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ABSTRACT

Generating T-cell receptors (TCRs) with desired epitope-binding properties is a fundamental step

in the development of immunotherapies, yet heavily relies on laborious and expensive wet

experiments. Recent advancements in generative artificial intelligence have demonstrated

promising power in protein design and engineering. In this regard, we propose a large language

model, termed Epitope-Receptor-Transformer (ERTransformer), for the de novo generation of

TCRs with the desired epitope-binding property. ERTransformer is built on EpitopeBERT and

ReceptorBERT, which are trained using 1.9 million epitope sequences and 33.1 million TCR

sequences, respectively. To demonstrate the model capability, we generate 1000 TCRs for each

of the five epitopes with known natural TCRs. The artificial TCRs exhibit low sequence identity

(average Bit-score 27.64 with a standard deviation of 1.50) but high biological function

similarity (average BLOSUM62 score 32.32 with a standard deviation of 12.01) to natural TCRs.

Furthermore, the artificial TCRs are not very structurally identical to natural ones (average

RMSD 2.84 Å with a standard deviation of 1.21 Å) but exhibit a comparable binding affinity

towards the corresponding epitopes. Our work highlights the tremendous potential of applying

ERTransformer to generate novel TCRs with desired epitope-binding ability.
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1. Introduction
Large language models experienced extraordinary advances in content generation in recent years.

The ChatGPT, which was built on top of the Generative Pre-trained Transformer 3 (GPT-3)

family of language models, has shown promising power in dialogue generation. Protein

sequences are analogous to human languages. These amino acids (“letters”) arrange to form

secondary structural elements (“words”), which assemble to form domains (“sentences”) that

perform a biological function (“meaning”). There are some preliminary studies to generate

artificial proteins using large language models. ProtGPT2, a language model trained on the

protein space, is capable of generating de novo proteins with topologies not present in existing

structure databases 1. ProGen generated artificial proteins with similar catalytic efficiencies to

natural lysozymes 2. ProteinMPNN generates protein sequences from its structure 3 and

facilitates the de novo design of luciferases 4. However, these models are still limited to

generating functionally similar artificial proteins from the known proteins themselves. In living

organisms, proteins interact with each other to collectively perform biological functions 5.

Compared to generating functionally similar proteins, generating functional interacting partner

proteins for a given protein is a more challenging task for language models, but is also more

essential for biomedicine and bioengineering applications. To demonstrate the feasibility of such

generation, we took the interacting proteins in a basic biological process, the cell-mediated

immune response, as an example to perform a proof of concept study.

Upon exposure to an antigen, which may originate from a pathogen or a vaccination, the

cell-mediated immune response is activated by T cells 6. This process involves the recognition of

an epitope, a specific part of the antigen presented by a major histocompatibility complex

(MHC), by the T cell receptor (TCR). The binding between an epitope and T cell receptors plays

a critical role in the activity and specificity of T cells 7. For example, adoptive cell therapy

(ACT) relies on TCRs to redirect T cells, because its TCRs can recognize epitopes present by

MHC on the cell membrane of the specific cancer cells. ACT showed promising potential for

cancer therapy in recent trials 8–10. Recently, the first TCR therapy, termed KIMMTRAK, was

approved by FDA for the treatment of metastatic uveal melanoma 11. Understanding the

characteristics of epitopes, TCRs, and their interactions is critical to developing effective

immune therapies.
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Despite the efficacy of TCR-based immune therapy, developing such therapy for a patient is

currently laborious and too expensive to afford 12. One challenge is to identify tumor-reactive

TCRs. The commonly-used, standardized approach is to isolate a tumor-reactive T cell, which

relies on a proper source that ideally harbors a high avidity TCR and reaches a significant level

of frequency and purity 13. This approach is challenging, especially for poorly immunogenic

tumors 14. After retrieving tumor-reactive T cells, successfully identifying tumor-reactive TCR

sequences remains a great challenge, which requires profiling the diversity of millions of TCR

molecules in the retrieved samples. Thus, in silico approaches that could directly generate the

tumor-reactive TCRs given specific epitopes of tumor cells would greatly speed up the immune

therapy design.

With the advances in high-throughput sequencing technologies, the amount of known epitopes

and TCR sequences is increasing dramatically, leading to the emergence of various

computational models for identifying tumor-reactive TCRs. Classic models such as GLIPH 15,16,

and TCRMatch 17 utilize the sequence motifs of TCRs to predict the binding affinity between

TCRs and antigens. Recently, the birth of Bidirectional Encoder Representations from

Transformers (BERT) models revolutionized the natural language processing (NLP) field 18.

Because of the similarities between protein sequences and language sentences, several studies

applied BERT models to TCR-related tasks 19,20. TCR-BERT 19 utilized over 8,000 TCR

sequences on the self-supervised learning tasks, and showed promising performance on the

downstream tasks, such as TCR-antigen binding affinity prediction and sequence clustering. Han

et al. 20 presented a BERT-based model by fine-tuning the pre-trained Tasks Assessing Protein

Embeddings (TAPE) 21 model to predict SARS-CoV-2 T-cell epitope-specific TCR recognition.

However, to the best of our knowledge, all the existing approaches only focused on the modeling

of natural TCR sequences. While the adaptive immune system relies on the cooperative

interaction of both epitopes and TCRs, the absence of epitope modeling will significantly hinder

our understanding of the immune system using computational models. In addition, compared

with tens of billions of language data utilized in NLP areas, the data on TCR-related tasks,

especially the data about epitope-TCR binding pairs are still relatively small. Thus, none of the

existing approaches have attempted to tackle the challenge of sequence generation in this
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domain, which limits the potential of computational models for generating TCR sequences with

desired properties.

To address the aforementioned limitations, we propose a large language model

Epitope-Receptor-Transformer (ERTransformer) for the artificial de novo generation of TCR

with desired epitope-binding properties. To develop ERTransformer, we first built ER-BERT,

which is composed of two BERT modules: the EpitopeBERT and the ReceptorBERT. Both

modules are pre-trained on a large amount of epitope (EpitopeBERT) and receptor

(ReceptorBERT) sequences to learn the common rules in these sequences. Subsequently, we

created the ERTransformer model in which the encoder and decoder blocks are derived from the

pre-trained EpitopeBERT and ReceptorBERT, respectively. To capture the binding rules, we

combined the ER-BERT with a multilayer perceptron (MLP) head layer and fine-tuned it on the

Binding Specificity Prediction (BSP) task (ER-BERT-BSP), which can be used to determine the

quality of the generated TCR sequences. We introduced ERTransformer to generate the

complementarity-determining region 3 (CDR-3) part of TCR beta (TRB) chain sequences and

verified the quality of the generated TRB sequences using three tools, including external

discriminators for the determination of binding specificity, the Basic Local Alignment Search

Tool (BLAST) 22 for the sequence identity, and BLOcks SUbstition Matrix (BLOSUM62) matrix
23 for the biological function similarity. The results demonstrate that ERTransformer can generate

TRBs with good binding specificity to the corresponding epitopes. The artificially generated

TRBs are not similar in sequence to the natural TRBs, as demonstrated by an average Bit-score

of 27.64 with a standard deviation (std) of 1.50 with BLAST. Generally, a Bit-score of lower

than 40 indicates low sequence similarity 24. However, the artificial TRBs have a high biological

function similarity with natural TRBs, which is demonstrated by an average BLOSUM62 score

of 32.32 with std 12.01. A positive BLOSUM62 score indicates the presence of biological

function similarity, which increases with the increasing value of the score 23. We further utilized

AlphaFold2 25, TCRDock 26 and RosettaDock 27 to estimate the structure and binding affinity of

the artificially generated TCRs. Our analysis revealed that the artificial TRBs are not structurally

identical to natural ones (average RMSD 2.84 Å with a standard deviation of 1.21 Å), but exhibit

a comparable binding affinity towards corresponding epitopes. In addition, the results show that
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ERTransformer can capture the key amino acids that determine the docking positions of epitopes

and TCRs using the integrated gradients method 28.

2. Results

2.1 The framework of ERTransformer.
The training framework of the Epitope-Receptor-Transformer (ERTransformer) is illustrated in

Figure 1(A-E). ERTransformer is built on the ER-BERT, which consists of pre-trained

EpitopeBERT and ReceptorBERT, both of which use the standard Bidirectional Encoder

Representations from Transformers (BERT) architecture 18. The BERT language model 18 was

originally proposed for natural language processing tasks, such as translation 29 and sentiment

analysis 30. Both EpitopeBERT and ReceptorBERT have 12 encoder blocks, each of which

consists of two layers: the multi-head self-attention layer and the feed-forward layer. The

architecture of stack encoder blocks allows the BERT model to learn the high-dimensional and

complex interactions between tokens to capture the “grammar” rules in the input sequences. The

token is the basic unit to form the input and output sequences. We hypothesize that Epitope and

TCR sequences can be represented as a series of amino acid sequences composed of single-letter

symbols, such as epitope “ATDALMTGY”, which is very similar to language sentences. The

similarities of amino acid sequences and language sentences allow us to naturally introduce the

BERT model to capture the rules in the epitope and TCR sequences.

To train EpitopeBERT and ReceptorBERT, we collected a comprehensive dataset containing

1,929,016 epitope sequences, 33,088,640 TRB sequences, and 176,268 epitope-TRB pairs from

ten public and two in-house datasets (see Methods and Datasets for more details), considering

both CD8 and CD4 T cells (Figure 1(A)). Since the amount of TRA sequences (408,722) was far

smaller than that of TRB sequences (33,088,640), we focused on TRB in this study. Given the

input epitope or TRB sequence with a length , after tokenization using a tokenizer, the input is𝑙

separated into tokens. Different from English sentences with words separated by spaces𝑀

naturally, epitope and TCR sequences are amino acid sequences without natural separations. We

proposed a new tokenizer named the Forward Maximum Frequency Matching (FMFM)

tokenizer (Figure 1(B)), which could separate an amino acid sequence into tokens by maximizing

the frequencies of the motif. The motif herein is defined as the pattern of amino acid
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combinations that are recurrently observed in a protein. Motifs are widely present in many

proteins and peptides 31, and their frequencies are highly associated with distinct functions 32. In

addition, for comparison, we introduced a commonly-used tokenizer that treats each amino acid

as a token, which we named the unique amino acid (UAA) tokenizer. The generated tokens are

then fed into the embedding layer. We then encoded the sequence embeddings with the BERT

model to a “head” layer for pre-training or downstream tasks.

The TCR generation in this study has two major steps: pre-training and fine-tuning. First, we

constructed ER-BERT with self-supervised pre-training of EpitopeBERT and ReceptorBERT on

the Masked Amino Acid Token (MAAT) task to learn the basic patterns that existed in epitope

and TCR sequences using the above-mentioned datasets (Figure 1(C)). Second, we constructed

ERTransformer with parameters from ER-BERT and fine-tuned it to generate TCR sequences

(Figure 1(D)). We used two external datasets (see Methods) to validate ERTransformer's efficacy

in generating TCR sequences. Specifically, given an external dataset, we used 20% of binding

TCR sequences for each epitope to fine-tune the ERTransformer on the Seq2Seq task (from

epitope sequence to generate TCR sequence). ERTransformer consists of 12 epitope blocks

(encoder blocks) and 12 receptor blocks (decoder blocks) derived from pre-trained EpitopeBERT

and ReceptorBERT, respectively. As illustrated in Figure 1(E), in each receptor block, only the

parameters of the cross-attention layer are initialized randomly, the parameters of all other layers

are inherited from ReceptorBERT. Likewise, the parameters of all layers in the epitope block are

inherited from EpitopeBERT. During the training of the Seq2Seq task, the epitope block will be

fed the whole epitope sequence to produce the epitope embedding, which is the high-dimensional

latent representation of the epitope. The receptor block is responsible for generating the target

token (amino acids) of TCR step by step. At each step, the receptor block receives epitope

embedding through the cross-attention layer. Besides the epitope embedding, the other input to

the receptor block is the amino acids that were already generated for the TCR. Then, after the

fine-tuning of ERTransformer, we utilized Beam Search 33, a commonly-used language

generation method, to generate the TCR sequences for each epitope. The remaining 80% TCR

sequences were used to train the ER-BERT-BSP, which is the pre-trained ER-BERT with a

multilayer perceptron (MLP) head, on the Binding Specificity Prediction (BSP) task as an

external discriminator to determine whether the generated TCRs could bind to the given
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epitopes. The ER-BERT-BSP uses ER-BERT to learn the “binding rule” of epitopes and TCRs

(Figure 1(D)). Specifically, given one epitope-TCR pair, we utilized the pre-trained

EpitopeBERT and ReceptorBERT to obtain the learned representations and appended a “BSP”

head to determine whether the TCR binds to the given epitope. To generate binding TCR

sequences for a new epitope, as shown in Figure 1(F), we could use the fine-tuned

ERTransformer through the Beam Search method directly. For more details, please refer to the

Methods and Datasets.
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Figure 1. The framework of Epitope-Receptor-Transformer (ERTransformer). (A) We collected

1,929,016 epitope sequences, 33,088,640 TRB sequences, and 176,268 epitope-TRB pairs,

considering both CD8 and CD4 T cells. (B) The proposed FMFM tokenizer separates an amino

acid sequence by maximizing the frequencies of the motif. The example shows that the epitope

sequence ATDALMTGY is divided into 4 tokens: “ATD”, “AL”, “MTG”, and “Y”. (C) The

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562845doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562845
http://creativecommons.org/licenses/by-nc-nd/4.0/


pre-training of ER-BERT consists of two parts: EpitopeBERT and ReceptorBERT are pre-trained

on the Masked Amino Acid Token (MAAT) task in a self-supervised manner using collected

epitope sequences and TRB sequences, respectively. (D) The fine-tuning of the ERTransformer

in this study to generate epitope-binding TCRs. Given an external dataset such as MIRA or 10X

that contains epitope-TCR pairs, for each epitope, we used 20% of its binding TCRs to fine-tune

the ERTransformer, which consists of the pre-trained EpitopeBERT and ReceptorBERT. Then we

utilized the Beam Search method to generate TCR sequences. The remaining 80% of the binding

TCRs were used to fine-tune the ER-BERT-BSP, which consists of the pre-trained EpitopeBERT

and ReceptorBERT and a Binding Specificity Prediction (BSP) head. The ER-BERT-BSP acts as

an external discriminator to determine whether the generated TCRs can bind to the given

epitope. (E) The architecture of ERTransformer for the sequence generation (Seq2seq task) from

the epitope sequence to the receptor sequence. ERTransformer consists of 12 epitope blocks

(encoder blocks) and 12 receptor blocks (decoder blocks) derived from pre-trained

EpitopeBERT and ReceptorBERT, respectively. In each epitope block, the parameters of all

layers are inherited from EpitopeBERT. In each receptor block, the parameters of the

cross-attention layer are initialized randomly, and the parameters of all other layers are inherited

from ReceptorBERT. The key ( ) matrix, value ( ) matrix, and query ( ) matrix are the input𝑄
𝐸

𝐾
𝐸

𝑉
𝑅

of the cross-attention layer. The and are the embeddings of the epitope, while are the𝑄
𝐸

𝐾
𝐸

𝑉
𝑅

embeddings of the amino acid sequences that were already generated for the TCR. (F) The

application of the fine-tuned ERTransformer to generate TCR for a new epitope.

2.2 ER-BERT achieved superior performance in clustering epitope-specific TCRs.
ER-BERT aims to learn the high-dimensional latent representations of epitopes and TCRs to

further capture their complex relationships. To validate whether the learned representations are

biologically meaningful, we used the Principal Component Analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE)34 to reduce the latent representations' dimensions and

obtain the visualizations of these representations. We then further investigated whether the

representations of epitope-specific TCRs could cluster together and computed the

Davies-Bouldin index (DBI) as a quantitative metric to measure the effects of clustering (the

smaller the DBI is, the better the clustering performance). We also used TCRBert to compare the

clustering effects with ER-BERT.
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We reported the DBI scores of all the epitopes and their corresponding TRBs with random seed

settings in Figure 2(D). We found that the ER-BERT with the FMFM tokenizer trained after the

Seq2Seq task (fine-tuned ERTransformer) achieved the best DBI score (mean 10.27, std 5.66),

while this model trained after the MAAT task (pre-trained ER-BERT) also achieved the worst

DBI score (mean = 26.88, std = 9.65). Among the three tasks, i.e. MAAT task (pre-trained

ER-BERT), BSP task (fine-tuned ER-BERT-BSP), and Seq2seq task (fine-tuned

ERTransformer), we found that ER-BERT with two tokenizers both achieved the best clustering

effects after being trained on the Seq2Seq task (fine-tuned ERTransformer). It’s noted that for the

Seq2Seq task (fine-tuned ERTransformer), the ER-BERT model with FMFM tokenizer has better

DBI performance than the one with UAA tokenizer. In general, TCRBert's performance (mean =

20.86, std = 7.56) was worse than that of ER-BERT with both two tokenizers. In conclusion,

ER-BERT can provide superior epitope-specific clustering compared with the state-of-the-art

TCRBert. ER-BERT performs the best using the FMFM tokenizer trained after the Seq2Seq task

(fine-tuned ERTransformer).

We selected seven epitopes that belong to Hepatitis C virus (“ATDALMTGY”), SARS-CoV-2

(“KPFERDISTEIY”, “TLDSKTQSL”), Human herpesvirus 5 (“YSEHPTFTSQY”,

“RPHERNGFTVL”), TL8 of transcription activator (“TTPESANL”), and Murid herpesvirus 1

(“SSPPMFRV”) and their corresponding TRBs as an example. These epitopes cover those

presented by MHC Class-I (“ATDALMTGY”: HLA-A*01:01, “YSEHPTFTSQY”:

HLA-A*01:01, “TTPESANL”: Mamu-A1*001:01, “SSPPMFRV”: H2-Kb) and Class-II

(“KPFERDISTEIY”: HLA-B∗40:01, “TLDSKTQSL”: HLA-B*08:01, “RPHERNGFTVL”:

HLA-B*07:02). The 2-dimensional visualization of the representations of paired epitopes and

TCRs using the t-SNE method is shown in Figure 2(A-C). We found that the clustering effects of

ER-BERT with two tokenizers and TCRBert are consistent with the general performance on all

the epitopes. And the clustering performance of TCRBert is still in general worse than ER-BERT

with two tokenizers trained after the three tasks.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562845doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. The clustering of epitope-specific TCRs using the representations generated by

ER-BERT with two tokenizers and TCRBert. We selected seven epitopes from different viruses

as an example to present the clustering ability of ER-BERT using the PCA and t-SNE methods.

The values in each sub-figure denote the DBI scores. (A), (B) and (C) show the clustering of

epitope-specific TCRs using ER-BERT with the UAA tokenizer (A), ER-BERT with the FMFM

tokenizer (B), and TCRBert (C), respectively. (D) shows the DBI scores considering all the

epitopes and their corresponding TRBs with random seed settings of ER-BERT with two

tokenizers after training on three tasks, and TCRBert.

2.3 ERTransformer can generate artificial TCRs with desired epitope-binding

specificity.
Given one epitope, fine-tuned ERTransformer with parameters from ER-BERT could generate

thousands of TCRs. The important issue is how to determine the quality of generated sequences.

Here, we trained two external discriminators, including ER-BERT-BSP and DeepTCR 35, to
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evaluate the ability of the generated TCRs to bind to input epitopes. Given one dataset, such as

MIRA and 10X, we used 80% data to train the external discriminators and the remaining 20% of

the data to fine-tune the ERTransformer for the TCR generation task. ER-BERT-BSP is an

extension of the ER-BERT model, incorporating a multilayer perceptron (MLP) head that has

been specifically trained on the BSP task. In this study, the model DeepTCR 35, originally

developed by Sidhom et al., was retrained utilizing the identical dataset as ER-BERT-BSP due to

the unavailability of a pre-trained version (see Methods for more details). The performance of

these two discriminators on MIRA and 10X datasets are reported in Figure 3(A, B).

ER-BERT-BSP achieved a ROC-AUC of 0.90 and 0.86 on MIRA and 10X, respectively, which

significantly outperforms DeepTCR (ROC-AUC of 0.77 and 0.76, respectively), indicating the

superior performance of ER-BERT-BSP on the binding specificity prediction task.

To identify the optimal tokenizer method for ERTransformer, we utilized the fine-tuned

ERTransformer with two tokenizers to generate 1,000 TRB sequences for each epitope in the

MIRA and 10X datasets. Then we used the two external discriminators to evaluate the quality of

the generated TRBs. Note that we have removed the generated TRB sequences that also exist in

the dataset for the fine-tuning in 10X or MIRA (Table S1 in Supplementary Information). Figure

3(B) presents the proportions of the number of binding TRBs determined by the two external

discriminators separately. When using ER-BERT-BSP as the external discriminator (Figure 3(B)

left), more than 90% of the TRBs generated by ERTransformer with two tokenizers were

determined as binding to the input epitopes. Among the two tokenizers, the FMFM tokenizer

performed significantly better ( ) than the UAA tokenizer in the TRB generation task𝑝 ≤ 0. 0001

(Figure 3(B) left). When using DeepTCR as the external discriminator, the performance of

ERTransformer with the UAA tokenizer and FMFM tokenizer showed no significant difference

(Figure 3(B) right). Thus, FMFM was used as the default tokenizer for ERTransformer in the

following analysis (ERTransformer with FMFM tokenizer is abbreviated as ERT in Figure 3).

Because there is no existing computational approach to the TCR sequence generation task, we

need to create a reasonable baseline to validate the performance of ER-BERT. Therefore, we

created a baseline termed Semi-Random-Transformer (abbreviated as SRT in Figure 3) using the

same architecture as ERTransformer but a randomly initialized BERT instead of EpitopeBERT
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and a previously published TCRBert 19 instead of the ReceptorBERT. We applied the method of

generating TCR sequences using ERTransformer and the Semi-Random-Transformer fine-tuned

on the same dataset (Method 4.3 and 4.5.3). For each epitope in the MIRA and 10X datasets, we

applied ERTransformer and Semi-Random-Transformer fine-tuned on each dataset to generate

1,000 TRB sequences for the given epitope and then used the two external discriminators to

evaluate the quality of the generated TRBs. Figure 3(C) presents the proportions of the number

of binding TRBs determined by the two external discriminators separately. When using

ER-BERT-BSP as the external discriminator (Figure 3(C) left), less than 75% of the TRBs

generated by the Semi-Random-Transformer were determined as binding to the given epitopes,

which was significantly lower than that of ERTransformer ( ). When using𝑝 ≤ 0. 0001

DeepTCR as the external discriminator (Figure 3(C) right), the performance of the

Semi-Random-Transformer dropped dramatically, with only 36% of the generated TRBs

determined as binding to the given epitopes. Meanwhile, the performance of ERTransformer also

dropped, but was still significantly better than the performance of the

Semi-Random-Transformer ( ). Combining these results, we conclude that the𝑝 ≤ 0. 0001

proposed ERTransformer framework shows great potential in the TCR sequence generation task.

Even though TCRBert is not specifically designed for the sequence generation task, the

Semi-Random-Transformer still shows great generalization power in the TCR sequence

generation task after fine-tuning. In addition, with the pre-training and fine-tuning procedure, as

well as the specially-designed FMFM tokenizer, ER-BERT can generate TCRs with great

binding specificity (more TCRs that could bind to the given epitope).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562845doi: bioRxiv preprint 

https://paperpile.com/c/ZTP76S/YSGd
https://doi.org/10.1101/2023.10.18.562845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. The performance of ER-BERT on the TCR generation task. (A) The ROC-AUC curves

of external discriminators on the MIRA (left) and 10X (right) datasets. For one dataset, we used

80% of the data to train the external discriminators and the remaining 20% of the data to

fine-tune the ERTransformer (ERT) and Semi-Random-Transformer (SRT) for the TCR

generation task. (B-C) The proportion of the generated TRBs that are determined as binding to

the given epitopes by the external discriminator ER-BERT-BSP (left) and DeepTCR (right). In

(B), TRBs are generated by ERTransformer using the UAA and FMFM tokenizer, respectively.

FMFM tokenizer showed superior performance compared to UAA tokenizer in the TRB

generation task. Thus, FMFM was used as the default tokenizer for ERTransformer in the

following analysis. In (C), TRBs are generated by ERTransformer (ERT) and

Semi-Random-Transformer (SRT), respectively. (D) The Bit-scores of BLAST by comparing the

generated and natural TRBs. (E) The BLOSUM62 scores by comparing the generated and
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natural TRBs. Note that in both (D) and (E), the left plot presents the metrics of all the epitopes

that existed in the MIRA and 10X datasets, and the right plot shows the metrics for selected

epitopes. The p-value annotation legend in (B-E) are: : ; : ; :𝑛𝑠 𝑝 ≤ 1 * 0. 01 < 𝑝 ≤ 0. 05 **

; : ; : . ERT is the abbreviation0. 001 < 𝑝 ≤ 0. 01 *** 0. 0001 < 𝑝 ≤ 0. 001 **** 𝑝 ≤ 0. 0001

of ERTransformer. SRT is the abbreviation of Semi-Random-Transformer. The horizontal lines

and circles in each box in (B-E) represent the median and mean values. (F) The sequence logo

plots of the selected five epitopes, where the upper and lower sub-plots display the sequence logo

plot of the generated and corresponding natural TRBs with the same length, respectively.

2.4 Artificial TCRs mimic natural functionality despite sequence differences.
To check whether the TCRs generated by ERTransformer are similar to the natural TCRs by their

sequences, we applied two methods - The Basic Local Alignment Search Tool (BLAST) 22 and

BLOSUM62 matrix23 to compare all the generated and natural TCRs. In addition, we also

selected five epitopes from MIRA and 10X datasets. These epitopes are presented by HLA

Class-I and belong to the Influenza A virus (“GILGFVFTL”: HLA-A*0201), SARS-CoV-2 virus

(“TTDPSFLGRY”: HLA-A*01:01), Human herpesvirus 4 (“GLCTLVAML”: HLA-A*02:01,

“IVTDFSVIK”: HLA-A*11:01), and Melan-A (“ELAGIGILTV”: HLA-A*02:01). These five

epitopes have the most binding TCRs in the MIRA and 10X datasets, and also contain the

full-length information of the TCRs which can be used for the structure estimation for the

following analysis.

Given one generated TCR sequence, the BLAST tool is used to compare its amino acid sequence

and calculate the statistical significance of the matched reference sequence. Bit-score is used to

determine the sequence similarity in the BLAST tool, and the higher the bit-score, the better the

sequence similarity. As shown in Figure 3(D), ERTransformer achieved an average Bit-score of

27.64 with std 1.50. Compared to the performance of the Semi-Random-Transformer, the

Bit-score of the Semi-Random-Transformer (mean 22.04 with std 1.19) was significantly smaller

than ERTransformer ( ). The Bit-scores of the selected five epitopes also followed𝑝 ≤ 0. 0001

the same patterns, with ERTransformer achieving the better bit-scores than

Semi-Random-Transformer. It’s known that a Bit-score of lower than 40 indicates a low
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sequence similarity 24. Thus, the artificial TCRs generated by both methods are not similar to the

natural ones in their sequences.

The BLOSUM62 matrix23 provides a quantitative approach that determines whether an amino

acid substitution is biologically conservative or nonconservative. The biologically conservative

substitution, which indicates the presence of biological function similarity, has positive scores in

the BLOSUM62 matrix. The biological function similarity between two sequences increases

with the value of the positive BLOSUM62 score. In contrast, the nonconservative substitution,

which indicates no biological function similarity, has negative scores in the BLOSUM62 matrix.

Here, for each epitope, we computed the average BLOSUM62 scores of all the amino acid

positions for all its generated and natural TRBs. As shown in Figure 3(E), ERTransformer

achieved an average BLOSUM62 score of 32.32 with std 12.01, which was significantly larger (

) than Semi-Random-Transformer (mean = 28.25 and std = 8.44). It reveals that,𝑝 < 0. 0001

although artificial TCRs generated by both methods have biological function similarity to the

natural ones, the TCRs generated by ERTransformer are significantly better than the ones by the

baseline method.

We took a careful look at the sequence conservation of amino acids of the generated and natural

TCRs, as shown in the sequence logo plots (Figure 3(F)) of the selected five epitopes. The TRB

sequences were generated by ERTransformer using the FMFM tokenizer since this tokenizer

achieves the best performance using the three tools mentioned above. Specifically, for one

epitope, given all its corresponding natural TCRs, we first acquired the most common length of

these TRB sequences. Then, we only kept the generated and natural TRBs with that length to

further get the sequence logo plot. From the sequence logo plots in Figure 3(F), we found that

the artificially generated TRBs have already captured the patterns of the natural TRBs. For

example, most TRBs start with motif “CASS” and end with motif “FF” or “YF”, which is

consistent with previous studies 36. Meanwhile, we found that the natural TRBs are more diverse

compared to the artificial ones, especially considering the middle positions. This is probably due

to that the artificial TRB sequences are generated following the epitope-TCR binding rules

learned by the model, instead, the natural ones are generated by the process of combining

random generation and natural selection 37.
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In conclusion, ERTransformer already has the ability to capture the general patterns existing in

the natural TCR sequences and could generate TCR sequences that are similar in biological

function but not similar in sequence to the natural ones.

2.5 The artificial TCRs exhibit a binding affinity towards epitopes that closely

resembles that of natural ones.
In this section, we further investigated the quality of the generated TCRs in terms of structural

and functional similarity to natural ones. We selected three epitopes “ELAGIGILTV” (PDB ID:

3hg1 38, HLA-A*02:01), “GILGFVFTL” (PDB ID: 1oga 39, HLA-A*0201), “GLCTLVAML”

(PDB ID: 3o4l 40, HLA-A*02:01) and their corresponding natural TRBs CDR3

“CAWSETGLGTGELFF” (PDB ID: 3hg1), “CASSSRSSYEOYF” (PDB ID: 1oga),

“CSARDGTGNGYTF” (PDB ID: 3o4l) for which experimentally validated structures of the

pMHC-TCR binding complex are available at Protein Data Bank (PDB). Given an artificial TRB

(CDR3 part) generated by ERTransformer with the FMFM tokenizer for each of the above

epitope, we retrieved the sequence of the corresponding full length natural TRB from the PDB

structure and replaced the original CDR3 part with the artificial one to construct a full length

artificial TRB. Then, we introduced TCRdock 26, which is a Alphafold-Multimer model that

fine-tuned for TCR structure prediciton, to estimate the structure of the artificial TCR and used

PyMOL to visualize the structure. The structure similarity between natural TCR and the artificial

one is measured by the root-mean-square deviation (RMSD) of atomic positions. Figure 4(A)

depicts the RMSD of artificial TRBs, specifically focusing on the CDR3 region, in comparison

to the structure of natural ones. These artificial TRBs were selected from the top 100 generated

TRBs based on their binding probabilities, as predicted by the ER-BERT-BSP model.

Additionally, any generated TRBs with identical sequences to natural ones were removed from

the selection. As presented in Figure 4(A), the generated artificial TRBs exhibit an average

RMSD of 2.84 Å with a standard deviation of 1.21 Å for all three epitopes (3hg1: 2.23 1.02 Å;±

1oga: 3.26 1.31 Å; 3o4l: 3.22 0.87 Å). In addition, the top three artificial TRBs predicted by± ±

the ER-BERT-BSP did not exhibit the smallest RMSD values, suggesting that these artificial

TRBs are not the most structurally identical to natural ones.
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Therefore, we further investigated their binding affinity for the top 3 artificial TRB sequences

(Figure 4A). This analysis was based on the interface score of the binding complex between

TRBs and the pMHC, using RosettaDock-4.0 27. As presented in the histogram in Figure 4(B, C,

D), the top 3 artificial TRBs exhibit similar or even lower interface scores compared with the

natural TRBs (CDR3 part), visualized CDR3 and epitope structure also showed close positions.

These results indicate that the generated artificial TRBs present a binding affinity towards their

corresponding epitopes that closely resembles that of natural TRBs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562845doi: bioRxiv preprint 

https://paperpile.com/c/ZTP76S/EnoX
https://doi.org/10.1101/2023.10.18.562845
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.18.562845doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. The comparison of the generated TCRs with the natural ones in view of their structural

similarity and binding affinity. We selected three epitopes “ELAGIGILTV” (PDB ID: 3hg1),

“GILGFVFTL” (PDB ID: 1oga), “GLCTLVAML” (PDB ID: 3o4l) and their corresponding

natural TRBs “CAWSETGLGTGELFF” (3hg1), “CASSSRSSYEOYF” (1oga),

“CSARDGTGNGYTF” (3o4l) for which real structures are available at PDB (protein data bank).

A. The relationship between the estimated root-mean-square deviation (RMSD) with the

predicted probabilities generated by ERTransformer. Each dot denotes one artificial TRB, with

those having the top 3 predicted probabilities highlighted in red. B-D. The estimated interface

scores of TRBs towards corresponding epitopes (B-3hg1, C-1oga, D-3o4l). The bar plots in B-D

present the distribution of the interface scores, with natural and artificial TRBs highlighted in

orange and blue, respectively. The estimated optimal docking positions are presented in the

lower figures in B-D, with the MHC and TCR regions represented in green and yellow,

respectively. The nearest amino acid positions (such as GLY-96 and GLY-97 in B) are

highlighted in B-D.

2.6 ERTransformer identifies key amino acid positions crucial for TCR-pMHC

docking determination.
The attention layers are a key component of EpitopeBERT and ReceptorBERT, allowing these

two BERT models to focus on certain amino acid tokens in a sequence and weigh them more

heavily in their analysis, rather than considering all tokens equally. To validate whether the

ERTransformer model constructed by ER-BERT captures the binding rules between epitopes and

TCRs, we investigated a number of key amino acid positions using the integrated gradients

method 28 and compared these positions with the actual contact residues. We collected

crystallography data from The Protein Data Bank (PDB) for epitopes “GILGFVFTL” (PDB ID:

1oga) and “GLCTLVAML” (PDB ID: 3o4l), two epitopes that also existed in the 10X dataset. To

visualize the attribution scores of each amino acid in the epitope to the generated TRB, we used

ER-BERT with the UAA tokenizer (each token represents an amino acid) after fine-tuning the

Seq2Seq task (ERTransformer). For a given amino acid in the epitope, its attribution scores

indicate the importance of its contribution in determining the amino acids in the receptor. A

positive value indicates a positive contribution, while a negative value indicates a negative

contribution.
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Figure 5(A) and (B) present the heatmap of attribution scores for the epitopes “GILGFVFTL”

and “GLCTLVAML” respectively, with red indicating a higher positive weight and blue

indicating a higher negative weight. We also created a sequence motif plot according to the

average attribution scores of all the amino acids in the generated TRBs for each amino acid in

the two epitopes, as shown in Figure 5(C) and (D). Our analysis revealed that the ERTransformer

tended to focus on the central regions of these two epitopes. Particularly, for “GILGFVFTL”,

ERTransformer focused on the third and seventh amino acids, that is Leucine (L) and

Phenylalanine (F). For “GLCTLVAML”, ERTransformer assigned higher weights to the second,

third, fifth, and sixth amino acids, which are Leucine (L), Cysteine (C), Leucine (L), and Valine

(V). However, when examining the TRB sequences, we did not observe clear trends. This might

be because, during the training in the Seq2Seq task, the ERTransformer model was fed with

epitopes to generate TRB sequences, but did not directly use TRB sequences as input. The

crystallography structures of two epitopes with the corresponding CDR3 part of TCR (both TRA

and TRB), and HLA or MHC and their relative positions are shown in Figure 5(E) and (F). We

found that the amino acid positions with higher weights are highly likely to be congruent with

the amino acids determining the folding positions, which subsequently or directly determined

known important docking positions 40–42. For instance, in the epitope “GILGFFTL”, the first

Leucine (L) determines the folding positions of this epitope, and the second phenylalanine (F) is

the closest position to the TRB (green) binding site 41. Similarly, in the epitope “GLCTLVAML”

the first Leucine (L) and Cysteine (C) determine the first folding positions, and the second

Leucine (L) and Valine (V) are also the closest positions to the TRB (green) binding site 40. To

summarize, through the attention layers, ERTransformer could identify some key amino acid at

specific positions, which may determine the binding between epitopes and TCRs.
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Figure 5. ERTransformer can capture the amino acid positions that determine the docking

positions. We used two epitopes “GILGFVFTL” (PDB ID: 1oga) and “GLCTLVAML” (PDB ID:

3o4l) as examples here. These two epitopes have the crystallography data from The Protein Data

Bank and also existed in our external dataset - 10X. (A) “GILGFVFTL” and (B)

“GLCTLVAML” show the heatmap of attribution weights for each amino acid computed by

integrated gradients on the ERTransformer with the UAA tokenizer (each token represents an

amino acid), with red indicating a higher positive weight and blue indicating a higher negative

weight. (C) and (D) are the sequence motif plots of “GILGFVFTL” and “GLCTLVAML”,

respectively. The weights in (C) and (D) come from the average attribution scores of all the
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amino acids in the generated TRBs for each amino acid in the two epitopes. (E) and (F) show the

visualization of the crystallography structures of two epitopes (purple) with the corresponding

CDR3 parts of TRA (red) and TRB (green), and HLA or MHC (dark green) and their relative

positions. Note that we only keep the structures that are closest to the epitope for better

visualization.

3. Discussion
In this paper, we present ERTransformer for generating TCR (TRB) sequences with the desired

epitope-binding properties. ERTransformer was constructed from ER-BERT, which consists of

EpitopeBERT and ReceptorBERT. We first demonstrated ER-BERT could learn biological

meaningful representations of epitopes and receptors by introducing them to cluster

epitope-specific TCRs. Then, we validated that ERTransformer could generate artificial TCRs

that have low sequence and structure identity, while concurrently exhibiting a marked similarity

in biological functionality and binding affinity to their natural TCR counterparts. The artificial

TCRs demonstrated great binding specificity to the corresponding epitopes. Additionally, we

found ERTransformer could capture the key amino acids that determine the docking positions of

epitopes and TCRs. ERTransformer is a data-driven tool for studying the immune system and for

developing advanced immunotherapies. By generating high-quality TCR sequences and

identifying key amino acids, ERTransformer can help researchers better understand the

mechanisms of immune recognition and response.

The CDR3 region, despite being a fraction of the full-length sequence, contributes substantially

to the diversity of the TCR repertoire and is vital for antigen specificity. While the complete

TCR structure, including CDR1 and CDR2 region, as well as the TCR alpha chain, also plays a

crucial role in TCR binding, ER-BERT's capability to generate TCR sequences, particularly

those of the CDR3 region, holds considerable value. It serves as a robust resource for initial

computational investigations and contributes to efforts in predictive modeling. We demonstrated

that the learned representations of ER-BERT are biologically meaningful, which can provide

superior epitope-specific clustering of TCRs. The ER-BERT-BSP is specially designed for

binding specificity prediction while using the learned representations from the epitope and TCR

simultaneously. The superior performance of ER-BERT-BSP compared to DeepTCR, which only
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uses representations of TCRs, indicates that the addition of the epitope sequence to the model

improves the learning of binding rules between the epitope and TCR. Epitopes are an essential

part of the interaction and considering their sequences allows ER-BERT-BSP to capture a fuller

picture of the binding rules. Furthermore, ER-BERT-BSP employs the sophisticated BERT

architecture, designed specifically to master the contextual representation of sequences. This

contrasts with DeepTCR, which utilizes convolutional neural networks and variational

auto-encoder structures, neither of which are explicitly designed to capture the intricate

dependencies found in sequence data. This architectural divergence likely contributes to the

performance differential observed between ER-BERT-BSP and DeepTCR.

Recent advances in single-cell multi-omics have provided an opportunity to train deep-learning

models using large amounts of sequence data to address the challenging task of TCR generation.

Our results show that ERTransformer significantly outperforms Semi-Random-Transformer,

which is composed of the latest model on the TCR-related task (TCRBert). The superior

performance of ERTransformer comes from two modeling mechanisms: First, ERTransformer

utilizes the most comprehensive epitope and TRB sequences so far, including tens of thousands

of epitope and TRB sequences from 12 datasets; Second, ERTransformer utilizes the framework

of pre-training and fine-tuning and specifically designed for sequence generation task. The

epitope blocks and receptor blocks used in ERTransformer for the TCR sequence generation task

are inherited from the pre-trained ER-BERT model on the MAAT task, which contains rich

knowledge of the rules existing in epitope and TCR sequences. Compared with the baseline that

combines a randomly initialized BERT with TCRBert (Semi-Random-Transformer), this rich

knowledge helps ERTransformer better capture the binding rules from epitopes to receptors to

better generate epitope-binding TCR sequences. In addition, considering the performance on the

binding specificity prediction task, ER-BERT-BSP still significantly outperforms the latest deep

learning models such as DeepTCR. As a model uses the sequence data only, we do not have to

feed any other biological information, such as VDJ gene usage in DeepTCR, to ER-BERT-BSP,

but with the advantage of pre-training and a large amount of sequence data, ER-BERT-BSP still

outperforms other state-of-the-art models.
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Despite the promising results of our study, ERTransformer has some limitations that need to be

addressed in future work. ERTransformer currently uses epitope sequences to generate receptor

sequences, but can not control the binding affinity between epitopes and the generated receptors.

In future work, we plan to investigate improved strategies to generate TCRs with desired binding

affinities. Additionally, due to the limited data of TRA sequences, ERTransformer currently is

only applicable to TRB sequences. In the future, we plan to extend ERTransformer to other types

of immune system sequences, such as TCR alpha or B cell receptor sequences. Moreover, the

validation of ERTransformer is only in silico experiments. We plan to experimentally assess the

quality of the generated TCR sequences by conducting in vitro experiments in future work.

In this study, taking the generation of epitope-binding TCR as an example, we demonstrate the

feasibility of generating interacting partner proteins according to the sequence of a given protein.

It’s now possible to construct diverse generative models for the generation of artificial proteins

with desired binding properties to a target protein. These artificial proteins would be powerful

biomedical and bioengineer tools to regulate biological processes, treat diseases and even form

new biological functions.

4. Methods and Datasets
ERTransformer consists of the epitope (encoder) and receptor (decoder) blocks derived from

ER-BERT, i.e. EpitopeBERT and ReceptorBERT, which both utilize a commonly-used BERT

architecture. BERT18 was initially proposed to deal with the natural language processing tasks,

such as translation 29, and sentiment analysis30. The BERT model consists of 12 encoder blocks,

and each encoder block consists of two layers: multi-head self-attention layers and feed-forward

layers. Each multi-head self-attention layer has 12 heads. Given an input sequence, instead of

using the embeddings of each token (word) directly, the self-attention module would create three

vectors called query (Q), key (K), and value (V) and then compute attention scores to get a better

encoding for each token. The output of the self-attention module is then fed into the feed-forward

layer to the next encoder block. The architecture of stack encoder blocks could allow the model

to learn high-dimensional and complex interactions between tokens that better capture the

“grammar” rules that existed in the input sequences. For more details on BERT models, please

refer to the original paper 18.
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4.1 Tokenizer.
Unlike English sentences, which have natural spaces between words, epitope and TCR sequences

are amino acid sequences without any separation. And the basic processing unit in the BERT

model is a token, or word. To address this issue, we developed two different methods inspired by

Forward Maximum Matching 43, which is used in Chinese language processing. These two

tokenizers are described in detail below:

4.1.1 Unique Amino Acid (UAA) Tokenizer.

As a common practice, the UAA tokenizer treats each amino acid as a token.

4.1.2 Forward Maximum Frequency Matching (FMFM) Tokenizer.

Motifs, a short conserved amino acid sequence pattern, are widely present in many proteins 31,

and their frequencies are highly associated with distinct functions 32. FMFM tokenizer is based

on an assumption that the motifs with high frequencies will be more important for their

corresponding protein's biological functions 44,45. As shown in Figure 1(B), the details of the

FMFM tokenizer are as follows:

1) Get the motifs with specific lengths. For all the sequences belonging to the same𝑆

category (epitope, TRA, and TRB), we split each sequence into motifs with a specific

length (such as 3). That is, the next motif will start with the position following the𝐿

previous one. For example, given the epitope sequence “ATDALMTGY”, the split motifs

with length 3 are “ATD”, “ALM”, “TGY”. In this study, we consider motifs with length 2

and length 3.

2) Build the motif vocabulary. After obtaining all motifs of a certain length from the

sequences belonging to the same category, we count their frequencies and use z-score

normalization to make fair comparisons between motifs of different lengths.

3) Tokenization. Given one sequence, the FMFM tokenizer will consider both the length and

frequency of specific motifs. For example, given the epitope sequence ”ATDALMTGY”,

the FMFM tokenizer will first consider the frequencies of motif “AT” and “ATD”, and

suppose their normalized frequencies are 0.3 and 1.2, respectively, FMFM tokenizer will

get the second token whose normalized frequency is the largest, that is “TD”. The next
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token will start with the position following the previous one - “ATD”, that is starting from

“ALMTGY”, and repeat this process to the end of the sequence. One possible scenario is

that the end of the sequence after this process will be a single amino acid, which we will

keep as the last token directly (Figure 1(B)).

4.2 Training of ER-BERT.
The general framework of ER-BERT is shown in Figure 1(C-E). Given the input epitope or TCR

sequence with length , after tokenization, the input is tokens. These tokens are then padded𝑙 𝑀

with two special tokens as a common approach used in BERT models: a classification token

[CLS] as a prefix and a separator token [SEP] as a suffix. Then, the tokens will be fed𝑀 + 2

into an embedding layer to encode each token to a continuous representation of 768 dimensions.

Adding the positional embeddings together, the summed sequence embedding is fed into

EpitopeBERT or ReceptorBERT which consists of 12 encoder blocks. After that, we input the

sequence embedding after the BERT model to a “head” layer for certain pre-training or

downstream tasks.

4.2.1 Masked Amino Acid Token (MAAT) Task.

Following the Masked Language Model (MLM) task commonly used in BERT models, we

pre-train both EpitopeBERT and ReceptorBERT using a Masked Amino Acid Token (MAAT)

Task. As shown in Figure 1(C), we randomly hide or mask 15% of the tokens in each input

epitope or TCR sequence, and train EpitopeBERT and ReceptorBERT to predict the masked

tokens (denoted as [MAAT]). We append an “MAAT” head to both EpitopeBERT and

ReceptorBERT as the last output module, which is a two-layer fully connected neural network

connected with the Gaussian Error Linear Unit (GELU) activation function 46. The output

dimension of the “MAAT” head is consistent with the number of unique tokens, followed by a

softmax activation function. MAAT task is performed on all the available epitope and TCR

sequences to learn the basic “grammar” rules existing in these sequences.

4.2.2 Binding Specificity Prediction (BSP) Task.

To allow ER-BERT to capture the binding specificity rules of epitopes and TCRs, we connect

EpitopeBERT and ReceptorBERT and train these two BERT models together on the binding
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specificity prediction task. As shown in Figure 1(D), given one epitope-TCR pair, we feed the

epitope and TCR to the EpitopeBERT and ReceptorBERT separately and get the embedding of

the classification token [CLS] for the following operation. We append a “BSP” head to get the

final output, which is a three-layer fully connected neural network connected with tanh activation

function. The final output is one value through softmax activation, denoting the probability of

whether the input epitope could bind to the TCR. The BSP task aims to combine EpitopeBERT

and ReceptorBERT together and allow ER-BERT to master the "binding rule" of epitopes and

TCRs.

In addition, since most datasets only provide the positive epitope-TCR pairs, which indicate that

a TCR binds to an epitope, there are no negative pairs in our dataset. To deal with the scarcity of

negative epitope-TCR pairs, we developed a negative sampling method for the BSP task. The

fundamental assumption here is that given one epitope, the probability of one randomly-selected

TCR being incompatible to bind to the epitope is much greater than the probability of affinity.

The negative sampling method consists of two steps:

1) For each epitope, suppose we have positive TCRs that can bind to it, we sample𝑛
𝑝

𝑛
𝑝

TCRs from all the TCR sequences as its corresponding negative TCRs. Note that these

negative TCRs are chosen not only from the TCRs that do not form positive pairs with

the specific epitope, but also from TCRs that form positive pairs with other epitopes.

2) To enrich the diversity of epitopes in the BSP task, we randomly select epitope-TCR𝑛

pairs as negative samples from all possible pairs, ensuring that these pairs have not been

identified as positive. This strategy broadens the range of epitopes and TCRs in the

negative sample set, while maintaining the condition that no epitope-TCR pair in the

negative set has been identified as positive.

4.2.3 Seq2Seq Task.

Following the idea that utilizes two BERTs as Encoder and Decoder separately to build a

Transformer model 47,48, we use EpitopeBERT to build epitope blocks as Encoder and

ReceptorBERT to build receptor blocks as Decoder to form a Transformer called ERTransformer

for the Seq2Seq training (Figure 1(E)). That is, given the epitopes, we train the ERTransformer

to generate corresponding TCRs. Specifically, except that the parameters of the cross-attention
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layer in the receptor block are initialized randomly, the rest parameters of the epitope block and

receptor block are inherited from EpitopeBERT and ReceptorBERT, respectively. During the

training of the Seq2Seq task, the encoder layer will be fed the whole sequence of the epitope.

The decoder will generate the target TCR sequences step by step. At each step, the input to the

decoder layer is the previously predicted tokens of TCR concatenated with the to-be predicted

token (masked as [pad]). As shown in the expression below, the key ( ) and value ( ) matrix𝑄
𝐸

𝐾
𝐸

generated by the epitope block are communicated with the query ( ) matrix from the receptor𝑉
𝑅

block in the cross-attention layer, where is the output of the cross-attention layer and is the𝑍 𝑑
𝑘

dimension of the embeddings.

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄
𝐸
×𝐾

𝐸
𝑇

𝑑
𝑘

)𝑉
𝑅

Then, we utilized the cross-entropy loss computed between the predicted token with the true one.

4.3 Fine-tuning of ERTransformer on a new dataset.
To utilize ERTransformer for the TCR generation for specific epitopes, the primary issue is how

to determine the quality of the generated TCRs. In this study, we train an external discriminator

based on the BSP task. In detail, as shown in Figure 1(D), given a dataset that contains the

natural epitope-TCR pairs, for each epitope, we use 80% of its binding TCR sequences (named

) to train the external discriminators and the left 20% TCR sequences (named ) are used to𝐷
𝑑

𝐷
𝑔

fine-tune the trained ERTransformer on the Seq2Seq task. This separation of the dataset aims to

ensure that the generator and discriminator do not overlap, and maximize the performance of

both at the same time. The utilization of ERTransformer for TCR generation is as follows:

1) Fine-tune ERTransformer. To allow the ERTransformer better capture the patterns of

amino acids of the binding TCRs of one epitope, we first fine-tune the trained

ERTransformer on . The TCRs in perform as “seed” TCRs for the following TCR𝐷
𝑔

𝐷
𝑔

generation.

2) Train external discriminator. The external discriminator can be the trained ER-BERT

after the BSP task, or some state-of-the-art models on this task, such as DeepTCR 35.

DeepTCR was originally developed as a multi-class classifier given a set of TCRs. In this
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study, we found that DeepTCR's original version achieves a lower performance on 𝐷
𝑔

regardless of MIRA or 10X, thus we utilize DeepTCR to train one binary classifier for

each epitope separately for better performance.

3) Determine the quality of the generated TCRs. We use the beam search 33 method to

generate new TCRs. Beam search is a heuristic algorithm and is widely used in many

translation tasks. We use the fine-tuned ERTransformer to generate 1,000 TCRs for each

epitope and utilize external discriminators to determine how many generated TCRs can

bind to the input epitope.

4.4 Datasets for training.
We collected the sequences of epitopes and CDR3 sequences of TCRs (TRA and TRB) from 9

public datasets and 2 in-house datasets. Among all the datasets, we only kept valid epitopes and

TCRs that contain 20 standard amino acids from human species. All these sequences and

epitope-TCR pairs were used for the training of MAAT, BSP, and Seq2Seq tasks. The details of

each dataset are shown in Table 1. We found that the number of TRB sequences is far larger than

that of TRA sequences, thus we focus on TRB sequences in this study. In general, we collected

1,929,016 epitope sequences and 33,088,640 TRB sequences for the MAAT task for

EpitopeBERT and ReceptorBERT, respectively. For the BSP and Seq2Seq tasks, we prepared

176,268 positive epitope-TRB pairs.

VDJdb. VDJdb is a curated database of TCR sequences with known epitope specificities 49. The

TCRs in VDJdb come from human, mouse, and macaque. We kept the data that belong to

humans and with confidence scores larger than 0.

IEDB. IEDB50 consists of the Receptor (IEDB-Receptor) dataset and Epitope (IEDB-Epitope)

dataset and contains both TCRs and BCRs. We only keep TCR sequences for the IEDB-Receptor

dataset. The IEDB-Epitope dataset only contains epitopes and 1,928,911 epitopes left after

curation.

T-Detect-COVID. This dataset is generated by the T-Detect COVID Test which can detect the

specific T cell signature (TRB) in response to SARS-CoV-2 and only contains TRBs. The

t-Detect-COVID dataset is made public by Adaptive Biotechnologies and Microsoft 51.

TCRdb. TCRdb52 is a comprehensive TCR database that mainly focuses on TRB sequences

without epitope specificities.
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PIRD. Pan immune repertoire database (PIRD)53 collects raw and processed TCRs of human and

other vertebrate species.

Glanville-GLIPH. Glanville et al.15 developed an algorithm GLIPH to cluster TCRs (TRBs). We

collected 2,607 epitopes and 2,066 TRBs from the data they used to develop GLIPH.

Dash-TCR. Dash et al.54 used molecular genetic tools to analyze the diversity of epitope-specific

TCRs. We collected 2446 epitopes, TRAs and TRBs from the data this study used.

McPAS-TCR. McPAS-TCR55 is a manually curated catalogue of TCRs that existed in humans

and in mice. We collected 13,538 epitopes, 12,248 TRAs, and 33,566 TRBs from the curated

dataset.

NetTCR. NetTCR is an algorithm developed by Morten et al.56 which enables accurate

prediction of TCR-peptide binding. We collected 16,464 epitopes, 16,464 TRAs, and 16464

TRBs used in NetTCR.

GenePlus. We have two in-house TRB bulk-sequencing datasets collected for studying Cancer

and COVID-19, respectively. The cancer data includes 32,983,713 TCRBs from over 1000

cancer patients. The COVID-19 data includes 5,567,005 TCRBs from 48 participants at different

time points before and after receiving the COVID-19 vaccine. Geneplus Co Ltd produced these

two datasets.

huARdb. The huARdb database is a large-scale human single-cell immune profiling database

that contains 612,046 high-confidence T or B cells with full-length TCR/BCR sequences and

transcriptomes from 215 datasets 57.

4.5 Datasets for validation.
In this study, we test and validate the performance of ER-BERT on two external TCR datasets.

MIRA. MIRA dataset is about the TRB sequences from subjects exposed to or infected with the

SARS-CoV-2 virus. The original MIRA dataset includes more than 135,000 high-confidence

SARS-CoV-2-specific TCRs. And after curation, we have 154 epitopes and 44,190 epitope-TRB

pairs.

10X. We downloaded the epitope-specific binding data of paired TCRs from the 10x Genomics

website (https://support.10xgenomics.com/single-cell-vdj/datasets). After data curation, 38,459

paired TCR TRA and TRB chains that bind to 35 epitopes, including GILGFVFTL from the M1

protein of the influenza virus (flu), IVTDFSVIK from the Epstein-Barr nuclear antigen 4 of the
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Epstein-Barr virus (EBV), LTDEMIAQY from the SARS-CoV-2 Surface GP 1 protein of the

SARS-CoV-2 virus, and so on.

4.5 Evaluation methods
4.5.1 Clustering and DBI scores

The initial embedding of each epitope or TCR generated by ER-BERT is represented in 768

dimensions. In order to generate visual plots, we conducted Principal Component Analysis

(PCA) using the sklearn.decomposition.IncrementalPCA module, resulting in a 50-dimensional

representation of epitopes and TCRs. Subsequently, we utilized t-SNE (implemented in

sklearn.manifold.TSNE) to obtain 2-dimensional representations for visualization and DBI

calculation. With the 2-dimensional representations of all epitopes and TCRs generated by the

model, we employed sklearn.metrics.davies_bouldin_score to compute the DBI scores. Note that

the input X in the function sklearn.metrics.davies_bouldin_score corresponds to the

2-dimensional representations, while Y represents the target epitopes for each generated TCR.

4.5.2 The retraining of external discriminators - DeepTCR

DeepTCR, initially developed by Sidhom et al. 35, was utilized in this study for the classification

of antigen-specific TCRs. To adapt DeepTCR for the 10X and MIRA datasets, we employed the

same training methodology as ER-BERT-BSP. Specifically, DeepTCR was employed to construct

a classifier for each epitope. In line with this approach, we utilized 80% of the data to retrain a

single DeepTCR classifier that encompassed all epitopes within the 10X and MIRA datasets. The

source code for DeepTCR, which was employed in this study, can be accessed at

https://github.com/sidhomj/DeepTCR.

4.5.3 The fine-tuning of Semi-Random-Transformer

The Semi-Random-Transformer is created based on the latest BERT model TCRBert 19 for the

modeling of the grammar existing in TCR sequences. Specifically, we created a Transformer

model using function

transformers.EncoderDecoderModel.from_encoder_decoder_pretrained(encoder_pretrained_mo

del_name_or_path, decoder_pretrained_model_name_or_path), where

encoder_pretrained_model_name_or_path is the path of pre-trained TCRBert (available at
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https://huggingface.co/wukevin/tcr-bert), and decoder_pretrained_model_name_or_path denotes

the path of a randomly initialized BERT without any prior training). The fine-tuning process for

the Semi-Random-Transformer aligns with that of the ERTransformer, as elaborated in Section

4.3 of this paper.

4.5.4 The sequence similarity measure methods: BLAST and BLOSUM62 matrix

The Basic Local Alignment Search Tool (BLAST) 22 tool is used to compare its amino acid

sequence and calculate the statistical significance of the matched reference sequence. In this

study, we built a reference sequence dataset using all the TCR sequences presented in the MIRA

and 10X except the sequences used to fine-tune the models on the Seq2Seq task. Given all the

TCR sequences generated by one model for one epitope, we utilized the command blastp -query

epitope.fasta -db db10x -out epitope.txt -task blastp-short -outfmt "6 qseqid sseqid sseq evalue

bitscore pident positive" -num_threads 10 to get the bit-scores. For each generated TCR

sequence that was also determined to bind to the given epitopes, we kept the matched reference

TCR sequence with an e-value smaller than 0.001 and recorded the bit-score. Bit-score is used to

determine the sequence similarity in the BLAST tool, and the higher the bit-score, the better the

sequence similarity.

The BLOSUM62 matrix used in this study is available at

https://resources.qiagenbioinformatics.com/manuals/clcmainworkbench/current/index.php?manu

al=BE_Scoring_matrices.html. For one model, we retrieved all one epitope’s generated TCRs

and natural ones. To compute BLOSUM62 score, we aligned all these TCR sequences by

keeping sequences with the maximum longest length. For one amino acid in the generated TCR𝑖

sequence and its corresponding amino acid at the same position in another sequence, we𝑗

obtained the BLOSUM62 score for that position by referencing the value in the BLOSUM62

matrix, denoted as . Then, we iteratively calculated the sum of scores by traversing𝐵𝐿𝑂𝑆𝑈𝑀62
𝑖,𝑗

through each position.

4.5.5 The structure similarity and binding affinity by existing computational docking

methods
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Given one generated artificial TCR and one natural TCR, their structure similarity of the CDR

region is measured by the root-mean-square deviation (RMSD) of atomic positions. Specifically,

due to the unavailability of the generated artificial TCR’ structure, we obtained the complete

sequence of the corresponding natural TCR and substituted the original CDR3 segment with the

generated CDR3 region. Subsequently, we introduced TCRdock 26 to predict the structures of

artificial TCRs. Then we used PyMOL to visualize the structure. The RMSD for the CDR3

region is computed by PyMOL by specifically selecting the CDR3 region.

To investigate the binding affinity between the generated artificial TCRs and epitopes, given the

estimated structure of generated artificial TCRs and experimental validated structure of epitopes

available at PDB, we first employed TCRDock 26 to estimate the correct docking positions

between (top-3 in Figure 4(A)) and the epitopes in the pMHC. Then, we introduced

RosettaDock-4.0 27, using the previously determined docking positions as initial coordinates, to

predict the binding affinity. The binding affinity is measured by interface scores, where a smaller

indicates a stronger binding affinity. Specifically, we utilized the server version of

RosettaDock-4.0, which is available at https://r2.graylab.jhu.edu/apps/submit/docking.

RosettaDock-4.0 was employed to perform 1,000 experiments with different potential docking

positions, resulting a distribution of interface scores as presented in Figure 4.

5. Data availability
All described public datasets are available through the corresponding repositories. VDJdb:

https://vdjdb.cdr3.net; IEDB: https://www.iedb.org/; T-Detect-COVID:

https://www.adaptivebiotech.com/immunecode/; TCRdb:

http://bioinfo.life.hust.edu.cn/TCRdb/#/; PIRD: https://db.cngb.org/pird/home/;

Glanville-GLIPH: https://github.com/immunoengineer/gliph; Dash-TCR:

https://www.nature.com/articles/nature22383#Sec22; McPAS-TCR:

http://friedmanlab.weizmann.ac.il/McPAS-TCR/; NetTCR:

https://github.com/mnielLab/NetTCR-2.0; huARdb: https://huarc.net/database; MIRA:

https://clients.adaptivebiotech.com/pub/covid-2020; 10X:

https://www.10xgenomics.com/resources/datasets.
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6. Code availability
The source codes of ER-BERT are available at

https://github.com/TencentAILabHealthcare/ER-BERT. The pre-trained EpitopeBERT and

ReceptorBERT model files, and the fine-tuned ER-BERT-BSP and ERTransformer model files

are available at https://doi.org/10.5281/zenodo.7494046.
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Table 1. The statistics of valid epitopes, TCRs, and their pairs.

Dataset Epitope TRA TRB Epitope-TRA Epitope-TRB Epitope-TRA-TRB

Datasets for training

VDJdb 9827 2738 7089 2738 7089 0

IEDB-Receptor 201123 53244 172899 53244 172899 25020

IEDB-Epitope 1928911 0 0 0 0 0

GenePlus-Cancer 0 0 32983713 0 0 0

GenePlus-COVI
D-19 0 0 5567005 0 0 0

T-Detect-COVID
-19 0 0 11241597 0 0 0

TCRdb 0 0 13900917 0 0 0

PIRD 8451 4609 47070 2765 6254 570

Glanville-GLIPH 2607 0 2066 0 2066 0

Dash-TCR 2336 2336 2336 2336 2336 2336

McPAS-TCR 13538 12248 33566 4059 11983 3013

NetTCR 16464 16464 16464 16464 16464 16464

huARdb 0 612046 612076 0 0 0

Summary* 1929016 408722 33088640 83748 176268 40531

Datasets for validation

MIRA 151 0 43510 0 44190 0

10X 35 4346 4339 4618 4527 38459
* denotes the number of unique epitopes, TRAs, and TRBs.
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