

1 Cooperation between bacteriocytes and endosymbionts drives

2 function and development of symbiotic cells in mussel holobionts

Hao Chen^{1†*}, Mengna Li^{1,4†}, Zhaoshan Zhong^{1†}, Minxiao Wang^{1,3*}, Chao Lian¹,
Guanghui Han¹, Hao Wang¹, Li Zhou¹, Huan Zhang¹, Lei Cao¹, Chaolun Li^{1,2,3*}

⁵ ¹ Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and
⁶ Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences,
⁷ Qingdao 266071, China

²South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

³Laoshan Laboratory, Qingdao 266071, China

⁴ National Deep Sea Center, Qingdao 266071, China

13

[†]These authors contributed equally to this work.

14 "Correspondence and requests for materials should be addressed to H.C. (email: chenhao@qdio.ac.cn),
15 M.W. (email: wangminxiao@qdio.ac.cn) or C.L. (email: lcl@qdio.ac.cn)

16 Abstract

17 Symbiosis drives the adaptation and evolution in multicellular organisms. Modeling
18 the function and development of symbiotic cells/organs in holobionts is yet
19 challenging. Here, we surveyed the molecular function and developmental trajectory
20 of bacteriocyte lineage in non-model deep-sea mussels by constructing a
21 high-resolution single-cell expression atlas of gill tissue. We show that mussel
22 bacteriocytes optimized immune processes to facilitate recognition, engulfment, and
23 elimination of endosymbionts, and interacted with them intimately in sterol,
24 carbohydrate, and ammonia metabolism. Additionally, the bacteriocytes could arise
25 from three different stem cells as well as bacteriocytes themselves. In particular, we
26 showed that the molecular functions and developmental process of bacteriocytes were
27 guided by the same set of regulatory networks and dynamically altered regarding to
28 symbiont abundance via sterol-related signaling. The coordination in the functions
29 and development of bacteriocytes and between the host and symbionts underlies the

1 interdependency of symbiosis, and drives the deep-sea adaptation of mussels.

2 **Keywords**

3 Chemosynthetic endosymbiosis, function and development of symbiotic cell,
4 host-symbiont interaction, metabolic remodeling, development plasticity

5

6 **Introduction**

7 Symbiosis is a major force in the acquisition of novel adaptive traits, expansion of
8 ecologic range, and shaping the biodiversity and evolution of eukaryotic organisms¹.
9 To establish symbiotic associations, majority of animal hosts have formed highly
10 complex symbiotic cells and organs (such as bacteriocytes of aphid, light organ of
11 bobtail squid, trophosome of tubeworm), which harbor the symbionts (especially the
12 endosymbionts) and provide mutualist relationships. Knowledge on the function and
13 development of symbiotic cells and organs are therefore necessary to understand the
14 formation and evolution of symbiosis². Along with a growing number of studies, the
15 function of, and symbiotic interactions within, symbiotic cells and organs are
16 becoming clear in some model holobionts³⁻⁵. However, characterizing the function
17 and development of symbiotic cells and organs remains challenging in non-model
18 holobionts⁶. Furthermore, questions on whether symbionts influence the function and
19 development of symbiotic cells, and the possible mechanisms involved in this activity,
20 remain debated and may vary greatly across species⁷⁻⁹.

21 Since their first discovery in 1977, the chemosynthetic ecosystems in deep-sea cold
22 seeps and hydrothermal vents have attracted much attention¹⁰. Noticeably, majority
23 of the endemic invertebrates in these ecosystems have formed closed symbiotic
24 association with the chemosynthetic bacteria to obtain nutrition¹¹. Among them, the
25 mollusks (especially bivalves from the *Mytilidae*, *Vesicomyidae*, *Solemyidae*,
26 *Thyasiridae*, and *Lucinidae* families) are particular interesting as the chemosymbiosis
27 in mollusks can vary greatly depending on the symbiont location (extracellular or
28 intracellular), symbiont type (methanotroph, thiotroph, or both), and transmission
29 mode (vertical or horizontal)¹². Moreover, although certain mollusks have developed
30 bacteriocytes in their gill tissue to house chemosynthetic endosymbionts, others may

1 lose their symbionts in particular environments and experience a "reverse" evolution
2 akin to their non-symbiotic shallow water counterparts ^{13,14}. For these reasons, the
3 mollusks are therefore regarded as a promising model in investigating the
4 chemosymbiosis, and especially the function and development of symbiotic cells and
5 organs.

6 Among the deep-sea mollusks, the *Bathymodiolinae* mussels are known to harbor
7 endosymbiotic methanotrophs and/or thiotrophs in their specialized gill epithelial
8 cells (bacteriocytes) ^{15,16}. It is estimated that adult deep-sea mussels contain 10^8 to 10^9
9 bacteriocytes with hundreds of methanotrophic endosymbionts or thousands of
10 thiotrophic endosymbionts harbored inside a single bacteriocyte ¹⁷. Recently, several
11 pathways and genes potentially involved in the metabolic and immune interaction
12 between mussel and endosymbionts are proposed, highlighting the unique way of
13 host-symbiont interaction ¹⁸⁻²². Additionally, it is also demonstrated that new
14 bacteriocytes could arise from gill cells adjacent to growth zones, in which symbionts
15 were colonized from ontogenetically older bacteriocytes ²³. A more insightful finding
16 is that the structure of new bacteriocytes would change drastically after symbiont
17 infection, indicating the potential role of symbionts in the function and development
18 of bacteriocytes ^{23,24}. However, due to the extensive heterogeneity of gill tissue and
19 limits in the isolation and *in vitro* culture of bacteriocytes and endosymbionts, the
20 exact function and development process of bacteriocytes, as well as the mechanisms
21 beneath these processes, still remain obscure and debatable. With recent advances in
22 single cell transcriptome and spatial transcriptome technologies, it is now possible to
23 reveal the function and development of symbiotic cells and organs in either model or
24 non-model organisms, and with and without host cell lineages and culturable
25 symbionts ²⁵⁻²⁷. Recently, we have constructed a comprehensive cell atlas of the gill
26 tissue in the methanotrophic deep-sea mussel *Gigantidas platifrons* using
27 single-nucleus RNA sequencing ²⁸. The successful identification of three stem cell
28 lineages and bacteriocyte lineage provides opportunity to reveal the function and
29 development of bacteriocytes, and to survey how symbionts influence these processes.
30 With help of an updated high-resolution single-cell transcriptome and spatial

1 transcriptome, we here conducted a comprehensive analysis by using the phagocytosis
2 assay, 5-ethynyl 2'-deoxyuridine (EdU) labeling assay, and 3D electron microscopy
3 data to characterize the molecular function and development trajectory of
4 bacteriocytes. We also conducted an *in situ* decolonization assay to compare our data
5 with those obtained on the decolonized mussel and have successfully demonstrated
6 the potential influence of symbionts on the function and development of symbiotic
7 cells.

8

9 **Results**

10 ***Functional landscape of bacteriocyte lineage***

11 To improve the single cell transcriptome performance and characterize the
12 expression pattern of key cell lineages such as bacteriocytes and stem cells, we here
13 employed two groups of deep-sea mussels in the present study and conducted both
14 single-cell transcriptome (scRNA-seq, Chromium platform of 10x Genomics) and
15 spatial transcriptomics (ST-seq, Visium platform of 10x Genomics) analysis (Fig. 1A).
16 In particular, mussels collected from the seepage region (methane concentration up to
17 31,227 ppm, designated as the InS group, n=14) were used to represent normal
18 mussels with a fully symbiotic state; mussels transplanted *in situ* to a low methane
19 region (methane concentration about 800 ppm) for 604 days with an average 76.5%
20 decrease of endosymbionts were used to represent partially decolonized mussels (DeC
21 group, n=5). Principal co-ordinates analysis (PCoA) based on the meta-transcriptome
22 data of the two groups showed robust expressional stability within individuals of the
23 same group and strong variations between individuals of different groups
24 (Supplementary Fig. S1A–B). Two individual mussels with similar body size were
25 randomly selected from each group and subjected for scRNA-seq and ST-seq. To
26 include more possible cell types, the dorsal–middle region of the gill (containing both
27 descending and ascending gill filaments and adjacent to posterior end of mussel) was
28 employed to scRNA-seq after cell nuclei extraction. In addition, the cross-sectioned
29 middle region of the gill (dorsal view) was also used for ST-seq to verify the
30 identified cell types (Fig. 1A). As a result, approximately 26,707 cells with 37,585

1 mean reads per cell, and over 3,600 barcoded spots with 172,705 mean reads per spot,
2 were obtained for the two samples evaluated using scRNA-seq and ST-seq
3 respectively (Supplementary Table 1). Transcript coverage profiling indicated that
4 sequencing depth of all samples was saturated for scRNA-seq and ST-seq
5 (Supplementary Fig. S1C–F), ensuring the reliability of subsequent analyses.

6 Consequently, a total of 14 cell clusters were identified here based on our
7 scRNA-seq data, among which 13 clusters were found sharing majority of marker
8 genes identified in our previous study²⁸. For example, the bacteriocytes were found
9 transcribed a total of 199 candidate marker genes (with expression levels at least
10 1.5-fold higher than that of other cell cluster; *p*-value less than 0.01, Supplementary
11 Table 2) based on scRNA-seq data of both the InS and DeC groups, which consisted
12 10 out of 25 candidate marker genes that identified previously²⁸. To further verify the
13 identified cell types, we combined scRNA-seq- and ST-seq-derived data using
14 Seurat-v3.2 anchor-based integration and projecting all identified cell clusters from
15 the scRNA-seq data onto gill tissue data of ST-seq (Fig. 1B–C). In support of the
16 scRNA-seq data, all annotated bacteriocytes in the scRNA-seq were found co-located
17 with MOB signals of the gill filament (Fig. 1D) while majority of the annotated
18 marker genes (83/199) were also found abundantly expressed in ST-seq data of InS
19 group. Given to the shared marker genes, we have successfully identified the
20 bacteriocytes (cluster 1), three types of stem cells [dorsal end proliferation cells
21 (DEPCs, cluster 0), posterior end budding zone cells (PEBZCs, cluster 2 and 6)], five
22 types of ciliary and smooth muscle cells [intercalary cells (ICCs, cluster 4), lateral
23 ciliary cells (LCCs, cluster 9), food grove ciliary cells (FGCCs, cluster 13), and
24 smooth muscle cells (SMCs, cluster 12)], five supportive cells [basal membrane cell 1
25 (BMC1, cluster 5 and 11), BMC2 (cluster 7), mucus cell (cluster 8), and inter lamina
26 cells (ILCs, cluster 10)] in our scRNA-seq data.

27 In addition, the median number of identified genes per cell and total number of
28 candidate marker genes (Supplementary Table 1, 2) have been improved substantially
29 in comparison with our previous study (with only 631 identified genes per cell per
30 sample, and 25 marker genes for bacteriocytes, 15 marker genes for stem-like cells)²⁸,

1 which reassures the characterization of function and development of bacteriocytes.
2 Indeed, the improved scRNA-seq performance provided more detailed information on
3 the biological processes of bacteriocytes. For example, function enrichment analysis
4 of marker genes (Supplementary Fig. S2A) showed that the bacteriocytes largely
5 encoded genes involved in metabolic processes (such as biosynthesis and transport of
6 carbohydrates, lipids, amino acids, and vitamins) and symbiosis-related immune
7 responses (including GO: 0002376, GO: 0009617, GO: 0044111, and GO: 0044403)
8 (Supplementary Fig. S2). Particularly, we noticed that a total of 67 out of 199 marker
9 genes, such as excitatory amino acid transporter 1 (*SLC1A3*), monocarboxylate
10 transporter 13 (*SLC16A14*), cathepsin-L (*CTL*), acid phosphatase type 7 (*ACP7*), and
11 myoneurin (*MYNN*), were consistently expressed by bacteriocytes in the InS and DeC
12 groups regardless of fluctuations in symbiont abundance. Comparatively, the rest of
13 the 132 out of 199 marker genes, including solute carrier family 40 member 1
14 (*SLC40A1*), ammonium transporter Rh type A (*RHBG-A*), solute carrier family 26
15 member 10 (*SLC26A2*), 24-hydroxycholesterol 7 alpha-hydroxylase (*CYP39A1*,
16 EC1.14.14.26), sugar phosphate exchanger 2 (*SLC37A2*), zinc finger protein 271
17 (*ZNF271*), and ETS-related transcription factor (*EHF*) were downregulated in the
18 DeC group in response to symbiont decolonization (Supplementary Table 3).

19 ***Symbiosis-related immune processes in bacteriocytes***

20 With merely the innate immunity, how invertebrate host forged the symbiotic
21 association with the specific chemosynthetic bacteria remains intriguing. We therefore
22 screened for the possible genes and pathways that participate in the establishment and
23 maintenance of symbiosis in bacteriocyte lineages. Although PRRs, such as TLRs and
24 PGRPs, could play vital roles in the recognition of symbionts in other holobionts²⁹,
25 we found that only several pattern recognition receptors (PRRs) were highly
26 expressed in bacteriocytes of fully-symbiotic mussels (InS group) or decolonized
27 mussels (DeC group), while numerous PRRs showed a relatively low level of
28 expression or even failed to be characterized (e.g., approximately 55 out of 146 TLRs
29 were not characterized by scRNA-seq). Nevertheless, one *TLR2* gene were annotated
30 as markers for bacteriocytes, respectively (Fig. 2A, Supplementary Table 2). In

1 addition, two PRRs (*rhamnose-binding lectin* and *TLR2*) showed increased expression
2 levels in bacteriocytes after decolonization (Supplementary Table 3).

3 At the meanwhile, we have detected abundant expression of endocytosis- and
4 lysosome-related marker genes in bacteriocytes of fully-symbiotic mussels (Fig. 2A,
5 Supplementary Table 2). The coordination among these genes could facilitate
6 phagocytosis and lysosome-mediated digestion of bacteria, which are often observed
7 in bacteriocytes and play crucial in establishment and maintenance of symbiosis (Fig.
8 2B, Supplementary Fig. S2B). Noticeably, we noted that majority of endocytosis- and
9 lysosome-related genes were down-regulated when symbionts decreased (Fig. 2C,
10 Supplementary Table 3), implying that endocytosis and lysosome-mediated digestion
11 could be vigorously regulated by the host depending on symbiont abundance. In
12 addition, although massive lysosome-related genes were abundantly expressed in
13 bacteriocytes while some endosymbionts were being digested by lysosomes, our EdU
14 labeling assay and 3D electron microscopy analysis yet showed that few
15 endosymbionts (3 out of 408 symbionts for an individual bacteriocyte) were
16 proliferating inside normal bacteriocytes of adult mussels and even fewer were being
17 captured from environment (InS group, Supplementary Fig. S2C, Supplementary
18 Video.1).

19 ***Metabolic interaction between the host and symbionts***

20 As the interface of symbiotic association, the deep-sea mussels are known obtain
21 and transport symbionts-deprived nutrients in bacteriocytes. As observed in the
22 function enrichment analysis, metabolic genes and processes were significantly
23 up-regulated in bacteriocytes than other cells, highlighting the unique role of
24 bacteriocytes. Noticeably, majority of metabolic marker genes were involved in
25 biosynthesis and transport of carbohydrates, lipids, amino acids, and vitamins,
26 implying metabolic interactions between the deep-sea mussels and symbionts. Among
27 these marker genes, the *CYP39A1* (EC1.14.14.26) gene was found massively
28 transcribed in bacteriocytes of fully symbiotic mussels (InS group) based on both
29 scRNA-seq and ST-seq data (Fig. 3A). As the key enzyme in the turnover of sterol
30 intermediates such as presqualene-PP, squalene, (S)-squalene-2,3-epoxide, and

1 4,4-dimethyl-cholesta-8,14,24-trienol, the unique expression pattern of *CYP39A1*
2 (EC1.14.14.26) gene inside bacteriocytes was further confirmed by FISH and IHC
3 assay. However, we also noticed that the mussel hosts are lack of related enzymes
4 such as EC2.5.1.21, EC1.14.1417, EC1.14.14154, and EC1.14.1536 to synthesize the
5 above sterol intermediates. Consistently, meta-transcriptome data showed that
6 methanotrophic endosymbionts were robustly transcribing enzymes such as
7 EC2.5.1.21 and EC1.14.14154 under normal condition (the top 10% highly expressed
8 genes in the InS group) in a complementary manner with the host (Fig. 3A,
9 Supplementary Fig. S3A–D, Supplementary Table 4), highlighting the metabolic
10 dependency of mussel hosts on sterol intermediates of symbionts³⁰.

11 It is also noticed that both host and endosymbionts were massively transcribing key
12 genes involved in gluconeogenesis and glycogen biosynthesis (including EC2.4.1.18,
13 2.4.1.21, 2.7.7.27, and 5.4.2.2) as demonstrated by meta-transcriptome data (the top
14 10% of highly expressed genes in the InS group, Fig. 3B, Supplementary Fig. S4,
15 Supplementary Fig. S5, Supplementary Table 4). While these results implied a robust
16 production of glycogen in mussels and endosymbionts, we also noted that multiple
17 enzymes in the gluconeogenesis pathway of endosymbiont were either insufficiently
18 expressed (EC5.3.1.9) or completely absent from the genome (EC3.1.3.11,
19 EC2.7.1.11, and EC4.1.2.13), which could result in overproduction of fructose-6P and
20 shortages of glucose-6P, fructose-1,6P₂, glyceraldehyde-3P, and glucose, and therefore
21 slow down the production of glycogen in symbionts and host. Conversely, we found
22 that all of these enzymes were transcribed by bacteriocytes, while a sugar phosphate
23 exchanger gene *SLC37A2* (responsible for transmembrane transport of fructose-6P,
24 glucose-6P, fructose-1,6P₂, and glyceraldehyde-3P) were abundantly expressed by
25 bacteriocytes even under normal conditions (scRNA-seq and ST-seq of InS group)
26 with proteins co-localizing with endosymbionts (Fig. 3B, Supplementary Fig. S5).
27 Complementation in carbohydrate metabolism strongly suggested that symbionts
28 could supply fructose-6P directly to the host in exchange for gluconeogenesis
29 intermediates (also known as the “milking” way). In addition, we also noted the
30 abundant expression of phosphate and carboxylate transporters (including the

1 phosphate-binding protein PstS, maltose 6-phosphate phosphatase, phosphate
2 permease, sodium-dependent dicarboxylate transporter SdcS, and bicarbonate
3 transporter BicA) in endosymbionts (Supplementary Table 4), which might be
4 responsible for the transportation of these sugar phosphates from symbionts.

5 When examining the TEM images of bacteriocyte, it is clearly showed that
6 endosymbionts were contained in separate vacuoles designated as symbiosomes.
7 While the presence of symbiosomes creates a suitable micro-niche for endosymbionts,
8 it also limits their access to environmental nutrients. While we have observed high
9 expression of ammonia consumption-related genes (top 10%) rather than the ammonia
10 production-related genes in endosymbionts (Fig. 3C, Supplementary Fig. S6,
11 Supplementary Table 4), the ammonia, unlike the oxygen, carbon dioxide, and
12 methane, could yet not pass freely through the membrane of symbiosomes, and
13 therefore must be supplied by the host. Ammonia, however, is detrimental to the host
14 as a by-product of protein digestion and nucleotide metabolism. Here, with
15 scRNA-seq and ST-seq data, we noted that the mussel host was massively transcribing
16 ammonium transporter gene *RHBG-A* in bacteriocytes under normal conditions (Fig.
17 3C), which might facilitate the transport of ammonia into symbiosomes. In favor of
18 the speculation, we noted that *RHBG-A* proteins co-located with endosymbionts (Fig.
19 3C) while the endosymbionts were abundantly transcribing ammonium transporter
20 genes (the top 10% of highly expressed genes in the InS group). While the
21 endosymbionts were also transcribing genes involved in the glutamine
22 synthetase/glutamate synthase cycle (Supplementary Table 4), the employment of
23 ammonium transporter could be more direct and efficient, and was also used in
24 cnidarian-algal symbiosis ^{31,32}.

25 Another interesting finding is that we found the also observed that the expression
26 level of these genes involved in host-symbiont metabolism interactions, including
27 *CYP39A1*, *RHBG-A*, and *SLC37A2*, were markedly downregulated in bacteriocytes of
28 DeC group when methane supply was limited and when symbiont abundance dropped
29 (Supplementary Fig. S7). These findings highlighted the possibility that the mussel
30 hosts were interacting with symbionts dynamically based on the environments and

1 symbiont abundance.

2 ***Coordinated regulatory networks guide molecular functions in bacteriocytes***

3 While the above results collectively show the host optimizing its immune and
4 metabolic processes to facilitate symbiosis, we questioned whether there were
5 coordinated regulatory networks guiding these processes. It was speculated that such
6 regulatory networks would contain the majority of aforementioned immune and
7 metabolic genes, which could share a coordinated expression pattern across all cell
8 types and samples. We then constructed a regulatory network using weighted gene
9 co-expression network analysis (WGCNA) of scRNA-seq data obtained on all the cell
10 clusters in fully-symbiotic (InS group) and decolonized mussels (DeC group). Among
11 all co-expression modules, the Mod12 modules were of interest because they
12 contained 112/199 marker genes of bacteriocytes (Supplementary Fig. S8A,
13 Supplementary Table 5, Supplementary Table 6). Function enrichment analysis further
14 showed that these 112 element marker genes were involved in the immune and
15 metabolic processes of bacteriocytes as well as cell differentiation and development
16 (Supplementary Fig. S8B, Supplementary Table 7), certifying that Mod12 could be
17 the core regulatory networks in the function and development of bacteriocytes.

18 We then screened the highly expressed transcription factors and signal transducers
19 in the regulatory network, which may function as hub regulators of bacteriocyte
20 function. Within the regulatory networks of bacteriocytes, we identified seven
21 transcription factors (zinc finger protein *ZNF271*, ETS-related transcription factor
22 *ELF-3*, autism susceptibility gene *AUST2*, histone-lysine N-methyltransferase *EZH2*,
23 GATA zinc finger domain-containing protein *GATAD14*, hepatocyte growth factor
24 receptor *MET*, and myoneurin) (Fig. 4A). These seven transcription factors were
25 abundantly expressed in bacteriocytes as marker genes and correlated with the
26 expression of 107/199 marker genes (including the aforementioned metabolic genes
27 such as 24-hydroxycholesterol 7 alpha-hydroxylase *CYP39A1*, sugar phosphate
28 exchanger *SLC37A2*, and ammonium transporter *RHBG-A*) and immune genes (such
29 as *TLR2*, rabenosyn-5, lysosomal-trafficking regulator, and cathepsins) (Fig. 4A).
30 Among these seven transcription factors, four genes (*ZNF271*, *ELF-3*, *AUST2*, and

1 *EZH2*) were also vigorously downregulated during decolonization in conjunction with
2 the decreased expression of another 63 marker genes (Fig. 4A). These findings
3 highlight the regulatory role of marker gene expression in bacteriocytes. Moreover,
4 strong interconnectivity (weight higher than 0.3) was observed between these
5 transcription factors, certificating the coordination within these hub transcription
6 factors when guiding the function of bacteriocytes.

7 ***Successive trajectory of the development of bacteriocyte lineages***

8 Without culturable samples of post-larval and juvenile deep-sea mussels,
9 mechanism beneath the development process of bacteriocyte lineages remains largely
10 elusive. The identification of marker genes of bacteriocytes and stem cells, however,
11 provide a unique opportunity to reveal this issue. As reported in our previous study,
12 there are three types of stem cells in gills of *G. platifrons*, including PEBZCs, DEPCs
13 and VEPCs. By conducting EdU-labeling assay, we confirmed the proliferating
14 activity of DEPCs, which were located at gill base (specifically at the dorsal part of
15 the gill connected to the mantle, with positive EdU signals). Meanwhile, we also
16 noticed that some gill cells dispersed along the gill filaments retained proliferating
17 activity (Fig. 4B) in a manner similar to that observed in fish gills³³. In addition to the
18 previously identified markers gene, our scRNA-seq and ST-seq data further identified
19 massive cell cycle-, proliferation-, and differentiation-related genes in PEBZCs
20 (cluster 2/6) and DEPCs (cluster 0) [including several markers of stem cells such as
21 DEK, Serine/arginine-rich splicing factor 1, protein hedgehog, nesprin-1, protein
22 crumbs-like 2, repulsive guidance molecule A, G1/S-specific cyclin-E gene,
23 calcium/calmodulin-dependent protein kinase type II, prospero homeobox protein 1,
24 Neurogian, SWI/SNF-related matrix-associated actin-dependent regulator of
25 chromatin subfamily D member 1, bone morphogenic protein type 2 receptor, and
26 protein strawberry notch homolog 1] (Supplementary Table 2). Using an expression
27 atlas of stem cells and bacteriocyte lineages, we then characterized the bacteriocyte
28 development trajectory using three different models: pseudo-time analysis by
29 Monocle (Fig. 4C) and partition-based graph abstraction (PAGA) analysis by Scanpy
30 and RNA velocity analysis (Supplementary Fig. S8C, D). Results by Monocle show

1 that the gill cells were distributed at three distinct pseudo-time states in which most
2 stem cells, as the starting point of differentiation, were in state 3 and 1 of the
3 trajectory (92.02%, 3.29% and 4.69% of cluster 6 PEBZCs were in state 3, 2, 1
4 respectively; 71.05%, 3.73% and 25.22% of cluster 2 PEBZCs were in state 3, 2, 1
5 respectively; 28.44%, 7.04% and 64.52% of cluster 0 DEPCs were in state 3, 2, 1
6 respectively). Conversely, as differentiation endpoints, approximately 88.19% of
7 bacteriocytes were in state 2 while only 2.52% were in state 3, and 9.29% were in
8 state 1 (Fig. 4C). In addition, as comparison, the ciliated cells (e.g, cluster 4 ICCs)
9 were exclusively in state 3 (59.78%) and state 1 (40.13%). A similar result was also
10 observed in PAGA analysis, in which PEBZCs were found in a more primitive state
11 than DEPCs, ICCs and bacteriocytes (Supplementary Fig. S8C). These distinct
12 pseudo-time trajectory states collectively confirmed developmental heterogeneity
13 within gill cells and suggested the bacteriocytes as one of the most differentiated cells
14 in gill. Besides, it is noticeable that a succession of processes occurred in
15 differentiation (cell type transitions from stem cells to bacteriocytes) and maturation
16 (subtype transitions from state 3 to state 1, or state 1 to state 2) of bacteriocytes (Fig.
17 4C, Supplementary Fig. S8C).

18 To further identify the differentiation processes in bacteriocyte lineages, we then
19 examined the abundantly expressed genes in different pseudo-time states
20 (Supplementary Table 8). We speculated that progenitor states would encode several
21 hub marker genes (especially transcription factors) of descendent cells, while the
22 expression levels of marker genes would increase during further maturation, showing
23 maximal expression levels in the function-matured state. Our results indicate that
24 bacteriocytes in state 2 were in the function-matured state, transcribing more marker
25 genes (including hub marker genes) compared with the levels transcribed in the rest of
26 the states (Supplementary Fig. S8D, Supplementary Table 8). Bacteriocytes in state 1
27 were in function-maturing state and showed moderate expression of marker genes.
28 Interestingly, we also noted that most of the genes abundantly expressed in state 2
29 PEBZCs (cluster 2: 100/314, cluster 6: 29/32) and DEPCs (129/755) were the marker
30 genes expressed by bacteriocytes (a total of 199 markers); also, 29/43 of DEPCs

1 marker genes were abundantly expressed in state 1 PEBZCs (cluster 2)
2 (Supplementary Fig. S8DE, Supplementary Table 8). These findings suggest that the
3 state 2 cells of both PEBZCs and DPECs may have been progenitors of bacteriocytes,
4 while DPECs may have descended from state 1 PEBZCs. The conclusion was also
5 supported by RNA velocity analysis, in which a positive velocity from PEBZCs and
6 DPECs to bacteriocytes was observed in corresponding cells of adjacent region
7 (Supplementary Fig. S8C). We also observed that state 3 bacteriocytes encoded
8 multiple DNA replication- and cell cycle-related genes (Supplementary Table 8),
9 indicating that bacteriocytes could proliferate directly. In support of this hypothesis,
10 we observed increased proliferation-related signaling in several bacteriocytes, as
11 assessed using our EdU-labeling assay and 3D electron microscopy (Fig. 4D,
12 Supplementary Video.2).

13 ***Co-option of conserved transcription factors in bacteriocyte development***

14 While the development of symbiotic cells and organs may be a highly organized
15 process, the regulatory networks guiding these developmental processes are difficult
16 to identify in either model and non-model symbiotic associations. In this study, using
17 our bacteriocyte developmental trajectory, we explored the mechanisms underlying
18 bacteriocyte differentiation and maturation while focusing on the genes abundantly
19 expressed in the progenitor state. By conducting t-Distributed Stochastic Neighbor
20 Embedding (t-SNE) analysis, we noted a co-overlap in the t-SNE distribution of state
21 1 bacteriocytes and state 2 cells of DPECs/PEBZCs and a co-overlap between state 1
22 cells of DPECs and state 1 cells of PEBZCs (Fig. 5A), reconfirming that the state 2
23 cells of DPECs/PEBZCs progenitor were the progenitor cells of bacteriocytes.
24 Specifically, our results indicate that mRNA transcripts of histone-lysine
25 N-methyltransferase *EZH2*, one of the hub marker genes in the regulatory network of
26 bacteriocytes, were abundantly expressed in state 2 of all types stem cells (Fig. 5B,
27 Supplementary Fig. S8F, Supplementary Table 8). Additionally, the expression of
28 dedicator of cytokinesis protein 11, acid phosphatase type 7, cathepsin D, cathepsin L
29 and prosaposin, which serve as element marker genes in the bacteriocyte regulatory
30 network, and as crucial regulators of cell differentiation and lysosomal function, was

1 also highly upregulated in state 2 of all types stem cells (Supplementary Fig. S8F,
2 Supplementary Table 8). These genes may collectively promote the differentiation of
3 state 2 stem cells into bacteriocytes. In addition, the expression of another three hub
4 transcription factors in the regulatory network of bacteriocytes (*ZNF271*, *ELF-3*, and
5 *MET*), was also robustly promoted in state 2 DEPCs (Supplementary Fig. S8F,
6 Supplementary Table 8), thereby contributing to the differentiation of DEPCs into
7 bacteriocytes. Similarly, we observed a robust expression of *myoneurin*, *ZNF271*,
8 *ELF-3* and *MET* in state 2 of cluster 2 PEBZCs (Supplementary Fig. S8F,
9 Supplementary Table 8). These genes may facilitate the transition of stem cells into
10 bacteriocytes by transducing intracellular signals and activating the expression of
11 bacteriocyte-specific genes.

12 During further maturation of bacteriocytes, we observed a gradual increase in the
13 expression of four hub marker genes (*ZNF271*, *EZH2*, *MET*, and *AUST2*) from state 1
14 to state 2 (Fig. 5C, Supplementary Table 8). Additionally, 21 transcription factors (or
15 activators/repressors) were also highly expressed in state 1 bacteriocytes
16 (Supplementary Fig. S8F, Supplementary Table 8). These genes may collaboratively
17 promote function maturation in bacteriocytes. Interestingly, we also observed that
18 delta(14)-sterol reductase (*TM7SF2*, EC:1.3.1.70) was abundantly expressed in state
19 1 (Fig. 5C, Supplementary Table 8). The *TM7SF2* gene plays crucial role in the sterol
20 metabolism of mussel host by transforming symbiont-deprived
21 4,4-dimethyl-cholesta-8,14,24-trienol into 14-Demethyl-lanosterol, implying the
22 contribution of symbiont-deprived nutrients in bacteriocyte maturation.

23 While the aforementioned hub transcription factors and signaling transducers may
24 be the pioneer molecules promoting bacteriocyte development, we questioned
25 whether they were evolutionarily novel genes diverged from non-symbiotic ancestors
26 or conserved across evolution. Our phylogenetic analysis of protein sequences
27 obtained from homologues of these genes in Lophotrochozoa indicated that all of
28 these genes were highly conserved across the mollusk and in harmony with the
29 general host phylogenies (Supplementary Fig. S9). We therefore conclude that
30 bacteriocyte development occurred via co-option of conserved genes rather than via

1 evolutionarily novel genes (Fig. 5E).

2 **Discussion**

3 In addition to being an evolutionary novelty, symbiotic cells and organs provide a
4 suitable niche for symbiosis and endow holobionts with a unique adaptation to
5 surrounding environments ⁶. In this study, we integrated the data obtained on
6 single-cell omics, phagocytosis assay, EdU labeling assay and 3D electron
7 microscopy to uncover the function and development of bacteriocytes in deep-sea
8 mussels. Our findings indicate that these processes were guided by an ancestral
9 intrinsic toolkit via co-option of conserved transcription factors and modulation by
10 endosymbionts. Our results show how both partners interact with each other closely
11 and shape the function and development of symbiotic cells cooperatively, which is
12 crucial in understanding the evolution of chemosymbiosis and the adaptation of
13 holobionts in habitats such as the deep sea ^{34,35}.

14 The establishment and maintenance of endosymbiosis with exogenous bacteria is
15 challenging for multicellular organisms because of the host immune system, which
16 requires an adjustment that entails an inoculation with, and proliferation of, symbionts
17 inside the cell ³⁶. Using a single-cell expression atlas, we characterized the immune
18 strategy adopted by bacteriocyte lineages, and observed that only a few PRRs were
19 abundantly expressed in bacteriocytes despite their expansion in the deep-sea mussel
20 genome ¹⁸. While these PRRs might participate in other process, such as early
21 symbiotic acquisition in juveniles and immune defense against pathogenic bacteria, our
22 findings suggested that only a few PRRs are needed to maintain symbiosis in normal
23 bacteriocytes of adult mussels. Nevertheless, the bacteriocytes are still able to
24 phagocytize exogenous bacteria even when they were fully colonized by
25 endosymbionts, as observed by our phagocytosis assay and some recent studies ³⁷.
26 The phagocytotic ability of gill cells may be conserved in most mollusks, including
27 non-symbiotic ones ³⁷⁻³⁹, which directly facilitate the entrance of endosymbionts in
28 deep-sea mussels and may contribute importantly to the establishment of
29 endosymbiosis in other mollusks. The phagocytosis of exogenous bacteria, however,
30 also raise questions on how mussels discriminate non-symbionts from symbionts, and

1 symbionts in bad states from good states inside the phagosomes or symbiosomes. It is
2 often observed that the bacteriocytes digest endosymbionts via lysosome. Although
3 the lysosome-mediated digestion could provide nutrients to hosts (“farming” way), we
4 rarely observed proliferating endosymbionts or free symbionts that being engulfed in
5 bacteriocytes of adult mussels, as evidenced by EdU labeling assay and 3D electron
6 microscopy. The contradicts in the number of new born endosymbionts and digested
7 endosymbionts suggested that lysosome-mediated digestion could play other roles in
8 addition to providing nutrients. Recently, it is showed that the digestion of symbionts
9 could be regulated by mTORC1 through nutrient signaling pathway and promoted
10 under reduced nutrient supply (either by death of endosymbionts or removal of
11 methane) ⁴⁰⁻⁴². We therefore speculated that lysosome-mediated symbiont digestion
12 may be a secondary option to obtain nutrition under normal circumstance, but an
13 efficient way to control the symbiont population and obtain nutrition under abrupt
14 stresses or other emergencies. In support of this speculation, we observed a significant
15 repression of lysosome activity in mussels after long-term methane starvation. These
16 findings further certificate that symbiotic associations in deep-sea mollusks are
17 nutrition driven and imply the metabolic interaction between mussel hosts and
18 symbionts ¹¹.

19 Since their first characterization, how deep-sea mussels acquire nutrients from
20 symbionts have been hotly debated. Besides the digestion of symbionts, it is also
21 suggested that the mussel hosts could acquire nutrients via the receipt of secreted
22 metabolites from symbionts (“milking” way) ³⁷. However, the exact metabolites and
23 how they are transported between symbionts and bacteriocytes, have remains unclear
24 and difficult to characterize ^{18,19,22,30,43}. Genomic information showed that the
25 methanotrophic endosymbionts could provide sterol intermediates to the mussel hosts.
26 Recently, Geier et. al have also identified several specialized metabolites from the
27 host-microbe interface with metaFISH and AP-MALDI-MSI analysis ²², which are
28 specific to the mussel-endosymbiont interaction. With the help of state-of-the-art
29 single-cell sequencing, we here showed that deep-sea mussels have remarkably
30 reshaped bacteriocyte metabolism to maximize symbiotic profits for both partners.

1 For example, bacteriocytes encode dozens of genes involved in the biosynthesis and
2 transport of carbohydrates, lipids, amino acids, and vitamins to improve the
3 acquisition of nutrition from symbionts. Noticeably, we have demonstrated that the
4 bacteriocytes are massively transcribing a sugar phosphate exchanger gene, which
5 co-locates with symbionts and might help to retrieve fructose-6P directly from
6 methanotrophic symbionts. Fructose-6P is believed to be converted into glucose-6P,
7 fructose-1,6P₂, and glyceraldehyde-3P, and further supports the gluconeogenesis and
8 TCA cycles of both mussel hosts and symbionts. In addition, we also showed that the
9 mussel hosts could supplies ammonia to symbionts directly via ammonium
10 transporters, which greatly increases the efficiency and profits of symbiosis and is
11 rarely reported ³². Another interesting but rationale finding is that bacteriocytes are
12 abundantly expressing enzymes involved in the turnover of sterol intermediates, as the
13 symbionts are the main source of these intermediates. While there might be more
14 metabolites that are supplied by, or transported between, symbionts and bacteriocytes,
15 our findings demonstrate that the scRNA-seq could serve as a suitable tool to address
16 such issue in non-model holobionts.

17 As a specialized and stable niche for endosymbiosis, where and how bacteriocytes
18 come from are intriguing and crucial in understanding the evolution of symbiosis ^{2,6}.
19 While previous studies demonstrated that the stem cells in the growth zones of gill
20 could differentiate into bacteriocytes, our single-cell transcriptome data has for the
21 first time traced the successive development trajectory of bacteriocytes with
22 molecular evidences. We showed that the stem cells and bacteriocytes could be further
23 divided into different molecular states and only a small subset of stem cells are the
24 progenitors of bacteriocytes. Besides, the differentiation and maturation of
25 bacteriocytes could be guided by a set of mollusk-conserved transcription factors
26 (including *EZH2*, *ELF-3*, *ZNF271*, and *AUST2*), following the gradual increase of
27 these genes from stem cells to bacteriocytes. The synergistic modulation shown by
28 these transcription factor genes confirmed that the formation of symbiotic cells in
29 deep-sea mussels occurred via co-option of conserved, rather than evolutionarily
30 novel genes ⁴⁴. Interestingly, similar phenomena are also observed in the deep-sea

1 scaly-foot snail, in which the formation of biomineralized skeleton is driven by an
2 ancestral intrinsic toolkit that is conserved across the mollusk⁴⁵. These findings
3 collectively demonstrate the developmental plasticity of the mollusk. Noticeably, we
4 also demonstrated that the key regulatory networks responsible for the development
5 of bacteriocytes were also controlling the immune and metabolic process, highlighting
6 the cooperation in the function and development of bacteriocytes. An intriguing
7 finding is some bacteriocytes away from the growth zone are proliferating, as
8 evidenced by both EdU assay and 3D electron microscopy analysis. It yet remains to
9 be elucidated whether these cells are new born bacteriocytes from stem cells dispersed
10 along gill filaments or are able to divide after “reprogramming”. In favor of the second
11 speculation, we noted that about 2.52% of bacteriocytes are abundantly expressing
12 DNA replication- and cell cycle-related genes. Another interesting finding is that the
13 function and development of mussel bacteriocytes may have been influenced by
14 symbionts via sterol metabolism. Symbiont participation in the development of
15 symbiotic cells and organs has attracted increasing attention for several years, but has
16 remained largely unclear at the mechanistic level^{46,47}. Sterol metabolism in symbionts
17 may be a common mechanism in the development of symbiotic cells and organs since
18 several animal hosts rely on their symbionts for sterol intermediates⁴⁸⁻⁵⁰. In support of
19 this theory, we noted a suppression of sterol/steroid biosynthesis in the
20 symbiont-depleted deep-sea mussels after long-term atmospheric cultivation without
21 methane supply⁴²; furthermore, a crucial sterol metabolic gene was differentially
22 expressed during the maturation of bacteriocytes, highlighting possible participation
23 of sterol metabolism in the phenotypic plasticity of gill tissue⁴². Other studies have
24 also shown the modulation of host development and reproduction by symbiotic
25 *Wolbachia* via steroid-nuclear receptor signaling pathway⁵¹. Besides the sterol
26 metabolism, it is also noteworthy that the glucose and ammonia metabolism could
27 also serve as intracellular signals of symbiosis-related process, such as
28 mTOCR1-mediated symbiont digestion, and controls the population of symbionts⁵²⁻⁵⁵.
29 While the regulatory role of symbionts in the function and development of symbiotic
30 cells remains to be fully elucidated, our findings highlight the robust plasticity of

1 molluscan bacteriocytes, which assist in the distribution of mollusk across a wide
2 range of habitats including the deep sea.

3 There are also some limitations for the present study. For example, some
4 hypotheses raised by the present study still needs to be verified in future studies, using
5 mussel samples in different symbiotic states (including aposymbiotic and recolonized
6 mussels as well as post-larval and juvenile mussels). Nevertheless, by combining
7 high-resolution single-cell transcriptome data, phagocytosis assay, EdU assay and 3D
8 electron microscopy data, we have successfully set up pipeline to reveal the molecular
9 function and development process of bacteriocyte lineages in non-model deep-sea
10 mussels. Our results show that the function and development of bacteriocytes were
11 highly coordinated via co-option of conserved genes and could be dynamically
12 modulated by symbionts. The intimate symbiotic associations and robust plasticity of
13 symbiotic cells have rendered the deep-sea mussel one of the most successful
14 organisms in the deep sea.

15

16 **Materials and Methods**

17 ***Experimental design***

18 The goal of the present study was to address the molecular function and
19 developmental trajectory of bacteriocytes in the deep-sea mussel *G. platifrons*. To
20 achieve this goal, we employed methanotrophic *G. platifrons* collected from cold
21 seeps as our model, and used the spatial transcriptome, single-cell transcriptome, and
22 meta-transcriptome to characterize both the bacteriocytes and endosymbionts. We also
23 used an *in situ* transplantation assay to construct the decolonized mussel to elucidate
24 the dynamic response of symbiotic cells in response to symbiont depletion. We
25 employed EdU-labeling, phagocytosis, *in situ* hybridization (ISH) assays,
26 immunofluorescence (IF) assays, transmission electron microscopy (TEM), 3D
27 electron microscopy and phylogenetic analysis to verify hypotheses obtained from the
28 sequencing data.

29 ***In situ transplantation and animal collection***

30 *G. platifrons* mussels were collected from the cold seeps (22°06'N, 119°17'E) of

1 South China Sea during the cruises of 2018 and 2020. The mussel fauna live at 1,120
2 m beneath the surface at a temperature of approximately 3.35°C, salinity of
3 approximately 35.54 psu, dissolved oxygen of 2.98–3.17 mg/L, and methane
4 concentrations of up to 31,227 ppm (seepage region)⁵⁶. To shelter the specimens from
5 temperature and pressure fluctuations during sampling, all mussel samples were
6 collected using a self-designed isothermal isobaric sampler and a self-designed
7 manually controlled macrofauna *in situ* sampling device as described previously⁴¹. In
8 brief, a total of 20 mussels living in close proximity to active fluid seepages were
9 collected as representatives of normal mussels (designated as the InS group). Among
10 them, seven mussels were collected using an isothermal isobaric sampler (in 2018),
11 seven mussels were collected using a multipurpose *in situ* sampling device (in 2020)
12 after treating with RNAsafer stabilizer reagent (Omega Bio-Tek, Norcross GA, USA)
13 *in situ*, and the remaining six mussels were collected using a multipurpose *in situ*
14 sampling device after being treated with 4% paraformaldehyde *in situ*. Only one
15 mussel from the InS group was used for single cell transcriptome sequencing
16 (scRNA-seq, Chromium platform of 10x Genomics, Pleasanton CA, USA) and spatial
17 transcriptome sequencing (ST-seq, Visium platform of 10x Genomics), and all 14
18 mussels collected by isothermal isobaric sampler or after RNA stabilizing treatment
19 were subjected to meta-transcriptome sequencing. Mussels collected after
20 paraformaldehyde treatment were subjected to ISH, IF, and TEM imaging. During the
21 2018 cruise, we also performed an *in situ* transplantation assay, in which dozens of
22 mussels in the seepage region were translocated to an authigenic carbonate region
23 having low concentration of CH₄ (at approximately 100 m away from seepage,
24 methane concentration had decreased to 800 ppm). Five of the transplanted mussels
25 (designated as the DeC group) were retrieved 604 days later during the 2020 cruise
26 using an isothermal isobaric sampler (one mussel, used for scRNA-seq, ST-seq and
27 meta-transcriptome) or multipurpose *in situ* sampling device (four mussels, used for
28 meta-transcriptome) after treatment with RNAsafer stabilizer reagent. After the
29 retrieval and depressurization of the isothermal isobaric sampler, the mussels were
30 instantly dissected into two halves to remove excess seawater and quickly frozen in an

1 isopentane bath (Macklin, Shanghai, China) with liquid nitrogen for scRNA-seq and
2 ST-seq.

3 ***ScRNA-seq***

4 Two individual mussels having similar size (approximately 80 mm in length) from
5 the InS and DeC groups were used for scRNA-seq. Because of the difficulties
6 involved in isolation and *in vitro* culture of gill cells, and because mussel sampling
7 and single cell preparation can potentially influence gene expression, scRNA-seq
8 analysis of *G. platifrons* gill tissue was performed using nuclei isolated from fresh
9 frozen samples collected in an isothermal isobaric manner. The isolated nuclei were
10 assayed per 10×Genomics single cell protocol by generating a Single-cell Gel
11 Bead-In-EMulsion (GEM) on a GemCode single-cell instrument
12 (<https://www.10xgenomics.com/support>). Full-length cDNA was synthesized using
13 Chromium Next GEM Single Cell 3' Reagent Kit v3.1 and sequenced on an Illumina
14 HiSeq X Ten platform (Gene Denovo Biotechnology Co., Guangzhou, China).

15 ***Cryosectioning and ST-seq***

16 To help determine the taxonomy of all gill cells, especially bacteriocytes, we also
17 conducted ST-seq with the cross-sectioned middle region of the gill (ventral view)
18 from the InS group. The gill tissue used for 10×Visium ST-seq was first incubated
19 with precooled methanol (4°C) for 15 min to reduce potential damage by the cryostat
20 blade during cryosectioning. The tissue was then embedded in OCT (Sakura, Torrance,
21 CA, USA) and cross-sectioned at the thickness of 10 µm through the middle part of
22 the gill using a cryostat (Leica CM1950, Heidelberger, Germany). Gill sections were
23 then stained with 4,6-diamidino-2-phenylindole (DAPI, Thermo Fisher, Waltham, MA,
24 USA) and HE (Sangon Biotech, Shanghai, China), and morphology of the gill-tissue
25 sections was assessed under light microscopy (Nikon ECLIPSE Ni, Tokyo, Japan).
26 Successive sections, obtained from the same blocks of embedded tissue, were placed
27 on Visium Spatial Tissue Optimization Slides within the capture area for tissue
28 optimization assay. For the sequencing assay, gill sections were first mounted on
29 Visium Spatial Gene Expression Slides and permeabilized according to previously
30 described parameters (permeabilization time of 9 min) after HE staining and imaging

1 using light microscopy. After reverse transcription and library preparation, all samples
2 were sequenced on an Illumina HiSeq X Ten platform (Gene Denovo Biotechnology
3 Co., Guangzhou, China). The rest sections of the same tissue were further subjected to
4 ISH assays to assist the cell type annotation.

5 ***Cell clustering, cell type annotation, and analysis of differentially expressed***
6 ***genes***

7 Single-cell clustering of *G. platifrons* gill tissue was first performed using
8 scRNA-seq—derived data. After quality control, all raw reads were mapped onto a *G.*
9 *platifrons* reference genome. The genome was first reported by Sun et al.¹⁸ and
10 updated recently with Hi-C and high-depth PacBio long-read sequencing by us
11 (GenBank accession NO. JAOEFJ000000000, unpublished data). Unique molecular
12 identifiers (UMIs) in each sequenced read were counted and corrected for sequencing
13 errors. Using valid barcodes that were identified based on EmptyDrops method, the
14 gene matrices of all the cells were then produced and imported into Seurat (version
15 3.1.1) for cell clustering using a graph-based clustering approach.

16 Single-cell clustering of *G. platifrons* gill tissue was also performed using
17 ST-seq—derived data, which have the advantage of cell type annotation. A slide
18 image obtained before permeabilization was first imported into Space Ranger
19 software for fiducial and Visium barcoded spot alignment. After decoding correlations
20 between tissue, capture spots, and barcodes, a splice-aware alignment of sequencing
21 reads to the *G. platifrons* genome was performed using STAR in the Space Ranger
22 software package.

23 An integrated analysis of data derived using scRNA-seq, ST-seq, and *in situ*
24 hybridization assay was then used for cell type annotation in the InS group. In brief,
25 anchor-based integration was first used to integrate ST-seq data with scRNA-seq data
26 using the FindIntegrationAnchors command in Seurat-v3.2. All cell-type labels in
27 scRNA-seq were then transferred to spatial data using the TransferData command.
28 Cell type prediction scores indicating the similarity between ST-seq spots and
29 scRNA-seq cell clusters were calculated simultaneously, and only spot-cluster pairs
30 with highest scores were considered for further cell-type annotation. For further

1 annotation and cell-type verification, cell types in gill tissue were inspected using HE
2 stained images of gill cryosections and tissue plot with spots colored by clustering of
3 ST-seq data. Several cell markers obtained using the FindAllMarkers function in
4 Seurat were also cloned and subjected to *in situ* hybridization using gill tissues from
5 the InS group.

6 To further investigate the biological function of all identified cell clusters,
7 differentially expressed genes (DEGs) were surveyed in both scRNA-seq and ST-seq.
8 For scRNA-seq, expression values of all identified genes in a given cluster were
9 compared against the rest of the cell clusters using Wilcoxon rank sum test. Genes
10 expressed mainly in the target cluster (more than 25% of cells were designated as a
11 target cluster), and showing at least 1.28-fold upregulated expression levels and
12 *p*-values less than 0.01, were considered as DEGs per cell cluster. For ST-seq, the
13 Model-based Analysis of Single cell Transcriptomics (MAST) in the R package was
14 used to determine DEGs in a single cell cluster using the same criteria as those used
15 for scRNA-seq. All the genes in ST-seq were further analyzed for spatially-specific
16 DEGs using markvariogram in the Seurat R package and mark-segregation hypothesis
17 testing in the trendsseek R package. Genes with r.metric.5 parameter values of less
18 than 0.8 and *p*-values of less than 0.01 were designated as spatially DEGs.

19 ***Meta-transcriptome sequencing***

20 To explore the expression atlas of symbionts in the InS and DeC groups, we
21 performed meta-transcriptome sequencing using the 14 samples from the InS group
22 and five samples from the DeC group as described previously. Total RNA extraction,
23 removal of eukaryotic and prokaryotic rRNA, and synthesis of cDNA library using
24 bulk-seq were conducted as described previously⁴¹. cDNA libraries belonging to the
25 InS and DeC groups was finally sequenced using an Illumina HiSeq 2500 platform
26 with paired-end reads performed by Novogene (Tianjing, China). After quality control,
27 the filtered reads were aligned against both the endosymbiont and *G. platifrons*
28 genomes using HISAT (v2.0.4). The genome of methanotrophic symbionts was first
29 reported by Takishita et al., (2017) and we updated it with high-depth PacBio
30 long-read sequencing (raw data deposited in NCBI with accession NO.

1 PRJNA891367)⁵⁷. The expression levels of host and symbiont genes were calculated
2 using HTSeq (v0.6.1), while significant differences between groups were determined
3 using DESeq2 (v1.10.1). Additionally, the top 10% of genes with most abundant
4 mRNA transcripts in the InS group were designated as abundantly expressed genes in
5 order to survey the biological processes that actively occurred under normal
6 conditions *in situ*. For PCoA analysis, Bray-Curtis distance between samples was first
7 calculated and subjected for subsequent analysis and visualization.

8 ***GO/KEGG analysis, cell trajectory construction, and WGCNA of bacteriocytes***

9 Gene Ontology (GO) annotation of *G. platifrons* genes was obtained using
10 Blast2GO software (version 5.2) and employed for GO enrichment analysis using
11 homemade scripts. DEG numbers for every GO term were first calculated and the
12 significantly enriched GO terms were determined using a hypergeometric test (FDR
13 less than 0.05). KEGG pathway enrichment analysis was conducted using homemade
14 scripts with KEGG annotations obtained from the KEGG database
15 (<http://www.genome.jp/kegg/pathway.html>).

16 Single cell trajectory analysis was conducted using Monocle (Version 2.6.4) with
17 reversed graph embedding algorithm and confirmed by PAGA analysis using Scanpy
18 (v1.6.0). Gene expression matrix of stem cells and bacteriocytes was used in the
19 analysis and visualized using the orderCells function of Monocle (sigma = 0.001,
20 lambda = NULL, param. gamma = 10, tol = 0.001). For the PAGA analysis, the
21 connectivity of each cell cluster was calculated based on the partition-based graph
22 abstraction algorithm. After cell embedding with ForceAtlas2, the pseudo-time value
23 of each cell was then calculated with the DPT algorithm. Weighted gene
24 co-expression network analysis (WGCNA) was conducted using the WGCNA
25 package (v1.47) in R with gene expression values of power = 7 and minModuleSize =
26 50, and visualized using Cytoscape (v3.8.2).

27 ***EdU-labeling, phagocytosis, ISH assays, IF assays, 3D electron microscopy, and***
28 ***phylogenetic analysis***

29 The EdU-labeling assay was carried out *in situ* using mussels collected from the
30 seepage region. In brief, mussels were incubated with 5-ethynyl 2'-deoxyuridine

1 (EdU, final concentration of 40 μ M) in a self-designed, manually controlled
2 macrofauna *in situ* experiment device for approximately 18 h, and then retrieved
3 using an isothermal isobaric sampler. The Click-iT Plus EdU Imaging Kit (Thermo
4 Fisher) was then used to visualize the EdU signal.

5 Phagocytosis assay was conducted using primary gill cells obtained from the fresh
6 collected mussels using previously described methods with modifications ^{38,58}.
7 Because endosymbiotic methanotrophs are nonculturable, *Vibrio alginolyticus*, an
8 environmental bacterium isolated from the cold seep, was used in this assay and
9 labeled with fluorescein isothiocyanate (FITC, Sigma, St. Louis, MO, USA) before
10 use. To collect primary gill cells, gill tissue was first treated with 1% trypsin (diluted
11 in sterilized seawater) at 4°C for 30 min, and then successively centrifuged at 300 g
12 (4°C, 5 min) and 800 g (4°C, 5 min). Cell pellets were resuspended in modified L15
13 medium (Gibco, Carlsbad, CA, USA; supplemented with 0.54 g/L KCl, 0.6 g/L CaCl_2 ,
14 1 g/L MgSO_4 , 3.9 g/L MgCl_2 , and 20.2 g/L NaCl) to a final concentration of 1×10^6
15 cells mL^{-1} and incubated with the same volume of FITC-labeled *V. splendidus* (1×10^8
16 cells mL^{-1}) for 30 min at 4°C in the dark. Primary cells were then washed three times
17 with modified L15 medium to remove extracellular bacteria. Cells were stained with
18 DAPI and DiI perchlorate, and were then imaged using a laser scanning confocal
19 microscope (Zeiss LSM710, Jena, Germany).

20 ISH assays were conducted as described previously ⁵⁹. For cell-type verification,
21 cell markers were cloned using gene-specific primers to synthesize
22 digoxigenin-labeled ISH probes. Fluorescent ISH analysis of symbionts was
23 performed using a Cyanine 3 (Cy3)-labeled Eub338 eubacteria probe
24 (5'-GCTGCCTCCGTAGGAGT-3') or FITC-labeled pmoB (methanotroph-specific
25 gene) probe (5'-CGAGATATTATCCTCGCCTG-3').

26 For the IF assay, unique peptide fragments of the 24-hydroxycholesterol 7
27 alpha-hydroxylase *CYP39A1*, sugar phosphate exchanger *SLC37A2*, and ammonium
28 transporter *RHBG-A* were first synthesized by Sangon Biotech (Shanghai, China) and
29 employed as antigens to produce rabbit polyclonal antibodies. After antigen affinity
30 purification and specificity verification by ELISA and western blot, the antibodies

1 were then used in an IF assay using paraffin embedded gill tissue (5 μ m) according to
2 methods described previously ⁵⁹ and with the assistance of ServiceBio (Wuhan,
3 China). Specifically, anti-lipid A antibody (ab8467, Abcam, Cambridge, MA, USA)
4 was used to indicate endosymbionts. After incubation with FITC- and Cy3-labeled
5 secondary antibodies (Servicebio, Wuhan, China), gill sections were visualized and
6 imaged using fluorescent microscope.

7 For the 3D electron microscopy assay, gill tissues collected from adult mussels
8 (obtained in isothermal way) were fixed by paraformaldehyde-glutaraldehyde, treated
9 with 1.0% osmium tetroxide (OsO₄) and infiltrated with acrylic resin successively.
10 The embedded tissues were then serially sectioned with a thickness of 100 nm using
11 an ultramicrotome (EM UC7, Leica, Vienna, Austria) and mounted onto a silicon
12 wafer before imaging. The scanning electron microscope micrographs of mounted
13 sections were captured using Helios NanoLab 600i FIB-SEM (FEI, Hillsboro, USA).
14 The obtained serial section images were then aligned in Amira (version 2019.3) for
15 the 3D reconstruction of bacteriocytes and cell proliferation analysis.

16 For phylogenetic analysis of hub transcription factors, homologue proteins were
17 first obtained using NCBI blastp and aligned using Seaview. Maximum likelihood
18 phylogenetic trees of these proteins were then constructed using Mega software (v11)
19 in Jones-Taylor-Thornton model with bootstrap of 100.

20 **Acknowledgments**

21 We thank the crewmembers of the R/V Kexue for their assistance in sample
22 collection, and all the laboratory staff for continuous technical advice and helpful
23 discussions. We also thank Prof. Qiang Lin from the South China Sea Institute of
24 Oceanology, Chinese Academy of Sciences for insightful comments and suggestions
25 that improved the manuscript.

26 **Funding:** The present study was supported by the National Natural Science
27 Foundation of China (42106134, 42030407, and 42076091), the Key Research
28 Program of Frontier Sciences (ZDBS-LY-DQC032) and Strategic Priority Research
29 Program of the Chinese Academy of Sciences (XDA22050303, XDB42020401), Key
30 Deployment Project of Centre for Ocean Mega-Research of Science, CAS

1 (COMS2020Q02) and Marine S&T Fund of Shandong Province for Pilot National
2 Laboratory for Marine Science and Technology (Qingdao) (No. 2022QNLM030004).

3 **Author contributions:** Conceptualization: H.C., Chaolun Li; Sample collection:
4 M.W., M.L., Z.Z., Chao Lian., L.Z.; Environment investigation: M.W., L.C.;
5 Transcriptome analysis: H.C., Z.Z., M.L.; EdU labeling, phagocytosis, ISH and IF
6 assays: H.C., M.L., G.H., Z.Z., H.W.; Phylogenetic analysis: H.C., H.Z.; Supervision:
7 C.L.; Writing—original draft: H.C.; Writing—review & editing: H.C., M.W., Chaolun
8 Li.

9 **Conflict of interest:** The authors declare that they have no competing interests.

10 **Data Accessibility:** All data needed to evaluate the conclusions in the paper are
11 present in the paper and/or the Supplementary Materials. All sequencing data were
12 deposited in the NCBI BioProject database (<https://www.ncbi.nlm.nih.gov/bioproject/>)
13 under accession NO. PRJNA838712. Raw images for 3D electron microscopy were
14 deposited in Figshare
15 (https://figshare.com/articles/figure/Raw_image_for_3D_electron_microscopy_of_mu_ssel_gill/23575734).
16

17

1 **References**

2 1 Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. *Cold*
3 *Spring Harbor perspectives in biology* **6**, doi:10.1101/cshperspect.a016113
4 (2014).

5 2 Gilbert, S. F., Bosch, T. C. G. & Ledón-Rettig, C. Eco-Evo-Devo:
6 developmental symbiosis and developmental plasticity as evolutionary agents.
7 *Nature Reviews Genetics* **16**, 611-622, doi:10.1038/nrg3982 (2015).

8 3 Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian
9 bobtail squid finds and keeps its bioluminescent bacterial partner. *Nature*
10 *Reviews Microbiology* **19**, 666-679, doi:10.1038/s41579-021-00567-y (2021).

11 4 Smith, T. E. & Moran, N. A. Coordination of host and symbiont gene
12 expression reveals a metabolic tug-of-war between aphids and Buchnera.
13 *Proceedings of the National Academy of Sciences* **117**, 2113-2121,
14 doi:10.1073/pnas.1916748117 (2020).

15 5 Rosset, S. L. *et al.* The molecular language of the cnidarian–dinoflagellate
16 symbiosis. *Trends in Microbiology* **29**, 320-333,
17 doi:10.1016/j.tim.2020.08.005 (2021).

18 6 Douglas, A. E. Housing microbial symbionts: evolutionary origins and
19 diversification of symbiotic organs in animals. *Philosophical Transactions of*
20 *the Royal Society B: Biological Sciences* **375**, 20190603,
21 doi:10.1098/rstb.2019.0603 (2020).

22 7 McFall-Ngai Margaret, J. & Ruby Edward, G. Symbiont recognition and
23 subsequent morphogenesis as early events in an animal-bacterial mutualism.
24 *Science* **254**, 1491-1494, doi:10.1126/science.1962208 (1991).

25 8 Braendle, C. *et al.* Developmental origin and evolution of bacteriocytes in the
26 aphid–Buchnera Symbiosis. *PLoS biology* **1**, e21,
27 doi:10.1371/journal.pbio.0000021 (2003).

28 9 Matsuura, Y., Kikuchi, Y., Miura, T. & Fukatsu, T. Ultrabithorax is essential
29 for bacteriocyte development. *Proceedings of the National Academy of*
30 *Sciences* **112**, 9376-9381, doi:10.1073/pnas.1503371112 (2015).

1 10 Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M. & Vrijenhoek, R.
2 C. Evolution and biogeography of deep-sea vent and seep invertebrates.
3 *Science* **295**, 1253-1257, doi:10.1126/science.1067361 (2002).

4 11 Sogin, E. M., Leisch, N. & Dubilier, N. Chemosynthetic symbioses. *Current*
5 *Biology* **30**, R1137-R1142, doi:10.1016/j.cub.2020.07.050 (2020).

6 12 Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: the
7 art of harnessing chemosynthesis. *Nature Reviews Microbiology* **6**, 725,
8 doi:10.1038/nrmicro1992 (2008).

9 13 Duperron, S. *et al.* An overview of chemosynthetic symbioses in bivalves from
10 the North Atlantic and Mediterranean Sea. *Biogeosciences* **10**, 3241-3267,
11 doi:10.5194/bg-10-3241-2013 (2013).

12 14 Rodrigues, C. F. *et al.* A sad tale: has the small mussel *Idas argenteus* lost its
13 symbionts. *Biological Journal of the Linnean Society* **114**, 389-405 (2015).

14 15 Fontanez, K. M. & Cavanaugh, C. M. Evidence for horizontal transmission
15 from multilocus phylogeny of deep-sea mussel (Mytilidae) symbionts.
16 *Environmental microbiology* **16**, 3608-3621, doi:10.1111/1462-2920.12379
17 (2014).

18 16 Miyazaki, J.-I., Martins, L. d. O., Fujita, Y., Matsumoto, H. & Fujiwara, Y.
19 Evolutionary process of deep-sea bathymodiolus mussels. *PloS one* **5**, e10363,
20 doi:10.1371/journal.pone.0010363 (2010).

21 17 Duperron, S., Quiles, A., Szafranski, K. M., Léger, N. & Shillito, B.
22 Estimating symbiont abundances and gill surface areas in specimens of the
23 hydrothermal vent mussel *Bathymodiolus puteoserpentis* maintained in
24 pressure vessels. *Frontiers in Marine Science* **3**,
25 doi:10.3389/fmars.2016.00016 (2016).

26 18 Sun, J. *et al.* Adaptation to deep-sea chemosynthetic environments as revealed
27 by mussel genomes. *Nature Ecology & Evolution* **1**, 121 (2017).

28 19 Ponnudurai, R. *et al.* Metabolic and physiological interdependencies in the
29 *Bathymodiolus azoricus* symbiosis. *The ISME journal*,
30 doi:10.1038/ismej.2016.124 (2016).

1 20 Wang, H. *et al.* Comparative transcriptomic analysis illuminates the
2 host-symbiont interactions in the deep-sea mussel *Bathymodiolus platifrons*.
3 *Deep Sea Research Part I: Oceanographic Research Papers* **151**, 103082,
4 doi:10.1016/j.dsr.2019.103082 (2019).

5 21 Sun, Y. *et al.* Insights into symbiotic interactions from metatranscriptome
6 analysis of deep-sea mussel *Gigantidas platifrons* under long-term laboratory
7 maintenance. *Molecular ecology*, doi:10.1111/mec.16765 (2022).

8 22 Geier, B. *et al.* Spatial metabolomics of in situ host–microbe interactions at the
9 micrometre scale. *Nature Microbiology*, 1-13, 10.1038/s41564-019-0664-6
10 (2020).

11 23 Wentrup, C., Wendeberg, A., Schimak, M., Borowski, C. & Dubilier, N.
12 Forever competent: deep-sea bivalves are colonized by their chemosynthetic
13 symbionts throughout their lifetime. *Environmental microbiology* **16**,
14 3699-3713, doi:10.1111/1462-2920.12597 (2014).

15 24 Franke, M., Geier, B., Hammel, J. U., Dubilier, N. & Leisch, N. Coming
16 together—symbiont acquisition and early development in deep-sea
17 bathymodioline mussels. *Proceedings of the Royal Society B: Biological
18 Sciences* **288**, 20211044, doi:10.1098/rspb.2021.1044 (2021).

19 25 Levy, S. *et al.* A stony coral cell atlas illuminates the molecular and cellular
20 basis of coral symbiosis, calcification, and immunity. *Cell* **184**,
21 2973-2987.e2918, doi:10.1016/j.cell.2021.04.005 (2021).

22 26 Alacid, E. & Richards, T. A. A cell–cell atlas approach for understanding
23 symbiotic interactions between microbes. *Current Opinion in Microbiology* **64**,
24 47-59, doi:10.1016/j.mib.2021.09.001 (2021).

25 27 Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the
26 endosymbiotic cell type in the soft coral *Xenia*. *Nature* **582**, 534-538,
27 doi:10.1038/s41586-020-2385-7 (2020).

28 28 Wang, H. *et al.* Deciphering deep-sea chemosynthetic symbiosis by
29 single-nucleus RNA- sequencing. *eLife* **12**:RP88294. 10.7554/eLife.88294.1
30 (2023).

1 29 Chu, H. & Mazmanian, S. K. Innate immune recognition of the microbiota
2 promotes host-microbial symbiosis. *Nature Immunology* **14**, 668-675,
3 doi:10.1038/ni.2635 (2013).

4 30 Takishita, K. *et al.* Genomic evidence that methanotrophic endosymbionts
5 likely provide deep-sea *Bathymodiolus* mussels with a sterol intermediate in
6 cholesterol biosynthesis. *Genome Biology and Evolution* **9**, 1148-1160,
7 doi:10.1093/gbe/evx082 (2017).

8 31 Fochi, V. *et al.* Fungal and plant gene expression in the *Tulasnella*
9 *calospora*-*Serapias vomeracea* symbiosis provides clues about nitrogen
10 pathways in orchid mycorrhizas. *New Phytologist* **213**, 365-379,
11 doi:10.1111/nph.14279 (2017).

12 32 Cui, G. *et al.* Molecular insights into the Darwin paradox of coral reefs from
13 the sea anemone *Aiptasia*. *Science Advances* **9**, eadf7108,
14 doi:10.1126/sciadv.adf7108 (2023).

15 33 Stolper, J. *et al.* Stem cell topography splits growth and homeostatic functions
16 in the fish gill. *eLife* **8**, e43747, doi:10.7554/eLife.43747 (2019).

17 34 Laming, S. R., Gaudron, S. M. & Duperron, S. Lifecycle ecology of deep-sea
18 chemosymbiotic mussels: a review. *Frontiers in Marine Science* **5**, 282 (2018).

19 35 Weaver, P. P., Billett, D. S. & Van Dover, C. L. in *Handbook on marine*
20 *environment protection* 215-245 (Springer, 2018).

21 36 Gross, R. *et al.* Immunity and symbiosis. *Molecular microbiology* **73**, 751-759,
22 doi:10.1111/j.1365-2958.2009.06820.x (2009).

23 37 Tame, A., Maruyama, T. & Yoshida, T. Phagocytosis of exogenous bacteria by
24 gill epithelial cells in the deep-sea symbiotic mussel *Bathymodiolus japonicus*.
25 *Royal Society Open Science* **9**, 211384, doi:10.1098/rsos.211384 (2022).

26 38 Li, Y. *et al.* The hematopoiesis in gill and its role in the immune response of
27 Pacific oyster *Crassostrea gigas* against secondary challenge with *Vibrio*
28 *splendidus*. *Developmental & Comparative Immunology* **71**, 59-69,
29 doi:10.1016/j.dci.2017.01.024 (2017).

30 39 Pichon, D. *et al.* Characterization of abalone *Haliotis tuberculata*-*Vibrio*

1 *harveyi* interactions in gill primary cultures. *Cytotechnology* **65**, 759-772,
2 doi:10.1007/s10616-013-9583-1 (2013).

3 40 Tame, A. *et al.* mTORC1 regulates phagosome digestion of symbiotic bacteria
4 for intracellular nutritional symbiosis in a deep-sea mussel. *Science Advances*
5 **9**, eadg8364, doi:10.1126/sciadv.adg8364 (2023).

6 41 Chen, H. *et al.* A glimpse of deep-sea adaptation in chemosynthetic holobionts:
7 depressurization causes DNA fragmentation and cell death of methanotrophic
8 endosymbionts rather than their deep-sea Bathymodiolinae host. *Molecular*
9 *Ecology*, doi:10.1111/mec.15904 (2021).

10 42 Li, M. *et al.* Robust phenotypic plasticity of symbiotic organs facilitates the
11 adaptation and evolution of deep-sea mussels. *bioRxiv*,
12 2022.2008.2011.503589, doi:10.1101/2022.08.11.503589 (2022).

13 43 Ponnudurai, R. *et al.* Genome sequence of the sulfur-oxidizing *Bathymodiolus*
14 *thermophilus* gill endosymbiont. *Standards in Genomic Sciences* **12**, 50,
15 doi:10.1186/s40793-017-0266-y (2017).

16 44 Jacob, F. Evolution and tinkering. *Science* **196**, 1161-1166,
17 doi:10.1126/science.86013 (1977).

18 45 Sun, J. *et al.* The Scaly-foot Snail genome and implications for the origins of
19 biomineralised armour. *Nature Communications* **11**, 1-12
20 10.1038/s41467-020-15522-3 (2020).

21 46 Altura, M. A., Stabb, E., Goldman, W., Apicella, M. & McFall-Ngai, M. J.
22 Attenuation of host NO production by MAMPs potentiates development of the
23 host in the squid-vibrio symbiosis. *Cellular microbiology* **13**, 527-537,
24 doi:10.1111/j.1462-5822.2010.01552.x (2011).

25 47 Foster, J. S., Apicella, M. A. & McFall-Ngai, M. J. *Vibrio fischeri*
26 lipopolysaccharide induces developmental apoptosis, but not complete
27 morphogenesis, of the *Euprymna scolopes* symbiotic light organ. *Dev Biol* **226**,
28 242-254, doi:10.1006/dbio.2000.9868 (2000).

29 48 Bien, T., Hambleton, E. A., Dreisewerd, K. & Soltwisch, J. Molecular insights
30 into symbiosis—mapping sterols in a marine flatworm-algae-system using

1 high spatial resolution MALDI-2-MS imaging with ion mobility separation.

2 *Analytical and Bioanalytical Chemistry* **413**, 2767-2777,

3 doi:10.1007/s00216-020-03070-0 (2021).

4 49 Kok, L. T., Norris, D. M. & Chu, H. M. Sterol metabolism as a basis for a

5 mutualistic symbiosis. *Nature* **225**, 661-662, doi:10.1038/225661b0 (1970).

6 50 Hambleton, E. A. *et al.* Sterol transfer by atypical cholesterol-binding NPC2

7 proteins in coral-algal symbiosis. *eLife* **8**, doi:10.7554/eLife.43923 (2019).

8 51 Negri, I. Wolbachia as an “infectious” extrinsic factor manipulating host

9 signaling pathways. *Frontiers in Endocrinology* **2**,

10 doi:10.3389/fendo.2011.00115 (2012).

11 52 Hardie, D. G. AMP-Activated Protein Kinase: maintaining energy homeostasis

12 at the cellular and whole-body levels. *Annual Review of Nutrition* **34**, 31-55,

13 doi:10.1146/annurev-nutr-071812-161148 (2014).

14 53 Leprivier, G. & Rotblat, B. How does mTOR sense glucose starvation? AMPK

15 is the usual suspect. *Cell Death Discovery* **6**, 27,

16 doi:10.1038/s41420-020-0260-9 (2020).

17 54 Cui, G. *et al.* Host-dependent nitrogen recycling as a mechanism of symbiont

18 control in Aiptasia. *PLoS Genetics* **15**, e1008189,

19 doi:10.1371/journal.pgen.1008189 (2019).

20 55 Xiang, T. *et al.* Symbiont population control by host-symbiont metabolic

21 interaction in Symbiodiniaceae-cnidarian associations. *Nature Communications* **11**, 108, doi:10.1038/s41467-019-13963-z (2020).

22 56 Cao, L. *et al.* In situ detection of the fine scale heterogeneity of active cold

23 seep environment of the Formosa Ridge, the South China Sea. *Journal of*

24 *Marine Systems* **218**, 103530, doi:10.1016/j.jmarsys.2021.103530 (2021).

25 57 Sun, Y. *et al.* Adaption to hydrogen sulfide-rich environments: Strategies for

26 active detoxification in deep-sea symbiotic mussels, *Gigantidae platifrons*.

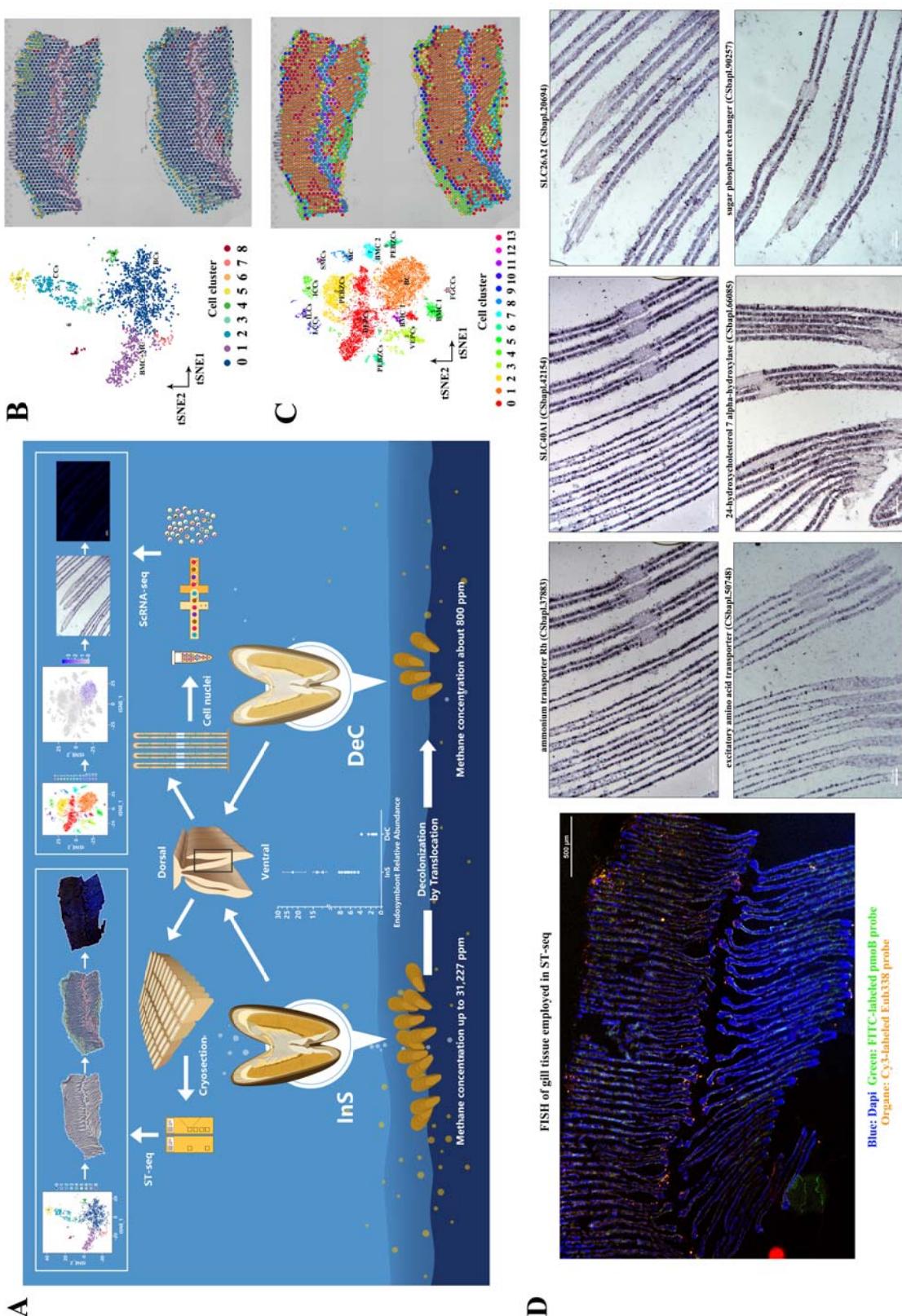
27 *Science of The Total Environment* **804**, 150054,

28 doi:10.1016/j.scitotenv.2021.150054 (2022).

29 58 Chen, H. *et al.* An invertebrate-specific and immune-responsive microRNA

30

1 augments oyster haemocyte phagocytosis by targeting CgIkappaB2. *Scientific*
2 *reports* **6**, 29591, doi:10.1038/srep29591 (2016).


3 59 Wang, H. *et al.* Molecular analyses of the gill symbiosis of the bathymodiolin
4 mussel *Gigantidas platifrons*. *iScience* **24**, 101894,
5 doi:10.1016/j.isci.2020.101894 (2021).

6

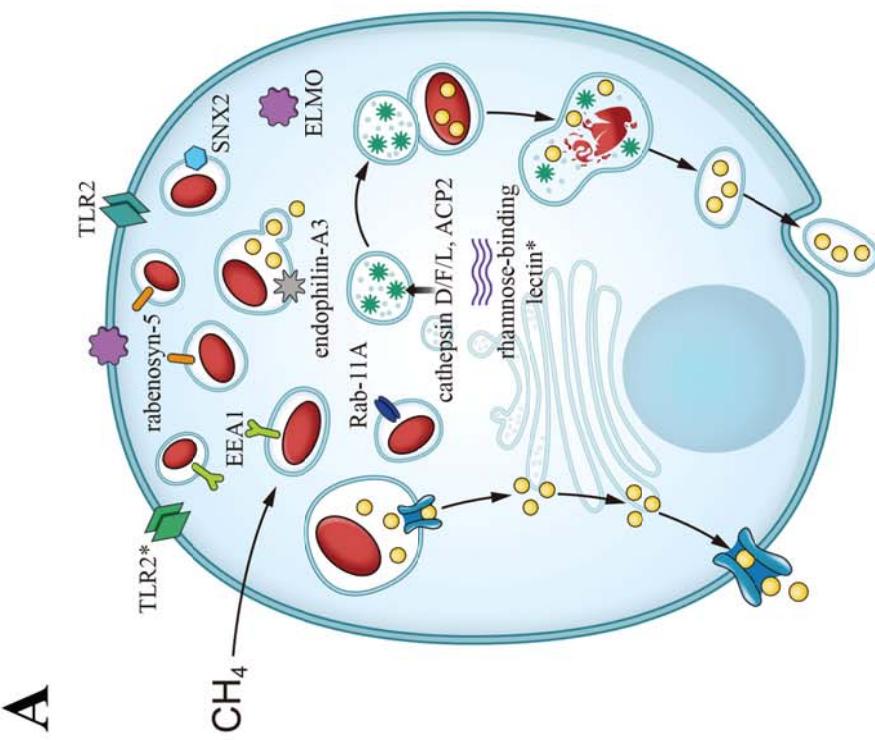
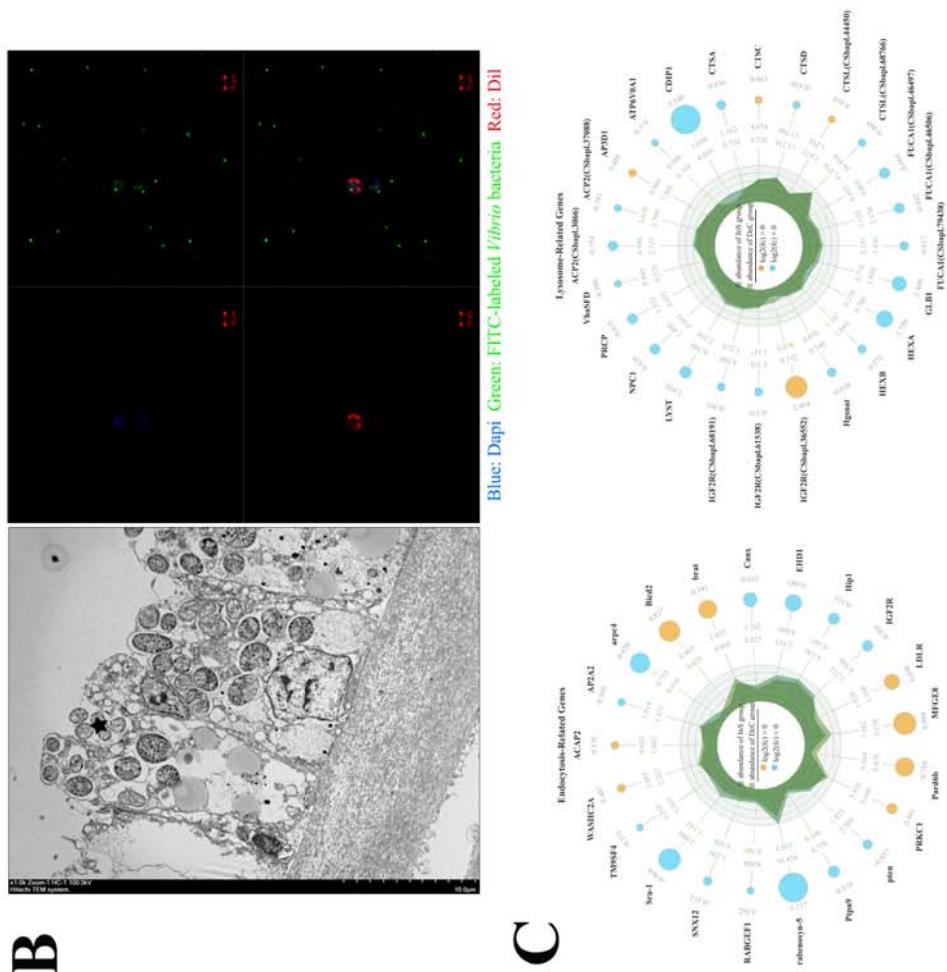
7

8

9

Blue: Dapi Green: FITC-labeled pmnB probe
Orange: Cy3-labeled Euh338 probe

1 **Fig. 1. Spatially resolved single-cell transcriptomic atlas of deep-sea mussel gill**

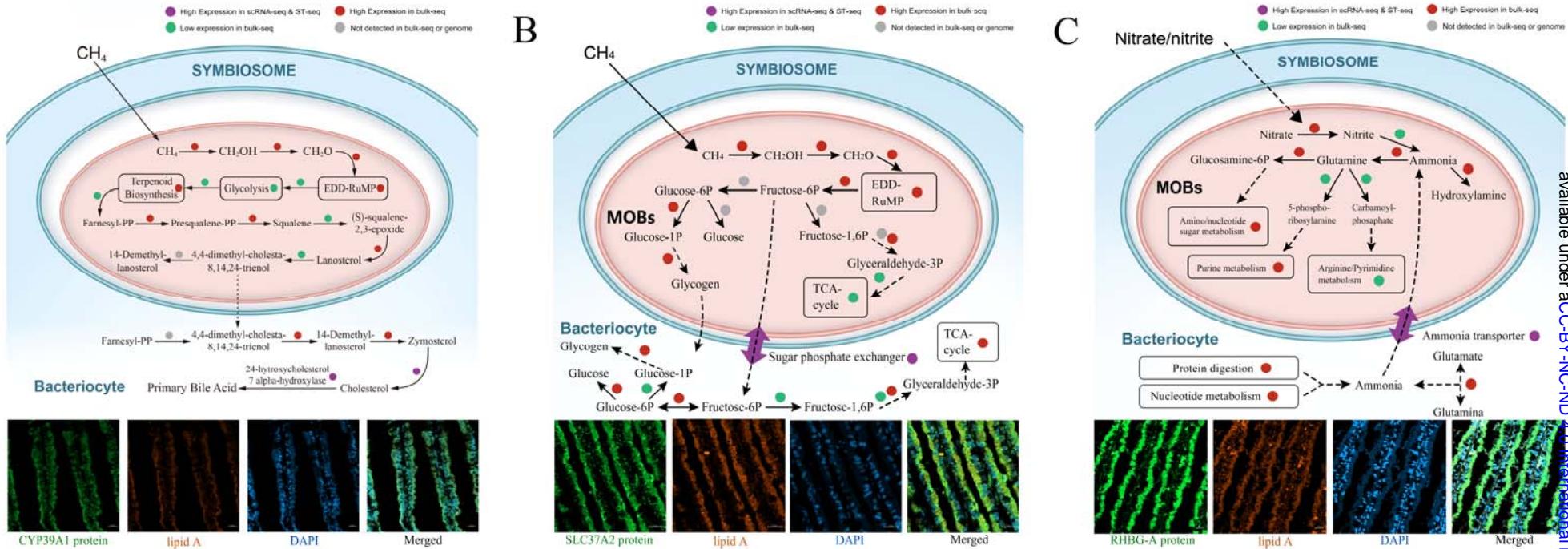


2 (A) Experimental workflow for, and analysis of, single-cell transcriptome (scRNA-seq) and spatial transcriptome (ST-seq) of gill tissue in
3 fully symbiotic (InS group) and partially decolonized (DeC) deep-sea mussels. A marked decrease of the endosymbiont is observed after *in situ*
4 translocation assay (n=14 for the InS group, n=5 for the DeC group).

5 (B) t-SNE projection of spatial transcriptome clustered by gene expression in the InS group, with color assigned by cell type (left). Projection
6 of cell clusters onto spatial transcriptome barcoded spots (right) in the InS group. Two successive sections were used in the same capture region
7 of spatial transcriptome as technique replicates.

8 (C) t-SNE projection of single-cell transcriptome clustered by gene expression in the InS group, with color assigned by cell type (left). Spatial
9 transcriptome barcoded spots labeled using scRNA-seq cell type with maximum prediction score (right).

10 (D) Fluorescent *in situ* hybridization (FISH) of endosymbionts with successive gill sections for ST-seq (InS group) and ISH of bacteriocytes
11 marker genes.

12


1 **Fig. 2. Immune genes and processes involved in symbiosis**

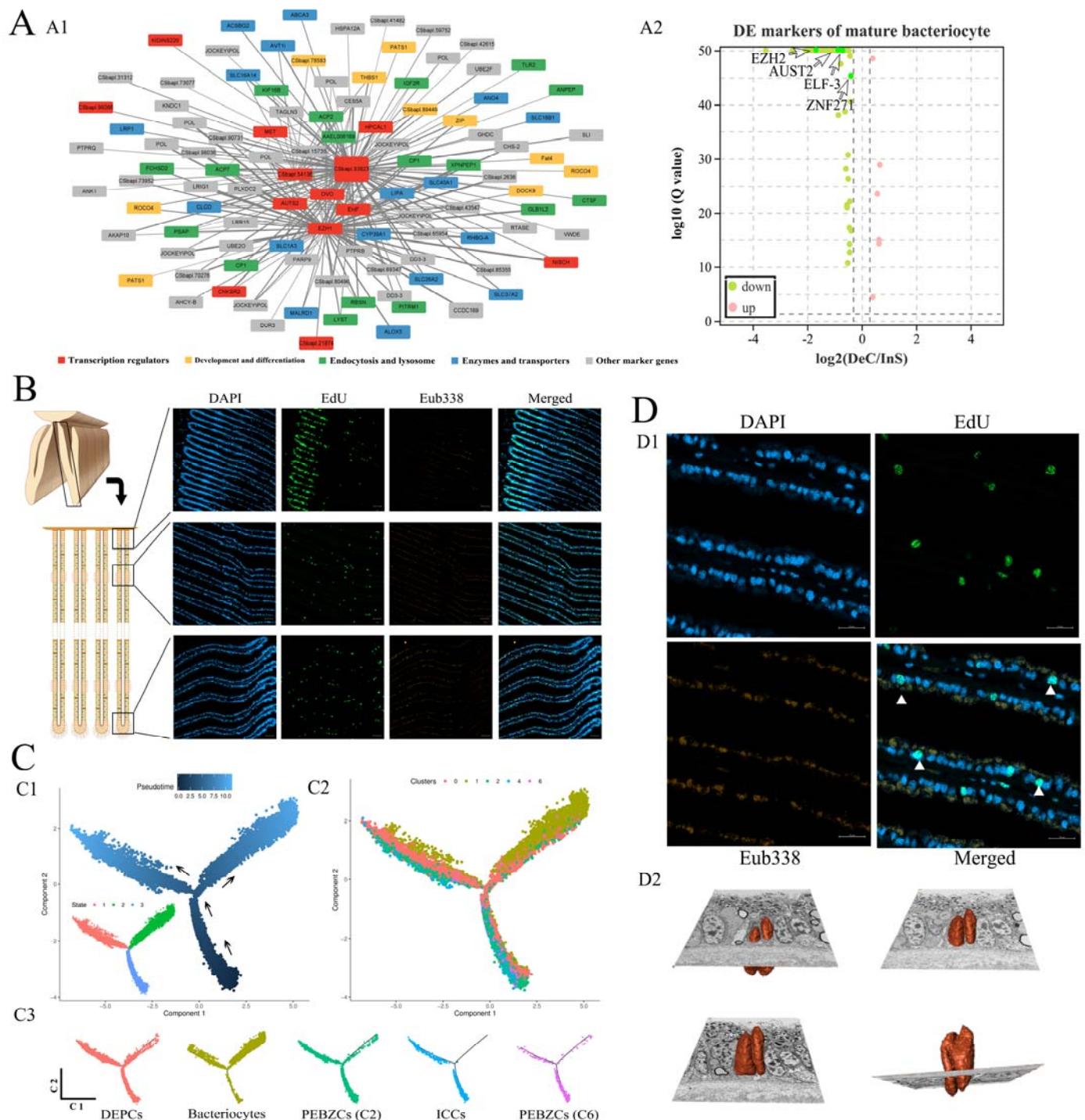
2 (A) Schematic drawing of immune-related marker genes of bacteriocytes.

3 (B) Engulfment of symbionts (labeled with star) by bacteriocytes as revealed by TEM and phagocytosis of FITC-labeled *Vibrio alginolyticus*
4 by bacteriocytes *in vitro*.

5 (C) Radar chart showing expression pattern of endocytosis- and lysosome-related genes of bacteriocytes in the InS and DeC groups. The size
6 of blue/yellow colored apical circles represents the absolute value of \log_2 (fold changes), where blue indicates downregulation, and yellow
7 indicates upregulation, in partially decolonized mussels. Green and dark green colored inner diagram represents the abundance of a given gene in
8 decolonized and fully symbiotic mussels, respectively.

9

2 **Fig. 3. Metabolic interactions between mussel host and endosymbionts**


3 (A) ScRNA/ST-seq and meta-transcriptome data show an intimate interaction of sterol metabolism between the host and symbionts. In support
4 of this, immunofluorescence (IF) assay (using gills of the InS group) of the 24-hydroxycholesterol 7 alpha-hydroxylase (CYP39A1) protein
5 shows that CYP39A1 proteins are widely distributed across bacteriocytes. In addition, a more intensive signal of CYP39A1 protein could also be
6 observed at the apical region that enriched with endosymbionts (indicated by lipid A signals).

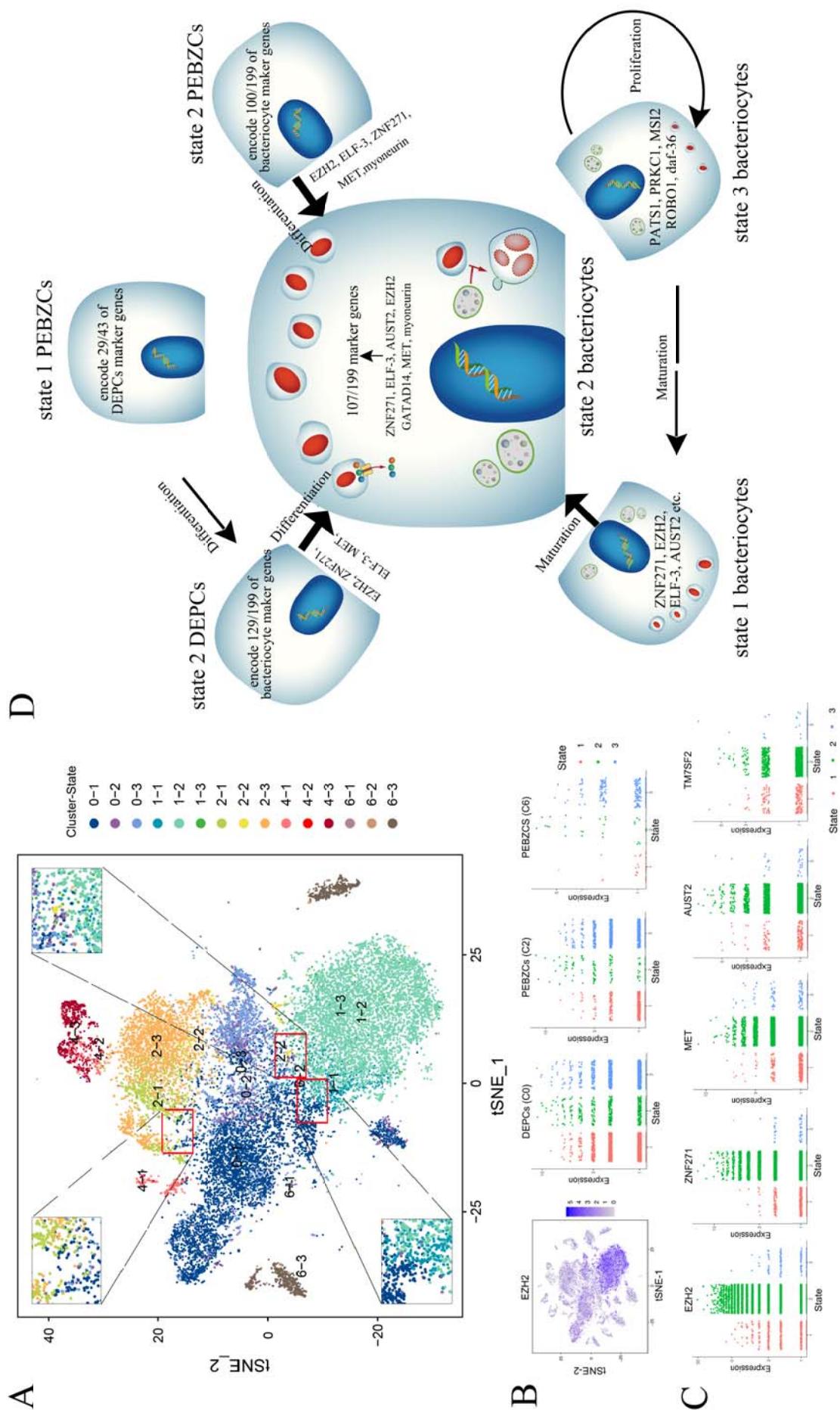
1 (B) ScRNA/ST-seq and meta-transcriptome data show intimate interaction of glucose/glycogen metabolism between the host and symbionts.
2 In support of this, IF assay of the sugar phosphate exchanger (SLC37A2) protein shows the co-location of SLC37A2 proteins with
3 endosymbionts inside bacteriocytes.

4 (C) ScRNA/ST-seq and meta-transcriptome data show intimate interactions of ammonia metabolism between the host and symbionts. In
5 support of this, IF assay of the ammonium transporter Rh (RHBG-A) protein shows co-location of RHBG-A proteins with endosymbionts inside
6 bacteriocytes.

7

2 **Fig. 4. Development trajectory of deep-sea mussel bacteriocyte lineages**

(A) Genetic regulatory network of bacteriocytes constructed by weighted gene co-expression network analysis (WGCNA) using scRNA-seq data. Marker genes with similar function or in same biological process are labeled in the same color (A1).


1 Several hub transcription factors of the genetic regulatory network were found
2 downregulated in the DeC group, accompanied by the differential expression of other
3 63 element markers (A2).

4 (B) Distribution pattern of stem cells in the InS group as revealed by a 5-ethynyl
5 2'-deoxyuridine (EdU) staining assay. Newly synthesized DNA is labeled with EdU
6 signals (green) while cell nuclei are stained by DAPI (blue) and symbionts are labeled
7 using a Cy3-labeled Eub338 probe (orange).

8 (C) Development trajectory of bacteriocyte lineages. Pseudo-time analysis in
9 Monocle shows the successive development process from stem cells to bacteriocytes
10 (C1), which could be further divided into three distinct states (C2). Stem cells and
11 ciliated cells are distributed mostly in states 3 and 1 (C3) while bacteriocytes are
12 mostly distributed in state 2.

13 (D) Cell proliferation of bacteriocytes observed by EdU assay and 3D electron
14 microscopy. EdU signals indicating DNA replication are observed in the nucleus
15 region of some bacteriocytes of the InS group (white triangle, D1). Nuclear division
16 in bacteriocytes could also be observed with 3D reconstruction of gill tissue (a total of
17 91 serial images with thickness at 100 nm per section).

18

1 **Fig. 5. Co-option of conserved transcription factors in function and**
2 **development of bacteriocytes**

3 (A) A t-SNE plot of stem cells and bacteriocytes that in different pseudo-time states.

4 Co-overlaps in the t-SNE distribution of state 1 bacteriocytes and state 2 cells of
5 DEPCs/PEBZCs and between state 1 cells of DEPCs and state 1 cells of PEBZCs
6 were observed (shown in magnified fields).

7 (B) Expression pattern of the hub transcription factors EZH2 in color-coded t-SNE
8 plots (left) and different states of stem cells.

9 (C) Expression pattern of hub transcription factors in different states of
10 bacteriocytes.

11 (D) Schematic diagram shows function and development of bacteriocyte lineages
12 guided by co-option of conserved transcription factors identified from the genetic
13 regulatory networks. Arrows represent the deduced development trajectory (including
14 cell type transition and maturation) in bacteriocytes.

15

16 **Supplementary Fig. S1. PCoA and saturation analysis of transcriptome data**

17 (A) Principal co-ordinates analysis (PCoA) of the meta-transcriptome of the InS
18 (isobaric samples, n=7) and DeC groups (isobaric samples, n=1, and
19 RNAsafer-preserved samples, n=4) using all mussel mRNA transcripts. (B) PCoA of
20 the meta-transcriptome of the InS (RNAsafer-preserved samples, n=7) and DeC
21 groups using all mussel mRNA transcripts. (C) Saturation analysis of ST-seq data in
22 the InS group. (D) Saturation analysis of ST-seq data in the DeC group. (E) Saturation
23 analysis of scRNA-seq data in the InS group. (F) Saturation analysis of scRNA-seq
24 data in the DeC group.

25

26 **Supplementary Fig. S2. Function enrichment analysis of gill cells, and**
27 **phagocytosis and symbiont proliferation inside bacteriocytes**

28 (A) Gene Ontology (GO) enrichment analysis of marker genes in bacteriocytes
29 (cluster 1), dorsal end proliferation cells (DEPCs, cluster 0), posterior end budding
30 zone cells (PEBZCs, cluster 2) and intercalary cells (ICCs, cluster 4). Size of the dot

1 represents number of enriched genes in pathway, and color represents q-value of
2 enrichment result. (B) Phagocytosis of FITC-labeled beads by bacteriocytes *in vitro*.
3 (C) Proliferation of endosymbionts (labeled with triangle) inside bacteriocytes as
4 revealed by 3D electron microscopy. More details could be observed in
5 Supplementary Video 1.

6

7 **Supplementary Fig. S3. Sterol biosynthesis pathways of endosymbionts and**
8 **deep-sea mussel host**

9 (A) Metabolic pathway of steroid biosynthesis in the symbiont as revealed using
10 the genome (left) and meta-transcriptome (right, data from isobaric samples of the InS
11 group, n=7). For genomic data, all the identified genes are colored in grey. For
12 meta-transcriptome data, all identified genes are colored in green, while abundantly
13 expressed genes (top 10%) are colored in pink. (B) Metabolic pathway of steroid
14 biosynthesis in the host as revealed using the genome (left) and meta-transcriptome
15 (right). For transcriptome data, only abundantly expressed genes (top 10%) are
16 colored in green.

17

18 **Supplementary Fig. S4. Glucose/glycogen metabolic pathways of**
19 **endosymbionts**

20 Glucose/glycogen metabolic pathways of the symbiont are colored based on the
21 genome and meta-transcriptome data (isobaric samples of the InS group, n=7). For
22 genomic data, all the identified genes are colored in grey. For meta-transcriptome data,
23 all identified genes are colored in green, while abundantly expressed genes (top 10%)
24 are colored in pink.

25

26 **Supplementary Fig. S5. Glucose/glycogen metabolic pathways of mussel host**

27 Glucose/glycogen metabolic pathways of the host are colored based on the
28 genome and meta-transcriptome data (isobaric samples of the InS group, n=7). For
29 genomic data, all the identified genes are colored in grey. For transcriptome data, only
30 abundantly expressed genes (top 10%) are colored in green.

1

2 **Supplementary Fig. S6. Ammonia-related metabolic pathways of**
3 **endosymbionts**

4 Ammonia-related metabolic pathways of the symbiont are colored based on the
5 genome and meta-transcriptome data (isobaric samples of the InS group, n=7). For
6 genomic data, all the identified genes are colored in grey. For meta-transcriptome data,
7 all identified genes are colored in green, while abundantly expressed genes (top 10%)
8 are colored in pink.

9

10 **Supplementary Fig. S7. Differentially expressed genes of bacteriocytes in the**
11 **InS group in comparison**

12 (A) Differentially expressed genes of bacteriocytes in the InS group in comparison
13 with the DeC group. (B) GO enrichment analysis shows multiple metabolic pathways
14 were modulated dot size represents the overall number of differentially expressed
15 genes, up-down normalization = [number of upregulated genes] / [number of
16 downregulated genes] - 1). (C) Genes involved in carbohydrate, vitamin, lipid, and
17 amino acid biosynthesis are mostly downregulated in decolonized mussels.

18

19 **Supplementary Fig. S8. WGCNA modules of gill tissue and the developmental**
20 **process of bacteriocytes**

21 (A) Clustering of WGCNA module eigengenes based on scRNA-seq data of the InS
22 and DeC group. Eigengenes represent the overall expression level of genes in each
23 module of a given cell type and sample, with green indicating a negative, and red
24 indicating a positive correlation. (B) GO enrichment analysis using 112 element
25 marker genes of bacteriocytes annotated from module Mod12. (C) Development
26 trajectory of bacteriocyte lineages revealed by PAGA (C1-2) and RNA velocity
27 analysis (C3). Ongoing development from stem cells to bacteriocytes is observed by
28 PAGA analysis in which PEBZCs were the most primitive cells in development (C1).
29 Interconnectivity between each cell pair is calculated and visualized, showing the
30 successive differentiation process (C2). A positive velocity from PEBZCs and DEPCs

1 to bacteriocytes was also observed in the adjacent regions of corresponding cells (C3).
2 (D) Venn diagrams of marker genes in bacteriocytes (D1), DEPCs (D2), PEBZCs (D3
3 for cluster 2, D4 for cluster 6) with high expression genes (HEGs) of corresponding
4 cell types in states 1, 2, and 3. (E) Venn diagrams of DEPC marker genes with
5 state-related HEGs of PEBZCs (cluster 2). (F) Expression pattern of key transcription
6 factors in different states of bacteriocytes, DEPCs and PEBZCs.

7

8 **Supplementary Fig. S9. Phylogenetic analysis of hub transcription factors**

9 (A) Phylogenetic analysis of EZH2, ELF-3, ZNF271 and AUST2 proteins. (B)
10 Phylogenetic analysis of all hosts using cytochrome C oxidase subunit I
11 (mitochondrial) proteins.

12

13 **Supplementary Table 1. Statistical analysis of ST-seq and scRNA-seq data**

14 **Supplementary Table 2. scRNA-seq cell markers**

15 **Supplementary Table 3. Differentially expressed markers in the DeC and InS
16 groups as assessed using scRNA-seq**

17 **Supplementary Table 4. Feature count information of meta-transcriptome of
18 host and symbionts**

19 **Supplementary Table 5. WGCNA sample expression pattern**

20 **Supplementary Table 6. WGCNA networks in bacteriocyte lineages**

21 **Supplementary Table 7. GO enrichment of WGCNA and all other markers in
22 bacteriocytes**

23 **Supplementary Table 8 State-related differentially expressed genes in stem
24 cells and bacteriocyte lineages**

25