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ABSTRACT 15 

Genotype-phenotype mapping (GPM) or the association of trait variation to genetic variation has 16 

been a long-lasting problem in biology. The existing approaches to this problem allowed 17 

researchers to partially understand within- and between-species variation as well as the emergence 18 

or evolution of phenotypes. However, traditional GPM methods typically ignore the transcriptome 19 

or have low statistical power due to challenges related to dataset scale. Thus, it is not clear to what 20 

extent selection modulates transcriptomes and whether cis- or trans-regulatory elements are more 21 

important. To overcome these challenges, we leveraged the cost efficiency and scalability of 22 

single-cell RNA sequencing (scRNA-seq) by collecting data from 18,233 yeast cells from 4,489 23 

segregants of a cross between the laboratory strain BY4741 and the vineyard strain RM11-1a. 24 

More precisely, we performed eQTL mapping with the scRNA-seq data to identify single-cell 25 

eQTL (sc-eQTL) and transcriptome variation patterns associated to fitness variation inferred from 26 

the segregants’ bulk fitness assay. Due to the larger scale of our dataset, we were able to 27 

recapitulate results from decades of work in GPM from yeast bulk assays while revealing new 28 

associations between phenotypic and transcriptomic variations. The multidimensionality of this 29 

dataset also allowed us to measure phenotype and expression heritability and partition the variance 30 

of cell fitness into genotype and expression components to highlight selective pressure at both 31 

levels. Altogether these results suggest that integrating large-scale scRNA-seq data into GPM 32 

improves our understanding of trait variation in the context of transcriptomic regulation. 33 
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INTRODUCTION 35 

The process by which DNA encodes proteins via transcription and translation has been studied for 36 

decades to make sense of organisms’ phenotypes. However, being able to explain organisms' 37 

phenotypes from their genetic material, i.e. genotype-phenotype mapping (GPM), has been a long-38 

lasting problem with important applications (1,2). Indeed, making sense of genetic variation at the 39 

phenotypic level enables the understanding of trait variation between and within species as well as 40 

the emergence and evolution of phenotypes (3). For instance, reverse genetics approaches, e.g. 41 

gene knockout or transgenic technologies, and forward genetics approaches like GWAS and QTL 42 

mapping helped in determining the function of multiple genes and the effects of mutations on 43 

growth in different environments (4). However, reverse genetics approaches typically fail to 44 

account for natural variation and forward genetics approaches like QTL mapping typically focus 45 

on genetic and phenotypic variation so they cannot highlight selection on the transcriptome. 46 

An essential characteristic of this problem is the multi-layered organization of the GPM. 47 

Indeed, GPM is not strictly restricted to the direct association between genotypes and phenotypes. 48 

This association is better resolved and complemented by understanding the intermediary 49 

transcriptome layer, e.g. cell mechanisms at the transcriptomic level are involved in diseases and 50 

pathogenicity (2,5–8). However, it is not clear to what extent transcriptomic changes relate to 51 

phenotypic changes or selection. Pioneering work from Mary-Claire King and Allan Charles 52 

Wilson set the tone for investigating this question by proposing that variations in morphological 53 

and behavioral traits arise more often through gene expression regulation than evolution at the 54 

protein-coding level (9). François Jacob then postulated an essay that stemmed from this theory in 55 

which he highlights how evolution acts as a tinkerer that works from already available material, 56 

i.e. through regulation of gene expression, to create new adaptations (10). This constituted the core 57 

of the evolutionary developmental biology which matured into the still-debated claim that new 58 

adaptations mainly emerge through cis-regulation of gene expression, i.e. through noncoding DNA 59 

regulating a neighbor gene contrarily to trans-regulators acting on distant genes (11–14). This 60 

debate has been reinforced by the technical difficulties and complexity of assessing the evolution 61 

and outcome of mutations in non-coding regions (11,12). Advances in sequencing technologies 62 

have clarified some of these hypotheses, particularly in the context of transcriptome analyses of 63 

the model organism Saccharomyces cerevisiae. For instance, Brem et al (2002) used microarray 64 

technology to relate the gene expression profiles of 40 yeast segregants from a lab (BY) and natural 65 

vineyard strain (RM) to their genetic markers (15). They found that cis-acting modulation is the 66 

main mechanism for regulating gene expression. Nearly two decades later, by greatly increasing 67 

statistical power, Albert and collaborators (2018) found that most of the expression variation arise 68 

through trans-regulation using non-multiplexed RNA-seq to analyze 5,720 genes in 1,012 yeast 69 

segregants generated by a crossing between RM and BY (16). The analysis method they used, i.e. 70 

expression quantitative trait loci (eQTL) mapping, consists in correlating allele frequencies to gene 71 

expression levels to find the loci modulating expression. 72 

Although eQTL mapping is a traditional GPM analysis that accounts for the transcriptomic 73 

layer, it is typically realized through non-multiplexed RNA-seq which tends to have low statistical 74 

power due to challenges with experimental scale and confounding factors (17,18). Thus, eQTL 75 
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mapping traditionally cannot identify significant low-effect regulatory mutations that are 76 

important for understanding the genetic bases of complex traits and diseases (19,20). Furthermore, 77 

most eQTL studies only assess the average transcriptomic profile of bulk populations without 78 

being able to capture the profile of rare cell lineages within a population. This is a critical limitation 79 

in heterogenous populations such as cancer or microbial populations where rare lineages can drive 80 

relapse or drug resistance (21).  81 

Here, we sought to circumvent the challenges of non-multiplexed bulk RNA-seq imposed 82 

by the scale and population heterogeneity by performing eQTL mapping through single-cell RNA 83 

sequencing (scRNA-seq) of a pool of ~4500 well-characterized F1 segregants of a yeast cross 84 

(16,22,23). In the same way that combinatorial indexing/barcoding and multiplexing enable the 85 

collection of large-scale fitness and genotype data (24), we hypothesized that scRNA-seq can help 86 

us collect both genotype and expression data on a large pool of segregants. We employ several 87 

strategies to overcome previous obstacles of eQTL mapping studies: i) we pool cells from 88 

thousands of segregants during the growth step and perform a single scRNA-seq run on the culture 89 

to account for environmental effects, and ii) from the exome sequencing data of single-cells we 90 

take advantage of the reference panel to validate that we accurately infer the genotype of each cell 91 

from extremely low number of reads mapping to polymorphic sites per cell (effectively ~0.2x 92 

coverage). 93 

Using this approach, we integrated the resulting transcriptomic data from growth in rich 94 

media with a pre-existing yeast GPM. We estimated the heritability of the transcriptome and the 95 

extent at which transcriptome is associated with fitness. We show that this increased scale from 96 

scRNA-seq enables eQTL mapping directly without the use of a reference genotype panel, and 97 

relate identified single-cell eQTL (sc-eQTL) to previously identified QTL. We also exploit the 98 

identified sc-eQTL to analyze the patterns of cis- and trans- regulation in the GPM.  99 

 100 

Our single-cell RNA-seq approach is consistent with yeast GPM results from non-101 

multiplexed assays 102 

We initially aimed to show that performing scRNA-seq at a large scale can generate data that are 103 

consistent with non-multiplexed DNA and RNA sequencing. To do so, we analyzed a dataset of 104 

thousands of yeast lineages generated by Nguyen Ba and collaborators (2022) (24). To understand 105 

the yeast GPM, they collected fitness and genotype data from ~100,000 segregants of an F1 cross 106 

between a laboratory strain of yeast (BY) and a natural vineyard strain (RM) (Figure 1A).  107 
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108 

Figure 1 Yeast segregants datasets. A) Reference panel from the barcoded bulk sequencing. The 109 

99,995 yeast segregants in the reference panel come from a F1 cross between a laboratory strain 110 

of yeast (BY) and a natural vineyard strain (RM) (24). Thus, they only have 2 possible alleles at 111 

each of the 41,594 polymorphic sites. The lineages barcodes enabled fitness estimation from 112 

competition assays in 18 environments recapitulating the adaptation to temperature gradients, the 113 

ability to process different sources of carbon and the resistance to antifungal compounds. B) 114 

Pooled scRNA-seq dataset from a single batch. We performed scRNA-seq of the first batch of 115 

segregants (n=4,489) to obtain genotypes that are similar to the reference panel and single cell’s 116 

expression profiles. Non-covered sites, sequencing errors and the presence of reads in the wrong 117 

library (index swapping) are corrected for using the HMM described in Figure S1. 118 

Using this approach named barcoded bulk QTL mapping or BB-QTL mapping, they revealed the 119 

complex polygenic and pleiotropic nature of phenotypes as well as an unprecedented number of 120 

pairwise epistatic interactions. To integrate transcriptomic data to that GPM, we performed 121 

scRNA-seq using the 10X Genomics Chromium microfluidics platform and obtained both 122 

genotype and expression profiles from 18,233 cells of the first batch of segregants (Figure 1B). 123 

This short-read scRNA-seq method comes with challenges like low-coverage sites due to technical 124 

sequencing biases and low sequencing depth in some cells (25,26). To overcome these challenges, 125 

the unique molecular identifiers (UMIs) of the 10X Genomics platform provide a control for 126 

technical biases by quantifying gene expression from unique transcribed molecule counts instead 127 

of reads counts (25). In addition, Hidden Markov Models (HMMs) can infer accurate genotype 128 
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data even at sequencing depths as low as 0.1x (24). Nguyen Ba and collaborators (2022) designed 129 

an HMM to infer the segregants genotypes from the observed reads at low depth of DNA 130 

sequencing by accounting for sequencing error rate, recombination rate and index swapping rate 131 

(24). As there are only two ancestral lineages, there are only two possible alleles for the strains at 132 

each of the 41,594 polymorphic sites. Thus, the genotype of the segregants can be represented by 133 

the frequency of only one of the parental alleles, which is RM in the dataset. Applying this model 134 

to low-coverage segregants yielded genotypes that are significantly similar to high-coverage 135 

replicates (24). We sought to use a similar model to infer genotypes from scRNA-seq data, but we 136 

anticipated that some of these parameters may differ due to increased error rate of the reverse-137 

transcriptase, increased index swapping due to pooled-reaction, etc (Figure S1). In Nguyen Ba et 138 

al, those rates were heuristically determined, but here we estimated these from the read mapping 139 

data and found that re-estimated parameters from data increase the proportion of recovered strains 140 

in the single cell data from 58.6% to 72.0%. 141 

After adapting the HMM to the scRNA-seq data, we sought to validate that the resulting 142 

cell genotypes relate well to their corresponding strain in the reference panel obtained by non-143 

multiplexed DNA sequencing strategies. Ideally, each single-cell barcode (from 10x Genomics 144 

Chromium) should be associated with a single cell and a cell should have a clear match with a 145 

unique strain in the reference panel. However, several factors can obscure these associations, e.g. 146 

a single-cell droplet containing cells from 2 different strains, a low-coverage cell, uncertainty in 147 

the allele of the reference genotype, etc. Thus, we designed an approach to clearly assign cells to 148 

the correct reference panel strain (see Methods). This approach relies on two metrics of similarity 149 

between the cells and the strains’ genotypes, i.e. the expected distance between them, which should 150 

be minimized for the best match, and the relatedness (R2). The statistical significance of the 151 

relatedness between single cells and reference lineages was determined by a permutation test 152 

(Figure S2). From the read mapping alone, we obtained a mean R2 of 0.59 (σ = 0.19 and median 153 

= 0.64), which was significantly improved after applying our HMM to correct for mis-identified 154 

alleles and imputing data in low-coverage sites using recombination probability. Indeed, the 155 

single-cell HMM genotypes yield a mean R2 of 0.73 (σ = 0.18 and median = 0.81; Figure2A). We 156 

found that the distribution of relatedness after HMM was still left-skewed, with many cells 157 

statistically significantly assigned to a reference genotype despite having what appeared to be low 158 

relatedness. Upon investigation, it was found that these could be explained by genotyping 159 

uncertainty either in the single-cell and/or in the reference panel genotype (s) (Table S1). 160 
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161 

Figure 2 Single-cell RNA-seq data recapitulate bulk DNA and RNA assays results. A) Effect 162 

of the HMM on the relatedness between single cell genotypes and their closest reference lineage. 163 

The single-cell original genotype represents the genotype of the cells before the correction with 164 

the HMM. The relatedness to the closest lineage in batch1 has been measured with the adjusted 165 

R2. To control for genotype uncertainty, only the 13,069 barcodes with a significant lineage 166 

assignment (lineage-barcode genotype correlation FDR<0.05) and a reference lineage with a lower 167 

uncertainty than the single cell HMM are selected, which represents 72.2% of the barcodes. We 168 
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then rounded the genotypes to remove the uncertainty during the comparison. Wilcoxon signed 169 

test p-value is indicated above the violin plots. B) Narrow-sense heritability measured with non-170 

multiplexed DNA sequencing and scRNA-seq. The grey bars represent the scRNA-seq estimates 171 

of narrow-sense heritability while the red dots represent the estimates from bulk DNA sequencing. 172 

The interval of confidence of the bulk DNA sequencing is indicated by the red line around the red 173 

dot and was obtained from genotype and phenotype measurement error in the BB-QTL paper (24). 174 

The 23C-37C represents the temperature for the competition assay in YPD media while the other 175 

phenotypes represent growth on YNB, molasses (mol), mannose (Mann) or raffinose (raff) and 176 

chemical resistance to copper sulfate (Cu), ethanol (eth), guanidinium chloride (gu), lithium 177 

acetate (Li), Sodium dodecyl sulfate (SDS) and suloctidil (suloc) (24).  178 

 179 

 To further establish that the genotyping obtained from scRNA-seq data was comparable to 180 

previous non-multiplexed genotyping of the reference genotype panel, we estimated the 181 

contribution of genetic variation to the phenotypic variation, i.e. fitness heritability. Nguyen Ba 182 

and collaborators (2022) estimated the narrow- and broad-sense heritabilities of complex 183 

phenotypes associated with temperature gradient, carbon source and chemical resistance for which 184 

RM and BY segregants exhibit a significant level of diversity (24). We used our lineage assignment 185 

to that panel to obtain fitness but used our single-cell genotyping to perform this association. 186 

Encouragingly, most GCTA-REML estimates of narrow-sense heritability are within the 187 

confidence intervals of Nguyen Ba and collaborators (2022) estimates (Figure 2B).  188 

Although the variance partitioning is consistent with previous studies, it only provides a 189 

broad view of the genotype-phenotype map as it does not allow to identify the loci that significantly 190 

explain phenotype variation. If the genotypes obtained by scRNA-seq were of high-quality, then 191 

we would expect that a QTL mapping model from scRNA-seq would yield a similar model than 192 

non-multiplexed DNA sequencing data. To do so, we used a cross-validated stepwise forward 193 

linear regression on the strain fitness and consensus genotypes data from single-cells that shared 194 

the same lineage assignment (Methods). Performing the QTL mapping on the batch 1 scRNA-seq 195 

dataset enabled the identification of 29 QTL compared to 31 QTL identified with the bulk barcoded 196 

approach (Tables S2 and S3) (24). These QTL were largely similar as shown by the non-197 

significant difference between the effect sizes (Wilcoxon signed rank test p = 0.29) and by a model 198 

similarity metric (24) that considers the recombination distance between matched QTL, the 199 

similarity of the effect sizes and the allele frequencies (Methods). Using this approach, we 200 

estimated that the similarity score between the batch 1 single cells QTL and the batch 1 BB-QTL 201 

is 86.2% while each model respectively had a similarity score of 78.7% and 78.2% with the full 202 

BB-QTL mapping performed on 99,950 segregants (24) (Figure S4). The QTL identified from the 203 

scRNA-seq dataset also recapitulated several important biological features of the reference panel 204 

such as an enrichment of non-synonymous and disordered region QTL (24) (Figure S5). 205 

Finally, the variance partitioning model can also be modified to include gene expression as 206 

the response variable and cell genotypes as the only random effect (Methods). This enables the 207 

quantification of expression heritability, i.e. the variance of expression explained by genotype. 208 

Using this approach, we estimated that genotype explains 72.3% of expression variance, which is 209 
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consistent with results from previous non-multiplexed eQTL mapping studies. Indeed, Albert and 210 

collaborators (2018) estimated that genotype explains 70% of expression variance using a dataset 211 

of 5720 genes in 1012 yeast segregants generated by the same parental strains (RM and BY).  212 

Integrating scRNA-seq data to an existing GPM highlights selection on the transcriptome 213 

Having shown that scRNA-seq is consistent with non-multiplexed assays while being more 214 

scalable, we next sought to highlight new associations within the BY/RM GPM. Selection is often 215 

highlighted at the genotype level through convergent evolution, increase in allele frequency within 216 

a population or population genetics metric (26–28). However, the central dogma of molecular 217 

biology and evolution tinkering entail that phenotype variation should be linked to transcriptomic 218 

variation. As our dataset included all these variables, we sought to provide a variance partitioning 219 

framework to evaluate the association between the transcriptome and trait variation (Methods) 220 

with the 30C phenotype as an example (Figure 3). 221 

222 

Figure 3 Variance partitioning of the 30C phenotype from scRNA-seq data. The percentages 223 

represent the proportion of fitness variance (whole rectangle area) explained by the components. 224 

The ellipse area represents the phenotype variance explained by genotype variation and the circle 225 

area represents the phenotype variance explained by expression variation. The black area of the 226 

rectangle represents the residual of the model while the other colored areas represent the shared 227 

and exclusive components explaining fitness variation. 228 

 229 

The components of this variance partitioning all relate to at least one biological phenomenon. 230 

Indeed, the portion of trait variation explained exclusively by the genotype variation (red in Figure 231 

3) represents the effect of mutations on fitness via several biological phenomena such as protein 232 

stability, enzymatic function etc, independent of expression level. For the 30C phenotype, this 233 

component explains 31.2% of the fitness variation in the BY/RM background which is similar to 234 

the 29.7% explained by the shared component between phenotype, genotype and expression 235 

variations (purple in Figure 3). The latter represents the association between selection (fitness) 236 

and the transcriptome either through loci influencing fitness via expression directly or through loci 237 
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affecting expression via an effect on cell fitness (indirectly) (29,30). Its considerable association 238 

to fitness variation thus supports the evolution tinkering model. As for the phenotype variation 239 

explained exclusively by gene expression (blue in Figure 3), it could represent epigenetics and 240 

stochastic gene expression, which weakly explain variations in the 30C phenotype. 241 

Although this model accurately estimates the narrow-sense heritability of 30C, the 242 

residuals still represent 37.7% of fitness variation. This could be explained by unmeasured factors 243 

like high-order epistasis, mitochondrial mutations or protein properties but the broad-sense 244 

heritability of this phenotype is similar to the narrow-sense heritability, suggesting that the 245 

residuals are mostly not explained by genotype and expression (24). Nguyen Ba et al. (2022) also 246 

estimated that epistasis only explained around 5% of fitness (24). These results suggest that a 247 

single run of scRNA-seq on a single batch of yeast segregants converge with bulk DNA sequencing 248 

results while revealing previously hidden components of the GPM. 249 

Revealing hidden components of the yeast GPM with scRNA-seq 250 

Our integrative scRNA-seq approach is not limited to enabling the quantification of the association 251 

between transcriptomic changes and trait variation. Indeed, the same approach we used to identify 252 

QTL can be used to detect loci regulating gene expression which can reveal the cell mechanisms 253 

underlying trait variation through transcriptomic changes. We thus modified the QTL mapping 254 

framework such that the response variable is the level of expression of a single gene in the single 255 

cells (Methods). This approach is a cost-efficient way to perform eQTL mapping from the 256 

expression profile and genotype of cells from thousands of lineages in a multiplexed way (sc-257 

eQTL mapping). 258 

Consistent with yeast non-multiplexed eQTL results, the genes with the highest expression 259 

heritability are enriched in functions related to carbohydrate catabolic process (GO:0016052) and 260 

cellular biosynthetic process (translation GO:0006412, organelle assembly GO:0070925, 261 

ribosome biogenesis GO:0042254 and gene expression GO:0010467) (Fisher’s exact test 262 

FDR<0.05; Methods). In both datasets, these genes are also highly expressed, which reflects the 263 

positive correlation between expression heritability and expression levels (R2 = 0.66 and p < 2.2e-264 

16). Conversely, genes with the lowest expression heritability observed in the RM/BY background, 265 

which we defined as the bottom 10% expression heritability, are enriched in functions related to 266 

the cell cycle biological process (GO:0007049, Fisher’s exact test FDR<0.05) (16,31).  267 

Because of the increased scale of our collection, our approach is more powered to estimate 268 

the gene heritability. We were thus able to detect new overrepresented biological processes, i.e. 269 

DNA metabolic process (GO:0006259) and the response to nutrient levels (GO:0031667), for 270 

which the variation of expression levels is weakly associated to the genetic variation observed 271 

across the RM/BY segregants.  272 

 273 

The functional enrichment analysis using scRNA-seq data revealed new associations 274 

between expression heritability and biological processes in the RM/BY genetic background. 275 

However, while it suggests that many eQTL are also QTL, it cannot accurately point to the specific 276 
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loci involved in trait variation and cannot address whether mutations on regulatory hubs have 277 

stronger effects on traits. To investigate this, we mapped the QTL to hotspots of gene regulation 278 

(or regulatory hubs), which we defined as 25 kb genomic windows that were repeatedly identified 279 

in the eQTL mapping procedure (for different genes). This was done to acknowledge the 280 

uncertainty in the exact position of the eQTL due to linkage disequilibrium and power. We then 281 

ranked the 30C QTL identified by Nguyen Ba and collaborators (2022) based on their absolute 282 

effect size and correlated it to the rank of the eQTL hotspots based on the number of regulated 283 

genes. This resulted in a positive correlation (Spearman ρ = 0.33 and p = 5.21e-5), suggesting that 284 

larger effects on the regulatory network translate into larger trait variation. Indeed, we observed 285 

that some previously reported high-effect-size QTL genes are located in eQTL hotspots, eg MKT1, 286 

HAP1, and IRA2 (Figure 4A). 287 
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Figure 4: eQTL features underlying trait variation across the BY/RM segregants. A) 288 

Mapping of the 30C QTL in the eQTL hotspots. We represent the hotspots of expression regulation 289 

as genomic windows (25 kb) to acknowledge the uncertainty around the real position of the eQTL 290 

due to linkage disequilibrium. We annotated the 5 top eQTL hotspots and the eQTL hotspots in 291 

which the top additive QTL identified by the BB-QTL mapping of the 30C phenotype are located. 292 

In these regions, we represented the most affected trans-regulated genes in red, the most affect cis-293 
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regulated gene in blue and the genes of the top QTL in black. The double quotation characters 294 

represent the absence of such genes in the associated region. We also represented the rank of the 295 

QTL in the set of 159 QTL of the 30C phenotype. B) Partitioning of the expression heritability or 296 

explained variance (R2) among cis- and trans-eQTL. Each pair of points connected by a line 297 

represents a gene. Green lines represent the genes that are only have trans-eQTL and orange lines 298 

represent the genes that have both trans- and cis-eQTL. C) Comparison of the mean effect size 299 

between cis- and trans-eQTL. Each pair of points connected by a line represents a gene. The ratio 300 

of the average effect size between cis- and trans-eQTL is represented by the line color. The sample 301 

size of each eQTL category is represented in the x axis. This is the number of trans-eQTL and cis-302 

eQTL used for calculating the average effect sizes per gene not the number of points per 303 

distribution. 304 

Performing this rank-test on individual genes also yielded the result that eQTL effect is correlated 305 

with fitness effect for 35.1% of the genes (permutation test p < 0.05, see Methods). Although this 306 

correlation does not apply to most genes, it reveals potential regulatory mechanisms explaining 307 

the importance of the strongest growth loci or QTL. For instance, MKT1, i.e. the strongest growth 308 

loci, is part of a regulation hotspot affecting genes that are important for yeast growth like ENP1 309 

which is involved in RNA processing and HXT6 which is involved in glucose uptake (32–34). 310 

Among the strongest growth loci, VPS70 is part of a hotspot of regulation that strongly affects the 311 

expression of RSF2, a zinc-finger protein regulating glycerol-based growth and respiration (35). 312 

Furthermore, the highest peak for expression regulation contains important growth loci in 313 

chromosome IV around the mating type loci. This suggests the presence of cells with different 314 

mating types in the dataset which we confirmed from the read mapping to Mat-a and Mat-α genes. 315 

This is consistent with previous budding yeast eQTL mapping and is also expected because the 316 

mating types in yeast express sets of genes that are <turned off= in other mating types (15,16,36). 317 

This peak of expression regulation is also responsible for regulating TDH3 which is involved in 318 

glycolysis and glucogenesis and can have important effect on fitness (37). 319 

 These hotspots suggest that expression differences in BY/RM would predominantly be due 320 

to mutations in trans-regulatory elements. To test this, we partitioned the variation in gene 321 

expression between cis- and trans- regulatory loci for each gene (see Methods). This analysis 322 

revealed that all the genes are affected by at least one polymorphic trans-regulatory locus and that 323 

these polymorphic trans-regulatory loci explain most of that gene’s expression (Figure 4B). It is 324 

well known that mutations in promoters and nearby enhancers can influence gene expression 325 

(38,39). Indeed, we identified many genes that contained an allele in a cis-regulatory element that 326 

strongly explain that gene’s expression variation (n=750 genes out of 6088, Figure 4B). As 327 

expected, mutations in cis-regulatory elements were of stronger effect size than trans-eQTL 328 

individually, but the cumulative aggregate effect of all trans-eQTL acting on that gene was 329 

comparable to the few cis-eQTL they had (Figure 4C). This can be explained by the fact that there 330 

are more opportunities for mutations to arise in trans-regulatory elements. Finally, we found that 331 

trans-eQTL have two times higher odds of affecting cell fitness than cis-eQTL (χ2 p = 0.01). 332 
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Taken together, the link between the genetic basis of transcription variation across RM/BY 333 

segregants and fitness could only be revealed by integrating large-scale transcriptomic data to an 334 

existing GPM, which scRNA-seq facilitates. 335 

 336 

CONCLUSION 337 

By leveraging the scalability of scRNA-seq, we obtained thousands of transcriptomes from a 338 

reference pool of strains in a single experiment. This enabled the analysis of association between 339 

genotype, transcriptome, and phenotype at an unprecedented scale. Questions surrounding 340 

transcriptomic variation and phenotypic variation have been at the center of many previous 341 

quantitative genetics studies (15,16,22,36,40). These ideas and discoveries all support the fact that 342 

researchers can gain valuable insight about the evolution of traits by integrating the transcriptome 343 

in GPM analyses, which can translate into fundamental knowledge or other important applications 344 

where phenotypes evolve. 345 

In this study, we took advantage of a previously characterized BY/RM cross where the genetic 346 

basis of growth in various environments was examined in detail (24). By integrating transcriptomic 347 

data in this genotype-phenotype map, we revealed how transcriptomic components are involved 348 

in trait variation. Similar to a previous study, which obtained transcriptomes by individual strain 349 

sequencing, we found that gene expression is highly heritable. Further, our study design also 350 

allowed us to conclude that gene expression contributes to a significant portion of the phenotypic 351 

variation in this strain collection.  352 

This finding is corroborated by our findings that most eQTL detected in our study were previously 353 

shown to be QTL. This is perhaps not surprising given that QTL in this cross were previously 354 

inferred to be in regulatory genes, but this provides a more mechanistic view of the effect of an 355 

allele on phenotype. Indeed, we find a bias for trans-regulation for generating transcription 356 

innovation where the cumulative effect of trans-eQTL on gene expression are significant. That is 357 

not to say that cis-regulatory alleles are dispensable as cis-regulatory alleles often have large effect 358 

on gene expression. This genome-wide view of the genetic basis of transcriptional variation has 359 

consequences for the evolution of phenotypes, as the target size afforded by trans-eQTL is far 360 

larger than cis-eQTL. Thus, adaptation to small and fluctuation environmental changes may 361 

proceed preferentially through allelic changes or recombination of many small-effect trans-eQTL, 362 

but large expression changes are likely to require some cis-eQTL.  363 

In this study, we leveraged the fact that our pool of strain was previously genotyped and 364 

phenotyped. This was obtained by liquid handling robotics and pooled competitive growth assay 365 

with barcode sequencing. While this was performed on a very large scale, it was essentially 366 

obtained by brute-force and through approaches that are not necessarily applicable to other 367 

systems. While it is clear from our results that genotyping single-cells can achieve the same 368 

genotype quality as single-reaction genotyping, it is much harder to obtain phenotyping data from 369 

scRNA-seq. Thus, our framework might not be readily translatable to other systems where similar 370 

studies on the GPM are desirable. However, two observations from this cross can be used to 371 

suggest an experimental approach. First, while epistasis is important, it contributes to a relatively 372 
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small portion of the phenotypic variance. Further, transcriptomic variation contributes little to the 373 

missing heritability. Thus, it may be possible to use predicted fitness instead of observed fitness 374 

and recapitulate essentially similar results as this study. Predicted fitness could be obtained from 375 

bulk-segregant analysis where the additive effect of loci can be inferred from whole-genome 376 

sequencing (23,41). While it is not clear if these observations are generalizable, it may be possible 377 

to verify this for a study system of interest with some modest time-course single-cell based 378 

sequencing where low-coverage genotyping is possible. 379 

However, despite the study’s limitation on generalizability, our scRNA-seq framework helps 380 

bridge understanding of how genetic variation influences transcriptomic variation. Our framework 381 

relies on identifying the genome of single-cells from the transcriptome, which is going to be 382 

possible from low-coverage sequencing when genetic variation within the pool is high (such as 383 

this cross, microbiome sequencing, or cancer cells with extensive copy number variation), and 384 

from low cell diversity with sufficient transcriptomic variation such that aggregation of single-385 

cells with similar transcriptomes can afford pseudo-high coverage sequencing. Thus, integrating 386 

genotype, transcriptome, and phenotype using scRNA-seq data can be particularly efficient for 387 

developing a more fundamental understanding of other important traits or diseases. 388 

  389 
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MATERIAL AND METHODS 390 

Yeast strains and segregants 391 

We analyzed cells from a single batch (batch 1) of 4,489 segregants obtained from a F1 cross 392 

between the yeast laboratory strain BY4741 and the vineyard strain RM11-1a generated in a 393 

previous study (24). These strains have been selected to generate this collection of segregants 394 

because they exhibit differences in multiple phenotypes including the adaptation to temperature, 395 

the ability to process different sources of carbon and the ability to resist antifungal compounds. 396 

Therefore, the genetic variation observed across the segregants can be correlated to the differences 397 

in growth rate observed in the 18 environments recapitulating these phenotypes in the Nguyen et 398 

al (2022) study (24). The selection of the batch is random and the fact that we performed the 399 

analyses on a single batch eliminates batch effects that could obscure variable associations. 400 

Genotypes and fitness data used were the same ones obtained in the previous study. 401 

Yeast growth and single-cell RNA-sequencing protocol 402 

To prepare strains for scRNA sequencing, we unfroze the batch of segregants and inoculated 403 

approximately 5*10^6 cells in YPD (1% Yeast Extract, 2% Peptone, 2% Dextrose) to saturation. 404 

The next day, about 10^7 cells were passaged to 5 mL of fresh YPD and grew for 4 hours to bring 405 

cells to log-phase. We then pelleted 100 ul of cells and resuspended them in spheroplasting solution 406 

(5 mg/mL zymolyase 20T, 10 mM DTT, 1 M Sorbitol, 100 mM Sodium Phosphate pH 7.4) at a 407 

concentration of 10^7 cells/mL. The cells were incubated at 37 degrees Celcius for approximately 408 

10 minutes at which point spheroplasting was verified by mixing a small aliquot of cells with 409 

detergent to observe lysis. The cells at this point were quantified using a hemocytometer and 410 

prepared using the standard 10x Genomics Gel Beads-in-emulsion (GEM) protocol. We used the 411 

Chromium Next GEM Single-cell 3’ Reagent Kit to prepare the sequencing libraries and 412 

sequenced on a NextSeq 500 high-output flow cell. 413 

We note that the cells analyzed here were grown in bulk and assayed for their transcriptome in 414 

log-phase. Our fitness data was obtained from competitive bulk fitness assays which includes 415 

several whole growth cycle over multiple days and thus captures lag phase, exponential growth, 416 

and saturation. Nevertheless, previous experiments had shown that fitness was mostly determined 417 

by exponential growth which suggests that our analysis is adequate even if the cells were prepared 418 

for sequencing at a single time point. 419 

Single-cell RNA-sequencing data parsing 420 

From the scRNA-seq reads, we obtained gene expression levels and allele counts using the pipeline 421 

count from CellRanger version 3.1.0 (42). For each of the ancestral strain, i.e RM11-1a and 422 

BY4741, the pipeline mapped the scRNA-seq reads to the reference genome, filtered the barcodes 423 

by comparing the UMI count per barcode distribution to a background model of empty gel-bead 424 

in-emulsion, and counted the number of UMI per gene per barcode. The barcode filtering retained 425 

18,233 barcodes. For each barcode, we then counted the number of RM and BY alleles at each 426 

polymorphic site by parsing the RM and BY bam files using a python script 427 

(https://github.com/arnaud00013/sc-eQTL/tree/main/II_scRNA-seq_genotyping). This script only 428 
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keeps reads that mapped at the same loci on both reference genomes to increase the level of 429 

confidence of the mapping. 430 

Correction and imputation of single-cell genotypes with a Hidden Markov Model 431 

Because there are only two possible alleles at each polymorphic sites of the RM/BY segregants, 432 

their genotype can be recapitulated by a quantitative variable measuring the proportion of reads 433 

from one of the parental strains, which is RM in our dataset. The raw allele count data provides a 434 

first estimate of this RM allele frequency at each polymorphic site. However, due to the low mean 435 

depth of coverage of scRNA-seq data (0.2x), the absence of reads in some polymorphic sites and 436 

the biases introduced during sequencing like index hopping/swapping, we expect that the raw data 437 

can be imputed and corrected for errors and uncertainty in the observed alleles. Therefore, we 438 

applied a Hidden Markov Model (HMM) on the observed allele count. Such model can infer 439 

accurate genotype data at sequencing depths as low as 0.1x (24,25,43). Nguyen Ba and 440 

collaborators (2022) designed an HMM to infer the segregants genotypes from bulk DNA 441 

sequencing by accounting for sequencing error rate, recombination rate and index swapping rate 442 

(24). Because scRNA-seq uses the reverse transcriptase, which has a higher error rate, and because 443 

it is a pooled assay with higher chances of index swapping, we expected the HMM parameter to 444 

differ for the single cell data. Therefore, we adapted the HMM to scRNA-seq data by measuring 445 

its parameters in our dataset (Figure S1). The scripts are available on GitHub 446 

(https://github.com/arnaud00013/sc-eQTL/tree/main/II_scRNA-seq_genotyping). 447 

 448 

Assigning single cells to the reference panel strains 449 

To evaluate the level of relatedness between the reference panel strains and the imputed single cell 450 

genotypes, we used the expected distance to identify the strain that best relate to each single cell: 451 ýýāăāāăĂ ĂÿĀāÿÿāă(ý�, ýĀ) =  ∑ ý� + ýĀ 2 2ý�ýĀ41594�=1                           (Eq.1) 452 

where ý� is the cell genotype and ýĀ is the strain genotype. Next, we assigned the single cell to its 453 

best match in the studied batch of 4,489 trains only if this match is better than the best match in 454 

randomly generated batches of the same size (Figure S2). This procedure is implemented and 455 

available at https://github.com/arnaud00013/sc-eQTL/tree/main/III_Genotype_analysis). 456 

Partitioning the phenotypic variance into genetic and transcriptomic components 457 

To analyze the yeast GPM at a broad scale and to evaluate the association between selection and 458 

the transcriptome, we estimated the contribution of genetic and transcriptomic variations to 459 

phenotypic variation from scRNA-seq data. More precisely, we performed a Genome-wide 460 

Complex Trait Analysis (GCTA) by fitting a linear mixed model to the data using the restricted 461 

maximum-likelihood (REML) method (44): 462 þ = Ā� + ÿ�Ă� +  ��                                                   (Eq.2) 463 þ = Ā� + ÿ�Ă� + ��                                                   (Eq.3) 464 
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þ = Ā� + ÿ�Ă� + ÿ�Ă� +  �                                                   (Eq.4) 465 

where y is the fitness vector for the n cells, X is the nxk matrix of k fixed effects, � is the vector of 466 

k coefficients of the fixed effects, ÿ� is the nxp genotype matrix, Ă� is the vector of p SNP effects, 467 ÿ� is the nxm expression matrix, Ă� is the vector of m gene expression effects and � is the error 468 

term. Because the dataset does not include fixed effects, we set the fixed effect to a vector of ones 469 

such that its coefficients represent the mean fitness while the genotype and expression data are the 470 

random effects that explain the fitness variance along with the error terms. The REML solution 471 

assumes that the data follow a Gaussian distribution, so the data are standardized before fitting the 472 

model. We also divided the standardized expression counts by the cell sum of expression counts 473 

to control for molecule count biases across cells. The cell fitness is based on the fitness of the 474 

closest segregant in batch 1 as measured by the expected distance. Because this model is linear 475 

and additive, it can be compared to the estimates of narrow-sense heritability obtained by Nguyen 476 

Ba and collaborators (2022) (24). The difference between the variance explained in equation 4 and 477 

equations 2 or 3 allow to infer the variance explained only by the genotype or the expression 478 

component of the model. The code for the variance partitioning is available on GitHub 479 

(https://github.com/arnaud00013/sc-eQTL/tree/main/IV_variance_partitioning). 480 

 481 

Estimating the expression heritability from scRNA-seq 482 

To obtain this estimate from scRNA-seq data, we needed to consider the fact that GCTA-REML 483 

only takes a vector as a response variable while the gene expression matrix is multi-dimensional. 484 

To solve this, we orthogonalized the gene expression matrix using principal component analysis 485 

(PCA), and used each of the PC one at a time as a response variable of the model. Indeed, if the 486 

expression PCs recapitulate the total expression variance and are orthogonal or independent to 487 

each other, then the sum of the PCs variance explained by genotype should be the expression 488 

heritability. To save time, we only used the 898 expression PCs that explain 99% of expression 489 

variance: 490 ýýāÿăĀĀÿĀÿ /ăÿÿāÿĀÿýÿāþ =  ∑ ��� ăÿýăÿ ăÿýĂă ∗  "���898�=1 ~ ýăÿĀāþāă" þĀĂăý ý2 (Eq.5) 491 

 492 

QTL mapping 493 

To identify the loci that influence cell fitness, we performed a linear regression on the consensus 494 

genotypes of the strains from the single cell data and the strain fitness. We decided to use the 495 

consensus genotypes of the strains as they relate better to the bulk segregant genomes. To build 496 

the consensus genotypes, we defined cells from the same lineage as the ones that shared the same 497 

closest segregant in batch 1. Next, we used the median to obtain cells' consensus genotypes as it is 498 

less sensitive to outliers and because it yields the best relatedness to the batch 1 reference 499 

genotypes (median R2 = 87.0%; ¼=79.5%; σ=18.2; Figure S3). We selected the QTL in the linear 500 

models using cross-validation on the scRNA-seq data. This analysis consists in dividing the dataset 501 

into 10 random partitions of similar sample sizes and running a cross-validated stepwise forward 502 
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linear regression on each partition. For each partition, the model starts with no QTL and a linear 503 

model "Fitness ~ Genotype" is fitted using the genotype data at each polymorphic site, where the 504 

correlation coefficient represents the effect size of the SNP. Then, the forward search starts and at 505 

each iteration, a new locus with the minimum linear model residual sum of squares (RSS) is added 506 

to the QTL model, which is updated with new effect sizes after the addition of a new SNP. Because 507 

the order of addition of QTL matters in the forward search and because some QTL are linked or 508 

collinear, the model can be refined by exploring different QTL around the local optima. These 509 

steps are repeated until the model RSS cannot be improved anymore or until the number of QTL 510 

reaches an arbitrary maximum far from the cross-validated number of QTL. After the forward 511 

search is completed in each partition, the algorithm calculates the optimal λ values that minimizes 512 

the objective function þĀ: 513 þĀ(�) =  ýþþ(�) + �ÿĀĀĀ āăÿÿýāþ(�) 514 ‖ā 2 Ā�‖22 +  �‖�‖0 (Eq.6) 515 

where � is the vector of SNP effect sizes in the QTL model, ‖ā 2 Ā�‖22 is the RSS of the linear 516 

QTL model, » defines the penalty for adding a new SNP to the model and ‖�‖0 is the number of 517 

SNPs in the QTL model. This objective function has the property to add sparsity in the QTL model 518 

and thus avoid overestimating the number of QTL while being consistent (24). The optimal λ has 519 

a minimum of log(n) which corresponds to the Bayesian Information Criterion (BIC), which is 520 

known to yield correct models asymptotically (45). This allows to consider the possibility that a 521 

sparser model than the one found using the BIC could yield better predictive power on a test set 522 

while avoiding overfitting. The optimal λ values found in all the partitions are then averaged and 523 

the resulting mean λ is used to solve the objective function in the full dataset, which yields the 524 

optimal QTL model. The cross-validation assumes that the partitions are independent, such that 525 

the variance explained by the model and the number of relevant QTL are unbiased estimates. 526 

Highlighting hotspots of gene regulation through eQTL mapping 527 

To identify the loci regulating gene expression regulation, we adapted the QTL mapping 528 

framework using expression as the predicted phenotype. Because this approach had to be repeated 529 

for each of the 6,240 genes, we needed to modify it so that the execution time is convenient. To 530 

do so, the parameter » was not estimated using cross validation but rather from the Bayesian 531 

Inference Criterion (BIC), i.e. » = log(n) where n is the number of cells. We found that the BIC 532 

was often selected by the cross-validation procedure when tested on a few genes and thus we do 533 

not believe that this approach will significantly change our results.  534 

To acknowledge the uncertainty around the exact position of eQTL due to linkage disequilibrium, 535 

we define eQTL hotspots as 25 kb genomic windows that were repeatedly identified in the eQTL 536 

mapping procedure. The code for the single cell eQTL mapping is available on GitHub 537 

(https://github.com/arnaud00013/sc-eQTL/tree/main/V_sc_eQTL_mapping). 538 

Functional enrichment analysis by gene ontology annotation 539 

To highlight gene functions enriched at different levels of expression or expression heritability, 540 

we performed the panther database binomial test for statistical overrepresentation of gene ontology 541 
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biological processes (31,46). A low level was defined as within the 25% bottom part of the 542 

distribution (<Q1) while a high level was defined as within the top 25% part of the distribution 543 

(>Q3). The p-values were corrected for multiple testing using the false discovery rate correction 544 

(FDR). 545 

Matching QTL to eQTL  546 

To evaluate the contribution of gene expression regulation to fitness variation, we created a model 547 

to match QTL and eQTL based on the similarity of loci and the similarity of predicted effect on 548 

gene expression. More precisely, for each of the 6,088 genes for which we could detect eQTL, we 549 

performed a new eQTL model by correlating the expression level of the gene to the genetic 550 

variation at QTL positions. This allowed us to measure the predicted effect of the QTL on gene 551 

expression. We then calculated the distance between the QTL and the real eQTL of the gene based 552 

on recombination distance within each chromosome, which decreases exponentially with genetic 553 

distance, and the difference in the predicted effect on the gene expression using the formulation 554 

developed by Nguyen Ba et al (2022) (24). Next, we used the same Needleman-Wunsch algorithm 555 

to find the most likely set of pairing between QTL and eQTL, where an unmatched QTL is also 556 

possible but penalized. Finally, we determined the proportion of genes for which gene expression 557 

regulation is associated with higher fitness. To do so, for each gene, we performed a permutation 558 

test by comparing the average rank of the matched QTL of the gene to the average rank of 999 559 

random subsets of unmatched QTL of the same size. The p-value is the proportion of random 560 

subsets of unmatched QTL with a higher average QTL rank than the set of matched QTL. 561 

Comparing cis- and trans-eQTL contribution to expression variation 562 

We used the definition of local eQTL in Albert et al. (2018) to define cis-eQTL, i.e. any eQTL 563 

between 1,000 bp upstream of the gene and 200 bp downstream of the gene. Thus, we defined 564 

trans-eQTL as the eQTL that do not follow this criterion. For each gene, we then performed 565 

variance partitioning using the GCTA: 566 þ = Ā� + ÿ�_��ĀĂ�_��Ā + ���Ā                                                   (Eq.7) 567 þ = Ā� + ÿ�_āÿ�ÿĀĂ�_āÿ�ÿĀ + �āÿ�ÿĀ                                                   (Eq.8) 568 þ = Ā� + ÿ�_��ĀĂ�_��Ā + ÿ�_āÿ�ÿĀĂ�_āÿ�ÿĀ +  �                                                   (Eq.9) 569 

where y is the vector of expression level of the gene across the n cells, X is the nxk matrix of k 570 

fixed effects, � is the vector of k coefficients of the fixed effects, ÿ�_��Ā is the nxp cis-eQTL 571 

genotype matrix, Ă�_��Ā is the vector of p cis-eQTL effects on expression, ÿ�_āÿ�ÿĀ is the nxm 572 

trans-eQTL expression matrix, Ă� is the vector of m trans-eQTL effects on expression and �  573 

represent the error terms. Because the dataset does not include fixed effects, we set the fixed effect 574 

to a vector of ones such that its coefficients represent the mean expression level while the cis-575 

eQTL and trans-eQTL genotypes are the random effects that explain the expression variance along 576 

with the error terms. We can infer the variance explained by the cis-eQTL by the difference in 577 

variance explained between the models in equations 9 and 8. Likewise, the difference of variance 578 

explained by the models in equations 9 and 7 can help us estimate the variance explained by the 579 
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trans-eQTL. Finally, we estimate the effect sizes using the absolute value of the correlation 580 

coefficients of each loci and compare the mean between the cis- and trans-eQTL from the same 581 

gene (paired data) with a Wilcoxon signed rank test. 582 

  583 
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DATA AVAILABILITY 584 

The code used for this study is available and explained at https://github.com/arnaud00013/sc-585 

eQTL and the original single-cell reads from the pooled segregants scRNA-seq assay have been 586 

uploaded in the NCBI BioProject database with the accession number PRJNA1022775. The single-587 

cell barcodes expression data are also available at https://github.com/arnaud00013/sc-eQTL as an 588 

archive file named Matrix_gene_expression_barcodes_1_to_9000.csv.tar.gz or 589 

Matrix_gene_expression_barcodes_9001_to_18233.csv.tar.gz. 590 
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