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Abstract  

In analogy to the friction ridges of a human finger, the functional connectivity patterns of the 

human brain can be used to identify a given individual from a population. In other words, functional 

connectivity patterns constitute a marker of human identity, or a ‘brain fingerprint’. Yet remarkably, 

very little is known about whether brain fingerprints are preserved in brain ageing and in the presence 

of cognitive decline due to Alzheimer’s disease (AD). Using fMRI data from two independent 

datasets of healthy and pathologically ageing subjects, here we show that individual functional 

connectivity profiles remain unique and highly heterogeneous across early and late stages of cognitive 

decline due to AD. Yet, the patterns of functional connectivity making subjects identifiable, change 

across health and disease, revealing a functional reconfiguration of the brain fingerprint. We observed 

a fingerprint change towards between-functional system connections when transitioning from healthy 

to dementia, and to lower-order cognitive functions in the earliest stages of the disease. These findings 

show that functional connectivity carries important individualised information to evaluate regional 

and network dysfunction in cognitive impairment and highlight the importance of switching the focus 

from group differences to individual variability when studying functional alterations in AD. The 

present data establish the foundation for clinical fingerprinting of brain diseases by showing that 

functional connectivity profiles maintain their uniqueness, yet go through functional reconfiguration, 

during cognitive decline. These results pave the way for a more personalised understanding of 

functional alterations during cognitive decline, moving towards brain fingerprinting in personalised 

medicine and treatment optimization during cognitive decline.  
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Introduction 

The sharp increase of publicly available neuroimaging datasets 1–3 in the last few years has 

provided an ideal benchmark for mapping functional and structural connections in the human brain. 

At the same time, quantitative analysis of connectivity patterns based on network science has become 

more commonly used to study the brain as a network 4,5, giving rise to the scientific field of Brain 

Connectomics 6. Seminal work in this research area 7,8 has paved the way towards the new promising 

avenue of detecting individual differences through brain connectivity features. These studies showed 

that an individual’s functional connectivity patterns estimated from functional magnetic resonance 

imaging (fMRI) data, also known as functional connectomes (FCs), can constitute a marker of human 

uniqueness, as they can be used to identify a given individual in a set of functional connectivity 

profiles from a population 7. Given the analogy to well-known properties of the papillary ridges of the 

human finger, the field has taken the name of ‘brain fingerprinting’ and, since then, the extraction of 

“fingerprints” from human brain connectivity data has become a new frontier in neuroscience.  

The excitement produced by the discovery that brain fingerprints can be extracted from 

matrices summarising human brain activity, either during rest or when performing a task, is 

unsurprising, for several reasons. Firstly, it confirms that studying the brain as a network can provide 

useful tools to get insights into the individual features that distinguish our brains one from the other; 

and second, it has been shown that brain fingerprints relate to behavioural and demographic scores 
9,10. Accordingly, efforts have been made to implement ways of maximising and denoising 

fingerprints from brain data 11–13. These findings incentivized human neuroimaging studies to advance 

from inferences at the population level to the single-subject level, and allowed the field to move 

towards an individualised prediction of cognition and behaviour from brain connectomes 14–17. The 

next natural step is to explore whether this property of the human brain is maintained during disease. 

Despite promising preliminary findings towards this direction18,19, it is to date unclear to what extent 

FC-fingerprints could be used for mapping disease from human brain data. In fact, the vast majority 

of studies on brain fingerprinting have focused on healthy individuals, leaving the field of brain 

fingerprinting within the context of brain diseases as largely, if not completely, unexplored. 

Cognitive decline and dementia are the final consequence of a series of pathological brain 

events. In the case of Alzheimer’s Disease (AD), which is the most common cause of dementia, these 

events involve the accumulation of toxic proteins such as β-amyloid and hyperphosphorylated tau 

between and within neurons, leading to neuronal death and ultimately causing damage to the wider 

structural and functional architecture 20. In line with this, AD is often referred to as a ‘disconnection 

syndrome’ 21 and, numerous studies have focussed on connectivity alterations in AD 22–24. This 

extensive body of literature has demonstrated that AD is associated with loss of functional 

connectivity between brain regions and disruption of network organisation 25,26. For instance, some 

studies have revealed that the observed loss of connectivity in certain circuits is often accompanied by 

hyperconnectivity in other brain regions/networks 25–28, and phases of hyperconnectivity may precede 
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the onset of cognitive symptoms 29–32.  Additionally, cognitive impairment in AD is associated with 

changes in hub regions 33,34, which play a crucial role in integrating information from domain-specific 

systems in the healthy brain 4,35. These hub regions often coincide with epicentres of β-amyloid 

accumulation 33,34,36, possibly due to their high metabolic needs 34. Moreover, AD patients show 

reduced nodal centrality in these hub regions like the medial temporal lobe and default mode network 

(DMN) 37. On the other hand, the strength of connectivity in tau epicentres predicts the topography of 

tau accumulation 38,38–40 and several groups are exploring the potential of exploiting functional 

connectivity as mean to predict future tau spread, with potential direct implications in clinical practice 
38,40. Finally, graph theoretical measures indicate that AD is characterized by shorter path lengths 

between connected regions and an increased number of hubs, altering the global network organization 

26. Overall, the literature suggests that during pathological aging, the brain undergoes both a loss and a 

reorganization of functional connectivity, and that these changes are closely tied to the underlying β-

amyloid and tau pathophysiology. 

However, to date, there is a lack of a functional connectivity alteration biomarker with an 

adequate level of specificity and sensitivity concerning to the various stages of AD 23, and this has 

hindered the routine use of fMRI in clinical practice 30,41. This is partly due to the intrinsic properties 

of connectivity from resting-state fMRI, a technique that is greatly influenced by factors affecting the 

obtained signal (heterogeneity in acquisition parameters, scanners characteristics, motion 42), by 

differences in the chosen signal-processing approaches 30, but also by the fact that existing studies 

focused on group averages, overlooking heterogeneity among individuals. The existence of significant 

inter-subject variability in terms of clinical manifestations is well-known in clinical practice, and this 

cognitive variability could be explained by individual features of functional organisation. Addressing 

the open research question of fingerprinting during brain disease could therefore open the door to 

individual characterization of cognitive decline from functional connectivity data and pave the way to 

a more widespread implementation in clinical settings. Investigating fingerprints of cognitive decline 

is also tightly connected to the concept of “precision medicine” 43, since it might not only provide 

insights on the individual trajectories of pathological brain ageing, but also allow for the surveillance 

of adapted personalised treatments during cognitive decline, advancing medicine in its quest for 

individualised biomarkers of neurodegeneration 44. 

In this work, we investigated within-scan brain connectivity fingerprints using fMRI data 

collected from two independent datasets from individuals at different stages of cognitive decline. 

Within-scan fingerprinting, as introduced in 12, allows to uncover FC features leading to brain 

identification within-session and  should be regarded as a temporal stability investigation of the 

resting-state functional brain architecture. We started by estimating functional connectome 

fingerprints of a clinically homogeneous and deeply characterised cohort of Cognitively Unimpaired 

amyloid β-negative individuals (CU Aβ-), amyloid β-positive patients with Mild Cognitive 

Impairment (MCI Aβ+) and amyloid β-positive patients with Dementia due to AD), during the first 
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and second half of the fMRI session. We found that whole-brain functional connectivity patterns 

remained reliable across healthy and pathological brain ageing; in other words, it was possible to 

correctly identify a patient solely based on its functional connectome. Yet, significant differences in 

the spatial organisation of the brain fingerprint could be observed during cognitive decline. Notably, 

the functional connections that were the most reliable in healthy subjects disappeared during cognitive 

decline, leaving room for other stable connections, adjusted to the process of neurodegeneration. 

Furthermore, we looked at the distribution of connections with the highest fingerprint (i.e., temporally 

stable across time and allowing subjects identification) across cognitive decline, and we found a 

significant transition towards between-functional system connections, when going from healthy to 

dementia. Finally, this topological reconfiguration of brain fingerprints appeared to be associated to 

mostly high-order cognitive processes during healthy aging, and shifted to other functions during 

cognitive decline. Essentially, these findings demonstrate that functional connectivity profiles remain 

highly identifiable even during cognitive decline, thus providing crucial individualized information. 

This emphasizes the significance of harnessing this uniqueness by shifting the research focus from 

group differences to individual variability when investigating functional alterations in AD. 

Furthermore, we observed a functional reconfiguration of the brain fingerprint, providing valuable 

insights into specific functional connections and cognitive functions that could account for individual 

variability among individuals experiencing cognitive decline due to AD. 

Results 

We investigated within-session brain fingerprints of neurodegeneration in two independent 

cohorts for a total of N=126 subjects (i.e., Geneva cohort: N=54 and ADNI: N=72) at different stages 

of cognitive decline: cognitively unimpaired Aβ-negative (CU Aβ-), with mild cognitive impairment 

Aβ-positive (MCI Aβ+), and with dementia due to AD (AD Aβ+). Our approach can be summarised 

in three steps: (1) We first estimated the functional connectomes (FCs) of each subject during the first 

and second halves volumes of fMRI acquisitions separately, (cf. Fig. 1A and see Methods for details). 

(2) We then estimated the degree of within-session brain identification or “brain fingerprint” at the 

whole-brain level for each group separately, through a mathematical object called identifiability 

matrix 12 (cf. Fig 1B). The identifiability matrix provides two useful metrics for brain fingerprinting: 

the degree of similarity of each subject with itself (ISelf, diagonal elements, Fig. 1B) as opposed to 

others (IOthers, off-diagonal elements Fig. 1B), and the degree of group fingerprint, conceptualised as 

the extent to which subjects were more similar to themselves than others (IDiff, see Methods). We 

also estimated the Success-rate of the identification procedure, as originally proposed by 7. (3) We 

further explored the spatial specificity of brain fingerprints by estimating the degree of distinctiveness 

of each FC-edge at the individual level, using intraclass correlation (ICC, see Methods and Fig. 1C). 

Edge-wise fingerprint was then computed at the networks (Fig. 1C) and hubs level (Fig. 1D). 
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Figure 1. Exploring FC fingerprints of neurodegeneration, schematics of the approach. We estimated the FC- 

fingerprint in Cognitively Unimpaired Aβ-negative (CU Aβ-), Mild Cognitive Impairment Aβ-positive (MCI Aβ+) and 

Dementia Aβ-positive (AD Dementia) patients across two independent cohorts (Geneva, ADNI). Within-session fingerprint 

was estimated at the whole brain level as the degree of similarity between functional connectivity at test (FC Test, first 50% 

volumes) vs. retest (FC Retest, second 50%volumes, see Methods for details) (A) and summarised in a mathematical object 

called identifiability matrix (B) 12. Identifiability matrix shows within-subjects similarity (ISelf, elements in diagonal) and 

between-subjects similarity (IOthers, off-diagonal elements) across each group/cohort. Where ISelf>IOthers the 

identification procedure is successful. We also estimated IDiff, an estimation of the group-level whole-brain fingerprint as 

the distance between ISelf and IOthers (see methods). C) Spatial specificity of FC-fingerprint was estimated for each 

group/cohort using intraclass correlation (ICC), quantifying the fingerprint for each brain-edge (connection).  ICC matrix is 
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ordered according to the seven cortical resting state networks as proposed by 45
. D) Fingerprinting hubs were computed as 

nodal strength of ICC matrix for each group.  VIS=visual network; SMT=somatomotor network; DA=dorsal-attention 

network; SA=salience network; L=limbic network; FPN=fronto-parietal network; DMN=default-mode network; 

SBC=subcortical regions.  

 

Whole-brain within-sessions brain fingerprint during cognitive decline  

In these first analyses, we investigated the degree of identification at the whole-brain level. 

We found that the Success-rate of the identification procedure was 100% in both the Geneva and 

ADNI cohorts. In other words, in each group each individual showed significantly higher similarity 

with themselves (ISelf), as opposed to others (IOthers) (Fig. 2B and 2D, Geneva and ADNI p<.0001), 

and IDiff was high in the three groups. We also found that test-retest reliability (ISelf) was high in the 

three groups and in both cohorts, with no significant differences across groups after controlling for 

nuisance variables, i.e., age, sex, years of education (YoE) and absolute difference between motion 

(FD) at test vs. retest [ANOVA with 5000 permutations to control for sample size differences; 

Geneva: F(2)=0.08, p=.918; CU Aβ-: M(SD)=0.60(0.07); MCI Aβ+: M(SD)=0.60(0.10); AD 

Dementia: M(SD)=0.60(0.07); cf. Fig. 2A; ADNI: F(2)=0.95, p=.389; CU Aβ-: M(SD)=0.73(0.07); 

MCI Aβ+: M(SD)=0.60(0.08); AD Dementia: M(SD)=0.71(0.08); cf. Fig. 2C]. See Fig. S1 for 

boxplots of ISelf across groups and Table 1A for full statistics for one-way ANOVAs. We tested 

differences in between-subjects similarity (IOthers) after controlling for nuisance variables (i.e., age, 

sex, YoE, average motion (FD) and scanner type, the latter for the ADNI dataset only). We found a 

main effect of group [ANOVA with 5000 permutations to control for sample size differences; 

Geneva: F(2)=15.3, p<.001; ADNI: F(2)=5, p=.013], revealing reduced between subjects similarity in 

MCI Aβ+ patients relative to CU Aβ- in the Geneva cohort [Bonferroni adjusted; MCI Aβ+ vs. CU 

Aβ-: p<.001] and in AD Dementia patients relative to CU Aβ- in ADNI [Bonferroni adjusted; ADNI: 

AD Dementia vs. CU Aβ-: p=.006]. See Fig. S1 for boxplots of IOthers across groups and Table S1B 

and S1C for full statistics for one-way ANOVAs and post-hoc pairwise comparisons. Finally, 

permutation testing showed that IDiff and Success-rate were different from null distributions at p 

<.0001 in all groups and in both cohorts (Fig. 2A, 2C). In sum, these data show that it is possible to 

correctly identify an individual with significantly greater accuracy relative to surrogate null models 46 

(see Methods for details), independently from the clinical status, and solely based on the patterns of 

brain activity within-scan. We note that the identifiability results were replicated in two independent 

cohorts, using two different pre-processing pipelines.  

The reported identification rates were computed at the whole-brain level, hence giving no 

information on the functional edges most influential for identification. The ensuing aim was therefore 

to understand how these results related to the local properties of the individual functional 

connectomes.  
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Figure 2. Functional Connectivity fingerprints during cognitive decline. A-C) Identifiability matrices show within- 

(ISelf) and between-subjects (IOthers) test-retest reliability as Pearson correlation coefficient in CU Aβ-, MCI Aβ+ and AD 

Dementia, for the two independent cohorts investigated (Geneva and ADNI, see Methods for details). Individuals’ ISelf and 

IOthers are displayed, respectively, in the diagonal and off-diagonal elements of the matrix. The average ISelf, IDiff and 

Success-rate were similar in the three groups and IDiff and Success-rate significantly differed from random distributions. B-

D) Boxplots shows that ISelf was significantly higher (paired t-test) than IOthers in all individual cases and in all groups, for 

both the Geneva and the ADNI datasets. **** p ≤ 0.0001. 

Spatial specificity of brain fingerprint during cognitive decline  

To address this question, we assessed spatial specificity of brain fingerprints using edgewise 

intra-class correlation 12 (ICC). In both cohorts, we observed a spatial reconfiguration of the most 

identifiable edges as cognitive decline progressed (cf. Fig. 3A and Fig. 3B). In other words, 

connections with the highest ICC had a different topological distribution in the three groups. Although 

there were differences between the two cohorts, in consistency with the variability of FC-patterns, we 

also identified common features that were shared among the groups. To investigate these common 

features, we examined the overlap between the edges with ‘good’ levels of ICC (ICC>0.6) 47 across 

the two cohorts (cf. overlap ICC matrix in Fig. 3C). We observed a slight decrease in the number of 

edges with ‘good’ ICC in MCI Aβ+ relative to CU Aβ-, and a large increase in AD Dementia relative 

to both CU Aβ- and MCI Aβ+ (cf. ‘n edges’ in Fig. 3C). The lower count of edges with high ICC in 

the MCI Aβ+ group may reflect the incipient AD pathology, but also the fact that MCIs Aβ+, despite 

being biologically homogeneous, can present with distinct clinical subtypes (e.g., amnestic vs non-

amnestic) 48, with some level of uncertainty in disease trajectory (i.e., not all MCI Aβ+ convert to 

dementia 49,50). The first could lead to a reconfiguration of the functional architecture, the latter to less 

commonalities among individuals in terms of stable traits of functional connectivity, and both could 

explain to a reduced number of functional connections with stable patterns of connectivity across test 

and retest in all individuals. Conversely, the observed rise in AD Dementia patients could be 

attributed to a combination of greater clinical homogeneity and the advanced AD pathophysiology, 

which could impair brain ability to adapt and reconfigure, leading to an increased number of 

connections with stable test-retest connections. Moreover, we observed differences in spatial 

distribution across groups, suggesting a functional reconfiguration of the fingerprint from healthy to 

pathological ageing.  Given these observations, we delved deeper into the spatial distribution of the 

edges with good ICC within each resting-state network. 
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Figure 3. The connections with the highest fingerprint undergo spatial reconfiguration during cognitive decline.  A) 

Geneva cohort; B) ADNI cohort; spatial specificity matrices of FC-fingerprints for each group as measured using edge-wise 

intra-class correlations (ICC). Here we display ICC values, computed using bootstrapping for randomly chosen N=10 

subjects, across 1000 bootstrap runs, and then averaged within each group. We show edges with ICC between the 5th and 

95th percentile. C) Overlap Geneva-ADNI; overlap across the two cohorts of spatial specificity matrices of FC-fingerprints. 

Matrices in A) and B) were binarized for ICC>0.6 which is considered a ‘good’ ICC score 47
, and only overlapping edges 

are displayed. n edges=number of overlapping edges. Matrices in A), B) and C) are ordered according to seven cortical 

resting state networks (RSNs) as proposed by 45. VIS=visual network; SMT=somatomotor network; DA=dorsal-attention 

network; SA=salience network; L=limbic network; FPN=fronto-parietal network; DMN=default-mode network; 

SBC=subcortical regions.  

Brain fingerprint in resting-state functional networks during cognitive decline 

We looked at the number of the edges in the binary overlap ICC matrix for each group (CU 

Aβ-, MCI Aβ+ and AD Dementia) in each network (within and between), relative to the total number 

of edges. Our results showed that MCI Aβ+ individuals had a slightly reduced fingerprint relative to 

CU Aβ- (i.e., slightly negative Ratio Disease/Health, ������, with an average of -0.2 and -0.4 folds 

relative to CU Aβ- in within- and between-networks, respectively. In contrast, patients with AD 

Dementia showed a considerable increase in fingerprint (i.e., positive  ������) across almost all 

functional networks, except for VIS-within and Limbic-within and between (see in Fig. 4A). The 

greatest increase was in the SBC network, including hippocampal and medial temporal regions, which 

are the earliest regions displaying atrophy and tau pathology in AD51,52. In addition, in between-

networks there was an average increase of 2.9 folds, in particular for DMN, FPN and VIS. There was 

also higher fingerprint in within-networks, with an average increase of 2.2 folds. This shows that the 

increase in number of edges with highest ICC in AD Dementia, was widely distributed across the 

cortex but also especially driven by the regions with most long-lasting neuropathology, but also by 

between-network connections in key resting-state functional networks.  

Next, we analysed the differences in within-network and between-networks fingerprints.  We 

conducted a Chi-Square test to compare the number of edges within each network vs. the number of 

edges of that network with the others (i.e., between-network). The results showed that during healthy 

aging (CU Aβ-), in VIS, Limbic, FPN and DMN the proportion of edges with high fingerprint was 

significantly higher (Bonferroni corrected) in within-networks relative to between-networks (see Fig. 

4B, see also Supplementary Fig. 2). Conversely, in both MCI Aβ+ and AD Dementia a notable 

reduction in Chi-Square statistics was observed in the FPN network. This indicates that, relative to 

controls, patients had higher fingerprint in the connections of the FPN with the rest of the brain. In 

Visual and DMN networks, a similar reduction in Chi-Square was observed, but only for AD 

Dementia, indicating higher number of edges in between-networks only in the advanced stages of the 

disease. For the Limbic network, we observed a reduction in Chi-Square for MCI Aβ+ and an increase 
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during AD Dementia. This reveals a diminished discrepancy in edges with high fingerprint for 

between vs. within-network connections during the intermediate phases of the disease. Interestingly, 

during AD Dementia, the Limbic network exhibited a pattern similar to that of CU Aβ-, wherein an 

even higher proportion of edges with high fingerprint were found within the network, relative to 

between-network connections. Additionally, patients also showed increased fingerprint in between-

network connections in other networks, where CU Aβ- did not show any notable within/between-

networks proportion difference. For instance, MCI Aβ+ had increased fingerprint in between-

networks connections in Subcortical and DA networks, while AD Dementia had similar increases in 

SMT network and significantly higher proportion in between-network connections for SA network. 

See also Supplementary Fig. 2, for the percentages of edges with high fingerprint in each network 

across groups.  

In summary, these findings suggest that the distribution of edges with the highest fingerprint 

across resting-state functional networks undergoes changes during cognitive decline. Specifically, the 

distribution shifts towards more between-network connections in some key networks such as Visual, 

FPN and DMN, while in others, it remains relatively unchanged.  

 

Figure 4. Distribution of brain fingerprint across resting-state functional networks. Distribution of the edges with 

highest ICC common to both cohorts (from ICC overlap binary matrix, cf. Fig. 3C) in within-networks and between-

networks. A) Distance from healthy reference computed as ratio Disease/Health, , cf. Methods). Positive/negative 

values denote increase/decrease in the percentages of edges, respectively. Note, across all networks, the overall increase in 

percentages of edges in AD Dementia patients and slight decrease in MCI Aβ+. B) Comparison of edges within vs. between 
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networks, expressed as Chi-Square statistics. High value with * denote a significant (Bonferroni corrected) difference in the 

number of edges in within-networks vs. between-networks. With some exceptions (see main text and Supplementary Fig. 2), 

this reflects a higher percentage of edges in within relative to between-networks. Chi-Square for VIS in CU Aβ- and MCI 

Aβ+ was>800, but here we display Chi-Square ≤ 300 for visualisation purposes. W=within-networks; B=between-networks; 

ICC=intra-class correlation; CU Aβ-: Cognitively Unimpaired Aβ-negative; VIS=visual network; SMT=somatomotor 

network; DA=dorsal-attention network; SA=salience network; L=limbic network; FPN=fronto-parietal network; 

DMN=default-mode network; SBC=subcortical regions.  

 

Regional brain fingerprint during cognitive decline  

Finally, we further explored the pattern of spatial reconfiguration as expressed by the ICC 

nodal strength of each brain region. Nodal strength was derived only from the edges that were 

significantly different from a permuted matrix randomly including subjects of the three groups (see 

Methods). We observed that regions contributing to the fingerprint (fingerprinting hubs) differed 

across groups and between cohorts (cf. Fig. S4), confirming that functional connectivity patterns are 

unique. Nevertheless, there was considerable overlap in the edges with the highest fingerprint across 

the two cohorts (Fig. 5).  

 

At last, we wanted to link brain fingerprints during the different stages of cognitive decline 

with behaviour. After deriving the group-specific nodes with the highest ICC values that were 

common across the two independent cohorts (cf. Methods),  we applied a Neurosynth meta-analysis 

based on 50 topic terms onto the brain fingerprint of each group, similarly to previous work 53,54. We 

found that during healthy aging (CU Aβ-), brain fingerprints were associated with higher order 

processes such as long-term memory, language, semantics and executive functions, that rely on the 

integration of complex mental representations. On the other hand, in the initial phases of the disease 

and the incipient cognitive decline (MCI Aβ+) we observed a shift towards low-order sensory and 

motor processes, but also executive functions (‘working memory’, ‘cued attention’ and ‘numerical 

cognition’), ‘reading’ and ‘actions’. These regions, namely those involved in executive, visual, and 

motor processes, are progressively impacted in the later stages of AD. This pattern aligns with the 

'cascading network failure' model, which posits a transition in connectivity from higher-order to 

lower-order circuits. This shift may represent an initial compensatory mechanism in the early stages 

of the disease, which eventually falters as the disease progresses55. 

In the late stage of the disease (AD Dementia) we observed a shift-back to high-order 

cognitive functions, resembling the pattern observed in healthy aging, but also to regions implicated 

in affective/social processing including ‘pain’, ‘emotion’ and ‘reward-based decision making’. The 

involvement of regions modulating emotion and pain is consistent with clinical and imaging 

observations indicating that social-emotional functioning tends to remain relatively preserved in AD. 

This preservation aligns with hyperactivity observed in the SAL network, known for its role in 
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detecting and integrating emotional and sensory stimuli56. In the context of the cascading network 

failure model, these circuits may represent a final opportunity for the brain to ‘compensate’ for AD 

pathology. On the contrary, highest fingerprints in regions implicated in higher order processes, may 

denote maladaptive stability in regions where the functional reconfiguration is no more possible. Note 

that brain fingerprints were linked with memory processes both in healthy aging and during AD 

Dementia (cf. Fig.5B), although the regions driving this association differed in the 3 groups (cf. Fig. 

5A).   

 

 

Figure 5. Fingerprinting hubs of cognitive decline and its association with behaviour. A) Brain fingerprint maps 

showing the top 25% brain nodes overlapping across the two cohorts. B) The Neurosynth meta-analysis of the brain 

fingerprints maps across cognitive decline shows a spectrum of association with higher order processes during healthy aging 

(CU Aβ-), towards lower-order motor-sensory processing during MCI Aβ+ and back to higher order, as well as affective and 
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social processing, during AD Dementia. Brain fingerprints were linked with memory processes both in healthy aging and 

during cognitive decline, with different regions driving this association.  

 

Discussion 

The pressing quest of neuroscience is to deepen the understanding of the intricate links 

between brain and cognition, behaviour, and dysfunction. Brain fingerprinting holds the potential to 

provide a crucial contribution to this endeavour, building upon its capacity to derive individual 

inferences from functional connectivity profiles. Seminal work 7,12 showed that functional 

connectivity profiles at rest are highly heterogenous in healthy individuals, especially in regions 

devoted to higher-order cognitive functions, such as such as Frontoparietal (FPN) and DMN, and this 

heterogeneity may reflect individual variability in cognition and behaviour. However, very little is 

known about how this property of the human brain may change as a consequence of cognitive decline 

and neurodegeneration. In this work, we aimed to provide an answer to the fundamental question of 

how human brain fingerprints changes during normal and pathological brain ageing due to 

Alzheimer’s Disease. To do so, we evaluated the within-session identification properties of functional 

connectomes during healthy aging, MCI and Dementia due to AD (i.e., MCI Aβ+ and AD Dementia)  

in two independent cohorts using fMRI data from N=126 individuals, and along two main lines: i) we 

investigated whether the within-session identification properties were maintained at the whole-brain 

level across the different clinical groups, ii) we explored the spatial configuration of brain fingerprints 

along the continuum between healthy and pathological brain aging due to AD (Fig. 1).  

Firstly, our study revealed that individuals can be accurately identified based solely on the 

patterns of brain activity, regardless of their clinical status (Fig. 2). Remarkably, individuals remained 

highly consistent in their brain connectivity across test and retest sessions (ISelf), independent of their 

clinical condition. Additionally, patients exhibited a high degree of distinguishability from one 

another (IOthers), sometimes even more so than healthy elderly individuals among themselves (Fig. 

S1B). This finding suggests that disease can enhance the distinctiveness of individuals based on their 

functional connectivity. We note that these results were observed in two independent datasets 

(Geneva cohort, ADNI) with different acquisition parameters, signal-to-noise ratio and pre-processing 

pipelines, supporting the robustness of our results. These findings carry significant implications, as 

they reveal that functional connectomes remain highly heterogenous also during cognitive decline due 

AD and that they contain important individualised information. This highlights the importance to take 

into consideration, and make use of, this rich inter-individual variability to fully capture the 

complexity of functional alterations associated with cognitive decline and AD. Currently, the 

literature lacks consensus on the functional connectivity alterations that occur during different stages 

and causes of cognitive decline 23, and this has hindered the use of fMRI as a clinically-relevant tool 
30,41. Previous studies have primarily focused on group averages, overlooking the heterogeneity among 

individuals and potentially disregarding essential information embedded within individual variability. 
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For instance, evidence suggests that the distribution of pathological tau aggregates in the brain is 

linked to the functional connectivity architecture 38–40,57. If it is known that the spatial progression of 

tau aggregates in the cerebral cortex mirrors the severity of symptoms 58,59 and follows various 

deposition trajectories 60, being able to predict an individual’s trajectory would be crucial for the 

integration of disease progression profiles into clinical practice, and could also significantly impact 

research on disease-modifying therapies for AD 61 aiming to reduce pathological proteins 

accumulation and spread. Our findings carry important implications for this field of research, as they 

suggest that leveraging the individual characteristics of functional connectomes is fundamental to 

elucidating the heterogeneity in the patterns of tau spread and, therefore, disease progression. 

When examining the topological distribution of connections underlying this uniqueness, we 

observed a spatial reconfiguration of regions with the highest fingerprint during different stages of 

Alzheimer’s Disease. Consistent with previous research utilizing magnetoencephalography-based 

functional connectomes 18, we identified a global decrease in identification between healthy elderly 

individuals and those with MCI. Additionally, and extending this work, we reported for the first time 

a significant increase in the number and sparsity of these temporally stable connections in patients 

with AD Dementia (Fig. 3C and Fig. 4A). In MCI Aβ+, the Alzheimer’s disease pathology is at its 

early stages, and it is conceivable that this can lead to functional connectivity reconfiguration and 

readaptation, resulting in a reduced number of connections with stable patterns of connectivity among 

individuals. In our study, we included only MCI Aβ+, which is a biologically homogeneous subtype 

with a relatively predictable clinical trajectory 49,50. However, not all MCI Aβ+ convert to Dementia 

and can present with distinct clinical subtypes (e.g., amnestic vs non-amnestic). Thus, we cannot 

exclude that the reduced number of regions contributing to the fingerprint may also reflect this clinical 

heterogeneity. Conversely, Dementia due to Alzheimer's disease (AD) represents a more well-defined 

clinicopathological entity 41,62, and the advanced stage of the disease facilitate, in most cases, clinical 

exclusion of alternative aetiologies, i.e., differential diagnosis, leading to a higher clinical 

homogeneity between patients. In addition, the AD pathophysiology is advanced in these patients and 

the functional reconfiguration is likely to have reached its plateau, and this could result in higher 

number of connections remaining “unhealthily” stable across time among individuals. Furthermore, 

previous work has showed that patients with Dementia spend more time in sparse connectivity 

configurations 63, which may explain the greater number of sparse between-networks connections 

exhibiting high stability over time. Our results not only reveal increased stability across time in AD 

Dementia but also highlight between-subject heterogeneity in terms of connectivity strength, both of 

which are captured by our fingerprint metric, i.e., ICC 12,64. The heightened stability observed in AD 

Dementia patients is an unfavourable hallmark, potentially indicating that the brain is no longer 

flexible and dynamic. In contrast, the diminished temporal stability in MCI may denote an attempt to 

counteract pathological changes by enhancing dynamic interactions between neural circuits. 
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Next, we observed that during healthy aging, in the visual (VIS), fronto-parietal (FPN), 

default-mode (DMN) and limbic (L) networks, edges with the highest fingerprint were mostly within-

networks, while they appeared increasingly in between-networks connections as cognitive decline 

started (MCI Aβ+) and progressed (AD Dementia) (Fig. 4B and Fig.3). Previous work consistently 

showed that the FPN and DMN networks are found amongst the networks that display the highest 

inter-subjects variability 7,65,66 and our results showed that the variability initially intrinsic to within-

system connections gets distributed to connections between these networks and the rest of the brain, 

as cognitive decline progresses. Notably, our findings in AD Dementia patients showed that having 

increasing temporally stable and therefore differentiable links does not always carry a positive 

prognostic. One possible hypothesis would be that the neurodegenerative processes affect the healthy 

topological variability of functional connectivity patterns, creating unhealthy “hyperstability” in the 

functional connections between different functional systems, which then could hinder the capacity of 

the brain networks to hop 67 or reconfigure 68 between different dynamical states. This aligns with 

prior research demonstrating that variability in brain function is crucial for ensuring the brain's 

optimal responsiveness to a dynamic environment, and that this characteristic diminishes with age69–71 

and generally supports cognitive performance70,71.  

Furthermore, previous works showed that the main drivers of the uniqueness of each 

individual functional connectome originates from brain areas responsible for higher-order cognitive 

processing during health 7,12. However, it was not known whether this changed in response to 

cognitive decline and Alzheimer’s Disease. In this work, we present strong evidence based on two 

independent cohorts, revealing how within-session brain fingerprints map onto different cognitive 

functions during healthy vs. pathological aging. Specifically, during healthy aging, brain fingerprints 

exhibit a range of associations with higher-order processes, resembling those observed in young, 

healthy individuals in between-sessions fingerprints. Conversely, in MCI Aβ+, brain fingerprints 

show a shift towards lower-order sensory-motor processing, as well as executive functions, ‘reading’ 

and ‘actions’. In the early stages of the disease, as amyloid pathology accumulates and affects 

connectivity within regions responsible for higher-order cognition, such as the DMN 36, it is plausible 

that these perturbations may lead to decreased regularity and stability in their connectivity patterns 

over time, resulting in a less distinctive 'fingerprint’. In contrast, sensory-motor regions, typically 

unaffected by early amyloid pathology 72, may exhibit adaptive changes in their functional 

connectivity patterns as a compensatory mechanism. This is also in line with the ‘cascading network 

failure’ model proposed by Jones et al.55. Conversely, as Alzheimer's Disease (AD Dementia) 

progresses to its advanced stages, we have observed a shift in fingerprint towards higher-order 

cognitive functions, encompassing affective and pain processing as well as decision making 

influenced by reward. This suggests that when the neuropathology is its advanced stage (including tau 

pathology and neurodegeneration), the functional reconfiguration processes in regions initially 

affected by amyloid pathology -primarily involved in higher-order cognition – tend to halt leading to a 
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maladaptive stability, albeit with distinct levels of functional connectivity among individuals. This 

emphasizes the individualized nature of impairment in high-order functions like memory and 

executive functions.  

Finally, our findings shed light on cognitive functions that are typically overlooked in 

memory-related conditions such as AD, e.g., somatomotor-processes and pain and affective 

functioning. Our data showed these to contribute significantly to the variability in functional 

connectivity across individuals in the early and latest stages of the disease, respectively. These 

findings may therefore have also implications for neuropsychological assessment and interventions, as 

they suggest that it may be important to broaden the focus to these overlooked cognitive functions in 

order to better tackle inter-individual variability.  In essence, the observed gradient of association 

suggests a transition in the highly differentiable hubs from higher-order cognitive systems – 

associated to “healthy” abstract cognitive functions such as memory or semantics – to more “low-

order” ancestral/sensory systems, during the early stages of the disease, and then back to high-order 

cognition to the late stages of the disease.  

This study has some limitations. First, the impact of the choice of the brain atlas should be 

further verified. Second, it is known that connectivity measures are highly susceptible to artefacts 

arising from head motion and respiratory fluctuations 73,74, and these effects are even more 

pronounced in pathological conditions. However, in our datasets, we did not find high motion data 

points to significantly contribute to the differences in fingerprinting across groups. We observed no 

significant difference across groups in the percentage of censored volumes [p>=.066] or in the 

average FD [p>=.146], and differences in motion between test and retest volumes did not explain the 

variance of individuals' test-retest similarity (i.e., ISelf, cf. Table S1A). Nonetheless, future work 

should analyse in depth the effect of motion at shorter time scales, where these artefacts can dominate. 

Third, in this study, we used two halves of the same scanning session to estimate identifiability, 

focusing more on the FC features leading to brain identification within-session. Obtaining test-retest 

sessions across different days in clinical cohorts poses significant challenges, and to the best of our 

knowledge, there are currently no publicly accessible large datasets of fMRI data collected across 

closely spaced time points (such as one week apart) in cognitively impaired cohorts, unlike with 

healthy cohorts (e.g., Human Connectome Project). One potential workaround to this issue is to cut 

the resting state time series in half, as originally proposed 12. Although this approach introduces the 

confound of looking at "within-session" fingerprinting, which could be influenced by the specific 

moment of scanning, it has the advantage of reducing scanner and acquisition noise, which are 

typically major confounding factors in connectome identification 13. Moreover, this method has been 

shown to yield similar identifiability results compared to data acquired across separate sessions (refer 

to Fig. S3 in 12 for a comparison on healthy subjects' data from the Human Connectome Project). 

Nonetheless, it should be noted that within-scan fingerprinting in this work should be regarded more 

as a first temporal stability investigation of the resting-state functional brain network across cognitive 
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decline. Future studies should aim to replicate our analysis using the "standard" between-sessions 

identification approach. 

This work raises also important novel questions and indicates directions for upcoming 

research. For example, future works could build upon these findings by examining the temporal 

aspects of brain fingerprints in neurodegeneration. Recent studies have in fact demonstrated that, in 

healthy individuals, brain-fingerprints emerge at different time-scales, with  for different 

networks/cognitive functions75, yet it is unknown whether this could change as a consequence of 

cognitive decline. It will also be important to characterize FC-fingerprints in a longitudinal dataset, 

i.e., to investigate whether the fingerprint is maintained after long time-gaps (e.g., years) and whether 

this changes in declining vs. stable individuals. Subsequent studies should also delve deeper into the 

relationship between atrophy, tau and amyloid accumulations, and changes in spatial patterns of brain 

fingerprints among patients. In our study, both cohorts were stratified based on amyloid status and 

stage of cognitive decline. Future investigations with larger subject numbers could explore differences 

in groups with stratification using comprehensive biomarker phenotyping, such as the presence of tau 

pathology, atrophy, and APOE genotyping.  

 

Conclusions 

Functional connectivity patterns in the human brain exhibit remarkable distinctiveness, 

enabling the identification of healthy individuals within a population. In this work, we have 

discovered that this property of the human brain, known as the brain-fingerprint, is maintained during 

aging, and in the Alzheimer’s continuum, however differently configured. By investigating this 

topological reconfiguration and its link with cognition, we found that the heterogeneity amongst 

individuals was mostly driven by high-order cognition regions during healthy aging, with a shift 

towards lower-order sensory-motor regions in MCI Aβ+ and back to high-order cognitive and 

affective functions  in AD Dementia. In essence, this work demonstrates that Alzheimer’s Disease 

significantly impacts the functional architecture of the human brain, albeit in remarkably unique ways 

for distinct individuals. These findings hold profound implications as they uncover functional 

connectivity as a personalized metric carrying substantial individualized information, highlighting the 

need to shift the research focus from group-averages to individual differences, and opening doors to 

various applications in personalized medicine. This work lays the foundation for clinical 

fingerprinting using functional magnetic resonance imaging, enabling a deeper understanding of 

cognitive decline at an individual level, with the potential to inspire novel approaches that leverage 

the distinct characteristics of functional connectivity, to enable personalized symptom monitoring, 

more accurate diagnosis, therapy surveillance and enhanced prediction. 
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Materials and Methods 

Participants and demographics  

Participants were included from two independent cohorts: the Geneva Memory Centre 

(Geneva University Hospitals, Geneva, Switzerland) and the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). Inclusion criteria were availability of (i) fMRI and T1-weighted scans, (ii) 18F-

Florbetapir or 18F-Florbetaben amyloid-PET to derive amyloid β-status (iii) clinical and cognitive 

assessments and demographic data, and (iv) identical fMRI acquisition parameters (cf. ‘Image 

acquisition parameters’ sections). The exclusion criterion was the presence of any significant 

neurologic disease other than AD (cf. ‘Clinical assessment’ section). Subjects ranged from healthy 

ageing and Aβ-negative (cognitively unimpaired, CU Aβ-), to mild cognitive impairment Aβ-positive 

(MCI Aβ+), and Aβ-positive subject with dementia  due to probable AD, AD dementia; cf. ‘Clinical 

assessment’ section for details about clinical and Aβ-status).  

 

Geneva: N=58 subjects from the Geneva Memory Centre were included. Four subjects were 

excluded when motion-tagged volumes (see below) were>30%, leaving a total of N=54 remaining 

subjects for analyses. These included N=16 CU Aβ-, N=32 MCI CU Aβ+, and N= 6 patients with AD 

dementia (cf. Table 1 for all study-relevant covariates). Differences across groups in age, years of 

education and MMSE were tested using one-way ANOVA or its non-parametric equivalent, i.e., the 

Kruskal-Wallis test; Chi-square test was used for sex. There were no differences in age [p=.274] and 

sex [p=.363] across groups, while AD dementia and MCI Aβ+ were on average significantly less 

educated than healthy individuals [p=.004]. As expected, MMSE [p<.001] and Centiloid [p<.001] 

scores varied across groups [p<.001], revealing lower cognition and higher amyloid load in MCI Aβ+ 

and AD dementia patients relative to CU Aβ-.  

 

ADNI: Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).  

N=79 subjects from the ADNI database were included. Seven subjects were excluded when 

motion-tagged volumes (see below) were>30%, leaving a total of N=72 subjects for analyses.  

These were N=40 CU Aβ-, N=21 MCI Aβ+ and N=11 AD dementia patients (cf. Table 1 for all 

study-relevant covariates). Differences across groups in age, years of education and MMSE were 

tested using one-way ANOVA or its non-parametric equivalent, i.e., Kruskal-Wallis test; Chi-square 

test was used for sex. There were no differences in age [p=.848] and sex [p=.654] across groups, 
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while AD dementia were on average significantly less educated than healthy individuals [p=.045].  As 

expected, MMSE [p<.001] and Centiloid [p<.001] scores varied across groups [p<.001], revealing 

lower cognition and higher amyloid load in MCI Aβ+ and AD dementia patients relative to CU Aβ-.  

 

Table 1. Demographics - Geneva and ADNI 

 

Geneva (N=54) CU Aβ- MCI Aβ+ AD 
dementia p p signif. 

 
N=16 N=32 N=6 

  
Sex assigned at birth (% female) 50.0 63.5 66.7 0.363 ns 

AGE M(SD) 71(5.9) 74.3(5.3) 72.2(8.6) 0.274 ns 

YoE M(SD) 16.8 (3.4) 12.8(4.6) 11 (3.4) 0.004 ** 

MMSE M(SD) 28.6 (1.1) 25.6(2.9) 18.5(3.6) <0.001 **** 

Centiloid M(SD) -2.8(6.1) 83.1(30.4) 83.8(21.3) <0.001 **** 

ADNI (N=72) CU Aβ- MCI Aβ+ AD 
dementia p p signif. 

 N=40 N=21 N=11   

Sex assigned at birth (% female) 57.5 61.9 27.3 0.654 ns 

AGE M(SD) 73.1(6.8) 74.8(11.2) 74.1(9.1) 0.848 ns 

YoE M(SD) 16.7(2) 21(15.5) 15.3(2.9) 0.045 * 

MMSE M(SD) 29.2 (0.9) 27.2(2.4) 21.6(2.7) <0.001 **** 

Centiloid M(SD) 6.2(9.8) 80.6(36.1) 105(36.1) <0.001 ****  

 

Legend: CU=cognitively unimpaired; MCI=mild cognitive impairment; Aβ-=Amyloid-β status negative; 

Aβ+=Amyloid-β status positive; MMSE=Mini-Mental State Examination; M(SD)=mean (standard deviation); p-value was 

estimated using Chi-square test for sex, and one-way ANOVA or its non-parametric equivalent, i.e., Kruskal-Wallis test for 

the remaining variables. ns=not significant, i.e., p>0.05; *p≤0.05; ** p≤0.01;*** p≤0.001;**** p≤0.0001.  

Clinical assessment 

Clinical status was established by expert neurologists of the Geneva Memory Centre (cf.   for 

full details on the clinical assessment) for the Geneva cohort, and from ADNI collaborators for the 

ADNI cohort (cf. https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-

v2/documents/clinical/ADNI3_Protocol.pdf for full details on the clinical assessment). In brief, CU 

were individuals with or without subjective cognitive complaints and an absence of significant 

impairment in cognitive functions or activities of daily living (Geneva cohort: MMSE≥27, non-

depressed; ADNI: MMSE≥27 and Clinical Dementia Rating (CDR)=0, non-depressed, cf. Table 1). 

MCI were subjects with objective evidence of cognitive impairment, cognitive concern reported by 

the patient and/or informant (family or close friend), and little or no functional impairment in daily 
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living activities (Geneva: MMSE≥19) (ADNI: MMSE≥19, CDR=0.5). Individuals living with 

dementia were defined based on the same above criteria for MCI, but with impairment in the activities 

of daily living and fit the NINCDS/ADRDA criteria for probable AD (GENEVA: MMSE=12-20) 

(ADNI: MMSE=17–26, CDR≥0.5).  

For both datasets the exclusion criterion was the presence of any other significant neurologic 

disease. These included: Parkinson’s disease, multi-infarct dementia, Huntington’s disease, normal 

pressure hydrocephalus, brain tumour, progressive supranuclear palsy, seizure disorder, subdural 

hematoma, multiple sclerosis, or history of  significant head trauma followed by persistent neurologic 

deficits or known structural brain abnormalities (cf. https://adni.loni.usc.edu/wp-

content/themes/freshnews-dev-v2/documents/clinical/ADNI3_Protocol.pdf). 

Amyloid-β status 

In the Geneva cohort, amyloid-β deposition was measured using 18F-florbetapir or 18F-

flutemetamol PET, using standard imaging protocol, reconstructions and pre-processing pipelines, 

previously described in detail76. Given the use of two different amyloid-PET tracers, the standardized 

uptake value ratio (SUVr) was converted to a common scale, the Centiloid (CL) scale, a 

standardisation method proposed to harmonise the results obtained across tracers77. Aβ-status was 

determined in two ways: using the previously established cut-point (CL > 1278) and visually 

determined by an expert nuclear medicine physician (VG, >15 years of experience in the field) using 

visual assessment and standard operating procedures approved from the European Medicines Agency 
79,80. In two discordant cases, where the CL was borderline, the visual assessment (positive) was 

preferred.  

In ADNI, Aβ-status was determined using global amyloid-PET SUVR, derived after whole 

cerebellum normalisation of 18F-florbetapir or 18F-florbetaben PET, following pre-established 

reconstruction and pre-processing protocols (cf. https://adni.loni.usc.edu/methods/pet-analysis-

method/pet-analysis/) and cut-points (global AV45 SUVR > 1.11; global FBB SUVR > 1.08)81. As in 

the Geneva cohort, to allow aggregation of data from the two tracers, the global amyloid-PET SUVR 

values were converted to the Centiloid scale77 and reported in Table 1.  

Image acquisition parameters 

Geneva: Structural and functional data were acquired using a 3T Siemens Magnetom Skyra 

scanner (Siemens Healthineers, Erlangen, Germany) using a 64-channels phased-array head coil. 

Scans were performed within the radiology and neuroradiology division, Geneva University 

Hospitals, Geneva, Switzerland. An EPI-BOLD sequence was used to collect functional data from 35 

interleaved slices (slice thickness=3mm; multi-slice mode=interleaved; FoV=192x192x105mm; voxel 

size=3mm isotropic; TR=2000ms, TE=30ms; flip-angle=90°; GRAPPA acceleration factor=2, time 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2022.02.04.479112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479112
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

points=200, approximate acquisition time=7 minutes). Whole-brain T1-weighted anatomical images 

were acquired using a 3D MPRAGE sequence (slice thickness=0.9mm; FoV=263x350x350mm; voxel 

size=1mm isotropic; TR=1930ms; TE=2.36ms, flip-angle=8 °; GRAPPA acceleration factor=3). 

          ADNI: For ADNI, data was obtained using 3T MRI scanners with a standardised protocol 

across imaging sites (full details in https://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-

MRI-protocols.pdf). An EPI-BOLD sequence was used to acquire functional data (slice 

thickness=3.4�mm, FoV=220x220x163mm, voxel size=3.4 isotropic; TR=3000ms; TE=30ms; flip 

angle=90°; GRAPPA acceleration factor=2; time points =197, approximate acquisition time=10 

minutes). Whole-brain T1-weighted anatomical images were acquired with a 3D MPRAGE sequence 

(slice thickness=1�mm, FoV=208x240x256mm; voxel size=1×1×1�mm; TR=2300ms, TE=3ms, flip 

angle=9°, GRAPPA acceleration factor=3). 

Image processing 

Image processing pipelines for the two cohorts included substantially similar steps, yet with 

some small differences (details below). Results are therefore not only replicated across different 

cohorts, but also irrespective of minor differences in preprocessing choices.  
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Geneva: fMRI data were preprocessed using in-house MATLAB code based on state-of-the-

art fMRI processing guidelines 42,74,82. Below follows a brief description of these steps. Structural 

images were first denoised to improve the signal-to-noise ratio 83, bias-field corrected, and then 

segmented (FSL FAST) to extract white matter, grey matter and cerebrospinal fluid (CSF) tissue 

masks. These masks were warped in each individual subject's functional space by means of 

subsequent linear and non-linear registrations (FSL flirt 6dof, FSL flirt 12dof and FSL fnirt). The 

following steps were then applied on the fMRI data: BOLD volume unwarping with applytopup, slice 

timing correction (slicetimer), realignment (mcflirt), normalisation to mode 1000, demeaning and 

linear detrending (MATLAB detrend), regression (MATLAB regress) of 18 signals: 3 translations, 3 

rotations, and 3 tissue-based regressors (mean signal of whole-brain, white matter (WM) and 

cerebrospinal fluid (CSF), as well as 9 corresponding derivatives (backwards difference; MATLAB). 

We tagged high head motion volumes on the basis of two metrics: frame displacement (FD, in mm), 

and DVARS (D referring to temporal derivative of BOLD time courses, VARS referring to root mean 

square variance over voxels) as in 42. Specifically, we used the standardised DVARS as proposed in 

88. We also used SD (standard deviation of the BOLD signal within brain voxels at every time-point). 

The FD and DVARS vectors (obtained with fsl_motion_outliers) were used to tag outlier BOLD 

volumes with FD > 0.3 mm and standardised DVARS > 1.7. The SD vector obtained with MATLAB 

was used to tag outlier BOLD volumes higher than the 75th percentile +1.5 of the interquartile range 

as per FSL recommendation 84. Subjects (N=4) with more than 30% motion-tagged volumes were 

excluded from the analyses. For the remaining subjects, the tagged volumes were not removed. There 

was no significant difference across groups in the percentage of tagged volumes [p>.928], while there 

was a tendency of higher FD in CU Aβ- relative to MCI Aβ+ and Dementia Aβ+ [p>.048]. There was 

no difference across test and retest in the percentage of tagged volumes [p=.471] nor in the average 

FD [p=.364]. Note that motion was accounted for in our statistical analyses (see section “Functional 

Connectivity and whole-brain within-session brain-fingerprint"). 

A bandpass first-order Butterworth filter [0.01 Hz, 0.15 Hz] was applied to all BOLD time-

series at the voxel level (MATLAB butter and filtfilt). The first three principal components of the 

BOLD signal in the WM and CSF tissue were regressed out of the grey matter (GM) signal 

(MATLAB, pca and regress) at the voxel level. A whole-brain data-driven functional parcellation 

based on 248 regions including cortical and subcortical areas as obtained by 85, was projected into 

each subject’s T1 space (FSL flirt 6dof, FSL flirt 12dof and finally FSL fnirt) and then into the native 

EPI space of each subject. We also applied FSL boundary-based-registration 86 to improve the 

registration of the structural masks and the parcellation to the functional volumes.  

In some rare cases, BOLD signal from some ROIs was missing. When signal from an ROI 

was not available in more than 10% of subjects it was excluded from the analyses for all; this 

concerned a total of 8 ROIs, corresponding to 7 subcortical and 1 cortical ROIs. In the remaining few 

cases with no signal, metrics were computed with available data only.  
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ADNI: Anatomical and functional images were preprocessed with a standardised in-house-

developed preprocessing pipeline 87 implemented in MATLAB (MATLAB 2021a version 9.10; 

MathWorks Inc., Natick, MA, USA) and including functions from SPM8 and SPM12 

(http://www.fil.io-n.ucl.ac.uk/spm/). Individual structural T1 images were registered to each 

individual’s functional space (SPM coreg) while keeping the high T1 resolution, and segmented into 

grey matter, white matter and cerebrospinal fluid (SPM New Segment). Functional scans were 

realigned (SPM realign) and spatially smoothed (SPM smooth) with a Gaussian filter with 

FWHM=5mm. Nuisance signals were regressed out by means of a GLM, specifically linear and 

quadratic trends, 6 motion parameters and average signals in the white matter and cerebrospinal fluid. 

The same whole-brain data-driven functional parcellation 85 used for the Geneva dataset was adopted 

here to extract regional timecourses. The parcellation in MNI coordinates was first normalised to the 

individuals’ previously registered T1 images (functional space, structural high resolution), and then 

resampled to the lower functional BOLD resolution. Regional time series were then extracted by 

averaging the voxelwise preprocessed BOLD signals within each of the 248 regions of the 

parcellation. Finally, regional timecourses were band-pass filtered with cut-offs of 0.01-0.15 Hz to 

isolate typical resting-state fluctuations.  

The FD vectors (obtained from SPM head motion parameters using the procedure described 

in 74) were used to tag outlier BOLD volumes with FD > 0.5 mm as per recommendation in 75. 

Subjects (N=7) with more than 30% motion-tagged volumes were excluded from the analyses (see 

section 1.0). For the remaining subjects, the tagged volumes were not removed. There was no 

significant difference across groups neither in the percentage of tagged volumes [p>=.634] nor in the 

average FD [p>=.897], while there was a difference across test and retest in the percentage of tagged 

volumes [p=.026] and in the average FD [p<.001], revealing that subjects moved more in the second 

part of the acquisition. To factor out the effect of motion in the brain-fingerprint, motion was added as 

nuisance variable in the whole brain-fingerprinting analyses (cf. section “Whole-brain within-sessions 

brain fingerprint during cognitive decline”). 

In some rare cases, the BOLD signal from some ROIs was missing. When signal from an ROI 

was not available in more than 10% of subjects it was excluded from the analyses for all; this 

concerned a total of 2 ROIs in subcortical regions. In the remaining few cases with no signal, metrics 

were computed with available data-only.  

Functional Connectivity and whole-brain within-session brain-fingerprint 

We estimated individual FC matrices using Pearson’s correlation coefficient between the 

averaged signals of all region pairs. The resulting individual FC matrices were composed of 248 

nodes, as obtained by 85. Finally, the resulting functional connectomes were ordered according to 
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seven cortical resting state networks (RSNs) as proposed by 45, plus one additional network including 

subcortical regions (similarly to 88, see also Fig. 1A).  

We estimated within-session identifiability or fingerprinting, following the approach proposed 

in 12. This method involves splitting the fMRI times series in halves and enables quantification of 

within-session connectome fingerprints. Previous work has demonstrated that this method produces 

very similar results to those obtained from data acquired across separate sessions (i.e., between-

sessions fingerprint) in healthy subjects from the Human Connectome Project (HPC) (see Fig. S3 in 
12). Although within and between-sessions fingerprinting held similar results, they are different 

approaches to quantifying the brain-fingerprint, and this should be compared in future studies. 

However, we note that there are currently no clinical datasets available that include two fMRI 

sessions acquired within a short-time gap (i.e., within around one or two weeks). Therefore, within-

session fingerprint is currently the only method available for estimating brain-fingerprint during 

cognitive decline. In this current study, we estimated identifiability across the first half (test) and 

second half volumes (retest) within the same scan. Recent work has shown that a good level of 

identifiability across the different resting state networks can be reached from around 200s (see Fig 4B, 

in 75). In this work, each test and retest session had 100 volumes (Geneva) or 90 volumes (ADNI) with 

a TR of 2s and 3s respectively, therefore providing sufficient data for achieving a good success rate 

and identifiability across the entire brain.   

  At the whole-brain level, the fingerprint was calculated for each subject � as test-retest 

similarity between FCs (cf. Fig 1B; we called this metric ISelf).  

 

ISelf��� 	 corr
���������, ������������ 
 

Then, for each subject � we computed an index of the FCs similarity with the other subjects � 
in their group (IOthers), where � is the total number of subjects in each group:  

 

��������� 	
∑ �����
���������,������������ � ����
�����������,��������������

2� ! 2  

 

A second metric, IDiff (Fig. 1B), provides a group-level estimate of the within- (ISelf) and 

between-subjects (IOthers) test-retest reliability distance, where "#$% is the set of subjects: 

 

�&�'' 	 mean+++�"�,'��� ! mean+++���������� 
                                            � - Subj                 � - Subj        
 

  Finally, we measured the Success-rate 7 of the identification procedure as the percentage of 

cases with higher within- (ISelf) vs. between-subjects (IOthers) test-retest reliability. These metrics 
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have been introduced and estimated in healthy populations in previous work 12. We performed paired-

sample t-test to compare ISelf vs. IOthers in each group/cohort. Then, we used one-way ANOVAs to 

test the effect of group on ISelf and IOthers separately after checking for nuisance variables, with 

5000 permutations to control for sample size differences. For ISelf, the nuisance variables were age, 

sex, years of education (YoE), and the difference in motion between the test and retest scans, as 

absolute difference between FD. For IOthers, the nuisance variables were also age, sex, and YoE, but 

motion (FD) was considered across the entire acquisition, as IOthers is a composite measure across 

test and retest. Additionally, when the scanner type varied across subjects (i.e., in ADNI), scanner 

type was also included as a nuisance variable for IOthers. Finally, we did a permutation testing 

analysis to compare Success-rate and IDiff from 1000 surrogate datasets of random ID matrices 

against the real value 46.  

Spatial specificity of brain fingerprint: edge-wise intra-class correlation 

Spatial specificity of FC fingerprints was derived using edgewise intra-class correlation (ICC) 

with one-way random effect model according to 64 (cf. Fig. 1C): 

 

��� 	 1"� !1"�
1"� � �2 ! 1�1"�

 

 

Where 1"�= mean square for rows (between the subjects); 1"� = mean square for residual 

sources of variance; 2 = sessions. ICC coefficients quantify the degree of similarity between 

observations/measures and find high applicability in reliability studies 89. The higher the ICC 

coefficient, the stronger the agreement between two observations. Here we used this metric, as in 

previous work 12,75, to quantify the similarity between test and retest for each edge (FC between 2 

regions). A high ICC indicates that a larger proportion of the variance across test and retest is due to 

differences between the subjects, rather than differences between test and retest or random error. A 

low ICC, on the other hand, indicates that there is more variability due to differences between test and 

retest or random error, than due to differences between subjects. In other words, the higher the ICC of 

an edge, the more that edge connectivity is similar for each subject across test and retest, as well as 

the variability across subjects, i.e., the higher the ‘fingerprint’ of that edge.  

Edge-wise ICC was computed for all possible edges and for each group separately, with the 

aim to quantify the edges-wise functional connectivity fingerprint, distinctive of each clinical group. 

In order to control for sample size differences across groups, bootstrapping was used to accurately 

estimate edgewise fingerprints: for each group, ICC was calculated across test and retest for subsets of 

randomly chosen N=10 subjects, across 1000 bootstrap runs, and then averaged within each group 

(Fig. 3A and 3B). Matrices in 3A and 3B were binarized for ICC>0.6 which is considered the lower 
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threshold for a ‘good’ ICC score 47 , and overlapping edges across the two cohorts were displayed in 

the binary ICC matrices (cf. overlap ICC matrix in Fig. 3C).  

Brain fingerprint in resting-state functional networks during cognitive decline 

Next, we aimed to identify the commonalities in the distribution of edges with the highest 

ICC across different cohorts, both within and between resting-state networks. To achieve this, we 

analysed the overlap ICC binary matrix (Fig. 3C) and computed the following metrics. For each of 

one seven resting state networks, both within and between-networks �4���, we quantified the number 

of overlapping ICC edges ����	�. Next, we computed a proportion of the ���	  edges relative to the 

total number of edges in each network and defined it as 5
���. Finally, and in order to determine the 

distance from the healthy reference (i.e., CU), we computed the ratio over healthy individuals (Fig. 

4A). The ratio (R) was calculated as follow, where & = disease (i.e., MCI and Dementia) and  6= 

healthy (i.e., CU). 

 

7�4��� 	 5
��
�
&

5
���6
! 1 

 

Lastly, we aimed to determine whether there was a significant difference in the distribution of 

overlapping edges in within-networks vs. between-networks for each group. To achieve this, we 

conducted a Chi-square test for each network comparing the number of edges in the within- versus the 

between-functional networks. Significance was Bonferroni corrected for multiple comparisons (Fig. 

4B). 

Between-groups significance of nodal brain fingerprint  

In these analyses, we aimed to identify regions (or nodes) whose functional connectivity with 

the rest of the brain could account for significant differences in subject variability across the three 

groups. First, to isolate edges that were significantly different across groups, we compared real ICC 

matrices with surrogate ones obtained after including randomly selected subjects from each group for 

1000 permutation runs (Fig. S3), i.e., we generated surrogate group-unspecific ICC matrices. Next, a 

p-value was computed for each edge as a proportion of times across permutation runs where surrogate 

values were bigger than the real value; edges with p<.05 were considered significant (see Fig. S3). 

Only significant edges were selected and a new matrix including significant edges with its real ICC 

value and having zeros for all the non-significant ones was used to compute nodal strength ICC. 

Nodal strength was computed as average, including zeros to account for non-significant edges, and 

rendered on the cortical surface using BrainNet 90 (cf. Fig. S4). Next, to select the group-specific 

nodes with the highest ICC values that were common across the two independent cohorts, binary 

masks were obtained by selecting the top 25 percentile of ICC nodal strength and the overlap between 
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the two cohorts was displayed (Fig.  5A). Each binary mask obtained that way provides a nodal 

representation of the brain region “hubs” involved in FC fingerprints in each group specifically.  

 

Brain fingerprint across cognitive decline and behaviour  

A Neurosynth meta-analysis (https://neurosynth.org/), similar to the one implemented in 

previous studies 53,54, was conducted to assess cognitive functions associated with brain fingerprints at 

the different stages of cognitive decline. The procedure outputs, for each combination of brain 

fingerprint mask and cognitive function binary mask, a nodal z statistic that quantifies the similarity 

between the two maps. For brain fingerprint, we used the binary overlap masks in Fig. 5A – i.e., those 

including the ICC hubs with the highest fingerprint across the two cohorts. For cognition, we used the 

brain binary maps related to 50 topic terms common in the neuroimaging literature 73,91 derived from 

the Neurosynth database. These fingerprint and cognition maps were used as input for the meta-

analysis to find significant associations between the ICC hub or fingerprint masks and the brain 

cognitive functions Neurosynth maps. Last, we ordered the terms according to the weighted mean of 

the resulting z statistics for visualization, considering significant any association between group 

fingerprints and cognitive maps above z>3.1 53,54 (Fig. 5B). 
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