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Abstract

In analogy to the friction ridges of a human fingde functional connectivity patterns of the
human brain can be used to identify a given indigldrom a population. In other words, functional
connectivity patterns constitute a marker of hunckmtity, or a brain fingerprint’. Yet remarkably,
very little is known about whether brain fingerpgsimre preserved in brain ageing and in the presenc
of cognitive decline due to Alzheimer’'s disease JADsing fMRI data from two independent
datasets of healthy and pathologically ageing sthjehere we show that individual functional
connectivity profiles remain unique and highly etgeneous across early and late stages of cognitive
decline due to AD. Yet, the patterns of functionahnectivity making subjects identifiablehange
across health and disease, revealing a functi@eahfiguration of the brain fingerprint. We obsetve
a fingerprint change towards between-functionatesysconnections when transitioning from healthy
to dementia, and to lower-order cognitive functionthe earliest stages of the disease. Thesanfisdi
show that functional connectivity carries importamdividualised information to evaluate regional
and network dysfunction in cognitive impairment drighlight the importance of switching the focus
from group differences to individual variability wh studying functional alterations in AD. The
present data establish the foundation for clinfaagerprinting of brain diseases by showing that
functional connectivity profiles maintain their goeness, yet go through functional reconfiguration,
during cognitive decline. These results pave theg ¥ea a more personalised understanding of
functional alterations during cognitive decline, simy towards brain fingerprinting in personalised

medicine and treatment optimization during cogaitiecline.
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I ntroduction

The sharp increase of publicly available neuroimggiatasets™ in the last few years has
provided an ideal benchmark for mapping functicenad structural connections in the human brain.
At the same time, quantitative analysis of connégtipatterns based on network science has become
more commonly used to study the brain as a net#qrkiving rise to the scientific field dBrain
Connectomics ®. Seminal work in this research aréshas paved the way towards the new promising
avenue of detecting individual differences throlghin connectivity features. These studies showed
that an individual's functional connectivity patterestimated from functional magnetic resonance
imaging (fMRI) data, also known as functional coctioenes (FCs), can constitute a marker of human
unigueness, as they can be used to identify a givdividual in a set of functional connectivity
profiles from a populatioh Given the analogy to well-known properties of gragillary ridges of the
human finger, the field has taken the name of tbfaigerprinting’ and, since then, the extractidn o
“fingerprints” from human brain connectivity datashbecome a new frontier in neuroscience.

The excitement produced by the discovery that bfaigerprints can be extracted from
matrices summarising human brain activity, eitheriry rest or when performing a task, is
unsurprising, for several reasons. Firstly, it aon$ that studying the brain as a network can pl@vi
useful tools to get insights into the individuaafieres that distinguish our brains one from theigth
and second, it has been shown that brain fingdsprglate to behavioural and demographic scores
910 Accordingly, efforts have been made to implemevitys of maximising and denoising
fingerprints from brain datd™ These findings incentivized human neuroimaginglists to advance
from inferences at the population level to the Ergubject level, and allowed the field to move
towards an individualised prediction of cognitiondabehaviour from brain connectomés'. The
next natural step is to explore whether this priypef the human brain is maintained during disease.
Despite promising preliminary findings towards tHigectiort®*, it is to date unclear to what extent
FC-fingerprints could be used for mapping diseasesfhuman brain data. In fact, the vast majority
of studies on brain fingerprinting have focused hwalthy individuals, leaving the field of brain
fingerprinting within the context of brain diseaseslargely, if not completely, unexplored.

Cognitive decline and dementia are the final consaqge of a series of pathological brain
events. In the case of Alzheimer’s Disease (AD)ichlis the most common cause of dementia, these
events involve the accumulation of toxic proteinghs asp-amyloid and hyperphosphorylated tau
between and within neurons, leading to neuronathdaad ultimately causing damage to the wider
structural and functional architectuf® In line with this, AD is often referred to asdisconnection

"2l and, numerous studies have focussed on conngchltérations in AD*** This

syndrome
extensive body of literature has demonstrated thBt is associated with loss of functional
connectivity between brain regions and disruptibmetwork organisatioi>?® For instance, some
studies have revealed that the observed loss afecbivity in certain circuits is often accompanizd

hyperconnectivity in other brain regions/netwofk$® and phases of hyperconnectivity may precede
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the onset of cognitive symptori$®2  Additionally, cognitive impairment in AD is assated with
changes ifhub regions®*3* which play a crucial role in integrating inforriwat from domain-specific
systems in the healthy brafi>. Thesehub regions often coincide with epicentres pamyloid
accumulation®****% possibly due to their high metabolic ne€dsMoreover, AD patients show
reduced nodal centrality in thekeb regions like the medial temporal lobe and defendtie network
(DMN) *’. On the other hand, the strength of connectivitiais epicentres predicts the topography of
tau accumulatior’®*®*° and several groups are exploring the potentiakxgbloiting functional
connectivity as mean to predict future tau spreath potential direct implications in clinical priae
%40 Finally, graph theoretical measures indicate thBtis characterized by shorter path lengths
between connected regions and an increased nurhhabg) altering the global network organization
26, Overall, the literature suggests that during plaiical aging, the brain undergoes both a lossaand
reorganization of functional connectivity, and thiase changes are closely tied to the underlfing
amyloid and tau pathophysiology.

However, to date, there is a lack of a functior@hrectivity alteration biomarker with an
adequate level of specificity and sensitivity cani®g to the various stages of AP and this has
hindered the routine use of fMRI in clinical praeti®*. This is partly due to the intrinsic properties
of connectivity from resting-state fMRI, a technégthat is greatly influenced by factors affectihg t
obtained signal (heterogeneity in acquisition pastars, scanners characteristics, motfgn by
differences in the chosen signal-processing appesst, but also by the fact that existing studies
focused on group averages, overlooking heterogeagibng individuals. The existence of significant
inter-subject variability in terms of clinical md@stations is well-known in clinical practice, atinis
cognitive variability could be explained by indivial features of functional organisation. Addressing
the open research question of fingerprinting dutimgin disease could therefore open the door to
individual characterization of cognitive declinern functional connectivity data and pave the way to
a more widespread implementation in clinical sg&innvestigating fingerprints of cognitive decline

is also tightly connected to the concept of “priecismedicine” *®

, since it might not only provide
insights on the individual trajectories of pathotag brain ageing, but also allow for the surveitie
of adapted personalised treatments during cogndeeline, advancing medicine in its quest for
individualised biomarkers of neurodegenerafibn

In this work, we investigated within-scan brain weativity fingerprints using fMRI data
collected from two independent datasets from imtlimis at different stages of cognitive decline.
Within-scan fingerprinting, as introduced i, allows to uncover FC features leading to brain
identification within-session and should be regarded agemporal stability investigation of the
resting-state functional brain architecture. Wertsth by estimating functional connectome
fingerprints of a clinically homogeneous and deeagigracterised cohort of Cognitively Unimpaired
amyloid B-negative individuals (CU B), amyloid B-positive patients with Mild Cognitive
Impairment (MCI A+) and amyloid3-positive patients with Dementia due to AD), durihg first
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and second half of the fMRI session. We found thhole-brain functional connectivity patterns
remained reliable across healthy and pathologicainbageing; in other words, it was possible to
correctly identify a patient solely based on itadtional connectome. Yet, significant differences i
the spatial organisation of the brain fingerprioukd be observed during cognitive decline. Notably,
the functional connections that were the most bidign healthy subjects disappeared during cogmitiv
decline, leaving room for other stable connecticadjusted to the process of neurodegeneration.
Furthermore, we looked at the distribution of castimas with the highest fingerprint (i.e., tempdyal
stable across time and allowing subjects identifice across cognitive decline, and we found a
significant transition towards between-functiongbtem connections, when going from healthy to
dementia. Finally, this topological reconfiguratiohbrain fingerprints appeared to be associated to
mostly high-order cognitive processes during hgaliging, and shifted to other functions during
cognitive decline. Essentially, these findings dastrate that functional connectivity profiles remai
highly identifiable even during cognitive declirtaus providing crucial individualized information.
This emphasizes the significance of harnessinguhigqueness by shifting the research focus from
group differences to individual variability whemvestigating functional alterations in AD.
Furthermore, we observed a functional reconfigaratf the brain fingerprint, providing valuable
insights into specific functional connections amgmitive functions that could account for individua
variability among individuals experiencing cognétidecline due to AD.

Results

We investigated within-session brain fingerprinfsneurodegeneration in two independent
cohorts for a total of N=126 subjects (i.e., Geneabort: N=54 and ADNI: N=72) at different stages
of cognitive decline: cognitively unimpairedAegative (CU A8-), with mild cognitive impairment
AB-positive (MCI AB+), and with dementia due to AD (ADBA). Our approach can be summarised
in three stepq1) We first estimated the functional connectomes jF€gach subject during the first
and second halves volumes of fMRI acquisitions isepdy, (cf. Fig. 1A and see Methods for details).
(2) We then estimated the degree of within-sessioin bdentification or “brain fingerprint” at the
whole-brain level for each group separately, through a mathematib@co called identifiability
matrix * (cf. Fig 1B). The identifiability matrix providesvo useful metrics for brain fingerprinting:
the degree of similarity of each subject with itg¢8alf, diagonal elements, Fig. 1B) as opposed to
others [Others, off-diagonal elements Fig. 1B), and the degregrotip fingerprint, conceptualised as
the extent to which subjects were more similarheniselves than othertD{ff, see Methods We
also estimated th8uccess-rate of the identification procedure, as originally pesed by'. (3) We
further explored thepatial specificity of brain fingerprints by estimating the degreelistinctiveness
of each FC-edge at the individual level, usingackass correlation (ICC, see Methods and Fig. 1C).

Edge-wise fingerprint was then computed at the ogtsv(Fig. 1C) and hubs level (Fig. 1D).
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Figure 1. Exploring FC fingerprints of neurodegeneration, schematics of the approach. We estimated the FC-
fingerprint in Cognitively Unimpaired pxnegative (CU Ag-), Mild Cognitive Impairment B-positive (MCI A3+) and
Dementia A-positive (AD Dementia) patients across two indefgen cohorts (Geneva, ADNI). Within-session fingarp
was estimated at thehole brain level as the degree of similarity between functionalremtivity at test (FC Test, first 50%
volumes) vs. retest (FC Retest, second 50%volussesMethods for detail$f\) and summarised in a mathematical object
called identifiability matrix(B) 12 Identifiability matrix shows within-subjects sitaiity (1Sef, elements in diagonal) and
between-subjects similarityl@thers, off-diagonal elements) across each group/coh@vhere |Self>10thers the
identification procedure is successful. We alsarested IDiff, an estimation of the group-level whole-brain &rgyint as
the distance betweerSdf and IOthers (see methods)C) Spatial specificity of FC-fingerprint was estimatéat each

group/cohort using intraclass correlation (ICC)antifying the fingerprint for each brain-edge (ceation). ICC matrix is
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ordered according to the seven cortical restintg statworks as proposed 6?4 D) Fingerprinting hubs were computed as

nodal strength of ICC matrix for each group. VI&wal network; SMT=somatomotor network; DA=dorstéation
network; SA=salience network; L=limbic network; FPRbnto-parietal network; DMN=default-mode network;

SBC=subcortical regions.

Whole-brain within-sessions brain fingerprint during cognitive decline

In these first analyses, we investigated the degfadentification at thenvhole-brain level.
We found that théuccess-rate of the identification procedure was 100% in botk theneva and
ADNI cohorts. In other words, in each group eadiviilmual showed significantly higher similarity
with themselvesI&f), as opposed to other©thers) (Fig. 2B and 2D, Geneva and ADNI p<.0001),
andIDiff was high in the three groups. We also found ttsitrietest reliability [(Salf) was high in the
three groups and in both cohorts, with no significdifferences across groups after controlling for
nuisance variables, i.e., age, sex, years of eiduc@Y oE) and absolute difference between motion
(FD) at test vs. retest [ANOVA with 5000 permutatioto control for sample size differences;
Geneva: F(2)=0.08, p=.918; CUBA M(SD)=0.60(0.07); MCI A+: M(SD)=0.60(0.10); AD
Dementia: M(SD)=0.60(0.07); cf. Fig. 2A; ADNI: FE).95, p=389; CU A3-: M(SD)=0.73(0.07);
MCI ApB+: M(SD)=0.60(0.08); AD Dementia: M(SD)=0.71(0.08)f. Fig. 2C]. See Fig. S1 for
boxplots ofSelf across groups and Table 1A for full statistics doe-way ANOVAs. We tested
differences in between-subjects similarit@thers) after controlling for nuisance variables (i.egea
sex, YoE, average motion (FD) and scanner typelather for the ADNI dataset only). We found a
main effect of group [ANOVA with 5000 permutatiorts control for sample size differences;
Geneva: F(2)=15.3, p<.001; ADNI: F(2)=5, p=.018&yealing reduced between subjects similarity in
MCI A+ patients relative to CU [ in the Geneva cohort [Bonferroni adjusted; MQi+Avs. CU
AB-: p<.001] and in AD Dementia patients relativeCid AB- in ADNI [Bonferroni adjusted; ADNI:
AD Dementia vs. CU B-: p=.006]. See Fig. S1 for boxplotsI@thers across groups and Table S1B
and S1C for full statistics for one-way ANOVAs amdst-hoc pairwise comparisons. Finally,
permutation testing showed thddiff and Success-rate were different from null distributions at p
<.0001 in all groups and in both cohorts (Fig. 2&). In sum, these data show that it is possible to
correctly identify an individual with significantlgreater accuracy relative to surrogate null motfels
(see Methods for details), independently from thaical status, and solely based on the patterns of
brain activity within-scan. We note that the idéahility results were replicated in two indepentlen
cohorts, using two different pre-processing pipedin

The reported identification rates were computedhat whole-brain level, hence giving no
information on the functional edges most influeintie identification. The ensuing aim was therefore
to understand how these results related to thel Ipcaperties of the individual functional

connectomes.
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Figure 2. Functional Connectivity fingerprints during cognitive decline. A-C) Identifiability matrices show within-
(I1Sdlf) and between-subjectiqthers) test-retest reliability as Pearson correlatioafficient in CU A3-, MCI A+ and AD
Dementia, for the two independent cohorts invegtiljdGeneva and ADNI, see Methods for details)ividdals’ 1Sef and
I0thers are displayed, respectively, in the diagonal affliagonal elements of the matrix. The averagdf, IDiff and
Success-rate were similar in the three groups adiff and Success-rate significantly differed from random distributiori8-

D) Boxplots shows thdtSelf was significantly higher (paired t-test) theBthers in all individual cases and in all groups, for
both the Geneva and the ADNI datasets. ***§.0001.

Spatial specificity of brain fingerprint during cognitive decline

To address this question, we assessed spatiafisppeaf brain fingerprints using edgewise
intra-class correlation’? (ICC). In both cohorts, we observed a spatial méigaration of the most
identifiable edges as cognitive decline progresgdd Fig. 3A and Fig. 3B). In other words,
connections with the highest ICC had a differepbtogical distribution in the three groups. Althdug
there were differences between the two cohortspitsistency with the variability of FC-patterns, we
also identified common features that were sharedngnihe groups. To investigate these common
features, we examined the overlap between the ediesgood’ levels of ICC (ICC>0.6f" across
the two cohorts (cf. overlap ICC matrix in Fig. 3@Ye observed a slight decrease in the number of
edges with ‘good’ ICC in MCI B+ relative to CU A-, and a large increase in AD Dementia relative
to both CU A- and MCI A3+ (cf. ‘n edges’ in Fig. 3C). The lower count ofged with high ICC in
the MCI A3+ group may reflect the incipient AD pathology, lalgo the fact that MCls (B, despite
being biologically homogeneousan present with distinct clinical subtypes (eagnnestic vs non-
amnestic)*®, with some level of uncertainty in disease traject(i.e., not all MCIAB+ convert to
dementiad®*9. The first could lead to a reconfiguration of fiactional architecture, the latter to less
commonalities among individuals in terms of statbédts of functional connectivity, and both could
explain to a reduced number of functional connectioith stable patterns of connectivity across test
and retest in all individuals. Conversely, the obed rise in AD Dementia patients could be
attributed to a combination of greater clinical loganeity and the advanced AD pathophysiology,
which could impair brain ability to adapt and refigure, leading to an increased number of
connections with stable test-retest connectionsrebler, we observed differences in spatial
distribution across groups, suggesting a functiseebnfiguration of the fingerprint from healthy to
pathological ageing. Given these observationsgdaeed deeper into the spatial distribution of the

edges with good ICC within each resting-state ndtwo

10
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Figure 3. The connections with the highest fingerprint undergo spatial reconfiguration during cognitive decline. A)
Geneva cohortB) ADNI cohort; spatial specificity matrices of FC-fingerprints for eactugras measured using edge-wise
intra-class correlations (ICC). Here we display I@&lues, computed using bootstrapping for randoatigsen N=10
subjects, across 1000 bootstrap runs, and themgagmwithin each group. We show edges with ICC etwthe % and

95" percentile C) Overlap Geneva-ADNI; overlap across the two cahoftspatial specificity matrices of FC-fingerpsint
Matrices in A) and B) were binarized for ICC>0.6ighis considered a ‘good’ ICC sco?é and only overlapping edges
are displayed. n edges=number of overlapping eddasiices in A), B) and C) are ordered accordingséwen cortical
resting state networks (RSNs) as proposecf%WlSzvisual network; SMT=somatomotor network; DAstdal-attention

network; SA=salience network; L=limbic network; FPfibnto-parietal network; DMN=default-mode network;
SBC=subcortical regions.

Brain fingerprint in resting-state functional networks during cognitive decline

We looked at the number of the edges in the bioagrlap ICC matrix for each group (CU
AB-, MCI AB+ and AD Dementia) in each network (within and kesw), relative to the total number
of edges. Our results showed that M@+Aindividuals had a slightly reduced fingerprintatéese to
CU AB- (i.e., slightly negative Ratio Disease/HeaRnet), with an average of -0.2 and -0.4 folds
relative to CU A- in within- and between-networks, respectively.dontrast, patients with AD
Dementia showed a considerable increase in fingerfire., positive R(net)) across almost all
functional networks, except for VIS-within and Lirokwithin and between (see in Fig. 4A). The
greatest increase was in the SBC network, inclubdipgocampal and medial temporal regions, which
are the earliest regions displaying atrophy andpathology in AD*? In addition, in between-
networks there was an average increase of 2.9, fisigmrticular for DMN, FPN and VIS. There was
also higher fingerprint in within-networks, with @verage increase of 2.2 folds. This shows that the
increase in number of edges with highest ICC in B@mentia, was widely distributed across the
cortex but also especially driven by the regionthwmost long-lasting neuropathology, but also by
between-network connections in key resting-statetional networks.

Next, we analysed the differences in within-netwarkl between-networks fingerprints. We
conducted a Chi-Square test to compare the nunflegges within each network vs. the number of
edges of that network with the others (i.e., betweetwork). The results showed that during healthy
aging (CU A8-), in VIS, Limbic, FPN and DMN the proportion ofiges with high fingerprint was
significantly higher (Bonferroni corrected) in withnetworks relative to between-networks (see Fig.
4B, see also Supplementary Fig. 2). Converselyhath MCI A3+ and AD Dementia a notable
reduction in Chi-Square statistics was observethénFPN network. This indicates that, relative to
controls, patients had higher fingerprint in themections of the FPN with the rest of the brain. In
Visual and DMN networks, a similar reduction in €duare was observed, but only for AD
Dementia, indicating higher number of edges in ketwnetworks only in the advanced stages of the

disease. For the Limbic network, we observed aatoluin Chi-Square for MCI B+ and an increase
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during AD Dementia. This reveals a diminished dipancy in edges with high fingerprint for
between vs. within-network connections during thieimediate phases of the disease. Interestingly,
during AD Dementia, the Limbic network exhibitedpattern similar to that of CU (&, wherein an
even higher proportion of edges with high finganpnvere found within the network, relative to
between-network connections. Additionally, patieatso showed increased fingerprint in between-
network connections in other networks, where CB+ Aid not show any notable within/between-
networks proportion difference. For instance, MCB+Ahad increased fingerprint in between-
networks connections in Subcortical and DA netwpridsile AD Dementia had similar increases in
SMT network and significantly higher proportion lietween-network connections for SA network.
See also Supplementary Fig. 2, for the percentafjesiges with high fingerprint in each network
across groups.

In summary, these findings suggest that the digioh of edges with the highest fingerprint
across resting-state functional networks underghasges during cognitive decline. Specifically, the
distribution shifts towards more between-networkreections in some key networks such as Visual,
FPN and DMN, while in others, it remains relativelychanged.

A) Ratio Disease/Health B} Chi-square within vs. between-networks
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Figure 4. Distribution of brain fingerprint across resting-sate functional networks. Distribution of the edges with
highest ICC common to both cohorts (from ICC overlzinary matrix, cf. Fig. 3C) in within-networks @rbetween-
networks.A) Distance from healthy reference computed as ratsed3e/Health, , cf. Methods). Positive/negative
values denote increase/decrease in the percersgelges, respectively. Note, across all netwates,overall increase in
percentages of edges in AD Dementia patients aght slecrease in MCI p+. B) Comparison of edges within vs. between
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networks, expressed as Chi-Square statistics. ¥agke with * denote a significant (Bonferroni carted) difference in the
number of edges in within-networks vs. between-oeka: With some exceptions (see main text and Supghtary Fig. 2),
this reflects a higher percentage of edges in witblative to between-networks. Chi-Square for YASCU AB- and MCI
AB+ was>800, but here we display Chi-Squ&r@00 for visualisation purposes. W=within-networks;between-networks;
ICC=intra-class correlation; CU pA: Cognitively Unimpaired fA-negative; VIS=visual network; SMT=somatomotor
network; DA=dorsal-attention network; SA=salienceetwork; L=limbic network; FPN=fronto-parietal netvip

DMN=default-mode network; SBC=subcortical regions.

Regional brain fingerprint during cognitive decline

Finally, we further explored the pattern of spatetonfiguration as expressed by the ICC
nodal strength of each brain region. Nodal streng#ts derived only from the edges that were
significantly different from a permuted matrix ramdly including subjects of the three groups (see
Methods). We observed that regions contributinghi® fingerprint (fingerprintinghubs) differed
across groups and between cohorts (cf. Fig. S4fjirauing that functional connectivity patterns are
unique. Nevertheless, there was considerable qvarlthe edges with the highest fingerprint across

the two cohorts (Fig. 5).

At last, we wanted to link brain fingerprints dugithe different stages of cognitive decline
with behaviour. After deriving the group-specifiodes with the highest ICC values that were
common across the two independent cohorts (cf. bl we applied a Neurosynth meta-analysis
based on 50 topic terms onto the brain fingermfréach group, similarly to previous wotk®® We
found that during healthy aging (CUBA, brain fingerprints were associated with higloeder
processes such as long-term memory, language, iemand executive functionthat rely on the
integration of complex mental representatidds. the other hand, in the initial phases of theaks
and the incipient cognitive decline (MCIBA) we observed a shifowardslow-order sensory and
motor processedyut also executive functions (‘working memory’, &l attention’ and ‘numerical
cognition’), ‘reading’ and ‘actions’. These regiomamely those involved in executive, visual, and
motor processes, are progressively impacted irlatiee stages of AD. This pattern aligns with the
‘cascading network failure' model, which positsransition in connectivity from higher-order to
lower-order circuits. This shift may represent aitial compensatory mechanism in the early stages
of the disease, which eventually falters as theatis progressgs

In the late stage of the disease (AD Dementia) Wweeved a shift-back to high-order
cognitive functions, resembling the pattern obsegrvehealthy aging, but also to regioinsplicated
in affective/social processing including ‘pain’,metion’ and ‘reward-based decision making’. The
involvement of regions modulating emotion and p#@nconsistent with clinical and imaging
observations indicating that social-emotional fiorahg tends to remain relatively preserved in AD.

This preservation aligns with hyperactivity obsehia the SAL network, known for its role in
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detecting and integrating emotional and sensomuii®. In the context of the cascading network

failure model, these circuits may represent a foortunity for the brain to ‘compensate’ for AD

B) NeuroBynth cognitive decoding

CUAB- MCIAp+ AP

Damentia
HIGH-ORDER 25\ AN BB
A) Fingerprinting hubs COGNITIVE PROCESSING (L7250 wez2d

L

daclarative memory
autoblographical memory
language

verbal semantics
cognitive conirel
Inhibltion

working memory

cuod attontion
numerical cognition

reward-based declsion making

emotlon
paln

NeuroSynth topics terms

aclion

reading

multisensary processing
eye movements

visual attention
visual perception
visuospatial
motar

_ SENSORY-MOTOR PROCESSES
pathology. On the contrary, highest fingerprintsdgions implicated in higher order processes, may

denote maladaptive stability in regions where ticfional reconfiguration is no more possible. Note
that brain fingerprints were linked with memory pesses both in healthy aging and during AD
Dementia (cf. Fig.5B), although the regions drivihis association differed in the 3 groups (cf..Fig
5A).

Figure 5. Fingerprinting hubs of cognitive decline and its association with behaviour. A) Brain fingerprint maps
showing the top 25% brain nodes overlapping acthestwo cohortsB) The Neurosynth meta-analysis of the brain
fingerprints maps across cognitive decline showpextrum of association with higher order procedsesg healthy aging
(CU AB-), towards lower-order motor-sensory processingnduMCl AR+ and back to higher order, as well as affective an
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social processing, during AD Dementia. Brain finggerts were linked with memory processes both ialthy aging and
during cognitive decline, with different regionswiing this association.

Discussion

The pressing quest of neuroscience is to deeperurtderstanding of the intricate links
between brain and cognition, behaviour, and dydfoncBrain fingerprinting holds the potential to
provide a crucial contribution to this endeavounjlding upon its capacity to derive individual

k "2 showed that functional

inferences from functional connectivity profiles.erSinal wor
connectivity profiles at rest are highly heterogeman healthy individuals, especially in regions
devoted to higher-order cognitive functions, sustsach as Frontoparietal (FPN) and DMN, and this
heterogeneity may reflect individual variability aognition and behaviour. However, very little is
known about how this property of the human braily mlzange as a consequence of cognitive decline
and neurodegeneration. In this work, we aimed twide an answer to the fundamental question of
how human brain fingerprints changes during norraatl pathological brain ageing due to
Alzheimer’s Disease. To do so, we evaluated theimisession identification properties of functional
connectomes during healthy aging, MCI and Demeatimto AD (i.e., MCI B8+ and AD Dementia)

in two independent cohorts using fMRI data from R&Individuals, and along two main lines: i) we
investigated whether the within-session identifaatproperties were maintained at the whole-brain
level across the different clinical groups, ii) weplored the spatial configuration of brain fingants
along the continuum between healthy and patholbgiean aging due to AD (Fig. 1).

Firstly, our study revealed that individuals candeeurately identified based solely on the
patterns of brain activity, regardless of theinidal status (Fig. 2). Remarkably, individuals rémed
highly consistent in their brain connectivity agdsst and retest sessiof&lf), independent of their
clinical condition. Additionally, patients exhibitea high degree of distinguishability from one
another (Others), sometimes even more so than healthy elderlywitdals among themselves (Fig.
S1B). This finding suggests that disease can emhémecdistinctiveness of individuals based on their
functional connectivity. We note that these reswitsre observed in two independent datasets
(Geneva cohort, ADNI) with different acquisitionrpeneters, signal-to-noise ratio and pre-processing
pipelines, supporting the robustness of our restitgse findings carry significant implications, as
they reveal that functional connectomes remainliighterogenousalso during cognitive decline due
AD and that they contain important individualisedbrmation. This highlights the importance to take
into consideration, and make use of, this rich rimdividual variability to fully capture the
complexity of functional alterations associated hwitognitive decline and AD. Currently, the
literature lacks consensus on the functional cativigcalterations that occur during different sésg
and causes of cognitive decliffe and this has hindered the use of fMRI as a dihjeelevant tool
3041 previous studies have primarily focused on graxgrages, overlooking the heterogeneity among

individuals and potentially disregarding esseritifdrmation embedded within individual variability.
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For instance, evidence suggests that the distoibuti pathological tau aggregates in the brain is
linked to the functional connectivity architectife*®>’ If it is known that thespatial progression of
tau aggregates in the cerebral cortex mirrors theerity of symptoms®*® and follows various
deposition trajectorie&’, being able to predican individual's trajectory would be crucial for the
integration of disease progression profiles infaichl practice, and could also significantly impac

research on disease-modifying therapies A&D °

aiming to reduce pathological proteins
accumulation and spread. Our findings carry impuriaplications for this field of research, as they
suggest that leveraging the individual charactiegsof functional connectomes is fundamental to
elucidating the heterogeneity in the patterns ofsaread and, therefore, disease progression.

When examining the topological distribution of centions underlying this uniqueness, we
observed a spatial reconfiguration of regions wité highest fingerprint during different stages of
Alzheimer’s Disease. Consistent with previous redeautilizing magnetoencephalography-based
functional connectome®, we identified a global decrease in identificatioetween healthy elderly
individuals and those with MCI. Additionally, andtending this work, we reported for the first time
a significant increase in the number and sparditthese temporally stable connections in patients
with AD Dementia (Fig. 3C and Fig. 4A). In M@+, the Alzheimer’s disease pathology is at its
early stages, and it is conceivable that this ead lto functional connectivity reconfiguration and
readaptation, resulting in a reduced number of ections with stable patterns of connectivity among
individuals. In our study, we included only M@B+, which is a biologically homogeneous subtype
with a relatively predictable clinical trajecto?y>°. However, not all MCIAB+ convert to Dementia
and can present with distinct clinical subtypeg.(eamnestic vs non-amnestic). Thus, we cannot
exclude that the reduced number of regions coritriguo the fingerprint may also reflect this ctial
heterogeneityConversely, Dementia due to Alzheimer's disease) (&Presents a more well-defined
clinicopathological entity"®% and the advanced stage of the disease facilitarapst cases, clinical
exclusion of alternative aetiologies, i.e., difigial diagnosis, leading to a higher clinical
homogeneity between patients. In addition, the Athpphysiology is advanced in these patients and
the functional reconfiguration is likely to haveached its plateau, and this could result in higher
number of connections remaining “unhealthily” stabkross time among individuals. Furthermore,
previous work has showed that patients with Deraespiend more time in sparse connectivity
configurations®, which may explain the greater number of spardevd®n-networks connections
exhibiting high stability over time. Our resultstramnly reveal increased stability across time in AD
Dementia but also highlight between-subject hetenegy in terms of connectivity strength, both of
which are captured by our fingerprint metric, il€C *#®* The heightened stability observed in AD
Dementia patients is an unfavourable hallmarkeptially indicating that the brain is no longer
flexible and dynamic. In contrast, the diminishedhporal stability in MCI may denote an attempt to

counteract pathological changes by enhancing dynart@ractions between neural circuits.
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Next, we observed that during healthy aging, in Yisual (VIS), fronto-parietal (FPN),
default-mode (DMN) and limbic (L) networks, edgeishvthe highest fingerprint were mostly within-
networks, while they appeared increasingly in betweetworks connections as cognitive decline
started (MCI A+) and progressed (AD Dementia) (Fig. 4B and FigeB®vious work consistently
showed that the FPN and DMN networks are found aysiothe networks that display the highest

inter-subjects variability >

and our results showed that the variability itligiantrinsic to within-
system connections gets distributed to connecti@iaeen these networks and the rest of the brain,
as cognitive decline progresses. Notably, our figdiin AD Dementia patients showed that having
increasing temporally stable and therefore diffaadte links does not always carry a positive
prognostic. One possible hypothesis would be thatneurodegenerative processes affect the healthy
topological variability of functional connectivityatterns, creating unhealthy “hyperstability” ireth
functional connections between different functiospdtems, which then could hinder the capacity of
the brain networks to hop or reconfigure® between different dynamical states. This alignthwi
prior research demonstrating that variability iraibrfunction is crucial for ensuring the brain's
optimal responsiveness to a dynamic environmert thaat this characteristic diminishes with %g&
and generally supports cognitive performdfée

Furthermore, previous works showed that the maineds of the uniqueness of each
individual functional connectome originates fronaibrareas responsible for higher-order cognitive
processing during health'2 However, it was not known whether this changedréasponse to
cognitive decline and Alzheimer’'s Disease. In thwsrk, we present strong evidence based on two
independent cohorts, revealing how within-sessimainbfingerprints map onto different cognitive
functions during healthy vs. pathological aginge&fically, during healthy aging, brain fingerpisnt
exhibit a range of associations with higher-ordescpsses, resembling those observed in young,
healthy individuals in between-sessions fingergrirf€onversely, in MCI B+, brain fingerprints
show a shift towards lower-order sensory-motor essg, as well as executive functions, ‘reading’
and ‘actions’. In the early stages of the disease,amyloid pathology accumulates and affects
connectivity within regions responsible for higlwder cognition, such as the DM it is plausible
that these perturbations may lead to decreasedardguand stability in their connectivity patterns
over time, resulting in a less distinctive fingemg. In contrast, sensory-motor regions, typigall
unaffected by early amyloid patholog{, may exhibit adaptive changes in their functional
connectivity patterns as a compensatory mecharnibis. is also in line with the ‘cascading network
failure’ model proposed by Jones et>alConversely, as Alzheimer's Disease (AD Dementia)
progresses to its advanced stages, we have obsaraift in fingerprint towards higher-order
cognitive functions, encompassing affective andnpprocessing as well as decision making
influenced by reward. This suggests that when thegapathology is its advanced stage (including tau
pathology and neurodegeneration), the functionabméiguration processes in regions initially

affected by amyloid pathology -primarily involved higher-order cognition — tend to halt leadingto
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maladaptive stability, albeit with distinct leved$ functional connectivity among individuals. This
emphasizes the individualized nature of impairmanthigh-order functions like memory and
executive functions.

Finally, our findings shed light on cognitive fuitsis that are typically overlooked in
memory-related conditions such as AD, e.g., somatoryprocesses and pain and affective
functioning. Our data showed these to contribuignificantly to the variability in functional
connectivity across individuals in the early anded$a stages of the disease, respectively. These
findings may therefore have also implications fearopsychological assessment and interventions, as
they suggest that it may be important to broaderfabus to these overlooked cognitive functions in
order to better tackle inter-individual variabilityln essence, the observed gradient of association
suggests a transition in the highly differentialilabs from higher-order cognitive systems —
associated to “healthy” abstract cognitive functicuch as memory or semantics — to more “low-
order” ancestral/sensory systems, during the estdges of the disease, and then back to high-order
cognition to the late stages of the disease.

This study has some limitations. First, the impafcthe choice of the brain atlas should be
further verified. Second, it is known that connetyi measures are highly susceptible to artefacts
arising from head motion and respiratory fluctuasid®*’* and these effects are even more
pronounced in pathological conditions. Howeverpur datasets, we did not find high motion data
points to significantly contribute to the differascin fingerprinting across groups. We observed no
significant difference across groups in the pemgatof censored volumes [p>=.066] or in the
average FD [p>=.146], and differences in motioneen test and retest volumes did not explain the
variance of individuals' test-retest similaritye(j. ISelf, cf. Table S1A). Nonetheless, future work
should analyse in depth the effect of motion attgldime scales, where these artefacts can doeninat
Third, in this study, we used two halves of the sasnanning session to estimate identifiability,
focusing more on the FC features leading to brdémtificationwithin-session. Obtaining test-retest
sessions across different days in clinical cohpases significant challenges, and to the best of ou
knowledge, there are currently no publicly accdesiarge datasets of fMRI data collected across
closely spaced time points (such as one week apaipgnitively impaired cohorts, unlike with
healthy cohorts (e.g., Human Connectome Projeate fbtential workaround to this issue is to cut
the resting state time series in half, as origgnptoposed. Although this approach introduces the
confound of looking at "within-session" fingerpiimg, which could be influenced by the specific
moment of scanning, it has the advantage of redustanner and acquisition noise, which are
typically major confounding factors in connectorderitification'®. Moreover, this method has been
shown to yield similar identifiability results corugd to data acquired across separate sessioes (ref
to Fig. S3 in'? for a comparison on healthy subjects' data froenHluman Connectome Project).
Nonetheless, it should be noted that within-scagéiprinting in this work should be regarded more

as a firstemporal stability investigation of the resting-state functional brain network asroognitive
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decline. Future studies should aim to replicate analysis using the "standard" between-sessions
identification approach.

This work raises also important novel questions @mticates directions for upcoming
research. For example, future works could build uplese findings by examining the temporal
aspects of brain fingerprints in neurodegeneratiecent studies have in fact demonstrated that, in
healthy individuals, brain-fingerprints emerge aiffedlent time-scales, with  for different
networks/cognitive functiorld yet it is unknown whether this could change asomsequence of
cognitive decline. It will also be important to cheterize FC-fingerprints in a longitudinal dataset
i.e., to investigate whether the fingerprint is ntained after long time-gaps (e.g., years) and kéret
this changes in declining vs. stable individualsb&quent studies should also delve deeper into the
relationship between atrophy, tau and amyloid acdations, and changes in spatial patterns of brain
fingerprints among patients. In our study, bothartd were stratified based on amyloid status and
stage of cognitive decline. Future investigatioritharger subject numbers could explore difference
in groups with stratification using comprehensiventiarker phenotyping, such as the presence of tau

pathology, atrophy, and APOE genotyping.

Conclusions

Functional connectivity patterns in the human breichibit remarkable distinctiveness,
enabling the identification of healthy individualgithin a population. In this work, we have
discovered that this property of the human bramvin as thdrain-fingerprint, is maintained during
aging, and in the Alzheimer's continuum, howeveiffedéntly configured. By investigating this
topological reconfiguration and its link with cogjoh, we found that the heterogeneity amongst
individuals was mostly driven by high-order cogmitiregions during healthy aging, with a shift
towards lower-order sensory-motor regions in M(B+Aand back to high-order cognitive and
affective functions in AD Dementia. In essences tvork demonstrates that Alzheimer’'s Disease
significantly impacts the functional architecturfettee human brain, albeit in remarkably unique ways
for distinct individuals. These findings hold praf@ implications as they uncover functional
connectivity as a personalized metric carrying gl individualized information, highlighting eh
need to shift the research focus from group-averagendividual differences, and opening doors to
various applications in personalized medicine. Thisrk lays the foundation for clinical
fingerprinting using functional magnetic resonanoeging, enabling a deeper understanding of
cognitive decline at an individual level, with tpetential to inspire novel approaches that leverage
the distinct characteristics of functional connétyi to enable personalized symptom monitoring,

more accurate diagnosis, therapy surveillance ahdreed prediction.
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M aterialsand M ethods

Participants and demographics

Participants were included from two independentoctsh the Geneva Memory Centre
(Geneva University Hospitals, Geneva, Switzerlaad)l the Alzheimer’'s Disease Neuroimaging
Initiative (ADNI). Inclusion criteria were availdiy of (i) fMRI and T1-weighted scans, (i) 18F-
Florbetapir or 18F-Florbetaben amyloid-PET to deramyloid B-status (iii) clinical and cognitive
assessments and demographic data, and (iv) iderfiktiRl acquisition parameters (cf. ‘Image
acquisition parameters’ sections). The exclusioiterion was the presence of any significant
neurologic disease other than AD (cf. ‘Clinical essment’ section). Subjects ranged from healthy
ageing and p-negative (cognitively unimpaired, CUBA, to mild cognitive impairment ppositive
(MCI AB+), and A-positive subject with dementia due to probable, AD dementia; cf. ‘Clinical

assessment’ section for details about clinical Afestatus).

Geneva: N=58 subjects from the Geneva Memory Centre werkided. Four subjects were
excluded when motion-tagged volumes (see belowe»&0%, leaving a total of N=54 remaining
subjects for analyses. These included N=16 @ N=32 MCI CU A3+, and N= 6 patients with AD
dementia (cf. Table 1 for all study-relevant coatas). Differences across groups in age, years of
education and MMSE were tested using one-way ANQWAts non-parametric equivalent, i.e., the
Kruskal-Wallis test; Chi-square test was used &x. here were no differences in age [p=.274] and
sex [p=.363] across groups, while AD dementia andl Mp+ were on average significantly less
educated than healthy individuals [p=.004]. As expé, MMSE [p<.001] and Centiloid [p<.001]
scores varied across groups [p<.001], revealingtaegnition and higher amyloid load in MCBA

and AD dementia patients relative to C3-A

ADNI: Data were obtained from the Alzheimer’'s Diseaserbiewaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was laundhe2D03 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. Therpary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positromssion tomography (PET), other biological
markers, and clinical and neuropsychological assesscan be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzimeér’s disease (AD).

N=79 subjects from the ADNI database were includgsken subjects were excluded when
motion-tagged volumes (see below) were>30%, leaaitgal of N=72 subjects for analyses.

These were N=40 CU [A, N=21 MCI A3+ and N=11 AD dementia patients (cf. Table 1 fdr al
study-relevant covariates). Differences across ggoim age, years of education and MMSE were
tested using one-way ANOVA or its hon-parametriaieglent, i.e., Kruskal-Wallis test; Chi-square

test was used for sex. There were no differencesgen [p=.848] and sex [p=.654] across groups,
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while AD dementia were on average significanthsleducated than healthy individuals [p=.045]. As
expected, MMSE [p<.001] and Centiloid [p<.001] &waried across groups [p<.001], revealing

lower cognition and higher amyloid load in MCBAand AD dementia patients relative to C3-A

Table 1. Demographics - Geneva and ADNI

Geneva (N=54) CUAB- MCI AB+ derﬁe?ma D o signif.
N=16 N=32 N=6
Sex assigned at birth (% female) 50.0 63.5 66.7 63.3 ns
AGE M(SD) 71(5.9) 74.3(5.3) 72.2(8.6) 0.274 ns
YoE M(SD) 16.8 (3.4) 12.8(4.6) 11(3.4) 0.004 fid
MMSE M(SD) 28.6 (1.1) 25.6(2.9) 18.5(3.6) <0.001 ok
Centiloid M(SD) -2.8(6.1) 83.1(30.4)83.8(21.3) <0.001 ok
ADNI (N=72) CUAB- McClAp+ AP D p signif.
dementia
N=40 N=21 N=11
Sex assigned at birth (% female) 57.5 61.9 27.3 0.654 ns
AGE M(SD) 73.1(6.8 74.8(11.2 74.1(9.1 0.84¢ ns
YoE M(SD) 16.7(2)  21(15.5) 15.3(2.9) 0.045 *

MMSE M(SD) 29.2 (0.9) 27.2(2.4) 21.6(2.7) <0.001
Centiloid M(SD'  6.2(9.8 80.6(36.1 105(36.1  <0.00!

Legend: CU=cognitively unimpaired; MCI=mild cognitive impement; A3-=Amyloid-} status negative;
AB+=Amyloid-p status positive; MMSE=Mini-Mental State ExaminatidV(SD)=mean (standard deviation); p-value was
estimated using Chi-square test for sex, and oneAMOVA or its non-parametric equivalent, i.e., Iskal-Wallis test for
the remaining variables. ns=not significant, ip0.05; *p<0.05; ** p<0.01;** p<0.001;**** p<0.0001.

Clinical assessment
Clinical status was established by expert neurstegif the Geneva Memory Centre (cf. for
full details on the clinical assessment) for then@ea cohort, and from ADNI collaborators for the

ADNI cohort (cf. https://adni.loni.usc.edu/wp-content/themes/fresimdev-

v2/documents/clinical/ADNI3_Protocol.pdor full details on the clinical assessment). hiefy CU

were individuals with or without subjective cogwuéi complaints and an absence of significant

impairment in cognitive functions or activities dhily living (Geneva cohort: MMSE27, non-

depressed; ADNI: MMSE27 and Clinical Dementia Rating (CDR)=0, non-depees cf. Table 1).

MCI were subjects with objective evidence of cogritimpairment, cognitive concern reported by

the patient and/or informant (family or close fidgnand little or no functional impairment in daily
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living activities (Geneva: MMSEL9) (ADNI: MMSE219, CDR=0.5). Individuals living with

dementia were defined based on the same aboveafite MCI, but with impairment in the activities
of daily living and fit the NINCDS/ADRDA criteriadr probable AD (GENEVA: MMSE=12-20)

(ADNI: MMSE=17-26, CDRO0.5).

For both datasets the exclusion criterion was tiesgnce of any other significant neurologic
disease. These included: Parkinson’s disease, -mfdtict dementia, Huntington's disease, normal
pressure hydrocephalus, brain tumour, progressingaauclear palsy, seizure disorder, subdural
hematoma, multiple sclerosis, or history of siguaifit head trauma followed by persistent neurologic

deficits or known structural brain  abnormalities f.(c https://adni.loni.usc.edu/wp-

content/themes/freshnews-dev-v2/documents/clidd&ilI3 Protocol.pdy.

Amyloid-g status

In the Geneva cohort, amylofi-deposition was measured usihtF-florbetapir or *°F-
flutemetamol PET, using standard imaging protocetonstructions and pre-processing pipelines,
previously described in detéil Given the use of two different amyloid-PET tragehe standardized
uptake value ratio (SUVr) was converted to a comnsmale, the Centiloid (CL) scale, a
standardisation method proposed to harmonise thatseobtained across trac€rsAp-status was
determined in two ways: using the previously esshed cut-point (CL > 1%) and visually
determined by an expert nuclear medicine physiigs, >15 years of experience in the field) using
visual assessment and standard operating proceajopesved from the European Medicines Agency
980 In two discordant cases, where the CL was bdrderthe visual assessment (positive) was
preferred.

In ADNI, AB-status was determined using global amyloid-PET RUWerived after whole
cerebellum normalisation of®F-florbetapir or '®F-florbetaben PET, following pre-established
reconstruction and pre-processing protocols (bftps://adni.loni.usc.edu/methods/pet-analysis-
method/pet-analysisand cut-points (global AV45 SUVR > 1.11; glob&B SUVR > 1.08§". As in

the Geneva cohort, to allow aggregation of datenftibe two tracers, the global amyloid-PET SUVR

values were converted to the Centiloid staed reported in Table 1.

I mage acquisition parameters

Geneva: Structural and functional data were acquired usirBil Siemens Magnetom Skyra
scanner (Siemens Healthineers, Erlangen, Germasipg a 64-channels phased-array head coil.
Scans were performed within the radiology and mediology division, Geneva University
Hospitals, Geneva, Switzerland. An EPI-BOLD segeenas used to collect functional data from 35
interleaved slices (slice thickness=3mm; multieslimode=interleaved; FoV=192x192x105mm; voxel

size=3mm isotropic; TR=2000ms, TE=30ms; flip-an§@@% GRAPPA acceleration factor=2, time
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points=200, approximate acquisition time=7 minut&8hole-brain T1l-weighted anatomical images
were acquired using a 3D MPRAGE sequence (slio&niess=0.9mm; FoV=263x350x350mm; voxel
size=1mm isotropic; TR=1930ms; TE=2.36ms, flip-&¥@ °; GRAPPA acceleration factor=3).
ADNI: For ADNI, data was obtained using 3T MRI scanneith \a standardised protocol
across imaging sites (full details inttps://adni.loni.usc.edu/wp-content/uploads/20T/ADNI3-

MRI-protocols.pdf. An EPI-BOLD sequence was used to acquire funatiodata (slice
thickness=3.4Imm, FoV=220x220x163mm, voxel size=3.4 isotropic;=BROOms; TE=30ms; flip

angle=90°; GRAPPA acceleration factor=2; time pintl97, approximate acquisition time=10
minutes). Whole-brain T1-weighted anatomical imagese acquired with a 3D MPRAGE sequence
(slice thickness=Tmm, FoV=208x240x256mm; voxel size=1xITxhm; TR=2300ms, TE=3ms, flip
angle=9°, GRAPPA acceleration factor=3).

I mage processing
Image processing pipelines for the two cohortsuidetl substantially similar steps, yet with
some small differences (details below). Results thezefore not only replicated across different

cohorts, but also irrespective of minor differenitepreprocessing choices.
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Geneva: fMRI data were preprocessed using in-house MATLddgle based on state-of-the-
art fMRI processing guideline¥™#®2. Below follows a brief description of these stepsuctural
images were first denoised to improve the signaldise ratio®®, bias-field corrected, and then
segmented (FSL FAST) to extract white matter, gmgtter and cerebrospinal fluid (CSF) tissue
masks. These masks were warped in each individubje&'s functional space by means of
subsequent linear and non-linear registrations (F#&L6dof, FSL flit 12dof and FSL fnirt). The
following steps were then applied on the fMRI d&&LD volume unwarping with applytopup, slice
timing correction (slicetimer), realignment (mdfjr normalisation to mode 1000, demeaning and
linear detrending (MATLAB detrend), regression (MIBAB regress) of 18 signals: 3 translations, 3
rotations, and 3 tissue-based regressors (mearal s@fnwhole-brain, white matter (WM) and
cerebrospinal fluid (CSF), as well as 9 correspogdierivatives (backwards difference; MATLAB).
We tagged high head motion volumes on the basiew@imetrics: frame displacement (FD, in mm),
and DVARS (D referring to temporal derivative of BDtime courses, VARS referring to root mean
square variance over voxels) as in 42. Specifically used the standardised DVARS as proposed in
88. We also used SD (standard deviation of the B@igDal within brain voxels at every time-point).
The FD and DVARS vectors (obtained with fs|_motioutliers) were used to tag outlier BOLD
volumes with FD > 0.3 mm and standardised DVARS?% The SD vector obtained with MATLAB
was used to tag outlier BOLD volumes higher thanBth percentile +1.5 of the interquartile range
as per FSL recommendatiéh Subjects (N=4) with more than 30% motion-taggetlmes were
excluded from the analyses. For the remaining stsyj¢he tagged volumes were not removed. There
was no significant difference across groups ingéecentage of tagged volumes [p>.928], while there
was a tendency of higher FD in ClBArelative to MCI A+ and Dementia B+ [p>.048]. There was
no difference across test and retest in the peagendf tagged volumes [p=.471] nor in the average
FD [p=.364]. Note that motion was accounted foour statistical analyses (see section “Functional
Connectivity and whole-brain within-session braimgerprint™).

A bandpass first-order Butterworth filter [0.01 Hz15 Hz] was applied to all BOLD time-
series at the voxel level (MATLAB butter and filtji The first three principal components of the
BOLD signal in the WM and CSF tissue were regressatl of the grey matter (GM) signal
(MATLAB, pca and regress) at the voxel level. A Wwhbrain data-driven functional parcellation
based on 248 regions including cortical and sulmairareas as obtained By was projected into
each subject’'s T1 space (FSL flirt 6dof, FSL fligdof and finally FSL fnirt) and then into the wati
EPI space of each subject. We also applied FSL dmnyrbased-registratiof® to improve the
registration of the structural masks and the pateh to the functional volumes.

In some rare cases, BOLD signal from some ROIs migsing. When signal from an ROI
was not available in more than 10% of subjects afs vexcluded from the analyses for all; this
concerned a total of 8 ROls, corresponding to Zaertlzal and 1 cortical ROIs. In the remaining few

cases with no signal, metrics were computed witilable data only.

25


https://doi.org/10.1101/2022.02.04.479112
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.04.479112; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ADNI: Anatomical and functional images were preprocesg#d a standardised in-house-
developed preprocessing pipelifie implemented in MATLAB (MATLAB 2021a version 9.10;
MathWorks Inc., Natick, MA, USA) and including fuimans from SPM8 and SPM12
(http://www.fil.io-n.ucl.ac.uk/spm/ Individual structural T1 images were registerénl each

individual’s functional space (SPM coreg) while gizgy the high T1 resolution, and segmented into
grey matter, white matter and cerebrospinal flu8PM New Segment). Functional scans were
realigned (SPM realign) and spatially smoothed (SBMooth) with a Gaussian filter with
FWHM=5mm. Nuisance signals were regressed out bgnmef a GLM, specifically linear and
guadratic trends, 6 motion parameters and aveiiggals in the white matter and cerebrospinal fluid.
The same whole-brain data-driven functional paatielh ®® used for the Geneva dataset was adopted
here to extract regional timecourses. The paré@iidh MNI coordinates was first normalised to the
individuals’ previously registered T1 images (fuonal space, structural high resolution), and then
resampled to the lower functional BOLD resolutiGtegional time series were then extracted by
averaging the voxelwise preprocessed BOLD signalhiw each of the 248 regions of the
parcellation. Finally, regional timecourses weradpass filtered with cut-offs of 0.01-0.15 Hz to
isolate typical resting-state fluctuations.

The FD vectors (obtained from SPM head motion patars using the procedure described
in " were used to tag outlier BOLD volumes with FD 5 @nm as per recommendation
Subjects (N=7) with more than 30% motion-taggedur@s were excluded from the analyses (see
section 1.0). For the remaining subjects, the tdggelumes were not removed. There was no
significant difference across groups neither infieecentage of tagged volumes [p>=.634] nor in the
average FD [p>=.897], while there was a differeacess test and retest in the percentage of tagged
volumes [p=.026] and in the average FD [p<.00Ne&ading that subjects moved more in the second
part of the acquisition. To factor out the effethwtion in the brain-fingerprint, motion was addesl
nuisance variable in the whole brain-fingerprintangalyses (cf. section “Whole-brain within-sessions
brain fingerprint during cognitive decline”).

In some rare cases, the BOLD signal from some R@ksmissing. When signal from an ROI
was not available in more than 10% of subjects ak vexcluded from the analyses for all; this
concerned a total of 2 ROIs in subcortical regidnghe remaining few cases with no signal, metrics

were computed with available data-only.

Functional Connectivity and whole-brain within-session brain-fingerprint
We estimated individual FC matrices using Pearsaoiselation coefficient between the
averaged signals of all region pairs. The resgliindividual FC matrices were composed of 248

nodes, as obtained BY. Finally, the resulting functional connectomes averdered according to
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seven cortical resting state networks (RSNs) apgeed by'>, plus one additional network including
subcortical regions (similarly f§, see also Fig. 1A).

We estimatedhithin-session identifiability or fingerprinting, following the gproach proposed
in *. This method involves splitting the fMRI times igarin halves and enables quantification of
within-session connectome fingerprints. Previous work has demonstrated that this methodywes
very similar results to those obtained from datquaed across separate sessions (i.e., between-
sessions fingerprint) in healthy subjects from itheman Connectome Project (HPC) (see Fig. S3 in
12 Although within and between-sessions fingerprinting held similar results, they are different
approaches to quantifying the brain-fingerprintd ethis should be compared in future studies.
However, we note that there are currently no dihidatasets available that include two fMRI
sessions acquired within a short-time gap (i.ethiwiaround one or two weeks). Therefongthin-
sesson fingerprint is currently the only method available for estimgtbrain-fingerprint during
cognitive decline. In this current study, we estiedaidentifiability across the first half (test)dan
second half volumes (retest) within the same s&atent work has shown that a good level of
identifiability across the different resting stagtworks can be reached from around 200s (seebsig 4
in ™). In this work, each test and retest session B@dvblumes (Geneva) or 90 volumes (ADNI) with
a TR of 2s and 3s respectively, therefore providinfjicient data for achieving a good success rate
and identifiability across the entire brain.

At the whole-brain level, the fingerprint was amahted for each subject as test-retest

similarity between FCs (cFig 1B; we called this metrisdlf).
1Self(s) = corr(FCpos; (), FCrotest (5))

Then, for each subjestwe computed an index of the FCs similarity withe tither subjects

in their group (Others), whereN is the total number of subjects in each group:

Zi#:s (Corr(FCtest (S)!Fcretest(i)) + Corr(FCTetest(S)'FCtest(i)))

[0ther(s) = N — 2

A second metric| Diff (Fig. 1B), provides a group-level estimate of thighim- (1Self) and

between-subjects@thers) test-retest reliability distance, whefebj is the set of subjects:

IDiff = mean ISelf(s) — mean [Others(s)
S € Subj S € Subj

Finally, we measured the Success-fabé the identification procedure as the percenifge

cases with higher withind$&elf) vs. between-subject$dithers) test-retest reliability. These metrics
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have been introduced and estimated in healthy pépok in previous work. We performed paired-
sample t-test to compal&df vs. IOthersin each group/cohort. Then, we used one-WBYOVAS to

test the effect of group ol&elf and IOthers separately after checking for nuisance variablét)
5000 permutations to control for sample size défifees. FoiSdf, the nuisance variables were age,
sex, years of education (YoE), and the differencanption between the test and retest scans, as
absolute difference between FD. F@thers, the nuisance variables were also age, sex, abq v
motion (FD) was considered across the entire aitmuisaslOthers is a composite measure across
test and retest. Additionally, when the scannee typried across subjects (i.e., in ADNI), scanner
type was also included as a nuisance variablel@hers. Finally, we did a permutation testing
analysis to compar&uccess-rate and IDiff from 1000 surrogate datasets of random ID matrices

against the real valué.

Spatial specificity of brain fingerprint: edge-wiseintra-class correlation
Spatial specificity of FC fingerprints was derivesing edgewise intra-class correlation (ICC)
with one-way random effect model accordingt¢cf. Fig. 1C):

MSR - MSW

Icc =
MSg + (k — 1)MSy,

WhereMS,= mean square for rows (between the subjests), = mean square for residual
sources of variancek = sessions. ICC coefficients quantify the degréesimilarity between
observations/measures and find high applicabilityreéliability studies®. The higher the ICC
coefficient, the stronger the agreement between dlgervations. Here we used this metric, as in
previous work'?’S to quantify the similarity between test and refes each edge (FC between 2
regions). A high ICC indicates that a larger prajoor of the variance across test and retest istaue
differences between the subjects, rather thanrdiifees between test and retest or random error. A
low ICC, on the other hand, indicates that themaadse variability due to differences between test a
retest or random error, than due to differencewéden subjects. In other words, the higher the IEC o
an edge, the more that edge connectivity is sinidareach subject across test and retest, as well a
the variability across subjects, i.e., the higher fingerprint’ of that edge.

Edge-wise ICC was computed for all possible edgesfar each group separately, with the
aim to quantify the edges-wise functional connaéistifingerprint, distinctive of each clinical group
In order to control for sample size differencesoasrgroups, bootstrapping was used to accurately
estimate edgewise fingerprints: for each group, W&G calculated across test and retest for subkets
randomly chosen N=10 subjects, across 1000 boptstras, and then averaged within each group
(Fig. 3A and 3B). Matrices in 3A and 3B were birad for ICC>0.6 which is considered the lower
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threshold for a ‘good’ ICC scof® , and overlapping edges across the two cohorte displayed in
the binary ICC matrices (cf. overlap ICC matrixHig. 3C).

Brain fingerprint in resting-state functional networks during cognitive decline

Next, we aimed to identify the commonalities in thistribution of edges with the highest
ICC across different cohorts, both within and betweesting-state networks. To achieve this, we
analysed the overlap ICC binary matrix (Fig. 3CYl momputed the following metrics. For each of
one seven resting state networks, both within atdideen-networkénet), we quantified the number
of overlapping ICC edged(CC,). Next, we computed a proportion of théC, edges relative to the
total number of edges in each network and defib@d P, . Finally, and in order to determine the
distance from the healthy reference (i.e., CU),camputed the ratio over healthy individuals (Fig.
4A). The ratio (R) was calculated as follow, whére= disease (i.e., MCI and Dementia) arit=
healthy (i.e., CU).

Picc D
R(net) = % -1
icc,

Lastly, we aimed to determine whether there wagrfiant difference in the distribution of
overlapping edges in within-networks vs. betweetwoeks for each group. To achieve this, we
conducted a Chi-square test for each network comgp#ne number of edges in the within- versus the
between-functional networks. Significance was Boof@ corrected for multiple comparisons (Fig.
4B).

Between-groups significance of nodal brain fingerprint

In these analyses, we aimed to identify regionsi¢mes) whose functional connectivity with
the rest of the brain could account for significdifferences in subject variability across the ¢hre
groups. First, to isolate edges that were sigmifigadifferent across groups, we compared real ICC
matrices with surrogate ones obtained after inalgidandomly selected subjects from each group for
1000 permutation runs (Fig. S3), i.e., we generatedogategroup-unspecific ICC matrices. Next, a
p-value was computed for each edge as a propatiimes across permutation runs where surrogate
values were bigger than the real value; edges pitB5 were considered significant (see Fig. S3).
Only significant edges were selected and a newixnaizcluding significant edges with its real ICC
value and having zeros for all the non-significanes was used to compute nodal strength ICC.
Nodal strength was computed as average, includingszto account for non-significant edges, and
rendered on the cortical surface using BrainNefcf. Fig. S4). Next, to select the group-specific
nodes with the highest ICC values that were comiamanoss the two independent cohorts, binary

masks were obtained by selecting the top 25 peteeaitiCC nodal strength and the overlap between
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the two cohorts was displayed (Fig. 5A). Each binmask obtained that way provides a nodal

representation of the brain region “hubs” involwed-C fingerprints in each group specifically.

Brain fingerprint across cognitive decline and behaviour

A Neurosynth meta-analysist{ps://neurosynth.orjy/ similar to the one implemented in

previous studie¥>* was conducted to assess cognitive functions &sdowith brain fingerprints at
the different stages of cognitive decline. The prhae outputs, for each combination of brain
fingerprint mask and cognitive function binary maaknodal z statistic that quantifies the similarit
between the two maps. For brain fingerprint, wedube binary overlap masks in Fig. 5A —i.e., those
including the ICC hubs with the highest fingerpiigross the two cohorts. For cognition, we used the
brain binary maps related to 50 topic terms cominothe neuroimaging literaturé®* derived from

the Neurosynth database. These fingerprint andittogrmaps were used as input for the meta-
analysis to find significant associations betwelk@ ICC hub or fingerprint masks and the brain
cognitive functions Neurosynth maps. Last, we agddahe terms according to the weighted mean of
the resulting z statistics for visualization, calging significant any association between group

fingerprints and cognitive maps above z>3.X (Fig. 5B).
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