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Abstract

Proteins function in crowded cellular environments in which they must bind to specific target proteins
but also avoid binding to many other off-target proteins. In large protein families this task is particularly
challenging because many off-target proteins have very similar structures. How this specificity of
physical protein-protein interactions in cellular networks is encoded and evolves is not very well
understood. Here we address the question of specificity-encoding by comprehensively quantifying the
effects of all mutations in one protein, JUN, on its binding to all other members of a protein family, the
54 human basic leucine zipper transcription factors. Fitting a global thermodynamic model to the data
reveals that most affinity changing mutations equally affect JUN’s propensity to bind to all its
interaction partners. Mutations that alter the specificity of binding are much rarer. These specificity-
altering mutations are, however, distributed throughout the JUN interaction interface. JUN’s interaction
specificity is encoded by both positive determinants that promote on-target interactions and negative
determinants that prevent off-target interactions. Indeed, about half of the specificity-defining residues
in JUN have dual functions and both promote on-target binding and prevent off-target binding. Whereas
nearly all mutations that alter specificity are pleiotropic and also alter the affinity of binding to all
interaction partners, the converse is not true with mutations outside of the interface able to tune affinity
without affecting specificity. Our results provide the first global view of how mutations in a protein
affect binding to all its potential interaction partners and reveal the distributed encoding of specificity
and affinity in an interaction interface. They also show how the modular architecture of coiled-coils
provides an elegant solution to the challenge of optimising specificity and affinity in a large protein
family.
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Introduction

Protein-protein interaction (PPI) networks form the backbone of a cell’s functional organization. The
specificity of PPIs determines the structure of an interaction network and the way it coordinates cellular
processes and thus plays an important role in establishing phenotypes. Specificity is determined by
protein sequence and mutations that modify specificity rewire cellular networks, perturb the
coordination of biological processes and modify organismal phenotypes, which can lead to disease,
functional innovation and be subjected to natural selection. Understanding the physicochemical
principles that govern how the sequence of a protein determines the specificity of its interactions is thus
central to the question of how genotype determines phenotype.

Conserved families of protein interaction domains serve as models to study PPI specificity. One such
family is the basic leucine zipper domains (bZIPs). The human genome encodes 54 bZIPs that form
homo- and heterodimers that act as important transcription factors, including AP-1 (FOS/JUN), C/EBPs
and MAFs. They are amongst the smallest known PPI domains and consist of an N-terminal basic DNA-
binding domain of 27 amino acids and a C-terminal zipper domain of 35 amino acids that mediates
homo- or heterodimerization via formation of coiled-coils' (Fig. 1a). bZIP a-helices display a periodic
pattern of seven amino acids per two turns. The zipper domains are therefore subdivided into five
heptads within which the positions are labelled from a to g. Per heptad, side chains adopt the same
position relative to the opposite bZIP in the dimer®. Amino acids at positions @ and d are typically
hydrophobic and form the hydrophobic core of the coiled coil interface by interacting with the facing
amino acid at the same position in the partner, following a characteristic knobs-into-holes pattern that
is essential for dimer stability and forms a zipper-like appearance from which its name is derived'”.
Positions e and g are often charged and can establish stabilizing salt bridges between the g residue of
one helix and the subsequent e residue of the opposite helix®. Amino acids b, ¢, and fare solvent exposed
in the coiled-coil and therefore often polar®.

Our current understanding of bZIPs has mostly derived from the study of a small number of model
leucine zippers, including AP-1 and the yeast Gen4 homodimer” '°. Mapping bZIP interaction networks
has revealed a sparse, highly modular network, with subfamilies of bZIPs displaying high specificities
for one another and low levels of cross-talk'®. However, this high level of specificity appears
paradoxical with the simplicity of the coiled-coil interaction interface and the relative sequence
similarity across bZIPs. This thus raises the questions of how a large set of high affinity interactions
that use the same simple structural interface has evolved while maintaining high specificity and
avoiding cross-talk or interference between the biological processes they regulate. Each bZIP binds
only to a few other bZIPs. What are the determinants of this specificity, i.e. the residues that promote
binding to one or a few other bZIPs and/or prevent binding to others? And how are these residues
distributed within this simple interface?

Determining general, family-wide rules requires broader approaches where the effects of sequence
variation are quantified not only on binding to one or a few known interaction partners but to all family
members. We previously developed protein fragment complementation (PCA)-based deep mutational
scanning assays to quantify the effects of hundreds of thousands of variants of two interacting proteins
(Fig. 1b). These assays, which we collectively term deepPCA, are based on a split DHFR system
whereby the proteins of interest are fused to complementary fragments of a murine DHFR variant
(respectively called DH and FR) that confers resistance to methotrexate'’. When the two proteins
interact, the two fragments complement each other and the reconstituted DHFR activity sustains yeast
growth in the presence of methotrexate, an inhibitor of the endogenous yeast DHFR. These assays are
highly quantitative and have a large dynamic range'®'. In one deepPCA implementation, BindingPCA
(bPCA), two proteins are expressed as DH and FR fusions from the same plasmid, enabling library-on-
library screening in a single pool format (Fig. 1b, left). Yeast cells expressing pairs of proteins (wild-
type or mutant) that form stronger interactions are enriched in the population while those forming
weaker interactions are depleted. Deep sequencing then allows variants to be identified and the
frequency of each variant or variant pair before and after growth in methotrexate to be quantified. The
resulting enrichment scores are proportional to dimer concentration within the dynamic range of the
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assay and can be used to infer the underlying causal changes in binding free energy by fitting
thermodynamic models to this data. bPCA thus provides a very high-throughput method to perform
biophysical measurements** 2,

We previously employed bPCA to measure the effects of single and double mutants on the formation
of the dimer between JUN and FOS bZIPs*’. We showed that fitting a two-state thermodynamic model
to the data improved our ability to predict how pairs of mutations combine and provided mechanistic
insight into how mutations alter binding affinity. Our data showed that most combinations of genetic
variants have additive effects on the free energy of binding that result in non-additive changes in dimer
concentration because of the sigmoidal relationship between binding free energy and complex
concentration. Double mutants not well predicted by the model identify energetically-coupled
mutations, which we found to be enriched in directly physically contacting residues.

Here, we use bPCA to comprehensively quantify how single amino acid substitutions in JUN affect its
binding to all 54 human bZIPs (Fig. 1c). The resulting data provide the first complete view of how
changes in the sequence of a protein alter the specificity of its binding across an entire protein family.

Results

Deep mutational scanning of JUN’s complete bZIP interaction profile

To quantify the impact of substitutions on the binding specificity of JUN, we mutated each of 32
positions in the bZIP domain to every possible amino acid and quantified binding to all 54 human bZIPs
(Table S1) using bPCA.

We improved bPCA by enabling the use of random DNA barcodes (Fig. 1b, left), which can be
sequenced with shorter read lengths that are robust to sequencing errors, including those induced by
template-switching (see methods). We constructed an intermediate library of JUN variants by overlap-
extension PCR with NNS primers for each of the residues to be mutated and cloned them as FR fusions.
Random barcodes were then added to each library, and the barcodes associated to each variant
determined by deep sequencing (Table S2). We successfully obtained 615 out of the 640 total possible
amino acid substitutions (96%; 32 positions x 20 substitutions, including stops), with a median of 38
different barcodes per substitution. The 54 human bZIPs were cloned as DH fusions, barcoded, verified
by sequencing, and three barcodes per partner selected (Table S1). The final library was then assembled
in a single pot reaction by combining the DH and FR intermediate libraries, juxtaposing the barcodes
associated with the DH and FR fusions for efficient variant-bZIP identification by deep sequencing
(Fig. 1b).

Binding of the JUN variants to all human bZIPs was assayed in six replicates and binding fitness scores
and errors for each variant—partner pair calculated using DiMSum?® after collapsing read counts across
barcodes associated to the same pair. Interaction scores were normalized to the wild-type binding of
JUN and FOS (Table S3). After quality control, we were able to quantify the interaction of 26,648 out
of the 34,614 expected pairs, including 579 unique variants and 52 out of the 54 wild-type bZIPs
(excluding CEBPG and CREB1), with an average coverage of 443 reads per pair across input replicates.
Binding scores are highly reproducible, with an average Pearson correlation between replicates of 0.93
(Fig. 1d).

The distribution of binding scores is bimodal (Fig. 1e), with a smaller number of variant-partner pairs
in the high binding score mode, reflecting the relatively small fraction of high affinity interaction
partners that wild-type JUN has (Fig. 1f). As previously reported, wild-type JUN forms strong
interactions with many members of the AP-1 family, including BATF1-3, the FOS subfamily, the JUN-
subfamily, JDP2, ATF3, 4 and 7. We also detected previously reported interactions with CREBS5 and
DDIT3'*** and a previously unreported interaction with XBP1, a regulator of the unfolded protein
response”.
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Most mutations similarly affect binding to all interaction partners

In order to compare the effect of the same mutation with different partners, we normalized each
measurement by the interaction between the corresponding human bZIP and the JUN wild-type allele.
Fig. 2a shows the relative effects of all JUN mutants on the interaction with all bZIPs. The partners are
ordered according to their binding score with wild-type JUN, revealing a general pattern of mutational
effects that is highly similar across all JUN interaction partners. This pattern identifies positions that
are highly sensitive to mutation, such as the a and d positions of all heptads, consistent with them
forming the hydrophobic core of the interaction interface’. These mutations affect binding to all of
JUN’s partners in a similar way, i.e. they affect the intrinsic capacity of JUN to dimerize with other
bZIPs. For example, replacing one of the core leucines that define bZIPs by a charged amino acid
disrupts JUN’s ability to form bZIP dimers regardless of the partner (Fig. 2a).

Although most of the mutational effects appear qualitatively as having a general effect on JUN’s ability
to dimerize, some mutations appear to affect only the interaction with some partners. These represent
cases of specific effects. For instance, several substitutions at position 3a (position a in heptad 3)
increase the interaction of JUN with members of the MAF subfamily (Fig. 2a).

Plotting the mutational effects profiles across partners also reveals a strong trend affecting all partners,
showing that most mutations have general effects on JUN’s ability to form dimers with all its partners
(Fig. 2b). The non-linearity of these relationships is reminiscent of global effects due to the
thermodynamics of binding to partners with different wild-type affinities (Fig. 2c). Some mutations,
however, change binding to particular interaction partners such that their binding score is located away
from the general trend. These residuals represent mutational effects that are specific to these partners.
To formally quantify these changes in binding specificity we therefore used modelling to decompose
mutational effects into their general and specific components while accounting for the non-linearity
imposed by the thermodynamics of binding.

A global two-state additive thermodynamic model accurately predicts changes in binding to 52 bZIPs

Using MoCHI*'*, we fitted a simple two-state thermodynamic model to the data where proteins
cooperatively fold upon binding and so can exist in an unbound, unfolded state or in a folded and bound
state (Fig. 3a). MoCHI infers a single additive binding Gibbs free energy change (AAG) for each of the
640 JUN mutations and 51 additive binding free energies for each partner bZIP (relative to FOS as an
arbitrary reference, see methods). A single AAG, which we refer to as the change in global binding
energy, is fitted for each variant or partner across the entire dataset. MoCHI assumes additivity for all
changes in free energy (AAG) and a linear relationship between the fraction of bound molecules and the
binding scores quantified by bPCA'*?'. Therefore, the fitted variant AAGs capture the general effects
of mutations across all partners. The residuals between the experimentally measured effects of
mutations and the model predicted values then quantify the specific effects of mutations with each
binding partner.

The additive MoCHI energy model predicts binding scores with high accuracy (R*=0.91, Fig. 3b), and
the partner AAGs correlate well with independently-measured in vitro binding energies®* (Pearson’s R
= (.78 and 0.85 when JUN is labelled either as donor or acceptor in fluorescence resonance energy
transfer (FRET) experiments, respectively, n=34; Fig. 3c), confirming the validity of our approach.
Some well-known JUN binding partners appear below the detection limit of the in vitro FRET assay,
for instance JUNB or the JUN homodimer, suggesting these correlations may underestimate the
agreement of MoCHI’s AAGs with the ground truth. The high correlation between the measured binding
scores and those predicted using an additive energy model in which the effects of mutations are the
same for all interaction partners shows that the vast majority of measured changes in binding are
independent of the interaction partner’s identity and that context-dependent, specific effects are rare.
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Global binding energy changes are determined in part by helical propensity and interface
hydrophobicity

To better understand the underlying mechanistic causes of changes in global binding energy, we used
linear regression to predict the fitted AAGs from a compilation of ~500 physicochemical properties of
the 20 natural amino acids®®, which heptad is mutated and the position within the heptad. The five top
features together explain 68% of the variance in non-specific effects (Fig. 4a, b), with the top feature
related to alpha helical stability®’, the two features encoding heptad number and position within the
heptad, and the last two features related to side chain hydrophobicity*® and standard entropy® (related
to number of possible conformations), respectively. Thus, mutations decreasing the stability of JUN’s
alpha helix and/or its hydrophobicity tend to reduce its intrinsic ability to interact with other bZIPs,
regardless of the partner™*3!,

Because of the importance of position in the model, we next looked at the most predictive feature at
each of the seven heptad positions independently (Fig. 4c). Far-side positions b, ¢ and f were best
predicted (best feature explaining 71, 66 and 72% of the variance, respectively)****, followed by salt-
bridge positions e and g (52 and 45% of the variance, respectively)****, and hydrophobic core positions
last (39 and 36% of the variance explained for ¢ and d, respectively)*”.

A substantial part of the changes in global binding energy inferred by the model therefore reflects the
general ‘zipper propensity’ of a sequence i.e. the baseline ability to form a coiled coil and dimerize with
other bZIPs.

Global binding energy changes explain most mutational effects outside of the interface

We compared the variance in binding explained at each of the seven heptad positions by changes in the
global binding energy. Positions on the far side of the helix (b, ¢ and f) have the highest proportion of
variance explained by global binding energy while hydrophobic core positions (a and d) have the lowest
(Fig. 4d, e). This is in agreement with core positions making direct contacts with binding partners.

Changes in binding specificity

Plotting the binding scores against the global binding energies for each bZIP partner (Fig. 5a, Fig. S1)
reveals that global binding energies predict the binding fitness estimates very well for all bZIPs except
ATF4 (which is removed from subsequent analyses, see methods). However, for each bZIP, some
changes in binding are not well predicted by change in global binding energy, with large residuals from
the predicted binding. These residuals quantify changes in binding specificity, i.e. mutational effects
that are specific to one or a subset of interaction partners. Inspection of these plots suggests these
specificity-altering mutations are enriched in specific positions and for particular types of substitutions
for each interaction partner (Fig. 5a).

The energy model therefore allows us to quantitatively decompose the measured change in binding
caused by each mutation for each interaction partner into global and specific components. We define
the global component of mutational effects as the difference between the mutant binding score predicted
by the thermodynamic model and the wild-type binding score, and the specific component as the
difference between the measured mutant binding score and the predicted one (Fig. 5b). The distributions
of these effects are rather different, with global effects having a long negative tail and specificity
changes having a more pronounced positive tail (Fig. 5c). Out of all variant-partner pairs tested, 8887
interactions are altered by a change in global binding energy (global effect # 0; FDR < 5%), while only
207 are altered by a change in specificity (specific effect # 0; FDR < 5%). In summary, mutations are
much more likely to affect JUN’s affinity globally than specifically.

Plotting changes in binding as a combination of changes in specificity and global energy changes
reveals that decreased binding is mostly caused by changes in global energy whereas increased binding
is mostly due to changes in specificity (Fig. 5d,e).
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Negative, positive and dual determinants of interaction specificity

Clustering the specificity profile of each bZIP reveals that members of the same subfamily tend to
cluster together, especially for those that interact strongly with JUN, and identifies the wild-type
positions important to establish specific interactions with a given subfamily (Fig. 6a). We next
quantitatively characterize these determinants of specificity and how they are distributed throughout
the bZIP interface.

Binding specificity can potentially be determined via three different strategies. Wild-type residues can
be positive determinants of specificity that increase affinity to one or a subset of bZIPs, negative
determinants that decrease affinity to one or a subset of bZIPs, or dual determinants that both promote
on-target binding and prevent specific off-target binding®”>’. Our comprehensive mutagenesis and
mutational effect decomposition allows us to quantify the relative prevalence of each strategy for the
first time in a large protein family.

When mutated, positive determinants of specificity result in reduced binding to only some interaction
partners. Conversely, mutation of negative determinants leads to increases in binding to only some
interaction partners. Mutating dual determinants of specificity leads to positive effects with some
partners and negative effects with others.

Out of the 97 variant-bZIP combinations with strong changes in specificity (absolute specific effect >
0.5, FDR < 5%), 80 are positive and 17 negative (82.5% and 17.5%, respectively). These represent a
total of 56 unique mutations out of the 579 tested (9.7%), with 41 having only positive effects, 11 only
negative effects and 4 both positive and negative effects. 16 partners are affected by positive effects,
with an average of 4.6 positive mutations per partner. Only five partners are affected by negative effects,
with four of them affected by a single negative mutation and eight mutations affecting JUN binding
with itself. Dual mutations affect nine partners, with an average of 1.33 dual mutations per partner.

However, some mutations with strictly negative or positive effects are found at the same position, such
that the wild-type residue can be considered a dual determinant of specificity, with different mutations
having different directions of effect. Negative determinants of specificity thus correspond to positions
where mutations only have positive effects and positive determinants of specificity correspond to
positions where mutations only have negative effects. Out of the 32 tested positions in the zipper
domain, seven are dual determinants of specificity, five are negative determinants and two are positive
determinants (Fig. 6b).

The interaction specificity of JUN is thus defined by a mixture of negative and positive specificity
determinants, with half of the specificity determining positions acting both negatively and positively to
encode specificity.

Positive, negative and dual determinants of specificity are dispersed throughout the interaction
interface

We next examined where in the JUN sequence the determinants of specificity are located. Across the
five heptads, residues in five out of seven positions (a, d, c, e, g) contribute to specificity. Position a in
all five heptads is a dual determinant of specificity, as is position le and 4d (Fig. 6b). Negative
determinants of specificity are found at position 1g, 2d, 4e, 4g and 5d, while positive determinants are
found at position 1c and 1d. The strictly positive determinants of specificity are thus more biased
towards the N-terminal region of the leucine zipper while the strictly negative determinants are more
biased towards the C-terminal region.

Interestingly, three out of the four salt-bridge positions that contribute to specificity act negatively, with
the other being a dual determinant. JUN therefore employs electrostatic interactions mostly in a
repulsive rather than attractive manner to determine specificity.
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Mutations affecting specificity are nearly always pleiotropic and also affect the global binding energy

We next examined whether changes in specificity also affect the global binding energy. Mutations that
alter specificity might have no effect on the global binding energy (if specificity and global binding
energy are orthogonally encoded) or mutations causing specificity changes may have pleiotropic effects
and synergistically or antagonistically alter affinity via changes in both specificity and global binding
energy.

We find that in JUN 50 out of 56 (89.3%) unique mutations that change specificity to at least one partner
also change the global binding energy (Fig. 6¢, d). In nine cases, changes in specificity and global
binding energy have synergistic effects on affinity (all negative) and in 37 cases changes in specificity
and global binding energy have antagonistic effects on affinity. Out of these, a single mutation has a
negative effect on specificity and positive effects on global affinity, while 36 have positive effects on
specificity and negative effects on global affinity. The last four mutations have both negative and
positive effects on specificity, depending on the interaction partner and in all cases affecting negatively
the gobal affinity (Fig. 6c, d).

We conclude that nearly all mutations affecting specificity are pleiotropic and also alter binding affinity
to all other interaction partners. However, the reverse is not true and the vast majority of mutations that
alter the global binding energy do so without changing the binding specificity.

Hydrophobic core positions in the first and last heptad are important determinants of specificity

Core positions a and d are important for establishing specificity, with strong specific effects for all a
positions across the five heptads and for d positions in the extremity heptads 1 and 5 (Fig. 6a). Mutations
at position 1d have a relatively small absolute effect on interaction with wild-type partners compared
to other d positions (Fig. 2a). For most of JUN’s wild-type partners, two of the surrounding positions
in the hydrophobic core, 1a and 2a, are bulky or hydrophilic (Fig. 7a, left), likely weakening the
contribution of the 1d leucine and reducing the overall importance of the first heptad to binding.
However, JUN subfamily members have hydrophobic residues at 1a and 2a (Fig. 7a, right), making
heptad 1 important for binding such that mutations in JUN positions 1a and 1d have specific effects.

Mutations at positions 5d generally weaken the interaction with all partners, as expected for a core
leucine, but they do so less than expected for the BATF subfamily as well as for DDIT3 and XBP1,
even in some cases making the interaction stronger than with wild-type JUN (Fig. 6a). BATF and
BATF?2 have bulky aromatic residues at the facing 5d position (Fig. 7b, left), which could explain why
mutating JUN towards alanine, valine and isoleucine, all less bulky than leucine (isoleucine has the
same number of carbon atoms, but one is closer to the backbone than in leucine), are amongst the most
positive residuals for these partners. For interaction with DDIT3 and XBP1, nearly all 5d substitutions
have positive specific effects, with a large fraction increasing the interaction with XBP1 compared to
wild-type JUN (Fig. 6a). The presence of a threonine at position 5d in DDIT3 (Fig. 7b, right) and at
position 5a in XBP1 suggests a weakened hydrophobic core in this last heptad, such that mutating the
leucine has a reduced impact on the contribution of this heptad hydrophobic core to binding compared
to other partners that have a 5d leucine.

Asparagine at position 3a is a trade-off between preventing binding to the MAF subfamily and
promoting binding to the FOS and BATF sub-families

Another interesting position is 3a. The wild-type asparagine at position 3a is involved in the specificity
of the interaction with the FOS-subfamily since some mutations have negative specific effects.
However, asparagine is not the optimal residue for FOS subfamily binding with mutations to valine and
cysteine increasing binding. However, although valine is the optimal amino acid at this site for FOS
subfamily-binding it also increases binding with the MAF subfamily (Fig. 6a). MAF bZIPs have a
complementary valine at the facing 3a position. Asparagine at position 3a may thus reflect an
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evolutionary trade-off between promoting the interaction with the FOS subfamily and avoiding strong
interactions with the MAF subfamily.

Discussion

We have presented here the first comprehensive quantification of the effects of mutations in a protein
on its binding to possible interaction partners from a protein family. Our data quantifies the binding of
JUN to 52 of the 54 members of the human bZIP family of proteins: a total of 26,648 measurements.
Fitting a global thermodynamic model to this data allowed us to deconvolve the effects of mutations on
binding specificity from changes in the propensity of JUN to bind to all its interaction partners (Fig. 2a,
b & Fig. 5a, b).

Our data show that mutations overwhelming affect JUN’s binding to interaction partners non-
specifically (Fig. 5c, €). Mutations in all 32 tested positions can alter this global binding energy, which,
at least in part, relates to both the helical propensity of the JUN sequence and the hydrophobicity of the
interface (Fig. 4).

Mutations that alter the specificity of binding are rarer (Fig. 5¢), but they are also distributed throughout
the protein interface (Fig. 6a, b & Fig. 7e). Indeed, mutations in nearly half of amino acid positions alter
JUN’s binding specificity. The core interface residues a and d are particularly important determinants
of specificity. The binding specificity of JUN is defined by a mixture of both positive determinants that
increase the affinity for target proteins and negative determinants that reduce binding to off-target
proteins. Whilst the positive determinants are enriched in the C-terminus, the negative determinants are
more abundant in the N-terminus of the zipper. The negative specificity determinants are both larger in
number and individually of larger effect (Fig 5¢). Preventing binding, for instance through repulsive
electrostatic interactions, is therefore a more important strategy for defining specificity than promoting
binding. However, half of the specificity-defining residues serve as both positive and negative
determinants of JUN’s interaction profile. Specificity is thus encoded in a delocalized manner and by a
mixture of positive and negative interactions, with many residues acting as dual specificity
determinants.

Specificity and affinity in JUN are, however, not encoded by orthogonal genetic variables. Our data
show that it is difficult to change the specificity of JUN without also altering its affinity for all
interaction partners (Fig. 6¢, d). Put another way, specificity-altering mutations are nearly always
pleiotropic and also change the affinity of the protein for all of its interaction partners. During evolution,
therefore, changes in specificity will rarely occur without changes in affinity to all interaction partners.
Specificity changes will therefore normally have to be accompanied by compensatory mutations that
counteract the change in affinity without altering specificity.

However, although changes in specificity nearly always also involve changes in affinity to all binding
partners, the reverse is not true and there are many mutations in many positions that can alter the affinity
of JUN for all interaction partners without altering its specificity. The modular design of coiled coils
thus provides an elegant solution to the problem of independently tuning specificity and affinity in a
large protein family, allowing both properties to be optimized. Whereas mutations in the interface affect
both specificity and global affinity, mutations outside of the interface alter the general zipper propensity
and so affinity without affecting specificity (Fig. 7d). Specificity can therefore be optimised during
evolution using combinations of pleiotropic specificity and affinity altering mutations in the interface
coupled to compensatory affinity tuning mutations elsewhere in the zipper (Fig. 7¢). We refer to this
model as the zig-zag model of specificity and affinity optimisation.

Our results concern a particular protein — JUN — from a particular family of proteins — basic leucine
zippers — and a particular class of protein interactions — coiled coil interactions. In future work it will
be important to use similar experimental designs to better understand the encoding of affinity and
specificity in other protein families. Pioneering studies have already begun to address these questions
for other structural classes of protein interactions**** and we believe that a concerted effort to
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mutagenize the diversity of domain-peptide and domain-domain interactions that constitute the
interactomes of every species will allow us to better understand, predict and engineer affinity and
specificity from sequence.

Methods
All plasmids and strains are available upon request.

Yeast Strain
All experiments were performed in BY4742 (MATa his3A1 leu2AO lys2A0 ura3A0).

Media and buffer recipes

e LB: 25 g/L Luria-Broth-Base (Invitrogen™). Autoclaved 20 min at 121 °C.

e [B-agar with 2X Ampicillin (100 pg/mL): 25 g/L Luria-Broth-Base (Invitrogen™), 7.5 g/L
Agar, 1.2 g/l MgSOs - H>0. Autoclaved 20 min at 121 °C. Cool-down to 45 °C. Addition of
100 mg/L Ampicillin.

e YPAD: 20 g/L Bacto-Peptone, 20 g/L Dextrose, 10 g/L Yeast extract, 25 mg/L Adenine. Filter-
sterilized (Millipore Express ® PLUS 0.22 um PES, Merck, Darmstadt, Germany).

e SC-ura: 6.7 g/LL Yeast nitrogen base without amino acids, 20 g/L glucose, 0.77 g/L complete
supplement mixture drop-out without uracil. Filter-sterilized (Millipore Express ® PLUS 0.22
um PES, Merck, Darmstadt, Germany).

e SC-ura/ade/met: 6.7 g/L Yeast nitrogen base without amino acids and folic acid, 20 g/L glucose,
0.74 g/L complete supplement mixture drop-out without uracil, adenine and methionine. Filter-
sterilized (Millipore Express ® PLUS 0.22 um PES, Merck, Darmstadt, Germany).

e SORB: 1 M sorbitol, 100 mM LiOAc, 10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0. Filter-
sterilized (Millipore Express ® PLUS 0.22 um PES, Merck, Darmstadt, Germany).

e Plate mixture: 40 % PEG3350, 100 mM LiOAc, 10 mM Tris-HCL pH 8.0, 1 mM EDTA pH
8.0. Filter-sterilized (Millipore Express ® PLUS 0.22 pm PES, Merck, Darmstadt, Germany).

o Recovery medium: YPAD + 0.5 M sorbitol. Filter-sterilized (Millipore Express ® PLUS 0.22
um PES, Merck, Darmstadt, Germany).

e Competition medium: SC-ura/ade/met + 200 pg/mL methotrexate (BioShop Canada Inc.,
Canada), 2 % DMSO.

e DTT buffer: 0.1 M EDTA-KOH pH7.5, 10 mM DTT

e Zymolyase buffer: 20 mM K-phoshpate pH 7.2, 1.2 M sorbitol, 0.4 mg/mL Zymolyase 20T
(amsbio, USbiological), 100 pg/mL RNAse A

Plasmid backbone construction

Two intermediate plasmids were constructed, one carrying the DHFR-bait cassette, one carrying the
DHFR-prey cassette. For the bait intermediate plasmid, a gene fragment carrying the CYC promoter, a
3 x Myc-tag fused to a DHFR N-terminal half (from here on referred to as DH-tag), a Linker sequence
(Linker L3, GSAGASAGGSGSAGSASGGS), a 34 bp random spacer sequence, a 20 bp placeholder
barcode sequence (GGCACTGTAGTCGATAGCCT; bait barcode) and an SP1 Illumina primer
binding site (Illumina, San Diego, CA) was cloned in pRS416* digested with KpnI-HF (New England
Biolabs, Ipswitch, MA, USA) and Sacl-HF (New England Biolabs, Ipswitch, MA) using Gibson
assembly. The Gibson assembly was performed using 34 fmol of backbone and 68 fmol of gene
fragment in 20 pl reactions (New England Biolabs, Ipswitch, MA). The reactions were incubated for
15 min at 50 °C. 3 pl of reaction mix were transformed into Mix & Go! Competent Cells - DH5 Alpha
(Zymo Research Corporation, Irvine, CA). Correct assembly was checked by colony PCR followed by
Sanger sequencing of the gene fragment region and the Gibson junctions. The sequence-confirmed
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plasmid was named pDL00211. Afterwards, the plasmid was digested with HindIII-HF (New England
Biolabs, Ipswitch, MA) and Sacl-HF (New England Biolabs, Ipswitch, MA) and treated with Quick
CIP alkaline phosphatase (New England Biolabs, Ipswitch, MA). A fragment containing the CYC
terminator, originating from plasmid pGD009 *° was ligated into the backbone using NEB T4 Ligase
(New England Biolabs, Ipswitch, MA) according to the manufacturers protocol using 29 fmol of
backbone and 87 fmol of insert. Correct assembly was checked by colony PCR followed by Sanger
sequencing of the CYC terminator and the backbone regions up- and downstream of the restriction sites.
The sequence-confirmed plasmid was named pDL00212.

For the prey intermediate plasmid, a gene fragment was ordered from Twist carrying an SP1 Illumina
primer binding site, a 24 bp placeholder barcode sequence (AAGTTCGTTGCATCACCTAGCCAA;
prey barcode), a 188 bp random spacer sequence, an SP2 Illumina primer binding site, the CYC
promoter, a 3 x Flag-tag fused to a DHFR C-terminal half (from here on referred to as FR-tag), a Linker
sequence (Linker L4, GASGSAAGGSGSAGSGASAS), the JUN bZIP wt sequence (consisting of the
wt DNA-binding domain (DBD) and the five heptads of the wt zipper domain), and Linker L3 was
cloned into the pUC19 backbone which had been digested with HindIII-HF (New England Biolabs,
Ipswitch, MA) and EcoRI (New England Biolabs, Ipswitch, MA) via Gibson assembly using 62.2 fmol
of backbone and 121.4 fmol of gene fragment in 20 pl reactions. The reactions were incubated for 15
min at 50 °C and 3 pl were transformed into Mix & Go! Competent Cells - DHS Alpha (Zymo Research
Corporation, Irvine, CA). Correct assembly was checked by colony PCR followed by Sanger
sequencing of the gene fragment region and the Gibson junctions. The sequence-confirmed plasmid
was named pDL00210.

Experimental design

The JUN variant library was constructed by overlap-extension PCR as described in Diss and Lehner,
2018. In contrast to the cited library, the JUN sequences were truncated by three amino acids located
C-terminally of the fifth heptad. These amino acids are not part of the heptad repeats and were thus not
mutagenized in the original design. Here, they were completely removed from the construct. The
resulting leucine zipper domain is thus 62 amino acid long, with 27 amino acids for the DNA binding
domain and 35 amino acid for the zipper domain, of which only the first 32 where mutated for technical
reasons. In the final library, JUN variants were cloned into the prey site of the bindingPCA plasmid
(fused to the FR-tag) and the 54 wt bZIP sequences were cloned into the bait site (fused to the DH-tag).

Barcoding strategy

Every bait-prey pair was identifiable by a double barcode where the bait barcode had a length of 20 bp
and the prey barcode had a length of 24 bp. The two barcodes were separated by a 6 bp restriction site
so that the full double barcode could be sequenced using the Illumina HiSeq single-end 50 bp
sequencing run type. The barcodes were randomly generated using primers with Na- and Noas-
overhangs, respectively. Different strategies were used during cloning of the bait and prey intermediate
libraries which will be described in detail below.

Cloning of barcoded bait intermediate plasmids

The 54 bait intermediate plasmids were first cloned individually in pGD009 ?° from human ¢cDNA or
ORFeome clones and verified by Sanger sequencing. Restriction sites in the CREM and DDIT3
sequences were removed by targeted mutagenesis to a synonymous codon.

To clone them in the bait intermediate plasmid pDL00212 and barcode them, four building blocks
needed to be prepared: 1) the backbone by digesting pDL00212 with BstEII-HF (New England Biolabs,
Ipswitch, MA) and BamHI-HF (New England Biolabs, Ipswitch, MA) and de-phosphorylating it with
Quick CIP alkaline phosphatase (New England Biolabs, Ipswitch, MA); 2) the CYC terminator by
digesting pDL00212 with HindlII-HF (New England Biolabs, Ipswitch, MA) and Spel-HF (New
England Biolabs, Ipswitch, MA); 3) the wt bZIP sequences by digesting them out of them original
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plasmids with BamHI-HF (New England Biolabs, Ipswitch, MA) and Spel-HF (New England Biolabs,
Ipswitch, MA;, and 4) the barcode fragment digested with BstEII-HF (New England Biolabs, Ipswitch,
MA) and HindIlI-HF (New England Biolabs, Ipswitch, MA). The barcode fragment was created by
PCR. The oligonucleotide 0DL00549 containing a 20 bp stretch of randomly generated nucleotides
(N20) was made double stranded using oligonucleotides 0DL.00122 and 0DL00551. A 100 pl setup using
40 pmol of 0DL00549 and 200 pmol each of 0DL00122 and 0DL00551 using the Q5 Master Mix (New
England Biolabs, Ipswitch, MA) was run with an initial denaturation at 98 °C for 30 sec, 4 cycles of 10
sec denaturation at 98 °C, 30 sec annealing at 55 °C, and 15 sec elongation at 72 °C, followed by a final
extension for 1.5 min at 72 °C. The product was treated with ExoSAP-IT (Thermo Fisher Scientific,
Waltham, MA) to remove residual single-stranded oligonucleotides and afterwards purified with the
QIAGEN Mini Elute Reaction Cleanup Kit (QIAGEN, Hilden, Germany). The purified product was
then digested with BstEII-HF (New England Biolabs, Ipswitch, MA) and HindIII-HF (New England
Biolabs, Ipswitch, MA) and afterwards gel-purified using the QIAquick Gel Extraction Kit (QIAGEN,
Hilden, Germany) to be ready for cloning. The final plasmids were assembled using NEB T4 Ligase
(New England Biolabs, Ipswitch, MA) according to the manufacturers protocol with ca. 14.5 fmol of
backbone and 29 fmol of each of the other ingredients. The resulting clones were confirmed via Sanger-
sequencing. For each ligation, one clone with a distinctive barcode was chosen (Table S1)

Cloning of barcoded prey intermediate libraries using mutagenic overlap-extension PCR

The JUN intermediate library was constructed in two steps. The variant library was first cloned into
pDL00212, and barcodes were then inserted. To create the variant library, mutagenic overlap-extension
PCR was performed as previously described 2°. However, instead of cloning the library into the
backbone via Gibson assembly, the fragments as well as pDL00212 were digested with Nhel-HF (New
England Biolabs, Ipswitch, MA) and HindIII-HF (New England Biolabs, Ipswitch, MA). The backbone
was de-phosphorylated with Quick CIP alkaline phosphatase (New England Biolabs, Ipswitch, MA).
All components were ligated together using NEB T4 Ligase (New England Biolabs, Ipswitch, MA)
according to the manufacturers protocol. The reactions were performed in a 20 pl reaction using 21.9
fmol of backbone and 43.6 fimol of insert. The reaction was incubated overnight in a PCR cycler using
the temperature-cycle ligation (TCL) protocol. This protocol consists of 4 cycles of 10 min at 22 °C
and 10 min at 16 °C, followed by 49 cycles of 30 sec each at 4 °C, 27 °C, and 13 °C, then 10 cycles of
30 sec at4 °C, 1 hour at 16 °C, 10 min at 22 °C, and 10 min at 16 °C, another 49 cycles of 30 sec each
at4 °C, 27 °C, and 13 °C, followed finally by 30 sec at 4 °C, 1 hour at 16 °C, 1 hour at 22 °C and 3 h
at 18 °C. Afterwards, the reaction was dialyzed against MilliQ H,O (Merck Millipore, Darmstadt,
Germany) to reduce the salt concentration using nitrocellulose membranes with 0.025 um pores (Merck
Millipore, Darmstadt, Germany) and then concentrated down to 5 — 10 ul in a speedvac. The
concentrated ligated products were then transformed into NEB 10-beta Electrocompetent E.coli (New
England Biolabs, Ipswitch, MA). Three transformations were performed to increase the yield. For each
transformation, 1.5 pl of concentrated ligation reactions was mixed with 25 pl of competent cells and
pipetted into a pre-chilled 0.1 cm Gene Pulser Cuvette (Bio-Rad, Hercules, California). Each mixture
was electroporated using a Gene Pulser Xcell (BioRad, Hercules, California) using the exponential
protocol with 2.0 kV, 200 Q and 25 pF. After electroporation, the cells were immediately re-suspended
in 488 ul of SOC medium that had been pre-warmed to 37 °C. The cuvette was rinsed with another 488
ul of that same medium. All three transformations were pooled and incubated for 30 min at 37 °C.
Afterwards, 1 pl of recovered cells was diluted 1/1,000, and 10 pl and 100 pl of this dilution were plated
on LB + 2X Amp petri dishes and incubated for 16 h at 37 °C. These plates were used to quantify the
number of transformants per transformation. The remaining cells were poured in 150 mL of LB + 4X
Amp and incubated at 37 °C and 180 rpm shaking for 16 h. In the morning, the colonies were counted
and a total of 23 Mio transformants were obtained. 700ng of the plasmid library was isolated from the
liquid culture using the NucleoBond® PC 500 kit (Macherey-Nagel, Diiren, Germany).

To barcode the library, a barcode fragment was generated by PCR-amplifying a 326 bp amplicon from
the pDL00210 template and using the Q5 High-Fidelity 2X Master Mix (New England Biolabs,
Ipswitch, MA) and primers 0DL00747 and oDL00748. Primer oDL00747 anneals just downstream of
the barcode placeholder sequence and contains a 24 bp overhang of random bases (N24) in place of the
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barcode sequence. The PCR was run for 30 cycles using an annealing temperature of 52 °C for 30 sec
and an extension temperature of 72 °C for 1 min. The resulting amplicon was cut from a 1 % agarose
gel and purified using the QIAGEN PCR purification kit (QIAGEN, Hilden, Germany). Afterwards,
the purified amplicon was digested with Avrll (New England Biolabs, Ipswitch, MA) and Xhol (New
England Biolabs, Ipswitch, MA) overnight with an excess of restriction enzymes and gel-purified once
more. The resulting fragment was then cloned into the library that had been digested with Avrll (New
England Biolabs, Ipswitch, MA) and Xhol (New England Biolabs, Ipswitch, MA) and de-
phosphorylated with Quick CIP alkaline phosphatase (New England Biolabs, Ipswitch, MA). The
ligation was performed using NEB T4 ligase (New England Biolabs, Ipswitch, MA) according to the
manufacturers protocol with 23 fmol of backbone and 46 fmol of barcode insert. The reaction mix was
incubated overnight using the TCL protocol as described above, followed by dialysis and concentration
also as described above. The transformation into NEB 10-beta electrocompetent E.coli (New England
Biolabs, Ipswitch, MA) was performed slightly differently. Since the number of barcodes per variant
was aimed to be restricted to an average of 30, only 30,000 transformants were supposed to be
harvested. A single transformation was performed and then plated for colony counting as described
above. The remaining cells were used to inoculate 12 times 10 mL of LB + 4X Amp using 2 x 5 pl, 2 x
10 pl, 2x 15 pl, 2 x 20 pl, 2 x 50 pl, and 2 x 100 pl of recovery culture. In the morning, the amount of
transformants was quantified by counting colonies on the plates and the number of liquid cultures
containing a total of ca. 30,000 transformants was pooled and purified by splitting the entire pellet over
10 Miniprep columns (QIAGEN, Hilden, Germany) and eluting each in 30 pl of EB Buffer. This
resulted in 145 pg of plasmid library. Successful barcoding was assessed via Sanger sequencing of eight
clones. All but one clone showed a correct barcode insertion.

Barcode-variant association

To put the variant and barcode in close proximity and ensure a sequencing amplicon size suitable for
[llumina sequencing, the intermediate library was digested with [-Scel (New England Biolabs, Ipswitch,
MA) and Nhel-HF (New England Biolabs, Ipswitch, MA) to remove parts of the spacer sequence, the
SP2 Illumina primer binding site, the CYC promoter, and the 3x Flag tag — FR fragment — L4 fusion.
Afterwards, the ends were blunted with NEB DNA Polymerase 1, Large (Klenow) Fragment (New
England Biolabs, Ipswitch, MA) according to the manufacturers protocol and then purified using the
QIAGEN Mini Elute Reaction Cleanup Kit (QIAGEN, Hilden, Germany) and eluted with 16 pl of
buffer EB. The blunt-ended fragments were then re-circularized using NEB T4 ligase (New England
Biolabs, Ipswitch, MA). Five reactions of 50 pl with 19 fmol of fragment each were setup and incubated
overnight at 15 °C. In the morning, 30 pl per reaction were dialyzed as described above. Afterwards,
the five reactions were pooled and concentrated on the speedvac to ca. 20 pl. A single transformation
was performed into NEB electrocompetent bacteria (New England Biolabs, Ipswitch, MA) as described
above. The non-plated cells were poured in 50 mL of LB + 4x Amp and incubated at 37 °C for 16 h. In
the morning, a total of ca. 70 Mio transformants were counted. The cells were harvested, and 230 pg of
DNA was extracted using the NucleoBond® PC 500 kit (Macherey-Nagel, Diiren, Germany).
Efficiency of the re-circularization was checked by Sanger sequencing of eight clones. All showed the
expected results, with the barcode and the JUN variant sequence separated by 52 bp.

To prepare the library for sequencing, a two-step PCR was performed to add the Illumina adapter
sequences to the amplicons. Since only the SP1 primer binding site was still present in the plasmid, the
SP2 primer binding site had to be added via the first round of PCR. For this, 2 ng of the re-cloned library
were used as template and a 367 bp barcode-variant fragment was amplified using the KAPA HiFi
HotStart DNA Polymerase Kit (Roche Sequencing Solutions Inc, Pleasanton, CA) and primers
oDL00345 and oDL00518. The PCR was run for 10 cycles, the annealing was performed at 64 °C for
15 sec and the extension at 72 °C for 15 sec. Afterwards, the reaction was incubated with 20 pl of
ExoSAP-IT (Thermo Fisher Scientific, Waltham, MA) at 37 °C for 15 min to remove residual
oligonucleotides, followed by heat inactivation at 80 °C for 15 min. The reaction was then purified
using the QIAGEN Mini Elute Reaction Cleanup Kit (QIAGEN, Hilden, Germany) and eluted with 12
ul of buffer EB. For the second round of PCR, the entire eluate was used as input for a 300 ul PCR
reaction mastermix with the KAPA HiFi HotStart DNA Polymerase kit (Roche Sequencing Solutions


https://doi.org/10.1101/2023.10.17.562688
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562688; this version posted October 20, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Inc, Pleasanton, CA) using primers 0DL00345 and 0oDL00346. The mastermix was split in 6 x 50 pl
and the PCR was run for another 10 cycles with an annealing temperature of 72 °C. After PCR, the six
reactions were pooled. After verifying the specificity of the amplification on gel, the PCR was gel-
purified with the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany). The eluate was once more
quality-checked with a Bioanalyzer (Agilent Technologies, Santa Clara, CA) which showed
chromatograms of single peaks at the correct size. For further quality control, a qPCR was performed
using the KAPA Library Quantification Standards with Primer (Roche Sequencing Solutions Inc,
Pleasanton, CA). The library was then sequenced on an Illumina NextSeq 500 Sequencing System
(Illumina, San Diego, CA) with the Mid-output 300 cycle paired-end sequencing run type. To deal with
the low complexity of the library, 30 % of PhiX phage library were spiked in.

Adapters were first removed using cutadapt 1.18*. The 5° adapter was removed from the forward read
upstream and including the Avrll site, while the 5° adapter was removed from the reverse read
downstream and including the HindIIl and BamHI sites present in tandem. This was done using the
default error rate of 0.1. The last base, which seems to be systematically added by the sequencer, was
removed from both forward and reverse read. The minimum overlap was set to 6 and max number of
N per read set to 0. Forward and reverse reads were then merged using PEAR 0.9.11*° with a minimum
overlap size of 12, min and max read length of 249 and 259 respecitvely (expected length is 254) and a
p-value of 0.05. Merged reads where then pre-processed in R using the shortread package. First, the
read was split between barcode and variant sequences. For the barcode, the first 24 bp of the read were
used since the sequence upstream of the expected barcode positoon was discarded by cutadapt. Even if
there is an indel, these are the 24 bp that will correspond to the barcode during the deepPCA. For the
variant, a perfect and unique match of the 10 bp directly upstream of the first JUN codon was required
and the sequence downstream is used as the JUN variant sequence since all sequences downstream of
the stop codon were discarded by cutadapt.

Read counts were then aggregated to unique barcode-variant sequence pairs. To identify true unique
barcode-variant pairs present in the sample from sequencing errors or PCR template switching, which
should be at lower frequency, we also counted the total counts for individual barcode and variant
sequences. Each unique barcode-variant pair was then also expressed as the percentage of the
corresponding total barcode and variant counts. Barcode-variant pairs with less than 10 reads were
filtered out since they are far from the 1000 read average expected for the 30,000 transformant obtained
and thus likely to be sequencing errors. This reduced the number of unique barcode sequences from
~500k to 30416, indeed close from our expectation. Next, read counts that likely correspond to
sequencing error of the same barcode were collapsed. Thanks to the barcode length, it is highly unlikely
the barcodes close in sequence were cloned to the same variant. For each unique variant, read counts
from all barcodes with a Hamming distance of 4 bp or less were collapsed to the barcode with the
highest frequency. This was then repeated to the second highest frequency barcode, and iteratively until
all remaining barcode sequences were processed and all true barcodes associated to this variant were
identified. This step further reduced the number of unique barcode sequences to 28969. Plotting read
counts of barcode-variant pairs as a function of both total barcode and variant counts reveals a cluster
of pairs where both the barcode and the variant have a high total read count but the pair has a low read
count. These are likely chimeras that result from template switching during PCR, and were removed by
filtering out pairs with less than 100 counts for which the total barcode and variant counts were higher
than 300 and 3000 respectively. Finally, for each unique barcode, variant read counts that correspond
to sequencing errors were collapsed to the highest frequency variant. A lower frequency variant was
considered a sequencing error if it had a Hamming distance of not more than 1 compared to the highest
frequency variant, if this mutation was in a different codon and if its total count is 100x lower than the
total count of the highest frequency one. If the highest frequency variant was the wild-type JUN
sequence, then the variants from which to collapse the count also could not be a variant expected from
the mutagenesis design. After this process, unique barcodes for which all associated variants could not
be collapsed to the highest frequency one were flagged as promiscuous. 167 barcodes were also flagged
as having a Hamming distance <=4 to at least one other barcode and for which sequencing error during
deepPCA could falsely attribute the read between two closely related barcodes. Ultimately, we obtained
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a total of 28336 high confidence unique barcodes out of which 23385 were associated to expected JUN
variant sequences for an average of 38 barcodes per amino acid variant.

Final library cloning

To prepare the backbone, all wild-type bZIP intermediate plasmids were digested with Avrll (New
England Biolabs, Ipswitch, MA) and HindIII-HF (New England Biolabs, Ipswitch, MA),
dephosphorylated with Quick CIP alkaline phosphatase (New England Biolabs, Ipswitch, MA), gel-
purified with the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany) and pooled at equimolar
ratios. To prepare the inserts consisting of the Jun variants fused to the FR fragment, the upstream CYC
promoter and the variant barcode, the prey intermediate library was digested with Avrll (New England
Biolabs, Ipswitch, MA) and HindIII-HF (New England Biolabs, Ipswitch, MA) and gel-purified with
the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany).

A ligation reaction containing 200 fmol of backbone pool, 600 fmol of insert pool, 10 ul of NEB T4
ligation buffer (New England Biolabs, Ipswitch, MA), 5 pl of NEB T4 ligase (New England Biolabs,
Ipswitch, MA) filled up to a volume of 100 pl with MilliQ H,O (Merck Millipore, Darmstadt, Germany)
was setup. The reaction was split in 2x 50 pl and incubated in a PCR cycler with the TCL program as
described above. Afterwards, the ligase was heat-inactivated at 65 °C for 15 min, the 2x 50 ul were
pooled and then split in 3 x 33 pl which were each dialyzed against 50 mL of MilliQ H,O (Merck
Millipore, Darmstadt, Germany) as described above. The dialyzed samples were pooled, which resulted
in a total volume of ca. 80 pl. This was concentrated to 25 ul with a speedvac. Two transformations into
NEB 10 beta electrocompetent cells (New England Biolabs, Ipswitch, MA) were performed as
described above. After recovery, the culture was spread on 35 individual 15 cm diameter LB + 2x Amp
plates. The cells were grown to a lawn at 37 °C for approximately 16 h and then scraped off the plates
with sterile H>O and a plastic spatula. The pellet was washed once with sterile H,O and then each library
was purified over two columns of the NucleoBond® PC 500 kit (Macherey-Nagel, Diiren, Germany).
A total of 17 Mio were harvested. The plasmid extractions yielded ca. 1,245 pg of DNA. The quality
of the libraries was assessed via test digests, which showed the expected band patterns.

Large-scale yeast transformation

The transformation was performed in six replicates following a slightly modified protocol from the one
described in 2. Yeast cells of the BY4742 strain were streaked from a glycerol stock on YPAD plates
and incubated at 30 °C for two days prior to the experiment. For each replicate, a single colony was
used to inoculate 15 mL of liquid YPAD and grown to saturation overnight at 30 °C, 200 rpm shaking.
In the morning, OD600 was measured and for each replicate, a culture of 350 mL pre-warmed YPAD
was inoculated at an OD600 of 0.3 and grown at 30 °C and 200 rpm shaking for about 4.5 h until an
OD600 of 1.2 to 1.6 was reached. The cells were harvested for 10 min at 3,000 g. Afterwards, the cells
were washed with 50 mL H»O and centrifuged for 5 min at 3,000 g, the supernatant was discarded, and
a second washing step with 50 mL SORB was performed in the same way. Finally, the pellets were re-
suspended in 14 mL SORB and incubated for 30 min at RT on a wheel. Next, 350 pl of 10 mg/mL pre-
boiled salmon sperm DNA (Agilent Technologies, Santa Clara, CA) were added and mixed thoroughly
with the cells before adding 7 pg of the final library to each replicate and mixing by inversion. Each
replicate was then split in two times 7 ml and distributed over two 50 mL Falcon tubes. Afterwards, 35
mL of Plate Mixture were added to each tube and the tubes were then incubated for another 30 min at
RT on a wheel. Then, 3.5 mL of DMSO (AppliChem, Darmstadt, Germany) were added to each tube,
mixed well by inversion, and the tubes were heat-shocked for 20 min in a 42 °C water bath. To
homogenize the heat within the tubes, they were inverted 6 times after 1 min, 2 min 30 sec, 5 min, 7
min, 10 min, and 15 min. Afterwards, the tubes were centrifuged for 5 min at 3,000 rpm. The
supernatant was removed by pouring first, followed by quick spin and aspiration of the leftover
supernatant with a vacuum pump to get rid of any remnants. The pellets were then each re-suspended
in 50 mL of pre-warmed recovery medium and incubated at 30 °C for 1 hour without agitation. They
were harvested by centrifuging for 5 min at 3,000 g. The two pellets per sample were then pooled again
by resuspending in 50 mL SC-ura and harvested once more for 5 min at 3,000 g. After this, the
supernatant was discarded, and each pellet was resuspended in 700 mL of SC-ura in 5 L Erlenmeyer
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flasks. From this culture, 10 pl and 50 ul of each sample were plated on SC-ura plates to assess the
transformation efficiency. The plates were incubated at 30 °C for 48 h. The cultures were incubated at
30 °C and 200 rpm shaking for 48 h until they reached saturation. The numbers of transformants varied
between 7 and 18 Mio, ensuring at least 10-fold library coverage in each replicate.

BindingPCA

After the transformant selection culture had reached saturation after about 48 h of growth, a second
selection cycle was performed by inoculating a culture of 1 L. of SC-ura/ade/met at and OD600 of 0.1
and letting it grow until an OD600 of 1.2 — 1.4. From this culture, a competition culture of 1 L
competition medium (SC-ura/ade/met + 200 pg/mL MTX in 2% DMSO) was inoculated at an OD600
of 0.05 and grown for 5 generations until an OD600 of 1.6. The INPUT samples were harvested from
the remaining cells of the second selection culture by centrifugation for 5 min at 3,000 g and two washes
with 50 mL H>O and then frozen at -20 °C. The OUTPUT samples were harvested from the competition
cultures in the same way.

DNA extraction

DNA was extracted from the yeast pellets using a yeast Midiprep protocol to enrich plasmid over
genomic DNA. The cells were first spheroblasted by thawing at RT, re-suspending in 20 mL DTT
buffer, and incubating at 30 °C and 200 rpm shaking for 15 min. The cells were then harvested at 2,500
g for 5 min, re-suspended in 20 mL Zymolyase buffer and incubated at 30 °C and 200 rpm shaking for
1.5 h. The spheroblasted cells were collected in 50 mL Falcon tubes and spun for 5 min at 2,500 g and
re-suspended in 7.5 mL of home-made buffer P1 (according to the manufacturers recipe, QIAGEN,
Diiren, Germany). 7.5 mL of home-made buffer P2 (according to the manufacturers recipe, QIAGEN,
Diiren, Germany) were added, the samples were mixed by inverting the tubes several times and
incubated at RT for 10 min. 7.5 mL of pre-cooled buffer P3 (QIAGEN, Diiren, Germany) were added
and the samples were again homogenized by inverting the tubes several times. The samples were
centrifuged for 15 min at 3,000 g and 4 °C and the supernatant was then recovered in 50 mL
centrifugation tubes (Nalgene, Rochester, NY, USA) and re-centrifuged for 15 min at 15,000 g and 4
°C. The supernatant was then filtered to remove remaining cell debris. The cleared supernatant was
applied to columns provided in the Plasmid Midi Kit (QIAGEN, Diiren, Germany) that had been
equilibrated with 10 mL buffer QBT. Once all of the supernatant had been applied, the columns were
washed twice with 10 mL buffer QC and finally, the DNA was eluted with 5 mL buffer QF and collected
in 15 mL Falcon tubes. 3.5 mL of Isopropanol was added to each sample and mixed. The samples were
then distributed evenly over 2 x 5 mL reaction tubes (Eppendorf, Hamburg, Germany) and spun at
14,200 g for 15 min. The supernatant was removed and the two pellets per sample were pooled by re-
suspending each in 500 mL freshly prepared 70 % ethanol and pipetting them together in a normal 1.5
mL reaction tube. The pellets were spun down again at 13,000 rpm for 1 min and then left to dry at RT.
Finally, the pellets were re-suspended in 100 pl of buffer EB.

To determine the molar concentration of the plasmid in each sample, as well as the enrichment over
genomic DNA, a qPCR was performed using primers OGD241 and OGD242 that bind in the plasmid
backbone. For this, the extracts were diluted 1/200 and a standard curve was made using clean plasmid
originating from a Miniprep that had been made of one clone of the library and of which the
concentration had been determined using the Qubit system (Invitrogen, Waltham, MA, USA). The
concentrations used for the standard curve were 0.4 ng/ul, 0.08 ng/ul, 0.016 ng/ul, 0.0032 ng/ul,
0.00064 ng/ul, 0.000128 ng/ul, and 0.0000256 ng/ul. The qPCR was performed using the 2X
SsoAdvanced Univeral SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA) according
to the manufacturers protocol.

Sequencing library preparation
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Both [llumina primer binding sites (SP1 and SP2) are already present in the plasmid, so only a single
round of PCR had to be performed to prepare the final sequencing libraries. 400 Mio molecules of
plasmid for each sample were used as template to ensure at least 10-fold coverage of input molecules
over expected read counts. To enable multiplexed sequencing, primers of the NEBNext dual primer set
1 (New England Biolabs, Ipswitch, MA) were used. The INPUT samples used the NEBNext 1501 primer
as forward primer and the NEBNext 1701 to 1706 primers as reverse primers. The OUTPUT samples
used the NEBNext 1502 primer as forward primer and also the NEBNext 1701 to 1706 primers as reverse
primer. The libraries were amplified with Q5 polymerase (New England Biolabs, Ipswitch, MA) in a
50 pl reaction using 400 Mio template molecules, 0.25 pM of each primer, 200 uM dNTPs (New
England Biolabs, Ipswitch, MA), 1X concentrated Q5 reaction buffer (New England Biolabs, Ipswitch,
MA) and 0.5 pl polymerase. The PCR was run for 18 cycles with 63 °C annealing for 30 sec and 72 °C
extension for 30 sec. Successful PCR was confirmed by checking 5 pul of each sample on a 1% Agarose
gel. The rest of each reaction was then loaded on a separate 1 % Agarose gel, and the 375 bp amplicon
were cut out and purified using the MinElute Gel Extraction kit (QIAGEN, Diiren, Germany) and eluted
in 20 pl buffer EB. The concentrations were measured using the Qubit system (Invitrogen, Waltham,
MA, USA). The concentration of individual samples was confirmed using the KAPA Library
Quantification Standards with Primer (Roche Sequencing Solutions Inc, Pleasanton, CA). All 6 INPUT
and 6 OUTPUT samples per screen were pooled at equimolar ratios. The concentration of the final pool
was confirmed once more first with Qubit, then with qPCR. A final quality control was performed by
loading the library on a Bioanalyzer (Agilent Technologies, Santa Clara, CA). Finally, the library was
submitted for sequencing on a single lane of the [llumina HiSeq 2500 System (Illumina, San Diego,
CA) with the 50 bp single-end sequencing run type. To increase sequencing quality and clustering
efficiency, 25 % of PhiX phage library were spiked into the library.

Sequencing data processing and binding score calculation

Raw sequencing reads were filtered for an average Q score >= 20, split into the wild-type barcode (first
20bp) and the variant barcode (last 24bp), and collapsed to obtain read counts for each barcode pair.
Wildtype barcode reads with a Hamming distance <= 2 to the expected true barcode sequence were
kept. Jun variant barcode reads with a Hamming distance < 2 to the expected true barcodes and a
difference in Hamming > 2 between the two best matches were kept. Read counts of barcode pairs
matching the same combination of JUN amino acid substitution and wild-type partners were collapsed.
Output samples were sequenced twice to increase coverage, and the read counts of the sample were
added. Read count tables were then processed with DiMSum v1.3% (https:/github.com/lehner-
lab/DiMSum) using STEAM stages 4-5 (“countPath” option) and setting the JUN wild-type x FOS pair
as an arbitrary reference to obtain binding scores and associated errors.

Thermodynamic model

We used MoCHI (https://github.com/lehner-lab/MoCHI)*!?? to fit a global mechanistic model to the
bPCA data where JUN variants binding to all partner bZIPs are modelled as an equilibrium between
two states: unfolded and unbound or folded and bound.

We assume that free energy changes of binding are additive and shared between all partner bZIPs i.e.
the total binding free energy changes of an arbitrary variant to an arbitrary bZIP relative to the wild-
type JUN sequence is simply the sum over residue-specific energies corresponding to all constituent
single amino acid substitutions.

In order to model bZIP-specific modifications in binding affinity we dummy encoded the
presence/absence of each partner bZIP in a 51-mer amino acid sequence appended to the JUN variant
amino acid sequence where a A>C substitution denotes the presence of the corresponding partner bZIP.
The associated inferred free energy changes for these dummy substitutions correspond to additive bZIP-
specific binding affinity effects.
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However, for some partners this thermodynamic model did not provide a good fit to the bPCA data and
suggested a partner-dependent non-linear trend corresponding to a multiplicative energy term
(effectively controlling the steepness of the sigmoid gradient). We therefore modified the model to infer
one such term for each bZIP partner in addition to the additive effects described above. This
modification indeed reduced the bias observed in the residuals, although without significantly
improving the overall goodness of the fit (R* = 0.91 in both cases). Interestingly, these multiplicative
terms are equivalent to Hill’s coefficient, which is determined by the cooperativity of the interaction
between multiple subunits, although the underlying mechanisms in the context of this assay remains
speculative pending further investigation.

We configured MoCHI parameters to specify a neural network architecture consisting of two additive
trait (free energy) layers i.e. one corresponding to the additive JUN and dummy-encoded bZIP partner
binding free energy changes (“Binding”) and another for the bZIP-specific multiplicative effects
(“BindingMod”). A single linear transformation layer outputs the predicted bPCA binding score. The
specified non-linear transformation “TwoStateFractionFoldedMod” derives from the Boltzmann
distribution function relate binding energies to proportions of folded and bound molecules.

A random 30% of variant-partner combinations was held out during model training, with 20%
representing the validation data and 10% representing the test data. Validation data was used to evaluate
training progress and optimise hyperparameters (batch size). Optimal hyperparameters were defined as
those resulting in the smallest validation loss after 100 training epochs. Test data was used to assess
final model performance.

Models were trained with default settings i.e. for a maximum of 1000 epochs using the Adam
optimization algorithm with an initial learning rate of 0.05. MoCHI reduces the learning rate
exponentially (y = 0.98) if the validation loss has not improved in the most recent ten epochs compared
to the preceding ten epochs. In addition, MoCHI stops model training early if the wild-type free energy
terms over the most recent ten epochs have stabilised (standard deviation 107?).

Comparison to in vitro measurements

In vitro FRET measurements were obtained from Reinke et al**. Kp measured at 37C were converted
to DG, normalized to the JUN-FOS DG to obtain DDG and the Pearson correlation with the partner’s
DDG fitted by MoCHI was calculated.

Amino acid features predictive of global energy

To determine which amino acid feature relates to global energy, we fitted a linear model between a
database of >500 amino acid features®® and the DDG fitted by MoCHI. We retained only the 536
features for which values for all 20 amino acids were available. We performed a forward feature
search by an iterative process where each feature was used one-by-one together with the heptad
number and the position within the heptad of each mutant. The best predictive feature was retained,
and the search was repeated including the previously identified predictive feature. We next
determined the best feature at each heptad position. The data was split by heptad position, and at each
position, each feature was tested alone and the best one was retained.

Decomposing mutational effect into global and specific effects

Despite the multiplicative term, the fit for ATF4 was biased and the fitted sigmoid does not fit the
apparent trend. To not bias the analysis of specific effects, all measurements of binding to ATF4 were
therefore filtered out. Additionally, all measurements with 10 or less counts in any input replicate or 0
count in any output replicates were filtered out because of the high error inherent to low read counts.
Mutational effect was then calculated by subtracting the binding score of interaction between wild-type
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JUN and each corresponding partner. The measurement error of the mutational effect was calculated
by propagating the error of the mutant and the corresponding wild-type pair, and a p-value was
calculated by performing a one-sample t-test. P-values were adjusted by the FDR method.

Mutational effects due to global energy effects were calculated by subtracting the binding score
predicted by MoCHI from the binding score of the corresponding wild-type JUN — partner combination.
Corresponding errors were calculated by propagating the measurement and prediction errors, p-values
were calculated by a one-sample t-test and corrected by the FDR method. Specific effects were
calculated by subtracting the binding score predicted by MoCHI from the one measured, and error, p-
values and FDR calculated as above.

AlpaFold2 predictions

Predictions of protein complexes between JUN and a few partners presented in Fig. 7 were generated
using Alphafold2-multimer (v2.3.2) using the sequences in Table S1, with multimer models v3 and
subsequent model relaxation*®*’. The pipeline was run through GUIFold*® (v0.4). For the generation of
multiple sequence alignments, the “full _dbs” protocol was employed. In case of each prediction target,
the best model was selected by the smallest inter-subunit average predicted aligned error (PAE). The
range of inter-subunit average PAE for all predictions was between 5.5 and 10.0 A.

Data availability

Deep sequencing data is available at GEO with accession number GSE245326.
Code availability

All custom scripts will be provided upon requests
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Fig. 1: Experimental design. a, JUN-FOS dimer and heptad structure (pdb: 1fos). b, Cloning strategy
and deepPCA. Two intermediate libraries were constructed. 640 variants of JUN were generated using
overlap extension PCR and barcoded using random primer overhangs, 54 wild-type bZIPs were cloned
and barcoded using random primer overhangs. The two intermediate libraries were cloned together to
juxtapose the JUN variant barcodes with the wild-type bZIP barcodes. The full libraries were
transformed into yeast cells, which were grown in selective medium containing Methotrexate.
Enrichment of interacting pairs was quantified by sequencing barcode counts in INPUT and OUTPUT
cultures by Next Generation Sequencing. Binding scores were calculated using DiMSum?® to assess the
strength of interaction. ¢, Screening strategy. To identify context-dependent effects of mutations on the
interaction between JUN and all 54 wildtype bZIPs, the effect of every possible single amino acid
mutation was measured. This allowed the identification of determinants of specificity for individual
interactions. d, Correlation between replicate 1 and 2 binding scores. e, Binding score distribution. f,
Binding scores between wild-type JUN and all 52 wild-type partners. Error bars represent 95%
confidence interval.
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to the AAG predicted by the five top features represented in panel a, and y-axis corresponds to the AAG
fitted by MoCHI. ¢, Proportion of variance in mutant AAG explained by the top feature at each of the
seven heptad positions. d,e Proportion of variance in binding scores explained by global binding energy
at each of the seven heptad positions (d) and each of the 32 mutated positions (e).
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Fig. 5: Mutational effects can be decomposed in their general and specific component. a,b,
Specifcity plots representing the binding scores as a function of the global binding energy (AAG)
inferred by MoCHI. The sigmoid curve represents binding scores predicted by MoCHI, and the vertical
residual from the curve thus represent the specific effect of this mutation on the interaction with this
partner. The three characters in the mutant name corresponds to heptad, position within the heptad and
amino acid substitution, respectively. Mutant names are colored according to their heptad position,
which further highlights that several mutations at the same few positions have specific effects.
Examples with the four partners presented in Fig 2B (a) and general principle of the decomposition of
specific and global effects (i.e. effects due to change in global energy) (b). ¢, distribution of mutational
effect du to changes in global binding energy (top) and specificity (bottom). d,e, Plot of mutational
effects as a function of their specificity (d) and global binding energy (e) components. Each point
represents a different variant-partner pair.
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Fig. 6: JUN’s determinants of specificity. a, Heatmap of specific mutational effects revealing clusters
of mutations at a few positions that affect some partners specifically. Columns are clusters according
to each partners specificity profile. b, Summary of positions involved in determining JUN’s specificity.
Positions were labelled as a positive or negative determinant of specificity if it had at least one
significant specific mutational effect with one partner (FDR < 5%, specific effect < -0.5 or > 0.5,
respectively). ¢, Relationship between the specific and global binding energy components of mutational
effects. Each point represents a different variant-partner pair and is colored according to its mutational
effect relative to the binding score of the corresponding wild-type interaction (FDR < 5%). d, Changes
in global binding energy for different bins of specific effects, showing the pleiotropic nature of
specificity-changing mutations (FDR < 5%)).

a

I affinity-only positions

sq pleiotropic positions

A pleiotrbpip s‘ynergii‘s’tix\:

affinity only

AAG partner B

\ple\iotr‘opic“
" antagonistic

\/

AAG partner A

N l\. Specific ‘i‘nc\r\ea\s‘ej\n affinity

MAF  JUN

AAG partner B

R -

AAG partner A
Fig. 7: Structural insights into the mechanisms of the determinants of specificity. a, b, ¢, structural
insights into a few examples of determinants of specificity. All structures were predicted using
AlphaFold2* since crystal structures are not available for many of the dimers. d, Distribution of
affinity-only and pleiotropic positions within the bZIP interface. Crystal structure of the JUN-FOS
dimer®. e, zig-zag model of bZIP evolution. Because of the pleiotropic antagonistic nature of nearly all
mutation changing specificity, evolution of specificity requires compensatory mutation at the far side
increasing affinity globally by changing global binding energy only.
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Fig. S1: Specificity plots for all 52 partners. Specifcity plots representing the binding scores as a
function of the global binding energy (AAG) inferred by MoCHI. The sigmoid curve represents binding
scores predicted by MoCHI, and the vertical residual from the curve thus represent the specific effect
of this mutation on the interaction with this partner. The three characters in the mutant name
corresponds to heptad, position within the heptad and amino acid substitution, respectively. Mutant
names are colored according to their heptad position, which further highlights that several mutations at
the same few positions have specific effects.
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