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Biosynthetic gene clusters (BGCs) are enticing targets for (meta)genomic mining efforts, as
they may encode novel, specialized metabolites with potential uses in medicine and
biotechnology. Here, we describe GECCO (GEne Cluster prediction with COnditional
random fields; https://gecco.embl.de), a high-precision, scalable method for identifying novel
BGCs in (meta)genomic data using conditional random fields (CRFs). Based on an extensive
evaluation of de novo BGC prediction, we found GECCO to be more accurate and over 3x
faster than a state-of-the-art deep learning approach. When applied to over 12,000 genomes,
GECCO identified nearly twice as many BGCs compared to a rule-based approach, while
achieving higher accuracy than other machine learning approaches. Introspection of the
GECCO CREF revealed that its predictions rely on protein domains with both known and
novel associations to secondary metabolism. The method developed here represents a
scalable, interpretable machine learning approach, which can identify BGCs de novo with

high precision.
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INTRODUCTION

Host-associated and environmental microbes alike are capable of producing a wide
array of secondary metabolites through which they interact with their environments.! These
metabolites equip their producer with a chemical repertoire to respond to stressors, which may
confer competitive advantages over other organisms in their environmental niche.>? In human
host-associated microbial communities, secondary metabolites can also modulate host health
via a range of processes, including immune system regulation, xenobiotic and nutrient
metabolism, and cancer susceptibility/resistance.>* Beyond their natural purposes, many
microbial secondary metabolites have found important uses in medicine, including as first-in-
class antimicrobial, anticancer, and antidiabetic drugs.!=>-

Due to the biomedical and biotechnological interest in microbial secondary metabolites,
there is a strong incentive to identify novel natural products. Genome mining efforts have
successfully made use of the fact that a large proportion of the enzymatic pathways responsible
for secondary metabolite production are encoded by physically clustered groups of genes called
biosynthetic gene clusters (BGCs).!"” Recently, the development of computational tools for
BGC detection has been further fueled by the ever-increasing availability of microbial genomic
and metagenomic data.””'® Currently, in silico methods used to identify BGCs in
(meta)genomic sequencing data can largely be categorized into two groups. “Rule-based”
approaches (e.g., antiSMASH, PRISM)*!!-12 yse hard-coded BGC detection “rules” to identify
BGCs in (meta)genomic data based on signature genes.” These approaches display a high
degree of precision (i.e., low false positive rates) but are unable to detect novel BGCs of
unknown architecture. To prioritize the detection of novel BGCs, “model-based” approaches
have been developed.”® The most widely used representative of this group, ClusterFinder,
relies on a hidden Markov model (HMM) to segment (meta)genomic sequences into BGC and

non-BGC regions based on local enrichment of protein domains characteristic of biosynthetic
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genes.” More recently, DeepBGC, which employs a three-layer Bidirectional Long Short-Term
Memory (BiLSTM) recurrent neural network (RNN)!3, was shown to yield more accurate de
novo BGC predictions than HMM-based ClusterFinder.’

Conditional random fields (CRFs) are an alternative machine learning (ML) approach
to HMMs and BiLSTMs for sequence segmentation. These discriminative graphical models
(Fig. 1 and Supplementary Figure S1) have been shown to outperform generative models, such
as HMMs, in various application domains.!*!> Furthermore, compared to their “black box”
RNN counterparts, CRFs have the advantage of being inherently interpretable, an important
feature in a biomedical context.!® Here, we describe GECCO (GEne Cluster prediction with
COnditional random fields; https://gecco.embl.de), a high-precision, scalable method for de
novo BGC identification in microbial genomic and metagenomic data. On the basis of a newly
developed, extensive de novo BGC prediction benchmarking framework, we show that
GECCO is not only more accurate than state-of-the-art de novo BGC detection approaches, but
also more computationally efficient. As an interpretable ML model, GECCO can moreover
provide insights into BGC biology, architecture, and function.

RESULTS
GECCO: a CRF-based de novo BGC detection tool

To train a CRF that could identify novel BGCs in (meta)genomic sequences, a
training/cross-validation (CV) data set was constructed by embedding known BGCs into long,
BGC-negative fragments of prokaryotic genomes (Fig. 1 and Supplementary Figures S1 and
S2). Briefly, known BGCs present in the Minimum Information about a Biosynthetic Gene
cluster (MIBiG) database! were embedded into randomly selected prokaryotic contigs, in
which other known and predicted BGCs had been masked (see section “Data acquisition and
feature construction” below). To construct the feature matrix for training, open reading frames

(ORFs) were identified and annotated with protein domains, using one of fourteen
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96  combinations of databases in which protein families are represented by profile hidden Markov
97  models (pHMMs; see Fig. 1, section “Data acquisition and feature construction” below, and
98  Supplementary Figures S1 and S2). As the protein family resources are broader in scope than
99  what may be needed for BGC identification and their combinations potentially redundant, an
100  additional feature selection approach was implemented in GECCO: to identify domains that
101  are either most strongly enriched or depleted in BGCs, we nested a two-sided Fisher’s Exact
102  Test (FET) into the CV employed for fitting GECCO’s CRF. Within each CV fold, we
103  iteratively retrained GECCO using only the top domains associated with BGC presence or
104  absence to estimate how far the CRF feature space (i.e. the domain pHMMs used for
105 annotation) could be reduced to gain speed while retaining optimal prediction accuracy
106  (Supplementary Figures S3 and S4a).
107  GECCO provides superior precision and speed relative to state-of-the-art de novo BGC
108  prediction methods
109 To construct a benchmark data set in a way that guarantees that training and test data
110  are disjoint, we partitioned MIBiG v2.0!” into (i) BGCs for training that were already contained
111 in an earlier MIBiG version (v1.3, which was also originally used to train DeepBGC and
112  DeepBGC'’s re-trained implementation of ClusterFinder)®, and (ii) selected BGCs for testing
113  that were newly added in subsequent updates of MIBiG; from this test set we also removed
114  BGCs that were very similar in architecture to any instance contained in MIBiG v1.3 (see
115  section “Data acquisition and feature construction” below for additional details). This yielded
116  a final test set of 376 prokaryotic contigs which each had an embedded BGC that was
117  exclusively present in MIBiG v2.0 (referred to hereafter as the “376-genome test set””). We also
118  used two additional, previously constructed test sets containing thoroughly annotated genomes
119 of well-studied BGC producer organisms (the “six genome test set” used by Hannigan, et al.’

120  to evaluate DeepBGC and the “nine genome bootstrapping set” used by Hannigan, et al.” for
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121 hyperparameter tuning, validation, and testing of DeepBGC) and removed all instances of
122  BGCs similar to those in these additional test sets from the MIBiG v1.3-based training set. To
123  ensure a fair comparison of BGC detection methods, we retrained DeepBGC and GECCO on
124  this very same training set, using BGCs from MIBiG v1.3 which were absent from all test sets.
125  We evaluated the performance of both methods using (i) the 376-genome test set (the main test
126  set presented in this study; Fig. 2a-c), as well as (ii) the six- and (iii) nine-genome test sets’ and
127  (iv) 10-fold CV using BGCs from MIBiG v1.3 (Supplementary Figures S4-S6). We
128  additionally compared GECCO and the re-trained implementation of DeepBGC to the original
129  DeepBGC, as well as DeepBGC’s “original” and “re-trained” implementations of the
130  ClusterFinder algorithm (also trained on BGCs from MIBiG vl1.3), using the three
131  aforementioned test sets (Fig. 2a-c and Supplementary Figure S6).7

132 For direct comparability to previous evaluations,” we first conducted a receiver
133  operating characteristic (ROC) analysis on the level of individual domains, i.e. based on a per-
134  domain assessment of true positives, true negatives, false positives and false negatives (Fig.
135  2a, Supplementary Figure S4a). Based on area under (AU) the ROC curve values, GECCO
136  showed superior performance compared to all DeepBGC/ClusterFinder implementations on
137  the 376- and six-genome test sets (Fig. 2a and Supplementary Figure S6) and during 10-fold
138 CV (GECCO AUROC = 0.97; Supplementary Figure S5). On the nine-genome test set,
139  GECCO and the original implementation of DeepBGC performed equally (AUROC = 0.94;
140  Supplementary Figure S6). From the same true/false positive/negative metrics, we also
141  constructed per-domain precision-recall (PR) curves (Fig. 2b, Supplementary Figure S4a).
142  These evaluations showed superior performance of GECCO compared to all
143  DeepBGC/ClusterFinder implementations for all three test sets (Fig. 2b and Supplementary
144  Figure S6) and during 10-fold CV (GECCO AUPR = 0.73; Supplementary Figure S5). In

145  addition to evaluating model performance at the domain level, we also assessed to which extent
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146  predicted BGCs overlapped with known BGCs by calculating precision and recall from true
147  and false positive BGC segments, as well as false negative non-BGC segments, for each model
148  (referred to hereafter as the “segment overlap” metric; Supplementary Figure S4b). Based on
149 PR curves constructed from this segment overlap metric, GECCO achieved substantially higher
150 AUPR than all implementations of DeepBGC/ClusterFinder (Fig. 2c and Supplementary
151  Figures S4-S7). These evaluations demonstrate that GECCO is capable of detecting BGCs de
152  novo with unprecedented accuracy, primarily by more precisely locating their boundaries; this
153  also greatly alleviates the problem of fragmented predictions, which other methods suffer from
154  (Fig. 2e).

155 We moreover used the training data to optimize GECCQ’s feature space. We found that
156  feature inclusion thresholds 7= [35,100] (percentage of retained domain features) achieved
157  highly similar AUPR and F scores (Fig. 2d and Supplementary Figure S3), suggesting that
158  65% of features can be discarded without noticeable sacrifices in accuracy. Among the domain
159  resources used for feature generation, a combination of TIGRFAM v15.0'® and Pfam v33.1"
160  with 7= 35% achieved among the highest AUROC and AUPR scores, and was thus chosen as
161  the final model for BGC detection in GECCO (10-fold CV AUROC = 0.96, AUPR = 0.89; Fig
162  2d, Supplementary Figure S3). To explore GECCO’s ability to identify novel BGC classes not
163  currently represented in MIBiG, leave-one-type-out (LOTO) CV was used. In LOTO, one
164  biosynthetic class of BGCs is completely removed from the training set during CV to
165  specifically assess its re-discovery in the test set. GECCO achieved LOTO AUROC scores >
166  0.98 for four of six classes and 0.91 and 0.88 AUROC for MIBiG’s ribosomally synthesized
167 and post-translationally modified peptide (RiPP) and Saccharide classes, respectively
168  (Supplementary Figure S8). To determine the MIBiG biosynthetic class for each newly
169  predicted BGC, a separate random forest (RF) classifier was trained and evaluated using five-

170  fold CV, as has been previously proposed’® (see section “Prediction of biosynthetic class”
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171 below; Fig. 1). Using the domain composition associated with each BGC as features, the RF
172  classifier achieved AUROC scores > 0.90 for all classes (Supplementary Figure S9).

173 In a final benchmark, we compared the runtime between GECCO, DeepBGC, and
174  antiSMASH using the three test sets, as well as all representative genomes in the proGenomes2
175  database, a comprehensive resource of prokaryotic genome sequences (containing 627,182
176  contigs from 12,221 genomes; Fig. 2f and Supplementary Figure S10).2° Using a single CPU,
177  GECCO was over three times faster than both antiSMASH and DeepBGC (Fig. 2f and
178  Supplementary Figure S10).

179 Taken together, this comparative evaluation, to our knowledge, is the most
180  comprehensive benchmarking of de novo BGC prediction tools conducted to date. It clearly
181  demonstrates that GECCO greatly improves the accuracy of in silico BGC identification over
182  the state of the art, while also being computationally efficient.

183 GECCO’s CRF-based approach provides insight into the biosynthetic potential of
184  microbes

185 To compare GECCO BGC predictions to those produced by other tools on a real-world
186  data set, each of GECCO, DeepBGC, and antiSMASH were used to identify and classify BGCs
187  among all 12,221 representative genomes in the proGenomes2 database. Notably, the majority
188  of BGCs predicted by either GECCO or DeepBGC were not detected using the rule-based
189  approach implemented in antiSMASH (n = 59,041 antiSMASH BGCs using default
190  parameters; Fig. 3ab). Overall, GECCO predicted nearly twice as many BGCs as antiSMASH,
191  but far fewer than DeepBGC (n = 115,131 and 470,137 GECCO and DeepBGC BGCs,
192  respectively), consistent with the above evaluations showing a clear tendency of GECCO to
193  produce fewer false positives and fragmented predictions (Fig. 2a-c,e and Supplementary

194  Figures S4-S7).
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195 To investigate which protein domains GECCO relied on for BGC detection, we first
196  analyzed which protein domains were retained in the first feature elimination step. Notably,
197  nearly half of all GECCO protein domains (2,382 of 5,255 total GECCO protein domains,
198  45.3%) were derived from the TIGRFAM database (Fig. 3c), highlighting the complementary
199  nature of the Pfam and TIGRFAM databases for BGC prediction optimization. When compared
200 to a collection of protein domains previously associated with secondary metabolism (used by
201  BiG-SLiCE v1.1.0)?!, nearly half of these core biosynthetic domains were included in
202 GECCO’s model (937 of 2,027 BiG-SLiCE core domains, 46.2%; Fig. 3c). Domains in the
203  core biosynthetic set/GECCO intersection received more positive (i.e., BGC-associated) CRF
204  weights relative to TIGRFAM domains not present in the core biosynthetic domain set, but not
205 relative to Pfam domains not present in the core biosynthetic domain set (two-sided Mann-
206  Whitney U test raw P = 3.12e-07 and 0.10, respectively; Fig. 3c). However, many other
207  domains outside of the comparatively small core biosynthetic space received CRF weights with
208 comparably high (absolute) values. Domains with negative weights were important for
209  capturing non-BGC regions (Fig. 3c); however, some of the most highly weighted (i.e., BGC-
210  associated) domains were not members of the core biosynthetic set (Fig. 3c, Supplementary
211 Table S1). Among these (CRF weight > 4.0) were (i) terpene synthase family 2, C-terminal
212  metal binding domain PF19086 and (ii) lantibiotic alpha domain PF14867, both of which have
213  previously been associated with secondary metabolite production (Fig. 3c, Supplementary
214  Table S1). Interestingly, among the highest-weighted, BGC-associated domains (CRF weight
215 > 2.0) that were not members of the core biosynthetic set were three domains of unknown
216  function (DUF): (i) PF19155 (DUF5837), which is associated with a cyanobactin (RiPP) BGC,
217  tenuecyclamide A (MIBiG ID BGC0000480); (ii) PF11379 (DUF3182), a Proteobacteria-
218  restricted protein of unknown function (InterPro ID IPR021519); (ii1) PF17537 (DUF5455), a

219  protein of unknown function found in Proteobacteria, which contains three predicted trans-
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220 membrane regions (InterPro ID IPR035210; Supplementary Table S1). Their importance for
221 BGC prediction with GECCO suggests that functional studies of these domains in the context
222  of secondary metabolism are warranted.

223 To be able to observe coherent biological functions among the domain weights learned
224 by the GECCO CREF, beyond the most strongly associated domains, we used Gene Ontology
225  (GO)?? and Pfam (structural) clan'® annotations. This led to the identification of 33 biological
226  processes (BPs) and 22 molecular functions (MFs) enriched in BGCs (topGO Kolmogorov-
227  Smirnov P < 0.05), with “defense response to bacterium” (GO:0042742), “secondary
228 metabolite biosynthetic process” (G0:0044550), “isoprenoid biosynthetic process”
229  (GO:0008299), and “toxin metabolic process” (G0O:0009404) showcasing the strongest
230  associations (all BGC enrichment scores > 2.5; Fig. 3d and Supplementary Figure S11). Three
231  Pfam clans were additionally enriched in BGCs (false discovery rate-corrected P < 0.10):
232 Alpha/Beta hydrolase fold (CL0028), CoA-dependent acyltransferase superfamily (CL0149),
233  and Double-Glycine leader-peptide cleavage motif (CL0400; Fig. 3e and Supplementary
234  Figure S12). Collectively, these results indicate that the GECCO CRF relies on domains
235  associated with secondary metabolite production for BGC inference.

236  DISCUSSION

237 ML approaches have revolutionized numerous disciplines and are being increasingly
238  employed to solve problems in biological and medical realms.?*> Models that can account for
239  sequential data are particularly attractive when leveraging genomic data to make predictions,
240  as feature context and order (e.g., for genes, domains) may be important.” CRFs specifically
241 have played a crucial role in sequential modeling tasks and have been used extensively in areas
242  such as natural language processing (NLP), where they frequently outperform their generative

243  counterparts.!!3
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244 Recently, deep learning approaches have become popular methods for processing
245  sequential data. However, these models often require a great deal of training data and/or pre-
246  training efforts to show marked improvements over classical ML models.!¢ This is relevant for
247  BGC identification, as the need for experimental characterization of “true” BGCs limits the
248  amount of training data for these approaches; for example, the current version of MIBiG (v2.0)
249  contains only 1,923 experimentally validated BGCs (with some being very closely related to
250  one another, and thus of limited value as training data).!” Here, we showed that, with the
251  relatively limited amount of known BGCs available, the linear CRF implemented in GECCO
252  outperforms DeepBGC’s BiLSTM approach, achieving higher accuracy at reduced training
253  and prediction time.

254 An additional advantage of CRFs over deep learning approaches is that the former are
255  inherently “simpler” and thus more interpretable (whereas “black box” RNNs require
256  substantial additional efforts to “explain” their behavior).!®2627 In the context of BGC mining,
257 an interpretable model can provide insights into genomic mechanisms of secondary
258  metabolism; here, introspection of GECCO’s CRF identified numerous intuitive biological and
259  molecular characteristics that were highly associated with BGC presence. The highly BGC-
260  enriched GO:0042742 and CL0400 terms (corresponding to "defense response to bacterium"
261  and "Double-Glycine leader-peptide cleavage motif", respectively), for example, are typical of
262  bacteriocin RiPPs often exported by ABC transporters,?® while BGC-enriched CL0149 (“CoA-
263  dependent acyltransferase superfamily”) and GO:0008299 (“isoprenoid biosynthetic process”)
264  are associated with polyketide synthases and terpenes, respectively.?*** Furthermore, we
265  identified numerous BGC-associated domains, which had not been included among domain
266  sets previously associated with secondary metabolism, including three highly BGC-associated
267  domains of unknown function. These results not only provide insight into BGC architecture

268  and function, but may be leveraged in the future to improve BGC annotation and identify “high-
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269  confidence”, putative novel BGCs, which can be targeted by experimentalists. In conclusion,
270 GECCO’s CRF-based approach used here showcases that model interpretability and
271 computational efficiency can be realised with simultaneous gains in accuracy of de novo BGC
272  identification.

273 METHODS

274  Data acquisition and feature construction. A total of 8,000 randomly selected host-
275  associated prokaryotic contigs were downloaded from the proGenomes2 v12 database?

276  (https://progenomes.embl.de/index.cgi) to serve as candidate BGC-negative instances for

277  training, CV, and testing (accessed 15 July 2020). A Python implementation of the OrthoANI

278  algorithm?! (https://github.com/althonos/orthoani) was used to calculate average nucleotide

279  identity (ANI) values between all pairs of candidate contigs. To eliminate the potential risk of
280 training data leakage during CV and testing, a diverse subset of these prokaryotic contigs were
281  selected in which all selected contigs were confirmed to share (i) < 85 ANI with each other and
282  (ii) < 80 ANI with all contigs in the external test set used by Hannigan, et al.” (see section
283  “Validation of CRF performance on external test data” below).

284 Prodigal v2.6.3%? was used to identify ORFs within each of the selected contigs in
285 metagenomic mode (“-p meta”; Supplementary Figure S2). For each contig, the hmmsearch
286  command in HMMER v3.3.1% was used to identify protein domains within the resulting amino
287  acid sequences, using pHMMs from each of the following databases/combinations of
288  databases: (i) Pfam v31.0%%; (ii) Pfam v32.0%%; (iii) Pfam v33.1'%; (iv) TIGRFAM v15.0'%; (v)
289 PANTHER v15.0°%; (vi) Pfam v32.0, TIGRFAM v15.0, and PANTHER v15.0; (vii) Pfam
290 v33.1, TIGRFAM v15.0, and PANTHER v15.0; (viii) Pfam v33.1 and TIGRFAM v15.0; (ix)
291  Pfam v33.1, TIGRFAM v15.0, ASPeptides (from antiSMASH v5.1)!!, smCOGs (from
292  antiSMASH v5.1),'"" and dbCAN v3.0%; (x) Pfam v33.1, TIGRFAM v15.0, and Resfams

293  v1.2%7; (xi) Pfam v33.1, TIGRFAM v15.0, dbCAN v3.0, smCOGs v5.1, and Resfams v1.2;
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294  (xii) Pfam v33.1, TIGRFAM v15.0, and smCOGs v5.1; (xiii) Pfam v33.1, TIGRFAM v15.0,
295 smCOGs v5.1, and Resfams v1.2; (xiv) Pfam v33.1 and TIGRFAM vl15.1 (Supplementary
296  Figure S2). The resulting ORFs and their respective domains were stored in tabular format and
297  ordered by their start coordinates (referred to hereafter as the “feature table”), and domains
298  with an E-value < 1E-5 were maintained. The command-line implementation of antiSMASH
299  v4.2.0% was then used to identify the coordinates of known BGCs in all selected contigs (using
300  default settings), and ORFs/domains that overlapped with the resulting known BGC regions
301  were removed from the feature table, yielding a final BGC-negative feature table for each
302  prokaryotic contig (Supplementary Figure S2).

303 To construct a set of BGC-positive instances, the amino acid sequences and metadata
304 for all BGCs within MIBiG v2.0!7 (https://mibig.secondarymetabolites.org/download) were
305 downloaded (n = 1,923). To prevent training data leakage during testing, the diamond blastp
306 command in DIAMOND v0.9.13% was used to align the amino acid sequences of all genomes
307  present in the external test data set (see section “Validation of CRF performance on external
308 testdata” below) to the MIBiG BGC amino acid sequences, using minimum amino acid identity
309 (id) and query coverage thresholds (query-cover) of 50% each, and a maximum E-value
310  threshold of 1E-5. MIBiG BGCs were removed from the training set if 50% or more of their
311 amino acid sequences were detected in any test set contigs using DIAMOND and the
312  aforementioned thresholds, yielding a final set of 1,137 MIBiG v2.0 BGCs for training and
313 CV.HMMER was used to identify Pfam domains within the amino acid sequences of the BGCs
314  as described above, producing a BGC-positive feature table for each of 1,137 MIBiG v2.0
315 BGCs.

316 To construct a final training set that contained both negative and positive BGC
317  instances, the feature table for a randomly selected MIBiG v2.0 BGC (i.e., a positive instance)

318  was randomly embedded into the feature table of a randomly selected member of the masked,


https://doi.org/10.1101/2021.05.03.442509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442509; this version posted May 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

319  BGC-negative contigs (i.e., a negative instance). This approach yielded a final set of 1,137
320  contigs that each contained a single MIBiG v2.0 BGC with known coordinates (Supplementary
321  Figure S2).

322  CREF training and cross-validation. For each pHMM database combination (n = 14; see
323  section “Data acquisition and feature construction” above), a two-state CRF was trained using
324  the CRF architecture implemented in CRFsuite v0.12.% Briefly, for each CRF, features
325  consisted of an ordered list of Python dictionaries, each containing domains identified in each
326 amino acid sequence using the respective pHMMs. Output states corresponded to the
327  probability that a given domain was part of a BGC or not, coded as 1 and 0, respectively (Fig.
328 1). Additionally, for each pHMM database combination, a feature selection approach was

329 employed, in which the two-sided Fisher’s Exact Test (FET) implemented in the fisher v0.1.9

330 Python package (implemented as a Cython extension; https://pypi.org/project/fisher) was
331 nested into training fold(s) and used to identify domains associated with BGC
332  presence/absence; the top domains that were associated with the binary outcome variable at a
333  threshold T after employing a false-discovery rate correction remained in the model. For each
334 pHMM database combination, values of 7 ranging from 0.05 to 1.0 in increments of 0.05 were
335  tested.

336 Each combination of pHMM database(s)/feature selection threshold 7" was evaluated
337  using ten-fold CV, using the Kfold function in scikit-learn v0.22.14° and the sequence ID of
338 each ORF treated as a group (i.e., to ensure that each ORF was contained within a single fold
339  and not split across multiple folds; Supplementary Figure S3). For all models that employed it,
340 the FET feature selection approach was nested into training fold(s) to avoid overfitting.
341  Optimization of the ¢/ and c¢2 CRF hyperparameters (which correspond to L1 and L2
342  regularization coefficients, respectively) was additionally performed within CV folds, in which

343  either ¢/ or ¢2 was set to 0.15, while the value of the other hyperparameter was set to one of
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344 [0, 0.1, 0.15, 1, 2, 10]. Model performance was evaluated using the following metrics, with
345  scikit-learn and Matplotlib v3.3.4*'mused to construct all curves: (i) per-protein ROC curves;
346  (ii) per-protein PR curves; (iii) 1 and (iv) AUPR score versus fraction of FET-selected
347  features. The model selected as the final CRF to be implemented in GECCO (i.e., the CRF
348  trained on BGCs derived from MIBiG v2.0, using domains from Pfam v33.1 and TIGRFAM
349  v15.0, FET inclusion threshold 7'= 0.35, and ¢/ = ¢2 = 0.15; Supplementary Figure S3) was
350 additionally evaluated using LOTO CV for each MIBiG biosynthetic class, with BGCs
351  assigned to multiple biosynthetic classes excluded (Supplementary Figure S8).

352  Validation of CRF performance on external test data. The (i) six genome test set and (ii)
353  nine genome bootstrap set used by Hannigan, et al.” (see Supplementary Tables S4 and S3 of
354  Hannigan, et al.?, respectively) were used as external test sets to evaluate the performance of
355 the GECCO CRF (see section “CRF training and cross-validation” above). To construct an
356  extensive third external test set comprising known BGC and non-BGC regions, BGCs that were
357  present in MIBiG v2.0 but absent from MIBiG v1.3 were each embedded into a randomly
358  selected prokaryotic contig as described above (see section “Data acquisition and feature
359  construction” above; Supplementary Figure S2). For this external test set, DIAMOND was
360 used to identify potentially redundant BGCs in MIBiG v2.0 that aligned to BGCs in MIBiG
361  v1.3, using the blastp thresholds described above (see section “Data acquisition and feature
362  construction” above); contigs that contained these potentially redundant BGCs were removed
363 from the external test set to avoid training data leakage during testing, yielding a final set of
364 376 contigs that each contained a single BGC present in MIBiG v2.0 but absent from MIBiG
365  v1.3 (referred to as the “376-genome test set”).

366 To avoid training leakage into the 376-genome test set, the GECCO CREF (see section
367  “CRF training and cross-validation” above) was re-trained on BGCs available in MIBiG v1.3

368 and was used to predict BGC presence/absence in each genome in the three test sets (i.e., the
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369  six-, nine-, and 376-genome test sets; Fig. 2 and Supplementary Figures S4-S7). The ability of
370  each of the following methods to predict BGC presence/absence was additionally evaluated on
371  each of the three test sets (Fig. 2a-c,e and Supplementary Figure S6): (i) DeepBGC v0.1.18°%;
372  (ii) the original ClusterFinder’ algorithm, implemented in DeepBGC v0.1.18; (iii) the retrained
373  version of the ClusterFinder algorithm, implemented in DeepBGC v0.1.18 (re-trained on BGCs
374  available in MIBiG v1.3); (iv) a re-trained implementation of DeepBGC, which was trained on
375  the exact positive and negative BGC instances used to retrain the GECCO CRF, using BGCs
376  available in MIBiG v1.3 (using DeepBGC'’s “train” function). The re-trained implementation
377  of DeepBGC (iv) was additionally evaluated relative to the re-trained implementation of the
378 GECCO CREF (i.e., trained on BGCs from MIBiG v1.3) using 10-fold CV, where both models
379  were trained and tested on identical folds (see section “CRF training and cross-validation”
380 above; Supplementary Figure S5). For all models, performance was evaluated using: per-
381  domain (i) ROC and (ii) PR curves; (iii) segment overlap PR curves (Supplementary Figure
382  S4), using minimum overlap thresholds of 25, 50, and 75% (Fig. 2a-c, Supplementary Figure
383  S6-S7).

384  Prediction of biosynthetic class. To assign the BGCs that the GECCO CREF predicted to one
385  or more of the six biosynthetic classes in MIBiG v2.0 (with MIBiG’s “Other” class excluded),
386  the following classifiers were trained (Supplementary Figure S9): (i) a random forest classifier,
387  using the scikit-learn RandomForestClassifier function; (ii) an ExtraTrees classifier, using the
388  scikit-learn ExtraTreesClassifier function; (iii) a k-nearest neighbors (kNN) classifier, using
389  the scikit-learn KNeighborsClassifier function, a cosine distance metric, and number of
390 neighbors n = 3; (iv) the aforementioned kNN, with n = 15. For each classifier, BGCs were
391  represented by compositional vectors, where individual features corresponded to the fraction
392  of a particular domain present in the BGC. For example, a predicted BGC with 2 domains 4,

393  one domain B, and one domain C would be represented by domain composition vector [4: 0.5,
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394  B:0.25, C: 0.25], assuming A4, B, and C are the only possible domains. The ability of each
395 classifier to predict MIBiG biosynthetic class was evaluated using five-fold CV via the
396 cross _val predict function in scikit-learn, and the random forest was implemented as the final
397  Dbiosynthetic classifier in GECCO (Supplementary Figure S9).

398 BGC identification in prokaryotic genomes. Each of the following methods was used to
399 identify BGCs in all representative genomes available in the proGenomes2 v12 database? (n
400 =12,221; accessed 15 July 2020): (i) the GECCO CRF trained on BGCs available in MIBiG
401 v2.0 (i.e., the final model implemented in GECCO, run using default parameters); (ii)
402  antiSMASH v4.2.08 (run using default parameters); (iii) DeepBGC v0.1.18° (run using default
403  parameters with the addition of DeepBGC’s “--prodigal-meta-mode” option, as GECCO uses
404  this option for BGC detection by default; Fig. 3ab). antiSMASH-to-MIBiG type mappings
405 from BiG-SLiCE v1.1.0*! were used to map antiSMASH biosynthetic types to MIBiG
406  biosynthetic types (used by DeepBGC and GECCO; Supplementary Table S2). The three
407  aforementioned BGC detection/classification methods were additionally applied to the
408 following data sets to assess their speed using a single CPU (Fig. 2f and Supplementary Figure
409  S10): (i) contigs in each of the three test sets (i.e., the six-, nine-, and 376-genome test sets, n
410 =395 contigs; see section “Validation of CRF performance on external test data” above); (ii)

411  the 12,221 proGenomes2 representative genomes. Plots were constructed in R v3.6.14

using
412 ggplot2 v3.3.3.%

413  Comparison of GECCO and BiG-SLiCE domain sets. Domains that were included in the
414  optimized GECCO pHMMs based on their FET association with BGC presence/absence (see
415  section “CRF training and cross-validation” above) were compared to protein domains used by
416  BiG-SLiCE v1.1.0.2! BiG-SLiCE, which is designed to cluster antiSMASH BGCs into Gene

417  Cluster Families, relies on a set of core biosynthetic domains for BGC annotation and

418  clustering. Domains within the GECCO pHMMs were compared to all publicly available core


https://doi.org/10.1101/2021.05.03.442509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442509; this version posted May 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

419  biosynthetic BiG-SLiCE domains with a reported accession number, as well as BiG-SLiCE’s
420 larger set of “BioPfam” domains (identical to the Pfam v33.1 database) by finding the union of

421  the three domain sets and plotting via venn.js (https:/github.com/benfred/venn.js/) and

422  Matplotlib (Fig. 3c and Supplementary Table S1). Three independent, two-group Mann-
423  Whitney U tests were used to compare CRF weights associated with the following GECCO
424  domain sets, using the “wilcox.test” function in R, with parameters set to perform an unpaired
425  (paired = F), two-sided (alternative = "two.sided") test using a normal approximation (exact =
426  F) and a continuity correction (correct = T) : (i) GECCO domains included in BiG-SLiCE’s
427  core biosynthetic domain set; (ii)) GECCO Pfam domains excluded from BiG-SLiCE’s core
428  biosynthetic domain set; (iii) GECCO Tigrfam domains excluded from BiG-SLiCE’s core
429  biosynthetic domain set. Tests between groups (1)/(iii) and (ii)/(iii) were statistically significant
430  after a Bonferroni correction (raw P = 3.12e-07 and 5.75e-06, respectively), but not groups
431 (1)/(i1) (raw P =0.10).

432 GO term enrichment. Weights associated with each protein domain were extracted from the
433  trained GECCO CREF instance, and all available GO terms for each domain were retrieved from
434  InterPro (n = 2,722 domains with one or more assigned GO terms, out of 5,255 total
435  domains).?>* To identify over-represented GO terms associated with BGC presence (i.e.,
436  BGC-enriched GO terms), domains were assigned ranks based on their weights, where the
437  domain with the highest weight (i.e., PF14867, with weight 4.190953) was assigned a value of
438  “1”, and the domain with the lowest weight (i.e., PF02881, with weight -1.798162) was
439  assigned a value of “2722”. For each of the (i) Biological Process and (ii) Molecular Function
440 GO ontologies, the runTest function in the topGO v2.36.0 package* in R v3.6.1 was used to
441  perform a Kolmogorov-Smirnov (KS) test (statistic = “ks”), using the “weight01” algorithm
442  (algorithm = “weight01”) to account for the GO graph topology.*> Enrichment scores were

443  calculated for all statistically significant (P < 0.05) GO terms by negating the base-10 logarithm
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444  of the resulting P-values. The aforementioned steps were repeated to identify over-represented
445 GO terms associated with BGC-absence, using (i) domains ranked by weight from lowest-to-
446  highest (i.e., the domain with the lowest weight was assigned a value of “1”, and the domain
447  with the highest weight was assigned a value of “2722”) and (ii) enrichment scores
448  corresponding to the non-negated base-10 logarithms of the resulting P-values. topGO’s
449  weightO1 algorithm calculates the P-value of a GO term conditioned on neighbouring GO
450 terms; therefore, tests were considered not independent, and P-values were interpreted as
451  inherently corrected.*> Enrichment scores were plotted using the ggplot2 package in R (Fig. 3d
452  and Supplementary Figure S11).

453  Pfam clan enrichment. Weights associated with each Pfam protein domain were extracted
454  from the trained GECCO CRF instance, and all available Pfam domain-to-clan mappings were
455  retrieved for Pfam v33.1 via FTP (n = 1,907 Pfam domains with an assigned clan, out of 2,873
456  total Pfam domains).!” A (i) vector of raw Pfam domain weights (ordered from highest-to-
457  lowest) and (ii) list of clan-to-domain mappings were supplied to the fgsea function from the
458  fgsea v1.10.1 R package*®*’, which was used to identify BGC- and non-BGC-enriched Pfam
459  clans, using 1 million permutations (nperm = 1000000), a minimum clan size of three (minSize
460 = 3), and no maximum clan size limit. For significantly enriched clans (false discovery rate-
461  corrected P < 0.10), ggplot2 was used to plot (i) fgsea normalized enrichment scores (NES)
462  and (ii) the negated base-10 logarithm of the false discovery rate-corrected P-values (Fig. 3e
463  and Supplementary Figure S12)

464 Data  availability. Training and test data can be downloaded from
465  https://github.com/zellerlab/GECCO/releases/tag/v0.6.0. GECCO CRF weights are available
466  in Supplementary Table S1.

467  Code availability. GECCO code is free and publicly available at https://gecco.embl.de.
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627 FIGURE LEGENDS

628  Figure 1. Graphical depiction of the biosynthetic gene cluster (BGC) identification and
629 classification approach developed here and implemented in GECCO (GEne Cluster prediction
630  with COnditional random fields). Briefly, GECCO identifies open reading frames (ORFs) in
631 an assembled prokaryotic (meta)genome (Step 1). Protein domains are annotated in the
632  resulting ORFs using profile hidden Markov models (pHMMSs; Step 2). The resulting ordered
633  domain vectors are treated as features, and a conditional random field (CRF) is used to predict
634  whether each feature belongs to a BGC or not (Step 3). Predicted BGCs are classified into one
635  of six major biosynthetic classes as defined in the Minimum Information about a Biosynthetic
636  Gene cluster (MIBiG) database using a Random Forest classifier (Step 4).

637

638  Figure 2. (a) Domain-level receiver-operating characteristic (ROC) curves, (b) domain-level
639  precision-recall (PR) curves comparing original and retrained implementations of
640  ClusterFinder (ClusterFinder-Original and ClusterFinder-Retrained, respectively) and
641  DeepBGC (DeepBGC-Original and DeepBGC-Retrained, respectively) with GECCO (trained
642  onasubset of Pfam v33.1 and Tigrfam v15.0 domains). (¢) PR curves calculated from segment
643  overlap (>50%) of predicted and known BGCs (see Supplementary Figures S4 and S7). All
644  models (a-c) were trained on BGCs from MIBiG v1.3, evaluated on BGCs from MIBiG v2.0
645 not contained in v1.3 (i.e., the 376-genome test set); area under the curve (AUROC and AUPR)
646  values are reported in legends. (d) AUPR values (Y-axis) versus percentage of Fisher’s Exact
647  Test-selected features (7; X-axis) included in CRFs trained on BGCs from MIBiG v2.0, using
648 domains from several (combinations of) databases (see inset). The default value of 7 chosen
649  for GECCO is denoted by the dashed line (7= 0.35). (e) Histogram of predicted BGC lengths
650 (in number of genes; X-axis) relative to true lengths among genomes in the 376-genome test

651  set. The Y-axis denotes the percentage of total BGC predictions for each method. (f) Runtime
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652  per contig required to detect and classify BGCs in each test set using antiSMASH, DeepBGC,
653 and GECCO.

654

655  Figure 3. (a) Venn diagram of biosynthetic gene cluster (BGC) overlap, constructed using the
656  presence and absence of individual genes in BGCs identified in 12,221 representative microbial
657  genomes available in the proGenomes2 database using each of antiSMASH, DeepBGC, and
658 GECCO. If a gene was contained within BGC predictions of more than one method, it was
659  counted in the respective intersection area. (b) Predicted MIBiG biosynthetic classes (X-axis)
660 associated with BGCs identified in the same 12,221 genomes using each of antiSMASH,
661  DeepBGC, and GECCO. The Y-axis denotes the number of BGCs assigned to a given
662  biosynthetic class. BGCs assigned to multiple classes are omitted. (¢) Venn diagram and
663  boxplots of GECCO CRF weights (X-axis), constructed using protein domains used by (i)
664 GECCO, (ii) BiG-SLiCE, and (iii) and Pfam v33.1. GECCO domains were derived from either
665 Pfam v33.1 or Tigrfam v15.0 and were selected based on their association with BGC
666  presence/absence using Fisher’s Exact Test (FET) and an FET-inclusion threshold (7) of 35%
667 (7= 0.35). BiG-SLiCE domains correspond to those present in the core biosynthetic domain
668  setused by BiG-SLiCE v1.1.0. (d) Top Gene Ontology (GO) terms (Y-axis) enriched in BGCs,
669  obtained using the Kolmogorov-Smirnov test/weight01 algorithm implemented in topGO
670  (enrichment significance > 2.75). (e) Pfam clans (Y-axis) enriched in BGCs (X-axis; false
671  discovery rate [FDR]-adjusted P < 0.10). Normalized Enrichment Scores (NES) were obtained
672  using the fgsea R package. For (d and e), enrichment significance values correspond to the

673 negated base-10 logarithm of each term’s P-value.
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