

Evaluation of Safety and Immunogenicity of an Adjuvanted, TH-1 Skewed, Whole Virion Inactivated SARS-CoV-2 Vaccine - BBV152

3

4

5 Authors:

6 Brunda Ganneru¹, Harsh Jogdand¹, Vijaya Kumar Dharam¹, Narasimha Reddy Molugu¹, Sai D
7 Prasad¹, Srinivas Vellimudu¹, Krishna M Ella¹, Rajaram Ravikrishnan², Amit Awasthi³, Jomy Jose²,
8 Panduranga Rao¹, Deepak Kumar¹, Raches Ella¹, Priya Abraham⁴, Pragya Yadav⁴, Gajanan N Sapkal⁴,
9 Anita Shete⁴, Gururaj Rao Desphande⁴, Sreelekshmy Mohandas⁴, Atanu Basu⁴, Nivedita Gupta⁵,
10 Krishna Mohan Vadrevu¹.

11

12 Affiliations

13 ¹Bharat Biotech International Ltd, Hyderabad, India;

14 ²RCC Labs, Hyderabad

15 ³Translational Health Sciences and Technology Institute, Faridabad, India

16 ⁴ National Institute of Virology-Indian Council of Medical Research, India;

17 5 Indian Council of Medical Research, India

18

19

20 Corresponding author:

21 Dr. Baches Ella

22 Head of Business Development & Advocacy

23 ellar@bharathbiotech.com

24

25 Word counts:

26 Abstract = 148/150
27 Text = (3833/5000) [excluding abstract, methods, references, figure legends)
28 Methods= (3000/3000)
29 Tables = 2; Figures = 4; References = 39/60

30

31

32

33

34

35 **ABSTRACT**

36 We report the development and evaluation of safety and immunogenicity of a whole virion
37 inactivated SARS-CoV-2 vaccine (BBV152), adjuvanted with aluminium hydroxide gel (Algel), or a
38 novel TLR7/8 agonist adsorbed Algel. We used a well-characterized SARS-CoV-2 strain and an
39 established vero cell platform to produce large-scale GMP grade highly purified inactivated antigen,
40 BBV152. Product development and manufacturing were carried out in a BSL-3 facility.
41 Immunogenicity was determined at two antigen concentrations (3 μ g and 6 μ g), with two different
42 adjuvants, in mice, rats, and rabbits. Our results show that BBV152 vaccine formulations generated
43 significantly high antigen-binding and neutralizing antibody titers, at both concentrations, in all three
44 species with excellent safety profiles. The inactivated vaccine formulation containing TLR7/8 agonist
45 adjuvant-induced Th1 biased antibody responses with elevated IgG2a/IgG1 ratio and increased
46 levels of SARS-CoV-2 specific IFN- γ CD4 T lymphocyte response. Our results support further
47 development for Phase I/II clinical trials in humans.

48

49 **Keywords:** SARS-CoV-2; covid vaccine; COVID-19; covaxin; BBV152

50

51 **1. Introduction**

52 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a novel human coronavirus ¹, has
53 spread to almost every country in the world. SARS-CoV-2 belongs to β -genus of serbecovirus and is a

54 close relative of SARS-CoV with close to 80% sequence identify. The World Health Organization
55 (WHO) declared the disease caused by SARS-CoV-2, Coronavirus Disease-19 (COVID19), a pandemic
56 in March 2020. So far, SARS-CoV-2 has infected more than 25 million people causing close to
57 850,000 deaths. It is, therefore, imperative to develop effective prophylactic and therapeutic
58 countermeasures to prevent and treat COVID19.

59

60 The development of a safe and effective vaccine has become a top priority globally to prevent the
61 spread of SARS-CoV-2 infection during the pandemic. Numerous vaccine candidates are in the
62 preclinical and clinical trial stages. However, meeting the global need for billions of doses of COVID-
63 19 vaccines will require collective effort to identify, evaluate, validate, and manufacture effective
64 vaccines. Inactivated vaccines for viral diseases have been licensed for decades with well-established
65 safety profiles². The availability of well-characterized vero cell manufacturing platform with proven
66 safety in other licensed, live, and inactivated vaccines have aided in rapid vaccine development ^{3, 4, 5,}
67 ^{6, 7}. Prior experience in developing inactivated had given us the confidence to develop a fully
68 inactivated with an intact virion, imperative for obtaining an antigen that will yield high
69 immunogenicity. Therefore, to facilitate the development of an effective COVID19 vaccine, we have
70 used a well-characterized SARS-CoV-2 strain and an established vero cell (CCL-81) platform to
71 produce large-scale GMP grade highly purified BBV152 vaccine candidate. It has to be mentioned
72 here that there are several vaccine candidates at different stages of clinical development, such as
73 adenovirus-vectored vaccines, recombinant protein-based, and inactivated vaccines. The inactivated
74 vaccine (PiCoVacc) and the recombinant vaccine (CoV-RBD219N1), which are aluminium adjuvant
75 formulations, have been shown to generate high levels of neutralizing antibodies (NAb) to the S-
76 protein, which could play an important role in vaccine efficacy. Hence, the development of
77 inactivated vaccines for COVID-19 disease prevention appears to be a rational approach, while
78 recognizing the fact that such inactivated vaccines with alum adjuvant specifically induce T helper 2
79 cells.

80

81 While the development of safe and effective coronavirus vaccines is a priority, vaccine-induced
82 disease enhancement observed in preclinical animal models due to Th2-like immunity is a concern.
83 To circumvent the Th-2 bias and to develop a safe vaccine, we formulated a new adjuvant that
84 contains an imidaquinoquinoline class TLR7/8 agonist adsorbed to Algel. TLR7/8 agonists induce

85 strong type I interferon responses from dendritic cells and monocyte-macrophages that facilitate the
86 development of Th1 biased immunity instead of a pathogenic Th2-biased immunity⁸.

87 Here, we report the immunogenicity and safety evaluation of the whole virion inactivated SARS-CoV-
88 2 vaccine candidate BBV152, which was evaluated at three antigen concentrations (3,6, and 9 μ g)
89 and two adjuvants in three animal models, i.e., mice, rats, and rabbits. Our results show that these
90 vaccine formulations induced significantly elevated titers of antigen binding and neutralizing
91 antibodies in all animal models tested without any safety concerns. We also show that the vaccine
92 was formulated with Algel-adsorbed TLR7/8 agonist-induced Th1 biased immunity with significantly
93 elevated SARS-CoV-2 specific IFN β + CD4 T cell response. Collectively these results demonstrate that
94 the BBV152 vaccine candidate induces protective and durable NAb and T cell responses. As a result,
95 BBV152 vaccine candidate has been considered for phase I clinical trials.

96

97 **2. Results**

98 **2.1 Isolation and selection of SARS-CoV-2 strain for vaccine candidate preparation.**

99 During the initial outbreak of SARS-CoV-2 in India, specimens from 12 infected patients were
100 collected and sequenced at the Indian Council of Medical Research-National Institute of Virology
101 (ICMR-NIV), India, a WHO Collaborating Center for Emerging Viral Infections⁹. The SARS-CoV-2 strain
102 (NIV-2020-770) used in developing the BBV152 vaccine candidate was retrieved from tourists who
103 arrived in New Delhi, India^{10,11}. The sample propagation and virus isolation were performed in the
104 Vero CCL-81. The SARS-CoV-2 sequence was deposited in the GISAID (EPI_ISL_420545). The BBV152
105 vaccine candidate strain is located in the (G clade), also represented as '20A' clade that is the most
106 prevalent strain in India (followed by '19A') as per data represented in the Next strain analysis of the
107 Indian analysis¹². In terms of the overall divergence of SARS-CoV-2, this strain is 99.97% identical to
108 the earliest strain Wuhan Hu-1¹³. The multiple passages done in the Vero CCL-81 demonstrated the
109 genetic stability of the virus. The next-generation sequencing (NGS) reads generated from the
110 nucleotide sequences of the BBV152 vaccine candidate strain and its passage one at PID-3 was found
111 to be comparable with the SARS-CoV-2 Wuhan Hu-1 strain (**Table 1**). A maximum difference of
112 0.075% in the nucleotides was observed, indicating negligible changes in the different batches of the
113 samples analyzed—these results showed genetic stability of the NIV-2020-770 strain for further
114 vaccine development. The seed virus (NIV 2020-770 strain) was transferred from ICMR-NIV to Bharat
115 Biotech, India. Samples from different drug Substance batches of BBIL, along with the original virus,
116 clustered into a single group and indicate an origin from previous passages.

117

118 **2.2 Vaccine candidate preparation**

119 GMP production of virus bulk was standardized in bioreactors. The seed virus was adapted to a
120 highly characterized GMP vero cell platform, amplified to produce the master and working virus
121 bank. The master virus bank was characterized based on WHO Technical Report Series guidelines
122 (identity, sterility, mycoplasma, virus titration, adventitious agents, hemadsorption, virus identity by
123 Next Generation Sequencing. The viral RNA isolated from the master virus bank (MVB) was
124 sequenced using NGS the platform at ICMR-NIV and Eurofins Bangalore, India. The sequence
125 reconfirmed the identity of MVB as the NIV 2020-770 strain of SARS-CoV-2.

126

127 Vero cells and virus were propagated in the bio-safety level-3 (BSL-3) facility using bioreactors.
128 Growth kinetics analysis showed that the stock replicated to $7.0 \log_{10} \text{TCID}_{50}$ between 36- and 72-
129 hours protection. β -propiolactone was utilized for the inactivation of the virus by mixing the virus
130 stock between 2-8°C. During the inactivation kinetics experiments with varying conditions and
131 concentrations, samples were collected at various time points (between 0 to 24 hours, at 4-hour
132 intervals) to evaluate the cytopathic effect of live virus. Three consecutive inactivation procedures
133 were performed to ensure complete viral inactivation without affecting the antigen stability (Figure
134 1A). Transmission electron microscopy (TEM) analysis showed that the inactivated and purified virus
135 particles were intact, oval-shaped, and were accompanied by a crown-like structure representing the
136 well-defined spike on the virus membrane (Figure 1B) Inactivated and purified virus was also
137 characterized by western blot for its identity with SARS-CoV-2 specific antibodies using various
138 stages of vaccine candidate development such as cell harvest, clarified supernatant, post-
139 inactivation, and purification. Western blot analysis showed distinct bands of all proteins. Purified
140 and inactivated whole virion antigen produced from three production batches were probed with
141 anti-Spike (S1 & S2), anti-RBD, and anti-N protein (Figure 1C). These results showed that the final
142 purified inactivated bulk of the vaccine candidate is highly pure and contains S (S1, S2), RBD, and N
143 protein bands with their corresponding equivalent molecular weight.

144

145

146 **2.3 Vaccine formulations with adjuvants.**

147 BBV152 vaccine candidates were formulated with two alum adjuvants: Algel (aluminium hydroxide
148 gel) and Algel-IMDG, an imidazoquinoline class molecule (TLR7/TLR8 agonist abbreviated as IMDG)
149 adsorbed on aluminium hydroxide gel. The agonist molecule for Algel-IMDG was licensed from
150 ViroVax LLC, USA. Three vaccine formulations were prepared with 3 μ g and 6 μ g with Algel-IMDG

151 (BBV152A and BBV152B, respectively) and 6 μ g with Algel (BBV152C). To determine the stability of
152 the vaccine formulations, inactivated antigen plus adjuvant preparations were stored at 37°C and 2-
153 8°C temperature for seven days. These vaccine formulations were evaluated in Balb/C mice to
154 estimate Nab titer by microneutralization test (MNT₅₀). Our results demonstrated that the vaccine
155 formulations are relatively stable at 37°C for 7 days, as shown by equivalent Nab titer compared to
156 formulation stored at temperature 2-8°C (Figure 1D). There is no significant difference between the
157 two formulations (BBV152A & BBV152B)

158

159 **2.4 Safety**

160 All the three BBV152 formulations, the pure antigens at 3 different concentrations, and the two
161 adjuvants have been evaluated for safety in three animal models (mice, rats, and rabbits) following
162 the required regulatory guidelines^{14, 15, 16, 17}. Table 2 summarizes the key tests completed and the
163 observations thereof. Safety has been established in repeat-dose toxicity studies in Balb/C mice
164 (female, 6-8 weeks old) which were vaccinated intraperitoneally (*i.p.*) with 1/20th of the intended
165 human single dose (HSD, 3 or 6 or 9 μ g) of inactivated vaccine candidate with or without adjuvant
166 on day 0, 7 and 14. In contrast, New Zealand white rabbits, Swiss Albino mice, and Wistar rats were
167 vaccinated intramuscularly (*i.m.*). Algel-IMDG alone was further evaluated for safety by mutagenicity
168 assay (bacterial reverse mutation). No substantial increase in revertant colony numbers in any of
169 the tested strains was observed following treatment with Algel-IMDG alone at any dose level, in
170 both the plate-incorporation and pre-incubation methods in the presence or absence of metabolic
171 activation (S9 mix). The positive controls (Sodium azide, 4-Nitro-o-phenylenediamine, Methyl
172 methane sulfonate, and 2-Aminoanthracene) used for various strains showed a distinct increase in
173 induced revertant colonies in both the methods. (Figure S1)

174 In the Maximum Tolerated dose study performed with Algel-IMDG, the test item was tolerated at
175 the tested dose (200 μ g/animal) in mice and rats as demonstrated by lack of erythema, edema, or
176 any other macroscopic lesions at the site of injection. Algel is a well-known adjuvant having been
177 used in a large number of vaccines globally, we evaluated the safety profile of the novel adjuvant
178 used in this study. Histopathology examination of the injection site showed active inflammation, as
179 demonstrated by mononuclear cell infiltration, which is likely a physiological local inflammatory
180 reaction caused by aluminium salt in the vaccine adjuvant preparation. In any of the studies
181 conducted, there were no mortality or no changes observed in clinical signs, body weight gain
182 (Figure S2), body temperature, or feed consumption in the treated animals.

183 **2.5 Clinical pathology investigations:**

184 In all the animal models, haematology, clinical biochemistry, coagulation parameters, and urinalysis
185 treated with adjuvanted vaccine candidates or adjuvants/ antigen alone were comparable to control
186 (**Figure S3**). The following exceptions were noticed as Alpha 1- acid glycoprotein values were
187 increased on day 2 with Algel-IMDG in male rats when compared to day 0, which reduced to normal
188 levels by day 21. Evidence of an acute phase response was indicative of reactogenicity to the vaccine
189 formulation, and the increase was noticed in the adjuvanted vaccine with the Algel-IMDG group
190 alone. These findings correlate with the inflammatory reaction at the injection site in this group. The
191 absolute and relative neutrophil counts were increased in female rats of groups (Antigen 6 µg + Algel
192 300 µg), and (Antigen 9 µg + Algel-IMDG 300 µg) on day 2 as compared to control. However, these
193 values were noticed and were comparable to control on Day 21. This transient increase may be due
194 to inflammation at the injection site after administration of the first dose.

195 **2.5 Necropsy, organ weight, and histopathology:**

196 There were no treatment-related microscopic findings observed in antigen alone by
197 intramuscular (*i.m*) route. In groups treated with adjuvants alone and adjuvanted vaccine
198 with Algel & Algel-IMDG, local reaction at the site of injection (quadriceps muscles of the
199 hindlimb) was observed. In animals treated with Algel alone or adjuvanted vaccine with
200 Algel, inflammatory changes characterized by mild infiltration of mononuclear cells and the
201 presence of macrophages containing bluish material (interpreted to be aluminium in Algel)
202 were observed. On day 21, animals treated with Algel-IMDG alone showed inflammation
203 around homogeneous bluish material (interpreted to be test item) characterized by the
204 infiltration of mononuclear cells. Additionally, macrophages containing bluish stained
205 material understood to be aluminium in the test item (Algel-IMDG) were also observed.
206 Algel produced a milder reaction when compared to Algel-IMDG. On day 28, reduction of
207 inflammation was observed in both the adjuvants, and the number of macrophages containing
208 bluish stained material was also observed less in the recovery groups when compared to day 21
209 (**Figure S4 & S5**). No microscopic findings were observed in any of the organs examined, including
210 spleen and lymph nodes, any of the animal models (**Figure S6 & S7**). Organ weights across groups
211 were comparable.

212 **2.6 Immunogenicity studies:**

213 We assessed the immunogenicity of BBV152 formulations in BALB/c mice and New Zealand white
214 rabbits]. All immunization studies were conducted based on a three-dose IM regimen conducted on
215 days 0, 7, and 14. Pooled or individual serum samples collected on days 0, 7, 14, and 21 post-
216 immunization/boost were evaluated for antibody binding (ELISA) and Nab by plaque reduction
217 neutralizing titer (PRNT₉₀) or MNT₅₀ against live SARS-CoV-2 strain.

218

219 **Immunogenicity in BALB/c Mice:**

220 To assess the immunogenicity of the candidate vaccines, BALB/c mice (n=10) were injected via i.p
221 route with three concentrations of antigen at 1/20th of the intended human single dose (i.e., 3 µg,
222 6 µg, and 9 µg/mouse). Vaccine formulations adjuvanted tested at three antigen concentrations
223 elicited high levels of binding and Nab titer (**Figure 2 A & B**). Antigen alone and adjuvants alone were
224 included in these studies as controls (data not presented for brevity). Further, to assess the
225 immunogenicity and safety of clinical batch samples, Balb/C mice (n=10/group, 5 Male and 5
226 Female) were vaccinated via IP route with three adjuvanted formulations with Algel and Algel-IMDG
227 at 1/10th human intended single dose (3, and 6 µg/dose with Algel or Algel-IMDG). All adjuvanted
228 vaccine formulations elicited antigen-specific binding antibodies (**Figure 2C**). Further, sera collected
229 on Day 21 were analyzed by ELISA to determine S1, RBD, and N specific binding titer (**Figure 2D**).
230 Analysis of PRNT₉₀ performed with individual mice sera, showed high Nab's in all adjuvanted
231 vaccines (**Figure 2E**), while **Figure 2F** depicts the effect of dose sparing of Algel-IMDG. **Figure S8**
232 depicts the 8-fold increase in vaccine potency, when dosing was in day 14 intervals. Additionally,
233 dosing with antigen alone was found to be immunogenic. However, the responses were significantly
234 lower than the adjuvanted vaccine (**Figure S9**).

235

236 **Immunogenicity in New Zealand White Rabbits:**

237 Rabbits (n=8) were immunized with antigen concentrations for humans (3 and 6 µg/dose) on days 0,
238 7, and 14. The groups that received BBV152A & B showed a slightly higher binding antibody
239 response compared to BBV152C (**Figure 3A**), though not statistically significant. Examination of
240 neutralizing antibody titers revealed high PRNT₉₀ titers on day 21 are also reported (**Figure 3B**).
241 Further, NAb's performed by MNT₅₀ were compared with Nabs from a panel of human convalescent
242 sera from recovered symptomatic COVID-19 patients. (**Figure 3C**).

243

244 **BBV152 adjuvanted with TLR7/8 adsorbed algel induces Th1 biased immune response:**

245 **Immunoglobulin Subclasses:** Antibody isotyping (IgG1 & IgG2a) was analyzed on day 21 serum
246 samples to evaluate the Th1/Th2 polarization by vaccination with the two adjuvants. The average
247 ratio of IgG2a/IgG1 was higher in all antigen concentrations with Algel-IMDG when compared to
248 Algel, indicative of Th1 bias (**Figure 4A**). Additionally, antigen immunized with 6 μ g Algel-IMDG
249 samples induced significantly higher responses of interferon- γ (IFN γ) (**Figure 4B**). These results
250 suggest that Algel-IMDG adjuvant that contains TLR7/8 agonist induces Th1 biased protective
251 immunity and thus is a promising adjuvant for further development.

252 To further evaluate whether adjuvanted vaccine formulations (with Algel & Algel-IMDG) induced Th1
253 response or not, we performed intracellular staining using vaccinated mice splenocytes after
254 stimulation with inactivated SARS-CoV-2 antigen and determined IFN γ producing T lymphocytes.
255 Interestingly, we found that the adjuvanted formulation with Algel-IMDG (BBV152A & B) showed
256 elevated levels of IFN γ producing CD4 cell population, compared to those with Algel. These results
257 indicate that antigen formulated with Algel-IMDG skewed towards Th1 mediated response (**Figure**
258 **4C**) and induced strong T cell immunity.

259

260 **Cytometric Bead Array (CBA)**

261 Expression of TNF- α and interleukins was noticeably expressed in the 6 μ g Algel-IMDG when
262 compared to 6 μ g Algel (**Figure 4D**).

263 **IFN α responses as a function of innate immunity activation** to assess the effect of adjuvants (Algel
264 or Algel-IMDG) on antigen and understanding the critical role of IFN α in both anti-viral and pro-
265 inflammatory cytokine functions, and linking innate immunity and adaptive immunity, we used
266 PBMCs from healthy volunteers to stimulate using the antigen and adjuvanted vaccines for 36-72hrs
267 at both 3 and 6 μ g antigen concentration, and measured IFN α . We found that the Inactivated antigen
268 itself stimulated Anti-viral Cytokine (IFN- α), an indicator of the first line of defense. Algel-IMDG
269 containing TLR7/8 agonists also stimulated IFN- α & but not the Algel alone. The addition of Algel and
270 Algel-IMDG showed a synergistic effect on Antigen, which was demonstrated by the elevated of IFN-
271 α levels in the cell supernatant (**Figure 4E**); the latter adjuvant being more effective.

272

273 **3. Discussion**

274 Here, we report the development of a whole virion inactivated SARS-CoV-2 vaccine candidate
275 (BBV152). The strain used for this candidate is pathogenic in humans and has shown extensive
276 genetic stability and appropriate growth characteristics for the selection of a vaccine candidate.
277 Preclinical toxicity and safety evaluation of the three formulations showed minimal to no adverse
278 events. Our results show that the vaccine formulations induced significantly elevated antigen-
279 binding antibody and Nab responses in the animals immunized, with a distinct Th1 bias observed
280 with Algel-IMDG adjuvanted vaccines. Although the neutralizing antibody titers are not statistically
281 different between the antigen concentration (3 μ g and 6 μ g) or the nature of adjuvant, all the
282 formulations tested have exhibited excellent immunogenicity. Our potency results compare quite
283 favorably with those reported in the literature for similar COVID-19 vaccines. Inactivated SARS-CoV-2
284 vaccine candidate (BBIBP-CorV) has been shown to induce high levels of Nab titers in mice and rats
285 to provide protection against SARS-CoV-2³. A purified inactivated SARS-CoV-2 virus vaccine
286 candidate (PiCoVacc) has also been shown to induce SARS-CoV-2-specific NAb in mice and rats.
287 These antibodies potently neutralized 10 representative SARS-CoV-2 strains, indicative of a possible
288 broader neutralizing ability against SARS-CoV-2 strains circulating worldwide⁴.

289

290 The risk of antibody-dependent enhancement (ADE) is a serious concern for COVID-19 vaccine
291 development^{18, 19, 20, 21}. A few animal studies from animal SARS-CoV-1 and MERS-CoV inactivated or
292 vectored vaccines adjuvanted with alum have shown correlation to Th2 responses resulting in
293 eosinophilic infiltration in the lungs^{18, 19, 20}. Alum is the most frequently used vaccine adjuvant with
294 an extensive safety record. It is desired to have a COVID-19 vaccine that can generate both humoral
295 and cell-mediated immune responses. The response generated from alum is primarily Th2- biased
296 with the induction of strong humoral responses via neutralizing antibodies²². It is not clear if alum
297 alone can stimulate T-cell responses. Complicating adverse events may be associated with the
298 induction of weakly or non-neutralizing antibodies that lead to antibody-dependent enhancement
299 (ADE) or enhanced respiratory disease (ERD), thus warranting COVID-19 vaccines to induce CD4
300 Th1(interferon- γ , interleukin-2, tumor necrosis factor α) response with minimal Th2 response^{23, 24}.
301 Preclinical studies in mice reported that inactivated vaccine-induced eosinophil immunopathology in
302 the lungs upon SARS-CoV infection²⁵ could be avoided using TLR agonist as or in adjuvant
303 formulations. Although current understanding of the risk of COVID-19 vaccine-associated ADE/ERD is

304 limited, the use of TLR7/8 agonists in an adjuvant in SARS-CoV-2 vaccine formulation will minimize
305 Th2 response, if any.

306

307 Over many decades it has shown that vaccination is generally a safe and well-tolerated procedure.
308 Nevertheless, toxic actions of vaccines can result from any of the following, drug substance and drug
309 product, including excipients used for formulation. The current preclinical studies conducted with
310 BBV152, adjuvanted with the two adjuvants, did not indicate any undesirable pathological changes
311 and systemic toxicity. Local reactogenicity to adjuvants used in vaccine formulation were the only
312 findings noted. Algel (Alum) is the most commonly used agent as an adjuvant. It has been shown to
313 act by depot formation at the site of injection, allowing for a slow release of antigen. Further, it
314 converts soluble antigens into particulate forms, which are readily phagocytosed²⁶. The microscopic
315 findings at the site of injection in the present studies showed the infiltration of macrophages and
316 mononuclear cells. The other adjuvant, Algel-IMDG, contained TLR7/8 in addition to Algel, which was
317 added to augment innate and adaptive immunity, induced slightly higher reactogenicity. IM injection
318 induces a depot effect followed by the passive trafficking of algel particles via lymphatic flow from
319 the interstitial space to the draining lymph nodes, as revealed by IFN- β /luciferase reporter mice
320 (unpublished). The lymph node-targeting of Algel-IMDG ensures high adjuvant activity in the target
321 organ (lymph nodes) by enabling the induction of a strong, specific, adaptive immune response while
322 minimizing systemic exposure. The local reaction in the studies conducted was consistent with those
323 available in the literature for these adjuvants, which is a physiological reaction to injection rather
324 than any adverse event^{26, 27}.

325

326 Collectively, both the adjuvanted vaccines (with Algel and Algel-IMDG), Antigen and Adjuvant alone
327 did not reveal any treatment-related findings, except local reactions when administered through the
328 human intended route (intramuscular) on days 0, 7, and 14 (n+1) with full Human single dose (HSD)
329 or higher than HSD in rodents and non-rodents, thereby establishing the vaccine safety. In our
330 preclinical studies, we demonstrated that all the three inactivated whole virion SARS-CoV-2 vaccine
331 candidates showed 100% seroconversion with high titers of antigen binding and neutralizing
332 antibody responses. Further, the adjuvanted formulation, BBV152B, when immunized in Balb/C
333 mice, showed 10 times higher dose sparing effect compared to antigen alone (**Figure 2F**). Moreover,
334 these formulations induced immunity that is biased towards Th1 mediated response, as
335 demonstrated by the ratio between IgG2a and IgG1 (greater than 1) (**Figure 4A**). Additionally,

336 secretion of anti-viral cytokines such as IL-2, IL-4, IL-6, IL-10, IL-17, TNF-alpha, IFN γ was observed on
337 days 7 and 14(7 days after the 1st&2nd dose) of vaccination with Algel-IMDG adjuvanted formulations
338 (**Figure 4D**). Further, the tendency to secrete anti-viral cytokines, IFN-alpha (**Figure 4E**), might
339 contribute to the activation of the first line of defense mechanisms, which lead to enhanced
340 activation of antigen-presenting cells, such as dendritic cells or macrophages^{28, 29, 30}. It is reported
341 that TLR recognition in innate cell population drives early type I IFN production, thereby promotes
342 viral clearance and the early production of proinflammatory cytokines^{31, 32}. Though the mechanism
343 of action is yet to be investigated, we hypothesize that this elevated production of IFN α in the Algel-
344 IMDG based Adjuvanted vaccine may provide better protection in the Hamster and NHP homologous
345 challenge study with SARS-CoV-2 virus.

346

347

348 A combination of high neutralizing antibody titers elicited against inactivated antigen alone and the
349 presence intact spike protein on the surface of the virus confirms that the antigen is in the right
350 confirmation and can itself may act as a Th1 inducer with its surface glycoproteins, intracellular viral
351 proteins.

352 A major limitation of this paper is the lack of protective efficacy results conferred from BBV 152.
353 Additional live challenge studies in hamsters and non-human primates are completed at NIV, India,
354 and results will be published shortly. With no established correlate of protection, we also evaluated
355 human convalescent sera from recovered symptomatic SARS-CoV-2 patients. Samples were collected
356 21 days after virological confirmation (**Figure 3C**). Furthermore, two other SARS-CoV-2 inactivated
357 vaccines (BBIBP-CorV and PiCoVacc) from China have entered late-stage human clinical trials with
358 published data on the preclinical immune response. Results from these candidates have reported
359 comparable findings, albeit PRNT₅₀^{33, 34}.

360 Bharat Biotech has developed a promising inactivated whole virion vaccine candidate which has now
361 entered phase 1/2 clinical development (NCT04471519). The study is designed to evaluate the
362 safety, reactogenicity, tolerability, and immunogenicity of two intramuscular doses of BBV152 in
363 healthy volunteers.

364

365 **Tables**

366 **Table 1: Genetic Stability of the BBV152 viral strain under specific passages (Vero CCL-81 Passage 1**
367 **PID-3)**

Reference Position	Wuhan nucleotide	Hu-1	Current nucleotide	Count of reads	Frequency of reads	Region
241	C		T	10937	99.7	5' UTR
3037	C		T	6227	99.6	orf1ab
4809	C		T	11561	99.91	orf1ab
14408	C		T	7562	99.91	orf1ab
23403	A		G	13336	99.96	S

368

369 **Table 2: Safety studies conducted**

Study Type	Test System	Test Item ¹⁻³	Route of Administration	Key Test Item result
Repeated dose toxicity studies	Wistar Rats	Antigen, Adjuvanted vaccines, & Adjuvants	Intramuscular	All the Test Items have been demonstrated to be safe from a Toxicology perspective ⁴ .
	Swiss albino Mice	Adjuvanted vaccines & Adjuvants	Intramuscular	
	BALB/c Mice	Antigen, Adjuvanted vaccines, & Adjuvants	Intraperitoneal	
	New Zealand White Rabbits	Adjuvanted Vaccines	Intramuscular	
Mutagenicity assay (Bacterial Reverse Mutation)	<i>Salmonella typhimurium</i>	Algel-IMDG	--	
Maximum Tolerated Dose studies	Swiss albino mice&Wistar Rats	Algel-IMDG	Intramuscular	

370 1. Antigen: BBV152 Antigen at 3, 6 & 9 μ g.
371 2. Adjuvanted vaccines: BBV152A, BBV152B & BBV152C.
372 3. Adjuvants: Algel & Algel-IMDG at 200 & 300 μ g.
373 4. Details are given in Supplementary Section.

374

375

376 **Methods**

377 **1. Cells and Virus**

378 Vero CCL-81 (ATCC# CCL 81) cells were maintained in DMEM supplemented with 10% heat-
379 inactivated fetal bovine serum. Vero cells were revived from GMP master cell bank, which was
380 extensively characterized at BioReliance, USA. SARS-CoV-2 (Strain No#NIV-2020-770) was obtained
381 from the National Institute of Virology, a WHO Collaborating Center for Emerging Viral Infections⁹,
382 Pune, India. SARS-CoV-2 strain (NIV-2020-770) sequence was deposited in the GISAID
383 (EPI_ISL_420545).

384

385 Specimens from 12 infected patients were collected during the initial outbreak of SARS-CoV-2 at the
386 National Institute of Virology (NIV), India, a WHO Collaborating Center for Emerging Viral Infections⁹.
387 SARS-CoV-2 strain (NIV-2020-770) was passaged in vero cell lines (Vero CCL-81) and sequenced, and
388 the sequence was deposited in the GISAID (EPI_ISL_420545).

389

390 **2. TCID50**

391 The SARS-CoV-2 virus titer was determined by a cytopathic effect (CPE) method assay. Vero cells
392 ATCC-81 (0.2×10^6 cells/mL) were seeded in 96 well plates and incubated for 16- 24 hours at 37 °C.
393 Serial 10-fold dilutions of virus-containing samples were added to 96-well culture plate and cultured
394 for 5-7 days in 5% CO₂ incubator at 37°C, and cells were observed for cytopathic effect (CPE) under a
395 microscope. The virus titer was calculated by the Spearman Karber method ³⁵.

396 **3. Virus Inactivation**

397 SARS-CoV-2 Virus (NIV-2020-770) was inactivated with β -propiolactone at a ratio ranging from
398 1:1500 to 1: 3000 at 2-8°C for 24-32 hours and purified by chromatographic purification method. To
399 ensure the effectiveness of the virus inactivation procedure inactivated SARS-CoV-2 virus was
400 inoculated onto vero CCL-81 monolayers and incubated at 37 °C in a 5% CO₂ incubator and
401 monitored daily for CPE, consecutively for three passages. Further, to reverify the absence of CPE
402 due to supernatant, neat and 10fold dilution of supernatant was inoculated onto Vero cell
403 monolayer and cultured in a 37°C incubator for 5-7 days, and cells were observed for CPE under a
404 microscope.

405 **4. Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR)**

406 Total RNA was extracted from the virus sample with a QIAamp Viral RNA mini kit (QIAGEN). SARS-
407 CoV-2 RdRP-2 gene primer probes sequences are as follows: RdRP_SARSr-F2-
408 GTGARATGGTCATGTGTGGCGG,R1-CARATGTTAAASACACTATTAGCATA,P2-FAM
409 CAGGTGGAACCTCATCAGGAGATGC-BHQ1.The SARS-CoV-2 reaction was set up containing a master
410 mix of 10 μ L (Thermo) and RNA template 10 μ L.qRT-PCR was performed under the following
411 reaction conditions: RT step- 42°C for 30 min for reverse transcription, Initial Denaturation step:
412 95°C for 3 min and then 45 cycles of Denaturation95°C for 15 seconds, annealing58°C for 30 seconds
413 - data acquisition, Extension72°C for 15 seconds. Reactions were set on Biorad-CFX96 as per the
414 manufacturers' instructions.

415 **5. Western blotting**

416 Protein samples (~30 mg) derived from drug substance estimated by Lowry method ³⁶ and standard
417 procedures for western blot were adopted. The primary antibodies used were anti-N protein rabbit
418 monoclonal Ab (1:1000 dilution) and anti- S1 or S2 or RBD protein rabbit polyclonal Ab (1:1000
419 dilution), either sourced from commercial or in-house and human convalescent sera from patients
420 (1:500 dilution) at 4°C. The secondary antibodies goat anti-rabbit IgG H&L (HRP) (GE NA934,1:4000)
421 and HRP-labeled goat anti-human IgG (gamma chain) cross-adsorbed secondary antibody
422 (Invitrogen, 62-8420) (1:1000). Protein bands were visualized in enhanced chemiluminescence
423 (Azure biomolecular imager, USA).

424 **6. Formulations Preparation**

425 In the first formulation, BBV152A, 3 μ g of antigen was mixed with Algel-IMDG, while BBV152B had
426 6 μ g of antigen with the same adjuvant (Algel-IMDG), and the third formulation, BBV152C, had 6 μ g of
427 antigen adsorbed on alum (Algel). Total protein/unbound protein was estimated by the Lowry
428 method³⁶.

429 **7. Animal husbandry practices**

430 All animal experiments were performed after obtaining necessary approvals from the Institutional
431 Animal Ethics Committee (IAEC). The experimental protocols adhered to guidelines of the
432 Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) and also
433 as per the Organization for Economic Co-operation and Development (OECD) Principles of Good
434 Laboratory Practice (1997) ENV/MC/CHEM (98)17.

435 **8. Immunization:**

436 Three animal models were used to evaluate the immunogenicity and safety of the three inactivated
437 whole virion vaccine formulations (BBV152 A, B & C).

438 **Mice:** Balb/C or Swiss Albino mice (6-8week old) were vaccinated via an intraperitoneal or
439 intramuscular route with either 1/10th or 1/20thof full human single dose (BBV152 A, B or C) of
440 inactivated vaccine with or without adjuvant on day 0, 7 & 14 days(n+1 (one extra dose compared to
441 the intended human regimen doses). A formulation with 9 μ g was also tested.

442 **Rats:** Wistar Rats (6-8weeks old) were vaccinated intramuscularly with 9 μ gof inactivated whole
443 virion vaccine with Algel-1 or Algel-2 on days 0, 7 & 14 days (n+1 doses).

444 **Rabbits:** Zealand white rabbits (3-4 months old) were vaccinated via an intramuscular route with full
445 Human intended single dose (BBV152 A, B or C; n+1 doses). The animals treated were observed up
446 to 14 days, post third dose.

447 Further, mice and rats were also administered via an intradermal route with full Human intended
448 single dose (HSD, 1.2 μ g), and rabbits administered full Human intended single dose (HSD, 2.4 μ g)of
449 inactivated whole virion vaccine without any adjuvant via an intradermal route on days 0, 7 & 14
450 days (n+1 doses).

451 All studies were conducted with an equal number of males and females unless otherwise specified.
452 The control group was injected with saline. Animals were bled from the retro-orbital plexus, 2hours
453 before each immunization on0, 7, 14 & 21 days, and serum was separated and stored at -20°C until
454 further use.

455 Pooled and individual sera from vaccinated mice and rabbits were used to test the antigen-specific
456 antibody binding titer and antibody isotyping profile by Enzyme-Linked Immunosorbent Assay
457 (ELISA). Pooled or Individual sera from all vaccinated species (mice, rabbits & rats) were used to test
458 neutralization antibody titer by Plaque Reduction Neutralization Test (PRNT₉₀) or Micro
459 Neutralization Test (MNT₅₀).

460 **9. Enzyme-linked immunosorbent assay (ELISA)**

461 ELISA tests were performed as per standard protocols specifically for this project. Microtiter plates
462 were coated with SARS-CoV-2 specific antigens (whole inactivated antigen or spike, S1 /Receptor
463 Binding Domain (RBD)/ nucleocapsid (N) at a concentration of 1 μ g/ml, 100 μ l/well in PBS pH 7.4).
464 After incubation, wells were added with Goat Anti-mouse IgG HRP(Santa Cruz Biotechnology, USA)
465 conjugated antibody for mouse sera samples, and Goat anti-rabbit IgG HRP conjugate
466 antibody(Santa Cruz Biotechnology, USA) (dilution 1:2500) for rabbit sera samples and incubated for

467 1hr at RT. Threshold (Mean + 3SD) was established by taking the absorbance of negative control
468 (PBS) group, or pre-immune sera and antigen-specific endpoint titers were determined. The
469 antibody dilution, at which absorbance is above the threshold, was taken as antigen-specific
470 antibody endpoint titers.

471 **10. Immunoglobulin (IgG) Subclass:**

472 Th1-dependent IgG2a vs. Th2 -dependent IgG1 antibody subclasses were determined from mice
473 vaccinated sera as previously described ³⁷. Briefly, 96 well microtiter plates were coated with various
474 SARS-CoV-2 specific antigens (whole Inactivated antigen, S1, Receptor Binding Domain (RBD),
475 nucleocapsid (N) at a concentration of 1 μ g/ml, 100 μ l/well in PBS pH 7.4) and kept at 2-8°C for
476 overnight. The next day, plates were washed with washing buffer (PBST) and blocked with a blocking
477 buffer (PBS with 2% BSA) at RT for one hour. serially diluted (dilutions from 1:50 to 819200 in PBS,
478 0.1% BSA, 0.05% Tween™20, 0.02% sodium azide) pooled or individual sera from hyperimmunized
479 animals (mice/rabbits) and incubated at 37°C for 2hrs. After incubation, wells were washed and
480 added with anti-mouse IgG1 or IgG2a HRP conjugate antibodies at a dilution 1:2500. After
481 incubation of the plate for 1hr at RT, wells were washed, and 3,3'-5,5'-tetramethylbenzidine (TMB)
482 was added as a substrate to develop color. Absorbance was read at 450 nm. Threshold (Mean + 3SD)
483 was established by taking the absorbance of negative control (PBS) group, or pre-immune sera and
484 antigen-specific endpoint titers were determined. The antibody dilution, at which absorbance is
485 above the threshold, was taken as antigen-specific antibody endpoint titers.

486 **11. Cytokine (IFNy & IFN α) Estimation by ELISA:**

487 To determine IFNy, Enzyme-Linked Immunosorbent Assay (ELISA) was performed according to the
488 instruction manual. Briefly, the capture antibody was first diluted in coating buffer and added 100 μ L
489 to each well in 96-well microplate. Plates were incubated overnight at 2-8 °C. Coated plates were
490 then washed with wash buffer (PBST). After washing, these plates were blocked using 1x assay
491 diluent for 1hr at room temperature followed by washing with PBST. Serial dilutions of Top Standard
492 were prepared to make the standard curve. Similarly, 4-fold dilutions (1:4, 1:16 & 1:64) of serum
493 samples were prepared and added to wells in triplicates, and the plate was incubated at room
494 temperature for 2hrs. After washing the plate, 100 μ L/well of detection antibody diluted in 1X Assay
495 diluent was added and incubated at room temperature for 1hr. Later, 100 μ L/well of Avidin-HRP*
496 diluted in 1X Assay diluent was added and incubated at room temperature for 30 minutes. Finally,
497 after washes, 100 μ L of substrate solution was added to each well and incubated at RT for 15

498 minutes. The reaction was stopped by the addition of 50 μ L of 2N H_2SO_4 to each well, and the plate
499 was read at 450 nm.

500 PBMCs cell culture supernatant was used to estimate $IFN\alpha$ using The VeriKine Human Interferon
501 Alpha ELISA Kit (PBL Assay Science, USA, Cat log# 41100). The assay was performed as per the
502 manufacturer's instructions. Briefly, Pre-coated plates were incubated with diluted standard (range
503 500-12.5 pg/ml) or culture supernatant, for 1hr at room temperature. Later, the diluted antibody
504 and HRP solution were added sequentially. TMB was used as a substrate, followed by the addition of
505 stop solution. The plate was read at 450nm.

506

507 **12. Intracellular Staining:**

508 Vaccinated splenocytes (2×10^6 /ml) were cultured in 24 well plates and stimulated with inactivated
509 SARS-CoV-2 antigen (1.2 μ g/ml) or PMA (25 ng/ml, cat # P8139; Sigma) and Ionomycin (1 μ g/ml, cat
510 # I0634, Sigma) along with Protein transport inhibitor (Monensin, 1.3 μ l/ml cat # 554724, BD
511 biosciences). Cells were washed and centrifuged at 1000rpm for 5-10min and stained with APC-Cy™7
512 Rat Anti-Mouse CD3 (clone: 17A2, Cat # 560590, BD Biosciences), FITC Rat Anti-Mouse CD4 (Clone:
513 H129.19, Cat # 553650, BD Biosciences), and PE-Cy™7 Rat Anti-Mouse CD8a (Clone: 53-6.7, Cat #
514 552877, BD Biosciences) for 30 minutes at 4°C. Cells were again washed twice with PBS and fixed
515 using fixation/Permeabilize solution (Cat # 554722, BD Biosciences) for 20 mins at 4°C. Following
516 fixation/permeabilization, cells were washed with 1x permeabilization buffer and stained with
517 intracellular cytokines ($IFN-\square$ (BV421 Rat Anti-Mouse $IFN-\gamma$, Clone: XMG1.2, cat # 560660, BD
518 Biosciences) for 30 mins at 4°C. Cells were washed and resuspended in 500 μ l FACS buffer (Cat #
519 554657, BD Biosciences). All samples were acquired using BD FACSVerse (BD Biosciences).

520 **13. Cytokine Estimation:**

521 To assess the secretion of Th1 or Th2 mediated cytokines, if any, and to differentiate between Algel1
522 and Algel2, we used vaccinated mice sera samples collected at various time points (Day 0, 7, 14, 21
523 & 28, 7 days post-vaccination) and measured Cytokines using the BD CBA Mouse Th1/Th2/Th17
524 Cytokine Kit (BD Bioscience, San Jose, CA, USA). Sera samples were processed as per the
525 manufacturer's instructions. Briefly, the kit was used for the simultaneous detection of mouse IL-2,
526 IL-4, IL-6, $IFN-\gamma$, TNF, IL-17A, and IL-10 in a single sample. For each sample, 50 μ L of the mixed
527 captured beads, 50 μ L of the unknown serum sample or standard dilutions, and 50 μ L of
528 phycoerythrin (PE) detection reagent were added consecutively to each assay tube and incubated

529 for 2 h at room temperature in the dark. The samples were washed with 1 mL of wash buffer for 5
530 min and centrifuged. The bead pellet was resuspended in 300 μ L buffer after discarding the
531 supernatant. Samples were measured on the BD FACS Verso and analyzed by FCAP Array Software
532 (BD Bioscience).

533 **14. Plaque Reduction Neutralization Test (PRNT₉₀):**

534 The Plaque reduction neutralization test was performed in a biosafety level 3 facility. To perform
535 PRNT₉₀, Vero CCL-81 cell suspension (1.0×10^5 /mL/well) was added in duplicates in 24-well tissue
536 culture plates and cultured in a CO₂ incubator at 37°C for 16-24 hrs. Vaccinated serum samples were
537 inactivated by keeping in a 56°C-water bath for 30 min. Serial dilutions (4 fold) of vaccinated serum
538 samples were mixed with the virus, which can form 50 plaque-forming units and then incubated for
539 1 h at 37°C. The virus-serum mixtures were added onto the preformed Vero CCL-81 cell monolayers
540 and incubated 1 h at 37°C in a 5% CO₂ incubator. The number of plaques was counted, and the
541 Neutralizing antibody titer was determined based on the 90% reduction in the number of plaque
542 count, which was further analyzed using 50% ProbitAnalysis³⁸. A neutralization antibody titer < 1:20
543 considered negative, while that of > 1:20 considered as positive.

544 **15. Micro Neutralization assay (MNT)**

545 The serum of the animal to be tested was inactivated in a 56°C -water bath for 30 min. Serum was
546 successively diluted 1:8 to the required concentration by a 2-fold series, and an equal volume of
547 challenge virus solution containing 100 CCID₅₀ viruses was added. After neutralization in a 37°C
548 incubator for two hours, a 1.0×10^5 /mL cell suspension was added to the wells (0.1 mL/well) and
549 cultured in a CO₂ incubator at 37°C for 3-5 days. The Karber method³⁵ by observing the CPE was used
550 to calculate the neutralization endpoint (convert the serum dilution to logarithm), which means that
551 the highest dilution of serum that can protect 50% of cells from infection by challenge with 100
552 CCID₅₀ virus is the antibody potency of the serum. A neutralization antibody potency < 1:20 is
553 negative, while that R 1:20 is positive.

554

555 **16. Mutagenicity Assay (Bacterial Reverse Mutation)**

556 The mutagenic potential of the Adjuvant, Algel-IMDG, was evaluated by Bacterial Reverse Mutation
557 assay through plate incorporation and pre-incubation methods using *Salmonella typhimurium* strains
558 TA 1535, TA 1537, TA 98, TA 100, and TA 102 following OECD Guidelines for Testing of Chemical¹⁴,

559 with and without S9. Toxicity was apparent either as a reduction in the number of His+ revertants or
560 as an alteration in the auxotrophic background (*i.e.*, background lawn).

561 **17. Maximum Tolerated Dose Test or Single Dose Toxicity Study:**

562 Two animals (Swiss Albino mice and Wistar Rats) species were tested with Algel-IMDG with a single
563 maximum dose (containing 200 μ g Algel and 20 μ g TLR7/8 agonist molecule). Animals (Swiss Albino
564 mice and Wistar Rats) were administered via an intramuscular route with Algel-IMDG on day 0 and
565 observed for clinical signs, mortality, and changes in body weight if any up to 14 days. The site of
566 injection was also observed for erythema and edema at 24, 48, and 72 hours after dosing to detect
567 the local tolerance (local reactogenicity) of Algel-IMDG. All animals were necropsied and examined
568 macroscopically. Histopathology was performed for the site of injection.

569 **18. Repeated dose toxicity:**

570 Studies were performed following both national and international guidelines in compliance with
571 OECD principles of GLP^{14, 15, 37-39}. Three animal models (Mice, Rats & Rabbits) were administered via
572 an intramuscular or intraperitoneal with three doses (N+1) of antigen or adjuvanted vaccine at
573 different concentrations. All animals were observed for mortality during the experimental period.
574 Blood collected on day 2 and 21 from the main groups and day 28 from the recovery group were
575 analyzed for detailed clinical pathology investigations. Animals were euthanized either on day 21
576 (main groups) or on day 28 (recovery groups) and necropsied, and organs were evaluated for
577 macroscopic and microscopic findings.

578

579 **Test system**

580 The test system *viz.*, Swiss albino mice (SA), BALB/c mice, Wistar rats, and New Zealand White (NZW)
581 rabbits (*in vivo* models) were sourced from CPCSEA approved vendor and strains of *Salmonella*
582 *typhimurium* (Moltox, Switzerland) for *in vitro* assay, and these test systems were selected as per the
583 recommendations of WHO guidelines^{16, 39} and Schedule Y (2019)¹⁵. The studies were conducted in
584 an equal number of adult males and females except in the BALB/c mice study, where only females
585 were used. The control group was administered with PBS.

586 **Treatment regimen**

587 The adjuvanted vaccines or adjuvants alone were administered intramuscularly (IM) in quadriceps
588 muscles of the hindlimb on days 0, 7, and 14 (n+1) with full Human single dose (HSD) to NZW rabbits

589 and SA mice and higher dose than HSD to Wistar rats and full HSD to. In BALB/c Mice, 1/20th HSD
590 was administered intraperitoneally. The animals were observed up to 14 days, post last dose.

591 **Experimental Design - Adjuvant alone**

592 Maximum Tolerated Dose (MTD) studies were conducted using Wistar rats and Swiss Albino mice
593 with ten animals in each study. The animals were treated with a single dose of Algel-IMDG at the
594 dose of 200 µg /animal and observed for 14 days. Two repeated dose toxicity studies with Algel and
595 Algel-IMDG in Wistar rats and Swiss Albino mice were performed. Control and reversal groups were
596 maintained. The site of injection was observed for erythema and edema at 24, 48, and 72 hours after
597 dosing to detect the local tolerance (local reactogenicity) of Algel-IMDG. All animals were necropsied
598 and examined macroscopically. Histopathology was performed for the site of injection.

599

600 **Experimental Design - Adjuvanted Vaccines**

601 Four repeated dose toxicity studies were performed with Adjuvanted vaccines in Wistar Rats, New
602 Zealand White Rabbits, BALB/c Mice, and Swiss Albino Mice.

603 Algel alone, Antigen alone, Adjuvanted Vaccine with Algel, and adjuvanted vaccine with Algel-IMDG
604 along with control and recovery groups were assigned. We have tested adjuvants in the highest
605 concentration of 300ug and antigen at the concentration of 9ug, to evaluate safety.

606 **In-life Observations**

607 All animals were observed twice daily for mortality. Clinical signs were recorded twice a day from
608 day 0 to 2 and once daily thereafter. The cage side observations included changes in the skin, fur,
609 eyes, and mucous membranes and clinical signs observed for edema, erythema, alopecia, irritation,
610 necrosis, locomotor activity, lacrimation, hyperthermia, and hypothermia, etc. The body weight of
611 each animal was recorded once daily after the first dose for a week and weekly once thereafter.
612 Mean body weights and mean body weight gain was calculated for the corresponding intervals. The
613 amount of feed consumed by each cage of animals was recorded once daily after the first dose for a
614 week and weekly once thereafter. Body temperature was recorded for rats and rabbits on day 0, 3
615 hours, and 24 hours after each dose, and on the day of sacrifice

616 **Clinical Pathology Investigations**

617 Detailed clinical pathology was performed using automated equipment as per referred guidelines
618 following validated procedures^{145, 37-39}. Blood and urine samples were collected for clinical

619 evaluations (hematology, coagulation parameters, acute phase proteins, serum chemistry, and
620 urinalysis) from all the groups.

621 **Necropsy, Organ Weight and Histopathology**

622 Animals were euthanized by carbon dioxide asphyxiation and necropsied. Organs, as per WHO
623 guidelines, which included spleen, thymus, and draining lymph nodes (inguinal for IM), were
624 collected from all terminally sacrificed animals, and macroscopic abnormalities were recorded. Wet
625 weights for organs such as brain, thymus, spleen, ovaries, uterus, heart, kidneys, testes, liver,
626 adrenals, lungs, epididymides, and prostate with seminal vesicles and coagulating glands were
627 recorded.

628 **18. Statistical Methods**

629 Statistical Analysis was performed in R 4.0.1. We used two-sided one sample t-test with 5% level of
630 significance for continuous variables which followed a normal distribution. To test the significance of
631 the sample, mean and for the variables that do not satisfy the normality assumption, we used the
632 Mann-Whitney test with 5% level of significance to test the significance of median.

633

634 **Acknowledgments:**

635 We express our sincere gratitude to Dr. Rudragouda Channappanavar, University of Tennessee) for
636 the scientific review of this paper. Dr. Zaiham Rizvi from the Translational Health Sciences and
637 Technology Institute, Faridabad, India, assisted with cell-mediated response analysis. Our special
638 thanks to Dr. Sunil David (ViroVax LLC) for giving us adjuvant samples for evaluation in the initial
639 development phase of the project. This vaccine candidate could not have been developed without
640 the efforts of Bharat Biotech's manufacturing and quality control teams. All authors would like to
641 express their gratitude for all the frontline health care workers during this pandemic.

642 **Author Contributions**

643 All listed authors meet the criteria for authorship set forth by the International Committee for
644 Medical Editors and have no conflicts to disclose. BG., J.H., S.R., J.J., led the immunogenicity and
645 safety preclinical experiments. H.J., V.D., N.M., V.K.S., S.P., K.M.V the manufacturing and quality
646 control efforts. KMV, P.S., and E.R. provided technical assistance with design, analysis, and
647 manuscript preparation. Y.P., S.G., S.A., M.S., A.B., A.P., B.B., N.G of ICMR-NIV, Pune conducted

648 electron microscopy and neutralizing antibody assays. A.A conducted cell-mediated response related
649 assay activities at THSTI. J.J., R.R., led the safety assessments in animals.

650 **Competing Interests**

651 This work was supported and funded by Bharat Biotech International Limited and the Indian Council
652 of Medical Research. All authors are employees of either organization. Authors from RCC Labs were
653 utilized for contract research purposes. All authors have no personal financial or non-financial
654 interests to disclose.

655

656 **4. References**

657 1. WHO Coronavirus Disease (COVID-19) Dashboard. Available at <https://covid19.who.int/>.

658

659 2. Sanders B, Koldijk M, Schuitemaker H. Inactivated Viral Vaccines. *Vaccine Analysis: Strategies, Principles, and Control*, 45-80 (2014).

661

662 3. Bhandari N, et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian
663 infants: a randomised, double-blind, placebo-controlled trial. *Lancet* **383**, 2136-2143 (2014).

664

665 4. World Health Organization WER, 24 JANUARY 2020, 95th YEAR / 24 JANVIER 2020, 95e,
666 ANNÉE No 4, 95, 25-3624 January 2020. Accessed on 17 August, 2020. Available at
667 <https://extranet.who.int/iris/restricted/bitstream/handle/10665/330607/WER9504-eng-fre.pdf?ua=1>.

669

670 5. Vadrevu KM, Potula V, Khalatkar V, Mahantshetty NS, Shah A, Ella R. Persistence of Immune
671 Responses With an Inactivated Japanese Encephalitis Single-Dose Vaccine, JENVAC and
672 Interchangeability With a Live-Attenuated Vaccine. *The Journal of Infectious Diseases*,
673 (2019).

674

675 6. Singh A, et al. A Japanese Encephalitis Vaccine From India Induces Durable and Cross-
676 protective Immunity Against Temporally and Spatially Wide-ranging Global Field Strains. *The
677 Journal of Infectious Diseases* **212**, 715-725 (2015).

678

679 7. Sampath G, *et al.* Immunogenicity and safety study of Indirab: A Vero cell based
680 chromatographically purified human rabies vaccine. *Vaccine* **28**, 4086-4090 (2010).

681

682 8. Shukla NM, Mutz CA, Malladi SS, Warshakoon HJ, Balakrishna R, David SA. Toll-Like Receptor
683 (TLR)-7 and -8 Modulatory Activities of Dimeric Imidazoquinolines. *Journal of Medicinal
684 Chemistry* **55**, 1106-1116 (2012).

685

686 9. Sarkale P, *et al.* First isolation of SARS-CoV-2 from clinical samples in India. *Indian Journal of
687 Medical Research* **151**, 244-250 (2020).

688

689 10. Potdar V, *et al.* Genomic analysis of SARS-CoV-2 strains among Indians returning from Italy,
690 Iran & China, & Italian tourists in India. *Indian Journal of Medical Research* **151**, 255-
691 260 (2020).

692

693 11. Yadav PD, *et al.* Full-genome sequences of the first two SARS-CoV-2 viruses from India.
694 *Indian J Med Res* **151**, 200-209 (2020).

695

696 12. Nextstrain / ncov / global. Available from: <https://nextstrain.org/ncov/global> aoJ, 2020.

697

698 13. Sardar R, Satish D, Birla S, Gupta D. Comparative analyses of SAR-CoV2 genomes from
699 different geographical locations and other coronavirus family genomes reveals unique
700 features potentially consequential to host-virus interaction and pathogenesis. *bioRxiv*,
701 2020.2003.2021.001586 (2020).

702

703 14. OECD Guidelines for Testing of Chemicals, Section 4, No. 471: "Bacterial Reverse Mutation
704 Test", adopted July 21st, 1997. Accessed on July 30, 2020. Available at
705 <https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf>.

706

707 15. Schedule Y (Amended version of 2019) of the Drugs and Cosmetics Act 1940 and Rules 1945
708 of the Government of India. Accessed on July 30, 2020. Available at
709 [https://cdsco.gov.in/opencms/export/sites/CDSCO_WB/Pdf-
documents/acts_rules/2016DrugsandCosmeticsAct1940Rules1945.pdf](https://cdsco.gov.in/opencms/export/sites/CDSCO_WB/Pdf-
710_documents/acts_rules/2016DrugsandCosmeticsAct1940Rules1945.pdf).

711

712 16. Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines.
713 World Health Organization 2013, Adopted by the 64th meeting of the WHO Expert
714 Committee on Biological Standardization, 21–25 October 2013. Accessed on July 30, 2020.
715 Available at
716 https://www.who.int/biologicals/areas/vaccines/ADJUVANTS_Post_ECBS_edited_clean_Guidelines_NCE_Adjuvant_Final_17122013_WEB.pdf?ua=1..

718

719 17. WHO guidelines on nonclinical evaluation of vaccines, WHO Technical Report Series, No.
720 927, 2005 (https://www.who.int/biologicals/publications/trs/areas/vaccines/nonclinical_evaluation/ANNEX%201Nonclinical.P31-63.pdf), refer to section 4.2.2 (Developmental toxicity studies) pg 49-50. Accessed on
721 July 30, 2020. Available at
722 https://www.who.int/biologicals/publications/trs/areas/vaccines/nonclinical_evaluation/ANNEX%201Nonclinical.P31-63.pdf?ua=1

726

727 18. Diamond MS, Pierson TC. The Challenges of Vaccine Development against a New Virus
728 during a Pandemic. *Cell Host & Microbe* **27**, 699-703 (2020).

729

730 19. Graepel KW, Kochhar S, Clayton EW, Edwards KE. Balancing Expediency and Scientific Rigor
731 in Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development. *The Journal of
732 Infectious Diseases* **222**, 180-182 (2020).

733

734 20. Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design: the Janus face of immune
735 enhancement. *Nature Reviews Immunology* **20**, 347-348 (2020).

736

737 21. Graham BS. Rapid COVID-19 vaccine development. *Science* **368**, 945-946 (2020).

738

739 22. He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its
740 mechanism. *Human vaccines & immunotherapeutics* **11**, 477-488 (2015).

741

742 23. Grifoni A, *et al.* Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with
743 COVID-19 Disease and Unexposed Individuals. *Cell* **181**, 1489-1501.e1415 (2020).

744

745 24. Weiskopf D, *et al.* Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients
746 with acute respiratory distress syndrome. *Sci Immunol* **5**, eabd2071 (2020).

747

748 25. Iwata-Yoshikawa N, *et al.* Effects of Toll-Like Receptor Stimulation on Eosinophilic Infiltration
749 in Lungs of BALB/c Mice Immunized with UV-Inactivated Severe Acute Respiratory
750 Syndrome-Related Coronavirus Vaccine. *Journal of Virology* **88**, 8597-8614 (2014).

751

752 26. Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based
753 on experimental results from similar coronaviruses. *International immunopharmacology* **86**,
754 106717 (2020).

755

756 27. Sellers RS, *et al.* Scientific and Regulatory Policy Committee Points to Consider*: Approaches
757 to the Conduct and Interpretation of Vaccine Safety Studies for Clinical and Anatomic
758 Pathologists. *Toxicologic Pathology* **48**, 257-276 (2020).

759

760 28. Masopust D, Soerens AG. Tissue-Resident T Cells and Other Resident Leukocytes. *Annu Rev*
761 *Immunol* **37**, 521-546 (2019).

762

763 29. Kayraklioglu N, Horuluoglu B, Elango M, Klinman DM. Critical Role of B Cells in TLR7-
764 Mediated Protection Against *L. Monocytogenes* Infection. *Infection and*
765 *immunity*, IAI.00742-00719 (2019).

766

767 30. Clingan JM, Matloubian M. B Cell–Intrinsic TLR7 Signaling Is Required for Optimal B Cell
768 Responses during Chronic Viral Infection. *The Journal of Immunology* **191**, 810-818 (2013).

769

770 31. Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA. Role of Type I Interferon (IFN)
771 in the Respiratory Syncytial Virus (RSV) Immune Response and Disease Severity. *Frontiers in*
772 *Immunology* **10**, (2019).

773

774 32. Stephens LM VSFaMoTlIdRSVIV.

775

776 33. Wang H, *et al.* Development of an Inactivated Vaccine Candidate, BBIBP-CoV, with Potent
777 Protection against SARS-CoV-2. *Cell*, (2020).

778

779 34. Gao Q, *et al.* Development of an inactivated vaccine candidate for SARS-CoV-2. *Science* **369**,
780 77-81 (2020).

781

782 35. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. *World J
783 Virol* **5**, 85-86 (2016).

784

785 36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol
786 reagent. *J Biol Chem* **193**, 265-275 (1951).

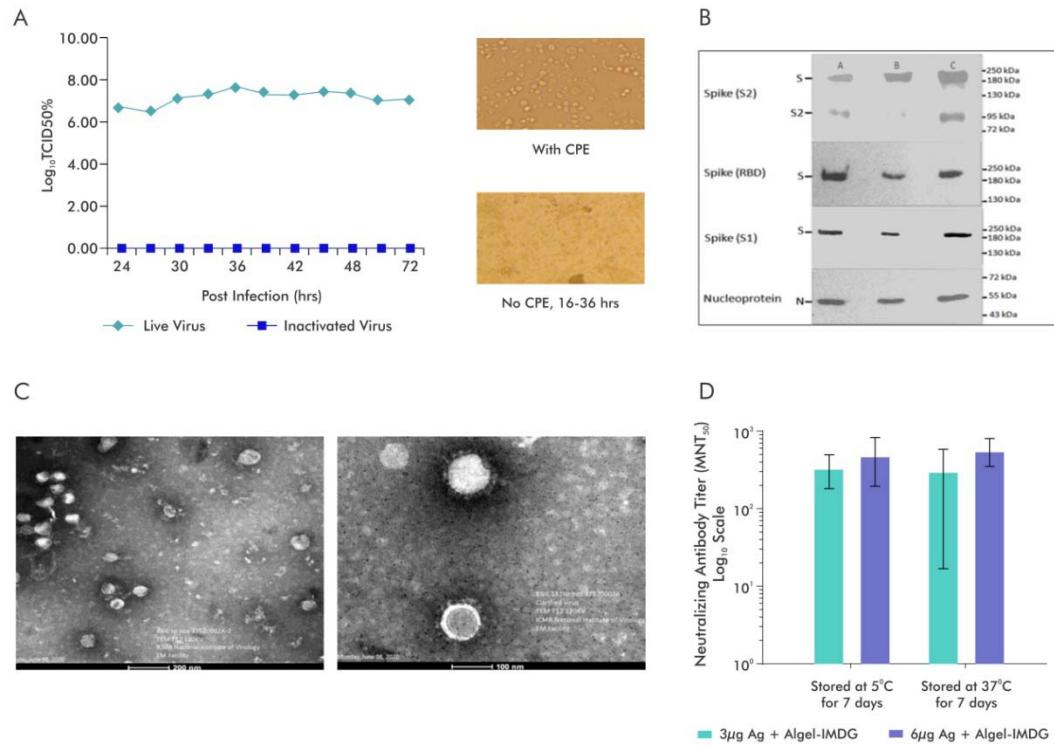
787

788 37. Hovden AO, Cox RJ, Madhun A, Haaheim LR. Two doses of parenterally administered split
789 influenza virus vaccine elicited high serum IgG concentrations which effectively limited viral
790 shedding upon challenge in mice. *Scand J Immunol* **62**, 342-352 (2005).

791

792 38. 10.4103/ijmr.IJMR_2382_20 DeaNartS-C-iC-pIJMREaopD.

793


794 39. Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines.
795 Available at
[https://www.who.int/biologicals/areas/vaccines/ADJUVANTS_Post_ECBS_edited_clean_Gui
796 delines_NCE_Adjuvant_Final_17122013_WEB.pdf?ua=1](https://www.who.int/biologicals/areas/vaccines/ADJUVANTS_Post_ECBS_edited_clean_Guidelines_NCE_Adjuvant_Final_17122013_WEB.pdf?ua=1)
797

798

799

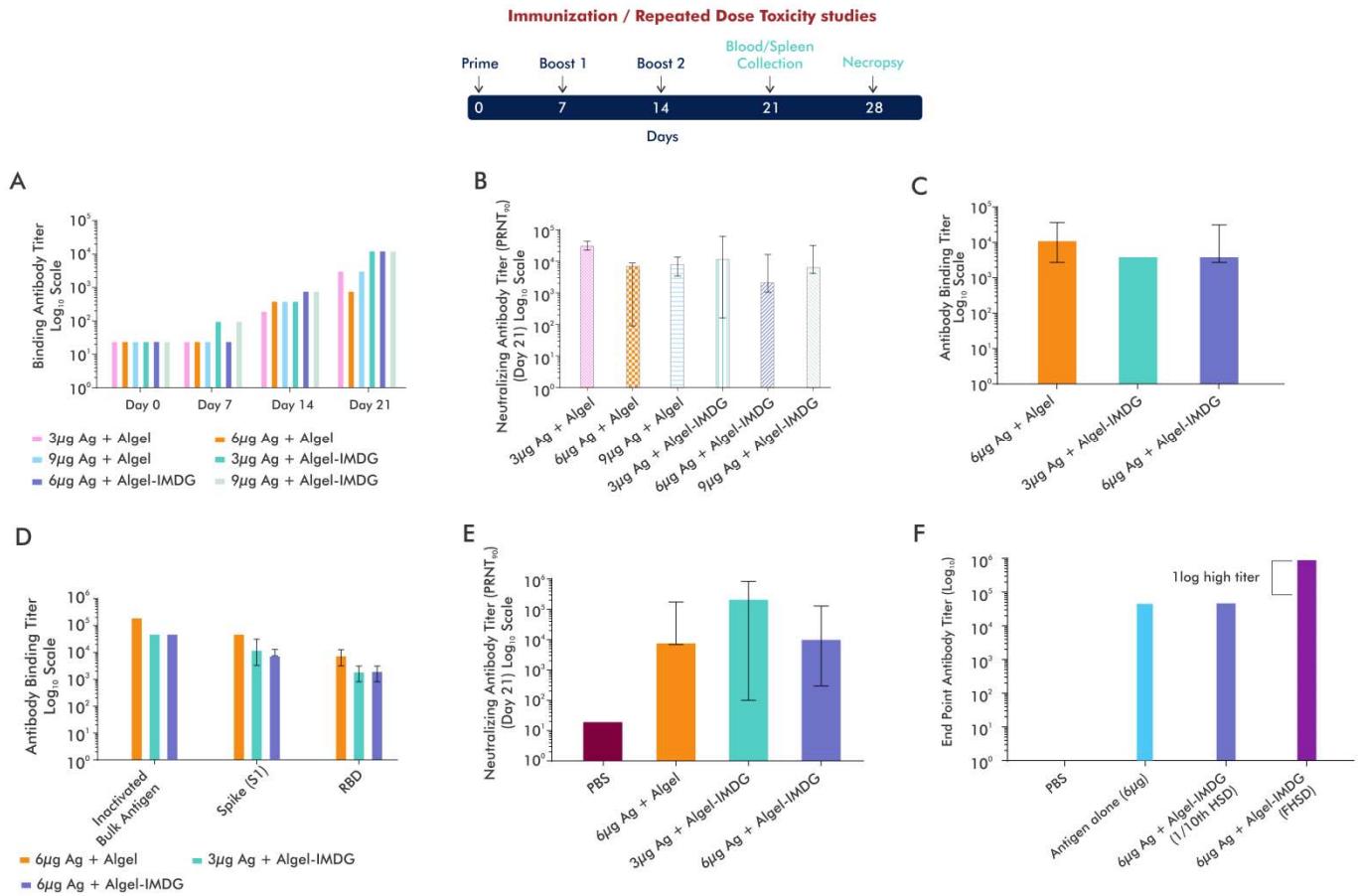

800

Figure 1: Characterization of inactivated SARS-CoV-2 and evaluation of the stability of BBV152 vaccine formulations.

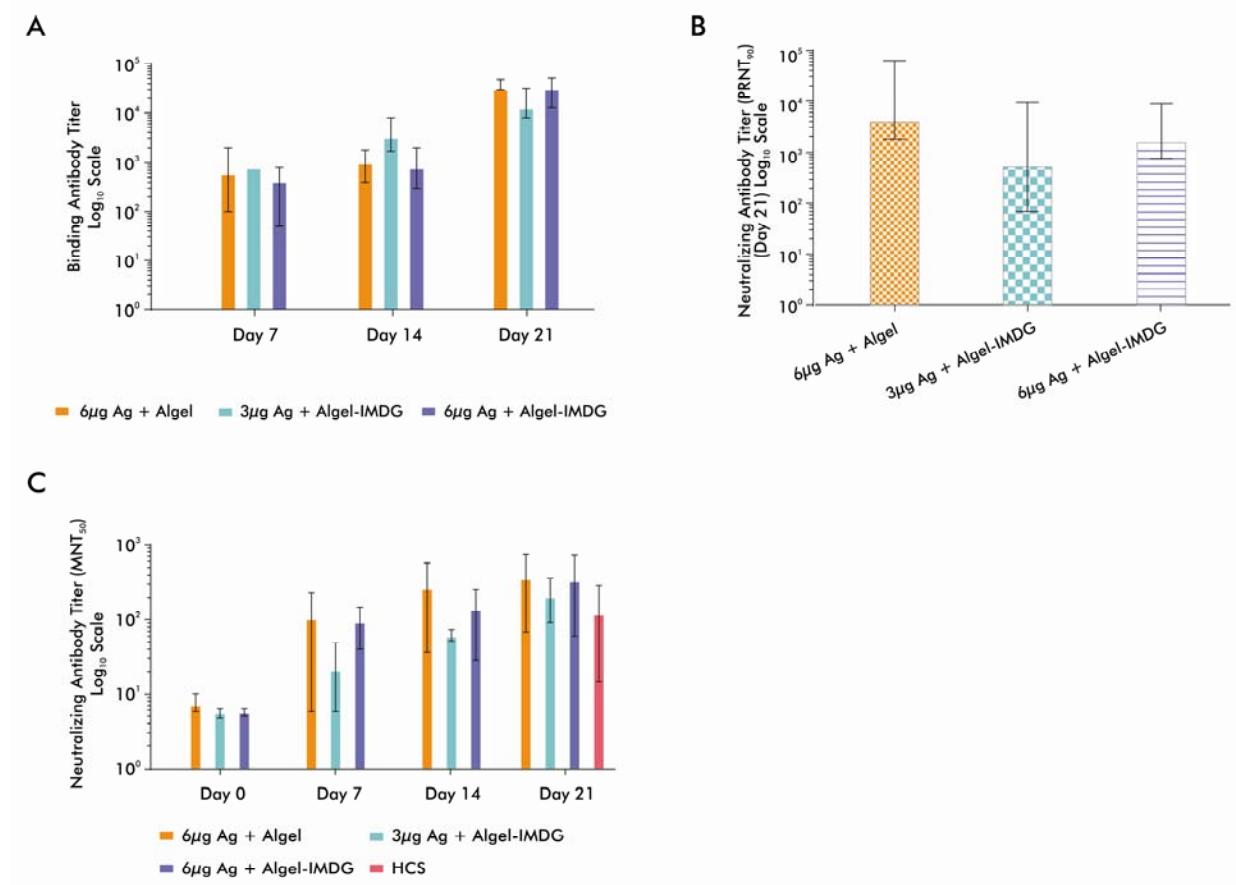

A. SARS-CoV-2 Virus (Strain NIV-770-2020) Growth Kinetics & Cytopathic effect (CPE) of virus before and after Inactivation (i) Virus titer (10^6 - 10^7) measured by CCID₅₀ at every 3 hours up to 48 and after that every 12hrs various time points (24, 27, 30, 33, 36, 39, 42), (ii) Cells with Cytopathic Effect (CPE) before inactivation and No CPE after Inactivation, (iii) Image of Vero cell monolayer with no CPE observed from 16-36hrs; **B. Representative electron micrograph of purified inactivated SARS-CoV-2 candidate vaccine (BBV152)** at a scale bar: 100 nm (right) and 200 nm (left); **C. Western blot analysis of Purified Inactivated SARS-CoV-2 produced from three production batches**; **D. Microneutralization antibody titer of Day 14 sera collected from mice vaccinated with Adjuvanted formulations (3 µg Ag with Algel-IMDG and 6 µg Ag with Algel-IMDG)**, after subjecting them for stability at 37°C for 7 days and compared with 2-8°C

Figure 2: BBV152 Vaccines Induces High Virus-specific Antibody Response in Mice and Rats

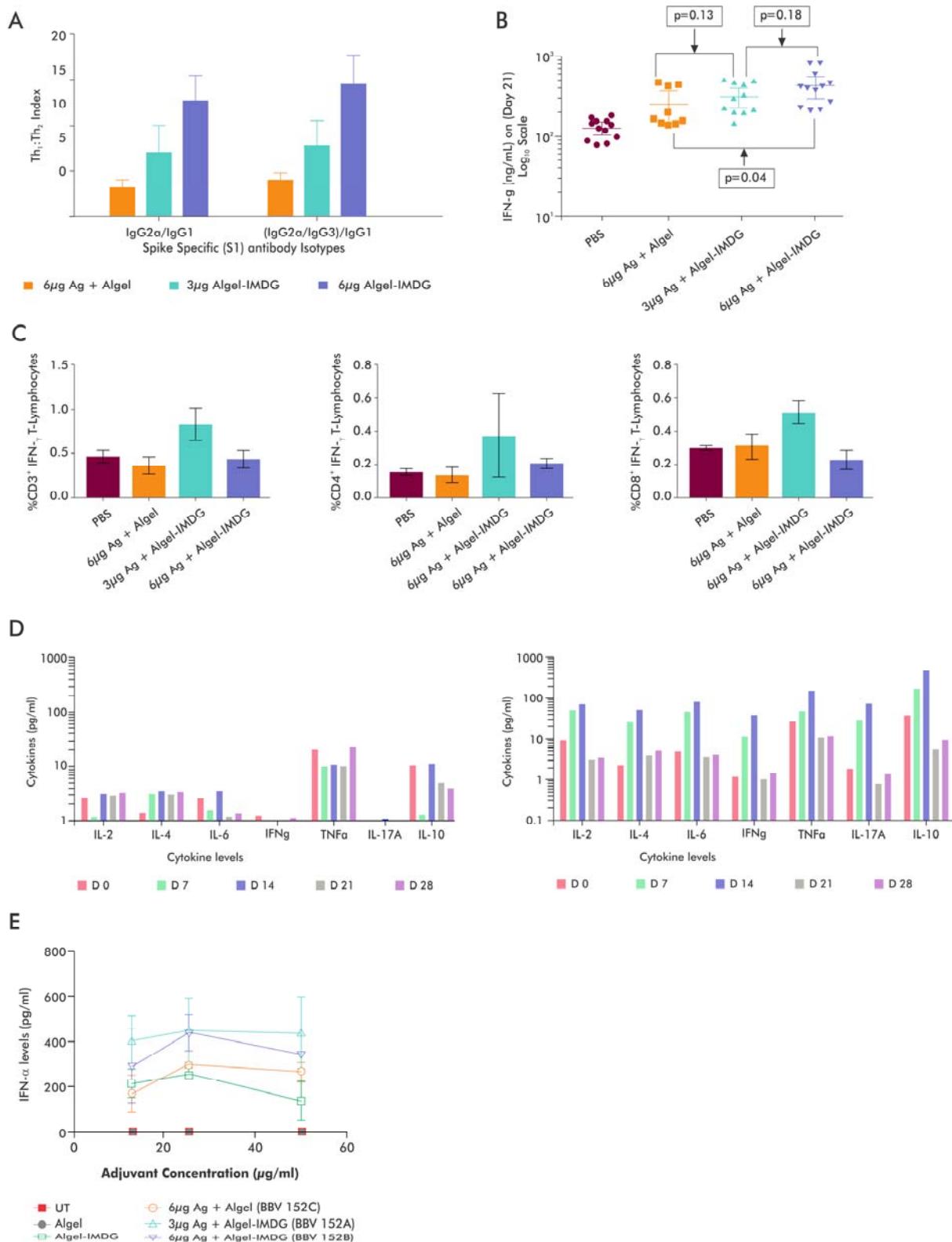

*Balb/C mice (n=10) were administered with adjuvanted vaccine formulations via IP route either with 1/20th (Fig A&B) or 1/10th (Fig C, D & E) Human Single Dose (HSD): **A.** S1 specific Total IgG antibody binding titer performed by ELISA, using sera collected at various time points (Day 0, 7, 14 & 21); **B.** Neutralizing antibody titers performed by PRNT₉₀, using day 21 sera, when administered with 1/20th HSD respectively; **C.** S1 specific Total IgG antibody binding titer performed by ELISA, using Day 21 sera when administered with 1/10th HSD; **D.** SARS-CoV-2 specific (S1, RBD, N and total inactivated antigen) antibody binding titers elicited against adjuvant vaccines (BBV152A, B & C); **E.** neutralizing antibody titers performed by PRNT90, using day 21 sera, when administered with 1/10th HSD respectively; **F.** *Balb/C mice were administered with Antigen & BBV152B via IM route at the specified doses on day 0 & 14. Sera were collected on Day 28 (post 2nd dose) and determined S1 specific antibody titer by ELISA.**

Figure 3: BBV152 Induces Robust Neutralizing Antibody Response in Rabbits

New Zealand white rabbits (n=8) were Rabbits were vaccinated intramuscularly on days 0, 7, and 14 with Full HSD via IM route. SARS-CoV-2 specific Antibody titers were measured by ELISA. Nab tites were measured by PRNT₉₀ and MNT₅₀. Data Points represent mean \pm SEM of individual animal data. A. S1 specific Ab binding titer of sera collected at various time points (Day 0, 7, 14 & 21); B. PRNT₉₀ neutralizing antibody titers of Day 21 sera; C. MNT₅₀ neutralizing antibody titers of sera collected at various time points (Day 0, 7, 14 & 21) along Neutralizing antibody titer (MNT₅₀) with Human convalescent sera (HCS) from recovered COVID-19 patients (n=15). Samples were collected between 21-65 days of virological confirmation.

Figure 4: BBV152 Induces A Robust Virus-specific T Cell Response.

Balb/C mice (n=10) were vaccinated with 1/10th HSD of adjuvanted vaccine formulations (BBV 152 A, B & C) via the IP route. A. Immunoglobulin subclasses (IgG1, IgG2a & IgG3) were measured by ELISA. Th1:Th2 index was measured using the formulas IgG2a/IgG1 or (IgG2a+IgG3)/IgG1. B. IFNgamma estimation by ELISA, on Day 21 sera (7 days post 3rd Dose). Statistical analysis was done Graph Pad Prism version.7.0; C. Bar graph represents mean data of percent CD3⁺ or CD4⁺ or CD8⁺ T lymphocytes producing IFNgamma from the respective group of animals (i) CD3⁺ T lymphocytes population, (ii) CD4⁺ T lymphocytes population, (iii) CD8⁺ T lymphocyte population. Error bars indicate Mean±SD. Vaccinated mice splenocytes from Balb/C mice (n=10), administered with 1/10th HSD via IM route were used for the analysis; D. Cytokine profile measured on various time points using vaccinated Balb/C mice sera, when administered with Adjuvanted vaccine formulations (1/20th HSD via IP route) Left - BBV152C- Antigen 6 μ g+Algel; Right – BBV152B- Antigen 6 μ g+Algel-IMDG, E. IFN α levels measured by ELISA from culture supernatant, when treated healthy PBMCs with Algel or Algel-IMDG or adjuvanted vaccine formulations (BBV152A, B & C). Two-fold serial dilutions of the human intended dose of adjuvanted vaccine formulations were used. Corresponding antigen or adjuvant alone concentration were also maintained simultaneously as controls. Error bars indicate Mean±SD of triplicate values.