the number of vertical lines intersecting a horizontal line drawn at a linkage distance 

threshold represents the number of clusters at that distance. To identify the linkage distance threshold 

corresponding to optimal model performance, we trained different ML models with a single, 

representative protein from each cluster at various distance thresholds. The six supervised ML 

classification algorithms used were Gradient Boosting Decision Trees (GB)27, Support Vector 

Classification (SVC)28, Random Forest (RF)29, Extra-Trees (ET)30, Logistic Regression (LR)31, and K-nearest 

neighbors (KNN)32. Data was split into 80% training and 20% final test sets. To avoid overfitting, the 80% 

training split was used to tune model hyperparameters via a random search with 5-fold cross validation 

optimized on F1-score, and the 20% test set was held-out until final evaluation using the best model 

from the random hyperparameter search. This was repeated with up to 200 random sets of 

hyperparameters, i.e., up to 1,000 models were trained for each ML method. The best hyperparameters 

were then used to refit each model with the entire 80% training set before assessing final performance 

with the 20% test set. The model output was stratified during data splitting to represent the proportion 

of classes in the whole dataset. Due to imbalanced classes, metrics that focus on the minority class, 

including precision, recall, F1-score, were chosen to represent generalization performance of the test 

set. The model with the highest F1-score on the training set and the number of features at the 

corresponding linkage distance were used for evaluation of the test set. F1-score, PR AUC and accuracy 

scores using this best model were reported for the test set. 

 

Permutation importance (PI), or a decrease in accuracy score when a single feature9s value is randomly 
shuffled, was calculated on the test set using the number of features determined at the optimal linkage 

distance. Each feature9s value was randomly shuffled 10 times and a decrease in accuracy score was 

calculated each time. The mean of the 10 scores was calculated for each protein and the mean decrease 

in accuracy scores were ordered from high to low. Proteins with the largest mean decrease in accuracy 

score were most important to the model9s predictions, and the top 10 proteins were visualized in a box 

and whisker plot. 

 

Biological Pathway Analysis 

All proteins among the top 10 PI protein groups at selected linkage distance were submitted for 

pathway analysis. GO Biological Process term enrichment analysis was performed using the ClueGO 

(version 2.5.9)33 application within Cytoscape (version 3.9.1)34. GO database release date was 

5/25/2022. The default parameters were used, except: GO term fusion was turned on, the threshold for 

statistical significance was set to <0.0001, and the GO tree interval was set to 3-8. Enriched terms were 

then manually filtered to keep only non-redundant terms that connected all the proteins to the 

network.  
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Results 

Figure 1A depicts the study workflow. Plasma samples were obtained from 137 individuals, of which 75 

were diagnosed with isolated Type B and 62 were diagnosed with isolated DTAA. Plasma proteomes 

were generated using DIA-MS and searched against a custom library of sample-specific peptides 

generated from pooled study plasma samples. Six ML classification algorithms were then trained on the 

protein quantities from DIA-NN to predict Type B or DTAA disease and feature importance allowed for 

ranking of most important protein predictors of disease. 

 

After filtering for the highest quality 

and most consistent protein 

identifications, a total of 198 proteins 

and 1,549 peptides were quantified 

across all 137 samples included in this 

study. Volcano plots of the negative 

log10 of the B-H adjusted p-value for all 

198 proteins (left) and 1,549 peptides 

(right) between DTAA and Type B as a 

function of the log2FC of the mean 

quantities between each group are 

plotted in Figure 1B. A positive fold 

change indicates the mean protein 

quantity was higher in Type B relative 

to DTAA. There were no peptides and 

only one protein (hemopexin, HPX; 

p=0.008) that were significantly 

different between groups. One 

protein additionally had a log2 FC 

greater than one, immunoglobulin 

heavy variable-64 (IGHV3-64). Quality 

control samples were included 

throughout the data acquisition to 

account for both digestion and mass 

spectrometry performance (Figure 

S1).  

 

Patient demographics were compared 

between groups. Age was significantly 

higher in the DTAA group while there 

were no significant differences in sex or ethnicity between Type B and DTAA (Table 1). Median age was 

57 years in Type B and 66 years in DTAA (p=0.002). Sixty-one percent of patients with Type B and 58% of 

those with DTAA were male. The most prevalent ethnicity in each group was Caucasian, followed by 

African American/Black and Hispanic/Latino.  

 

 

 

 

      

        

                
           

                                

         
             

     

  
  
  
  

  
  
  
     

      64

Figure 1. Study overview. (A) Proteomic dataset generation and analysis 

for classification between Type B and DTAA cases and identification of 

important protein predictors. (B) Left: Volcano plot of 1,549 peptides 

quantified across all samples; no peptides were differentially expressed 

between diseases. Right: Volcano plot of 198 proteins quantified across 

all samples; one protein was differentially expressed between diseases. A 

positive log2FC indicates protein mean is higher in Type B. Negative 

log10(adjusted p-value) > 2 corresponds to an adjusted p-value <0.01. 
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When ML models are trained from correlated features, they may learn to rely on one arbitrary 

representative of the group of correlated features to make predictions. This is especially true of tree-

based models. To avoid losing information about the correlated features within a group, a clustering 

strategy was used before ML model training and interpretation. Using the 80% train set, we visualized 

correlation between the 198 protein features using a heatmap of Spearman rank-order correlation 

coefficients. The heatmap indicates distinct groups of highly correlated proteins (Figure 2A). Hierarchical 

clustering of proteins was performed across linkage distances from zero to five; as linkage distance 

increases, there are fewer uncorrelated protein clusters (Figure 2B). For example, at a linkage distance 

of four, all proteins are grouped into only two protein clusters. The number of protein clusters at each 

linkage distance is depicted in Figure 2C. A single protein was selected at random from each group of 

correlated proteins to be used for model training. This allowed tracing each protein selected by the 

model as 8important9 back to the larger group of correlated proteins after we performed feature 

importance on the best model. Average training F1-scores across linkage distances from zero to five 

were visualized for six ML models (Figure 2D). Training F1-scores generally declined across models as 

linkage distance increased and there were fewer features input to the models. The highest F1-scoring 

model using the training set at any linkage distance was SVC with a score of 0.67 at a linkage distance of 

0.5. One hundred eleven protein clusters were present at this threshold. Figure 2E shows 

generalizability of the optimized SVC model on the test set (accuracy 0.74, F1-score 0.67, and PR AUC 

0.69). Optimal hyperparameters for the SVC model were C=0.1, gamma=1, kernel=poly, 

probability=True, random_state=42 when tested with the 111 representative proteins from each cluster. 

PI scores were then calculated for these 111 proteins. Figure 2F shows box and whisker plots for the 

decrease in accuracy score across the 10 permutations for the top 10 most important sentinel proteins 

sorted by their mean decrease in accuracy score. The mean decrease in accuracy score and 

representative protein for each cluster are listed in Table S1.  

 Type B (N=75) DTAA (N=62) p-value 

Age (yrs) median (IQR) 57 (51-67) 66 (58-74) 0.002 

Sex count (%) M: 46 (61%) 

F: 29 (39%) 

M:  36 (58%) 

F:  26 (42%) 

0.73 

Ethnicity count (%) Caucasian: 37 (49.3%) 

African American/Black:  24 (32%) 

Hispanic/Latino:  13 (17.3%) 

Asian:  1 (1.3%) 

Other:  0 (0%) 

Caucasian:  41 (66.1%) 

African American/Black:  12 (19.4%) 

Hispanic/Latino:  7 (11.3%) 

Asian:  0 (0%) 

Other: 2 (3.2%) 

0.07 

Table 1. Baseline characteristics of patients with Type B or DTAA. Continuous variables are reported as median (IQR) and categorical 

as counts (%).  
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Using these mean PI scores, we filtered for only the proteins 

with a positive score. The threshold to apply as a cut off to the 

PI score is objective10, i.e.,  we chose values above zero, but a 

higher PI may have been selected to filter the number of 

proteins. There were 23 sentinel proteins with a positive PI 

score and a total of 38 proteins making up the 23 sentinel 

protein clusters. PI scores provide a ranked list of important 

proteins in prediction between the two diseases, versus 

statistics which selects a protein based on adjusted p-value cut-

off.10 To visualize the difference in level of information 

provided by each method, negative log10 of the adjusted p-

values derived for each protein between the two groups was 

plotted as a function of the mean PI scores for these 23 

proteins (Figure 3). While HPX is the only significantly different 

protein, there are proteins (LCAT, F12 and IGHV6-1) chosen by 

   

   

    6 1

   T
 12

   

Figure 2. Machine learning (ML) approach for discovery of most predictive proteins between Type B dissection 

compared to DTAA samples. (A) Heatmap of Spearman rank-order correlation coefficients for each pairing between 198 

proteins (zero implies no correlation). (B) Hierarchical clustering on Spearman rank-order correlations using Ward9s 
linkage; a linkage distance of 0.5 yields 111 correlated protein clusters. (C) Number of uncorrelated protein clusters at 

each linkage distance. (D) Average F1-scores from 5-fold cross validation for each ML model with the training data 

across linkage distance thresholds from 0 to 5. A single protein from the clusters at each threshold was arbitrarily 

selected as input to the models; SVC at a linkage distance of 0.5 had the highest F1-score on the train set compared to 

all other models. At this threshold, there were 111 protein clusters. E) F1-score and PR AUC for test set across various 

thresholds for SVC showing good performance at 0.5 linkage distance threshold (SVC test F1-score 0.67, PR AUC 0.69). 

(F) Box and whisker plots of the distribution of PI scores for the top 10 sentinel proteins from the total 111 clusters. Each 

box has a line at the median and extends between the lower and upper quartiles of the PI distribution for that protein. 

Figure 3. Comparison of -log10 (adjusted p-

values) to mean PI for all proteins with a 

positive mean PI score.   
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the model as more 8important9 than     for classification between diseases. There are also a number of 
proteins that have similar mean PI scores to HPX. Log2FC,  B-H adjusted p-values and mean PI scores for 

the top 10 protein clusters, mapping to 19 total proteins, depicted in Figure 2F are listed in Table 2. 

IGHV6-1 had the highest    score, however it9s quantity between groups was not significantly different 

(B-H adjusted p-value 0.38). A log2FC of -0.17 indicates the mean quantity of IGHV6-1 was higher in the 

DTAA group compared to the Type B group.  Mean quantities per group, log2FC, negative log10 adjusted 

p-values and adjusted p-values for all 198 proteins are listed in Table S2.  

 

These 19 proteins from the top 10 clusters shown in Figure 2F were then input to GO term enrichment 

analysis. Proteins in the following pathways were significantly enriched in the plasma of Type B 

dissection compared to DTAA patients: complement activation, humoral immune response mediated by 

circulating immunoglobin, and blood coagulation/fibrin clot formation (Figure 4).  

Clustered Proteins  Log2FC B-H adjusted p-value Mean PI 

IGHV6-1 -0.17 0.38 0.057 

LCAT 

HRG 

HGFAC 

PGLYRP2 

-0.21 0.047 0.057 

F12 -0.21 0.076 0.050 

HPX -0.25 0.0081 0.032 

IGHV4-4 

IGHV1-45 

IGHV1-24 

IGHV5-51 

IGLV1-40 

-0.055 0.89 0.029 

IGLV7-46 -0.070 0.95 0.025 

F13A1 

F13B 

-0.24 0.50 0.025 

IGLV2-11 0.071 0.89 0.021 

A2M 

FBLN1 

-0.14 0.55 0.018 

IGHV3-11 -0.10 0.84 0.018 

Table 2. Log2FC, adjusted p-values, and mean PI scores for 10 highest PI scoring clusters. Representative cluster protein is 

shown in bold for each cluster. Positive log2FC indicates mean protein quantity is higher in Type B group. Negative log2FC 

indicates mean protein quantity is higher in DTAA group. 
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Discussion 

These data represent the most comprehensive analysis we are aware of describing the circulating 

proteome from patients with descending aortic disease to date. As the process of identifying 

informative features for eventual biomarker panel production is arguably more intuitive at the protein 

level and proteins appeared highly correlated, we segregated proteins into similar clusters, and used 

permutation-based importance ranking to identify correlated protein groups that were informative for 

separating patients between DTAA and Type B conditions. We were able to find only one differentially 

expressed protein between Type B and DTAA patients, yet the ML approaches still differentiated 

patients between these two groups to some extent (AUPR=0.7) using the test set data not used during 

model training. We found that we can reduce our protein data to a list of 111 uncorrelated proteins to 

train the highest performing model. Clusters important in distinguishing between the diseases included 

proteins involved in inflammation and coagulation.  

 

ML is likely picking up patterns across many measured proteins, compared to statistical tests that ask if 

one protein in aggregate has a different mean value between the groups. This may be useful for 

complex diseases that are heterogeneous across individuals; ML models can learn multiple signatures 

leading to disease. The main downside of using ML is that it requires many samples, typically hundreds, 

compared to statistics, which can be performed with as few as three replicates per group. Thus, 

modeling larger proteomic datasets using more sophisticated and modern approaches may be a potent 

approach for gaining new insight into the power of proteomic signatures for predictive biomarker 

development.  

 

Many of the informative proteins selected by the ML model demonstrated similar trends for differential 

abundance in our previous proteomic analysis of tissue samples comparing Type B and DTAA 8. Plasma 

HPX was both a ML model selected and significantly abundant protein between aneurysm and dissection 

cases in our study, and also demonstrated a trend toward increased abundance in aneurysm tissue 

relative to dissected tissue.  Hemopexin is a heme scavenging protein considered to be generally 

protective against cardiovascular disease and atherosclerosis35,36.  Similarly matched trends for 

abundance in both circulating plasma and tissue proteome of DTAA relative to Type B patients was 

observed for another heme scavenger, A2M, as well as proteins IGHV6-1, HRG, PGLYRP2 and F13A and 

B.  Prominent involvement of immunoglobulins including IGHV6-1 is consistent with recent reports of a 

potentially pathogenic role for B cells and immunoglobulin deposition in abdominal aortic aneurysm 

(AAA)37 , and suggests similar involvement in the descending thoracic aorta. Factor 13A and B are 

     

         

   
   

          
          

   

        

        

        

       

        

       

Figure 4. Biological term enrichment analysis of proteins altered between Type B dissection vs DTAA samples.   
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fibrinolytic proteins with gene polymorphisms associated with AAA and hemolytic aneurysmal 

subarachnoid hemorrhage in the brain38,39 . One other interesting standouts in the list of informative 

proteins differentiating aneurysm and dissection was SAA4 (elevated in dissection). Overall levels of 

circulating Serum Amyloid A  were recently identified as a potential biomarker for acute ascending and 

type B aortic dissection40. While the prior mentioned study did not differentiate between SAA subtypes 

(e.g., SAA1, SAA2, or SAA4), this work generally supports the biological relevance of SAA4 protein as 

potentially important for distinguishing aneurysm from dissection in descending thoracic aortic disease. 

Taken together, many of the proteins selected by the ML models as highly informative for discriminating 

diseases are supported by solid corroborating biological evidence and for some, prior identification as 

putative biomarkers for thoracic aortic disease, thus providing evidence for the validity of this approach 

for identifying informative plasma biomarker candidates.  

 

This study is a preliminary effort to address a pressing need for informative biomarkers for descending 

thoracic disease, and while powerful and biologically plausible new hypotheses have been generated, 

there are some weaknesses to mention. It is likely that small sample sizes impacted discriminative 

power and performance of the ML classifier, and future studies that expand the numbers of patients are 

needed. Samples were collected at very late-stage disease, just prior to surgical intervention. By this 

time, many aneurysm patients may have very similar overall pro-inflammatory plasma proteome 

signatures relative to aortic dissection patients. While this can be helpful in distinguishing disease states 

at their most extreme, the highest translational and clinical impact will come from biomarkers that can 

detect and distinguish disease at very early stages of development and thus both predict adverse 

progression and provide theranostics to monitor effectiveness of pharmacological intervention. In 

addition, dissection absent a prior aneurysm may represent a very distinct pathogenic process for which 

late-stage aneurysm biomarkers cannot predict, and from which biomarkers of Type B dissection alone 

will not transfer to cases of dissection after significant aneurysm degeneration. Thus, future work is 

needed to determine the robustness of the selected candidate markers in additional patients at later 

disease stage and, importantly, then determine which putative biomarkers may be informative at 

detecting early-stage disease and predicting risk for severe outcomes.  

 

Conclusions:  

The data presented in this preliminary report provide a framework and preliminary protein signature 

from which ongoing efforts will be built and support the power of ML for identifying biomarker 

candidates and building discriminative models to distinguish between biological states within the 

context of descending thoracic aortic disease. 
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Supplemental Figure Legend: 

Figure S1. Quality Control analysis of digestion and mass spectrometry reference plasma pools 

 

Supplemental Table Legends: 

Table S1:  111 representative cluster proteins and all the correlated proteins within each cluster; the 

111 representative proteins were used as inputs to the highest performing model classifying between 

disease. (xlsx) 

Table S2:  Mean protein quantities in each disease group, mean difference, log2(Type B/DTAA), negative 

log10 adjusted p-values and adjusted p-values for all 198 proteins. Positive log2(Type B/DTAA) indicates 

mean is higher in Type B group. Negative log10(adjusted p-value) > 2 corresponds to an adjusted p-value 

<0.01. (xlsx) 
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