

Multi-locus CRISPRi targeting with a single truncated guide RNA

Molly M Moore^{1,6}, Siddarth Wekhade^{1,6}, Robbyn Issner¹, Alejandro Collins¹, Yanjing Liu², Nauman Javed^{1,3,5}, Jason D Buenrostro^{1,4}, Charles B Epstein¹, Eugenio Mattei¹, John G Doench², Bradley E Bernstein^{1,3,5}, Noam Shores¹, Fadi J Najm^{1*}

¹Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA USA

²Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA USA

³Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA

⁴Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA USA

⁵Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA USA

⁶These authors contributed equally to this work.

*Contact: fadinajm@broadinstitute.org

Abstract

A critical goal in functional genomics is evaluating which non-coding elements contribute to gene expression, cellular function, and disease. Functional characterization remains a challenge due to the abundance and complexity of candidate elements. Here, we develop a CRISPRi-based approach for multi-locus screening of putative transcription factor binding sites with a single truncated guide. A truncated guide with hundreds of sequence match sites can reliably disrupt enhancer activity, which expands the targeting scope of CRISPRi while maintaining repressive efficacy. We screen over 13,000 possible CTCF binding sites with 24 guides at 10 nucleotides in spacer length. These truncated guides direct CRISPRi-mediated deposition of repressive H3K9me3 marks and disrupt transcription factor binding at most sequence match target sites. This approach is valuable for elucidating functional transcription factor binding motifs or other repeated genomic sequences and is easily implementable with existing tools.

1 Main

2 Over 1 million human cis-regulatory elements (CREs) have been cataloged across various cell
3 and tissue types ¹⁻⁴. CREs include the promoters, enhancers, insulators, and silencers that
4 direct gene expression, sometimes in dynamic interplay or synergy. CRE function is further
5 influenced by cell state and multiple transcription factor (TF) binding sites. TFs recruit proteins
6 and complexes to orchestrate gene expression. TFs bind with various strengths, often dictated
7 by cell state and genomic contexts such as motif combinations and orientations ⁵⁻⁷. However,
8 the determinants for TF binding to one motif over another and the effect of that binding are not
9 well understood. Connecting CREs and TF binding with functional outputs is important for
10 interpreting disease associated genetic variation^{3,8,9} and may help nominate regions for clinical
11 interventions. Together, TFs and CREs direct the intricate regulatory networks that govern cell
12 function and disease.

13

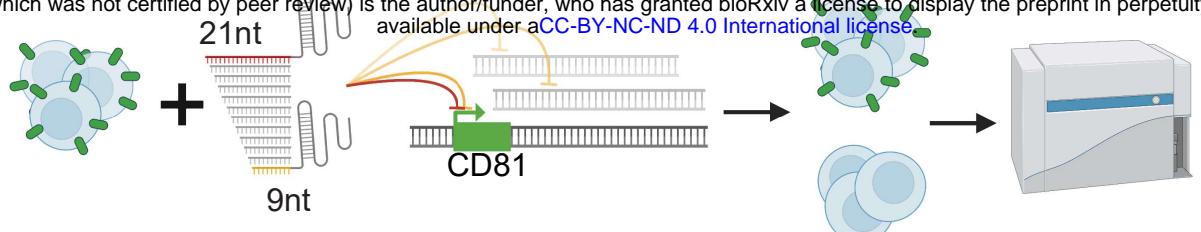
14 CRISPR interference (CRISPRi) consists of a catalytically dead Cas9 (dCas9) that can be fused
15 to a zinc-finger repressive protein (KRAB) for transcriptional silencing. Several studies have
16 relied on CRISPRi-directed targeting of CREs followed by RNA measurement or flow cytometry
17 to detect gene expression changes ¹⁰⁻¹⁹. However, efforts to characterize CREs at scale have
18 been complicated by the large number of putative elements and mild effect sizes. High
19 multiplicity of infection (MOI) delivery of guides paired with single-cell RNA-seq provided a
20 multiplexed testing approach ¹⁶, though at the cost of many viral integration events. As such,
21 while CRISPRi-based approaches can effectively assess significant CREs, there is a critical
22 need for improving their scalability.

23

24 The Cas9 nuclease is guided by a spacer sequence that determines targeting specificity.
25 Typically, spacers are 20 nucleotides (nt) in length and target a single genomic site based on

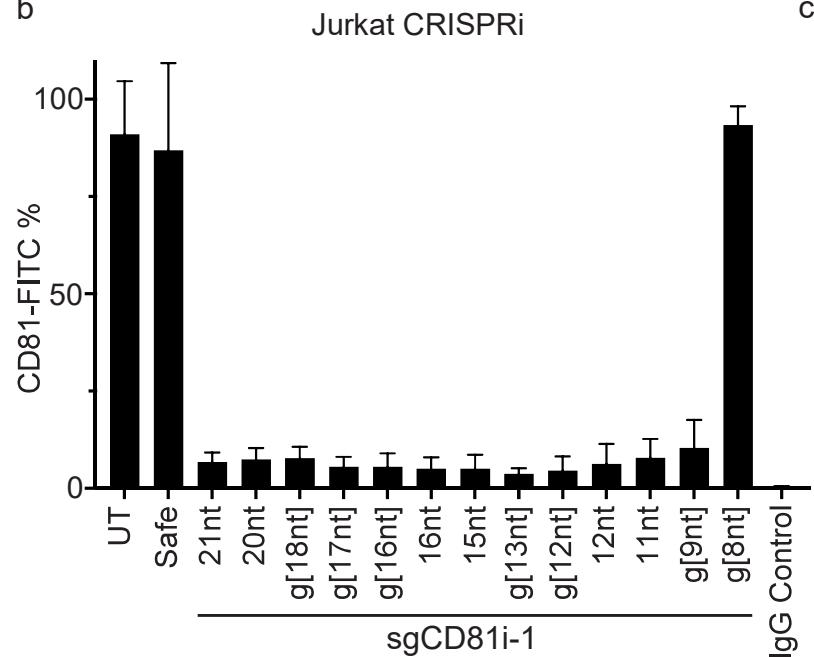
26 sequence complementarity. Early studies posited that spacers with minor 5' truncations or
27 mismatches retain Cas9-mediated, on-target cleavage^{20–22}. The 3' end of the spacer sequence,
28 also termed the seed sequence, is necessary though not alone sufficient for on-target cleavage.
29 Activity was observed with truncated spacers of 17nt while 15nt or shorter spacers failed to
30 demonstrate cleavage activity^{20,23–25}. However, an important distinction exists in the
31 requirements for Cas9 binding and cleavage that is illuminated with dCas9 protein. Indeed,
32 spacers as short as 10nt sufficed for dCas9-VPR (CRISPRa) activity at a single target site²⁶.
33 We postulated that KRAB-dCas9 (CRISPRi) would perform similarly and, further, target multiple
34 intended sites simultaneously.

35

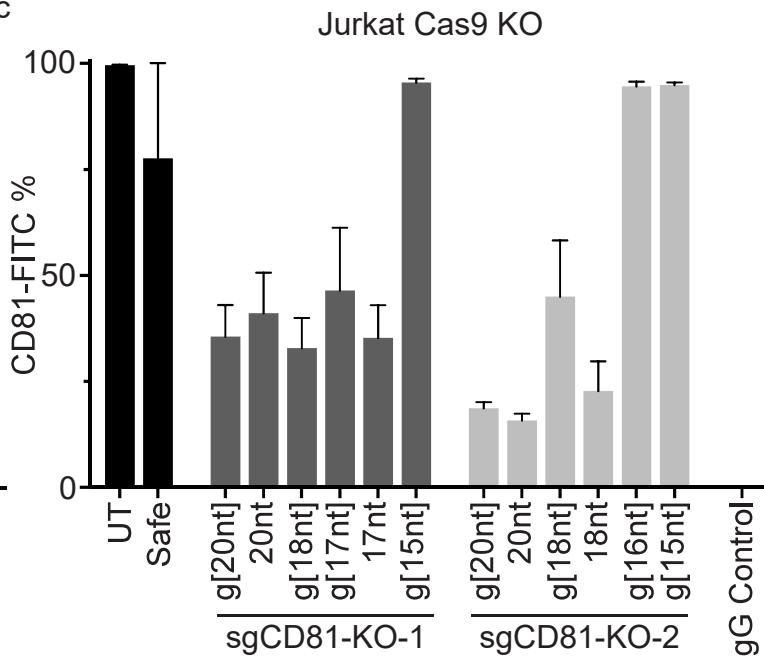

36 Here, we explored the ability of truncated guides to direct CRISPRi to multiple sites
37 simultaneously in the genome for multi-locus repression. Truncated guides resulted in reliable
38 on-target efficacy down to spacer lengths of 9nt. TF motifs, which are often less than 14nt,
39 presented ideal genomic loci for multiplexed repression. We target TF motifs in a CRE of the
40 *EPB41* gene and observe comparable on-target efficiencies with full-length and truncated
41 guides. We screened a truncated guide library targeting thousands of CTCF motif sites and
42 discovered significant CTCF disruption. This approach offers a new opportunity to
43 simultaneously perturb CREs at scale and effectively prioritize genomic loci for further study.

44 **Results**

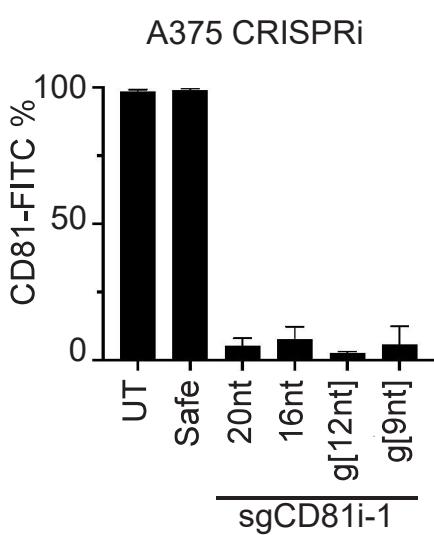
45 **Truncated guides direct CRISPRi to a sequence match site**


46 We first set out to characterize the minimum guide length required for CRISPRi-mediated
47 repression. CD81, a stably expressed, non-essential cell-surface protein, served as a reporter of
48 on-target efficiency by flow cytometry (**Fig. 1a**). We selected a high performing 20nt S.
49 *pyogenes* spacer (sgCD81i-1)²⁷, directed to the *CD81* transcriptional start site (TSS) and tested
50 successive truncations. By convention, guides are cloned with a guanine in the 5' position to
51 improve Pol III transcription levels²⁸, sometimes resulting in the guanine complementing the
52 target sequence (see **Methods** and **Supplementary Fig. 1a**). Therefore, here we use brackets
53 to denote the length of guide sequence that complements a single target site. For example,
54 sgCD81i-1 g[12nt] consists of a 5' mismatched guanine and 12 complementary bases to the
55 *CD81* TSS. Successive 5' truncations of sgCD81i-1 resulted in repression with each guide down
56 to a 9nt target match in Jurkat (T lymphocyte) cells (**Fig. 1b**), with sgCD81i-1 g[9nt] active and
57 sgCD81i-1 g[8nt] exhibiting a complete loss of on-target activity. We next tested additional
58 *CD81* TSS 20nt guides with less effective on-target efficiency (sgCD81i-2 and sgCD81i-3).
59 These truncated guides resulted in similar and sometimes better *CD81* repression relative to the
60 respective 20nt guide (**Supplementary Fig. 1b**). We expected that CRISPR knockout would be
61 ineffective with sizeable truncations based on prior studies²³⁻²⁵ and designed 2 guides that
62 target exon 1 of *CD81* (sgCD81-KO-1 and -2). *CD81* knockout was effective at lengths down to
63 a 17nt target match, consistent with prior findings (**Fig. 1c**). Indeed, guide length requirements
64 for Cas9 cleavage and CRISPRi diverge at <17nt guide lengths, highlighting opportunities for
65 CRISPRi targeting with truncated guides that are not possible with Cas9 cleavage.
66
67 Next, we investigated the specificity of truncated guide repression. Unpaired bases at the 5' end
68 of 20nt guides can impact their activity. We lengthened the 5' end of sgCD81i-1 10nt with 1-3

a



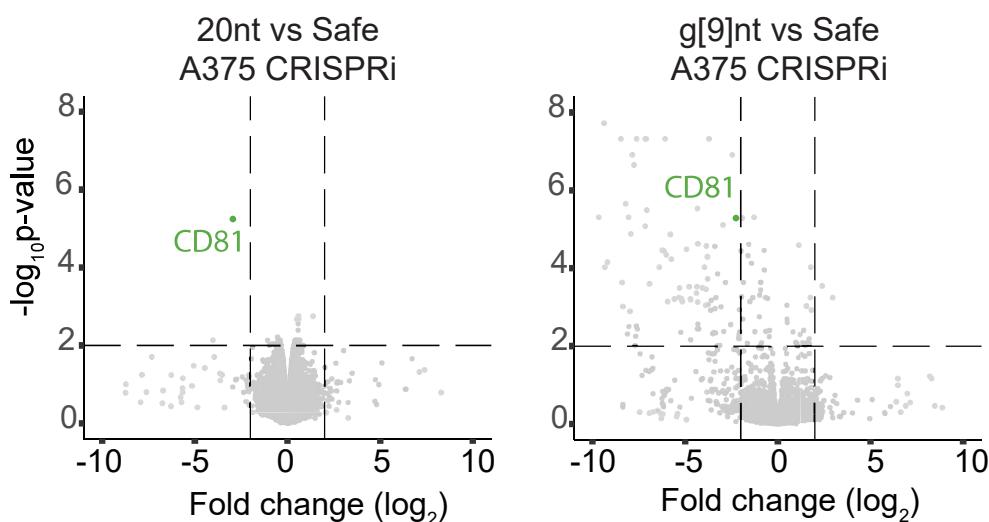
Jurkat A375 CD81 promoter guides CRISPRi Targeting CD81 Knockdown Flow Cytometry

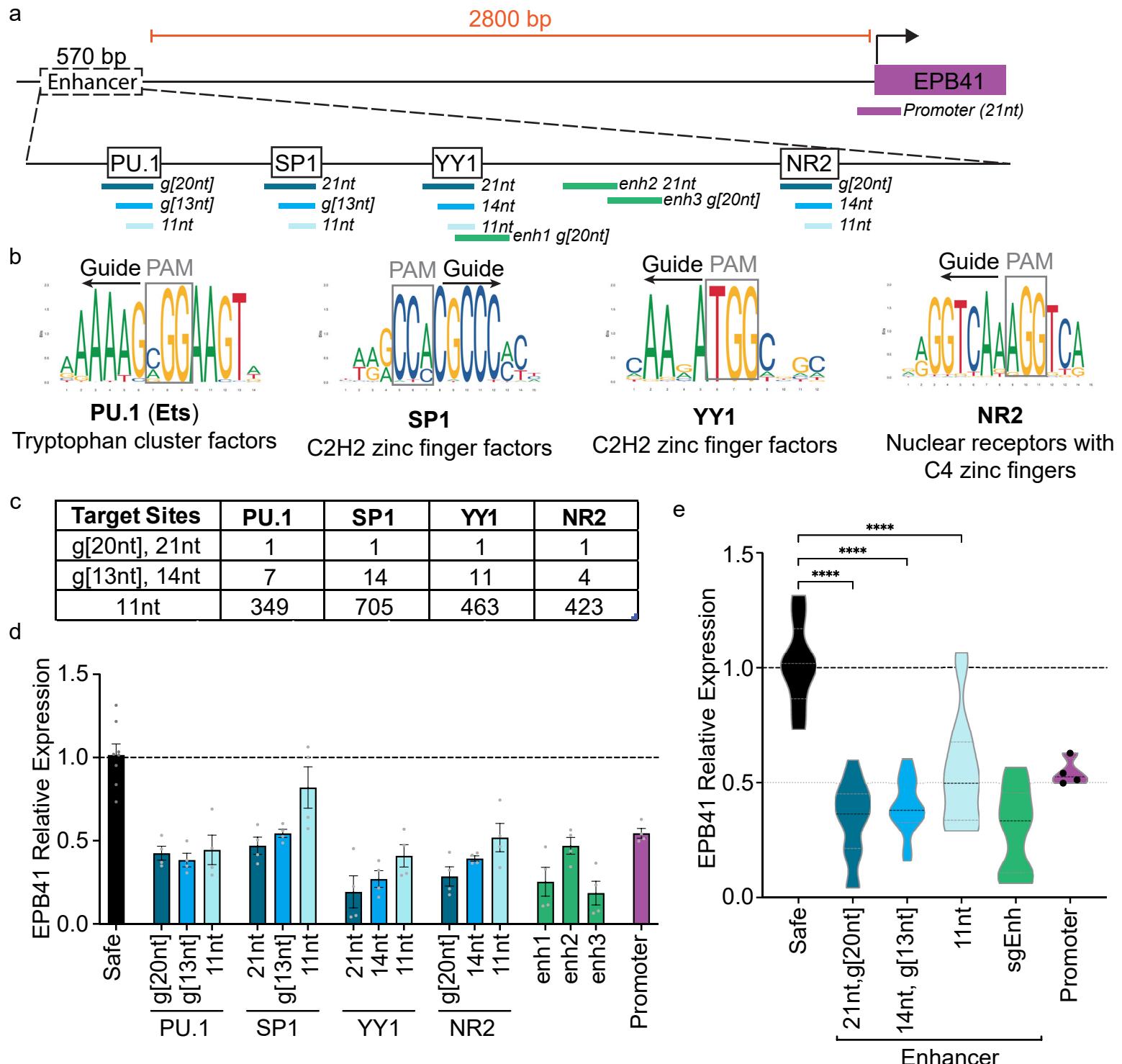

b

c

d

e




Fig 1. Truncated guides enable on-target CRISPRi-mediated repression. **a** Schematic of truncated guide experiments. **b** CRISPRi in Jurkat cells with truncated CD81 promoter targeting guide and analyzed for CD81 cell surface expression. **c** Cas9 cleavage in Jurkat cells treated with two guides targeting CD81 and truncated versions. **d** CRISPRi in A375 cells with truncated CD81 promoter targeting guide and analyzed for CD81 cell surface expression. **e** Gene expression in A375 cells in 20nt and g[9nt] sgCD81i-1 CRISPRi populations. p-value cutoff at >2 and log fold-change >2 and <-2 . For **b-d**, cells were stained with CD81-FITC antibody analyzed by flow cytometry 7 days post lentiviral transduction for CD81 targeting guide, safe harbor control (Safe), or untransduced (UT). Flow gating strategy found in **Supplementary Fig. 1e**. Data are mean \pm SD from biological triplicate.

69 additional bases. Either 1 or 2 unpaired bases on the 5' end resulted in effective repression,
70 while 3 unpaired bases (gcc) completely abrogated repression (**Supplementary Fig. 1c, d**). We
71 tested sgCD81i-1 full-length and truncated constructs in A375 (melanoma) cells and
72 demonstrated similar *CD81* repression as observed in the Jurkat experiments (**Fig. 1d**),
73 providing evidence that truncated guides are active in an additional cellular context. RNA
74 sequencing in A375 showed similar levels of *CD81* repression at 20nt and g[9nt] lengths along
75 with additional downregulated targets in the g[9nt] treatment (**Fig. 1e** and **Supplementary**
76 **Table 1**). In sum, 5' truncated guides can direct CRISPRi components to induce repression at
77 target promoters comparable to full-length guides.

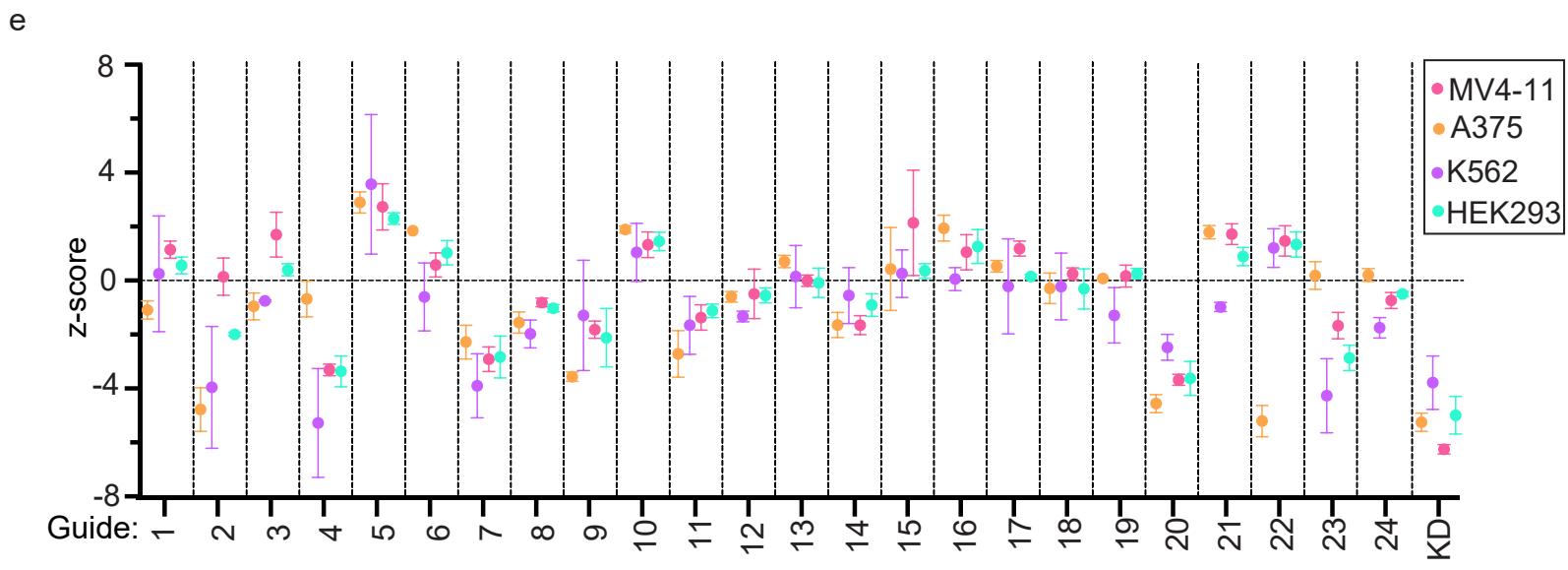
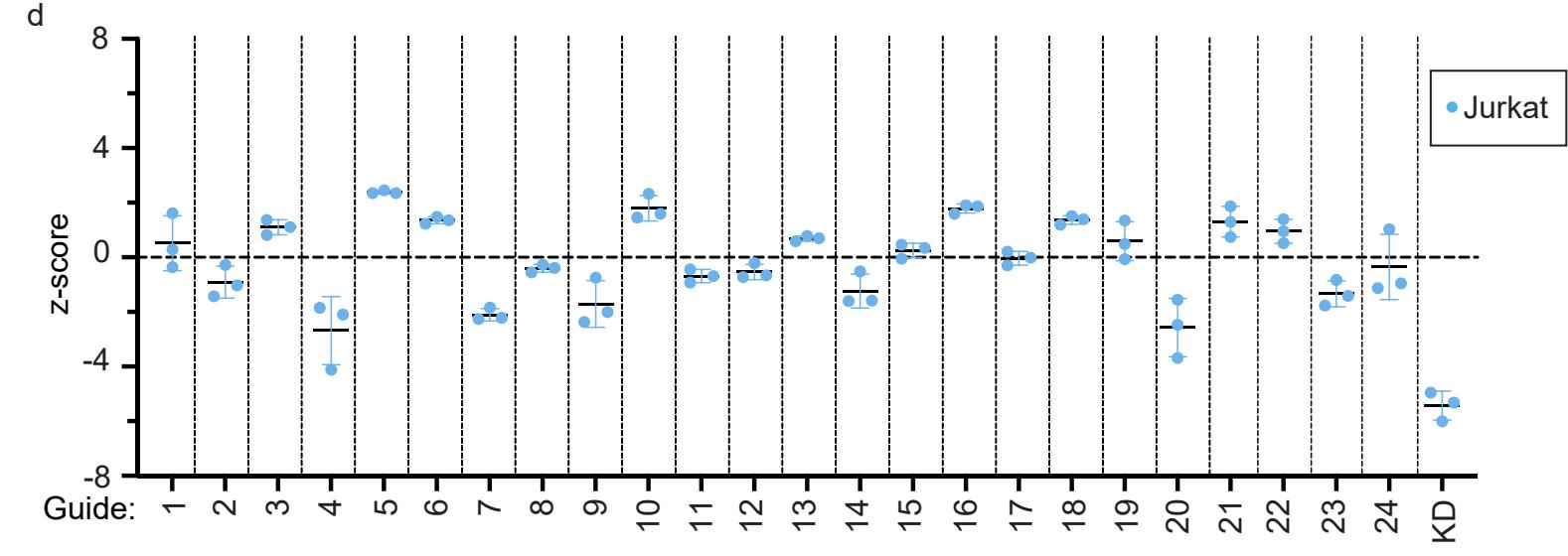
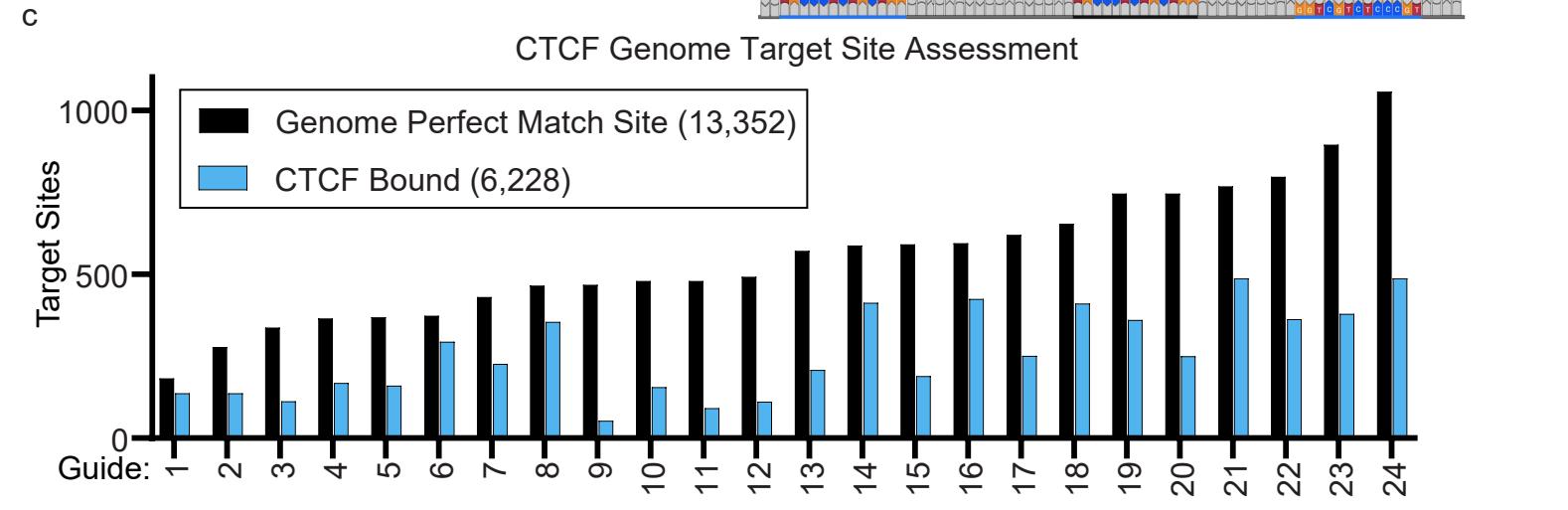
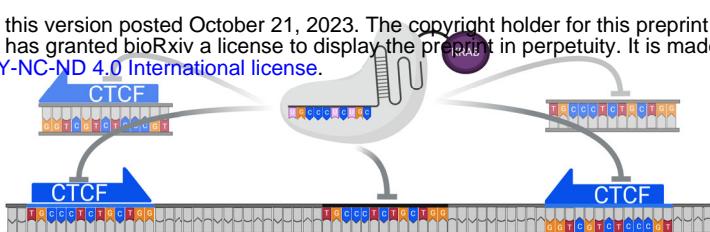
78

79 **Enhancer disruption with truncated guides**

80 We next asked whether an active enhancer is targetable with truncated guides directed toward
81 multiple TF motif sequences. We selected a 570bp locus with several putative TF binding sites,
82 2.8kb upstream of the *EPB41* gene (**Fig. 2a**, chr1:28,883,749-28,884,318). This locus was
83 previously identified as a possible regulator of *EPB41* in a K562 CRISPRi screen ¹⁶. We
84 selected 4 TF motifs in this enhancer (PU.1, SP1, YY1 and NR2), each containing an ideally
85 positioned NGG sequence for the Cas9 protospacer adjacent motif (PAM) (**Fig. 2b**). TF motifs
86 were positioned at the 3' end of the guide including the PAM and two truncated versions (g[13nt]
87 or 14nt and 11nt). The full-length guides match only the *EPB41* enhancer locus while the 11nt
88 guides matched hundreds of additional genomic sites (**Fig. 2c**). We transduced K562 cells and
89 measured on-target efficiency for *EPB41* knockdown by real-time quantitative PCR of *EPB41*
90 and compared to 3 guides identified from the prior screen ¹⁶ as well as a promoter targeting
91 guide (**Fig. 2d**). *EPB41* expression was reduced to levels comparable to the respective 20nt
92 guide in 3 out of 4 11nt guides (PU.1, YY1, NR2) (**Fig. 2d and Supplementary Fig 2a**). In
93 aggregate, the full-length and truncated guides tested significantly decreased EPB41

Fig 2. Enhancer targeting with truncated guides induces *EPB41* repression. **a** Schematic of *EPB41* genomic regulatory region and full-length/truncated guides targeting each of 4 TF motifs. **b** TF motifs (JASPAR) targeted by the guides with protospacer adjacent motif (PAM) orientation denoted. **c** Number of sequence match target sites in the genome (hg38) for the indicated motif directed guide. **d** Quantitative real time PCR analysis of *EPB41* expression in K562 cells with respective guide CRISPRi treatment conditions. Safe (Safe Harbor-targeting) guide = g[20nt], promoter guide = 21nt, enh1 = g[20nt], enh2 = 21nt, enh3 = g[20nt] (enhancer guides from Gasperini et al. 2019). Data are mean +/- SEM. **e** Violin plot summary of *EPB41* expression data in panel **d** organized by guide length or targeting region. TF-targeting guides (n=16; 4 guides per spacer length), sgEnh (n=12; 3 guides), and Promoter (n=4; 1 guide, all points shown) are the product of 2 biological replicates per guide run in duplicate. Safe is the sum of 3 biological replicates run 2-3 times each (n=8). Data are normalized to the mean CT value of Safe Harbor actin-b control probe. Results are analyzed by one-way ANOVA. ****P<0.0001 for all guide lengths compared with Safe Harbor guide.

94 expression as compared to safe harbor control (**Fig. 2e** and **Supplementary Fig. 2b**, one-way
95 ANOVA P<0.0001). CRISPRi-directed truncated guides can effectively disrupt an enhancer.





96

97 **A CTCF-directed truncated guide library**

98 To test the utility of truncated guides for multi-locus TF perturbation, we selected CCCTC-
99 binding factor (CTCF) sites to screen. CTCF is a ubiquitously expressed TF whose role in
100 genomic insulation is dependent on convergently oriented consensus sequences ²⁹. Leveraging
101 the 3' NGG PAM sequence in the CTCF motif (**Fig. 3a**), we designed a library of 24 10nt guides
102 targeting a total of 13,352 sequence match CTCF binding sites (**Fig. 3a-c**). Based on CTCF
103 ChIP-seq in Jurkat cells, approximately half of these sites are CTCF-bound (6,228) and
104 represent 10.8% of all CTCF peaks (**Fig. 3c** and **Supplementary Fig. 3a**). This library allowed
105 us to test CTCF binding sites, partitioned by guide, ranging from a minimum of 182 sites (sg1) to
106 maximum of 1,123 sites (sg24). As a control we targeted the *CTCF* locus itself with full-length
107 guides for gene repression (**Fig. 3d** and **Supplementary Fig. 3c**). We packaged guides into a
108 lentiviral library, transduced Jurkat cells near an MOI of 0.5, and collected cells over 21 days.
109 We measured guide enrichment and depletion as a proxy for fitness. We quantified the scale of
110 this effect with a z-score (see **Methods**) relative to 15 full-length safe harbor guides. Our results
111 indicated that most truncated guides were not lethal, as we observed moderate shifts in guide
112 representation relative to safe harbor guides (**Fig. 3d** and **Supplementary Tables 2 and 3**). A
113 subset of guides resulted in enrichment, suggesting changes that may promote proliferation. We
114 also identified guides sg4 and sg20 as broadly depleted, though not to the degree of *CTCF*
115 knockdown. This initial screen provided evidence that certain truncated guides can induce
116 fitness changes in Jurkat cells.

117

118 We next screened the CTCF library in additional cell lines to compare with Jurkat results. We
119 processed A375 cells for CTCF ChIP-seq and found 6,140 library target sites bound,

Fig 3. Simultaneous screening of CTCF binding sites with a truncated guide. **a** Guide selection strategy based on top Homer generated motif from CTCF ChIP in Jurkat cells. **b** CTCF targeting schematic of a single 10nt guide directing CRISPRi to many motifs simultaneously (CTCF-bound and unbound). **c** Target site distribution (black) and CTCF occupancy based on Jurkat ChIP (blue) for each of the 10nt guide sequences. **d, e** Guide enrichment and depletion in pooled screen for the indicated cell lines. Pooled screens were run in triplicate, while K562 was in duplicate. Data are mean +/- SD. CTCF promoter targeting full length guide knockdown (KD) used as a control.

120 representing 14% of all CTCF peaks (**Supplementary Fig. 3a, b**). In comparison, 6,228 of
121 CTCF library sites are bound in Jurkat. We further include K562 (T-lymphocytes), MV4-11
122 (AML) and HEK293 as additional models representing diverse cellular contexts for screening.
123 Cells were transduced with the CTCF library and assessed for guide representation after 21
124 days. Fitness effects in these additional cell models largely recapitulated trends observed in
125 Jurkat cells (**Fig. 3e** and **Supplementary Table 3**). This could be attributed to invariance of
126 CTCF binding sites across tissues^{30,31}. However, we observed some instances of cell-specific
127 fitness effects, particularly with sg2, sg22, and sg23. While sg2 and sg23 impacted more than
128 one cell line, sg22 was strongly depleted in A375 only.

129

130 As an additional test of guide-sequence specificity, we screened 11nt guides by adding every
131 base to each 10nt guide in the CTCF library, totaling 96 guides. The additional 5' base had
132 modest changes on fitness outcomes when compared to the respective 10nt guide outcome
133 (pearson correlations ranged from 0.86 to 0.94 in Jurkat, 0.64 to 0.85 in K562, 0.79 to 0.94 in
134 MV4-11, 0.86 to 0.96 in HEK293, and 0.73 to 0.87 in A375, **Supplementary Fig. 4**). This
135 reinforced our prior finding that a single base mismatch was not detrimental to targeting,
136 whereas ≥2 mismatches can disrupt activity (**Supplementary Fig. 1c-d**). Testing in 5 cell lines,
137 we find that addition of a single 5' base to a 10nt guide does not significantly alter guide effects.

138

139 **Simultaneous targeting of CTCF binding sites**

140 We selected sg4 for further exploration due to its effects on fitness. Guide sg4 targets 357 sites
141 in the genome with 10nt complementarity, termed “perfect match” sites. Perfect match sites
142 were determined regardless of the 5' guanine present on all guides. We transduced Jurkat cells
143 with sg4 and CRISPRi for 6 or 7 days and performed CTCF and H3K9me3 ChIP-seq. The
144 analysis revealed a significant drop in CTCF occupancy at perfect match sites (*t-test*, $P < 10^{-5}$)
145 (**Fig. 4a, c** and **Supplementary Fig 5a, b**). We found it promising that CTCF, a strong binder to

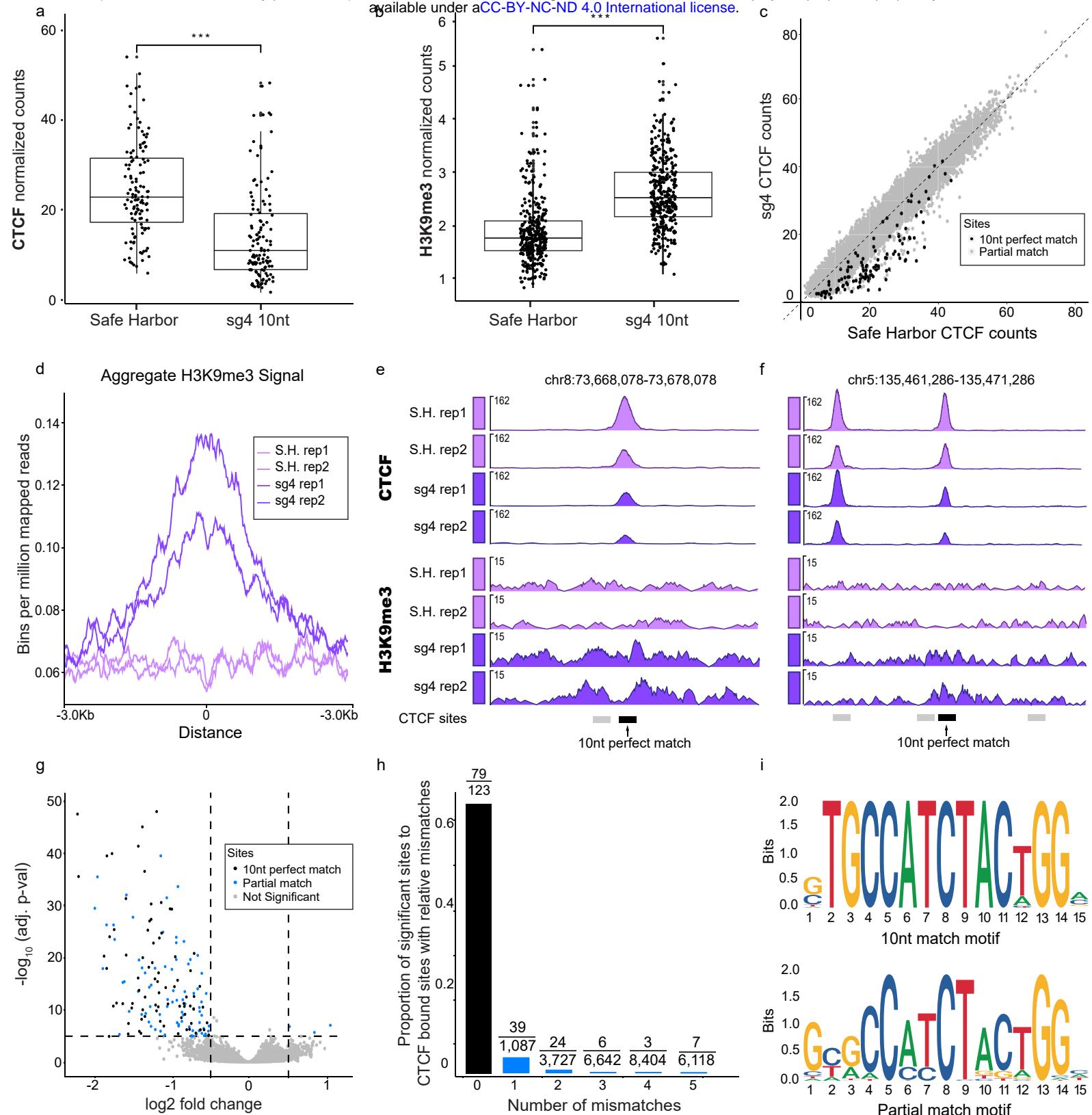


Fig 4. CRISPRi with a single truncated guide disrupts CTCF binding at multiple loci. **a** CTCF ChIP of the CTCF bound sites (357) targeted by sg4 with a perfect match. Significance with t-test *** $P=5.6 \times 10^{-13}$. **b** H3K9me3 ChIP of all sg4 perfect match sites. Significance with t-test *** $P=1.3 \times 10^{-38}$. **c** Scatter plot CTCF binding at JASPAR motifs (880k) with 357 perfect match sites (black) and partial match sites (grey). **d** H3K9me3 density plot for Safe Harbor (S.H., light purple) and sg4 (dark purple) treated Jurkat cells. **e, f** Track views of 2 targeted regions depicting CTCF and H3K9me3 signal from 2 replicate experiments (rep). Bars on the bottom depict CTCF perfect match (black) and partial match sites (grey). **g** Volcano plot of CTCF bound sites (400k) with significant 10nt match CTCF sites (black), significant partial match sites (79), and not significant sites. Significance was determined at cutoffs ($\text{abs}[\text{LFC}] > 0.5$ and $-\log_{10} P > 5$). **h** Histogram depicting significant CTCF disrupted sites as a fraction of CTCF bound sites with 0 mismatches up to 5 mismatches. Raw values depicted on each bar. **i** Logogram of significant perfect match sites (top, 79 sites) and significant partial match sites (bottom, 79 sites) from sg4 experiments.

146 chromatin, was displaced at many sites simultaneously. Concurrent with CTCF loss was a
147 significant increase in H3K9me3 signal at perfect match sites (*t-test*, $P < 10^{-5}$) (**Fig. 4b, d**).
148 H3K9me3 is a histone mark that indicates KRAB-dCas9 binding and recruitment of repressive
149 proteins ¹¹. Two example tracks of perfect match sites depict decreased CTCF binding and
150 concurrent increased H3K9me3 signal (**Fig. 4e, f**). These initial findings presented compelling
151 on-target CTCF disruption at multiple sequence match genomic loci with truncated guides.

152
153 We next evaluated multi-locus targeting specificity with a slightly longer spacer sequence. We
154 designed a 13nt guide based on our prior findings that 3 mismatched bases disrupt targeting of
155 *CD81* TSS (**Supplementary Fig. 1c-d**). We appended 3 bases (aag) to the 5' end of sg4,
156 termed aag[sg4], resulting in a guide with 77 expected perfect match sites. We transduced
157 Jurkat cells with the guide and CRISPRi and processed cells for CTCF ChIP-seq. Examining the
158 26 CTCF-bound genomic regions targeted by both guides, we observed significantly lower
159 CTCF signal in the aag[sg4] and sg4 samples compared to safe harbor guide (**Supplementary**
160 **Fig. 6**). Sg4 and aag[sg4] were not significantly different from one another, however we
161 observed a slightly lower mean CTCF signal in aag[sg4].

162
163 An additional truncated guide from the CTCF library was investigated further for its efficiency.
164 We selected sg8 (10nt) which had 465 sequence match sites and little fitness impact on Jurkat
165 cells. We transduced Jurkat cells with sg8 and CRISPRi and processed the cells for ChIP-seq
166 after 7 days. CTCF binding was severely impacted at sequence match bound sites (*t-test*, $P < 10^{-5}$,
167 411 sites) along with an increase in H3K9me3 signal (*t-test*, $P < 10^{-5}$) (**Supplementary Fig. 7a-c**). This complemented the CTCF loss and H3K9me3 gain results observed with sg4. Therefore,
168 truncated guide CRISPRi can deplete CTCF binding events in a bulk population and at a few
169 hundred genomic loci.

171

172 We next explored gene expression effects with CTCF-directed truncated guides. Samples of
173 sg4 and sg8 were collected 7 days post lentiviral transduction and processed for RNA
174 sequencing. Significant genes were determined with dream differential expression analysis³²,
175 which aggregates data across replicates for confidence. Gene expression for sg4 indicated no
176 differential genes (**Supplementary Fig. 8**). However, targeting with sg8 resulted in upregulation
177 of 67 genes (**Supplementary Fig. 8**) which may be explained by one or more sg8 sites resulting
178 in genome reorganization due to lost CTCF-mediated loops³³⁻³⁶. Interestingly, the sg8 motif is
179 bound by CTCF at 88.4% of sequence match sites compared to only 46.6% for all tested 10nt
180 guides (**Fig. 3c**). Further investigation is needed to characterize the changes in enhancer-
181 promoter interactions due to CTCF insulator loss. CTCF disruption with one truncated guide led
182 to no differential gene expression while another guide induced gene upregulation.

183

184 **Characterization of disrupted CTCF sites**

185 A comprehensive approach to identify significantly impacted CTCF sites was next pursued. We
186 generated a list of over 880k JASPAR CTCF binding sites in the genome (see **Methods**). We
187 plotted CTCF ChIP-seq read counts mapping to these regions for sg4 or sg8 relative to safe
188 harbor controls (**Fig. 4c, Supplementary Figs. 5b and 7c and Supplementary Table 4**). This
189 allowed for proper visualization of both targeted and non-targeted CTCF sites. We then applied
190 dream differential analysis to determine significant sites. This analysis determined that 64% of
191 Jurkat sg4 sites were CTCF depleted (79 out of 123 perfect match bound sites, $P<10^{-5}$,
192 LFC<0.5) (**Fig. 4g, h**). Similarly, dream analysis of sg8 Jurkat samples showed significant loss
193 at 55.7% of CTCF sites (**Supplementary Fig. 7d**, 229 of 411 perfect match bound sites, $P<10^{-5}$,
194 LFC<0.5). We concluded that hundreds of CTCF sites can be depleted with truncated guides
195 and over half of targeted CTCF peaks are lost at this scale.

196

197 We next investigated CTCF loss at sites other than perfect match loci. We filtered the 880k
198 JASPAR annotated motifs to find putative CTCF binding sites with \leq 9nt complementarity to the
199 10nt guide that we collectively termed “partial match” sites. We analyzed partial match sites in
200 sg4 containing 1 to 5 mismatches and observed 78 out of 29,908 sites had significant CTCF
201 loss ($P < 10^{-5}$, $LFC < 0.5$) (**Fig. 4g, h**). Most partial match sites with CTCF loss had a 1nt
202 mismatch. Motif analysis further illuminated mismatch tolerance positions in the guide at A-T
203 rich bases and the 5' end for sg4 (**Fig. 4i**) and sg8 (**Supplementary Fig. 7e**). It is noteworthy
204 that most partial match sites remained unaffected by the CRISPRi truncated guides, indicating
205 strong sequence specificity for targeted CTCF sites.

206

207 **Discussion**

208 Here we show effective CRISPRi targeting at multiple genomic loci with truncated guides as
209 short as 9nt. This is a unique property of dCas9 moieties, as catalytically active Cas9 is
210 incapable of on-target cleavage with guides shorter than 17nt. A single truncated guide can
211 target CRISPRi to hundreds of TF binding sites, thus expediting the discovery of functional
212 regulatory elements. A library of 24 10nt guides enabled screening of over 13,000 CTCF sites,
213 representing 10.8% and 14% of bound CTCF sites in Jurkat and A375 cells respectively,
214 demonstrating scalable utility. Chromatin binding analysis revealed simultaneous disruption of
215 multiple CTCF binding events with a single truncated guide at most sequence match sites.

216

217 The activity of a guide depends on seed sequence, which impacts best outcomes of both 20nt
218 and 10nt guides. When designing a truncated guide library, it is important to consider exact
219 seed sequence as some TF motifs will be better targeted than others. PAM distal mismatches of
220 a few bases are tolerated with full-length guide-directed dCas9³⁷ and surprisingly we observed
221 the same 5' flexibility with 10-13nt guides. There are considerations beyond the guide sequence

222 that determine dCas9 targeting efficiency. Not all CREs or TF motifs may be amenable to
223 CRISPRi perturbation. Furthermore, it is unclear how required H3K9me3 is for disruption of
224 CTCF binding. A recent study demonstrated better enhancer and promoter targeting with a
225 KRAB-dCas9-MeCP2 system than with KRAB-dCas9 alone ³⁸, suggesting the importance of the
226 repressive marks. In this work we targeted TF binding motifs directly, making it plausible that
227 steric hindrance also contributed to TF displacement from chromatin.

228

229 Selection of targeted TF motifs and guide length are critical when planning truncated guide
230 screens. We selected motifs containing an NGG PAM to maximize the likelihood of dCas9
231 binding. dCas protein variants with expanded PAM requirements will widen the available target
232 sequence space. The shortest amenable truncated guide lengths will need to be determined in
233 these variant systems. In our experiments, 10nt and 13nt guides both significantly disrupted
234 target CTCF binding, however the 13nt guide generated a greater effect size at its targets.
235 Explanations for this are either that longer guides form a more stable R-loop structure with
236 dCas9 resulting in a stronger binding affinity ^{39,40} or longer guides benefit from a more favorable
237 ratio of KRAB-dCas9 protein units to fewer target sites. The maximum number of sites
238 simultaneously targetable with a single guide is yet to be determined. Here we investigate
239 guides with hundreds of sequence match sites (sg4 and sg8), but the exact multi-locus limit will
240 depend on specific guide sequences and expression levels of the KRAB-dCas9 construct.
241 Lastly, we suggest calculating the fraction of sequence match sites bound by the target TF (via
242 ATAC-seq, ChIP-seq, or CUT&Tag data) to assess screen efficiency. In Jurkat cells, 46.6% of
243 sequence match CTCF sites for all guides in the library were bound by the protein. The bound
244 fraction may be lower for other TFs and DNA-binding proteins.

245

246 The truncated guide method is a first pass discovery tool for targeting repeated genomic loci.
247 This approach is particularly useful when TF knockout results in negative fitness outcomes or
248 lethality, such as with CTCF. TFs can have alternate cellular functions, such as RNA binding ⁴¹,
249 that can confound TF knockout studies. This is avoided with truncated guide experiments since
250 binding sites themselves are reliably assayed. Another advantage to this approach is its
251 applicability to cell models with low lentiviral efficiencies or rare cell populations, such as
252 primary cells. A single truncated guide provides a rich landscape of tested outcomes with few
253 transduction events. Finally, we anticipate that truncated guide perturbation will provide a rich
254 readout of gene and TF regulatory networks in single cell assays.

255
256 **Methods**

257 **Cell Culture.**

258 Jurkat, K562, and MV4-11 cells were cultured in RPMI (Gibco) + 10% FBS (Sigma)
259 supplemented with 1% penicillin/streptomycin (Gibco). HEK293FT and A375 cells were cultured
260 in GlutaMAX High Glucose DMEM (Gibco) + 10% FBS supplemented with 1%
261 penicillin/streptomycin. Cells were tested monthly (negative) for mycoplasma contamination and
262 maintained in a 37°C humidity-controlled incubator with 5% CO₂. Jurkat, K562, MV4-11 cell
263 lines were obtained from the Cancer Cell Line Encyclopedia
264 (<https://portals.broadinstitute.org/cCLE/home>), HEK293FT cells from Invitrogen, and A375 cells
265 from ATCC. STR profiling was used to confirm cell line identities upon arrival.

266

267 **Flow Cytometry.**

268 Cells were incubated for 30 minutes at room temperature in 0.5% BSA PBS with 1:50 CD81-
269 FITC antibody (Biolegend, 349504) or mouse IgG1 FITC isotype control antibody (Biolegend,
270 400107). Cells were washed twice prior to analysis on a Cytoflex (BD) cell analyzer. The gating
271 strategy can be found in **Supplementary Fig. 1e**.

272

273 **Guide Selection.**

274 All guide sequences in this study can be found in **Supplementary Table 2**. This includes the
275 CTCF motif-directed library for the 24 guides (10nt, selected based on TF motif) and 96 (11nt,
276 by each base to the 5' end of each 10nt guide). To assess the effect of CTCF knockdown on
277 cell fitness, we used CRISPRick to select 20 sgRNAs targeting the CTCF promoter. After
278 screening, one guide was selected based on lethality across all cell lines and was included as
279 the knockdown data found in **Fig 2c**. Additionally, 15 safe harbor sgRNAs⁴² were included as
280 negative controls.

281

282 **Vectors and virus production.**

283 Annealed oligos were cloned into an all-in-one KRAB-dCas9-puro vector (pXPR_066, Broad
284 GPP) using the BsmBI restriction enzyme for backbone linearization and T7 ligase for CD81
285 promoter targeting experiments, the EPB41 enhancer locus experiments, and the CTCF pooled
286 library and follow up. sgCD81i-1 g[9nt] and g[8nt] guides required golden gate assembly (NEB)
287 due to the short length of the oligonucleotides. The CTCF library with varying guide lengths
288 involved the production of 3 separate pooled libraries, one for each of 10nt, 11nt, and 20nt
289 guide lengths. These libraries were then mixed at a balanced (equimolar) ratio to produce the
290 final library.

291

292 Single plasmids were chemically transformed into One Shot STBL3 chemically competent coli
293 (Invitrogen C737303). Bacterial cultures were shaken at 225 rpm for one hour at 37°C and then
294 plated on an ampicillin agar dish. After overnight growth at 37°C, single colonies were picked
295 into LB and shaken overnight at 225 rpm and 37°C. Plasmids were isolated the next day using a
296 Plasmid Miniprep Kit (Qiagen) and quantified using a Qubit fluorometer.

297

298 Pooled plasmid libraries were electroporated into ElectroMAX™ Stbl4™ electrocompetent cells
299 (Invitrogen 11635018) and spread on to bioassay plates. After overnight incubation at 30°C,
300 bacterial colonies were collected and isolated using the Plasmid Plus Midi Kit (Qiagen 12941).
301 20nt, 11nt, and 10nt sequences of the CTCF pooled library were cloned as individual pools and
302 then combined to reduce drift. Guide sequences can be found in **Supplementary Table 2**. All
303 guides were cloned with a guanine base at the 5' end to improve transcription from the U6
304 promoter ^{28,43}.

305

306 For single plasmids, 1 x 10⁶ HEK293FT cells were seeded in each 6-well in 2 ml of DMEM +
307 10% FBS 24 hours prior to transfection. A DNA mixture was prepared consisting of 250µl Opti-
308 MEM, 0.25 µg pCMV_VSVG (Addgene 8454), 1.25 µg psPAX2 (Addgene 12260), 1µg of the all-
309 in-one CRISPR vector (pXPR_066), and 7.5ul TransIT-LT1 (Mirus) transfection reagent. After a
310 20-minute incubation, the solution was added dropwise to the 6-well and incubated for 6 – 8
311 hours. Fresh media was added to the cells and collected 36 hours later and either snap frozen
312 or added to cells.

313

314 For CTCF pooled library, 8 x 10⁶ HEK293FT cells were seeded in each of 2 T75 flasks in 12 ml
315 of DMEM + 10% FBS 24 hours prior to transfection. Next, pCMV_VSVG (Addgene, 8454, 1.5
316 µg), psPAX2 (Addgene 12260, 9 µg), the guide containing vector (pXPR_066, 7.5 µg), and 66 µl
317 TransIT-LT1 (Mirus MIR 2306) were combined with 2.1 ml of Opti-MEM to produce TransIT-
318 LT1:DNA complexes. After a 20-minute incubation, the solution was added dropwise to the 6-
319 well and incubated for 6 – 8 hours, then the media was changed. After 36 hours, the lentivirus
320 was collected, filtered, and either snap frozen or used for cell transduction.

321

322 **Viral transduction.**

323 CTCF pooled library frozen viral supernatant (300 μ l) was thawed and added to 700 μ l target
324 cells in 12-wells with a final volume of 10 μ g/mL polybrene, resulting in a 30–50% transduction
325 efficiency, corresponding to an MOI of ~0.35–0.70. Cells with viral supernatant were centrifuged
326 at 2000 x g for 20 minutes at 22°C and incubated overnight. After 18-24 hours, cells were fed
327 fresh media and maintained at 2 x 10⁵ cells/mL for suspension cells (Jurkat, K562, and MV4-11)
328 and 1-2 x 10⁵ cells/cm² for adherent cells (A375 and HEK293). Cells were passaged into media
329 supplemented with 1 μ g/mL puromycin 3 days after transduction. Seven days after transduction,
330 cells were passaged into 0.5 μ g/mL puromycin (1/2 dose) and cultured continuously for the
331 duration of the screen. At day 21, pellets of 1 x 10⁶ cells were snap frozen on dry ice and stored
332 at -80°C in preparation for gDNA isolation.

333

334 Single transductions were performed identically to the pooled production, with the exception that
335 viral supernatant varied based on viral titer.

336

337 **Genomic DNA preparation and sequencing.**

338 Genomic DNA was isolated using DNeasy Blood and Tissue Kit (Qiagen 69504). PCR,
339 sequence adaptor barcoding, cleanup, sequencing, and data deconvolution were carried out as
340 previously described ⁴⁴. PCR primers were Argon and Beaker (Broad Institute GPP). At the PCR
341 stage, CTCF pooled library plasmid DNA (pDNA) was diluted to 10ng for amplification. All PCR
342 reactions were carried out for 28 cycles. Libraries were prepared using TruSeq amplicon
343 construction and single end sequenced on a MiSeq50. Fastq files were deconvolved using
344 PoolQ (<https://portals.broadinstitute.org/gpp/public/software/poolq>). Apron (Broad Institute GPP)
345 was used to analyze the distribution of each guide relative to the plasmid DNA, enabling
346 enrichment/depletion measurements.

347

348 **ChIP-seq sample preparation.**

349 Frozen crosslinked cell pellets (1×10^7 cells) were suspended in cell lysis buffer (20 mM Tris pH
350 8.0, 85 mM KCl, 0.5% NP40) with protease inhibitors (cOmplete EDTA-free Protease Inhibitor
351 Tablets, Sigma Aldrich), incubated on ice for 10 min, then centrifuged at 1000 x g for 5 minutes.
352 Cell pellets were resuspended for a second time in cell lysis buffer with protease inhibitors,
353 incubated on ice for 5 minutes and centrifuged for 5 minutes at 1000 x g. The pellets were
354 resuspended in nuclear lysis buffer (10 mM Tris-HCl pH7.5, 1% NP40, 0.5% sodium
355 deoxycholate, 0.1% SDS) with protease inhibitors for 10 min and subsequently sheared in a
356 sonifier (Branson).
357 The chromatin was quantified after sonication to determine the cell number in each sample.
358 H3K9me3 ChIP-seq samples were prepared with 1.5×10^6 cells and 0.4 μ g H3K9me3 antibody
359 (Abcam ab176916). CTCF ChIP-seq samples were prepared with 3×10^6 cells and 1 μ g CTCF
360 antibody (Diagenode C15410210). ChIP-seq Dilution Buffer (16.7 mM Tris-HCl pH 8.1, 167 mM
361 NaCl, 0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA) with protease inhibitors was added to
362 bring the ChIP volume to 0.5 mL. ChIP-seq samples were rotated overnight at 4°C. The
363 following day, Protein A Dynabeads (Invitrogen) were added for 1 hour to enrich fragments of
364 interest. The ChIP-seq samples were removed from rotation and placed on a magnet to isolate
365 the beads. The beads were washed with a series of buffers, low salt RIPA buffer, high salt RIPA
366 buffer, LiCl buffer (250mM LiCl, 0.5% NP40, 0.5% sodium deoxycholate, 1mM EDTA, 10mM
367 Tris-HCl pH 8.1) and finally Low TE. The Protein A beads were then suspended in 50 μ l elution
368 buffer (10 mM Tris-Cl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.1% SDS and 5 mM DTT directly
369 before use) and 8 μ l of reverse crosslinking mix (250mM Tris-HCl pH 6.5, 1.25 M NaCl, 62.5
370 mM EDTA, 5 mg/ml Proteinase K, and 62.5 μ g/ml RNase A). The suspended beads were
371 incubated at 65°C for a minimum of 3 hours. After incubation, the supernatants were transferred
372 to a clean tube. The DNA was SPRI purified, eluted, and quantified by Qubit. Libraries with 6 μ g
373 of input were prepared using the KAPA Hyper Prep Kit.

374

375 **Quantitative real time PCR.**

376 Real time PCR was performed as described previously ⁴⁵. In brief, RNA extraction was
377 performed with the RNeasy Plus Micro Kit (Qiagen) and cDNA was synthesized using the
378 Superscript III First-Strand Synthesis System for RT-PCR (Invitrogen). Probes for EPB41 and
379 actin beta transcripts (EPB41_1_For AACTTCCCAGTTACCGAGCA, EPB41_1_Rev
380 CTTGAGTCCGGCCACTGTAT, EPB41_2_For CTGCTCTAGTGGCCTTCTGG, EPB41_2_Rev
381 CTGCTCGGTAACTGGGAAGT, actin-b_For CATCGAGCACGGCATCGTCA, and actin-b_Rev
382 TAGCACAGCCTGGATAGCAAC) were paired with Power SYBR Green PCR Master Mix
383 (Applied Biosystems) for quantification. Samples were analyzed on a BioRad CFX Opus 384
384 Real-Time PCR System. All samples were normalized to the average Ct across all replicates of
385 actin beta safe harbor.

386

387 **RNA sequencing sample preparation and analysis.**

388 Jurkat and A375 cells were transduced with all-in-one KRAB-dCas9-puro (pXPR_066) vector
389 carrying safe harbor, CD81 CRISPRi (20nt or g[9nt]), CTCF-sg4 (10nt), or CTCF-sg8 (10nt)
390 guides (**Supplementary Table 2**) were pelleted and stored in -80°C. RNA was isolated with
391 RNeasy Plus Micro kit (Qiagen) according to the manufacturer's protocol and ensuring RIN
392 values greater than 7. Libraries were prepared first with Poly-A enrichment using magnetic
393 oligo(dT)-beads (Invitrogen), then ligated to RNA adaptors for sequencing. Paired end
394 sequencing (2 x 150bp) was carried out on an Illumina Nextseq or Novaseq (Illumina).

395

396 **Data analysis.**

397 *Pooled screening*

398 Log fold change calculations were calculated with the starting plasmid DNA pool as reference.
399 Initial quality control of pooled screening data included running pairwise comparisons on

400 replicates to assess replicate consistency. Based on these tests, one replicate of the screen in
401 K562 cells was excluded, as multiple comparisons test of these replicates identified a significant
402 difference between replicate LFC values (Repeated measures one-way ANOVA, $P<0.0001$) and
403 a post-hoc multiple comparisons test identified significant differences between Rep A and Rep B
404 as well as between Rep B and Rep C (Tukey's, $P<0.0001$ for both tests) while there was no
405 significant difference between Rep A and Rep C (Tukey's, $p=0.794$). Based on these findings,
406 Rep B was excluded from further analysis while the 2 other replicates from this screen were
407 retained. All other cell line replicates were not significantly different.

408

409 Z-scores for pooled screen analysis were calculated using the following equation:

410

411
$$\frac{gRNA \log_2 fold change - mean (safe harbor \log_2 fold change)}{standard deviation of safe harbor \log_2 fold change}$$

412

413 *RNA-seq data processing*

414 RNA-seq data for A375 sgCD81, Jurkat sg4 and sg8 were processed using the Kallisto v0.46.1
415 alignment and quantification tool (*kallisto quant -i {transcriptome_index} -o output -b 50 ~{read1}*
416 *~{read2} -t 4 -g {gtf}*). Transcriptome index and gtf for human was taken from
417 <https://github.com/pachterlab/kallisto-transcriptome-indices/releases>. The data, composed of
418 paired-end reads in fastq format and included multiple replicates per condition. Output files of
419 interest to this analysis were the .h5 count matrices and alignment logs.

420

421 *RNA-seq quantification and analysis*

422 The .h5 count matrices were imported into R using *tximport::tximport*. Raw counts were
423 aggregated to the gene level. Genes with zero counts across all samples were subsequently
424 removed from the matrix for differential expression analysis. Differential expression followed the

425 workflow outlined in the vignette provided within the *dream*³² statistical package. To visualize
426 the impact of the guide in comparison to the Safe Harbor, we generated volcano plots (**Fig. 1e**
427 and **Supplementary Fig. 8a, b**). We set the significance criteria to have an absolute log fold-
428 change (abs(logFC)) > 2 and an adjusted P<0.001. The top differentially expressed genes were
429 visualized through heatmaps using *pheatmap::pheatmap*, with hierarchical clustering revealing
430 that replicates clustered together.

431

432 *Comparison of CTCF guide target sites and CTCF binding events*

433 Perfect match sites were identified using Cas-OFFinder v2.4⁴⁶ ([http://www.rgenome.net/cas-
434 offinder/](http://www.rgenome.net/cas-offinder/)) with hg38 2bit as reference. Alt chromosomal matches were excluded from the
435 analysis. “N” bases were added to guide sequences such that they met the minimum threshold
436 of 15 nt.

437

438 *Putative CTCF binding site determination*

439 CTCF sites were selected using the JASPAR MA0139 matrix profile
440 (<https://jaspar.genereg.net/matrix/MA0139.1/>) and filtered down to the 880k sites using the R
441 library and steps previously detailed⁴⁷. These were exported to a .bed file and a .saf file.

442

443

444 *ChIP-seq data processing*

445 For **Fig. 3c** and **Supplementary Fig. 3a, b**, Jurkat and A375 CTCF ChIP-seq datasets were
446 processed using the ENCODE ChIP-seq pipeline v2.1.5 ([https://github.com/ENCODE-
447 DCC/chip-seq-pipeline2](https://github.com/ENCODE-DCC/chip-seq-pipeline2)). Both replicates were processed using the default “tf” options for the
448 pipeline with the MACS2 peak-caller. To obtain a final peak-set of CTCF binding events, we
449 utilized the IDR-optimal output peak calls at an IDR threshold of < 0.05 for each cell line and
450 merged overlapping peaks. We then extended the CTCF peaks symmetrically by +/- 50 bp,

451 corresponding to a stringent perturbation radius, and used bedtools to obtain overlapping sites
452 between each CTCF guide target site and CTCF binding peaks.

453

454 For all other figures, ChIP-seq data for CTCF and H3K9me3 were processed using the
455 ENCODE ChIP-seq pipeline v2.2.0 with default parameters. The *pipeline_type* parameter for
456 CTCF and H3K9me3 was set to "tf" and "histone", respectively. The data, composed of single-
457 end reads in fastq format, included two replicates per condition. Output files of interest to this
458 analysis were the bam files and QC html reports.

459

460 *ChIP-seq quantification and analysis*

461 CTCF bigwig files were created using bamCoverage (*bamCoverage -b \$1 -o "\$2.bw" -bs 50 -p 4*
462 *--effectiveGenomeSize 2913022398 --normalizeUsing bpm*). We used deeptools to calculate
463 normalized signal using counts within a +/- 3Kb window centered at perfect match sites. To
464 observe the effect of the guide in the H3K9me3 landscape, we extracted the windows
465 overlapping perfect match sites and plotted the aggregate histone signal in Safe Harbor and sg4
466 samples (**Fig. 4d**). We also generated CTCF profile heatmaps (**Supplementary Fig. 5a**).

467 The bigwigs were used with the *karyoploterR* R package to generate genome tracks (**Fig. 4e, f**)

468

469 For visualization and differential binding analysis (**Fig. 4** and **Supplementary Figs. 5b, 6, and**
470 **7**), we created a CTCF count matrix using featureCounts (*featureCounts(files, allowMultiOverlap*
471 *= T, largestOverlap = T, annot.ext = "jaspar_motifs.saf", readExtension3 = 200, ignoreDup = T)*),
472 where *jaspar_motifs.saf* contains the putative CTCF binding sites with window size 500bp in a
473 *.saf* format. The same was done for a H3K9me3 count matrix, except the *.saf* file contains
474 genome-wide non-overlapping windows of size 5Kb. Raw counts were stored in a *.tsv* file.

475

476 To observe the effect of the guide in CTCF binding at perfect match sites, we first loaded the
477 count matrix in R (rows: ~880k putative binding sites from JASPAR, columns: samples) and
478 used *edgeR::cpm* to normalize the data. We extracted the bins that overlapped a perfect match
479 site and filtered out bins if they had <5 CPM in the Safe Harbor samples. CTCF binding was
480 averaged between sample replicates. We observed a significant difference in mean CTCF
481 binding between Safe Harbor and sg4 samples, using *stats::t.test* (**Fig. 4a, Supplementary**
482 **Figs. 6, 7a, 7b**). A similar procedure was used for H3K9me3 (**Fig. 4b**).

483
484 To observe the genome-wide effect of the guide in CTCF binding, we took the above normalized
485 CTCF count matrix and filtered out bins if they had <5 CPM in the Safe Harbor samples. We
486 plotted the counts in the remaining bins and colored points if they overlap a sg4 or aag[sg4]
487 perfect match site (**Fig. 4c, Supplementary Figs. 5b, 6, 7d**).

488
489 For the differential analysis, we utilized the *dream* statistical package in R, as outlined by
490 Hoffman and Roussos, 2021. We established significance criteria with a requirement for
491 absolute log fold change ($\text{abs}(\text{logFC})$) > 0.5 and an adjusted $P < 10^{-5}$. (**Fig. 4g, Supplementary**
492 **Fig. 7e**). While many significant sites overlapped perfect match sites, we also observed some
493 sites that showed significant CTCF loss where the sequence did not perfectly match the guide
494 target sequence. We extracted the sequence at these sites from JASPAR MA0139, and used
495 *Biostrings::consensusMatrix* and *ggseqlogo:: ggseqlogo* to look at the logogram of the
496 sequences (**Fig. 4i, Supplementary Fig 7e**). We observed that the sequences matched closely
497 with the guide target sequence. Further analysis showed most of these sequences had only 1 or
498 2 mismatches from the target sequence (**Fig 4h**).

499
500 R (version 4.1.2), Python (version 3.7), and Graphpad Prism (version 10) were used for
501 visualization.

502

503 **Data Availability**

504 Raw ChIP-seq and RNA-seq data will be available online after publication.

505

506 **Code Availability**

507 Link to code/scripts here: <https://github.com/broadinstitute/gro-crispri-ctcf> (available after
508 publication)

509 **References**

- 510 1. Gerstein, M. B. *et al.* Architecture of the human regulatory network derived from ENCODE
511 data. *Nature* **489**, 91–100 (2012).
- 512 2. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the
513 human genome. *Nature* **489**, 57–74 (2012).
- 514 3. Roadmap Epigenomics Consortium *et al.* Integrative analysis of 111 reference human
515 epigenomes. *Nature* **518**, 317–330 (2015).
- 516 4. ENCODE Project Consortium *et al.* Expanded encyclopaedias of DNA elements in the
517 human and mouse genomes. *Nature* **583**, 699–710 (2020).
- 518 5. Avsec, Ž. *et al.* Base-resolution models of transcription-factor binding reveal soft motif
519 syntax. *Nat. Genet.* **53**, 354–366 (2021).
- 520 6. Zeitlinger, J. Seven myths of how transcription factors read the cis-regulatory code. *Curr.*
521 *Opin. Syst. Biol.* **23**, 22–31 (2020).
- 522 7. Amit, I. *et al.* Unbiased reconstruction of a mammalian transcriptional network mediating
523 pathogen responses. *Science* **326**, 257–263 (2009).
- 524 8. Maurano, M. T. *et al.* Systematic localization of common disease-associated variation in
525 regulatory DNA. *Science* **337**, 1190–1195 (2012).

526 9. Gusev, A. *et al.* Partitioning heritability of regulatory and cell-type-specific variants across
527 11 common diseases. *Am. J. Hum. Genet.* **95**, 535–552 (2014).

528 10. Fulco, C. P. *et al.* Systematic mapping of functional enhancer-promoter connections with
529 CRISPR interference. *Science* **354**, 769–773 (2016).

530 11. Gilbert, L. A. *et al.* CRISPR-mediated modular RNA-guided regulation of transcription in
531 eukaryotes. *Cell* **154**, 442–451 (2013).

532 12. Canver, M. C. *et al.* BCL11A enhancer dissection by Cas9-mediated *in situ* saturating
533 mutagenesis. *Nature* **527**, 192–197 (2015).

534 13. Korkmaz, G. *et al.* Functional genetic screens for enhancer elements in the human genome
535 using CRISPR-Cas9. *Nat. Biotechnol.* **34**, 192–198 (2016).

536 14. Sanjana, N. E. *et al.* High-resolution interrogation of functional elements in the noncoding
537 genome. *Science* **353**, 1545–1549 (2016).

538 15. Reilly, S. K. *et al.* Direct characterization of *cis*-regulatory elements and functional
539 dissection of complex genetic associations using HCR-FlowFISH. *Nat. Genet.* **53**, 1166–
540 1176 (2021).

541 16. Gasperini, M. *et al.* A genome-wide framework for mapping gene regulation via cellular
542 genetic screens. *Cell* **176**, 1516 (2019).

543 17. Thakore, P. I. *et al.* Highly specific epigenome editing by CRISPR-Cas9 repressors for
544 silencing of distal regulatory elements. *Nat. Methods* **12**, 1143–1149 (2015).

545 18. Nasser, J. *et al.* Genome-wide enhancer maps link risk variants to disease genes. *Nature*
546 **593**, 238–243 (2021).

547 19. Chen, Z. *et al.* Integrative dissection of gene regulatory elements at base resolution. *Cell*
548 *Genom* **3**, 100318 (2023).

549 20. Jinek, M. *et al.* A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial
550 immunity. *Science* **337**, 816–821 (2012).

551 21. Fu, Y. *et al.* High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in
552 human cells. *Nat. Biotechnol.* **31**, 822–826 (2013).

553 22. Mali, P. *et al.* CAS9 transcriptional activators for target specificity screening and paired
554 nickases for cooperative genome engineering. *Nat. Biotechnol.* **31**, 833–838 (2013).

555 23. Zhang, J.-P. *et al.* Different effects of sgRNA length on CRISPR-mediated gene knockout
556 efficiency. *Sci. Rep.* **6**, (2016).

557 24. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas
558 nuclease specificity using truncated guide RNAs. *Nat. Biotechnol.* **32**, 279–284 (2014).

559 25. Cencic, R. *et al.* Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9
560 DNA target cleavage. *PLoS One* **9**, e109213 (2014).

561 26. Kiani, S. *et al.* Cas9 gRNA engineering for genome editing, activation and repression. *Nat.*
562 *Methods* **12**, 1051–1054 (2015).

563 27. Sanson, K. R. *et al.* Optimized libraries for CRISPR-Cas9 genetic screens with multiple
564 modalities. *Nat. Commun.* **9**, 5416 (2018).

565 28. Ma, H. *et al.* Pol III Promoters to Express Small RNAs: Delineation of Transcription
566 Initiation. *Mol. Ther. Nucleic Acids* **3**, e161 (2014).

567 29. de Wit, E. *et al.* CTCF binding polarity determines chromatin looping. *Mol. Cell* **60**, 676–684
568 (2015).

569 30. Kim, T. H. *et al.* Analysis of the vertebrate insulator protein CTCF-binding sites in the
570 human genome. *Cell* **128**, 1231–1245 (2007).

571 31. Vietri Rudan, M. *et al.* Comparative Hi-C reveals that CTCF underlies evolution of
572 chromosomal domain architecture. *Cell Rep.* **10**, 1297–1309 (2015).

573 32. Hoffman, G. E. & Roussos, P. Dream: powerful differential expression analysis for repeated
574 measures designs. *Bioinformatics* **37**, 192–201 (2021).

575 33. Flavahan, W. A. *et al.* Insulator dysfunction and oncogene activation in IDH mutant gliomas.
576 *Nature* **529**, 110–114 (2016).

577 34. Liu, X. S. *et al.* Editing DNA methylation in the mammalian genome. *Cell* **167**, 233-247.e17
578 (2016).

579 35. Hnisz, D. *et al.* Activation of proto-oncogenes by disruption of chromosome neighborhoods.
580 *Science* **351**, 1454–1458 (2016).

581 36. Nora, E. P. *et al.* Targeted degradation of CTCF decouples local insulation of chromosome
582 domains from genomic compartmentalization. *Cell* **169**, 930-944.e22 (2017).

583 37. Boyle, E. A. *et al.* High-throughput biochemical profiling reveals sequence determinants of
584 dCas9 off-target binding and unbinding. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 5461–5466
585 (2017).

586 38. Morris, J. A. *et al.* Discovery of target genes and pathways at GWAS loci by pooled single-
587 cell CRISPR screens. *Science* **380**, eadh7699 (2023).

588 39. Kocak, D. D. *et al.* Increasing the specificity of CRISPR systems with engineered RNA
589 secondary structures. *Nat. Biotechnol.* **37**, 657–666 (2019).

590 40. Josephs, E. A. *et al.* Structure and specificity of the RNA-guided endonuclease Cas9 during
591 DNA interrogation, target binding and cleavage. *Nucleic Acids Res.* **43**, 8924–8941 (2015).

592 41. Oksuz, O. *et al.* Transcription factors interact with RNA to regulate genes. *Mol. Cell* **83**,
593 2449-2463.e13 (2023).

594 42. Hess, G. T. *et al.* Directed evolution using dCas9-targeted somatic hypermutation in
595 mammalian cells. *Nat. Methods* **13**, 1036–1042 (2016).

596 43. Gao, Z., Harwig, A., Berkhout, B. & Herrera-Carrillo, E. Mutation of nucleotides around the
597 +1 position of type 3 polymerase III promoters: The effect on transcriptional activity and
598 start site usage. *Transcription* **8**, 275–287 (2017).

599 44. Najm, F. J. *et al.* Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens.
600 *Nat. Biotechnol.* **36**, 179–189 (2017).

601 45. Najm, F. J. *et al.* Chromatin complex dependencies reveal targeting opportunities in
602 leukemia. *Nat. Commun.* **14**, 448 (2023).

603 46. Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for
604 potential off-target sites of Cas9 RNA-guided endonucleases. *Bioinformatics* **30**, 1473–
605 1475 (2014).

606 47. Dozmorov, M. G. *et al.* CTCF: an R/bioconductor data package of human and mouse CTCF
607 binding sites. *Bioinform. Adv.* **2**, vbac097 (2022).

608

609 **Acknowledgements**

610 We thank E. Gaskell, N. Durand, A. Hall, A. Cruz, and C. White for helpful discussions, and E.
611 Donnard and E. Roberts for reagents. The Broad Institute Flow Core and Genomics Platform
612 provided experimental support. This project was supported by funds from the Gene Regulation
613 Observatory at the Broad Institute. B.E.B. is the Richard and Nancy Lubin Family Endowed
614 Chair at the Dana Farber Cancer Institute and an American Cancer Society Research
615 Professor.

616

617 **Author Contributions**

618 M.M.M, R.I., A.C., and Y.L. conducted the experiments. S.W., N.J., and E.M. processed the
619 data. J.D.B, C.B.E, J.G.D., B.E.B., N.S. and F.J.N. provided guidance and direction. M.M.M.
620 and F.J.N. conceived the study and wrote the paper with help from all co-authors.

621

622 **Competing Interests Statement**

623 J.G.D. consults for Microsoft Research, Abata Therapeutics, Servier, Maze Therapeutics,
624 BioNTech, Sangamo, and Pfizer. J.G.D. consults for and has equity in Tango Therapeutics.
625 J.G.D. serves as a paid scientific advisor to the Laboratory for Genomics Research, funded in
626 part by GlaxoSmithKline. J.G.D. receives funding support from the Functional Genomics
627 Consortium: Abbvie, Bristol Myers Squibb, Janssen, Merck, and Vir Biotechnology. J.G.D.'s

628 interests were reviewed and are managed by the Broad Institute in accordance with its conflict
629 of interest policies. B.E.B. declares outside interests in Fulcrum Therapeutics, Arsenal
630 Biosciences, HiFiBio, Cell Signaling Technologies, Design Pharmaceuticals, and Chroma
631 Medicine. A provisional patent has been filed on this work (M.M.M. and F.J.N.).

632

633 **Supplementary Table Legends**

634 **Supplementary Table 1.** RNAseq counts matrices. Gene level normalized counts for samples.
635 A375 samples included untreated or treated with Safe Harbor or CD81 guides Jurkat cells
636 included untreated or treated with Safe Harbor, sg4 or sg8.

637

638 **Supplementary Table 2.** Guides table. A listing of all CRISPR guide sequences and respective
639 oligonucleotides used in this study.

640

641 **Supplementary Table 3.** CTCF screening data. Jurkat, A375, MV4-11, HEK293 and K562 cells
642 transduced with CTCF library and processed after 21 days. Data are guide representation
643 depicted by log₂-fold change as normalized to plasmid DNA and z-score as normalized to safe
644 harbor guides.

645

646 **Supplementary Table 4.** CTCF site quantification. Count matrix of 880k potential CTCF binding
647 sites (rows) and samples (columns). Data are raw counts from CTCF ChIP and 500bp bin size
648 of the putative binding sites.