

1 **An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by**  
2 **several therapeutic monoclonal antibodies**

3  
4 Laura A. VanBlargan<sup>1</sup>, John M. Errico<sup>2</sup>, Peter J. Halfmann<sup>3</sup>, Seth J. Zost<sup>4,5</sup>, James E. Crowe  
5 Jr.<sup>4,5,6</sup>, Lisa A. Purcell<sup>7</sup>, Yoshihiro Kawaoka<sup>3,8,9</sup>, Davide Corti<sup>10</sup>, Daved H. Fremont<sup>2,11,12</sup>, and  
6 Michael S. Diamond<sup>1,2,11,13,14</sup>

7  
8 <sup>1</sup>Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA  
9 <sup>2</sup>Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO,  
10 USA  
11 <sup>3</sup>Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine,  
12 University of Wisconsin-Madison, Madison, WI, USA.

13 <sup>4</sup>Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA  
14 <sup>5</sup>Department of Pediatrics Vanderbilt University Medical Center, Nashville, TN, USA  
15 <sup>6</sup>Department of Pathology, and Microbiology and Immunology, Vanderbilt University Medical Center,  
16 Nashville, TN, USA

17 <sup>7</sup>Vir Biotechnology, St Louis, MO, USA.  
18 <sup>8</sup>Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science,  
19 University of Tokyo, 108-8639 Tokyo, Japan.

20 <sup>9</sup>The Research Center for Global Viral Diseases, National Center for Global Health and Medicine  
21 Research Institute, Tokyo 162-8655, Japan.

22 <sup>10</sup>Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.  
23 <sup>11</sup>Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO.  
24 <sup>12</sup>Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St.  
25 Louis, MO.

26 <sup>13</sup>Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs,  
27 Washington University School of Medicine, Saint Louis, MO.

28 <sup>14</sup>Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine,  
29 Saint Louis, MO.

30 **Corresponding author:** Michael S. Diamond, M.D., Ph.D., [mdiamond@wustl.edu](mailto:mdiamond@wustl.edu)

31 **ABSTRACT**

32 **Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the**  
33 **global COVID-19 pandemic resulting in millions of deaths worldwide. Despite the**  
34 **development and deployment of highly effective antibody and vaccine countermeasures,**  
35 **rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike**  
36 **protein jeopardize their efficacy. Indeed, the recent emergence of the highly-transmissible**  
37 **B.1.1.529 Omicron variant is especially concerning because of the number of mutations,**  
38 **deletions, and insertions in the spike protein. Here, using a panel of anti-receptor binding**  
39 **domain (RBD) monoclonal antibodies (mAbs) corresponding to those with emergency use**  
40 **authorization (EUA) or in advanced clinical development by Vir Biotechnology (S309, the**  
41 **parent mAbs of VIR-7381), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of**  
42 **AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555**  
43 **and LY-CoV016), and Celltrion (CT-P59), we report the impact on neutralization of a**  
44 **prevailing, infectious B.1.1.529 Omicron isolate compared to a historical WA1/2020 D614G**  
45 **strain. Several highly neutralizing mAbs (LY-CoV555, LY-CoV016, REGN10933,**  
46 **REGN10987, and CT-P59) completely lost inhibitory activity against B.1.1.529 virus in**  
47 **both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced**  
48 **(~12-fold decrease, COV2-2196 and COV2-2130 combination) or minimally affected**  
49 **(S309). Our results suggest that several, but not all, of the antibody products in clinical use**  
50 **will lose efficacy against the B.1.1.529 Omicron variant and related strains.**

51 **MAIN TEXT**

52 Since December of 2019, the global COVID-19 pandemic caused by SARS-CoV-2 has  
53 resulted in 267 million infections and 5.3 million deaths. The expansion of the COVID-19  
54 pandemic and its accompanying morbidity, mortality, and destabilizing socioeconomic effects  
55 have made the development and distribution of SARS-CoV-2 therapeutics and vaccines an  
56 urgent global health priority<sup>1</sup>. While the rapid deployment of countermeasures including  
57 monoclonal antibodies and multiple highly effective vaccines has provided hope for curtailing  
58 disease and ending the pandemic, this has been jeopardized by emergence of more transmissible  
59 variants with mutations in the spike protein that also could evade protective immune responses.

60 Indeed, over the past year, several variant strains have emerged including B.1.1.7  
61 (Alpha), B.1.351 (Beta), B.1.1.28 [also called P.1, Gamma]], and B.1.617.2 (Delta), among  
62 others, each having varying numbers of substitutions in the N-terminal domain (NTD) and the  
63 RBD of the SARS-CoV-2 spike. Cell-based assays with pseudoviruses or authentic SARS-CoV-  
64 2 strains suggest that neutralization by many EUA mAbs might be diminished against some of  
65 these variants, especially those containing mutations at positions L452, K477, and E484<sup>2-6</sup>.  
66 Notwithstanding this, *in vivo* studies in animals showed that when most EUA mAbs were used in  
67 combination they retained efficacy against different variants<sup>7</sup>. The recent emergence of  
68 B.1.1.529, the Omicron variant<sup>8,9</sup>, which has a larger number of mutations (~30 substitutions,  
69 deletions, or insertions) in the spike protein, has raised concerns that this variant will escape  
70 from protection conferred by vaccines and therapeutic mAbs.

71 We obtained an infectious clinical isolate of B.1.1.529 from a symptomatic individual in  
72 the United States (hCoV-19/USA/WI-WSLH-221686/2021). We propagated the virus once in  
73 Vero cells expressing transmembrane protease serine 2 (TMPRSS2) to prevent the emergence of

74 adventitious mutations at or near the furin cleavage site in the spike protein<sup>10</sup>. Our B.1.1.529  
75 isolate encodes the following mutations in the spike protein (A67V, Δ69–70, T95I, G142D,  
76 Δ143-145, Δ211, L212I, insertion 214EPE, G339D, S371L, S373P, S375F, K417N, N440K,  
77 G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G,  
78 H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, and L981F; **Fig 1a-b** and  
79 GISAID: EPI\_ISL\_7263803), which is similar to strains identified in Africa<sup>11</sup>. Our isolate,  
80 however, lacks an R346K mutation, which is present in a minority (~8%) of reported strains.

81 Given the number of substitution in the B.1.1.529 spike protein, including eight amino  
82 acid changes (K417N, G446S, S477N, Q493R, G496S, Q498R, N501Y, Y505H) in the ACE2  
83 receptor binding motif (RBM), we first evaluated possible effects on the structurally-defined  
84 binding epitopes of mAbs corresponding to those with EUA approval or in advanced clinical  
85 development (S309 [parent of VIR-7381]<sup>12,13</sup>; COV2-2196 and COV2-2130 [parent mAbs of  
86 AZD8895 and AZD1061, respectively]<sup>14</sup>; REGN10933 and REGN10987<sup>15</sup>, LY-CoV555 and  
87 LY-CoV016<sup>16,17</sup>; and CT-P59 [Celltrion]<sup>18</sup>) along with an additional broadly neutralizing mAb  
88 (SARS2-38) that we recently described<sup>19</sup>. We mapped the B.1.1.529 spike mutations onto the  
89 antibody-bound SARS-CoV-2 spike or RBD structures published in the RCSB Protein Data  
90 Bank (**Fig 1c-k**). While every antibody analyzed had structurally defined recognition sites that  
91 were altered in the B.1.1.529 spike, the differences varied among mAbs with some showing  
92 larger numbers of changed residues (**Fig 1l**: COV2-2196, n = 4; COV2-2130, n = 4; S309, n = 2;  
93 REGN10987, n = 4; REGN10933, n = 8; Ly-CoV555, n = 2; Ly-CoV016, n = 6; CT-P59, n = 8;  
94 and SARS2-38, n = 2).

95 To address the functional significance of the spike sequence variation in B.1.1.529 for  
96 antibody neutralization, we used a high-throughput focus reduction neutralization test (FRNT)<sup>20</sup>

97 with WA1/2020 D614G and B.1.1.529 in Vero-TMPRSS2 cells (**Fig 2**). We tested individual  
98 and combinations of mAbs that target the RBD in Vero-TMPRSS2 cells including S309 (Vir  
99 Biotechnology), COV2-2130/COV2-2196 (parent mAbs of AZD1061 and AZD8895 provided  
100 by Vanderbilt University), REGN10933/REGN10987 (synthesized based on casirivimab and  
101 imdevimab sequences from Regeneron), LY-CoV555/LY-CoV016 (synthesized based on  
102 bamlanivimab and etesevimab sequences from Lilly), CT-P59 (synthesized based on  
103 regdanvimab sequences from Celltrion), and SARS2-38. As expected, all individual or  
104 combinations of mAbs tested neutralized the WA1/2020 D614G isolate with EC<sub>50</sub> values similar  
105 to published data<sup>6,18,21</sup>. However, when tested alone, REGN10933, REGN10987, LY-CoV555,  
106 LV-CoV016, CT-P59 and SARS2-38 completely lost neutralizing activity against B.1.1.529,  
107 with little inhibitory capacity even at the highest (10,000 ng/mL) concentration tested. COV2-  
108 and COV2-2196 showed an intermediate ~12 to 150-fold ( $P < 0.0001$ ) loss in inhibitory  
109 activity, respectively against the B.1.1.529 strain. In comparison, S309 showed a less than 2-fold  
110 ( $P > 0.5$ ) reduction in neutralizing activity against B.1.1.529 (**Fig 2a-h**). Analysis of mAb  
111 combinations currently in clinical use showed that REGN10933/REGN10987 and LY-  
112 CoV555/LV-CoV016 lost all neutralizing activity against B.1.1.529, whereas COV2-  
113 2130/COV2-2196 showed a ~12-fold ( $P < 0.0001$ ) reduction in inhibitory activity.

114 We repeated experiments in Vero-hACE2-TMPRSS2 cells to account for effects of  
115 hACE2 expression, which can affect neutralization by some anti-SARS-CoV-2 mAbs<sup>19,22</sup>.  
116 Moreover, modeling studies suggest that the mutations in the B.1.1.529 spike may enhance  
117 interactions with hACE2<sup>23</sup>. All individual or combinations of mAbs tested neutralized the  
118 WA1/2020 D614G isolate as expected. However, REGN10933, REGN10987, LY-CoV555, LV-  
119 CoV016, SARS2-38, and CT-P59 completely lost neutralizing activity against B.1.1.529, and the

120 combinations of REGN10933/ REGN10987 or LY-CoV555/LV-CoV016 also lacked inhibitory  
121 capacity (**Fig 3a-h**). In comparison, COV2-2196 showed moderately reduced activity (~16-fold)  
122 as did the combination of COV2-2130/COV2-2196 mAbs (~11-fold). Unexpectedly, COV2-  
123 2130 did not show a difference in neutralization of WA1/2020 and B.1.1.529 in the Vero-  
124 hACE2-TMPRSS2 cells (**Fig 3a, g, and h**), whereas it did in Vero-TMPRSS2 cells (**Fig 2a, g,**  
125 **and h**). The S309 mAb showed less potent neutralizing activity in Vero-hACE2-TMPRSS2 cells  
126 at baseline with a flatter dose response curve (**Fig 3d**), as seen previously<sup>6,24</sup>, and showed a  
127 moderate (~6-fold,  $P < 0.0001$ ) reduction in neutralizing activity against B.1.1.529 compared to  
128 WA1/2020 D614G. Thus, while the trends in mAb neutralization of B.1.1.529 generally were  
129 similar to Vero-TMPRSS2 cells, some expected and unexpected differences were noted with  
130 COV2-2130 and S309 on cells expressing hACE2.

131 Our experiments show a marked loss of inhibitory activity by several of the most highly  
132 neutralizing mAbs that are in advanced clinical development or have EUA approval. We  
133 evaluated antibodies that correspond to monotherapy or combination therapy that have shown  
134 pre- and post-exposure success in clinical trials and patients infected with historical SARS-CoV-  
135 2 isolates. Our results confirm *in silico* predictions of how amino acid changes in B.1.1.529  
136 RBD might negatively impact neutralizing antibody interactions<sup>16,25</sup>. Moreover, they agree with  
137 preliminary studies showing that several clinically used antibodies lose neutralizing activity  
138 against B.1.1.529 spike-expressing recombinant lentiviral or vesicular stomatitis virus (VSV)-  
139 based pseudoviruses<sup>26-28</sup>. One difference is that our study with authentic B.1.1.529 showed only  
140 moderately reduced neutralization by antibodies corresponding to the AstraZeneca combination  
141 (COV2-2196 and COV2-2130); in contrast, another group reported escape of these mAbs using a  
142 VSV pseudovirus displaying a B.1.1.529 spike protein in Huh7 hepatoma cells<sup>27</sup>. Additional

143 studies are needed to determine whether this disparity in results is due to the cell type, the virus  
144 (authentic versus pseudotype), or preparation and combination of antibody.

145 While the Regeneron (REGN10933 and REGN10987), Lilly (LY-CoV555 and LV-  
146 CoV016) and Celltrion (CT-P59) antibodies or combinations showed an almost complete loss of  
147 neutralizing activity against B.1.1.529, in our assays with Vero-TMPRSS2 and Vero-hACE2-  
148 TMPRSS2 cells, the mAbs corresponding to the AstraZeneca combination (COV-2196 and  
149 COV-2130) or Vir Biotechnology (S309) products retained substantial inhibitory activity.  
150 Although these data suggest that some of mAbs in clinical use may retain benefit, validation  
151 experiments *in vivo*<sup>7</sup> are needed to support this conclusion and inform clinical decisions.

152 Given the loss of inhibitory activity against B.1.1.529 of many highly neutralizing anti-  
153 RBD mAbs in our study, it appears likely that serum polyclonal responses generated after  
154 vaccination or natural infection also may lose substantial inhibitory activity against B.1.1.529,  
155 which could compromise protective immunity and explain a rise in symptomatic infections in  
156 vaccinated individuals<sup>29</sup>. Indeed, studies have reported approximately 25 to 40-fold reductions in  
157 serum neutralizing activity compared to historical D614G-containing strains from individuals  
158 immunized with the Pfizer BNT162b2 and AstraZeneca AZD1222 vaccines<sup>26,28,30,31</sup>.

159 We note several limitations of our study: (1) Our experiments focused on the impact of  
160 the extensive sequence changes in the B.1.1.529 spike protein on mAb neutralization in cell  
161 culture. Despite observing differences in neutralizing activity with certain mAbs, it remains to be  
162 determined how this finding translates into effects on clinical protection against B.1.1.529; (2)  
163 Although virus neutralization is a correlate of immune protection against SARS-CoV-2<sup>7,32,33</sup>, this  
164 measurement does not account for Fc effector functions if antibodies residually bind B.1.1.529  
165 spike proteins on the virion or surface of infected cells. Fcγ receptor or complement protein

166 engagement by spike binding antibodies could confer substantial protection<sup>34-36</sup>; (3) We used the  
167 prevailing B.1.1.529 Omicron isolate that lacks an R346K mutation. While only 8.3% of  
168 B.1.1.529 sequences in GISAID (accessed on 12/14/2021) have an R346K mutation, this  
169 substitution might negatively impact neutralization of some EUA mAbs given that it is a  
170 crystallographic contact for COV2-2130, REGN10987, and S309 (**Fig 11**). At least for S309, the  
171 R346K mutation did not impact neutralization of pseudoviruses displaying B.1.1.529 spike  
172 proteins<sup>28</sup>. Nonetheless, studies with infectious B.1.1.529 isolates with R346K mutations may be  
173 warranted if the substitution becomes more prevalent; (4) Our data is derived from experiments  
174 with Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells. While these cells standardly are used  
175 to measure antibody neutralization of SARS-CoV-2 strains, primary cells targeted by SARS-  
176 CoV-2 *in vivo* can express unique sets of attachment and entry factors<sup>37</sup>, which could impact  
177 receptor and entry blockade by specific antibodies. Indeed, prior studies have reported that the  
178 cell line used can affect the potency of antibody neutralization against different SARS-CoV-2  
179 variants<sup>6</sup>.

180 In summary, our cell culture-based analysis of neutralizing mAb activity against an  
181 authentic infectious B.1.1.529 Omicron SARS-CoV-2 isolate suggests that several, but not all,  
182 existing therapeutic antibodies will lose protective benefit. Thus, the continued identification and  
183 use of broadly and potently neutralizing mAbs that target the most highly conserved residues on  
184 the SARS-CoV-2 spike likely is needed to prevent resistance against B.1.1.529 and future  
185 variants with highly mutated spike sequences.

186

187 **ACKNOWLEDGEMENTS**

188 This study was supported by grants and contracts from NIH (R01 AI157155, U01  
189 AI151810, 75N93021C00014, HHSN272201700060C, and 75N93019C00051), the Defense  
190 Advanced Research Project Agency (HR0011-18-2-0001), the Japan Program for Infectious  
191 Diseases Research and Infrastructure (JP21wm0125002) from the Japan Agency for Medical  
192 Research and Development (AMED), and the Dolly Parton COVID-19 Research Fund at  
193 Vanderbilt University Medical Center. We thank Rachel Nargi, Robert Carnahan, Tiong Tan,  
194 and Lisa Schimanski for assistance and generosity with mAb generation and purification, and  
195 Samuel A. Turner from the Center for Pathogen Evolution at the University of Cambridge for  
196 evaluating B.1.1.529 sequences.

197

198 **AUTHOR CONTRIBUTIONS**

199 L.A.V. performed and analyzed neutralization assays. P.J.H. and L.A.V. propagated  
200 SARS-CoV-2 viruses. P.H. performed sequencing analysis. J.E.C., S.J.Z., L.P., and D.C.  
201 generated and provided mAbs. J.M.E. and D.H.F. performed structural analysis. J.E.C., Y.K.,  
202 and M.S.D. obtained funding and supervised the research. L.A.V. and M.S.D. wrote the initial  
203 draft, with all other authors providing editorial comments.

204

205 **COMPETING FINANCIAL INTERESTS**

206 M.S.D. is a consultant for Inbios, Vir Biotechnology, Senda Biosciences, and Carnival  
207 Corporation, and on the Scientific Advisory Boards of Moderna and Immunome. The Diamond  
208 laboratory has received funding support in sponsored research agreements from Moderna, Vir  
209 Biotechnology, and Emergent BioSolutions. J.E.C. has served as a consultant for Luna Biologics

210 and Merck Sharp & Dohme Corp., is a member of the Scientific Advisory Boards of Meissa  
211 Vaccines and is Founder of IDBiologics. The Crowe laboratory has received sponsored research  
212 agreements from Takeda Vaccines, AstraZeneca and IDBiologics. Vanderbilt University has  
213 applied for patents related to two antibodies in this paper. L.A.P. and D.C. are employees of Vir  
214 Biotechnology and may hold equity in Vir Biotechnology. L.A.P is a former employee and  
215 shareholder in Regeneron Pharmaceuticals.

216

217 **FIGURE LEGENDS**

218 **Figure 1. Neutralizing mAb epitopes on B.1.1.529. a-b**, SARS-CoV-2 spike trimer  
219 (PDB: 7C2L and PDB: 6W41). One spike protomer is highlighted, showing the NTD in orange,  
220 RBD in green, RBM in magenta, and S2 portion of the molecule in blue (**a**). Close-up view of  
221 the RBD with the RBM outlined in magenta (**b**). Amino acids that are changed in B.1.1.529  
222 compared to WA1/2020 are indicated in light green (**a-b**), with the exception of N679K and  
223 P681H, which were not modeled in the structures used. **c-k**, SARS-CoV-2 RBD bound by EUA  
224 mAbs COV2-2196 (**c**, PDB: 7L7D); COV2-2130 (**d**, PDB: 7L7E); S309 (**e**, PDB: 6WPS);  
225 REGN-10987 (**f**, PDB: 6XDG); REGN-10933 (**g**, PDB: 6XDG)); LY-CoV555 (**h**, PDB: 7KMG)  
226 LY-CoV016 (**i**, PDB: 7C01); CT-P59 (**j** PDB: 7CM4) and SARS2-38 (**k**, PDB: 7MKM).  
227 Residues mutated in the B.1.1.529 RBD and contained in these mAbs respective epitopes are  
228 shaded red, whereas those outside the epitope are shaded green. **l**, multiple sequence alignment  
229 showing the epitope footprints of each EUA mAb on the SARS-CoV-2 RBD highlighted in cyan.  
230 B.1.1.529 RBD is shown in the last row, with sequence changes relative to the WT RBD  
231 highlighted red. A green diamond indicates the location of the N-linked glycan at residue 343.  
232 Stars below the alignment indicate hACE2 contact residues on the SARS-CoV-2 RBD<sup>38</sup>.

233 **Figure 2. Neutralization of SARS-CoV-2 B.1.1.529 Omicron strain by mAbs in**  
234 **Vero-TMPRSS2 cells. a-f**, Neutralization curves in Vero-TMPRSS2 cells comparing the  
235 sensitivity of SARS-CoV-2 strains with the indicated mAbs (COV2-2196, COV2-2130;  
236 REGN10933, REGN10987, LY-CoV555, LY-CoV016, S309, CT-P59, and SARS2-38) with  
237 WA1/2020 D614G and B.1.1.529. Also shown are the neutralization curves for antibody  
238 cocktails (COV2-2196/COV2-2130, REGN10933/REGN10987, or LY-CoV555/LY-CoV016).  
239 One representative experiment of three performed in technical duplicate is shown. Error bars

240 indicate range. **g**, Summary of EC<sub>50</sub> values (ng/ml) of neutralization of SARS-CoV-2 viruses  
241 (WA1/2020 D614G and B.1.1.529) performed in Vero-TMPRSS2 cells. Data is the geometric  
242 mean of 3 experiments. Blue shading: light, EC<sub>50</sub> > 5,000 ng/mL; dark, EC<sub>50</sub> > 10,000 ng/mL. **h**,  
243 Comparison of EC<sub>50</sub> values by mAbs against WA1/2020 D614G and B.1.1.529 (3 experiments,  
244 ns, not significant; \*\*\*\*,  $P < 0.0001$ ; two-way ANOVA with Sidak's post-test). Bars indicate  
245 mean values. The dotted line indicates the upper limit of dosing of the assay.

246 **Figure 3. Neutralization of SARS-CoV-2 B.1.1.529 Omicron strain by mAbs in**  
247 **Vero-hACE2-TMPRSS2 cells. a-f**, Neutralization curves in Vero-hACE2-TMPRSS2 cells  
248 comparing the sensitivity of SARS-CoV-2 strains with the indicated mAbs (S309, COV2-2196,  
249 COV2-2130; REGN10933, REGN10987, LY-CoV555, LY-CoV016, CT-P59, and SARS2-38)  
250 with WA1/2020 D614G and B.1.1.529. Also shown are the neutralization curves for antibody  
251 cocktails (COV2-2196/COV2-2130, REGN10933/REGN10987, or LY-CoV555/LY-CoV016).  
252 One representative experiment of three performed in technical duplicate is shown. Error bars  
253 indicate range. **g**, Summary of EC<sub>50</sub> values (ng/ml) of neutralization of SARS-CoV-2 viruses  
254 (WA1/2020 D614G and B.1.1.529) performed in Vero-hACE2-TMPRSS2 cells. Data is the  
255 geometric mean of 3 experiments. Blue shading: light, EC<sub>50</sub> > 5,000 ng/mL; dark, EC<sub>50</sub> > 10,000  
256 ng/mL. **h**, Comparison of EC<sub>50</sub> values by mAbs against WA1/2020 D614G and B.1.1.529 (3  
257 experiments, ns, not significant; \*\*\*\*,  $P < 0.0001$ ; two-way ANOVA with Sidak's post-test).  
258 Bars indicate mean values. The dotted line indicates the upper limit of dosing of the assay.

259 **METHODS**

260 **Cells.** Vero-TMPRSS2<sup>39</sup> and Vero-hACE2-TMPRSS2<sup>6</sup> cells were cultured at 37°C in  
261 Dulbecco's Modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum  
262 (FBS), 10 mM HEPES pH 7.3, and 100 U/ml of penicillin–streptomycin. Vero-TMPRSS2  
263 cells were supplemented with 5 µg/mL of blasticidin. Vero-hACE2-TMPRSS2 cells were  
264 supplemented with 10 µg/mL of puromycin. All cells routinely tested negative for mycoplasma  
265 using a PCR-based assay.

266 **Viruses.** The WA1/2020 recombinant strain with substitutions (D614G) was described  
267 previously<sup>40</sup>. The B.1.1.529 isolate (hCoV-19/USA/WI-WSLH-221686/2021) was obtained  
268 from a midturbinate nasal swab and passaged once on Vero-TMPRSS2 cells as described<sup>41</sup>. All  
269 viruses were subjected to next-generation sequencing (GISAID: EPI\_ISL\_7263803) to confirm  
270 the stability of substitutions. All virus experiments were performed in an approved biosafety  
271 level 3 (BSL-3) facility.

272 **Monoclonal antibody purification.** The mAbs used in this paper (COV2-2196, COV2-  
273 2130, S309, REGN10933, REGN10987, LY-CoV555, LY-CoV016, CT-P59, SARS2-38) have  
274 been described previously<sup>12,15,19,42-46</sup>. COV2-2196 and COV2-2130 mAbs were produced after  
275 transient transfection using the Gibco ExpiCHO Expression System (ThermoFisher Scientific)  
276 following the manufacturer's protocol. Culture supernatants were purified using HiTrap  
277 MabSelect SuRe columns (Cytiva, formerly GE Healthcare Life Sciences) on an AKTA Pure  
278 chromatographer (GE Healthcare Life Sciences). Purified mAbs were buffer-exchanged into  
279 PBS, concentrated using Amicon Ultra-4 50-kDa centrifugal filter units (Millipore Sigma) and  
280 stored at -80°C until use. Purified mAbs were tested for endotoxin levels (found to be less than  
281 30 EU per mg IgG). Endotoxin testing was performed using the PTS201F cartridge (Charles

282 River), with a sensitivity range from 10 to 0.1 EU per mL, and an Endosafe Nexgen-MCS  
283 instrument (Charles River). S309, REGN10933, REGN10987, LY-CoV016, LY-CoV555, CT-  
284 P59, and SARS2-38 mAb proteins were produced in CHOEXPI or EXPI293F cells and affinity  
285 purified using HiTrap Protein A columns (GE Healthcare, HiTrap mAb select Xtra #28-4082-  
286 61). Purified mAbs were suspended into 20 mM histidine, 8% sucrose, pH 6.0 or PBS. The final  
287 products were sterilized by filtration through 0.22  $\mu$ m filters and stored at 4°C.

288 **Focus reduction neutralization test.** Serial dilutions of mAbs were incubated with 10<sup>2</sup>  
289 focus-forming units (FFU) of SARS-CoV-2 (WA1/2020 D614G or B.1.1.529) for 1 h at 37°C.  
290 Antibody-virus complexes were added to Vero-TMPRSS2 or Vero-hACE2-TMPRSS2 cell  
291 monolayers in 96-well plates and incubated at 37°C for 1 h. Subsequently, cells were overlaid  
292 with 1% (w/v) methylcellulose in MEM. Plates were harvested at 30 h (WA1/2020 D614G on  
293 Vero-TMPRSS2 cells), 70 h (B.1.1.529 on Vero-TMPRSS2 cells), or 24 h (both viruses on  
294 Vero-hACE2-TMPRSS2 cells) later by removal of overlays and fixation with 4% PFA in PBS  
295 for 20 min at room temperature. Plates with WA1/2020 D614G were washed and sequentially  
296 incubated with an oligoclonal pool of SARS2-2, SARS2-11, SARS2-16, SARS2-31, SARS2-38,  
297 SARS2-57, and SARS2-71<sup>47</sup> anti-S antibodies. Plates with B.1.1.529 were additionally incubated  
298 with a pool of mAbs that cross-react with SARS-CoV-1 and bind a CR3022-competing epitope  
299 on the RBD<sup>19</sup>. All plates were subsequently stained with HRP-conjugated goat anti-mouse IgG  
300 (Sigma, A8924) in PBS supplemented with 0.1% saponin and 0.1% bovine serum albumin.  
301 SARS-CoV-2-infected cell foci were visualized using TrueBlue peroxidase substrate (KPL) and  
302 quantitated on an ImmunoSpot microanalyzer (Cellular Technologies). Antibody-dose response  
303 curves were analyzed using non-linear regression analysis with a variable slope (GraphPad  
304 Software), and the half-maximal inhibitory concentration (EC<sub>50</sub>) was calculated.

305                   **Model of mAb-B.1.1.529 spike complexes.** The spike model is a composite of data from  
306 PDB: 7C2L and PDB: 6W41. Models of mAb complexes were generated from their respective  
307 PDB files with the following accession codes: COV2-2196 (PDB: 7L7D); COV2-2130 (PDB:  
308 7L7E); S309 (PDB: 6WPS); REGN-10987 (PDB: 6XDG); REGN-10933 (PDB: 6XDG)); LY-  
309 CoV555 (PDB: 7KMG) LY-CoV016 (PDB: 7C01); CT-P59 (PDB: 7CM4) and SARS2-38  
310 (PDB: 7MKM). Epitope footprints used in the multiple sequence alignment were determined  
311 using PISA interfacial analysis on the various mAb:RBD complexes<sup>48</sup>. Structural figures were  
312 generated using UCSF ChimeraX<sup>49</sup>.

313                   **Data availability.** All data supporting the findings of this study are available within the  
314 paper and are available from the corresponding author upon request.

315                   **Code availability.** No code was used in the course of the data acquisition or analysis.

316                   **Reagent availability.** All reagents described in this paper are available through Material  
317 Transfer Agreements.

318                   **Statistical analysis.** The number of independent experiments and technical replicates  
319 used are indicated in the relevant Figure legends. A two-way ANOVA with Sidak's post-test was  
320 used for comparisons of antibody potency between WA1/2020 D614G and B.1.1.59.

321

322

323 **REFERENCES**

324

325 1. Sempowski, G.D., Saunders, K.O., Acharya, P., Wiehe, K.J. & Haynes, B.F. Pandemic  
326 Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. *Cell*  
327 **181**, 1458-1463 (2020).

328 2. Wibmer, C.K., *et al.* SARS-CoV-2 501Y.V2 escapes neutralization by South African  
329 COVID-19 donor plasma. *bioRxiv* (2021).

330 3. Wang, Z., *et al.* mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating  
331 variants. *Nature* (2021).

332 4. Tada, T., *et al.* Neutralization of viruses with European, South African, and United States  
333 SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA  
334 vaccine-elicited antibodies. *bioRxiv* (2021).

335 5. Wang, P., *et al.* Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7.  
336 *Nature* (2021).

337 6. Chen, R.E., *et al.* Resistance of SARS-CoV-2 variants to neutralization by monoclonal  
338 and serum-derived polyclonal antibodies. *Nat Med* (2021).

339 7. Chen, R.E., *et al.* In vivo monoclonal antibody efficacy against SARS-CoV-2 variant  
340 strains. *Nature* (2021).

341 8. Callaway, E. & Ledford, H. How bad is Omicron? What scientists know so far. *Nature*  
342 (2021).

343 9. Torjesen, I. Covid-19: Omicron may be more transmissible than other variants and partly  
344 resistant to existing vaccines, scientists fear. *BMJ (Clinical research ed* **375**, n2943  
345 (2021).

346 10. Johnson, B.A., *et al.* Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis.  
347 *Nature* (2021).

348 11. Chen, J., Wang, R., Gilby, N.B. & Wei, G.W. Omicron (B.1.1.529): Infectivity, vaccine  
349 breakthrough, and antibody resistance. *ArXiv* (2021).

350 12. Pinto, D., *et al.* Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-  
351 CoV antibody. *Nature* **583**, 290-295 (2020).

352 13. Gupta, A., *et al.* Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody  
353 Sotrovimab. *N Engl J Med* **385**, 1941-1950 (2021).

354 14. Zost, S.J., *et al.* Potently neutralizing and protective human antibodies against SARS-  
355 CoV-2. *Nature* **584**, 443-449 (2020).

356 15. Baum, A., *et al.* REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in  
357 rhesus macaques and hamsters. *Science* (2020).

358 16. Starr, T.N., Greaney, A.J., Dingens, A.S. & Bloom, J.D. Complete map of SARS-CoV-2  
359 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with  
360 LY-CoV016. *Cell reports. Medicine*, 100255 (2021).

361 17. Gottlieb, R.L., *et al.* Effect of Bamlanivimab as Monotherapy or in Combination With  
362 Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized  
363 Clinical Trial. *Jama* **325**, 632-644 (2021).

364 18. Kim, C., *et al.* A therapeutic neutralizing antibody targeting receptor binding domain of  
365 SARS-CoV-2 spike protein. *Nat Commun* **12**, 288 (2021).

366 19. VanBlargan, L.A., *et al.* A potently neutralizing SARS-CoV-2 antibody inhibits variants  
367 of concern by utilizing unique binding residues in a highly conserved epitope. *Immunity*  
368 (2021).

369 20. Case, J.B., *et al.* Neutralizing antibody and soluble ACE2 inhibition of a replication-  
370 competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. *Cell Host and*  
371 *Microbe* **28**, 475-485 (2020).

372 21. Cathcart, A.L., *et al.* The dual function monoclonal antibodies VIR-7831 and VIR-7832  
373 demonstrate potent *in vitro* and *in vivo* activity against SARS-CoV-2. *bioRxiv*,  
374 2021.2003.2009.434607 (2021).

375 22. Suryadevara, N., *et al.* Neutralizing and protective human monoclonal antibodies  
376 recognizing the N-terminal domain of the SARS-CoV-2 spike protein. *Cell* **184**, 2316-  
377 2331.e2315 (2021).

378 23. Golcuk, M., Yildiz, A. & Gur, M. The Omicron Variant Increases the Interactions of  
379 SARS-CoV-2 Spike Glycoprotein with ACE2. *bioRxiv*, 2021.2012.2006.471377 (2021).

380 24. Lempp, F.A., *et al.* Lectins enhance SARS-CoV-2 infection and influence neutralizing  
381 antibodies. *Nature* **598**, 342-347 (2021).

382 25. Ford, C.T., Machado, D.J. & Janies, D.A. Predictions of the SARS-CoV-2 Omicron  
383 Variant (B.1.1.529) Spike Protein Receptor-Binding Domain Structure and Neutralizing  
384 Antibody Interactions. *bioRxiv*, 2021.2012.2003.471024 (2021).

385 26. Wilhelm, A., *et al.* Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine  
386 Sera and monoclonal antibodies. *medRxiv : the preprint server for health sciences*,  
387 2021.2012.2007.21267432 (2021).

388 27. Cao, Y.R., *et al.* B.1.1.529 escapes the majority of SARS-CoV-2 neutralizing antibodies  
389 of diverse epitopes. *bioRxiv*, 2021.2012.2007.470392 (2021).

390 28. Cameroni, E., *et al.* Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron  
391 antigenic shift. *bioRxiv*, 2021.2012.2012.472269 (2021).

392 29. Callaway, E. Omicron likely to weaken COVID vaccine protection. *Nature* (2021).

393 30. Cele, S., *et al.* SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer  
394 BNT162b2 elicited neutralization and requires ACE2 for infection. *medRxiv : the*  
395 *preprint server for health sciences*, 2021.2012.2008.21267417 (2021).

396 31. Dejnirattisai, W., *et al.* Reduced neutralisation of SARS-CoV-2 Omicron-B.1.1.529  
397 variant by post-immunisation serum. *medRxiv : the preprint server for health sciences*,  
398 2021.2012.2010.21267534 (2021).

399 32. Kim, J.H., Marks, F. & Clemens, J.D. Looking beyond COVID-19 vaccine phase 3 trials.  
400 *Nat Med* (2021).

401 33. Khoury, D.S., *et al.* Neutralizing antibody levels are highly predictive of immune  
402 protection from symptomatic SARS-CoV-2 infection. *Nat Med* **27**, 1205-1211 (2021).

403 34. Schäfer, A., *et al.* Antibody potency, effector function, and combinations in protection  
404 and therapy for SARS-CoV-2 infection *in vivo*. *J Exp Med* **218**(2021).

405 35. Zohar, T., *et al.* Compromised Humoral Functional Evolution Tracks with SARS-CoV-2  
406 Mortality. *Cell* **183**, 1508-1519.e1512 (2020).

407 36. Winkler, E.S., *et al.* Human neutralizing antibodies against SARS-CoV-2 require intact  
408 Fc effector functions for optimal therapeutic protection. *Cell* **184**, 1804-1820.e1816  
409 (2021).

410 37. Bailey, A.L. & Diamond, M.S. A Crisp(r) New Perspective on SARS-CoV-2 Biology.  
411 *Cell* **184**, 15-17 (2021).

412 38. Lan, J., *et al.* Structure of the SARS-CoV-2 spike receptor-binding domain bound to the  
413 ACE2 receptor. *Nature* **581**, 215-220 (2020).

414 39. Zang, R., *et al.* TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human  
415 small intestinal enterocytes. *Sci Immunol* **5**(2020).

416 40. Plante, J.A., *et al.* Spike mutation D614G alters SARS-CoV-2 fitness. *Nature* (2020).

417 41. Imai, M., *et al.* Syrian hamsters as a small animal model for SARS-CoV-2 infection and  
418 countermeasure development. *Proc Natl Acad Sci U S A* **117**, 16587-16595 (2020).

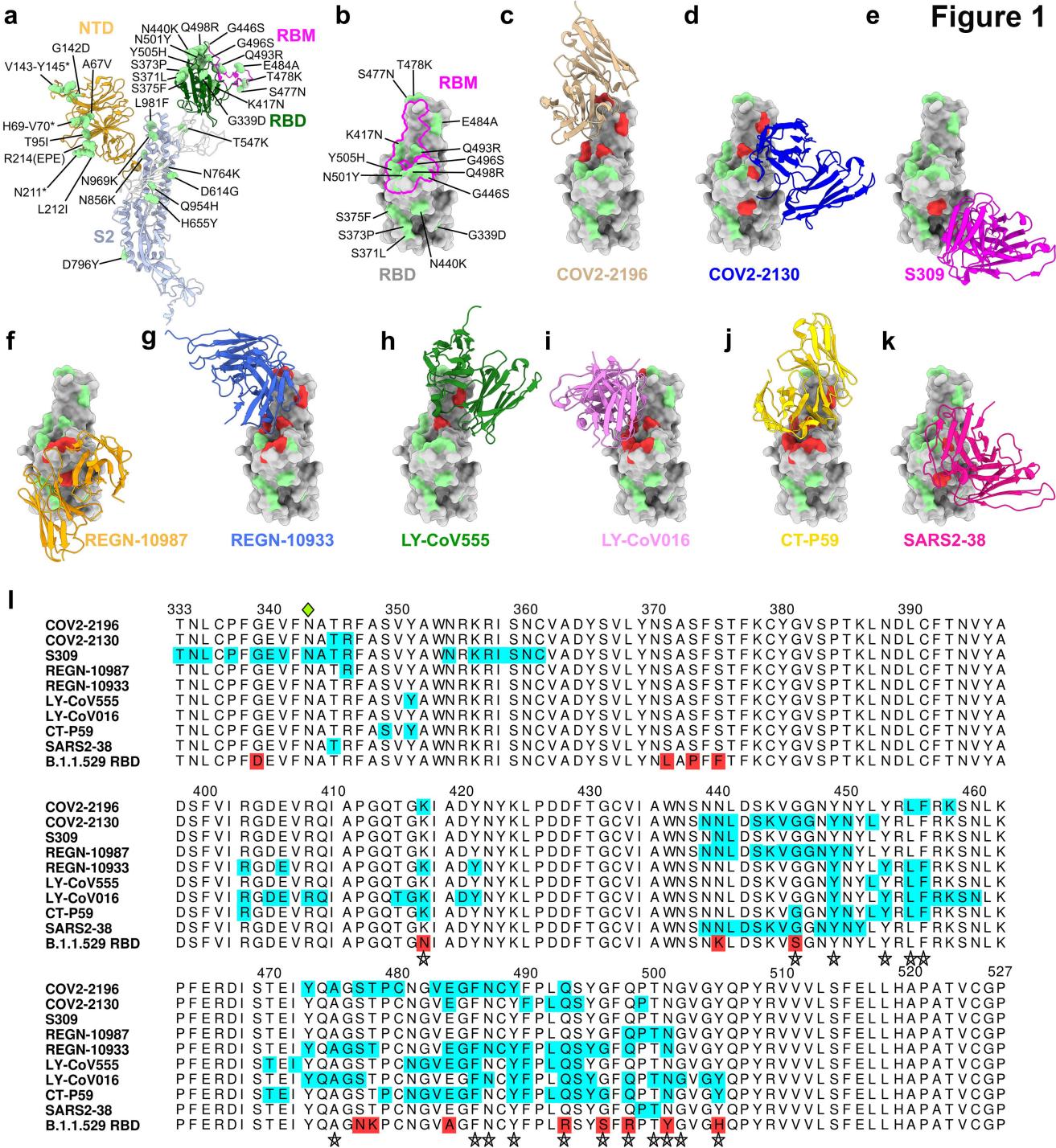
419 42. Zost, S.J., *et al.* Rapid isolation and profiling of a diverse panel of human monoclonal  
420 antibodies targeting the SARS-CoV-2 spike protein. *Nat Med* **26**, 1422-1427 (2020).

421 43. Tortorici, M.A., *et al.* Ultrapotent human antibodies protect against SARS-CoV-2  
422 challenge via multiple mechanisms. *Science* **370**, 950-957 (2020).

423 44. Baum, A., *et al.* Antibody cocktail to SARS-CoV-2 spike protein prevents rapid  
424 mutational escape seen with individual antibodies. *Science* (2020).

425 45. Jones, B.E., *et al.* LY-CoV555, a rapidly isolated potent neutralizing antibody, provides  
426 protection in a non-human primate model of SARS-CoV-2 infection. *bioRxiv* (2020).

427 46. Shi, R., *et al.* A human neutralizing antibody targets the receptor-binding site of SARS-  
428 CoV-2. *Nature* **584**, 120-124 (2020).


429 47. Liu, Z., *et al.* Identification of SARS-CoV-2 spike mutations that attenuate monoclonal  
430 and serum antibody neutralization. *Cell Host Microbe* **29**, 477-488.e474 (2021).

431 48. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline  
432 state. *J Mol Biol* **372**, 774-797 (2007).

433 49. Goddard, T.D., *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and  
434 analysis. *Protein Sci* **27**, 14-25 (2018).

435

**Figure 1**



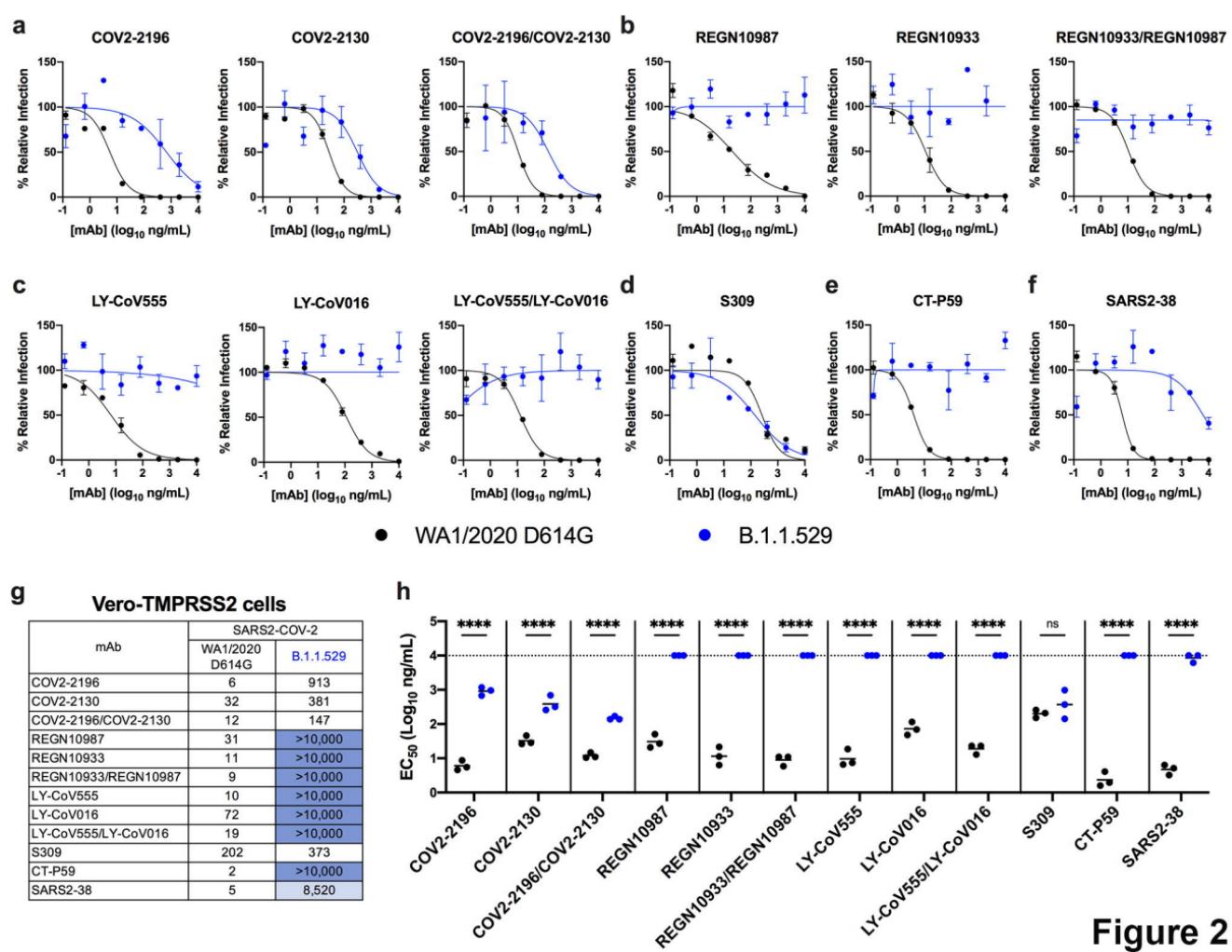



Figure 2

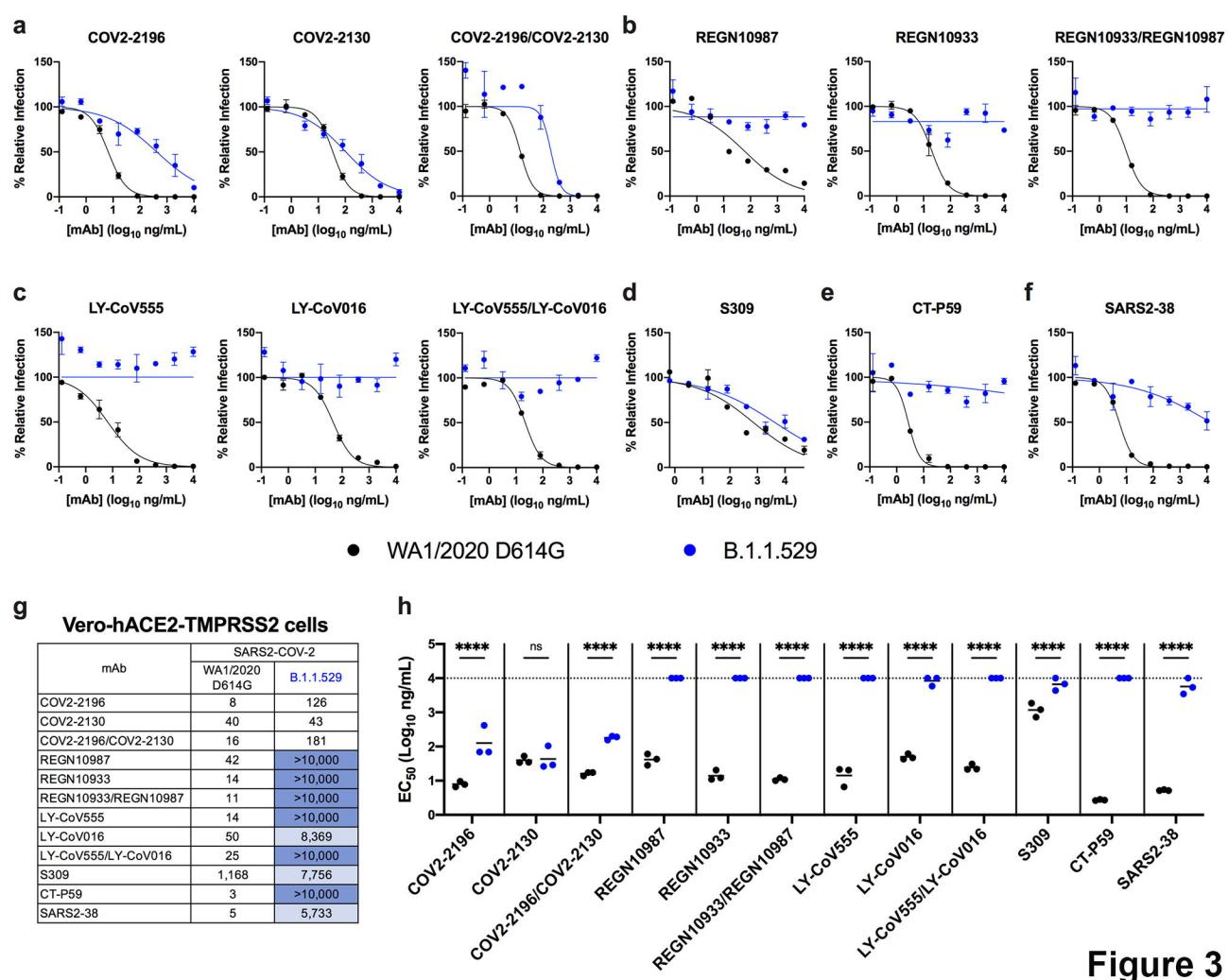



Figure 3