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Abstract

Background: Descending thoracic aortic aneurysms and dissections can go undetected until severe and
catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection.
Methods: This study generated a plasma proteomic dataset from 75 patients with descending type B
dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard
statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish
Type B from DTAA cases. Quantitatively similar proteins were clustered based on linkage distance from
hierarchical clustering and ML models were trained with uncorrelated protein lists across various linkage
distances with hyperparameter optimization using 5-fold cross validation. Permutation importance (Pl)
was used for ranking the most important predictor proteins of ML classification between disease states
and the proteins among the top 10 Pl protein groups were submitted for pathway analysis. Results: Of
the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin
(HPX), were significantly different at an adjusted p-value <0.01 between Type B and DTAA cases. The
highest performing model on the training set (Support Vector Classifier) and its corresponding linkage
distance (0.5) were used for evaluation of the test set, yielding a precision-recall area under the curve of
0.7 to classify between Type B from DTAA cases. The five proteins with the highest Pl scores were
immunoglobulin heavy variable 6-1 (IGHV6-1), lecithin-cholesterol acyltransferase (LCAT), coagulation
factor 12 (F12), HPX, and immunoglobulin heavy variable 4-4 (IGHV4-4). All proteins from the top 10
most important correlated groups generated the following significantly enriched pathways in the plasma
of Type B versus DTAA patients: complement activation, humoral immune response, and blood
coagulation. Conclusions: We conclude that ML may be useful in differentiating the plasma proteome of
highly similar disease states that would otherwise not be distinguishable using statistics, and, in such
cases, ML may enable prioritizing important proteins for model prediction.

Introduction

Thoracic aortic aneurysms arise due to dysregulated growth and remodeling of the aorta in the segment
spanning from the aortic root to the diaphragm?, which predispose the vessel wall to dissection and
rupture. Aortic dissections occur when there is a loss of integrity, also described as a tear, in the intimal
layer of the blood vessel. This tearing results in the formation of a ‘false lumen’ in the medial layer of
the vessel, allowing aberrant blood flow patterns, risk of aneurysm formation/rupture, risk of
thrombosis, and reduced perfusion of downstream tissues, all of which are associated with substantial
morbidity and mortality?. The incidence of thoracic aortic aneurysms and thoracic aortic aneurysm
dissections (TAAD) has risen over the past several decades, with an approximate doubling of new events
between 19823 and 2006* (from 5.9 to 10.1 events per 100,000 individuals, respectively). Increased
incidence may be attributed to a combination of improved diagnosis as well as increased prevalence of
risk-factors such as atherosclerosis, hypertension, and an aging population®. TAADs are further
categorized by anatomical region into ascending aneurysms and Stanford type A dissections or
descending (DTAA) and Stanford type B dissections (Type B). Descending TAAD, also termed Type B
dissection can be driven by both syndromic (e.g., hereditary genetic conditions such as familial TAAD,
Ehlers-Danlos and Marfan syndromes) and non-syndromic/sporadic (as yet undescribed genetic causes,
atherosclerosis, and hypertension)?. Syndromic causes of descending TAAD are rare, and a majority of
descending TAAD events occur absent any a priori indicators of patient risk. While imaging is a highly
effective means of detecting and diagnosing TAAD, the low prevalence of TAAD in the general
population renders the cost-benefit ratio of such a screening approach prohibitive.
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Circulating biomarkers capable of detecting the presence of descending thoracic aneurysm and risk for
type B dissection would provide a valuable and cost-effective tool to screen for risk and flag individuals
from the general population for more detailed follow up and diagnosis. To date, there are a large
proportion of TAAD studies focused on ascending disease, but differences in etiology and other aspects
of descending disease warrant focused attention on mechanisms and biomarkers for disease cases in
this specific region. Since many times Type B dissections occur absent of predisposing aneurysm
formation®, determining whether there are distinguishing biomarkers for these unique type B cases will
be an important consideration. Dissection-specific biomarkers could also assist in evaluating the
progression of descending aneurysms (DTAA) and predicting likelihood for imminent dissection risk.

A number of studies have explored possible biomarkers for thoracic aortic aneurysms and dissections
and are the subject of a recent and thorough review®. A smaller handful of studies focused specifically
on descending thoracic aortic disease’. Among markers studied thus far, many have shown preliminary
promise including d-dimer, matrix metalloproteinases, certain collagen chains, smooth muscle cell
proteins, and various inflammatory markers such including the somewhat general inflammatory marker
CRP. These studies have all focused on biomarkers to distinguish aneurysm and/or dissection from
normal and/or cases of acute coronary distress not caused by aneurysm or dissection. Biomarkers that
can distinguish aneurysm from dissection may also be of clinical interest, as these molecules could aid in
therapeutic decisions regarding timing of surgical intervention as aneurysmal tissue progresses toward
increasing likelihood for dissection and degeneration. Our recent proteomic analysis of aneurysmal
versus dissected descending thoracic aortic tissue found numerous proteins that were differentially
expressed between the two groups?, however it is unclear whether any of these tissue-derived proteins
would be altered in the circulation and indicative of the two disease states.

Machine learning (ML) is a promising tool for automated classification of groups from proteomics data®.
ML can take any collection of input data and estimate a mathematical function that predicts a
categorical outcome, such as the presence or absence of a disease, or a continuous measure like age.
Unlike statistical models, which allow for a quantitative measure of confidence for a relationship, ML
can find patterns in unwieldy data with nonlinear interactions®®. ML is also helpful when there are more
input variables than number of subjects'®. Thirdly, ML model interpretation methods can be used to
reveal which proteins are relevant for differentiating between two similar diseases!!. The application of
ML to healthcare has enabled discovery of biomarkers associated with cancer, COVID-19 disease
severity'?*5, and subtypes of diseases'®. ML model interpretation or feature selection methods can be
used to reveal which proteins are relevant for model prediction, and prior work suggests that clustering
of similar proteins as a feature selection technique before applying ML methods enables accurate
disease classification®!. These successes in the application of ML have led us to explore whether ML
models given inputs of plasma proteins could distinguish between aneurysm and dissection.

The goal of the current work was to leverage ML to distinguish the plasma proteomes from two similar
diseases not otherwise distinguishable using a standard statistical approach and provide preliminary
insight into mass spectrometry detectable, circulating proteomic signatures capable of separating them.
Toward this goal, we profiled the plasma proteomes of individuals with DTAA and Type B and applied
ML strategies to identify protein features best able to discriminate between them.

Methods

Sample Collection and Study Design

Patients with descending thoracic aortic disease were selected retrospectively from a biorepository of
aortic disease patients hosted by Dr. Milewicz and team at the University of Texas, Houston. All patients
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with a well-preserved plasma sample and an isolated diagnosis of DTAA or Type B dissection were
selected for proteomic analysis. Blood samples were collected prior to surgery and held in the patient’s
room or nurse’s station until transported by the research nurse to our laboratory (in the same day). On
receipt, each sample was logged into the computerized biorepository database and labeled with a
unique bar-coded identity number and processed into plasma within two hours. The collection tubes
were gently inverted 8 — 10 times and then centrifuged at 1650 RCF for 25 minutes at 22°C. The plasma
layer of each tube was transferred to labeled 2ml cryovial tubes (0.5mL per tube) and frozen at -80°C
until further use. One aliquot per patient was shipped on dry ice to the proteomics research team at
Cedars-Sinai Medical Center for plasma proteomic sample preparation and analysis. All patients included
in this study provided informed consent and their recruitment and participation was approved by the
institutional review boards of UT Houston.

Sample Preparation for Liquid Chromatography Mass Spectrometry

Proteins from 5ul of plasma were processed for protein denaturation, reduction, alkylation, and tryptic
digestion using the manufacturer protocols for the Protifi (Farmingdale, NY) S-Trap protein sample
preparation workflow. Resulting peptides were quantified by BCA assay and 2uL of peptide suspension
from each sample was pooled to make a master mix used for quality control monitoring purposes and
for generation of peptide assay libraries for peptide and protein identification from individual DIA-MS
samples (see below).

Mass Spectrometry Acquisition

Individual plasma samples. Mass spectrometry data were acquired on an Orbitrap Exploris 480
(ThermoFisher, Bremen, Germany) instrument with LC separation on an Ultimate 3000 HPLC system
using a trap-elute set up on a 150 mm long, 0.3 mm inner diameter reversed phase column
(Phenomenex, Luna Polar C18 3 um). A binary analytical gradient using 0.1 % formic acid in water
(mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B) was delivered as follows at 9.5
uL/min: start at 1% B and hold for 2 minutes, ramp to 4%B in 30 seconds, ramp to 12% B over 20
minutes, ramp to 27% B in 24 minutes, ramp to 45% B over 16 minutes (60 minutes total). A separate
cleaning equilibration method ran at 98% B for 8 minutes and equilibrated at 2% B for 2 minutes.

The peptides eluted from the analytical column into a Newomics M3 8-nozzle emitter and
electrosprayed at 3 kV into a 300°C ion transfer tube temperature. The mass spectrometer was
operated in data independent acquisition (DIA) mode acquiring an MS1 scan for 100msec on all ions
between 400-1100 m/z and then completing a series of 25msec MS/MS fragment scans on 50 equally
spaced 12 m/z width precursor isolation windows. Orbitrap resolution and normalized AGC target were
60,000 and 200% for MS1 and 15,000 and 400% for MS2. Collision energy for HCD fragmentation was
set to 30%. The acquisition sequence included repeated sampling of pooled digest to monitor MS QC as
well as evenly spaced samples of pooled plasma from across the 3 x 96-well digestion plates to monitor
digestion QC.

Gas Phase Fractionation based Library Generation

A sample pool was used to generate a spectral library specific to this sample type and analytical
platform. Gas phase fractionation limits the scope of the mass spectrometer to a narrow m/z range thus
exhaustively fragmenting the corresponding peptide ions and maximizing the probability of their
identification and incorporation in the generated library. Multiple injections probing different narrow
m/z ranges are compiled to cover the entire range of interest (400 to 1000 m/z). Two complementary
approaches were used to generate this library: data dependent acquisition (DDA) of peptides within 120
m/z wide mass ranges (400 to 520 m/z, 520 to 640 m/z ... 880 - 1000 m/z) in duplicate; and data
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independent acquisition (DIA) using 1 m/z wide isolation windows covering 40 m/z at a time (400 to 440
m/z, 440 to 480 m/z ... 960 to 1000 m/z). Other than the mass ranges and isolation window widths the
method settings were matched to the data acquisition method.

Proteomic Dataset Generation

Library construction. Gas phase fractionated DIA and DDA runs were analyzed using the FragPipe
platform?®. For DIA mode, DIA-Umpire was first used to extract pseudospectra®. DIA pseudospectra and
DDA spectra were searched separately using the FragPipe workflow to perform spectral matching, PSM
probability scoring and then spectral library generation against a Uniprot Human FASTA predicted
protein sequence database. Search settings were as follows: mass errors were set to +/-8 ppm for
precursor and fragment masses in DDA and +/- 1 m/z for the same masses in the DIA datasets.
Carbamidomethylation of cysteine was set as static and methionine oxidation, phosphorylations of
serine, threonine, and tyrosine, N-terminal acetylation, pyroQ, pyroC, and pyroE, were selected as
variable modifications. Peptides identified at 1% FDR were compiled into a spectral library with
EasyPQP. Spectral libraries from the DDA and DIA runs were merged at the level of the final library tsv
document. We assumed that a DIA-based peptide identification would provide the best representation
of the fragments and their relative intensities for identification within a subsequent DIA run. Thus, only
the unique peptides from the DDA library not seen in the DIA runs were appended to the DIA library.
The final library contained 8,819 precursors and 407 proteins.

Individual subject peptide and protein quantification. Individual DIA runs were processed using DIA-NN*?
by searching against the sample-specific libraries (described above) using double pass mode and match
between runs. Retention time-based normalization setting was used and maxLFQ calculated protein
intensities, provided in the main DIANN output matrices, were used for further analysis.

Data Cleaning

Peptides and proteins with at least one missing or zero value were removed from further analysis,
reducing the number of peptides from 8,243 to 1,549 and proteins from 357 to 238 quantified across all
samples. Forty proteins with multiple Uniprot identifiers in their group were removed, resulting in 198
proteins measured across all samples. Only patients with complete demographic and sample collection
data (i.e., age, sex, race) were carried forward for analysis and four patients were removed who had
duplicate rows between both peptide and protein datasets, resulting in 137 patients. Peptide and
protein quantities were log; transformed across each sample and corrected for batch effects using
pyComBat®.

Statistical Analysis

Data cleaning, analysis, and model training were performed in Python version 3.7.11 (SciKit-Learn?,
SciPy?!, seaborn?, Matplotlib®, Plotly?, and Statsmodels?®). Volcano plots were used to visualize the
presence of any differentially expressed proteins and peptides between diseases. Log, fold changes (FC)
were calculated by subtracting the log, mean quantity for each protein in the control group from the
logz mean quantity in the disease group. P-values were determined using independent two-sample t-
tests with Benjamini-Hochberg (BH) multiple hypothesis testing correction. Age was compared between
groups using a Wilcoxon Rank Sum Test due to non-normal distribution (Shapiro-Wilks p-value <0.05).
Fisher’s Exact Test was used to compare categorical variables (sex and ethnicity) between groups. BH
adjusted p-values <0.01 were considered statistically significant. To avoid test data leak into train data
when performing feature selection?, t-tests were performed only on the 80% train set to select
significantly different peptides between groups, and then the prediction was made on the 20% test data
filtered for these features.
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Machine Learning and Feature Importance

To account for the presence of correlated proteins within our dataset, we grouped quantitatively similar
proteins using hierarchical clustering analysis before performing model interpretation to generate a list
of uncorrelated protein groups ranked by their level of importance when classifying between disease
states. Using only the 80% train set to avoid biasing the feature selection method with test data?, we
calculated the Spearman correlation coefficients between each protein pair, converted the correlation
matrix to a condensed distance matrix, and applied Ward'’s linkage to cluster proteins based on distance.
In the dendrogram, the number of vertical lines intersecting a horizontal line drawn at a linkage distance
threshold represents the number of clusters at that distance. To identify the linkage distance threshold
corresponding to optimal model performance, we trained different ML models with a single,
representative protein from each cluster at various distance thresholds. The six supervised ML
classification algorithms used were Gradient Boosting Decision Trees (GB)?’, Support Vector
Classification (SVC)%, Random Forest (RF)?°, Extra-Trees (ET)%, Logistic Regression (LR)3!, and K-nearest
neighbors (KNN)32. Data was split into 80% training and 20% final test sets. To avoid overfitting, the 80%
training split was used to tune model hyperparameters via a random search with 5-fold cross validation
optimized on Fl-score, and the 20% test set was held-out until final evaluation using the best model
from the random hyperparameter search. This was repeated with up to 200 random sets of
hyperparameters, i.e., up to 1,000 models were trained for each ML method. The best hyperparameters
were then used to refit each model with the entire 80% training set before assessing final performance
with the 20% test set. The model output was stratified during data splitting to represent the proportion
of classes in the whole dataset. Due to imbalanced classes, metrics that focus on the minority class,
including precision, recall, F1-score, were chosen to represent generalization performance of the test
set. The model with the highest F1-score on the training set and the number of features at the
corresponding linkage distance were used for evaluation of the test set. F1-score, PR AUC and accuracy
scores using this best model were reported for the test set.

Permutation importance (Pl), or a decrease in accuracy score when a single feature’s value is randomly
shuffled, was calculated on the test set using the number of features determined at the optimal linkage
distance. Each feature’s value was randomly shuffled 10 times and a decrease in accuracy score was
calculated each time. The mean of the 10 scores was calculated for each protein and the mean decrease
in accuracy scores were ordered from high to low. Proteins with the largest mean decrease in accuracy
score were most important to the model’s predictions, and the top 10 proteins were visualized in a box
and whisker plot.

Biological Pathway Analysis

All proteins among the top 10 Pl protein groups at selected linkage distance were submitted for
pathway analysis. GO Biological Process term enrichment analysis was performed using the ClueGO
(version 2.5.9)*3 application within Cytoscape (version 3.9.1)3*. GO database release date was
5/25/2022. The default parameters were used, except: GO term fusion was turned on, the threshold for
statistical significance was set to <0.0001, and the GO tree interval was set to 3-8. Enriched terms were
then manually filtered to keep only non-redundant terms that connected all the proteins to the
network.
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Results

Figure 1A depicts the study workflow. Plasma samples were obtained from 137 individuals, of which 75
were diagnosed with isolated Type B and 62 were diagnosed with isolated DTAA. Plasma proteomes
were generated using DIA-MS and searched against a custom library of sample-specific peptides
generated from pooled study plasma samples. Six ML classification algorithms were then trained on the
protein quantities from DIA-NN to predict Type B or DTAA disease and feature importance allowed for
ranking of most important protein predictors of disease.
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Figure 1. Study overview. (A) Proteomic dataset generation and analysis

for classification between Type B and DTAA cases and identification of control samples were included
important protein predictors. (B) Left: Volcano plot of 1,549 peptides throughout the data acquisition to
quantified across all samples; no peptides were differentially expressed account for both digestion and mass
between diseases. Right: Volcano plot of 198 proteins quantified across spectrometry performance (Figure

all samples; one protein was differentially expressed between diseases. A s1).
positive log,FC indicates protein mean is higher in Type B. Negative
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grolacl P ) P ! P Patient demographics were compared

between groups. Age was significantly
higher in the DTAA group while there
were no significant differences in sex or ethnicity between Type B and DTAA (Table 1). Median age was
57 years in Type B and 66 years in DTAA (p=0.002). Sixty-one percent of patients with Type B and 58% of
those with DTAA were male. The most prevalent ethnicity in each group was Caucasian, followed by
African American/Black and Hispanic/Latino.
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Type B (N=75) DTAA (N=62) p-value
Age (yrs) median (IQR) 57 (51-67) 66 (58-74) 0.002
Sex count (%) M: 46 (61%) M: 36 (58%) 0.73

F: 29 (39%) F: 26 (42%)
Ethnicity count (%) Caucasian: 37 (49.3%) Caucasian: 41 (66.1%) 0.07

African American/Black: 24 (32%) African American/Black: 12 (19.4%)

Hispanic/Latino: 13 (17.3%) Hispanic/Latino: 7 (11.3%)

Asian: 1 (1.3%) Asian: 0 (0%)

Other: 0 (0%) Other: 2 (3.2%)
Table 1. Baseline characteristics of patients with Type B or DTAA. Continuous variables are reported as median (IQR) and categorical
as counts (%).

When ML models are trained from correlated features, they may learn to rely on one arbitrary
representative of the group of correlated features to make predictions. This is especially true of tree-
based models. To avoid losing information about the correlated features within a group, a clustering
strategy was used before ML model training and interpretation. Using the 80% train set, we visualized
correlation between the 198 protein features using a heatmap of Spearman rank-order correlation
coefficients. The heatmap indicates distinct groups of highly correlated proteins (Figure 2A). Hierarchical
clustering of proteins was performed across linkage distances from zero to five; as linkage distance
increases, there are fewer uncorrelated protein clusters (Figure 2B). For example, at a linkage distance
of four, all proteins are grouped into only two protein clusters. The number of protein clusters at each
linkage distance is depicted in Figure 2C. A single protein was selected at random from each group of
correlated proteins to be used for model training. This allowed tracing each protein selected by the
model as ‘important’ back to the larger group of correlated proteins after we performed feature
importance on the best model. Average training F1-scores across linkage distances from zero to five
were visualized for six ML models (Figure 2D). Training F1-scores generally declined across models as
linkage distance increased and there were fewer features input to the models. The highest F1-scoring
model using the training set at any linkage distance was SVC with a score of 0.67 at a linkage distance of
0.5. One hundred eleven protein clusters were present at this threshold. Figure 2E shows
generalizability of the optimized SVC model on the test set (accuracy 0.74, F1-score 0.67, and PR AUC
0.69). Optimal hyperparameters for the SVC model were C=0.1, gamma=1, kernel=poly,
probability=True, random_state=42 when tested with the 111 representative proteins from each cluster.
Pl scores were then calculated for these 111 proteins. Figure 2F shows box and whisker plots for the
decrease in accuracy score across the 10 permutations for the top 10 most important sentinel proteins
sorted by their mean decrease in accuracy score. The mean decrease in accuracy score and
representative protein for each cluster are listed in Table S1.
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Figure 2. Machine learning (ML) approach for discovery of most predictive proteins between Type B dissection
compared to DTAA samples. (A) Heatmap of Spearman rank-order correlation coefficients for each pairing between 198
proteins (zero implies no correlation). (B) Hierarchical clustering on Spearman rank-order correlations using Ward'’s
linkage; a linkage distance of 0.5 yields 111 correlated protein clusters. (C) Number of uncorrelated protein clusters at
each linkage distance. (D) Average F1-scores from 5-fold cross validation for each ML model with the training data
across linkage distance thresholds from 0 to 5. A single protein from the clusters at each threshold was arbitrarily
selected as input to the models; SVC at a linkage distance of 0.5 had the highest F1-score on the train set compared to
all other models. At this threshold, there were 111 protein clusters. E) F1-score and PR AUC for test set across various
thresholds for SVC showing good performance at 0.5 linkage distance threshold (SVC test F1-score 0.67, PR AUC 0.69).
(F) Box and whisker plots of the distribution of Pl scores for the top 10 sentinel proteins from the total 111 clusters. Each
box has a line at the median and extends between the lower and upper quartiles of the Pl distribution for that protein.
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Mean Permutation Importance provided by each method, negative logio of the adjusted p-

values derived for each protein between the two groups was
plotted as a function of the mean Pl scores for these 23
proteins (Figure 3). While HPX is the only significantly different
protein, there are proteins (LCAT, F12 and IGHV6-1) chosen by

Figure 3. Comparison of -log10 (adjusted p-
values) to mean Pl for all proteins with a
positive mean Pl score.
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the model as more ‘important’ than HPX for classification between diseases. There are also a number of
proteins that have similar mean Pl scores to HPX. Log,FC, B-H adjusted p-values and mean Pl scores for
the top 10 protein clusters, mapping to 19 total proteins, depicted in Figure 2F are listed in Table 2.
IGHV6-1 had the highest Pl score, however it’s quantity between groups was not significantly different
(B-H adjusted p-value 0.38). A log,FC of -0.17 indicates the mean quantity of IGHV6-1 was higher in the
DTAA group compared to the Type B group. Mean quantities per group, log,FC, negative logipadjusted
p-values and adjusted p-values for all 198 proteins are listed in Table S2.

Clustered Proteins Log,FC B-H adjusted p-value Mean PI
IGHV6-1 -0.17 0.38 0.057
LCAT -0.21 0.047 0.057
HRG

HGFAC

PGLYRP2

F12 -0.21 0.076 0.050
HPX -0.25 0.0081 0.032
IGHV4-4 -0.055 0.89 0.029
IGHV1-45

IGHV1-24

IGHV5-51

IGLV1-40

IGLV7-46 -0.070 0.95 0.025
F13A1 -0.24 0.50 0.025
F13B

IGLV2-11 0.071 0.89 0.021
A2M -0.14 0.55 0.018
FBLN1

IGHV3-11 -0.10 0.84 0.018
Table 2. Log,FC, adjusted p-values, and mean PI scores for 10 highest Pl scoring clusters. Representative cluster protein is
shown in bold for each cluster. Positive log,FC indicates mean protein quantity is higher in Type B group. Negative log,FC
indicates mean protein quantity is higher in DTAA group.

These 19 proteins from the top 10 clusters shown in Figure 2F were then input to GO term enrichment
analysis. Proteins in the following pathways were significantly enriched in the plasma of Type B
dissection compared to DTAA patients: complement activation, humoral immune response mediated by
circulating immunoglobin, and blood coagulation/fibrin clot formation (Figure 4).
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Figure 4. Biological term enrichment analysis of proteins altered between Type B dissection vs DTAA samples.

Discussion

These data represent the most comprehensive analysis we are aware of describing the circulating
proteome from patients with descending aortic disease to date. As the process of identifying
informative features for eventual biomarker panel production is arguably more intuitive at the protein
level and proteins appeared highly correlated, we segregated proteins into similar clusters, and used
permutation-based importance ranking to identify correlated protein groups that were informative for
separating patients between DTAA and Type B conditions. We were able to find only one differentially
expressed protein between Type B and DTAA patients, yet the ML approaches still differentiated
patients between these two groups to some extent (AUPR=0.7) using the test set data not used during
model training. We found that we can reduce our protein data to a list of 111 uncorrelated proteins to
train the highest performing model. Clusters important in distinguishing between the diseases included
proteins involved in inflammation and coagulation.

ML is likely picking up patterns across many measured proteins, compared to statistical tests that ask if
one protein in aggregate has a different mean value between the groups. This may be useful for
complex diseases that are heterogeneous across individuals; ML models can learn multiple signatures
leading to disease. The main downside of using ML is that it requires many samples, typically hundreds,
compared to statistics, which can be performed with as few as three replicates per group. Thus,
modeling larger proteomic datasets using more sophisticated and modern approaches may be a potent
approach for gaining new insight into the power of proteomic signatures for predictive biomarker
development.

Many of the informative proteins selected by the ML model demonstrated similar trends for differential
abundance in our previous proteomic analysis of tissue samples comparing Type B and DTAA &, Plasma
HPX was both a ML model selected and significantly abundant protein between aneurysm and dissection
cases in our study, and also demonstrated a trend toward increased abundance in aneurysm tissue
relative to dissected tissue. Hemopexin is a heme scavenging protein considered to be generally
protective against cardiovascular disease and atherosclerosis®*>3¢. Similarly matched trends for
abundance in both circulating plasma and tissue proteome of DTAA relative to Type B patients was
observed for another heme scavenger, A2M, as well as proteins IGHV6-1, HRG, PGLYRP2 and F13A and
B. Prominent involvement of immunoglobulins including IGHV6-1 is consistent with recent reports of a
potentially pathogenic role for B cells and immunoglobulin deposition in abdominal aortic aneurysm
(AAA)*7, and suggests similar involvement in the descending thoracic aorta. Factor 13A and B are
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fibrinolytic proteins with gene polymorphisms associated with AAA and hemolytic aneurysmal
subarachnoid hemorrhage in the brain®*3° . One other interesting standouts in the list of informative
proteins differentiating aneurysm and dissection was SAA4 (elevated in dissection). Overall levels of
circulating Serum Amyloid A were recently identified as a potential biomarker for acute ascending and
type B aortic dissection®®. While the prior mentioned study did not differentiate between SAA subtypes
(e.g., SAAL, SAA2, or SAA4), this work generally supports the biological relevance of SAA4 protein as
potentially important for distinguishing aneurysm from dissection in descending thoracic aortic disease.
Taken together, many of the proteins selected by the ML models as highly informative for discriminating
diseases are supported by solid corroborating biological evidence and for some, prior identification as
putative biomarkers for thoracic aortic disease, thus providing evidence for the validity of this approach
for identifying informative plasma biomarker candidates.

This study is a preliminary effort to address a pressing need for informative biomarkers for descending
thoracic disease, and while powerful and biologically plausible new hypotheses have been generated,
there are some weaknesses to mention. It is likely that small sample sizes impacted discriminative
power and performance of the ML classifier, and future studies that expand the numbers of patients are
needed. Samples were collected at very late-stage disease, just prior to surgical intervention. By this
time, many aneurysm patients may have very similar overall pro-inflammatory plasma proteome
signatures relative to aortic dissection patients. While this can be helpful in distinguishing disease states
at their most extreme, the highest translational and clinical impact will come from biomarkers that can
detect and distinguish disease at very early stages of development and thus both predict adverse
progression and provide theranostics to monitor effectiveness of pharmacological intervention. In
addition, dissection absent a prior aneurysm may represent a very distinct pathogenic process for which
late-stage aneurysm biomarkers cannot predict, and from which biomarkers of Type B dissection alone
will not transfer to cases of dissection after significant aneurysm degeneration. Thus, future work is
needed to determine the robustness of the selected candidate markers in additional patients at later
disease stage and, importantly, then determine which putative biomarkers may be informative at
detecting early-stage disease and predicting risk for severe outcomes.

Conclusions:

The data presented in this preliminary report provide a framework and preliminary protein signature
from which ongoing efforts will be built and support the power of ML for identifying biomarker
candidates and building discriminative models to distinguish between biological states within the
context of descending thoracic aortic disease.
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Supplemental Figure Legend:
Figure S1. Quality Control analysis of digestion and mass spectrometry reference plasma pools

Supplemental Table Legends:

Table S1: 111 representative cluster proteins and all the correlated proteins within each cluster; the
111 representative proteins were used as inputs to the highest performing model classifying between
disease. (xlsx)

Table S2: Mean protein quantities in each disease group, mean difference, log,(Type B/DTAA), negative
logio adjusted p-values and adjusted p-values for all 198 proteins. Positive log,(Type B/DTAA) indicates
mean is higher in Type B group. Negative log10(adjusted p-value) > 2 corresponds to an adjusted p-value
<0.01. (xlsx)
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