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Abstract  30 

Spatial transcriptomics technology has revolutionized our understanding of cell types and tissue 31 

organization, opening new possibilities for researchers to explore transcript distributions at subcellular 32 

levels. However, existing methods have limitations in resolution, sensitivity, or speed. To overcome 33 

these challenges, we introduce SPRINTseq (Spatially Resolved and signal-diluted Next-generation 34 

Targeted sequencing), an innovative in situ sequencing strategy that combines hybrid block coding and 35 

molecular dilution strategies. Our method enables fast and sensitive high-resolution data acquisition, 36 

as demonstrated by recovering over 142 million transcripts using a 108 gene panel from 453,843 cells 37 

from four mouse brain coronal slices in less than two days. Using this advanced technology, we uncover 38 

the cellular and subcellular molecular architecture of Alzheimer's disease, providing additional 39 
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information into abnormal cellular behaviors and their subcellular mRNA distribution. This improved 1 

spatial transcriptomics technology holds great promise for exploring complex biological processes and 2 

disease mechanisms. 3 

 4 

Introduction 5 

The well-ordered structural organization of cells and the intrinsic heterogeneity among cells are 6 

essential characteristics of multi-cellular organisms. Various spatial transcriptomic technologies have 7 

been developed to help understand the nature of such spatial information and its functional properties. 8 

In-situ mRNA capture-based approaches offer a spatially-resolved expression landscape (1-5). 9 

Nevertheless, these methods have trouble providing finer information in space, such as subcellular 10 

RNA localization, whereas imaging-based spatial transcriptomic approaches offer near-optical limit 11 

resolution (6). An ideal spatial transcriptomic technology needs to be sensitive, accurate, scalable, and 12 

robust. Such currently available approaches are divided into two major categories, fluorescent in-situ 13 

hybridization (FISH) (7-11) and in-situ sequencing (ISS) (12-16). Those prevalent approaches face 14 

major challenges due to time-consuming workflows, complex reagents, and complicated imaging set-15 

ups. FISH-based approaches are typically built upon single molecule detection schemes that rely on 16 

high-power, large numeric aperture objective lens and on specialized imaging techniques to overcome 17 

a low signal-to-background ratio (SBR) problem, and that usually leads to a sacrifice in the size of 18 

imaging field of view (FoV). The length of the mRNA of interest is also limited since many probe binding 19 

sites are commonly needed. While ISS-based methods usually apply in-situ amplification to increase 20 

the SBR ratio, molecular crowdedness during amplification or optical imaging are major challenges. 21 

Another common issue of currently available methods, the long experimental time, greatly hinders the 22 

scalability needed to handle a high-quantity of or large-size samples.  23 

 24 

Here, we introduce a new ISS-based technology that uses sequencing-by-synthesis (SBS) chemistry 25 

to speed up the cyclic reactions needed for highly efficient information acquisition. We created a hybrid 26 

block code that is both signal-crowdedness and error robust, and that has a high decoding efficiency. 27 

Physical dilution of signal is adopted to further counteract ISS9s intrinsic crowdedness issue. This 28 

method, SPatially Resolved and signal-diluted Next-generation Targeted sequencing (SPRINTseq), has 29 

greatly shortened the sequencing time it took (to within 9.5 hours) to profile a targeted transcriptome of 30 

a mouse brain coronal slice, and produced near optical diffraction-limit resolution. SPRINTseq produced 31 

a sub-micron precise, whole-slice-scale cellular atlas that contains subcellular location information for 32 

each transcript. Such an information-rich sub-cellular distribution of genes can be greatly affected by 33 

physiological conditions. Using a 108-gene panel, 4 slices of mouse coronal brain (from 2 normal 34 

mouse and 2 mouse with Alzheimer9s disease) from sample to data could be profiled in 2 days, covering 35 

453,843 cells and 142,957,485 transcripts. We found that the degree of subcellular mRNA dispersion 36 

increased as glia cells activated in Alzheimer9s disease. We also found that the mRNA distribution 37 

produced changes in orientation within the amyloid microenvironment. Additionally, the high 38 
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 3 

heterogeneity we found within inhibitory neurons may correlate with cell-type-specific responses during 1 

disease. 2 

 3 

 4 

Fig. 1. Workflow and performance of SPRINTseq: in-situ sequencing from sample to data within 20 hours. (A) In-situ sequencing 5 

automation. Each mouse brain tissue slice was mounted on a slide and each slide was assembled into a flow cell and mounted between 6 

2 manifolds. The manifolds were controlled by 2-way solenoid switch valves that controlled the fluidic routes. The reagent flowed directly 7 
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into the flow cell while a bypass prevented reagent cross-contamination. (B) Schematic workflow: in situ barcoded clonal amplification 1 

and in situ sequencing. Probe hybridization, ligation, and rolling circle amplification were performed sequentially and took about 10 hours 2 

total. Each probe contained two identical <sequencing primer + barcode= blocks to increase the signal-to-background ratio. Barcodes 3 

were sequenced in situ using 2-color, reversible terminator sequencing-by-synthesis chemistry. Scale bar: 5 ¿m. (C) SPRINTseq 4 

specificity demonstrated by inter-species gene detection on a human (HEK293T) and mouse cell (3T3) co-culture system. Scale bar: 10 5 

¿m. (D) Characterization of 10-bp barcode sequencing. No obvious dephasing or signal decay was observed throughout 10 cycles. The 6 

boxes show the interquartile range, the lines in the boxes are the medians, and the bars show min/max values. The horizontal dashed 7 

line is SBR = 1. (E) Hybrid block codes achieve error-correctable and crowdedness-robust encoding. The barcodes are highly orthogonal 8 

between each other. A specific gene is mapped by looking for its exact barcode sequence and the one with correctable error (e.g., 9 

Hamming distance [h] = 1). Also, all composed barcodes (composite codewords) containing that gene are corrected for mapping. By 10 

counteracting signal overlapping and sequencing error, a significant number of signals are rescued by this encoding strategy. (F) Error 11 

correction. When a sample readout sequence <CGTCGCGGGG= (one base error) is aligned with all barcodes (including an original 12 

barcode and a composed barcode) in the library, only one barcode (CGTCGCGGTG, Gene 1) with a Hamming distance equal to 1 is 13 

found, thus this sequence was mapped to Gene 1 and the error was corrected. (G) Polyclone barcode decomposition. When a sample 14 

readout sequence <AGTCCCGCTT= (a composed barcode containing two barcodes) is aligned with all the composed barcodes in the 15 

library, only one barcode pair (Gene 1: CGTCGCGGTG and Gene 2: TGGCCGGCGT) with a Hamming distance less than or equal to 1 16 

exists. Thus, this polyclone (overlapping amplicons) can be decomposed and mapped to Gene 1 and Gene 2. 17 

 18 

Result 19 

 20 

Principle, operation, and performance of SPRINTseq.  21 

A SPRINTseq experiment consists of two major parts, in situ barcoded clonal amplification and ISS. We 22 

constructed an integrated setup to automatically control fluidics, temperature, mechanical motion, and 23 

fluorescence imaging (Fig. 1A, Fig. S1 & S2). A slice of tissue was placed in a microfluidic flow-cell and 24 

various reagents were programmed to flow through it. A set of padlock probes we designed directly 25 

hybridized mRNAs with high specificity and then ligated to form a circular DNA template for rolling circle 26 

amplification (Fig. 1B). In about 10 hours, targeted genes were converted in situ into individual nanoball 27 

clones of corresponding barcodes. Each padlock probe contained two identical barcode blocks to 28 

double the signal of the sequencing reaction (Fig. S3), which came from fluorescent-labeled, reversible 29 

terminator nucleotide substrates. Each barcode block consisted of a gene-specific barcode and a 30 

universal sequencing primer binding sequence. 31 

 32 

Because of its fast cyclic reaction time (Fig. S2; 15 min/cycle includes tissue blocking, substrate 33 

incorporation, and fluorophore cleavage steps), we used mature 2-color reversible terminator SBS 34 

chemistry for barcode readout (Fig. 1B). With an approximate 2.2 x 107 pixel/s imaging speed, the 35 

sequencing process took only about 9.5 hours for a 10-base barcode reading on a coronal slice of 36 

mouse whole brain. The images were further processed for base calling and cell segmentation (Fig. S5 37 

& S6). Common imaging background noise caused by non-specific binding of the fluorescent nucleotide 38 

substrate was clearly reduced when free thiol groups in the tissue were blocked (Fig. S3A,B). Also, with 39 

multiple-barcode-block design (Fig. S3C-F), the SBR of SPRINTseq was significantly greater than those 40 

FISH-based methods (Fig. S7). Altogether, signal with sufficient SBR can be generated even on high 41 

auto-fluorescence tissue samples (Fig. S4). Amplified barcode clones were stably attached on the 42 

sample and drifted negligibly during the whole experimental process (Methods). Using only one probe 43 

per gene, targeting sensitivity was as high as 38% (Fig. S7D-G), mainly due to a low loss of amplified 44 

clones and no reverse transcription step in the protocol. In addition, during cyclic sequencing reactions, 45 

SPRINTseq exhibited high specificity (Fig. 1C) with very low signal decay or dephasing (Fig. 1D, Fig. 46 
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 5 

S8).  1 

 2 

We designed a highly efficient and orthogonal coding scheme, 8hybrid block code9, that encodes 3 

barcodes in a way that tolerates signal crowdedness and corrects sequencing errors (Fig. 1E). We 4 

encoded 2k genes using n-bit (n > k) codewords created from 0/1 string-based block code, and used 5 

the redundant bits to correct errors (Fig. S9). Moreover, we folded n-bit binary codewords to (n/2)-bit 6 

double-binary codewords by combining every two bits into a dual channel bit, thus shortening signal 7 

acquisition time. The dual-channel <1= signal at the same bit was avoided to reduce the overall signal 8 

density and to improve orthogonality between codewords. We then selected a subset of all codewords, 9 

among which almost any two could be uniquely split to enable the decomposition of overlapping signals. 10 

Hybrid block code naturally fits 2-color reversible terminator SBS. To convert the codeword into a DNA 11 

barcode sequence, we used the bases 8C9 and 8T9 to represent <1= in the two channels and base 8G9 to 12 

represent <0=. Base 8A9 was not used in the barcodes. After sequencing, all barcode reads were aligned 13 

against a library consisting of the original barcodes and all composed barcodes (e.g., CGG + TCG = 14 

ACG). When aligning a barcode that had one sequencing error against the library, only one barcode 15 

with a Hamming distance equal to 1 was obtained, thus achieving error correction (Fig.1 F). Polyclone 16 

(overlapping amplicons) barcodes were aligned to all possible polyclone barcodes (all barcode pairs) 17 

in the library. Thus, a unique polyclone barcode with a Hamming distance equal to or less than 1 was 18 

found, and that allowed us to decompose the signal from overlapping amplicons (Fig.1 G). Using 19 

barcodes called from an image sequence built with that design resulted in a significantly higher average 20 

Shannon entropy per image than those of existing methods (Table S3). Our refined experimental 21 

process and efficient coding scheme enables SPRINTseq to profile a coronal slice of mouse whole 22 

brain within 20 hours and with high sensitivity and accuracy. 23 

 24 

Relieving crowdedness issues yields high quality ISS 25 

Signal crowdedness, a major challenge for ISS, occurs when numerous amplified signal spots fill the 26 

limited space within a cell and thus limit the total read count. In a swift scanning scheme, the locations 27 

of amplified clones after 2D-stacking projection are prone to signal overlap in crowded regions. In hybrid 28 

block code, though, signals are diluted by using the 8bit-of-silence9 and 8optical dilution9 is realized. Only 29 

a fraction of the barcodes was fluorescently labeled in each sequencing cycle (Fig. S9C). Such signal 30 

sparseness can be finetuned by the number and position of the 809 signal in the barcodes, thus 31 

staggering the signals from highly expressed genes in different cycles. 32 

 33 

However, the optical dilution ratio has an upper limit within a certain number of sequencing cycles as 34 

the proportion of silent channels is limited by the Hamming weights of codewords. Inevitably, signal co-35 

occurrence between highly-expressed genes will happen as more genes that need to be identified are 36 

included in the panel (Fig. 2A). In some cases, a signal from one super-highly expressed gene is so 37 

dense that the spots form 8plaques9 and the signals from other genes are covered and their information 38 
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 6 

is unextractable. This crowdedness is caused by too many amplicons from highly abundant genes. Also, 1 

some amplification events may be precluded in such a physically crowded environment, thus causing 2 

an even greater bias in gene profiling. Optical dilution does not alleviate this issue. 3 

 4 

 5 

Fig. 2. SPRINTseq uses signal dilution to relieve signal crowdedness. (A) Spatial crowdedness and physical dilution of signals. As 6 

signals from rolling circle amplified (RCA) clones were projected onto a 2-D plane during focal-stacking, the signals inevitably overlapped 7 

in crowded regions and became unrecognizable, thus causing information dropout. Through selective amplification, signals from partial 8 

transcripts were physically eliminated, thus leaving a sparser environment. (B) Selective amplification. The proportion of amplification of 9 

specific highly expressed genes can be controlled by mixing normal padlock probes and sequencing-primer binding-site transversion 10 

probes (irreplicable), which achieve selective gene masking during amplification and yields a desired ratio. (C) Signal rescue through 11 

selective amplification. Respective signals from Snap25/Sst (magenta) and Slc17a7/Actb (cyan) can be obtained through another 12 

sequencing cycle. Because at least one base of the respective gene barcodes is designed to be the same (cycle and channel),a 13 

crowdedness situation (co-occurrence, yellow) is simulated. Percentages represent the remaining fractions of gene signals after selective 14 

amplification. The crosses represent the recognizable signals based on local maxima identification. In the example image, 20% (7/35) of 15 

Actb reads can be extracted during co-occurence with all Sst amplicons, while 91% (30/33) of the reads can be extracted during co-16 

occurrence after masking 90% of the Sst amplicons. Scale bars: 20 ¿m for the base images and 5 ¿m for the insets. 17 

 18 

We used a selective amplification strategy to relieve physical crowdedness. For those highly expressed 19 

transcripts, we doped the padlock probes with irreplicable ones to uniformly dilute their clonal 20 

populations. Thus, partial transcripts of such genes are physically eliminated and other genes are able 21 

to be better amplified and read (Fig. 2B). To demonstrate selective amplification, we simulated an 22 

inevitable situation in which multiple genes are tested in a panel: two genes with dense signals appear 23 
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 7 

in the same reaction cycle and channel. Snap25 and Slc17a7 are highly expressed genes in excitatory 1 

neurons and when their signals appeared together, their clonal puncta joined together to form plaques 2 

in the images and the puncta were obscured (Fig. 2C). After masking 80% of both genes, each of their 3 

transcript clones were clearly differentiated. Though the masked signals9 locations could not be 4 

recovered, the quantities of transcripts could be re-calibrated by multiplying the dilution ratios in gene-5 

by-count expression matrix (Fig. S10). In another example, Sst, a GABAergic neuron subtype marker 6 

gene, dominated the expression in that cell type. The puncta of clonal signals from other genes such 7 

as Actb were difficult to discern. After diluting the Sst signal 10-fold, it was possible to digitally count 8 

mRNA clones, and many signals, including those of Actb and Sst, were rescued. Only 20% (7/35) of 9 

the Actb reads could be extracted when the Actb signal co-appeared with Sst9s. After masking 90% of 10 

the Sst amplicon, more than 90% (30/33) of the Actb reads were extracted. Given prior knowledge, we 11 

can adjust the physical dilution ratios for genes with different abundances. This ratio needs to be high 12 

enough to identify clonal signals in highly expressed cells, but not so high as to cause false-zeroes in 13 

lowly expressed cells. Optical dilution and selective amplification are functionally complementary. The 14 

final dilution fold is the product of the physical dilution fold from selective amplification and the optical 15 

dilution fold. 16 

 17 

For regions that are still crowded after two-level dilution, the polyclonal signals that result mainly from 18 

the co-localized 2-D projections of two amplicons, can be decomposed into separate barcodes in hybrid 19 

block coding and their signals can be rescued (Fig. 1E,G). By combining optical dilution, physical 20 

dilution, and polyclone decomposition, SPRINTseq effectively relieves the signal crowdedness issue in 21 

ISS. 22 

 23 

Single cell profiling with subcellular resolution of mouse brain coronal slices 24 

We profiled mouse brain coronal slices (approximately 10.2 x 7.6 mm2) at subcellular resolution using 25 

a 108-gene panel (Fig. 3A). The genes included both marker and disease-related genes selected for 26 

cell classification and status characterization (Extra Table 1) (17). To encode these genes, we designed 27 

a 10-base barcode set based on the hybrid block code (Fig. S5A-C). The minimum Hamming distance 28 

between any barcode pair in the 108-gene panel was 3, and the minimal Hamming distance between 29 

almost any (> 99.8%) barcode pairs that containing polyclone barcode was 3, which ensured error 30 

correction and polyclone decomposition. The silent bit (G) content of 52.4%, achieved a 23.8% optical 31 

dilution ratio while keeping a sufficient Hamming weight in codewords. Furthermore, selective 32 

amplification applied to seven highly-expressed genes (Actb, Mbp, Cst3, Penk, Snap25, Slc17a7, and 33 

Sst) to further reduced the clone number by 54.4%. As a result, about 10% of all signals were acquired 34 

per sequencing cycle, significantly diluting crowdedness. While 49.8% of all monoclonal reads were 35 

rescued from error correction, 31.6% of the total reads were rescued from polyclone decomposition. 36 

 37 

We identified 16,606,784 raw reads from the brain slice, and that number increased to 36,414,561 after 38 
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 8 

selective amplification was re-calibrated. Probe binding false positives and gene mapping were 0.05 1 

and 0.02 events per cell, respectively. The border of each general brain region was drawn using 2 

corresponding marker genes (Fig. 3A). Highly accurate and specific expression patterns were 3 

consistent with the in-situ hybridization results in the Allen Brain Atlas (Extra Supplement PDF). Brain 4 

replicates also showed high concordance at both whole and regional brain levels (Fig. 3B, Fig. S11). 5 

 6 
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 1 

Fig. 3. Single cell profiling with subcellular resolution of mouse brain coronal slices. (A) The spatial landscape of 108 genes called 2 

by 10-cycle sequencing in mouse brain. Brain regions shown in the right half, the brain was defined by several regional marker genes 3 

(Slc17a7, Gad2, Fth1, Enpp2, Pcp4, Pmch), CTX: cortex, HIP: hippocampus, VL: lateral ventricle, TH: thalamus, FT: fiber tract, HY: 4 

hypothalamus, STR: striatum. Scale bar: 1 mm. (B) Spearman correlation of two mouse sequencing replicates, the brain slices were 5 

selected at the same position and the gene panel was the same. (C) Enlarged images showing gene locations (dots color/shape-coded 6 

to the genes) and cells from the insets in (A). Cell border was showed by lines with different colors: orange for excitatory neuron, green 7 

for inhibitory neuron and gray for non-neuronal cell. Scale bar: 2 ¿m for the single cell image and 10 ¿m for the multiple cell images. (D) 8 
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 10 

Cell composition and spatial projection of a brain slice. Marker gene expression levels and Louvain shared nearest neighbor clustering 1 

identified 17 cell types (16 defined cell types and 1 other cell type shown in upper left corner), and their proportions are shown in the pie 2 

chart. Each color represents one unique cell type. The enlarged images at the bottom left show projections of all 17 cell types at the same 3 

locations in the cortex. The anatomical structure is labeled on top beginning with L1 (L: layer in the cortex, cc: corpus callosum) (E) Marker 4 

gene expression heatmap by each cell type. The cell type color code is the same as in (D). (F-H) Spatial projections of non-neuronal cells 5 

(astrocytes, microglia, and oligodendrocytes), excitatory neurons (eL2/3, eL4, eL5, eL6a, eL6b and others), and inhibitory neurons (Reln, 6 

Sst, Vip, Lhx6, Lamp5, Npy, and others), as well as their cell clustering visualizations through uniform manifold approximation plots.  7 

 8 

We determined cell nuclei centroids using DAPI staining, calculated cellular segmentation with nucleic 9 

images, and assigned sequenced RNA reads to their nearest nucleus centroid (Fig. 3C, Fig. S6). We 10 

obtained 146,137 cells in total and 113,625 (77.8%) passed quality-control. According to the major 11 

marker genes, cells were categorized into three major populations: excitatory neurons (Slc17a7+), 12 

inhibitory neurons (Gad1/Gad2+), and non-neuronal cells. Each population was then subdivided into 13 

detailed clusters through Louvain shared nearest neighbor clustering and the resulting 17 types were 14 

spatially projected to their original positions (Fig. 3 D & E, Fig. S12-13). Non-neuronal cells were divided 15 

into astrocyte, microglia, oligodendrocyte, and other cell types (Fig. 3F). Astrocytes and microglia are 16 

scattered across the whole brain, but astrocytes are more frequently distributed at tissue edges and 17 

the hippocampal region. Oligodendrocytes have a high density in the fiber tract region. Neuronal cells 18 

were classified according to their positions in the cortex (for excitatory neurons, Fig. 3G) and their 19 

subtypes (for inhibitory neurons, Fig. 3H). Excitatory neurons in the cortex can be clearly divided into 20 

six layers. They are also widely distributed in the hippocampus and thalamus. Inhibitory neurons are 21 

sparsely distributed in the cortex, striatum, hippocampus, hypothalamus, and reticular nucleus region 22 

of the thalamus.  23 

 24 

SPRINTseq offers an informative subcellular distribution and location of genes, as well as their 25 

correlations to other spatially distributed components. We assessed the degree of the mRNAs9 26 

subcellular dispersity using the average distances to their centroids, and also calculated the mRNA 27 

average distance to the nucleus centroid (Fig. S14). We then used those two parameters as coordinates 28 

for each gene in the panel and classified them all into one of three quadrants.  29 

 30 

The mRNAs of the genes in the first quadrant were widely dispersed within the cell and far from the 31 

nucleus. From that we inferred that they were diffused throughout the cytoplasm and expressed the 32 

protein needed inside the cell. Actb is one typical example of this type. The mRNAs of the genes in the 33 

third quadrant, such as Ctgf, were likely to be distributed on the endoplasmic reticulum near the nucleus 34 

and to express membrane proteins or secreted protein. Genes appearing in the fourth quadrant showed 35 

a certain polarity in their mRNA distributions; genes including Snap25 and Slc17a7 were in this category. 36 

The mRNA distribution polarity of signal-transduction-associated genes may be related to the polarity 37 

of neurons and other cells in the brain. No genes appeared in the second quadrant. 38 

 39 
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 1 

Fig. 4. Spatially-resolved cellular and subcellular changes of mouse brain with Alzheimer9s disease (AD). (A) Immunostained 2 

amyloid plaque (amyloid ³) and SPRINTseq analysis on contiguous slices. After alignment, the amyloid plaque positions were localized 3 

on the sequencing image. The 8Pan-plaque region9 (regions circled in white) was defined around amyloid, and spatial correlation was 4 

calculated between all 108 genes and the amyloid plaque, respectively, in the pan-plaque regions. Bin size: 50 x 50 ¿m. Scale bars: 80 5 

¿m for enlarged images and 1 mm for brain slice images. (B) The most enriched genes, as shown by spatial correlation analysis. The top 6 

20 genes in the graph are shown by red bars. The upper right images show the top 4 genes9 (Gfap, Tyrobp, B2m, and Ctsd) actual 7 

aggregations (left, sequencing result) and at the same positions with amyloid plaque (right, immunofluorescence [IF], contiguous slice 8 

after alignment). Scale bar: 40 ¿m. (C) Whole brain spatial projection for general cell types. Amyloid plaque IF in a contiguous slice is 9 

shown along with excitatory and inhibitory neurons and non-neuronal cells: oligodendrocyte (Oligo), astrocyte (Astro), microglia (Micro), 10 

and other. Reactive glia cells (responding to amyloid plaque) are labeled in red (lower left image). The 3 enlarged images on the right 11 
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show neuron and reactive glia cells and the amyloid plaque distributions at the same position. Scale bar: 1 mm for the whole brain image, 1 

100 ¿m for lower left image and the multiple cell images on the right. (D) Normal and AD mouse brain direct cell composition comparison 2 

using combined classifications of the 16 cell types (see Fig. 3F-H). Scale bar: 1 mm (E) Relative cell density change as a function of 3 

distance to amyloid plaque. The measurements start at 11 ¿m. (F) Oligodendrocyte density comparison of AD and normal mouse brain. 4 

The cortex region is encircled by a red dotted line. Oligodendrocyte density decreased globally in the AD mouse brain. (G) Diagram of 5 

subcellular dispersion. The photos show reactive astrocytes with Gfap protein in red and DAPI in blue. IF results confirm that subcellular 6 

dispersion of reactive astrocytes differed based on their distances from plaque. In the corresponding diagrams, the red dots represent 7 

Gfap mRNA, the black triangles are Gfap mRNA centroids, the pale purple shows cell body, and the dark purple shows cell nucleus. 8 

Scale bar: 10 ¿m. (H) Heatmap of the degree of subcellular dispersion change. Y axis shows different general cell types as listed in (C). 9 

The values are the subcellular distance of cells close to amyloid plaque divided by that of cells far from amyloid plaque. (R): reactive, FC: 10 

fold change. (I) The orientation pattern as a function of distance. Y axis shows different cell types. The orientation of mRNAs was profiled 11 

in the cells whose distance to the nearest Amyloid ³ was 25 ¿m, 50 ¿m, 200 ¿m and 1000 ¿m, respectively. 12 

 13 

Spatial profiling of the mouse brain with Alzheimer9s disease 14 

The 108-gene panel included many genes associated with Alzheimer9s disease (AD), which is also 15 

pathologically associated with the distinct spatial distribution of amyloid plaques (Amyloid ³) that 16 

accumulate in the cortex and hippocampus, especially during aging (18). We used SPRINTseq to 17 

examine brain coronal slices from 10-month-old APP/PS1 and normal mice. First, the genes9 overall 18 

expression levels were similar between AD and normal mice at the whole brain slice and regional levels 19 

(Fig. S15A). Next, we investigated gene-expression changes around amyloid plaques, whose typical 20 

size was over 100 ¿m in diameter. We aligned the Amyloid ³ immunofluorescence images to our 21 

SPRINTseq images and defined the plaques and their surrounding areas as 8pan-plaque regions9 (Fig. 22 

4A). Spatial correlation analysis between all genes and Amyloid ³ in those regions showed that many 23 

genes in our panel were potentially responsive to Amyloid ³ (Fig. 4B). The most relative genes included 24 

Gfap, Tyrobp, Ctsd, B2m, and Apoe, which express mainly in reactive astrocytes and microglia cells 25 

(19, 20). The aggregation of those genes was confirmed by raw sequencing images (Fig. 4B), and the 26 

ranking of spatially-correlated genes were independent of the bin size selected for analysis (Fig. S15B).  27 

 28 

At the cellular level, our SPRINTseq results showed that neurons were depleted from the Amyloid ³ 29 

while the reactive glia cells, including microglia and astrocytes, were aggregated around it (Fig. 4C). To 30 

directly compare the cell compositions of AD and normal brains, we combined both data sets and 31 

classified them together before projection (Fig. 4D, Fig. S15C). The proportion of reactive glia cells in 32 

the AD mouse brain was more than twice that in the normal mouse brain. For other cell types, although 33 

the difference in quantity between AD and normal brains was marginal, the local densities showed 34 

different spatial dependencies to Amyloid ³ and those changes were not random (Fig. 4E, Fig. S15D). 35 

Clearly, the reactive glia cells were clustered favorably around Amyloid ³, within 200 µm, which reflected 36 

their roles of responding to microenvironmental changes and plaque clearance. The reduction of 37 

neuronal density near Amyloid ³ reflected neuron apoptosis in a plaque-rich microenvironment. Notably, 38 

the pathological effect of AD is not only associated with the local microenvironment but can be scaled 39 

to larger regions. For example, oligodendrocytes did not show significant density changes around 40 

Amyloid ³, but their presence in the cortex region was generally less in the AD than in the normal mouse 41 

brain (Fig. 4F, Fig. S15E).  42 

 43 
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SPRINTseq extended the analysis9 spatial resolution to the subcellular level, enabling us to find many 1 

cells that showed distinct differences that were related to the cellular distance to Amyloid ³. In reactive 2 

glia cells, the subcellular dispersion of mRNAs was increased in Amyloid ³ adjacent cells (distance 3 

threshold: 25 ¿m) than in more distant cells (Fig. 4G & H). This was largely because the cytoplasmic 4 

size of reactive glia cells near Amyloid ³ increased because of increased and elongated surface bumps. 5 

Disease-associated microglia (DAM) have been reported to play a vital role in AD and the function is 6 

conserved in mice and human (21, 22). Interestingly, the Amyloid ³ adjacent reactive microglia we found 7 

may largely correspond to reported plaque-phagocytic microglia (XO4+) in gene expression pattern 8 

(Tyrobp+, Apoe+, B2m+ and low Cx3cr1) and behavior (spatially enriched around plaques) (23). The 9 

enlarged cell body might suggest their function in phagocytosis and other regulation process within the 10 

micro-environment, whereas XO4- microglia can9t migrate towards plaques and thus are far away from 11 

plaques. The spatial information can be used as a new dimension for confirming plaque-phagocytic 12 

microglia.  13 

 14 

Additionally, in a cell that is directly adjacent to a plaque, the location of one of its gene9s mRNA 15 

orientations with respect to the nearest Amyloid ³ can characterize the relative proximity of that gene. 16 

So, we calculated the included angle between the mRNA9s orientation, the nucleus centroid, and 17 

Amyloid ³9s direction. A smaller angle indicated that the mRNA tended to be closer to its nearest plaque 18 

(Fig. S16A). Changes in the distance to the nucleus can also be calculated and combined with the 19 

orientation calculation to better describe the mRNA9s tendency to approach or retreat (Fig. S16B). Much 20 

heterogeneity was found within cells especially neurons, suggesting a different cell response pattern 21 

during disease (Fig. S16C). Such orientation was dependent on the distance between a cell and 22 

amyloid (Fig. 4I, Fig. S16D). This orientation feature pattern disappeared at longer distances, as the 23 

effect of Amyloid ³ on distant cells became weaker. Altogether, Amyloid ³ might generally affect its 24 

nearby cell morphology and potentially alter sub-compartment architecture in various cell types. 25 

 26 

 27 

Discussion  28 

 29 

SPRINTseq is an intrinsically high-speed spatial sequencing method that can finish a mouse brain 30 

coronal slice profile at subcellular resolution within 20 hours, including both sample preparation (10 31 

hours, and several slices can be prepared in parallel) and cyclic sequencing (9.5 hours). Due to a 32 

combination of highly effective barcode coding and robust SBS chemistry, SPRINTseq is significantly 33 

faster than most other approaches. Besides, we developed three orthogonal approaches to relieve the 34 

conventional ISS9s signal crowdedness issue. Among those approaches, optical dilution holds great 35 

potential and deserves further examination. For example, with constant codeword Hamming weights, 36 

more silent bits can be gained by increasing the barcode length. Multiple padlocks with different 37 
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barcodes can also be applied to detect more transcripts of highly expressed genes, if necessary, which 1 

resembles selective amplification but is lossless in spatial information. 2 

 3 

One major advantage of this method is the single-molecule high spatial resolution that gives sub-cellular 4 

localization information. This is important for addressing questions of cellular interactions in the context 5 

of gradients or proximity to specific tissue features such as disease lesions. In mouse models of 6 

Alzheimer9s disease, subpopulations of microglia with distinct transcriptomic phenotypes have been 7 

identified via single-cell RNA-sequencing (24). These seemingly AD-associated microglia bearing 8 

stronger inflammatory signatures and were hypothesized to engulf Amyloid ³ plaques (24). We 9 

described the distribution of different types of cells near Amyloid ³ in Alzheimer9s disease mouse model, 10 

and we identified reactive glia cells with a distinct expression pattern that are responsive to Amyloid ³, 11 

similar to what was previously reported (21, 25). The spatial information, including their distance to 12 

Amyloid ³, can further confirm their functional and phenotypic diversity. In addition, subcellular mRNA 13 

distribution was also informative, showing specific transcript distribution patterns within the cell 14 

including polar, random, and centripetal distributions. Extensive changes in these subcellular 15 

distributions in glia cells and neurons are found within the Amyloid ³ microenvironment, most likely 16 

caused by changes in the cytoplasm morphology and membrane position, consistent with previous 17 

reports (24). Cell functions including phagocytosis, stimulus sensing and response, and cell-to-cell 18 

interactions are closely linked with these structural alterations during disease development (23, 24, 26).  19 

 20 

Subcellular mRNA distribution has high heterogeneity across cell types and subtypes. All reactive glia 21 

cells were classified as such based on their gene expression, but importantly the mRNA dispersion 22 

degree is higher in cells that are closer to plaques within the same type (the larger cytoplasm size is a 23 

typical phenotypic feature of glia cell activation in addition to specific gene expression). This new facet 24 

of in-situ sequencing data has added one more dimension to the conventional cellular-level gene 25 

expression matrix. We assert that a combination of gene expression and subcellular mRNA distribution 26 

will improve the understanding of complex transcriptional molecular functions in tissues and lead to 27 

more accurate and more quantitative characterizations of cell types and states. 28 

 29 

At present, SPRINTseq is yet to be improved in some aspects. Firstly, cell segmentation in brain is a 30 

challenge in the field, because cells (including neurons and glia cells) are intricately distributed in the 31 

brain, and there is no proper dye that can perfectly define cell boundaries and also is compatible with 32 

in-situ sequencing chemistry. Currently we did not take long projection structure (such as axon) into 33 

account. One possible improvement is to use expression-guided machine learning approaches for a 34 

better cell segmentation. Besides, the scalability holds a great potential to be further improved by 35 

engineering optimization. For example, current total time is limited by imaging speed (~40 min to cover 36 

a mouse brain coronal slice) which is incomparable to sequencing reaction (~15 min for each cycle) in 37 

each cycle. Larger FoV lens with lower magnification could reduce the sequencing time spent by half 38 
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without damaging data quality due to the coding strategy. The current encoding scheme has about 140 1 

original codewords when fewer than 5% of all codeword pairs (including the original codeword and all 2 

composite codewords) have Hamming distances less than 3, a preferred condition for error correction. 3 

Information acquisition efficiency decreases when more codewords are used to encode a greater 4 

number of genes. To encode all 20,000 genes in the human genome, a simple solution is to splice two 5 

current 10-bp barcodes into a 20-bp barcode while maintaining the current dilution fold (1402 ~ 20,000). 6 

However, when more genes are read, a large dilution fold is needed to maintain crowdedness-robust 7 

signal quality, which likely requires a longer barcode.  8 

 9 
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