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Understanding the effects of cash crop expansion on natural forest is of fundamental
importance. However, for most crops there are no remotely sensed global maps', and
global deforestationimpacts are estimated using models and extrapolations. Natural
rubber is an example of a principal commodity for which deforestationimpacts
have been highly uncertain, with estimates differing more than fivefold*. Here we
harnessed Earth observation satellite data and cloud computing® to produce high-
resolution maps of rubber (10 m pixel size) and associated deforestation (30 m pixel
size) for Southeast Asia. Our maps indicate that rubber-related forest loss has been
substantially underestimated in policy, by the public and in recent reports® . Our
direct remotely sensed observations show that deforestation for rubber is at least
twofold to threefold higher than suggested by figures now widely used for setting
policy*. With more than 4 million hectares of forest loss for rubber since 1993 (at least
2 million hectares since 2000) and more than 1 million hectares of rubber plantations
established in Key Biodiversity Areas, the effects of rubber on biodiversity and
ecosystem services in Southeast Asia could be extensive. Thus, rubber deserves more
attention in domestic policy, within trade agreements and in incoming due-diligence

legislation.

Around 90-99% of tropical deforestation is linked to the production of
global commodities such as beef, soy, oil palm, natural rubber, coffee
and cocoa’. Understanding the effects of individual commodities on
natural forestsis of fundamentalimportance for targeted policies and
interventions. However, with relatively few exceptions—most notably
oil palm and soy"'°—directly observed global or regional maps derived
fromsatellite imagery are unavailable for most commodities. Instead,
commodity-specific global deforestationis typically estimated using
models™? and extrapolations'* with large levels of uncertainty.
Natural rubber is anexample of acommodity whose effects on forests
have remained poorly understood despite its economicimportance®
and the potential for widespread deforestation, land degradation and
biodiversity loss™'¢%, Natural rubber is used in the manufacture of at
least 1 billion tyres per year’>??, and continued and increasing global
demand is driving land use conversion in producer countries™. Pro-
ductionis primarily located in Southeast Asia (over 90% of the global
production®), with the remainder coming from South and Central
America and more recently also West and Central Africa**. Rubber is
produced from the latex of a tropical tree (Hevea brasiliensis) and the
spectral signature of rubber plantations is similar to that of forest?,
making it challenging to identify conversion of natural forest to rub-
ber plantations from space. In addition, around 85% of global natural

rubber is produced by smallholders?, meaning that the plantations
are scattered and often below 5 hain size, increasing the challenge of
detecting them fromsatelliteimagery or capturing themin other forms
innational crop statistics. Consequently, the locations and impacts of
rubber plantations are surrounded by uncertainty and estimates of
rubber-driven deforestation differ by more than fivefold: from less than
1 millionhaalmost globally between 2005 and 2018 to more than 5 mil-
lion ha between 2003 and 2014 in continental Southeast Asia alone?.
Direct observations based on remote sensing have previously existed
only for subsets of Southeast Asia>*”*, individual countries"® or subna-
tional areas*®, and most are outdated so do not reflect the currentrisk.

At present, the most widely used dataset to estimate global
rubber-related deforestation has been derived using a ‘land balance’
model™. This model combines remotely sensed dataontree cover loss
with non-spatial estimates of crop expansion, derived mainly from
national-scale statistics. The ‘land balance’ approach means that tree
coverloss is not spatially linked to commodity expansionand therefore
is not a substitute for more accurate products that provide spatially
explicit estimates of crop expansion into forest areas, as explicitly
acknowledged by the authors?®. The land balance-derived data®*
suggest that rubber is a relatively minor problem when compared to
theimpact of other main forest risk commodities, with soy and palm oil

'Royal Botanic Garden Edinburgh, Edinburgh, UK. ?Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China.
3Stockholm Environment Institute York, Department of Environment and Geography, University of York, York, UK. “Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy
of Sciences, Kunming, China. °*China Country Program, CIFOR-ICRAF, Kunming, China. °Centre for Development and Environment, University of Bern, Bern, Switzerland. ’East-West Center,
Honolulu, HI, USA. Institute of Economics, Yunnan Academy of Social Sciences, Kunming, China. °School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor
University, Bangor, UK. "International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. "Present address: China Country Program, CIFOR-ICRAF, Kunming, China. ®e-mail:

wangyx.tina@outlook.com; aahrends@rbge.ac.uk

Nature | www.nature.com | 1


https://doi.org/10.1038/s41586-023-06642-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06642-z&domain=pdf
mailto:wangyx.tina@outlook.com
mailto:aahrends@rbge.ac.uk

Article

Table 1| Area estimates of rubber plantations for individual countries in Southeast Asia

Country Rubber (ha) Rubber (%) Rubberin KBA Rubber (%) FAO 2020 harvested Rubberin2018 Rubberin 2014 (ha)?

(ha) inKBA rubber (ha)® (ha)*®
Indonesia 4,745,921 34% 362,951 8% 3,668,735 NA NA NA
Thailand 3,744,139 26% 291,600 8% 3,292,671 4,650,000 1,429,487 2,861,400%
Vietnam 1,606,594 1% 59,401 4% 728,764 740,000 912,696 1,916,600*
China 1,097,213 8% 58,073 5% 745,000 NA NA NA
Malaysia 985,335 7% 49,391 5% 1,106,861 NA NA NA
Myanmar 779,717 6% 84,577 1% 323,956 680,000 NA NA
Cambodia 618,135 4% 117,682 19% 310,877 200,000 917,446 2,974,300*
Laos 574,035 4% 49,125 9% NA 700,000 260,471 765,600*
SoutheastAsia 14,151,090 1,072,800 8% 10,176,864

24,587,796*+4,615,324 (95% Cl)

For China, only the main production areas are included (Xishuangbanna and Hainan). Here, we present our most conservative figures (mapped area). The sample-based area estimate and its
Cl (following ref. 33; Supplementary Table 1) suggest that the rubber area may be higher (indicated by an asterisk). Reference 2 also derived standard mapped figures and sample-based area
estimates (indicated by an asterisk). For Thailand, their figures only include northeast Thailand, and for Vietnam, only areas south of Hanoi. NA, not available.

accounting for seven and eight times more deforestation than rubber,
respectively; and in UKimports®for 57 and 20 times more deforestation.
This has contributed to the reduced attention that rubber has received
as adriver of deforestation compared to other commodities and has
led to extensive debate about the need to include rubberinpolicy, such
asthe European Union (EU) Deforestation Regulation” and secondary
legislation associated with the UK Environment Act Schedule 17. How-
ever, given the inherent uncertainty in model-based estimates, there
is an urgent need for robust evidence to provide guidance for policy
interventions to avoid rubber being prematurely excluded from key
policy processes and interventions.

Furthermore, monitoring the effectiveness of policy and compli-
ance with legal and voluntary zero-deforestation commitments will
need spatially explicit commodity production data. This is now highly
relevant because, following prolonged uncertainty about the inclusion
ofrubberinthe EUDeforestation Regulation, arecenttrialogue (Decem-
ber2022) reached agreement to extend the scope of the regulation to
alsoinclude rubber (a preprint version of this manuscript (https://doi.
0rg/10.1101/2022.12.03.518959) formed part of the evidence contribut-
ing to the trialogue), a decision adopted by the European Parliament
on19 April 2023. The ability to monitor rubber-related deforestation
will be critical for the implementation of this legislation, for similar
legislation potentially following in the United Kingdom and USA
(for whichrelevantacts are now restricted toillegal deforestation) and
for monitoring various private sector voluntary commitments such as
those made under the auspices of the Global Platform for Sustainable
Natural Rubber (GPSNR).

Here we present up-to-date analyses and provide Southeast Asia-wide
maps of rubber and associated deforestation, encompassing more than
90% of natural rubber production volume. This is now possible thanks
toincreasesin the resolution of Earth observation data, which canalso
capture smallholder plantations. We used the latest high-resolution
Sentinel-2 imagery (at a spatial resolution of 10 m) to map the extent
of rubber across all Southeast Asia in 2021. Our approach is based on
the distinctive phenological signature of rubber plantations, which
allows themto be distinguished from both evergreen (Extended Data
Fig.1) and deciduous (Extended DataFig. 2) tropical forests on the basis
of leaf fall and regrowth, which (particularly in mainland Southeast
Asia) occur in specific time windows. To tackle the challenge of heavy
cloud cover inthe region we used multiyear imagery composites. For
all areas identified as rubber in 2021 we assessed whether (and when)
prior deforestation had occurred using historical Landsat imagery
andaspectral-temporal segmentation algorithm (LandTrendr)*. The
Landsat archive allowed us to track deforestation back to the early
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1990s. We count only the first occurrence of deforestation to minimize
theinclusion of plantation rotation. Here, we use the term ‘deforesta-
tion’, butitis of note that we track any type of tree cover loss since 1993.
Thus, the rubber-related forest’ loss quantified here can include the
conversion or rotation of agroforests, plantation forests, agricultural
tree crops and rubber itself if established in the 1980s and hence mature
by 1993 (Supplementary Note). A graphical overview of our methodsis
available in Extended Data Fig. 3.

Rubber map for Southeast Asia

According to our maps, mature rubber plantations occupied an area
of14.2 million hectares in Southeast Asiain 2021, with more than 70%
of the production area situated in Indonesia, Thailand and Vietnam.
Other notable areas were situated in China, Malaysia, Myanmar, Cam-
bodia and Laos (Table 1and Fig. 1a). This figure is conservative in that
estimates based on reference ground data® suggest that rubber may
occupy alarger areain Southeast Asia (Table 1 and Supplementary
Table1). The rubber maps achieved agood overall classification accu-
racy (OA =0.95 + 0.02 95% confidence interval (CI); Supplementary
Table 1) with good accuracy and precision of estimates for mainland
Southeast Asia (OA > 0.99 + 0.0195% CI; Supplementary Table 2) but
higher omission errors and less overall accuracy for insular Southeast
Asia (OA =0.85+0.06 95% CI; Supplementary Table 3). Here, limited
seasonality (Extended Data Fig. 4) and greater heterogeneity in cli-
matic conditions (Extended Data Fig. 5) mean that rubber phenology
isless predictable, with trees defoliating at different times, exhibiting
partial defoliation or no defoliation at all**. Hence, despite running the
rubber detection algorithm separately for two different subregions to
addressthe spatial heterogeneity in climate conditions (Extended Data
Fig. 6), omission errors remain in insular Southeast Asia (Extended
DataFigs.7 and 8; see Methods). Overall, user’s accuracy (the comple-
ment of commission error) was 0.99, and producer’s accuracy (the
complement of omission error) was 0.95 but dropped to 0.57 when
based on estimated area. (When based on estimated area the error
matrix and hence producer’s accuracy are adjusted by area weights,
calculated as the proportionate area occupied by the class®, meaning
that the complement of producer’s accuracy measures potentially
omitted area proportions.) The low producer’s accuracy when based
on estimated areais in part due to us erring on the side of omission
errors (mainly affecting insular Southeast Asia) and also because
rubber occupies a proportionately small area compared to the class
itis separated from (all other tree cover), meaning that any rubber
pointerroneously mapped as other tree cover had alarge influence on
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Fig.1|Rubberdistributionin2021and associated deforestationacross
Southeast Asia. a,b, Rubber distribution (a) and associated deforestation (b).
Forbetter visualization, the rubber map (a) was aggregated to 500 m pixel size
by calculating the proportion of 10 m rubber pixelsin each 500 m pixel and the
rubber-related deforestation map (b) was aggregated to 500 m pixel size by
calculating the proportion of 30 m deforestation pixels withineach500 m
pixel. Themapsintheiroriginal resolution are available at https://wangyxtina.

estimated rubber area (Supplementary Table 1). Although we present
both mapped and estimated area (Table 1), we emphasize the more
conservative (mapped) estimate.

Our mapped estimate of 14.2 million ha rubber in Southeast Asia is
consistent with the sum of national statistics reported to the Forest
and Agriculture Organization of the United Nations (FAO), according to
whichthetotal areaof harvested rubberin Indonesia, Thailand, Vietnam,
China, Malaysia, Myanmar, Cambodia and Laos was 10.18 million hain
2020%. Owing to the now low global rubber price many plantations
may not be harvested, meaning that, although our mean estimate is
higher than the values reported to the FAQ, there is abroad alignment.
Our estimates are also generally within the bounds estimated by two
other recent remote sensing studies for rubber®* (Table1).

Substantial deforestation due to rubber

We used time-series Landsatimagery toidentify the deforestation date
for all areas classed as rubber in 2021 in two categories: 1993-2000
and 2001-2016 (overall classification accuracy of 0.85 + 0.09 95% Cl;
Supplementary Table 4). For this we used the LandTrendr algorithm®,
which identifies breakpoints in the pixels’ spectral history. Here, we
tracked the largest breakpoint in the normalized burn ratio (NBR),
indicative of asudden change from forest or other types of tree cover
to bare and/or burnt ground (Extended Data Fig. 9). We used only the
first main breakpoint, going as far back in time as the imagery allows
(early 1990s), meaning that we include rotational plantation clear-
ance into the deforestation estimate only if these plantations were
establishedinthe 1980s and hence detectable as mature tree cover by
the early1990s.In addition, we count pixels as deforested only if their
previous NBR was above a threshold of 0.6 to minimize the inclusion
of pixels that may have been deforested or degraded before the 1990s.

Our data show that rubber led to substantial deforestation across
all of Southeast Asia (Fig. 1b). In total, we estimate that 4.1 million ha
of forest were cleared for rubber between1993 and 2016. Thisis a con-
servative estimate for two reasons: (1) we map deforestation only for the
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users.earthengine.app/view/rubberdeforestationfigl. The areamapped as
rubber is conservative and has higher accuracy for mainland Southeast Asia
thanforinsular Southeast Asia (here defined as all of Malaysia and Indonesia),
for which omission errors were higher (Supplementary Tables 1-3). Source of
administrative boundaries: the Global Administrative Unit Layers (GAUL)
dataset,implemented by FAO within the CountrySTAT and Agricultural Market
Information System projects.

areamapped asrubber in2021, meaning thatif our rubber areamapis
conservative (see above), sois our map of rubber-related deforestation
and (2) theNBR threshold we use may lead to underestimated deforesta-
tioninareas with naturally drier vegetation, more bare ground and/or
regular fires. Removing the threshold leads to an estimate of almost
6 million ha of forest loss.

According to our maps, almost three-quarters of this forest clearance
occurredsince 2001 (3 million ha). Sample-based area estimates (Sup-
plementary Table 4) suggest that the deforested area since 2000 may
have beensomewhat lower (2.5 million ha + 0.35 million ha 95% CI), but
overall our results suggest that rubber-related deforestationis not just
a historic problem and that substantial deforestation occurred after
2000.Inaddition, more than1 million ha of rubber plantationsin 2021
were situated in Key Biodiversity Areas (KBAs)***¥, which are globally
important for the conservation of biodiversity (Table 1).

In terms of individual countries, both historically and since 2001,
deforestation was highest in Indonesia, followed by Thailand and
Malaysia (Figs. 2 and 3). Although these three countries accounted
for more than two-thirds of total rubber-related deforestation in
Southeast Asia during 2001-2016, substantial deforestation also
occurred in Cambodia since 2001, where more than 40% of rubber
plantations were associated with deforestation (Fig. 2) and 19% of
rubber area was situated in KBAs (Table 1).

Rubber deforestation is underestimated

Recent estimates of deforestation embedded in rubber, intended to
inform policy inthe EU’, G7 (ref. 8) and the United Kingdom?®, all used the
datagenerated by ref.11, which place total rubber-related deforestation
between2005and 2017 atbelow 700,000 ha (in135 countries, including
all principal rubber producers, except Chinaand Laos). Translating to
anaverage annual deforestation of 53,000 ha (Table 2), these estimates
lie several-fold below the estimates of this and other studies on the basis
of spatially explicit data—in the case of Cambodia, several hundredfold
(Table 2). A revision of the data from ref. 3 now provides an almost
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Fig.2|Areaofrubber-related deforestationbetween2001and 2016 for
individual countriesin Southeast Asia. The bars show the cumulative area
of deforestation (2001-2016) for rubber plantations in2021. Orange areas are
the fraction of deforestation that occurred inside KBAs*. The circles show

30-fold higher estimate for deforestation in Cambodia (Table 2) but
still places total quasiglobal rubber-related deforestation between
2005 and 2018 below 1 million ha. By contrast, the World Resources
Institute® estimated that rubber replaced 2.1 million ha of forest dur-
ing2001-2015injust seven countries, which account for less than half
of global natural rubber production, and ref. 2 estimated that rubber
replaced more than 5 million ha of forest in continental Southeast Asia
alone. Although our estimates are conservative compared to these
other estimates and because none of the figures can be directly com-
pared as they refer to somewhat different time periods and different
definitions of forest, it is of critical note that even our lower 95% CI
still greatly exceeds (more than double) the model-based estimates
now widely used to guide policy and to calculate deforestation foot-
prints. Furthermore, even if we replaced our estimates for Indonesia
and Malaysia with those of ref. 11, the two countries in which ref. 11
attempted to exclude plantation rotation from deforestation totals,

the percentage of the total national rubber areain 2021 that was associated
with deforestationbetween2001and 2016 (the percentageis given on the
second yaxis). The figures for Chinainclude only its main production areas
(Xishuangbanna and Hainan).

our annual rubber-deforestation totals would still be more than twice
as high (Supplementary Note).

Discussion

Here we provide high-resolution maps for rubber and associated defor-
estation between 1993 and 2016 for all Southeast Asia. We show that
rubber has led to several million hectares of deforestation and that
the global data®* now widely used in setting deforestation policies are
likely to severely underestimate the scale of the problem. Although very
helpful for providing a holistic assessment of the role of agricultural
commoditiesindriving tropical and subtropical deforestation across
the globe, these previous and other model-based data are not a sub-
stitute for spatially explicit estimates of crop expansion into natural
forests™. Our estimates lie several-fold above these data despite cover-
ing only Southeast Asia and not, for example, West and Central Africa,
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Fig.3|Total areaofrubber-related deforestationinSoutheast Asiabetween
1993 and 2016. The colours show the fraction of overall deforestation that
occurredinindividual countries. Although most deforestation occurredin
Indonesia and Thailand and the deforestation trends are similar across
countries, the fraction of deforestation occurring in mainland Southeast Asia
(mainly Cambodia) hasincreased over the past decade. Therates of rubber
expansion and associated deforestationinvolve decisions taken by millions of
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actorsand areinfluenced by complex and interlinked drivers such as national
policies and subsidies, prices for other crops and the availability of extension
servicesandinfrastructure. However, itis noteworthy thatin some countries
(forexample, Cambodia® and Vietnam) rates of rubber-related deforestation
increased alongside global rubber priceincreases after 2000 (blackline,
second yaxis; source: International Monetary Fund, accessed at https://fred.
stlouisfed.org/series/PRUBBUSDM).
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Table 2 | Comparison of rubber-related deforestation estimates generated by this and other studies

Method Definition of ‘forest’ Time period Reference area Rubber-related deforestation in 1,000 hayr™
Totalin Indonesia Thailand Malaysia Cambodia
reference area
Ref. 4 Landbalance Treecovergreaterthanor 2005-2017 135tropicalcountries, 53 22 5 01
Ref 3 model equal to 25% (ref. 51) 2005-2018 including all chief 52 23 6 5 3
rubber producers
(except China and Laos)
Ref.1 Mix of spatially Tree cover greaterthanor  2001-2015  Brazil, Cambodia, 140 64 NA 48 22
explicit data equal to 30% (ref. 51) Cameroon, Democratic
Republic of the Congo,
India, Indonesia and
Malaysia
Ref. 2 Remote Internal classifier 2003-2014  Mainland Southeast Asia 135 NA NA NA 69
sensing A37* 232*
Ref. 29 Remote Tree cover greater thanor  2001-2015  Cambodia NA NA NA 34
sensing equal to 10% (ref. 52)
This study Remote ESA WorldCover 10m 2020 2001-2016  Southeast Asia 186 66 39 20 15
sensing v.100 (tree cover greater (baseline "
than or equal to 10%) 1993) 1567422 NA NA NA NA

The dataset in bold (first row) has been used to guide deforestation policy’ and to calculate the imported deforestation of individual countries®®. In this study, we use a conservative baseline of
1993. The earliest baseline in other studies is 2000 and hence other studies will include more plantation rotation. The different base lines also mean that our estimates cannot easily be set into
the context of overall deforestation in Southeast Asia (estimated to be 3.22millionhayr™ between 2001 and 2019%). At face value our rubber deforestation estimates account for 5-6% of that

figure but this is very conservative as the overall figure is derived using a baseline of 2000 and hence includes more plantation rotation (of rubber and other types of tree cover). Sample-based

area estimates for this study (following ref. 33) and for ref. 2 are indicated by an asterisk.

where there has been substantial recent rubber expansion, probably
driving deforestation®.

Owing to the heterogenous data landscape with greatly variable
accuracy across crops, the effects of crops on deforestation cannot
be reliably compared. The findings of this study would place rubber
deforestation above the effects found for coffee and, contrary towhat
hasbeen previously assumed, above the effects of cocoa'. The rubber
impactis still lower than the impact of oil palm, but not by a factor of
8-10ashasbeen previously suggested*and instead only by afactor of
2.5-4.0 (also noting that here we are comparing our data for Southeast
Asiaonly withglobal estimates for these other crops). However, these
comparisons are difficult to make, not least because the estimated
impacts of cocoa also differ threefold between studies"*, with cocoa
being another example of a crop for which there are no global remotely
sensed maps.

Our map of rubber extent s likely to be conservative. First, we used
2021 as the reference year and hence do not capture deforestation
for rubber if, by 2021, the rubber plantation had been converted to a
different land use. Because there was arubber price boom in the first
decade of this millennium, followed by a price crash since 2011%, it is
possible that in the meantime some rubber area has been converted
to other, more lucrative, land uses*, which will not be included in our
estimates. Second, ground reference data indicate that we err on the
side of omission errors, with sample-based area estimates® suggest-
ing that the rubber area could be substantially larger (Supplemen-
tary Table 1), particularly in insular Southeast Asia. This is because
the limited seasonality of the equatorial climate precludes a strong
and predictable phenological response of rubber in insular South-
east Asia**. Furthermore, insular Southeast Asia has more persistent
cloud cover than mainland Southeast Asia, with 7% and 10% of the study
areainIndonesia and Malaysia, respectively, lacking clear Sentintel-2
images (Supplementary Table 7). Consequently, our maps are more
accurate for mainland Southeast Asia than for insular Southeast Asia
(Supplementary Tables 2 and 3), where rubber area (and hence asso-
ciated deforestation) may be underestimated. Any comparisons by
country or other spatial units across these two subregions thus need
to be done with caution in the light of this limitation. Third, we used
the European Space Agency (ESA) global tree cover map® as amask for

mappingrubber plantations. If rubber areas were not picked up as tree
cover by this map, they are also excluded from our estimates. Finally,
we map only mature rubber; younger rubber plantations (around less
than5 years old) are excluded. Our algorithmis also unlikely to detect
diseased rubber if this is manifested as unseasonal leaf shedding, or
rubber-based agroforestry systems and ‘jungle’ rubber*® (now eco-
nomically marginal*) unless rubber is the dominant component of
the canopy. If our rubber map is conservative, mapped deforestation
willalso be conservative, as deforestation detection was restricted to
areas mapped as rubber.

We have considered and accommodated possible areas of ambigu-
ity that might otherwise lead to an overestimation of deforestation
using our method. First, rotational plantation and tree crop clearing
and replanting may erroneously be classed as deforestation. This is
akey issue, which is notoriously difficult to address and hence also
affects other studies™ (Supplementary Note). The issue is likely to be
particularlyimportantinIndonesia, Malaysiaand Thailand, where rub-
ber and other plantations have alonger history of planting. To address
this, we use the first deforestation date and ignore subsequent pixel
changes, meaning that this problem would apply only to plantations
and tree crops established before, and mature by, 1993. This baseline
isrelatively conservative. In addition, we set a strict NBR threshold
(indicative of ‘green and healthy’ vegetation) that pixels had to exceed
before counting as deforested; relaxing that threshold leads to sub-
stantially higher deforestation estimates. Second, deforestation may
have occurred for a different land use, with the area subsequently
converted to rubber. This may particularly be the case in more mar-
ginal climates in mainland Southeast Asia where rubber expansion
is more recent’ (for example, deforestation in northern Vietnamin
the 1990s may have mainly occurred for industrial forestry, with rub-
ber replacing forestry plantations more recently). However, the issue
will be smaller for rubber than for plantations such as oil palm, which
boomed and expanded more recently*?, possibly replacing other
land uses in addition to forests. Rubber is a crop with a longer history
in the area and a greater plantation longevity of around 25 years®.
Third, the vegetation in some pixels may have undergone some type
of disturbance in the rubber defoliation time window, followed by
regrowthintherubberrefoliation window, leading to them having the
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characteristic phenology signature of rubber and erroneously being
classed as such. To exclude such pixels and increase the accuracy of
our analysis we created a ‘disturbance’ mask (Methods). Thus overall,
we consider our estimates of deforestation due to rubber plantations
more likely tobe an underestimate than an overestimate of the scale of
theissue.

The current estimates for deforestation caused by rubber®* used
for policy considerations in the EU” and the United Kingdom® are
based on aland balance model™? Such models typically allocate total
deforestation area to different commodities on the basis of national
(or subnational, for example in the case of this model for Brazil and
Indonesia) reports of crop expansion™. This can lead to substantial
overestimates or underestimates of the role of different cropsindriv-
ing deforestation®. First, crop expansion statistics are hampered by
uncertainties and inconsistent reporting across crops and countries.
Second, although the total area of a crop can remain stable, its actual
place of occupancy may change®. This is highly relevant to rubber as
oil palm has expanded into traditional rubber growing areas****, with
new compensatory rubber plantations being established elsewhere, for
example, in uplands'®*° and often climatically marginal areas', where
they may be associated with deforestation. In fact, the land balance
model*includes a large amount of unattributed deforestation that
could not be explained by crop expansion statistics. Our higher rubber
deforestation estimates could help to explain some of this unattrib-
uted deforestation. In summary, while the use of extrapolation™**and
model-based"?approaches provides some form of estimation for the
extent of deforestation due to rubber plantations, we advocate caution
inits interpretation. Instead, where available, we argue for the use of
results from direct observations of the dynamics of crop production
systems (for example, using remotely sensed satellite imagery), thereby
greatly increasing the accuracy of deforestation estimates.

In terms of future projections of the impact of rubber and the
time-critical need for deforestation legislation, itis likely that demand
for natural rubber will continue to increase®. Synthetic alternatives
or other natural sources are not a perfect substitute***¢ and, being
based on petrochemicals primarily derived from crude oil, they are
also considered more environmentally harmful. Natural rubber, on the
other hand, is a renewable resource with the potential to contribute
to climate change mitigation* and benefit the livelihoods of small-
holder farmers*s. However, if not regulated carefully, rubber growing
can have severe negative consequences for livelihoods***’ and lead to
environmental degradation™¢?! and biodiversity loss*. These impacts
are often concealed to consumers, with natural rubber products being
marketed as ‘sustainable products made from trees’. Our deforestation
data also suggest that the assumed ‘breathing space’® generated by
the now low rubber price may be false, with continued (and volatile)
deforestation for rubber since 2011, a problem that could increase if
rubber prices rise again.

Given the substantial rubber-related deforestation demonstrated
here, it is encouraging that rubber is beginning to be included in rel-
evant policy debates, with the last-minute inclusion of rubber in the
scope of the EU Deforestation Regulation. Initiatives such as the GPSNR,
amultistakeholder membership organization committed to transpar-
entimprovementsinsocioeconomic and environmental performance
ofthe natural rubber value chain, are also requiring membersto address
deforestation. A frequently voiced concernis that rubber supply chains
are difficult to trace and that deforestation regulations place a dis-
proportionate burden on rubber operators. Contrary to oil palm, for
which thereisalimited time window (about 24 h) between harvest and
processing at mills, unprocessed rubber has greater longevity, allow-
ing transport over several hundred kilometres and exchange between
several aggregators before arrival at processing facilities®, presenting
traceability challenges. Another critically important pointis the need
to ensure that smallholders are not disadvantaged by deforestation
regulations, as, contrary to larger companies, they may not be able to
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afford the premiums for certified sustainable production. Although
concerns about the potential marginalization of smallholders apply
to all commodities, it is a particularly important consideration for
commodities that are strongly linked to smallholder livelihoods and
development prospects, such asrubber. Recentinitiatives, for example
by the Forest Stewardship Council, have demonstrated that the chal-
lenges can be overcome when farmers are organized in groups, with
an extra benefit being that farmer cooperatives can negotiate a joint
pricetobuffertheir livelihoods against the volatile global rubber price.
In addition, whilst supply chains are indeed complex and challenging
to trace, the high-end rubber processing side is dominated by very
few and identifiable actors. Around 70% of the global natural rubber
productionis usedintyres with afew main companies accounting for
most consumption®, many of which are already part of the GPSNR.

Further workisneeded to make connections between rubber-driven
deforestation and specific supply chains but, in the absence of such
information, it should be assumed that mainimporters of rubber such
as the EU are substantially exposed to rubber-related deforestation.
In addition, the lack of traceability information at present provides a
further argument for the inclusion of rubber in regulatory processes
to drive traceability efforts and to provide an opportunity for supply
chains to support sustainable production.

In summary, we believe that rubber merits more consideration in
policiesand processes that aim to reduce commodity-driven deforesta-
tion and that it is vitally important to use the best available evidence
on the scale of the problem. The issue outlined here for rubber is of
fundamentalimportanceinitsownrightbecause rubber is responsible
for millions of hectares of deforestation. However, we also highlight
the wider need to enhance the evidence base available toinform policy
decisions and to aid their implementation. There is an opportunity
forincreased clarity and rigorous quantification of the extent of envi-
ronmental degradation caused by main cash crops thatisincreasingly
possible using remotely sensed Earth observation.
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Methods

Here, we used Sentinel-2 imagery to produce a map of rubber planta-
tions for all Southeast Asia in 2021, and we mapped the occurrence
and the timing of deforestation for these plantations on the basis of
time-series datafrom Landsatimages (1993-2016). An overview of the
Methods is presented in Extended Data Fig. 3.

Sentinel-2 imagery

Sentinel-2is an optical multispectral imaging mission from the Coper-
nicus Programme headed by the European Commission in partnership
with ESA%, Itacquires very high-resolution multispectralimagery with
aglobalrevisit frequency of 5 days. In this study, we used the Sentinel-2
level-2A Surface Reflectance imagery for 2020-2022 obtained through
Google Earth Engine’ to map the extent of rubber plantations in South-
east Asia in 2021. Sentinel-2 Surface Reflectance imagery has been
corrected foratmosphericinfluences with the Sen2Cor processor algo-
rithm®*. To remove clouds and cloud shadows, we used the QA60
cloud mask band and Sentinel-2 cloud probability datasets® in which
pixels with cloud probability greater than 50% are considered as clouds.
Cloud shadows are defined as areas of cloud projection intersection
with low-reflectance, near-infrared pixels. Full details are available
at https://developers.google.com/earth-engine/tutorials/commu-
nity/sentinel-2-s2cloudless. Cloud cover was asmallissue in mainland
Southeast Asia but presented greater challenges in insular Southeast
Asia, affecting 7% and 10% of the study areain Indonesia and Malaysia,
respectively (Supplementary Table 7).

Foreachimage, we selected ten bands and computed seven spectral
indices. The bands comprised four 10 m resolution bands (blue, B2;
green, B3; red, B4; and near-infrared, B8) and six 20 mresolution bands
(red-edge bands¥, B5, B6, B7 and B8A; short-wave infrared bands,
B11 and B12). The seven spectral indices were normalized difference
vegetation index (NDVI), normalized difference water index (NDWI),
renormalization of vegetation moisture index (RVMI), NBR, modified
NBR (MNBR), soil-adjusted vegetation index (SAVI) and enhanced veg-
etationindex (EVI). All bands and spectral indices were resampled to
10 mresolution for further analysis. Working with a10 m resolution
instead of a 20 mresolution allowed us to take advantage of the high
resolution of key bands (for example, the NDVI component bands B4
and B8) to capture smallholder plantations (often less than1 hainsize)
as best as possible.

The equations used for calculating the spectral indices are as
follows:

NDVI = EZ ; gi o)

NDWI = % )
- o
NBR = % 4)

MNBR = B:;gi% (5)
SAVI= % (6)
EVI- 2.5x (B8 -B4) )

(B8+6xB4-7.5xB2+1)

Mapping the extent of rubber plantations

We designed a new phenology-based methodology to map rubber
plantations across Southeast Asia. Unlike evergreen and deciduous
tropical forest and most other tree plantations present in the region,
rubber plantations shed their leaves during the dry season and subse-
quently regain their leaves before the onset of the wet season. Whether
this is primarily a response to drought or cold stress is the subject of
ongoingresearch®®* but, particularly in mainland Southeast Asia, the
cold and dry seasons coincide, meaning that, here, the lack of mecha-
nistic understanding of this phenological response does not preclude
identifying the time window of its occurrence.

While mainland Southeast Asia is characterized by a seasonal mon-
soonal climate, insular Southeast Asia is less seasonal and the onset
of adry season, if present, mostly falls into a different time of year
compared to mainland Southeast Asia (Extended Data Fig. 5). There-
fore, we divided the regioninto two subregions (Extended Data Fig. 6).
In mainland Southeast Asia, the northeast monsoon brings dry and
cool continental air® and rubber defoliation generally occurs during
January-February with subsequent refoliation during March-April
(Extended Data Fig. 1). This distinct signature also allows the sepa-
ration of rubber from deciduous forest, which is present in much of
mainland Southeast Asia: leaf regrowth in other species in decidu-
ous forest mainly coincides with the onset of the wet season in May
(Extended DataFig. 2).

In contrast to mainland Southeast Asia, large parts of insular South-
east Asia do receive rainfall during the northeast monsoon with the
southwesterly flowing air masses gathering moisture as they pass over
the warmsea. Instead, there canbe a dry season during the southwest
monsoon (May to September) when the air masses reverse and the
northeasterly blowing winds bring dry air from the Australian con-
tinent®’. However, in the equatorial maritime climate the dry season
tends to be neither prolonged nor distinctive (Extended Data Fig. 4)
and soil moisture can remain stable or at least above critical levels®.

Originating from the Brazilian Amazon, the deciduous behaviour
of H. brasiliensisis thought to have evolved as an adaptive strategy for
drought or more generally stress avoidance®. Consequently, in years
or areas where there is no clear-cut stress in the form of a distinctive
dryand/or cold season, leaf shedding will only be partial, not take place
at all and/or will be influenced by micrometeorological conditions
with trees defoliating asynchronously even within the same stand>*.
Few reports exist on rubber phenology in insular Southeast Asia. The
limited available evidence**¢'"% (covering about 18 sites, which are
spatially biased towards the main rubber growing areas Sumatra and
Malay Peninsula, with only one report for Borneo and none for islands
further east) suggests that, where there is a predictable defoliation
window, it generally occurs duringJanuary-February (Malay Peninsula
and northern Sumatra) or duringJune-September (further south).

Because the divergent defoliation patterns described in the avail-
able literature mainly affect Indonesia and as, owing to consistently
high temperatures, stress, if present, is likely to occur in the form of
drought, we delineated two climatic subzones as follows: we mapped
average monthly precipitation® across Indonesia and identified the
driest month for each pixel (around 1 x 1 km); we then delineated all
pixels withthe driest month between June and September as aseparate
subregion (region B, where defoliation was assumed to take place June-
September with subsequent refoliation during October-December).
The remaining pixels and all of Malaysia and mainland Southeast Asia
were assigned toregion A, where defoliation was assumed to take place
between January and February with subsequent refoliation during
March-April (Extended DataFig. 6).

Thelack of distinctive seasonality near the equator means thatinac-
curacy of our classification was greatest near the equator (Extended
DataFigs. 7 and 8) and mainly manifested in omission errors (3% of our
661 ground reference points used for validation were false negatives
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and only 0.3% were false positives; of the false negatives, 95% occurred
ininsular Southeast Asia). Beyond about 7° N the climate becomes
more continental with clear-cut seasonality and no more false nega-
tives were recorded.

The unique phenology of rubber, where exhibited, thus makes
rubber distinguishable from other tree cover using satellite imagery.
Here we used a tree cover mask from the ESA global land cover map*
(the ESAWorldCover 10 m2020 product) as abase map for classifying
tree cover into rubber and other tree cover based on the spectral dif-
ferences described above. According to an independent evaluation®”
the ESA global land cover map achieves reasonably good accuracies
fortree cover (user’saccuracy of 80.1 + 0.195% Cland producer’saccu-
racy of 89.9 + 0.195% CI). For the defoliation stage, we generated a
composite image using a 15% NDVI percentile threshold of all images
acquired duringJanuary and February in2021and 2022 for region Aand
duringJune-Septemberin 2020 and 2021 for region B. For the refolia-
tionstage, we used the 85% NDVI percentile asathreshold to generate
acomposite of allimages acquired during March and Aprilin2021and
2022 for region A and during October-December in 2020 and 2021
for region B. This was to reduce noise generated by remaining clouds
and shadows. Each composite image contained 17 variables, including
10 spectral bands and 7 spectral indices (see section on ‘Sentinel-2
imagery’ above).

The classification was produced using a random forest machine
learning algorithm. For hyperparameter settings and a summary of
individual variable contributions to the classification, see Supple-
mentary Tables 8 and 9. We collected atotal of 3,826 reference sample
points (2,010 for rubber and 1,816 for evergreen forest; Extended Data
Fig. 6) and randomly split theminto 80% and 20% for training and test-
ing the random forest classifier, respectively. This left us with about
700 points for testing; following the equations by ref. 33 we estimated
that a sample size of n =441 was sufficient for achieving a standard
error of the overall accuracy of s.e. = 0.01. Of these more than 3,800
points, 2,000 were based onrandomly sampled reference ground data
collected by the World Agroforestry Centre in 2010, covering the entire
region and consisting of a mix of field data and visually interpreted
very high-resolution satellite data. We revised the classification for
these points for 2021 following a visual interpretation protocol (see
below). Theremainder were points from randomly sampled reference
ground data covering mainland Southeast Asia®® and Xishuangbanna,
China®. With more than 50% of the points used in this study collected
inthefield, their classification s likely to be very accurate. However,
any field data will to some extent suffer froman accessibility bias with
potential implications for accuracy and area estimation, which we
further discuss below.

The visual interpretation process was carried out by two inter-
preters using Collect Earth Online’®7? (CEO) and Google Earth Pro”
(Supplementary Fig.1). Google Earth Pro provided access to high and
very high-resolutionimagery with acquisition dates, and a custom-built
projectin CEO provided access to very high-resolution Mapbox Satel-
lite imagery base maps, 2021 monthly Planet NICFlimages (Norway’s
International Climate and Forests Initiative satellite data program)
and yearly composite images for January-February and March-April
from Sentinel-2 (2017-2021)' and Landsat-5-7-8 (1988-2016; cour-
tesy of US Geological Survey). First, we assigned each sample point
to aland cover class for the year 2021. Second, if the land cover was
rubber, we identified the deforestation date for that point using his-
torical Landsat images. Where available, more very high-resolution
imagery from Google Earth was used to facilitate the interpretation
process.

Disturbances such as degradation or plantation removal can poten-
tially produce similar spectral features to rubber phenology, lead-
ing to commission errors. To reduce commission errors, we removed
all rubber pixels where this may have occurred using a 2021 primary
forest mask and ano-disturbance mask (Extended DataFig.3). The 2021

primary forest mask was created by using the 2001 primary forest layer
fromref.74 and removing areas of subsequent forest loss between 2000
and 2021 (Hansen Global Forest Change v.1.9)'. The no-disturbance
mask was generated with the following steps: (1) calculate the NBR
index (equation (4)) for all Sentinel-2 images between 2019 and 2021;
(2) create 3-year NBR median composites for March-June, July-
September and October-December (region A) or January-May and
October-December (region B) (yielding three composites for region
Aand two composites for region B); (3) extract the values of NBR com-
posites for all the rubber samples; (4) plot the NBR values and calcu-
late the 5% percentile thresholds for individual composites, meaning
95% of NBR values of rubber samples are above these thresholds; and
(5) apply the thresholds to all three (region A) or two (region B) NBR
compositeimages, resultingin five binaryimages (1, no disturbance; 0,
potential disturbance). If a pixel was classed as 1in all three (region A)
or two (region B) binary images, it was considered as not disturbed.
A5 x5 pixel majority filter was applied to the no-disturbance mask to
remove isolated pixels.

Theaccuracy of the final map was evaluated using the remaining 20%
of thereference ground data points (n = 661), following standard good
practices® (Supplementary Table 1). Sample-based area estimates® sug-
gested that the rubber area could be substantially larger than mapped
(Supplementary Table 1), particularly in insular Southeast Asia (Sup-
plementary Table 3). Thisis likely to be aconsequence of aless predict-
able phenology***'"%* and more cloud cover (Supplementary Table 7)
affecting our ability to map rubber in this region. In addition, we erred
ontheside of reducing commission errors by applying postclassifica-
tion masks (as described above). A further explanation is the highly
unequal weights of the map classes, with rubber occupying less than 5%
ofthe overall area. Consequently, rubber points mapped as other tree
coverledto large area corrections. Finally, the area estimation protocol
assumes a completely probabilistic sampling design whereby every
point—in accessible and inaccessible locations—had an equal chance
tobeincluded. The ground reference datasample design wasrandom
but more than 50% of the points were collected in the field (and hence
inreasonably accessible areas). This may be a further explanation for
the ‘over’ correction of the rubber class as the correction assumes that
every forest point had the same chance to be misclassified as rubber,
whether accessible or not. Hence, to err on the side of conservative
estimates, we report both area estimates (mapped and sample-based)
but concentrate our reports on the smaller one of these figures.

Insummary, we developed anew approach, whichinvolves classifying
anESA tree cover baseline map® into rubber and other tree cover based
onphenology and removing any pixels that are potentially confounded
by disturbance using a primary forest mask and ano-disturbance mask,
which we generated specifically for this purpose. We also applied a
postclassification 5 x 5 pixel majority filter to the resulting map
and a minimum patch size threshold of 0.5 ha to reduce pixel-level
classification noise and classification artifacts.

Identifying the deforestation date
We tracked the first historical deforestation date since 1993 for all rub-
ber plantations mapped in 2021. This was done using the LandTrendr
spectral-temporal segmentation algorithm?>” (a Landsat-based
algorithm for the detection of trends in disturbance and recovery).
LandTrendr characterizes the history of a Landsat pixel by decompos-
ingthetimeseriesintoaseries of bounded line segments (that s, trends
over several years) and identifying the breakpoints between them.
These linear segments and breakpoints allow for the detection the
greatest pixel-level change (for example, deforestation) and therewith
for theidentification of the yearin which this greatest spectral change
occurred (Extended DataFig. 9).

Inthis study, we ran LandTrendr GEE API” (aJavaScript module devel-
oped in Google Earth Engine, https://emapr.github.io/LT-GEE/api.
html) using the annual time-series index from USGS Landsat Surface
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Reflectance Tier 1 datasets. For hyperparameter settings see Supple-
mentary Table 9. The clouds and cloud shadows were masked using
CFMASK”. A medoid approach was used to generate the annual com-
positeimage. Thisapproach uses the value of agiven band thatis numer-
ically closest to the median of all the available images for each year. In
this study, we used time series of the NBR index (NBR = (NIR - SWIR)/
(NIR + SWIR)) from 1993 to 2021 for the temporal segmentation. The
deforestation date wasidentified as the end year of the linear segment
withthelargestslope (greatestloss). As an extra constraint, weimposed
aminimum start NBR value for this linear segment of more than 0.6,
thereby reducing therisk of including previously degraded or cleared
areas where tree cover was consequently sparser. Any deforestation
pixels below this threshold were excluded from our deforestation esti-
mates. We also applied a3 x 3 pixel majority filter to remove any isolated
pixels. Toselect optimal values for the NBR threshold and the majority
filter, we tested combinations of NBR threshold values between 0.51and
0.61 (in steps of 0.005) with a3 x 3 and a 5 x 5 pixel majority filter and
selected the values that provided maximum overall accuracy. Finally,
we excluded pixels with a deforestation date later than 2016 because
it takes around 5 years for rubber plantations to be identifiable from
the satellite imagery following planting.

As for the rubber map, we evaluated the accuracy of the deforesta-
tion date map and calculated estimated area following a standard
good practices protocol®, using all reference sample points (collec-
tion described above in the section on ‘Mapping the extent of rubber
plantations’) for which clear deforestation dates could be identified
(n=67).Asthere were insufficient deforestation reference samples to
support a finer temporal classification, we decided to conservatively
group the deforestation map into two broad classes: deforestation up
to and including 2000 and deforestation between 2001 and 2016. As
for rubber, we report all area estimates (mapped and sample-based)
to highlight the lowest estimates. Full details of accuracy and area
estimates are provided in Supplementary Tables 4-6.

Deforestation in Key Biodiversity Areas

To explore the potential impacts of rubber and associated deforesta-
tion on regional biodiversity we calculated the area of rubber and
associated deforestation within KBAs*. KBAs are some of the most
critical sites for the conservation of species and habitats globally and
hence rubber and deforestation in these areas pose a threat to global
biodiversity.

Software
Figure 1 was produced using Colaboratory and Figs. 2 and 3 using
Google Sheets.

Inclusion and ethics

Thisworkis the result of a collaborative partnership between scientists
from China and the United Kingdom and includes specialists from
inside and outside rubber growing areas. Consideration was given to
citation diversity. The study received approval by the Royal Botanic
Garden Edinburgh’s institutional ethics committee.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

TheEarthobservation datasets that supported the findings of this study
are publicly available (for example, Google Earth Engine data cata-
logue). The rubber and associated deforestation maps produced here
(Fig.1a,b) are available from https://doi.org/10.5281/zenodo.8425153.
They are also available within Google Earth Engine: rubber, https://code.
earthengine.google.com/?asset=users/wangyxtina/MapRubberPaper/

rForeRub202122_perc1585DifESAdist5pxPFfinal; associated forest
loss, https://code.earthengine.google.com/?asset=users/wangyxtina/
MapRubberPaper/rRubber30m202122_deforestationAPI20012016_

preNBR600. Source data are provided with this paper.

Code availability

Allcode used for this study is available at https://earthengine.google-
source.com/users/wangyxtina/Nature_rubber. Users with a Google
Earth Engine account canaccess the code on https://code.earthengine.
google.com/?accept_repo=users/wangyxtina/Nature_rubber.
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Extended DataFig.1|Examples of the characteristicspectral signature of
rubber and evergreen forests caused by differing phenology in Southeast
Asia. Theexample pixels for rubber (100.6835 longitude, 22.1786 latitude)
and evergreen forest pixels (100.5931longitude, 22.1910 latitude) shown here
arelocated in Xishuangbanna, China (phenology region A). Rubber has a
distinct phenology, sheddingleavesinJanuary to February and subsequently
refoliatingin Marchand April. Two-year (2021and 2022) composite image

differences between defoliation and refoliation stages were used asinputs for a
Random Forest classifier to distinguish rubber and forest. The bottom subplot
shows the temporal pattern of the NDVIinJanuary-April 2021 and January-
April2022 (thegrey line separates the two years). NDVI: Normalized Difference
Vegetation Index (%). Images: ESA Sentinel-2. The figure was produced
in Colaboratory.
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Extended DataFig.2|Example of differencesinSentinel-2 spectralindices
caused by the different phenological responses of rubber, evergreen forest
and deciduous forest. The coordinates for these points are rubber:100.6835
longitude, 22.1786 latitude; evergreen forest:100.5931longitude, 22.1910
latitude; and deciduous forest:100.7219 longitude, 22.1858 latitude. While the
defoliation of deciduous forest lasts until May, rubber defoliation takes place
betweenJanuary and February and the leaves are regained before the onset

ofthe wet seasonin May. The grey line represents the cut-off date for the
composite images used for classifying rubber (whenrubber leaves have already
flushed but deciduous forest leaves not yet). The figure was produced in
Colaboratory. NDVI:Normalized Difference Vegetation Index (%).
NBR:Normalized Burn Ratio (w). NDWI: Normalized Water Index
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thedifferent phenology windows used see Extended DataFigs.5and 6. The
figure was produced in Microsoft Word.

Extended DataFig.3|Methodology flow for mapping rubber (blue),
generating adisturbance mask (orange) and estimating deforestation
(red). All processing was done in Google Earth Engine. For explanations on
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Extended DataFig. 4 | Average monthly rainfall duringJanuary to February
(A) and June to September (B). Contrary to mainland Southeast Asia, which
experiences adistinctive dry season during the northeast monsoonJanuary to
February, thereislessseasonality ininsular Southeast Asia. The areasidentified
asRegion Bare generally somewhat drier during June to September when the
southwest monsoon brings dry air masses from the Australian continent
(Diercke Weltatlas. Schulbuchverlage Westermann Schroedel Diesterweg
Schoningh Winklers GmbH, 2015). However, the difference is small and, insome
areas or years, may never translate into decreased soil moisture (Niu, F., R6ll, A.,
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Meijide, A., Hendrayanto & Holscher, D. Rubber tree transpirationin the
lowlands of Sumatra. Ecohydrology 10, d0i:10.1002/ec0.1882,2017) and
hence not promptaclear-cut phenological response in rubber. This explains
why therearealot more rubber omission errorsininsular Southeast Asia
(Supplementary Table 3 and Extended Data Figs. 7 and 8). Rainfall data are from
Hengl, T. & Parente, L. (Zenodo: https://doi.org/10.5281/zenodo.6458580,
2022) and administrative boundaries from the Global Administrative Areas
database version1.0. The figure was produced in ESRIArcMap10.8.2.
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Extended DataFig.5|Driest monthbased on15-year rainfall averages. To
account for the spatial heterogeneity in the onset of the dry wintering season
weran the rubber mapping algorithm separately for two climatic subregions:
Region Awhererubber defoliation was assumed to occur between January to
Februaryand Region Bwhere rubber defoliation was assumed to occur
betweenJuneto September. Region Bwas delineated by identifying all pixels
(~1x1km)inIndonesiawhere the driest month waseither June, July, August or
September. All other pixels, including all areas in Malaysia, were assigned to
Region A. Owingto heterogenouslocal topography and wind conditions,
rainfall patternsininsular Southeast Asia vary over short distances, in addition
towhich substantial temporal variation can be present e.g.in the form of the

EINifio-Southern Oscillation phenomenon. The divisioninto climatic Regions
AandBreflectsatrade-off between running the algorithm separately for many
small subregions and the need for sufficient ground reference data for robust
inferences.Inaddition, in perhumid areas near the equator (e.g. northern
Borneo) this division becomes arbitrary as the lack of seasonality in these areas
(Extended DataFig.4) precludesaclearly predictable phenological rubber
response. Rainfall dataare from Hengl, T. & Parente, L. (Zenodo: https://doi.
org/10.5281/zenodo0.6458580,2022) and administrative boundaries from the
Global Administrative Areas database version1.0. The figure was produced in
ESRIArcMap10.8.2.
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Extended DataFig. 6 | Rubber phenology regions, gridsand sampling
points. Toaccount for differencesin the onset of the dry season we divided the
study areainto two climatic subregions based onthe occurrence of the driest
month (Extended DataFig.5). Region A: rubber defoliation was assumed to
occur betweenJanuary to February and refoliation between March to April.
Region B: rubber defoliation was assumed to occur between June to September
andrefoliation between October to December. The algorithm was run separately
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for3by3-degreegrid cells (in blue). The forest and rubber reference ground
data(opendots; n=661) were used for training the rubber detection algorithm
(80% of the points) and for validating the map (20%). Source of administrative
boundaries: The Global Administrative Unit Layers (GAUL) dataset, implemented
by FAO within the CountrySTAT and Agricultural Market Information System
projects. The figure was produced in Colaboratory.
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Ofn=66lvalidationground reference points, there were 19 false negatives (of Global Administrative Areas database version1.0. The figure was produced in
which18 occurred in Malaysia and Indonesia) and only two false positives (one ESRIArcMap10.8.2.
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errorswas highest near the equator. False negatives remained up until c. 7° north.
Beyond this point the climate becomes more continental and seasonal (Extended
DataFig.4) and no more false negatives were found (Extended Data Fig.7). The
figure was produced using R library ‘ggplot2’.
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Extended DataFig.9|Diagramillustrating the LandTrendr segmentation Cambodia (105.4350 longitude, 12.54 68 latitude). Further details on the
algorithm for detecting historical deforestation using Landsat time series LandTrendralgorithm are available at: https://emapr.github.io/LT-GEE/
ofthe Normalized Burn Ratioindex. The example rubber pixelislocatedin landtrendr.html. The figure was produced in Microsoft Excel.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a | Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All software used for data collection (Google Earth Engine, Google Earth Pro, and Collect Earth Online) are publicly available.

Data analysis All software used for data analysis (Google Earth Engine, and R 4.2.2) are publicly available and all code is deposited in a public repository:
https://earthengine.googlesource.com/users/wangyxtina/Nature_rubber. Users with a Google Earth Engine account can access the code on:
https://code.earthengine.google.com/?accept_repo=users/wangyxtina/Nature_rubber

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The earth observation datasets that supported the findings of this study are publicly available (e.g., Google Earth Engine data catalogue). The rubber and associated
deforestation maps produced here (Fig. 1a,b) are available from https://doi.org/10.5281/zenod0.8425153. They are also available from within Google Earth Engine:




Rubber:

https://code.earthengine.google.com/?asset=users/wangyxtina/MapRubberPaper/rForeRub202122_perc1585DifESAdist5pxPFfinal

Associated forest loss:
https://code.earthengine.google.com/?asset=users/wangyxtina/MapRubberPaper/rRubber30m202122_deforestationAPI20012016_preNBR600

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or n/a
other socially relevant

groupings

Population characteristics n/a
Recruitment n/a
Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Analysis of remotely-sensed data to map rubber in 2021 and to map and quantify associated deforestation

Research sample Reference ground data (in total >3,800 points) based on field observations, augmented with visually interpreted very-high resolution
satellite data

Sampling strategy Stratified random. Sample sizes were pre-determined based on a good practices protocol (Olofsson et al. 2014. Good practices for
estimating area and assessing accuracy of land change. Remote Sensing of Environment 148, 42-57)

Data collection Of the over 3,800 points, 2,000 were based on randomly sampled reference ground data collected by the World Agroforestry Centre
in 2010, covering entire Southeast Asia and consisting of a mix of field data and visually interpreted very-high resolution satellite
data. We updated the classification for these points for 2021 following a visual interpretation in Collect Earth Online and Google
Earth Pro. The remainder (>1,800 points) were points from randomly sampled field data covering mainland Southeast Asia.

Timing and spatial scale  The maps cover 1993 to 2021. The spatial extent encompasses all Southeast Asia at pixel resolutions of 10 and 30 m

Data exclusions No data were excluded

Reproducibility All findings are reproducible and the code to reproduce the findings is available on GitHub. Where parameter choices affected the
outcomes, the choices and their effects are clearly outlined in the manuscript.

Randomization Reference ground data were randomly split into training and test data using a random number generator.

Blinding All relevant analyses and data collections were completed and the code was debugged before the results were revealed.

Did the study involve field work? [] ves X No
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology and archaeology IXI |:| MRI-based neuroimaging
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