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ABSTRACT

Genotype-phenotype mapping (GPM) or the association of trait variation to genetic variation has
been a long-lasting problem in biology. The existing approaches to this problem allowed
researchers to partially understand within- and between-species variation as well as the emergence
or evolution of phenotypes. However, traditional GPM methods typically ignore the transcriptome
or have low statistical power due to challenges related to dataset scale. Thus, it is not clear to what
extent selection modulates transcriptomes and whether cis- or trans-regulatory elements are more
important. To overcome these challenges, we leveraged the cost efficiency and scalability of
single-cell RNA sequencing (scRNA-seq) by collecting data from 18,233 yeast cells from 4,489
segregants of a cross between the laboratory strain BY4741 and the vineyard strain RM11-1a.
More precisely, we performed eQTL mapping with the scRNA-seq data to identify single-cell
eQTL (sc-eQTL) and transcriptome variation patterns associated to fitness variation inferred from
the segregants’ bulk fitness assay. Due to the larger scale of our dataset, we were able to
recapitulate results from decades of work in GPM from yeast bulk assays while revealing new
associations between phenotypic and transcriptomic variations. The multidimensionality of this
dataset also allowed us to measure phenotype and expression heritability and partition the variance
of cell fitness into genotype and expression components to highlight selective pressure at both
levels. Altogether these results suggest that integrating large-scale scRNA-seq data into GPM
improves our understanding of trait variation in the context of transcriptomic regulation.
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INTRODUCTION

The process by which DNA encodes proteins via transcription and translation has been studied for
decades to make sense of organisms’ phenotypes. However, being able to explain organisms'
phenotypes from their genetic material, i.e. genotype-phenotype mapping (GPM), has been a long-
lasting problem with important applications (1,2). Indeed, making sense of genetic variation at the
phenotypic level enables the understanding of trait variation between and within species as well as
the emergence and evolution of phenotypes (3). For instance, reverse genetics approaches, e.g.
gene knockout or transgenic technologies, and forward genetics approaches like GWAS and QTL
mapping helped in determining the function of multiple genes and the effects of mutations on
growth in different environments (4). However, reverse genetics approaches typically fail to
account for natural variation and forward genetics approaches like QTL mapping typically focus
on genetic and phenotypic variation so they cannot highlight selection on the transcriptome.

An essential characteristic of this problem is the multi-layered organization of the GPM.
Indeed, GPM is not strictly restricted to the direct association between genotypes and phenotypes.
This association is better resolved and complemented by understanding the intermediary
transcriptome layer, e.g. cell mechanisms at the transcriptomic level are involved in diseases and
pathogenicity (2,5-8). However, it is not clear to what extent transcriptomic changes relate to
phenotypic changes or selection. Pioneering work from Mary-Claire King and Allan Charles
Wilson set the tone for investigating this question by proposing that variations in morphological
and behavioral traits arise more often through gene expression regulation than evolution at the
protein-coding level (9). Francois Jacob then postulated an essay that stemmed from this theory in
which he highlights how evolution acts as a tinkerer that works from already available material,
i.e. through regulation of gene expression, to create new adaptations (10). This constituted the core
of the evolutionary developmental biology which matured into the still-debated claim that new
adaptations mainly emerge through cis-regulation of gene expression, i.e. through noncoding DNA
regulating a neighbor gene contrarily to trans-regulators acting on distant genes (11-14). This
debate has been reinforced by the technical difficulties and complexity of assessing the evolution
and outcome of mutations in non-coding regions (11,12). Advances in sequencing technologies
have clarified some of these hypotheses, particularly in the context of transcriptome analyses of
the model organism Saccharomyces cerevisiae. For instance, Brem et al (2002) used microarray
technology to relate the gene expression profiles of 40 yeast segregants from a lab (BY) and natural
vineyard strain (RM) to their genetic markers (15). They found that cis-acting modulation is the
main mechanism for regulating gene expression. Nearly two decades later, by greatly increasing
statistical power, Albert and collaborators (2018) found that most of the expression variation arise
through trans-regulation using non-multiplexed RNA-seq to analyze 5,720 genes in 1,012 yeast
segregants generated by a crossing between RM and BY (16). The analysis method they used, i.e.
expression quantitative trait loci (eQTL) mapping, consists in correlating allele frequencies to gene
expression levels to find the loci modulating expression.

Although eQTL mapping is a traditional GPM analysis that accounts for the transcriptomic
layer, it is typically realized through non-multiplexed RNA-seq which tends to have low statistical
power due to challenges with experimental scale and confounding factors (17,18). Thus, eQTL
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76  mapping traditionally cannot identify significant low-effect regulatory mutations that are
77  important for understanding the genetic bases of complex traits and diseases (19,20). Furthermore,
78  most eQTL studies only assess the average transcriptomic profile of bulk populations without
79  being able to capture the profile of rare cell lineages within a population. This is a critical limitation
80 in heterogenous populations such as cancer or microbial populations where rare lineages can drive
81  relapse or drug resistance (21).

82 Here, we sought to circumvent the challenges of non-multiplexed bulk RNA-seq imposed
83 by the scale and population heterogeneity by performing eQTL mapping through single-cell RNA
84  sequencing (scRNA-seq) of a pool of ~4500 well-characterized F1 segregants of a yeast cross
85  (16,22,23). In the same way that combinatorial indexing/barcoding and multiplexing enable the
86  collection of large-scale fitness and genotype data (24), we hypothesized that scRNA-seq can help
87  us collect both genotype and expression data on a large pool of segregants. We employ several
88  strategies to overcome previous obstacles of eQTL mapping studies: i) we pool cells from
89  thousands of segregants during the growth step and perform a single scRNA-seq run on the culture
90 to account for environmental effects, and ii) from the exome sequencing data of single-cells we
91 take advantage of the reference panel to validate that we accurately infer the genotype of each cell
92  from extremely low number of reads mapping to polymorphic sites per cell (effectively ~0.2x
93  coverage).

94 Using this approach, we integrated the resulting transcriptomic data from growth in rich
95 media with a pre-existing yeast GPM. We estimated the heritability of the transcriptome and the
96 extent at which transcriptome is associated with fitness. We show that this increased scale from
97  scRNA-seq enables eQTL mapping directly without the use of a reference genotype panel, and
98 relate identified single-cell eQTL (sc-eQTL) to previously identified QTL. We also exploit the
99 identified sc-eQTL to analyze the patterns of cis- and trans- regulation in the GPM.

100

101  Our single-cell RNA-seq approach is consistent with yeast GPM results from non-
102  multiplexed assays

103  We initially aimed to show that performing scRNA-seq at a large scale can generate data that are
104  consistent with non-multiplexed DNA and RNA sequencing. To do so, we analyzed a dataset of
105  thousands of yeast lineages generated by Nguyen Ba and collaborators (2022) (24). To understand
106  the yeast GPM, they collected fitness and genotype data from ~100,000 segregants of an F1 cross
107  between a laboratory strain of yeast (BY) and a natural vineyard strain (RM) (Figure 1A).
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109  Figure 1 Yeast segregants datasets. A) Reference panel from the barcoded bulk sequencing. The

110 99,995 yeast segregants in the reference panel come from a F1 cross between a laboratory strain
111 of yeast (BY) and a natural vineyard strain (RM) (24). Thus, they only have 2 possible alleles at
112 each of the 41,594 polymorphic sites. The lineages barcodes enabled fitness estimation from
113  competition assays in 18 environments recapitulating the adaptation to temperature gradients, the
114  ability to process different sources of carbon and the resistance to antifungal compounds. B)
115  Pooled scRNA-seq dataset from a single batch. We performed scRNA-seq of the first batch of
116  segregants (n=4,489) to obtain genotypes that are similar to the reference panel and single cell’s
117  expression profiles. Non-covered sites, sequencing errors and the presence of reads in the wrong
118  library (index swapping) are corrected for using the HMM described in Figure S1.

119  Using this approach named barcoded bulk QTL mapping or BB-QTL mapping, they revealed the
120  complex polygenic and pleiotropic nature of phenotypes as well as an unprecedented number of
121  pairwise epistatic interactions. To integrate transcriptomic data to that GPM, we performed
122 scRNA-seq using the 10X Genomics Chromium microfluidics platform and obtained both
123 genotype and expression profiles from 18,233 cells of the first batch of segregants (Figure 1B).
124  This short-read scRNA-seq method comes with challenges like low-coverage sites due to technical
125  sequencing biases and low sequencing depth in some cells (25,26). To overcome these challenges,
126  the unique molecular identifiers (UMIs) of the 10X Genomics platform provide a control for
127  technical biases by quantifying gene expression from unique transcribed molecule counts instead
128  of reads counts (25). In addition, Hidden Markov Models (HMMs) can infer accurate genotype
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129  data even at sequencing depths as low as 0.1x (24). Nguyen Ba and collaborators (2022) designed
130 an HMM to infer the segregants genotypes from the observed reads at low depth of DNA
131  sequencing by accounting for sequencing error rate, recombination rate and index swapping rate
132 (24). As there are only two ancestral lineages, there are only two possible alleles for the strains at
133 each of the 41,594 polymorphic sites. Thus, the genotype of the segregants can be represented by
134  the frequency of only one of the parental alleles, which is RM in the dataset. Applying this model
135 to low-coverage segregants yielded genotypes that are significantly similar to high-coverage
136  replicates (24). We sought to use a similar model to infer genotypes from scRNA-seq data, but we
137  anticipated that some of these parameters may differ due to increased error rate of the reverse-
138 transcriptase, increased index swapping due to pooled-reaction, etc (Figure S1). In Nguyen Ba et
139  al, those rates were heuristically determined, but here we estimated these from the read mapping
140  data and found that re-estimated parameters from data increase the proportion of recovered strains
141  in the single cell data from 58.6% to 72.0%.

142 After adapting the HMM to the scRNA-seq data, we sought to validate that the resulting
143 cell genotypes relate well to their corresponding strain in the reference panel obtained by non-
144  multiplexed DNA sequencing strategies. Ideally, each single-cell barcode (from 10x Genomics
145  Chromium) should be associated with a single cell and a cell should have a clear match with a
146  unique strain in the reference panel. However, several factors can obscure these associations, e.g.
147  a single-cell droplet containing cells from 2 different strains, a low-coverage cell, uncertainty in
148  the allele of the reference genotype, etc. Thus, we designed an approach to clearly assign cells to
149  the correct reference panel strain (see Methods). This approach relies on two metrics of similarity
150  between the cells and the strains’ genotypes, i.e. the expected distance between them, which should
151  be minimized for the best match, and the relatedness (R?). The statistical significance of the
152  relatedness between single cells and reference lineages was determined by a permutation test
153  (Figure S2). From the read mapping alone, we obtained a mean R? of 0.59 (¢ = 0.19 and median
154 = 0.64), which was significantly improved after applying our HMM to correct for mis-identified
155 alleles and imputing data in low-coverage sites using recombination probability. Indeed, the
156  single-cell HMM genotypes yield a mean R? of 0.73 (o = 0.18 and median = 0.81; Figure2A). We
157  found that the distribution of relatedness after HMM was still left-skewed, with many cells
158  statistically significantly assigned to a reference genotype despite having what appeared to be low
159  relatedness. Upon investigation, it was found that these could be explained by genotyping
160  uncertainty either in the single-cell and/or in the reference panel genotype (s) (Table S1).
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Figure 2 Single-cell RNA-seq data recapitulate bulk DNA and RNA assays results. A) Effect
of the HMM on the relatedness between single cell genotypes and their closest reference lineage.
The single-cell original genotype represents the genotype of the cells before the correction with
the HMM. The relatedness to the closest lineage in batchl has been measured with the adjusted
R2. To control for genotype uncertainty, only the 13,069 barcodes with a significant lineage
assignment (lineage-barcode genotype correlation FDR<0.05) and a reference lineage with a lower
uncertainty than the single cell HMM are selected, which represents 72.2% of the barcodes. We
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169  then rounded the genotypes to remove the uncertainty during the comparison. Wilcoxon signed
170  test p-value is indicated above the violin plots. B) Narrow-sense heritability measured with non-
171 multiplexed DNA sequencing and scRNA-seq. The grey bars represent the scRNA-seq estimates
172 of narrow-sense heritability while the red dots represent the estimates from bulk DNA sequencing.
173 The interval of confidence of the bulk DNA sequencing is indicated by the red line around the red
174  dot and was obtained from genotype and phenotype measurement error in the BB-QTL paper (24).
175  The 23C-37C represents the temperature for the competition assay in YPD media while the other
176  phenotypes represent growth on YNB, molasses (mol), mannose (Mann) or raffinose (raff) and
177  chemical resistance to copper sulfate (Cu), ethanol (eth), guanidinium chloride (gu), lithium
178  acetate (Li), Sodium dodecyl sulfate (SDS) and suloctidil (suloc) (24).

179

180 To further establish that the genotyping obtained from scRNA-seq data was comparable to
181  previous non-multiplexed genotyping of the reference genotype panel, we estimated the
182  contribution of genetic variation to the phenotypic variation, i.e. fitness heritability. Nguyen Ba
183 and collaborators (2022) estimated the narrow- and broad-sense heritabilities of complex
184  phenotypes associated with temperature gradient, carbon source and chemical resistance for which
185 RM and BY segregants exhibit a significant level of diversity (24). We used our lineage assignment
186  to that panel to obtain fitness but used our single-cell genotyping to perform this association.
187  Encouragingly, most GCTA-REML estimates of narrow-sense heritability are within the
188  confidence intervals of Nguyen Ba and collaborators (2022) estimates (Figure 2B).

189 Although the variance partitioning is consistent with previous studies, it only provides a
190  broad view of the genotype-phenotype map as it does not allow to identify the loci that significantly
191  explain phenotype variation. If the genotypes obtained by scRNA-seq were of high-quality, then
192  we would expect that a QTL mapping model from scRNA-seq would yield a similar model than
193  non-multiplexed DNA sequencing data. To do so, we used a cross-validated stepwise forward
194  linear regression on the strain fitness and consensus genotypes data from single-cells that shared
195 the same lineage assignment (Methods). Performing the QTL mapping on the batch 1 scRNA-seq
196  dataset enabled the identification of 29 QTL compared to 31 QTL identified with the bulk barcoded
197  approach (Tables S2 and S3) (24). These QTL were largely similar as shown by the non-
198  significant difference between the effect sizes (Wilcoxon signed rank test p = 0.29) and by a model
199  similarity metric (24) that considers the recombination distance between matched QTL, the
200 similarity of the effect sizes and the allele frequencies (Methods). Using this approach, we
201  estimated that the similarity score between the batch 1 single cells QTL and the batch 1 BB-QTL
202  is 86.2% while each model respectively had a similarity score of 78.7% and 78.2% with the full
203  BB-QTL mapping performed on 99,950 segregants (24) (Figure S4). The QTL identified from the
204  scRNA-seq dataset also recapitulated several important biological features of the reference panel
205  such as an enrichment of non-synonymous and disordered region QTL (24) (Figure SS).

206 Finally, the variance partitioning model can also be modified to include gene expression as
207  the response variable and cell genotypes as the only random effect (Methods). This enables the
208  quantification of expression heritability, i.e. the variance of expression explained by genotype.
209  Using this approach, we estimated that genotype explains 72.3% of expression variance, which is
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210  consistent with results from previous non-multiplexed eQTL mapping studies. Indeed, Albert and
211 collaborators (2018) estimated that genotype explains 70% of expression variance using a dataset
212 of 5720 genes in 1012 yeast segregants generated by the same parental strains (RM and BY).

213  Integrating scRNA-seq data to an existing GPM highlights selection on the transcriptome

214  Having shown that scRNA-seq is consistent with non-multiplexed assays while being more
215  scalable, we next sought to highlight new associations within the BY/RM GPM. Selection is often
216  highlighted at the genotype level through convergent evolution, increase in allele frequency within
217  a population or population genetics metric (26-28). However, the central dogma of molecular
218  biology and evolution tinkering entail that phenotype variation should be linked to transcriptomic
219  variation. As our dataset included all these variables, we sought to provide a variance partitioning
220 framework to evaluate the association between the transcriptome and trait variation (Methods)
221 with the 30C phenotype as an example (Figure 3).

Phenotype variance

Only explained by
gene expression

Explained by
gene expression
and genotype

Only explained by
the genotype

Not explained
by the model
(residuals)

222
223 Figure 3 Variance partitioning of the 30C phenotype from scRNA-seq data. The percentages

224  represent the proportion of fitness variance (whole rectangle area) explained by the components.
225  The ellipse area represents the phenotype variance explained by genotype variation and the circle
226  area represents the phenotype variance explained by expression variation. The black area of the
227  rectangle represents the residual of the model while the other colored areas represent the shared
228  and exclusive components explaining fitness variation.

229

230  The components of this variance partitioning all relate to at least one biological phenomenon.
231 Indeed, the portion of trait variation explained exclusively by the genotype variation (red in Figure
232 3) represents the effect of mutations on fitness via several biological phenomena such as protein
233 stability, enzymatic function etc, independent of expression level. For the 30C phenotype, this
234 component explains 31.2% of the fitness variation in the BY/RM background which is similar to
235  the 29.7% explained by the shared component between phenotype, genotype and expression
236  variations (purple in Figure 3). The latter represents the association between selection (fitness)
237  and the transcriptome either through loci influencing fitness via expression directly or through loci
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238  affecting expression via an effect on cell fitness (indirectly) (29,30). Its considerable association
239  to fitness variation thus supports the evolution tinkering model. As for the phenotype variation
240  explained exclusively by gene expression (blue in Figure 3), it could represent epigenetics and
241 stochastic gene expression, which weakly explain variations in the 30C phenotype.

242 Although this model accurately estimates the narrow-sense heritability of 30C, the
243 residuals still represent 37.7% of fitness variation. This could be explained by unmeasured factors
244 like high-order epistasis, mitochondrial mutations or protein properties but the broad-sense
245  heritability of this phenotype is similar to the narrow-sense heritability, suggesting that the
246  residuals are mostly not explained by genotype and expression (24). Nguyen Ba et al. (2022) also
247  estimated that epistasis only explained around 5% of fitness (24). These results suggest that a
248  single run of sScRNA-seq on a single batch of yeast segregants converge with bulk DNA sequencing
249  results while revealing previously hidden components of the GPM.

250 Revealing hidden components of the yeast GPM with scRNA-seq

251  Our integrative scRNA-seq approach is not limited to enabling the quantification of the association
252 between transcriptomic changes and trait variation. Indeed, the same approach we used to identify
253  QTL can be used to detect loci regulating gene expression which can reveal the cell mechanisms
254  underlying trait variation through transcriptomic changes. We thus modified the QTL mapping
255  framework such that the response variable is the level of expression of a single gene in the single
256 cells (Methods). This approach is a cost-efficient way to perform eQTL mapping from the
257  expression profile and genotype of cells from thousands of lineages in a multiplexed way (sc-
258  eQTL mapping).

259 Consistent with yeast non-multiplexed eQTL results, the genes with the highest expression
260 heritability are enriched in functions related to carbohydrate catabolic process (GO:0016052) and
261  cellular biosynthetic process (translation GO:0006412, organelle assembly GO:0070925,
262  ribosome biogenesis GO:0042254 and gene expression GO:0010467) (Fisher’s exact test
263  FDR<0.05; Methods). In both datasets, these genes are also highly expressed, which reflects the
264  positive correlation between expression heritability and expression levels (R*> = 0.66 and p < 2.2e-
265 16). Conversely, genes with the lowest expression heritability observed in the RM/BY background,
266  which we defined as the bottom 10% expression heritability, are enriched in functions related to
267  the cell cycle biological process (GO:0007049, Fisher’s exact test FDR<0.05) (16,31).

268 Because of the increased scale of our collection, our approach is more powered to estimate
269  the gene heritability. We were thus able to detect new overrepresented biological processes, i.e.
270  DNA metabolic process (GO:0006259) and the response to nutrient levels (GO:0031667), for
271  which the variation of expression levels is weakly associated to the genetic variation observed
272 across the RM/BY segregants.

273

274 The functional enrichment analysis using scRNA-seq data revealed new associations
275  between expression heritability and biological processes in the RM/BY genetic background.
276  However, while it suggests that many eQTL are also QTL, it cannot accurately point to the specific
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loci involved in trait variation and cannot address whether mutations on regulatory hubs have
stronger effects on traits. To investigate this, we mapped the QTL to hotspots of gene regulation
(or regulatory hubs), which we defined as 25 kb genomic windows that were repeatedly identified
in the eQTL mapping procedure (for different genes). This was done to acknowledge the
uncertainty in the exact position of the eQTL due to linkage disequilibrium and power. We then
ranked the 30C QTL identified by Nguyen Ba and collaborators (2022) based on their absolute
effect size and correlated it to the rank of the eQTL hotspots based on the number of regulated
genes. This resulted in a positive correlation (Spearman p = 0.33 and p = 5.21e-5), suggesting that
larger effects on the regulatory network translate into larger trait variation. Indeed, we observed
that some previously reported high-effect-size QTL genes are located in eQTL hotspots, eg MKT1,
HAPI, and IRA2 (Figure 4A).
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Figure 4: eQTL features underlying trait variation across the BY/RM segregants. A)
Mapping of the 30C QTL in the eQTL hotspots. We represent the hotspots of expression regulation
as genomic windows (25 kb) to acknowledge the uncertainty around the real position of the eQTL
due to linkage disequilibrium. We annotated the 5 top eQTL hotspots and the eQTL hotspots in
which the top additive QTL identified by the BB-QTL mapping of the 30C phenotype are located.
In these regions, we represented the most affected trans-regulated genes in red, the most affect cis-
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294  regulated gene in blue and the genes of the top QTL in black. The double quotation characters
295  represent the absence of such genes in the associated region. We also represented the rank of the
296  QTL in the set of 159 QTL of the 30C phenotype. B) Partitioning of the expression heritability or
297  explained variance (R?) among cis- and trans-eQTL. Each pair of points connected by a line
298  represents a gene. Green lines represent the genes that are only have trans-eQTL and orange lines
299  represent the genes that have both trans- and cis-eQTL. C) Comparison of the mean effect size
300 between cis- and trans-eQTL. Each pair of points connected by a line represents a gene. The ratio
301  of the average effect size between cis- and trans-eQTL is represented by the line color. The sample
302  size of each eQTL category is represented in the x axis. This is the number of trans-eQTL and cis-
303 eQTL used for calculating the average effect sizes per gene not the number of points per
304  distribution.

305  Performing this rank-test on individual genes also yielded the result that eQTL effect is correlated
306  with fitness effect for 35.1% of the genes (permutation test p < 0.05, see Methods). Although this
307 correlation does not apply to most genes, it reveals potential regulatory mechanisms explaining
308 the importance of the strongest growth loci or QTL. For instance, MKT1, i.e. the strongest growth
309 loci, is part of a regulation hotspot affecting genes that are important for yeast growth like ENP1
310  which is involved in RNA processing and HXT6 which is involved in glucose uptake (32-34).
311  Among the strongest growth loci, VPS70 is part of a hotspot of regulation that strongly affects the
312  expression of RSF2, a zinc-finger protein regulating glycerol-based growth and respiration (35).
313  Furthermore, the highest peak for expression regulation contains important growth loci in
314  chromosome IV around the mating type loci. This suggests the presence of cells with different
315  mating types in the dataset which we confirmed from the read mapping to Mat-a and Mat-a genes.
316  This is consistent with previous budding yeast eQTL mapping and is also expected because the
317  mating types in yeast express sets of genes that are “turned off” in other mating types (15,16,36).
318  This peak of expression regulation is also responsible for regulating TDH3 which is involved in
319  glycolysis and glucogenesis and can have important effect on fitness (37).

320 These hotspots suggest that expression differences in BY/RM would predominantly be due
321 to mutations in trans-regulatory elements. To test this, we partitioned the variation in gene
322 expression between cis- and trans- regulatory loci for each gene (see Methods). This analysis
323  revealed that all the genes are affected by at least one polymorphic trans-regulatory locus and that
324  these polymorphic trans-regulatory loci explain most of that gene’s expression (Figure 4B). It is
325  well known that mutations in promoters and nearby enhancers can influence gene expression
326 (38,39). Indeed, we 1dentified many genes that contained an allele in a cis-regulatory element that
327  strongly explain that gene’s expression variation (n=750 genes out of 6088, Figure 4B). As
328  expected, mutations in cis-regulatory elements were of stronger effect size than trans-eQTL
329 individually, but the cumulative aggregate effect of all trans-eQTL acting on that gene was
330 comparable to the few cis-eQTL they had (Figure 4C). This can be explained by the fact that there
331  are more opportunities for mutations to arise in trans-regulatory elements. Finally, we found that
332 trans-eQTL have two times higher odds of affecting cell fitness than cis-eQTL (x> p = 0.01).
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333  Taken together, the link between the genetic basis of transcription variation across RM/BY
334  segregants and fitness could only be revealed by integrating large-scale transcriptomic data to an
335  existing GPM, which scRNA-seq facilitates.

336
337 CONCLUSION

338 By leveraging the scalability of scRNA-seq, we obtained thousands of transcriptomes from a
339 reference pool of strains in a single experiment. This enabled the analysis of association between
340 genotype, transcriptome, and phenotype at an unprecedented scale. Questions surrounding
341  transcriptomic variation and phenotypic variation have been at the center of many previous
342  quantitative genetics studies (15,16,22,36,40). These ideas and discoveries all support the fact that
343  researchers can gain valuable insight about the evolution of traits by integrating the transcriptome
344  in GPM analyses, which can translate into fundamental knowledge or other important applications
345  where phenotypes evolve.

346  In this study, we took advantage of a previously characterized BY/RM cross where the genetic
347  basis of growth in various environments was examined in detail (24). By integrating transcriptomic
348  data in this genotype-phenotype map, we revealed how transcriptomic components are involved
349  in trait variation. Similar to a previous study, which obtained transcriptomes by individual strain
350 sequencing, we found that gene expression is highly heritable. Further, our study design also
351 allowed us to conclude that gene expression contributes to a significant portion of the phenotypic
352  variation in this strain collection.

353  This finding is corroborated by our findings that most eQTL detected in our study were previously
354  shown to be QTL. This is perhaps not surprising given that QTL in this cross were previously
355 inferred to be in regulatory genes, but this provides a more mechanistic view of the effect of an
356 allele on phenotype. Indeed, we find a bias for trans-regulation for generating transcription
357 innovation where the cumulative effect of trans-eQTL on gene expression are significant. That is
358 not to say that cis-regulatory alleles are dispensable as cis-regulatory alleles often have large effect
359 on gene expression. This genome-wide view of the genetic basis of transcriptional variation has
360 consequences for the evolution of phenotypes, as the target size afforded by trans-eQTL is far
361  larger than cis-eQTL. Thus, adaptation to small and fluctuation environmental changes may
362  proceed preferentially through allelic changes or recombination of many small-effect trans-eQTL,
363  but large expression changes are likely to require some cis-eQTL.

364 In this study, we leveraged the fact that our pool of strain was previously genotyped and
365  phenotyped. This was obtained by liquid handling robotics and pooled competitive growth assay
366  with barcode sequencing. While this was performed on a very large scale, it was essentially
367 obtained by brute-force and through approaches that are not necessarily applicable to other
368  systems. While it is clear from our results that genotyping single-cells can achieve the same
369  genotype quality as single-reaction genotyping, it is much harder to obtain phenotyping data from
370  scRNA-seq. Thus, our framework might not be readily translatable to other systems where similar
371  studies on the GPM are desirable. However, two observations from this cross can be used to
372 suggest an experimental approach. First, while epistasis is important, it contributes to a relatively
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373  small portion of the phenotypic variance. Further, transcriptomic variation contributes little to the
374  missing heritability. Thus, it may be possible to use predicted fitness instead of observed fitness
375  and recapitulate essentially similar results as this study. Predicted fitness could be obtained from
376  bulk-segregant analysis where the additive effect of loci can be inferred from whole-genome
377  sequencing (23,41). While it is not clear if these observations are generalizable, it may be possible
378  to verify this for a study system of interest with some modest time-course single-cell based
379  sequencing where low-coverage genotyping is possible.

380 However, despite the study’s limitation on generalizability, our scRNA-seq framework helps
381  bridge understanding of how genetic variation influences transcriptomic variation. Our framework
382 relies on identifying the genome of single-cells from the transcriptome, which is going to be
383  possible from low-coverage sequencing when genetic variation within the pool is high (such as
384  this cross, microbiome sequencing, or cancer cells with extensive copy number variation), and
385 from low cell diversity with sufficient transcriptomic variation such that aggregation of single-
386  cells with similar transcriptomes can afford pseudo-high coverage sequencing. Thus, integrating
387  genotype, transcriptome, and phenotype using scRNA-seq data can be particularly efficient for
388 developing a more fundamental understanding of other important traits or diseases.

389
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390 MATERIAL AND METHODS
391  Yeast strains and segregants

392 We analyzed cells from a single batch (batch 1) of 4,489 segregants obtained from a F1 cross
393  between the yeast laboratory strain BY4741 and the vineyard strain RM11-1a generated in a
394  previous study (24). These strains have been selected to generate this collection of segregants
395  because they exhibit differences in multiple phenotypes including the adaptation to temperature,
396 the ability to process different sources of carbon and the ability to resist antifungal compounds.
397  Therefore, the genetic variation observed across the segregants can be correlated to the differences
398 in growth rate observed in the 18 environments recapitulating these phenotypes in the Nguyen et
399  al (2022) study (24). The selection of the batch is random and the fact that we performed the
400 analyses on a single batch eliminates batch effects that could obscure variable associations.
401  Genotypes and fitness data used were the same ones obtained in the previous study.

402  Yeast growth and single-cell RNA-sequencing protocol

403  To prepare strains for SCRNA sequencing, we unfroze the batch of segregants and inoculated
404  approximately 5*%1076 cells in YPD (1% Yeast Extract, 2% Peptone, 2% Dextrose) to saturation.
405  The next day, about 10”7 cells were passaged to 5 mL of fresh YPD and grew for 4 hours to bring
406  cells to log-phase. We then pelleted 100 ul of cells and resuspended them in spheroplasting solution
407 (5 mg/mL zymolyase 20T, 10 mM DTT, 1 M Sorbitol, 100 mM Sodium Phosphate pH 7.4) at a
408  concentration of 1077 cells/mL. The cells were incubated at 37 degrees Celcius for approximately
409 10 minutes at which point spheroplasting was verified by mixing a small aliquot of cells with
410  detergent to observe lysis. The cells at this point were quantified using a hemocytometer and
411  prepared using the standard 10x Genomics Gel Beads-in-emulsion (GEM) protocol. We used the
412  Chromium Next GEM Single-cell 3° Reagent Kit to prepare the sequencing libraries and
413  sequenced on a NextSeq 500 high-output flow cell.

414  We note that the cells analyzed here were grown in bulk and assayed for their transcriptome in
415  log-phase. Our fitness data was obtained from competitive bulk fitness assays which includes
416  several whole growth cycle over multiple days and thus captures lag phase, exponential growth,
417  and saturation. Nevertheless, previous experiments had shown that fitness was mostly determined
418 by exponential growth which suggests that our analysis is adequate even if the cells were prepared
419  for sequencing at a single time point.

420  Single-cell RNA-sequencing data parsing

421  From the scRNA-seq reads, we obtained gene expression levels and allele counts using the pipeline
422  count from CellRanger version 3.1.0 (42). For each of the ancestral strain, i.e RM11-1a and
423  BYA4741, the pipeline mapped the scRNA-seq reads to the reference genome, filtered the barcodes
424 by comparing the UMI count per barcode distribution to a background model of empty gel-bead
425  in-emulsion, and counted the number of UMI per gene per barcode. The barcode filtering retained
426 18,233 barcodes. For each barcode, we then counted the number of RM and BY alleles at each
427  polymorphic site by parsing the RM and BY bam files using a python script
428  (https://github.com/arnaud00013/sc-eQTL/tree/main/II_scRNA-seq genotyping). This script only
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429  keeps reads that mapped at the same loci on both reference genomes to increase the level of
430  confidence of the mapping.

431  Correction and imputation of single-cell genotypes with a Hidden Markov Model

432  Because there are only two possible alleles at each polymorphic sites of the RM/BY segregants,
433 their genotype can be recapitulated by a quantitative variable measuring the proportion of reads
434  from one of the parental strains, which is RM in our dataset. The raw allele count data provides a
435  first estimate of this RM allele frequency at each polymorphic site. However, due to the low mean
436  depth of coverage of scRNA-seq data (0.2x), the absence of reads in some polymorphic sites and
437  the biases introduced during sequencing like index hopping/swapping, we expect that the raw data
438  can be imputed and corrected for errors and uncertainty in the observed alleles. Therefore, we
439  applied a Hidden Markov Model (HMM) on the observed allele count. Such model can infer
440  accurate genotype data at sequencing depths as low as 0.1x (24,25,43). Nguyen Ba and
441  collaborators (2022) designed an HMM to infer the segregants genotypes from bulk DNA
442  sequencing by accounting for sequencing error rate, recombination rate and index swapping rate
443  (24). Because scRNA-seq uses the reverse transcriptase, which has a higher error rate, and because
444 it is a pooled assay with higher chances of index swapping, we expected the HMM parameter to
445  differ for the single cell data. Therefore, we adapted the HMM to scRNA-seq data by measuring
446  its parameters in our dataset (Figure S1). The scripts are available on GitHub
447  (https://github.com/arnaud00013/sc-eQTL/tree/main/Il scRNA-seq genotyping).

448
449  Assigning single cells to the reference panel strains

450  To evaluate the level of relatedness between the reference panel strains and the imputed single cell
451  genotypes, we used the expected distance to identify the strain that best relate to each single cell:

452 Expected distance(g., gs) = Yi23°* g + gs — 29c9s (Eq.1)

453  where g, is the cell genotype and g is the strain genotype. Next, we assigned the single cell to its
454  best match in the studied batch of 4,489 trains only if this match is better than the best match in
455  randomly generated batches of the same size (Figure S2). This procedure is implemented and
456  available at https://github.com/arnaud00013/sc-eQTL/tree/main/IIl _Genotype analysis).

457  Partitioning the phenotypic variance into genetic and transcriptomic components

458  To analyze the yeast GPM at a broad scale and to evaluate the association between selection and
459  the transcriptome, we estimated the contribution of genetic and transcriptomic variations to
460  phenotypic variation from scRNA-seq data. More precisely, we performed a Genome-wide
461  Complex Trait Analysis (GCTA) by fitting a linear mixed model to the data using the restricted
462  maximume-likelihood (REML) method (44):

463 y=XB+Wuy; + g (Eq.2)

464 y=XB+Wu, +¢, (Eq.3)
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465 y=XB+Wyuy + Weu, + ¢ (Eq.4)

466  where y is the fitness vector for the n cells, X is the nxk matrix of k fixed effects, [ is the vector of
467  k coefficients of the fixed effects, W is the nxp genotype matrix, u, is the vector of p SNP effects,
468 W, is the nxm expression matrix, u, is the vector of m gene expression effects and ¢ is the error
469 term. Because the dataset does not include fixed effects, we set the fixed effect to a vector of ones
470  such that its coefficients represent the mean fitness while the genotype and expression data are the
471  random effects that explain the fitness variance along with the error terms. The REML solution
472  assumes that the data follow a Gaussian distribution, so the data are standardized before fitting the
473  model. We also divided the standardized expression counts by the cell sum of expression counts
474  to control for molecule count biases across cells. The cell fitness is based on the fitness of the
475  closest segregant in batch 1 as measured by the expected distance. Because this model is linear
476  and additive, it can be compared to the estimates of narrow-sense heritability obtained by Nguyen
477  Baand collaborators (2022) (24). The difference between the variance explained in equation 4 and
478  equations 2 or 3 allow to infer the variance explained only by the genotype or the expression
479  component of the model. The code for the variance partitioning is available on GitHub
480  (https://github.com/arnaud00013/sc-eQTL/tree/main/IV_variance partitioning).

481
482  Estimating the expression heritability from scRNA-seq

483  To obtain this estimate from scRNA-seq data, we needed to consider the fact that GCTA-REML
484  only takes a vector as a response variable while the gene expression matrix is multi-dimensional.
485  To solve this, we orthogonalized the gene expression matrix using principal component analysis
486  (PCA), and used each of the PC one at a time as a response variable of the model. Indeed, if the
487  expression PCs recapitulate the total expression variance and are orthogonal or independent to
488  each other, then the sum of the PCs variance explained by genotype should be the expression
489 heritability. To save time, we only used the 898 expression PCs that explain 99% of expression
490  variance:

491  Expression heritability = Y528 PC; eigen value = "PC; ~ genotype" model R*  (Eq.5)

492
493  QTL mapping

494  To identify the loci that influence cell fitness, we performed a linear regression on the consensus
495  genotypes of the strains from the single cell data and the strain fitness. We decided to use the
496  consensus genotypes of the strains as they relate better to the bulk segregant genomes. To build
497  the consensus genotypes, we defined cells from the same lineage as the ones that shared the same
498  closest segregant in batch 1. Next, we used the median to obtain cells' consensus genotypes as it is
499 less sensitive to outliers and because it yields the best relatedness to the batch 1 reference
500  genotypes (median R? = 87.0%; u=79.5%; c=18.2; Figure S3). We selected the QTL in the linear
501 models using cross-validation on the scRNA-seq data. This analysis consists in dividing the dataset
502 into 10 random partitions of similar sample sizes and running a cross-validated stepwise forward
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503 linear regression on each partition. For each partition, the model starts with no QTL and a linear
504 model "Fitness ~ Genotype" is fitted using the genotype data at each polymorphic site, where the
505 correlation coefficient represents the effect size of the SNP. Then, the forward search starts and at
506 each iteration, a new locus with the minimum linear model residual sum of squares (RSS) is added
507 tothe QTL model, which is updated with new effect sizes after the addition of a new SNP. Because
508 the order of addition of QTL matters in the forward search and because some QTL are linked or
509 collinear, the model can be refined by exploring different QTL around the local optima. These
510 steps are repeated until the model RSS cannot be improved anymore or until the number of QTL
511 reaches an arbitrary maximum far from the cross-validated number of QTL. After the forward
512  search is completed in each partition, the algorithm calculates the optimal 4 values that minimizes
513  the objective function F,:

514 F,(B) = RSS(B) + Lasso penalty(p)
515 IY = XBlI3 + AllBllo (Eq.6)

516  where f3 is the vector of SNP effect sizes in the QTL model, ||Y — Xf||3 is the RSS of the linear
517  QTL model, A defines the penalty for adding a new SNP to the model and |||, is the number of
518  SNPs in the QTL model. This objective function has the property to add sparsity in the QTL model
519  and thus avoid overestimating the number of QTL while being consistent (24). The optimal 4 has
520 a minimum of log(n) which corresponds to the Bayesian Information Criterion (BIC), which is
521  known to yield correct models asymptotically (45). This allows to consider the possibility that a
522  sparser model than the one found using the BIC could yield better predictive power on a test set
523  while avoiding overfitting. The optimal A values found in all the partitions are then averaged and
524  the resulting mean 4 is used to solve the objective function in the full dataset, which yields the
525  optimal QTL model. The cross-validation assumes that the partitions are independent, such that
526  the variance explained by the model and the number of relevant QTL are unbiased estimates.

527  Highlighting hotspots of gene regulation through eQTL mapping

528 To identify the loci regulating gene expression regulation, we adapted the QTL mapping
529  framework using expression as the predicted phenotype. Because this approach had to be repeated
530 for each of the 6,240 genes, we needed to modify it so that the execution time is convenient. To
531 do so, the parameter A was not estimated using cross validation but rather from the Bayesian
532  Inference Criterion (BIC), i.e. A = log(n) where n is the number of cells. We found that the BIC
533  was often selected by the cross-validation procedure when tested on a few genes and thus we do
534  not believe that this approach will significantly change our results.

535  To acknowledge the uncertainty around the exact position of eQTL due to linkage disequilibrium,
536  we define eQTL hotspots as 25 kb genomic windows that were repeatedly identified in the eQTL
537 mapping procedure. The code for the single cell eQTL mapping is available on GitHub
538  (https://github.com/arnaud00013/sc-eQTL/tree/main/V_sc_eQTL mapping).

539  Functional enrichment analysis by gene ontology annotation

540 To highlight gene functions enriched at different levels of expression or expression heritability,
541  we performed the panther database binomial test for statistical overrepresentation of gene ontology
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542  biological processes (31,46). A low level was defined as within the 25% bottom part of the
543  distribution (<Q1) while a high level was defined as within the top 25% part of the distribution
544  (>Q3). The p-values were corrected for multiple testing using the false discovery rate correction
545  (FDR).

546  Matching QTL to eQTL

547  To evaluate the contribution of gene expression regulation to fitness variation, we created a model
548  to match QTL and eQTL based on the similarity of loci and the similarity of predicted effect on
549  gene expression. More precisely, for each of the 6,088 genes for which we could detect eQTL, we
550 performed a new eQTL model by correlating the expression level of the gene to the genetic
551  variation at QTL positions. This allowed us to measure the predicted effect of the QTL on gene
552  expression. We then calculated the distance between the QTL and the real eQTL of the gene based
553  on recombination distance within each chromosome, which decreases exponentially with genetic
554  distance, and the difference in the predicted effect on the gene expression using the formulation
555 developed by Nguyen Ba et al (2022) (24). Next, we used the same Needleman-Wunsch algorithm
556  to find the most likely set of pairing between QTL and eQTL, where an unmatched QTL is also
557  possible but penalized. Finally, we determined the proportion of genes for which gene expression
558  regulation is associated with higher fitness. To do so, for each gene, we performed a permutation
559 test by comparing the average rank of the matched QTL of the gene to the average rank of 999
560 random subsets of unmatched QTL of the same size. The p-value is the proportion of random
561  subsets of unmatched QTL with a higher average QTL rank than the set of matched QTL.

562  Comparing cis- and trans-eQTL contribution to expression variation

563  We used the definition of local eQTL in Albert et al. (2018) to define cis-eQTL, i.e. any eQTL
564  between 1,000 bp upstream of the gene and 200 bp downstream of the gene. Thus, we defined
565  trans-eQTL as the eQTL that do not follow this criterion. For each gene, we then performed
566  variance partitioning using the GCTA:

567 y=XB+ Wg_cisug_cis + Ecis (Eq.7)
568 y = X.B + Wg_transug_trans + Etrans (Eq~8)
569 y = Xﬁ + Wg_cisug_cis + Wg_transug_trans + € (Eq.9)

570  where y is the vector of expression level of the gene across the n cells, X is the nxk matrix of k
571  fixed effects, f is the vector of k coefficients of the fixed effects, Wy ;s is the nxp cis-eQTL
572 genotype matrix, Ug ¢;s is the vector of p cis-eQTL effects on expression, Wy trqns is the nxm
573  trans-eQTL expression matrix, u, is the vector of m trans-eQTL effects on expression and &
574  represent the error terms. Because the dataset does not include fixed effects, we set the fixed effect
575 to a vector of ones such that its coefficients represent the mean expression level while the cis-
576  eQTL and trans-eQTL genotypes are the random effects that explain the expression variance along
577  with the error terms. We can infer the variance explained by the cis-eQTL by the difference in
578  variance explained between the models in equations 9 and 8. Likewise, the difference of variance
579  explained by the models in equations 9 and 7 can help us estimate the variance explained by the
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trans-eQTL. Finally, we estimate the effect sizes using the absolute value of the correlation
coefficients of each loci and compare the mean between the cis- and trans-eQTL from the same
gene (paired data) with a Wilcoxon signed rank test.
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584 DATA AVAILABILITY

585 The code used for this study is available and explained at https://github.com/arnaud00013/sc-
586 eQTL and the original single-cell reads from the pooled segregants scRNA-seq assay have been
587 uploaded in the NCBI BioProject database with the accession number PRINA1022775. The single-
588 cell barcodes expression data are also available at https://github.com/arnaud00013/sc-eQTL as an
589 archive file named Matrix_gene_expression_barcodes_1_to_9000.csv.tar.gz or
590  Matrix_gene_expression_barcodes_9001_to_18233.csv.tar.gz.
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