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Measurement has a special role in quantum theory": by collapsing the wavefunction,
it can enable phenomena such as teleportation®and thereby alter the ‘arrow of

time’ that constrains unitary evolution. Whenintegrated in many-body dynamics,
measurements can lead to emergent patterns of quantum information in space-
time®>° that go beyond the established paradigms for characterizing phases, either
in or out of equilibrium™ %, For present-day noisy intermediate-scale quantum
(NISQ) processors™, the experimental realization of such physics can be problematic
because of hardware limitations and the stochastic nature of quantum measurement.
Here we address these experimental challenges and study measurement-induced
quantum information phases on up to 70 superconducting qubits. By leveraging the
interchangeability of space and time, we use a duality mapping®>™" to avoid mid-
circuit measurement and access different manifestations of the underlying phases,
from entanglement scaling>* to measurement-induced teleportation's, We obtain
finite-sized signatures of a phase transition with a decoding protocol that correlates
the experimental measurement with classical simulation data. The phases display
remarkably different sensitivity to noise, and we use this disparity to turn aninherent
hardware limitation into a useful diagnostic. Our work demonstrates an approach to
realizing measurement-induced physics at scales that are at the limits of current NISQ

processors.

The stochastic, non-unitary nature of measurement is a foundational
principlein quantum theory and stands in stark contrast to the deter-
ministic, unitary evolution prescribed by Schrédinger’s equation’.
Because of these unique properties, measurement is key to some fun-
damental protocolsin quantuminformation science, such as telepor-
tation? error correction' and measurement-based computation®. All
these protocols use quantum measurements, and classical processing
of their outcomes, to build particular structures of quantum infor-
mation in space-time. Remarkably, such structures may also emerge
spontaneously from random sequences of unitary interactions and
measurements. In particular, ‘monitored’ circuits, comprising both
unitary gates and controlled projective measurements (Fig. 1a), were
predicted to give rise to distinct non-equilibrium phases character-
ized by the structure of their entanglement®>*? % either ‘volume law’*
(extensive) or ‘arealaw® (limited), depending on the rate or strength
of measurement.

In principle, quantum processors allow full control of both unitary
evolution and projective measurements (Fig. 1a). However, despite
their importance in quantum information science, the experimental
study of measurement-induced entanglement phenomena®** hasbeen
limited to small system sizes or efficiently simulatable Clifford gates.
The stochastic nature of measurement means that the detection of such
phenomenarequires either the exponentially costly post-selection of
measurement outcomes or more sophisticated data-processing tech-
niques. Thisisbecause the phenomenaare visible only in the properties
of quantum trajectories; a naive averaging of experimental repetitions

incoherently mixes trajectories with different measurement outcomes
and fully washes out the non-trivial physics. Furthermore, imple-
menting the model in Fig. 1a requires mid-circuit measurements that
are often problematic on superconducting processors because the
time needed to perform a measurement is a much larger fraction of
the typical coherence time thanitis for two-qubit unitary operations.
Here we use space-time duality mappings to avoid mid-circuit meas-
urements, and we develop a diagnostic of the phases on the basis of a
hybrid quantum-classical order parameter (similar to the cross-entropy
benchmarkinref.28) to overcome the problem of post-selection. The
stability of these quantum information phases to noise is a matter of
practical importance. Although relatively little is known about the
effect of noise on monitored systems? 3!, noise is generally expected to
destabilize measurement-induced non-equilibrium phases. Nonethe-
less, we show that noise serves as anindependent probe of the phases
ataccessible systemsizes. Leveraging these insights allows us torealize
and diagnose measurement-induced phases of quantuminformation
on system sizes of up to 70 qubits.

The space-time duality approach®> " enables more-experimentally
convenientimplementations of monitored circuits by leveraging the
absence of causality in such dynamics. When conditioning on measure-
ment outcomes, the arrow of time loses its unique role and becomes
interchangeable with spatial dimensions, giving rise to a network of
quantum information in space-time® that can be analysed in multi-
ple ways. For example, we can map one-dimensional (1D) monitored
circuits (Fig.1a) to 2D shallow unitary circuits with measurements only
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Fig.1|Monitored circuits and space-time duality mapping.a, Arandom
(1+1)-dimensional monitored quantum circuit composed of both unitary gates
and measurements. b, An equivalent dual (1+1)-dimensional shallow circuit of
sizeL,x L,and depth Twithall measurements at the final time formed froma
space-time duality mapping of the circuitin a. Because of the non-unitarity
nature of measurements, there is freedom as to which dimensions are viewed
as‘time’and whichas ‘space’. Inthisexample, L, is set by the (1+1)D circuit depth
and L, byitsspatial size,and Tis set by the measurement rate. ¢, Classical post-
processing onacomputer of the measurementrecord (quantum trajectory),
and quantum-state readout of amonitored circuit canbe used to diagnose the
underlyinginformation structuresinthe system.
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at the final step” (Fig. 1b and Supplementary Information section 5),
thereby addressing the experimental issue of mid-circuit measurement.

Webegan by focusing onaspecial class of 1D monitored circuits that
can be mapped by space-time duality to 1D unitary circuits. These

models are theoretically well understood™ and are convenient to
implement experimentally. For families of operations that are dual to
unitary gates (Supplementary Information), the standard model of
monitored dynamics** based on a brickwork circuit of unitary gates
and measurements (Fig. 2a) can be equivalently implemented as a
unitary circuit when the space and time directions are exchanged
(Fig. 2b), leaving measurements only at the end. The desired output
state |¥,,) is prepared on a temporal subsystem (in a fixed position at
different times)™®. It can be accessed without mid-circuit measurements
by using ancillary qubits initialized in Bell pairs (Q;...Q;, in Fig. 2¢)
and SWAP gates, which teleport |¥,,) to the ancillary qubits at the end
of the circuit (Fig. 2c). The resulting circuit still features post-
selected measurements but their reduced number (relative to a
generic model; Fig. 2a) makes it possible to obtain the entropy of
larger systems, up to all 12 qubits (Q;...Qy;,), in individual quantum
trajectories.

Previous studies™' predicted distinct entanglement phases for
|, as a function of the choice of unitary gates in the dual circuit:
volume-law entanglement if the gates induce an ergodic evolution,
and logarithmic entanglement if they induce a localized evolution.
We implemented unitary circuits that are representative of the two
regimes, built from two-qubit fermionic simulation (fSim) unitary
gates> with swap angle 8 and phase angle ¢ = 20, followed by random
single-qubit Zrotations. We chose angles 6 = 21/5and 8 = t/10 because
these are dual to non-unitary operations with different measurement
strengths (Fig. 2d and Supplementary Information).

To measure the second Renyi entropy for qubits composing |¥,,),
randomized measurements®*** are performed on Q;...Q;,. Figure 2e
shows the entanglement entropy as a function of subsystem size. The
first gate set gives rise to a Page-like curve?, with entanglement entropy
growing linearly with subsystem size up to half the system and then
ramping down. The second gate set, by contrast, shows a weak, sublin-
ear dependence of entanglement with subsystemsize. These findings
are consistent with the theoretical expectation of distinct entanglement
phases (volume-law and logarithmic, respectively) inmonitored circuits
that are space-time dual to ergodic and localized unitary circuits™>',
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Fig.2|Implementation of space-time duality in1D.a, A quantum circuit
composed of non-unitary two-qubit operationsin abrickwork patternona
chain of 12 qubits with 7 time steps. Each two-qubit operation canbe a
combination of unitary operations and measurement. b, The space-time dual
of the circuit showninawith theroles of space and time interchanged. The
12-qubit wavefunction |¥,)) istemporally extended along Q.. ¢, Inthe experiment
onaquantum processor, aset of 12 ancillary qubits Q;...Q;, and anetwork of
SWAP gates are used to teleport |¥,,) to the ancillary qubits. d, lllustration of
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the two-qubit gate composed of an fSim unitary and random Zrotations with
its space-time dual, whichis composed of amixture of unitary and measurement
operations. The power hof the Zrotationisrandom for every qubit and periodic
witheachcycle of the circuit. e, Second Renyi entropy as a function of the
volume of asubsystem A from randomized measurements and post-selection
on Q,...Q,. The datashownare noise mitigated by subtracting an entropy density
matching the total system entropy. See the Supplementary Information for
justification.
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Fig.3|1D entanglement phases obtained from 2D shallow quantum
circuits. a, Schematic of the 2D grid of qubits. At each cycle (blue boxes) of the
circuit, random single-qubit and two-qubit iSWAP-like gates are applied to each
qubitinthe cyclesequence shown. Therandomsingle-qubit gate (SQ, grey) is

chosenrandomly from the set{«/X*1 Y ey } whereW=(X+Y)//2
andV=(X-Y)/+/2. Atthe end of the circuit, the lower M =12 qubits are measured
and post-selected on the most probable bitstring. b, Second Renyi entropy of

Aphasetransitionbetween thetwo canbe achieved by tuning the (6, ¢)
fSim gate angles.

We next moved beyond this specific class of circuits with operations
restricted to be dual to unitary gates, and instead investigated quan-
tum information structures arising under more general conditions.
Generic monitored circuits in 1D can be mapped onto shallow circuits
in 2D, with final measurements on all but a 1D subsystem". The effec-
tive measurement rate, p, is set by the depth of the shallow circuit, T,
and the number of measured qubits, M. Heuristically, p=M/(M+ L)T
(the number of measurements per unitary gate), where L is the length
of the chain of unmeasured qubits hosting the final state for which
the entanglement structure is being investigated. Thus, for large M,
ameasurement-induced transition can be tuned by varying 7. We ran
2D random quantum circuits®® composed of iSWAP-like and random
single-qubit rotation unitaries on a grid of 19 qubits (Fig. 3a), with T
varying from1to 8. For each depth, we post-selected on measurement
outcomes of M =12 qubits and left behind a 1D chain of L = 7 qubits; the
entanglement entropy was then measured for contiguous subsystems A
by using randomized measurements. We observed two distinct behav-
iours over arange of T values (Fig. 3b). For T <4, the entropy scaling
is subextensive with the size of the subsystem, whereas for 7> 4, we
observe an approximately linear scaling.

The spatial structure of quantum information canbe further charac-
terized by its signaturesin correlations between disjointed subsystems
of qubits: in the area-law phase, entanglement decays rapidly with
distance”, whereas inavolume-law phase, sufficiently large subsystems
may be entangled arbitrarily far away. We studied the second Renyi
mutual information

IG=5SP+5-s%, )

Distance, x

Distance, x

contiguous subsystems A of the L =7 edge qubits at variousdepths. The
measurementis noise mitigated in the same way asin Fig. 2. ¢, Second Renyi
mutualinformation 7 between two-qubit subsystems A and Bagainst depth
Tand distance x (the number of qubits between A and B).d, T3 as afunction
of Tfor two-qubit subsystems A and B at maximum separation. e, T2, versus x
for T=3and T= 6 for different volumes of A and B.

between two subsystems A and Bas afunction of depth 7, and the dis-
tance (the number of qubits) x between them (Fig. 3¢). For maximally
separated subsystems A and B of two qubits each, I(Azg remains finite
for T>4, but it decays to O for T <3 (Fig. 3d). We also plotted 7 for
subsystems A and B with different sizes (T=3 and T=6) as a function
of x (Fig. 3e). For T =3 we observed a rapid decay of 7@ withx, indicat-
ingthat only nearby qubits share information. For T= 6, however, zﬁ%;
does not decay with distance.

The observed structures of entanglement and mutual information
provide strong evidence for the realization of measurement-induced
area-law (‘disentangling’) and volume-law (‘entangling’) phases.
Our results indicate that there is a phase transition at critical depth
T ~4,whichis consistent with previous numerical studies of similar
models”*#3, The same analysis without post-selection on the M qubits
(Supplementary Information) shows vanishingly small mutual infor-
mation, indicating that long-ranged correlations are induced by the
measurements.

The approaches we have followed so far are difficult to scale for
system sizes greater than 10-20 qubits¥, owing to the exponentially
increasing sampling complexity of post-selecting measurement out-
comes and obtaining entanglement entropy of extensive subsystems of
the desired output states. More scalable approaches have beenrecently
proposed®**and implemented in efficiently simulatable (Clifford)
models®. The key idea is that diagnostics of the entanglement structure
must make use of both the readout data from the quantum state |¥,,)
and the classical measurement record mina classical post-processing
step (Fig. 1c). Post-selection is the conceptually simplest instance of
this idea: whether quantum readout data are accepted or rejected
is conditional on m. However, because each instance of the experi-
ment returns a random quantum trajectory* from 2" possibilities
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Fig.4|Decodingoflocal order parameter, measurement-induced
teleportation and finite-size analysis. a, Schematic of the processor
geometry and decoding procedure. The gate sequenceisthesameasinFig.3
withdepth T=5.The decoding procedure involves classically computing the
Blochvectora,, of the probe qubit (pink) conditional on the experimental
measurementrecord m (yellow). The order parameter {is calculated by means
of the cross-correlation between the measured probe bitz,and 7, =sign(a,, - 7),
whichis +1ifa,, pointsabove the equator of the Bloch sphere and -1if it points
below. b, Decoded order parameter {and error-mitigated order parameter

?= {/{(rmax) asafunction of the decoding radius rfor different Nandp =1.

¢, {(rnax)asafunction of the gate density p for different N. The inset shows that
forsmall p, {(r,,,,) remains constant as a function of N (disentangling phase),
whereas for larger p, {(r,...,) decays exponentially with N, implying sensitivity

(where Mis the number of measurements), this approach incurs an
exponential sampling cost that limits it to small system sizes. Over-
coming this problem will ultimately require more-sample-efficient
strategies that use classical simulation®**°*2, possibly followed by active
feedback®.

Here we have developed a decoding protocol that correlates
quantum readout and the measurement record to build a hybrid
quantum-classical order parameter for the phases that is applica-
ble to generic circuits and does not require active feedback on the
quantum processor. A key idea is that the entanglement of a single
‘probe’ qubit, conditioned on measurement outcomes, can serve as
a proxy for the entanglement phase of the entire system®. This
immediately eliminates one of the scalability problems: measur-
ing the entropy of extensive subsystems. The other problem—
post-selection—is removed by a classical simulation step that allows
us to make use of all the experimental shots and is therefore sample
efficient.

This protocolisillustrated in Fig.4a. Eachrun of the circuit terminates
with measurements that return binary outcomes +1for the probe qubit,
z,, and the surrounding M qubits, m. The probe qubit is on the same
footingas allthe others and is chosen at the post-processing stage. For
each run, we classically compute the Bloch vector of the probe qubit,
conditional on the measurementrecord m, a,, (Supplementary Infor-
mation). We thendefiner,, = sign(a,, - 2), whichis +1ifa, points above
the equator of the Bloch sphere, and -1 otherwise. The cross-correlator
between z, and 7,,, averaged over many runs of the experiment such
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tonoise of arbitrarily distant qubits (entangling phase). d, Error-mitigated
proxy entropy SNproxy asafunction of the decodingradius for p = 0.3 (triangles)
andp =1(circles). In the disentangling phase, SNproxy decaxs rapidlytoO,
independentofthe systemsize. Inthe entangling phase, S, remainslarge
andfiniteuptor,,—1.e, SNproxy atN=40asafunctionof rfor differentp,
revealinga crossover between the entangling and disentangling phases for
intermediatep.f, SNP,OXy atr=r,,—lasafunctionofpforN=12,24,40and

58 qubits. The curves for different sizes approximately crossat p. = 0.9.Inset,
schematic showing the decoding geometry for the experiment. The pink and
grey lines encompass the past light cones (at depth 7=5) of the probe qubitand
traced-out qubitsatr=r,,,—1,respectively. Datawere collected from2,000
random circuitinstances and 1,000 shots each for every value of Nand p.

thatthedirection ofa,,is randomized, yields an estimate of the length
oftheBloch vector,{~ |a,,|, which canin turnbe used to define a proxy
for the probe’s entropy:

(=22,T,  Sproxy="—log,[(1+7?)/2], )

where the overline denotes averaging over all the experimental shots
and random circuit instances. A maximally entangled probe corre-
spondsto{=0.

Inthe standard teleportation protocol?, a correcting operation con-
ditional on the measurement outcome must be applied to retrieve
the teleported state. In our decoding protocol, 7,, has the role of
the correcting operation, restricted to a classical bit-flip, and the
cross-correlator describes the teleportation fidelity. In the circuits
relevant to our experiment (depth 7=5o0on N < 70 qubits), the classical
simulation for decodingis tractable. For arbitrarily large circuits, how-
ever, the existence of efficient decoders remains an open problem®#4,
Approximate decoders that work efficiently in only part of the phase
diagram, or for special models, also exist*’, and we have implemented
one such example based on matrix product states (Supplementary
Information).

We applied this decoding method to 2D shallow circuits that act on
various subsets of a 70-qubit processor, consisting of N=12, 24, 40,
58 and 70 qubits in approximately square geometries (Supplemen-
tary Information). We chose a qubit near the middle of one side as the
probe and computed the order parameter {by decoding measurement



outcomes up to rlattice steps away from that side while tracing out
all the others (Fig. 4a). We refer to r as the decoding radius. Because
of the measurements, the probe may remain entangled even when
rextends past its unitary light cone, corresponding to an emergent
form of teleportation'®,

AsseeninFig. 3, the entanglement transition occurs asafunction of
depth T,withacritical depth 3 < T, < 4. Because Tis adiscrete parameter,
itcannotbe tunedtofinely resolve the transition. To do this, we fix T=5
andinstead tune the density of the gates, so each iSWAP-like gate acts
with probability p andis skipped otherwise, setting an ‘effective depth’
T.= pT; this can be tuned continuously across the transition. Results
for {(r) at p =1(Fig.4b) reveal adecay with systemsize N of {(r,,,,), Where
r =y corresponds to measuring all the qubits apart fromthe probe.
This decay is purely due to noise in the system.

Remarkably, sensitivity to noise canitself serve asan order parameter
for the phase. Inthe disentangling phase, the probe is affected by noise
only withinafinite correlationlength, whereasin the entangling phase
itbecomes sensitive to noise anywherein the system. InFig. 4c, {(ry,,,) is
shownas afunction of p for several Nvalues, indicating a transition ata
critical gate density p. of around 0.6-0.8. At p = 0.3, whichis well below
the transition, {(r,,,,) remains constant as Nincreases (insetin Fig. 4c).
By contrast, at p = 1we fit {(r,,,,) ataround 0.97", indicating an error rate
of around 3% per qubit for the entire sequence. This isapproximately
consistent with our expectations for a depth 7=5 circuit based on
individual gate and measurement error rates (Supplementary Infor-
mation). This response to noise is analogous to the susceptibility of
magnetic phases to a symmetry-breaking field”*>*'* and therefore
sharply distinguishes the phases only in the limit of infinitesimal noise.
For finite noise, we expect the N dependence to be cut off at a finite
correlation length. We do not see the effects of this cut-off at system
sizes accessible to our experiment.

As a complementary approach, the underlying behaviour in the
absence of noise may be estimated by noise mitigation. To do this, we
define the normalized order parameter ?(r) ={(r)/{(rmay) and proxy
entropy §pmxy(r) =-log,[(1+ C(r)?)/2]. The persistence of entangle-
ment with increasing r, corresponding to measurement-induced
teleportation’, indicates the entangling phase. Figure 4d shows the
noise-mitigated entropy for p=0.3 and p =1, revealing a rapid,
N-independentdecayinthe formerandaplateauuptor=r,, —1linthe
latter. At fixed N=40, §pmxy(r) displays a crossover between the two
behaviours for intermediate p (Fig. 4e).

Toresolve this crossover more clearly, we show §proxy(rmax -1)asa
function of p for N=12-58 (Fig. 4e). The accessible system sizes approx-
imately crossatp. = 0.9. There is an upward drift of the crossing points
withincreasing N, confirming the expected instability of the phases to
noise in the infinite-system limit. Nonetheless, the signatures of the
ideal finite-size crossing (estimated to be p. ~ 0.72 from the noiseless
classical simulation; Supplementary Information) remain recogniz-
ableat the sizes and noise rates accessible in our experiment, although
they are moved to larger p.. A stable finite-size crossing would mean
that the probe qubit remains robustly entangled with qubits on the
opposite side of the system, even when Nincreases. This is a hallmark
of the teleporting phase'®, in which quantum information (aided by
classical communication) travels faster than the limitsimposed by the
locality and causality of unitary dynamics. Indeed, without measure-
ments, the probe qubit and the remaining unmeasured qubits are caus-
ally disconnected, with non-overlapping past light cones*® (pink and
grey linesin the insetin Fig. 4f).

Ourwork focuses on the essence of measurement-induced phases:
the emergence of distinct quantum information structuresin space-
time. We used space-time duality mappings to circumvent mid-circuit
measurements, devised scalable decoding schemes based on alocal
probe of entanglement, and used hardware noise to study these phases
onupto 70 superconducting qubits. Our findings highlight the prac-
tical limitations of NISQ processors imposed by finite coherence.

By identifying exponential suppression of the decoded signal in
the number of qubits, our results indicate that increasing the size
of qubit arrays may not be beneficial without corresponding reduc-
tionsinnoise rates. At current error rates, extrapolation of our results
(atp=1, T=5)toanN-qubit fidelity of less than1%indicates that arrays
of more thanaround 150 qubits would become too entangled with their
environment for any signatures of theideal (closed system) entangle-
ment structure to be detectable in experiments. This indicates that
there is an upper limit on qubit array sizes of about 12 x 12 for this
type of experiment, beyond which improvements in system coher-
ence are needed.
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