

1 A peptide-centric local stability assay to unveil protein

2 targets of diverse ligands

3 Kejia Li^{1,2}, Shijie Chen³, Keyun Wang¹, Yan Wang¹, Zheng Fang^{1,2}, Jiawen Lyu^{1,2},
4 Haiyang Zhu^{1,2}, Yanan Li¹, Ting Yu^{1,2}, Feng Yang^{3,4}, Xiaolei Zhang¹, Siqi Guo³,
5 Chengfei Ruan^{1,2}, Jiahua Zhou^{1,2}, Qi Wang^{1,2}, Cheng Luo^{3,4,5*}, Mingliang Ye^{1,2*}

6

⁷ ¹ CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National
⁸ Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese
⁹ Academy of Sciences (CAS); Dalian, 116023, China.

¹⁰ ² University of Chinese Academy of Sciences, Beijing, 100049, China.

11 ³ Drug Discovery and Design Center, the Center for Chemical Biology, State Key
12 Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese
13 Academy of Sciences; Shanghai 201203, China.

14 ⁴ School of Pharmacy, Fudan University, Shanghai 201203, China

15 ⁵School of Pharmaceutical Science and Technology, Hangzhou Institute for
16 Advanced Study, UCAS, Hangzhou 310024, China.

17 *Correspondence: cluo@simm.ac.cn (C.L.), mingliang@dicp.ac.cn (M.Y.)

18

19 Note: The patent is pending. Please contact Prof. Mingliang Ye for commercial use.

20

21 **ABSTRACT**

22 While tremendous progress has been made in chemical proteomics for identifying
23 protein-ligand interactions, it remains challenging for proteome-wide
24 identification of ligand-binding regions without modifying the ligands. Here, we
25 discovered that “disruptive trypsinization” amplifies the readout of ligand-induced
26 protein local stability shifts, and explored this notion in developing “peptide-
27 centric local stability assay” (PELSA), a modification-free approach which
28 achieves unprecedented sensitivity in proteome-wide target identification and
29 binding-region determination. We demonstrate the versatility of PELSA by
30 investigating the interactions across various biological contexts including drug-
31 target interactions, metabolism, epitope mapping, metal proteomics, and post-
32 translational modification recognition. A PELSA study of the oncometabolite
33 R2HG revealed functional insights about its targets and pathogenic processes in
34 both cancer and immune cells. Thus, beyond offering users unprecedented
35 sensitivity for characterizing diverse target-ligand interactions, PELSA supports
36 informative screening and hypothesis generation studies throughout life science.

37

38 **INTRODUCTION**

39 The biochemical functions of proteins invariably involve interactions with ligands of
40 some type, which act as enzyme substrates or inhibitors, signaling molecules,
41 allosteric modulators, structural anchors, etc. Monitoring protein-ligand interactions is
42 thus essential for comprehending various aspects of life science, including drug
43 mechanisms of action, regulatory processes in cellular metabolism and signaling, and
44 the functions of uncharacterized proteins^{1, 2}. Additionally, knowledge of the ligand-
45 binding regions holds immense value for structure-based drug design³ and biological
46 hypothesis generation⁴.

47 Modification-based methods which rely on chemical modifications of the ligands
48 to capture ligand-binding proteins and binding regions^{5, 6} require extensive chemical

49 synthesis and may be not applicable for ligands that lack suitable sites for chemical
50 modification⁷. Previously reported modification-free methods⁸, including Cellular
51 Thermal Shift Assay (CETSA)⁹ and Thermal Proteome Profiling (TPP)¹⁰ bypass the
52 need of ligand modification but do not support the identification of specific ligand-
53 binding regions in target proteins. Paola et al. developed LiP-MS (limited proteolysis
54 coupled with mass spectrometry)¹¹, which can identify ligand-binding proteins and
55 binding regions in the cell lysates of microbial organisms. Despite the advancements
56 brought by LiP-MS and the subsequently developed LiP-Quant¹² (a dose-response
57 version of LiP-MS tailored for complex human cell lysates), their capacity for target
58 identification remains limited¹².

59 Here, we propose disruptive trypsinization to directly generate MS-detectable
60 peptides from native proteins to represent protein local stability. This digestion
61 scheme in couple with a simple separation procedure largely reduces the complexity
62 of peptide samples and, crucially, amplifies the readout of ligand-induced protein
63 local stability shifts. Based on this observation, we established a method we term
64 PEptide-centric Local Stability Assay (PELSA) that enables sensitive identification of
65 target proteins while also preserving extensive binding-region information. We
66 demonstrate that PELSA achieves unprecedented sensitivity in revealing ligand-
67 binding proteins through extensive comparisons against alternative methods. For
68 example, PELSA with one drug dose and one digesting condition identified 12-fold
69 more kinase targets for a pan-kinase inhibitor than LiP-Quant using seven drug
70 doses¹², and 2.4-fold more targets than TPP using ten temperatures¹⁰. We further
71 demonstrate the wide application scope and excellent performance of PELSA in
72 studies of drug promiscuity, molecular glue, epitopes, recognition domains for post-
73 translational modifications, metal proteomics, and metabolite sensing and signaling.

74

75 RESULTS

76 **Disruptive trypsinization amplifies the readout of ligand-induced protein local
77 stability shifts**

78 Binding with a ligand can increase the stability of the ligand-binding region of a
79 protein^{13, 14}. The stability of a protein can be measured by its protease susceptibility^{15,}
80 ¹⁶. Therefore, when native proteins are partially digested into small peptides, the
81 abundance of every individual peptide should represent a measurement of the stability
82 of the region in which it is located. We speculate these directly generated peptides
83 could be used for investigating ligand-induced protein local stability shifts. Because
84 these small peptides can be easily separated from the undigested large counterparts
85 (e.g., through differences in molecular weight), the complexity of the resulted peptide
86 mixture will be largely reduced (compared to LiP-MS^{11, 12}, a two-step digestion
87 scheme for ligand-binding protein identification), which could enable detection of a
88 rich array of peptides that are informative regarding ligand binding.

89 Pursuing this, we used trypsinization with a high E/S ratio (enzyme/substrate,
90 wt/wt) for a short time (*i.e.*, 1 min) to partially digest native proteins into small
91 peptides. We used trypsin because tryptic peptides are optimal for shotgun proteomics
92 analysis¹⁷, and used a high E/S ratio to enable generation of a large number of small
93 tryptic peptides. We term this digestion scheme as “disruptive trypsinization”, as
94 trypsinization also functions here as a denaturant to destroy the protein structures to
95 facilitate small peptide generation. The generated tryptic peptides are subsequently
96 enriched by removing large, partially digested protein segments through a filter unit,
97 followed by proteomics analysis.

98 To test if our procedure could identify more peptides that are informative
99 regarding ligand binding than existing LiP-MS methods, we worked with HeLa cell
100 lysates and two well-studied drugs: Methotrexate (MTX) targeting DHFR¹⁸ and
101 SHP099 targeting PTPN11¹⁹. The comparison was performed between our procedure
102 with an E/S ratio of 1:2 (trypsin: substrate, wt/wt) and the LiP-MS approach with an
103 initial brief digestion at an E/S ratio of 1:100 (proteinase K: substrate, wt/wt)

104 followed by complete trypsin digestion under denaturing conditions¹². Note that the
105 initial data quality assessment confirmed the proper operations of LiP-MS in our
106 study (**Extended Data Fig. 1a,b**).

107 Gratifyingly, both the data from MTX and SHP099 experiments showed that our
108 procedure identified many more peptides showing statistically significant abundance
109 changes (Bayes t-test $p < 0.01$, $|\log_2\text{FC}| > 0.3$) on target proteins than LiP-MS (**Fig.**
110 **1a, Extended Data Fig. 1c**; 12 and 21 versus 6 and 4). We defined these peptides as
111 “ligand-responsive target” (LRT) peptides. Strikingly, we observed that the LRT
112 peptides displayed a remarkably larger “readout” (*i.e.*, magnitude of abundance fold
113 changes) in our procedure than in LiP-MS (**Fig. 1b**; medians of $|\log_2\text{FC}|$: 4.07 and
114 3.35 versus 0.95 and 0.52). It bears emphasis that only peptides from the ligand-
115 binding domains displayed an amplified readout when using disruptive trypsinization,
116 whereas peptides from the unbound regions remained no abundance changes upon
117 ligand treatment (**Fig. 1c**). The amplified readout may be because disruptive
118 trypsinization is a continuous multi-stage proteolysis process, in which the abundance
119 difference of the peptides generated from the ligand-binding regions between bound
120 and unbound states, reflects an accumulation of differences in the rates of multi-stage
121 proteolysis (**Extended Data Fig. 2**). Benefiting from the amplified readout, disruptive
122 trypsinization yielded more accurate binding region data relative to LiP-MS
123 (**Extended Data Fig. 3a-c**).

124 In conclusion, we demonstrate that our procedure can identify a rich array of
125 peptides that are informative regarding ligand binding. Crucially, we found that
126 disruptive trypsinization can amplify the readout of ligand-induced protein local
127 stability shifts. Based on these observations, we propose a peptide-centric local
128 stability assay, or PELSA, to probe ligand-binding proteins and binding regions.

129

130 **The PELSA approach**

131 In the PELSA workflow (**Fig. 1d**), proteome samples extracted from cell lysates
132 under native conditions are incubated with an analyte ligand (exemplified by
133 lapatinib²⁰, a marketed inhibitor of a membrane protein, ERBB2) or vehicle,
134 respectively. The two sample groups are then subjected to trypsinization with a high
135 E/S ratio (enzyme/substrate, wt/wt) (*e.g.*, 1:2) for a short time (*e.g.*, 1 min) followed
136 by removing any large, partially digested protein fragments with an ultrafiltration unit
137 (molecular weight cutoff 10 kDa). The collected peptides are then analyzed by liquid
138 chromatography-tandem mass spectrometry (LC-MS/MS) in data-independent
139 acquisition (DIA) mode. The quantified peptides are compared between two groups
140 (Bayes t-test analysis) (**Fig. 1e**), and the peptide with the lowest p value among all
141 quantified peptides of the same protein is selected to represent its corresponding
142 protein for target protein identification (**Fig. 1f**). Notably, out of 5866 proteins, we
143 identified the known lapatinib target protein ERBB2 as the top target candidate
144 (unless otherwise stated, target prioritization is ranked by $-\log_{10}P\text{value}$). Mapping the
145 quantified peptides to protein sequences generates local stability profiles (**Fig. 1g**),
146 which reveal the protein regions responsive to the ligand binding. Consistent with the
147 previous knowledge that lapatinib binds ERBB2 via its kinase domain²⁰, the PELSA
148 local stability profile data showed that the ligand-responsive peptides detected for
149 ERBB2 were all from the kinase domain (**Fig. 1g**). The dose-dependent local stability
150 changes can also be assessed when PELSA experiments are performed using multiple
151 ligand doses. Since the local stability changes of the target protein are dependent on
152 the ligand occupancy, the dose that produces the half-maximal stability changes
153 reflects the local binding affinity of the ligand for the corresponding protein segment.
154 Hence, we termed the dose-response local stability changes as “local affinity profiles”
155 (**Fig. 1h**).

156 We next applied PELSA to investigate the target proteins of rapamycin, an
157 inhibitor of multiple FKBP family proteins²¹. A previous LiP-MS study successfully
158 identified FKBP1A as a rapamycin-binding protein¹². Initially, we applied PELSA to

159 investigate rapamycin-binding proteins under experimental conditions identical to
160 those reported in the LiP-MS paper (*i.e.*, HeLa cell lysates, 2 μ M rapamycin).
161 Consistent with the amplified readouts observed for DHFR and PTPN11, PELSA
162 generated a 25-fold larger readout for FKBP1A than LiP-MS (53.4 versus 2.54) (**Fig.**
163 **1i**). Beyond FKBP1A, PELSA identified five additional FKBP family proteins as
164 rapamycin-binding proteins (**Fig. 1i**), which failed to recognize as rapamycin-binding
165 proteins in LiP-MS due to no detectable fold changes (**Fig. 1i**). We further
166 demonstrated these additional FKBP family proteins has a low target occupancy
167 under 2 μ M rapamycin treatment (**Extended Data Fig. 3d**). These results suggested
168 that the amplified readout equips PELSA with the sensitivity to identify low
169 stoichiometry binding events in the cellular context.

170 PELSA can identify not only ligand-binding regions located on a single protein,
171 but also those that span two proteins. Rapamycin can act as a molecular glue between
172 FKBP1A and mTOR (**Fig. 1j**), and the FKBP1A-rapamycin complex binds to a small
173 segment of mTOR (residues 2015-2113)²². Beyond successful determination of FKBP
174 domains as rapamycin-binding regions on the identified FKBP family proteins
175 (**Extended Data Fig. 3e**), the PELSA local stability profiles accurately pinpointed the
176 binding region of the FKBP1A-rapamycin complex on mTOR (**Fig. 1k**).

177 Besides DIA, other quantitative proteomics methods can also be used to quantify
178 PELSA-generated peptides. For example, we coupled PELSA with the data-
179 dependent acquisition (DDA) based cost-effective stable isotope dimethyl labeling²³
180 to investigate the binding profiles of three HSP90 inhibitors with distinct structural
181 similarities (**Extended Data Fig. 4a**). PELSA successfully identified HSP90 family
182 proteins—and determined the known binding regions (*i.e.*, N-terminal ATP-binding
183 domain)²⁴—for the three HSP90 inhibitors (**Extended Data Fig. 4b,c**). As expected,
184 the structurally close inhibitors, geldanamycin and tanespimycin, shared more off-
185 targets (**Extended Data Fig. 4b**). The unique off-targets identified for the structurally
186 distinct inhibitor ganetespib, AKR1C2 and MAT2A, were also validated using

187 thermal shift assay with purified proteins (**Extended Data Fig. 4d**), substantiating the
188 reliability of PELSA for target identification. The dose-dependent PELSA analysis
189 also yielded accurate binding affinity data (**Extended Data Fig. 4e**), aligning with
190 results from microscale thermophoresis (MST) assay (**Extended Data Fig. 4f**).

191 Taken together, we demonstrate that PELSA enables efficient target
192 identification, precise binding-region determination, and accurate binding affinity
193 quantification on the proteome-wide scale.

194

195 **PELSA's high sensitivity in target identification**

196 Staurosporine, a pan-kinase inhibitor, has been investigated by LiP-Quant (the dose-
197 dependent version of LiP-MS) in HeLa cell lysates¹² and TPP in K562 cell lysates¹⁰.
198 To compare the performance of PELSA for target identification against these popular
199 modification-free methods, we screened the targets of staurosporine by PELSA in
200 both lysates of HeLa and K562 cells and compared our results with the published
201 datasets of LiP-Quant and TPP.

202 Using a true positive rate (TPR, defined as the percentage of kinase targets in
203 candidate targets) cutoff of 80% (**Supplementary Discussion**), PELSA with one
204 staurosporine dose yielded 120/143 (kinases/candidates) and 108/135
205 (kinases/candidates) in K562 and HeLa cell lysates, respectively (**Fig. 2a,b and**
206 **Supplementary Table 1**). By contrast, a LiP-Quant analysis of staurosporine in HeLa
207 cell lysates identified 20 kinase targets (TPR of 40%)¹², and 9 kinase targets were
208 identified when the identical criterion—TPR cutoff of 80%—was applied (**Fig. 2b**
209 and **Supplementary Table 1**), albeit with 7 drug doses and a superior LC-MS/MS
210 analysis depth reflected by more quantified peptides¹² and higher protein sequence
211 coverages (**Fig. 2c**). In line with our observations in MTX, SHP099, and rapamycin
212 experiments, the overlapped kinase targets displayed much larger readouts in PELSA
213 than in LiP-Quant (median values of $|\log_2\text{FC}|$: 2.2 versus 0.75) (**Fig. 2d**). Since in

214 PELSA the peptides that are most relevant to ligand binding are enriched, PELSA
215 requires lower protein sequence coverages than LiP-Quant for successful
216 identification of target proteins (**Fig. 2c**), which also leads to the high sensitivity of
217 PELSA.

218 PELSA with one E/S ratio also identified 2.4-fold more kinase targets than TPP
219 using ten temperatures (120 versus 51) in lysates of the same cell line (K562) (**Fig.**
220 **2b**), although more proteins were included in the TPP dataset (7638 versus 6310)¹⁰.
221 TPP showed a bias against the thermo-resistant and thermo-susceptible kinases,
222 whereas PELSA is capable of identifying kinase targets with extreme melting
223 temperatures (**Fig. 2e**). Moreover, PELSA also substantially outperforms the recently
224 updated versions of TPP—iTSA, 2D-TPP, and mTSA—for staurosporine target
225 identification: compared to PELSA’s 120 kinases/143 candidates, iTSA identified 71
226 kinases/85 candidates²⁵; 2D-TPP identified 60 kinases/73 candidates²⁶ and mTSA
227 identified 64 kinases/85 candidates²⁷ (**Supplementary Table 1**). We compared the
228 readouts of kinases in PELSA and in iTSA and mTSA, which also determine target
229 proteins via output of abundance fold changes of proteins (*i.e.*, readout). The
230 comparison results showed that 44.5% of the kinases in the PELSA staurosporine
231 dataset displayed readout of >2, while the proportions were 7.1% and 7.6% in iTSA
232 staurosporine and mTSA staurosporine datasets, respectively (**Fig. 2f**). Beyond the
233 high sensitivity in target protein identification, PELSA also brings along the capacity
234 to identify binding regions: for kinase targets identified by PELSA, over 93% of the
235 peptides passing the significance cutoff (**Supplementary Discussion**) are located in
236 or within 10 residues away from the known staurosporine-binding domain—kinase
237 domain (**Fig. 2g**).

238

239 **Exploring weak metabolite-protein interactions**

240 Encouraged by the excellent performance of PELSA in drug target identification, we
241 next examined whether PELSA is capable of detecting weak metabolite-protein
242 interactions by investigating the binding proteins of two metabolites—folate and
243 leucine—which are known to bind their target proteins with micromole-level
244 affinity^{18, 28, 29}.

245 Folate PELSA analysis successfully identified dihydrofolate reductase DHFR (a
246 known folate-binding protein)¹⁸ as the top hit (**Fig. 3a**) and revealed that the top five
247 DHFR peptides with the most profound stabilization were mainly present in the
248 folate-binding pocket (**Fig. 3b**). Beyond DHFR, PELSA also identified three Uniprot-
249 annotated folate-analog-binding proteins, *i.e.*, MTHFR, GART, and ATIC among the
250 top 6 most significantly stabilized proteins by folate treatment (**Fig. 3a**); PELSA
251 revealed that they were all stabilized at known folate-analog-binding sites (**Fig. 3c-e**),
252 indicating that folate may compete with these analogies to bind their cellular targets.
253 The 3rd most significantly stabilized protein was a collagen proline hydroxylase,
254 P3H1 (**Fig. 3a**). A previous report indicates that folate may function as a reducing
255 agent to participate in the hydroxylation of collagen proline³⁰. Coincidentally, the
256 local stability profiles revealed that, albeit with 11 peptides of P3H1 quantified, only
257 the three peptides from the prolyl 4-hydroxylase domain were stabilized by folate
258 treatment (**Fig. 3f**). Our results thus provide evidence for the participation of folate in
259 the hydroxylation of collagen proline.

260 The top four hits (LARS, SESN2, LARS2, and GLUD1) identified for leucine
261 were all well-known leucine-binding proteins (**Fig. 3g**). Notably, LARS contains two
262 leucine-binding sites²⁸: the synthetic site and the editing site. Our PELSA data
263 revealed that both of the leucine-binding sites were stabilized upon leucine binding,
264 but with distinct magnitudes (**Fig. 3h**). This observation supports the potential of
265 PELSA to informatively differentiate between discrete ligand-binding sites in a single
266 protein.

267 Our PELSA data also showed that leucine treatment destabilized SLC1A5 (**Fig.**
268 **3g**), an amino acid transporter located at the plasma membrane that can accept leucine
269 as a substrate³¹. While the PELSA dataset included three SLC1A5 peptides, only one
270 was destabilized (**Fig. 3i**): the peptide located at the extracellular segment of the
271 substrate-binding domain (residues 54 to 483)³², suggesting that leucine binding may
272 induce this segment to adopt a more flexible conformation. Beyond known leucine-
273 binding targets, PELSA identified additional putative leucine targets including
274 PPIP5K1 and PPIP5K2 (**Fig. 3g**), which are reported to involve with cancer cell
275 proliferation^{33, 34}. Notably, PELSA revealed that leucine binds both PPIP5K1 and
276 PPIP5K2 at the conserved functional histidine phosphatase domains (**Fig. 3j**), which
277 may provide clues for future function studies of leucine.

278

279 **Characterizing the recognition domains of PTMs**

280 Post-translational-modifications (PTMs) can be recognized by downstream effector
281 proteins (so-called “readers”) through the recognition domains (**Fig. 4a**) to regulate
282 cellular events⁵. However, the interactions between PTMs and reader proteins are
283 often weak and transient. Despite recent progress in modification-based methods^{5, 35},
284 it remains challenging to identify reader proteins and recognition domains of PTMs in
285 complex cellular environment. We wondered whether PELSA is able to fill this gap.

286 Here we focused on phosphotyrosine (pY), exemplified by the pYEEI motif
287 which preferentially binds Src-kinase SH2 domains³⁶. PELSA revealed that 28
288 proteins were significantly stabilized by pYEEI, among which 9 proteins contain SH2
289 domains (**Fig. 4b**). By contrast, we did not identify any SH2-domain-containing
290 proteins in our pulldown experiment (**Fig. 4c**), possibly because the weak interactions
291 between pY and its reader proteins³⁷ are susceptible to loss during the stringent
292 washing procedure. Beyond the advantages over pulldown in detecting weak PTM-
293 protein interactions, PELSA also featured with recognition domain identification. As

294 anticipated, peptides located in the SH2 domains displayed a significantly reduced
295 abundance, whereas peptides out of the SH2 domains remained unchanged (**Fig. 4d**).
296 Notably, SH2 domains from different protein families were stabilized by pYEEI with
297 varying magnitudes (**Fig. 4e** and **Supplementary Table 2**): in accordance with the
298 binding preference of pYEEI³⁶, the SH2 domain of the Src kinase YES1 displayed the
299 most profound stabilization. Several Ca²⁺-regulating proteins were found stabilized by
300 pYEEI at the Ca²⁺-regulating regions (**Fig. 4f** and **Supplementary Table 2**), although
301 the underlying mechanism is unclear.

302 Although only recognition domains of pY were investigated here, it is reasonable
303 to further extend the application scope to investigate the recognition domains of many
304 other PTMs, which is crucial to understand the biological functions of the PTMs.

305

306 **The high-resolution binding data of PELSA enables epitope identification**

307 We then asked whether PELSA can determine the ligand-binding regions when the
308 ligand is a protein such as an antibody (**Fig. 4g**). To this end, two commercial
309 antibodies (against DHFR or CDK9) were investigated with PELSA using HeLa cell
310 lysates. PELSA quantified 6806 and 6207 proteins in DHFR and CDK9 antibody
311 experiments, respectively, and the corresponding antigen proteins DHFR and CDK9
312 were found in the top 5 most significantly stabilized proteins in respective
313 experiments (**Fig. 4h**). Of note, most of the significantly stabilized non-antigen
314 proteins (-log₁₀Pvalue > 5, log₂FC < 0, Bayes t-test) contain multiple stabilized
315 peptides (**Supplementary Table 3**) indicating the high confidence of their
316 interactions with the added antibody, possibly resulting from the low specificity of the
317 antibodies.

318 Four out of the 15 quantified DHFR peptides displayed a significantly reduced
319 abundance (Bayes t-test p < 0.01, log₂FC < -0.3) upon DHFR antibody binding (**Fig.**
320 **4i**). Strikingly, their tryptic cleavage sites were located exactly in the known epitope

321 (residues 172-187) (**Fig. 4i**). CDK9 antibody recognizes a 13-amino-acid epitope—
322 sequence PATTNQTEFERVF (residues 360-372)—which is located at the tail of
323 CDK9. The local stability profiles revealed that peptide NPATTNQTEFER (NPxxER,
324 residues 358-370) with C terminus cleavage site located exactly in the epitope
325 displayed a significantly reduced abundance (Bayes t-test $p < 0.001$, $\log_2\text{FC} = -2.28$)
326 (**Fig. 4j**), whereas even the peptide (residues 346-357) with C terminus two residues
327 away from the epitope remained unchanged ($-\log_{10}\text{Pvalue} = 0.153$, $\log_2\text{FC} = 0.07$,
328 Bayes t-test). Notably, the missed cleavage form of NPxxER—NPxxVF (residues
329 358-372)—displayed an opposite direction of change with NPxxER (**Fig. 4j**), which
330 can be explained: binding with antibody inhibited the trypsinization at residue 370;
331 thus, less amount of NPxxER (residues 358-370) was generated, and thereby more
332 NPxxVF (residues 358-372) was left (**Fig. 4k**). Overall, these results indicated that
333 PELSA can identify the epitopes on antigen proteins at high resolution.

334

335 **Assaying Zn²⁺ responsive regions across the proteome**

336 Next, we wondered whether PELSA is applicable for the ligand with a small size, like
337 a single-atom metal ion—Zn²⁺, which typically binds protein on a small zinc-finger
338 (ZnF) motif composed of ~30 amino acids³⁸. The cell lysates depleted of endogenous
339 Zn²⁺ were treated with varying concentrations of Zn²⁺ or vehicle, and then subjected
340 to PELSA analysis (**Extended Data Fig. 5a**). After 30 μM Zn²⁺ treatment, 280
341 proteins were significantly stabilized ($-\log_{10}\text{Pvalue} > 3$, $\log_2\text{FC} < -0.5$, Bayes t-test),
342 among which ~68% (190 proteins) were Uniprot-annotated metal-binding proteins
343 (**Fig. 5a,b**). This proportion was substantially higher than that in the measured
344 proteome (19%) (**Fig. 5b**). Among the 190 metal-binding proteins identified by
345 PELSA, 112 are Uniprot-annotated Zn²⁺-binding proteins, and 78 are proteins known
346 to be bound by other divalent metal ions highlighted by Ca²⁺, Mg²⁺, Fe²⁺, and Mn²⁺
347 (**Fig. 5c and Supplementary Table 4**), indicating a divalent-metal-ion promiscuity,
348 which is frequently observed in metal-binding proteins³⁹. Zn²⁺-binding proteins have

349 been previously investigated with chemical probes⁴⁰. In that study, 38 putative Zn²⁺-
350 binding proteins were determined: 6 were Uniprot-annotated Zn²⁺-binding proteins
351 and 9 were other-metal-binding proteins (**Supplementary Table 5**). This comparison
352 demonstrated the excellent performance of PELSA in identifying metal-binding
353 proteins.

354 Beyond precisely determining the small Zn²⁺-binding sites (**Fig. 5d-g**,
355 **Supplementary Discussion**), PELSA revealed that Zn²⁺ stabilized the Ca²⁺-, Fe²⁺-,
356 and Mg²⁺-binding proteins at Ca²⁺-, Fe²⁺-, and Mg²⁺-binding regions, respectively
357 (**Fig. 5h,i, Extended Data Fig. 5b, and Supplementary Table 6**) which is agreement
358 with previous findings that Zn²⁺ can occupy the binding pockets of other divalent
359 metal ions^{41, 42}. Our PELSA analysis also provided a local stability atlas of 90 Zn²⁺-
360 stabilized proteins that were not categorized as metal binding (**Extended Data Fig.**
361 **5c**); Gene ontology analysis of these 90 proteins revealed an enrichment of GTP-
362 binding proteins (**Extended Data Fig. 5d**), particularly Ras-related proteins
363 (**Supplementary Table 4**). One Ras-related protein, RAB1A, has been previously
364 reported as a Zn²⁺-buffering protein⁴³. Our results indicate a potential prevalent role
365 of Ras-related proteins in regulating cellular Zn²⁺ homeostasis.

366 Proteins will be destabilized, if ligands bind to their partner proteins and
367 dissociate the partner proteins from the formed protein complexes^{10, 44}. Among the top
368 18 proteins destabilized by Zn²⁺ ($\log_2\text{FC} > 0$, ranked by $-\log_{10}\text{Pvalue}$, Bayes t-test), 12
369 proteins were destabilized at known protein-protein interaction interfaces (**Fig. 5j-l**,
370 **Extended Data Fig. 5e, Supplementary Table 6, and Supplementary Discussion**).
371 This specific destabilization is also recapitulated in PELSA 20 μM Zn²⁺ analysis
372 (**Extended Data Fig. 5f,g and Supplementary Table 6**), suggesting the potential of
373 PELSA to monitor the assembly states of protein complexes.

374

375 **Target landscapes of α -ketoglutarate and R-2-hydroxyglutarate in HeLa and**
376 **Jurkat cells**

377 Isocitrate dehydrogenase (IDH) gene mutations are frequently observed in multiple
378 human cancers⁴⁵; these mutations can impart a neomorphic enzyme activity wherein
379 α -ketoglutarate (α KG) can be converted to the R enantiomer of 2-hydroxyglutarate
380 (R2HG)⁴⁶. R2HG is structurally similar to α KG (**Fig. 6a**) and has been reported to act
381 as a weak competitive inhibitor of multiple α KG-dependent dioxygenases (KGDDs)⁴⁷.
382 The highly simple and similar structures of these two metabolites make it challenging
383 to identify their binding proteins through modification-based methods. Moreover, the
384 low affinity of these two metabolites, especially R2HG (often up to millimole-level
385 affinity)⁴⁸, further exacerbates the difficulty of target identification. As a result,
386 despite wide-recognized roles of R2HG in cancer development^{49, 50}, there is no
387 proteome-wide investigation of R2HG binding proteins.

388 We used PELSA to explore the binding proteins of α KG and R2HG in lysates of
389 HeLa and Jurkat cells. PELSA analysis of 2 mM α KG treated HeLa cell lysates
390 identified 40 significantly stabilized proteins ($-\log_{10}Pvalue > 3.4$, $\log_2FC < -0.5$,
391 Bayes t-test), among which 30 are previously-known α KG targets (65 in total in this
392 dataset; **Extended Data Fig. 6a,b**)⁵¹. This represents the largest number of known
393 α KG targets identified in a single analysis. Although α KG has been investigated in a
394 LiP-MS study with *E.coli* lysates⁵², only 2 previously-known α KG targets were
395 identified (33 in total in the LiP-MS dataset; **Extended Data Fig. 6b**).

396 As anticipated, PELSA R2HG analyses identified fewer known α KG targets than
397 PELSA α KG analyses in both HeLa and Jurkat cell lysates (**Fig. 6a**). The cell-line
398 comparison revealed that protein-hydroxylase targets were underrepresented in Jurkat
399 cells (**Fig. 6b**) relative to HeLa cells, which can be explained by the differential
400 expression levels of protein hydroxylases in these two cell lines (**Extended Data Fig.**
401 **6c**).

402 PELSA also enables the determination of α KG-binding regions for tens of α KG
403 targets in a single analysis (**Extended Data Fig. 6d and Supplementary Table 7**).
404 Previous co-crystal structural studies of purified KDM4A in complex with R2HG
405 revealed that R2HG occupies the same binding pocket as α KG⁴⁷. Note that for
406 multiple α KG targets, our PELSA data of both HeLa and Jurkat cell lysates indicate
407 that R2HG binds the same pockets as α KG (**Extended Data Fig. 6d and**
408 **Supplementary Table 7**).

409 PELSA determined the binding affinities between α KG (R2HG) and 44
410 previously-known α KG targets in lysates of HeLa and Jurkat cells (**Fig. 6c**). In
411 agreement with previous findings⁴⁷, PELSA revealed that R2HG has lower binding
412 affinities for KGDDs compared to α KG (**Fig. 6c**). Although the binding affinities in
413 the two cell lysates are well correlated (**Extended Data Fig. 6e**), we observed that
414 P3H1 displayed a higher affinity for both α KG and R2HG in Jurkat cell lysates
415 compared to HeLa cell lysates (**Fig. 6c and Extended Data Fig. 6f**), which may
416 represent the distinct regulating factors (*e.g.*, interacting partners and post-
417 translational modifications) of P3H1 in HeLa and Jurkat cells.

418

419 **Previously unknown targets of α KG and R2HG**

420 PELSA identified 19 high-confidence (**Supplementary Discussion**) previously-
421 unknown targets of α KG or R2HG and determined their binding affinities in both
422 HeLa and Jurkat cell lysates (**Supplementary Table 8**). Notably, many of these
423 proteins are involved with energy metabolism, including amino acid metabolism,
424 glycolysis, oxidative phosphorylation (OXPHOS), and TCA cycle anaplerosis (**Fig.**
425 **6d**). Interestingly, different from KGDDs which bind more strongly to α KG than
426 R2HG, pyruvate carboxylase (PC), an enzyme critical for TCA anaplerosis, was
427 identified to bind both α KG and R2HG, but with higher affinity toward R2HG than
428 α KG in lysates of both HeLa and Jurkat cells (**Fig. 6d and Extended Data Fig. 7a**).

429 This finding was also confirmed by dose-response experiments via western-blot
430 readouts (**Extended Data Fig. 7b**). The PELSA local affinity data also revealed that
431 R2HG stabilized PC on the segment responsible for the transfer of carboxy group to
432 pyruvate (**Extended Data Fig. 7a**)⁵³. We purified this segment and verified the
433 stabilization by R2HG using a thermal shift assay (**Extended Data Fig. 7c**). IDH
434 mutations can lead to remarkably high R2HG levels, accompanied by disruption of
435 redox homeostasis and alteration of amino acid metabolism and TCA cycle
436 anaplerosis⁴⁶. Little is known about whether R2HG has a role in these metabolism
437 alterations and how R2HG functions. Our PELSA evidence for the interactions
438 between R2HG and the proteins (involved with the TCA cycle anaplerosis, amino
439 acid metabolism, and OXPHOS) (**Fig. 6d**) thus yields an insight into the aberrant
440 cellular metabolism in IDH-mutated cancer cells.

441 Beyond the enzymes with well-known functions, we also identified two putative
442 enzymes without known substrates, *i.e.*, HDHD2 and FAHD2A (**Supplementary**
443 **Table 8**); their interactions with α KG/R2HG and relative binding affinities to these
444 two metabolites (**Extended Data Fig. 7d**) may afford clues for their biological
445 functions.

446 In addition to the targets stabilized by α KG and R2HG, we found that a group of
447 tyrosine-protein phosphatase domain-containing proteins—PRPRC, PTPRE, PTPN2,
448 and RNGTT—were destabilized exclusively in R2HG-treated Jurkat cell lysates
449 (**Extended Data Fig. 8a,b**). Moreover, these proteins were all destabilized at their
450 shared tyr-protein phosphatase domains (**Fig. 6e**); this R2HG-induced Jurkat-specific
451 destabilization was also confirmed by another biological replicate of PELSA R2HG
452 analysis (**Extended Data Fig. 8c,d**). R2HG has been reported to suppress T cell
453 receptor (TCR) signaling⁵⁴. Notably, PRPRC, a membrane protein that functions as a
454 gatekeeper of TCR signaling⁵⁵, was also among the R2HG-destabilized proteins.
455 PRPRC is known to employ its tyr-protein phosphatase domains to regulate TCR
456 signaling (by dephosphorylating, and thus activating LCK) (**Fig. 6f**). Our PELSA data

457 indicating that R2HG destabilized PTPRC's tyr-protein phosphatase domains
458 therefore uncovers a possible basis to help explain previous reports of R2HG-
459 mediated suppression of TCR signaling⁵⁴. Overall, our dose response PELSA
460 analyses of αKG and R2HG in the two cell lines provide informative interaction data
461 for future hypothesis generation studies of αKG and R2HG.

462

463 DISCUSSION

464 In this study, we found that disruptive trypsinization amplifies the readout of ligand-
465 induced protein local stability shifts, and developed this concept into a powerful
466 technology—PELSA—which allows simultaneous sensitive target protein
467 identification and ligand-binding region determination in native cellular environment
468 without ligand modification. Compared against existing modification-free methods
469 that enable binding region determination (LiP-MS methods)¹², PELSA identified 6-
470 fold more FKBP family target proteins (6 versus 1) for rapamycin and 12-fold more
471 kinase targets (108 versus 9) for a pan-kinase inhibitor (staurosporine) than LiP-MS
472 and LiP-Quant, respectively. Compared with prevalent modification-free methods that
473 do not yield binding region information (TPP methods), PELSA identified 1.7-2.4
474 times more kinase targets for staurosporine than TPP and recently revised TPP
475 methods (iTSA, 2D-TPP, and mTSA).

476 Beyond high sensitivity in target identification, PELSA's peptide-level readout
477 also enables binding-region determination. PELSA detects the ligand-induced local
478 stability shifts to deduce ligand-binding regions. In some cases, *i.e.*, when the binding
479 signals are propagated to distal locations within the domain through cooperative intra-
480 segment interactions^{56, 57}, PELSA can accurately and sensitively determine the ligand-
481 binding domains. For example, PELSA simultaneously determined staurosporine-
482 binding domains for 120 kinases, which represents the largest number of ligand-
483 binding regions determined in a single analysis. In other cases, *i.e.*, when ligand

484 binding only affects the stability of certain residues of the proteins, PELSA can
485 determine the binding residues. This was demonstrated by determining a 13-amino-
486 acid epitope for an antibody and Zn²⁺ binding residues within a 60-amino-acid
487 domain.

488 Our study also provides a powerful solution for identifying recognition domains
489 of PTMs. A recent study reported that a tri-functional amino acid can enable
490 identifying PTM-binding regions when it is placed 1 or 2 residues away from the
491 PTM sites of interest⁵. However, the case of phosphotyrosine (pY) binding has shown
492 that alteration of the +2 and +3 positions can profoundly alter the binding profiles of
493 pY⁵⁸. PELSA does not require prior modification of the analyte ligand, and we have
494 successfully applied PELSA to characterize the recognition domains of pY in this
495 study. Given the ubiquity of PTM-mediated regulation in biology and the many
496 pathological associations of dysregulation PTMs^{59, 60}, PELSA's ability to identify
497 recognition domains of PTMs in human cell lysates will almost certainly motivate its
498 use in many, highly diverse biological and medical studies.

499 We also showcase the capacity of PELSA for sensitively and informatively
500 probing weak interactions by identifying the binding proteins of leucine, folate, α KG,
501 and R2HG. While previous studies have employed modification-based or
502 modification-free methods to investigate metabolite-binding proteins^{52, 61, 62}, these
503 approaches often generate a large number of candidate targets with a limited number
504 of known metabolite-binding proteins. In contrast, PELSA results consistently exhibit
505 a significantly higher percentage of known-binding events. For instance, in a prior
506 LiP-MS study of α KG-treated *E.coli* lysates⁵², 34 candidate targets were identified
507 with 2 known α KG binding proteins. In comparison, PELSA identified 40 candidate
508 targets, and notably, 30 of these were known α KG binding proteins, despite using a
509 more complex lysate sample (human HeLa cell lysate). We envision that PELSA's
510 improved hit rate has the potential to significantly streamline the validation process in
511 hypothesis-generation studies.

512 In summary, we demonstrate PELSA is a highly sensitive and generic method to
513 reveal binding regions on proteins of very diverse ligand types (including drugs,
514 antibodies, phosphorylated peptides, metal ions, and metabolites) on a proteomics
515 scale, without the need for chemical modification of the analyte ligand. Beyond
516 ligand binding, the transition of a protein between different proteoforms (*e.g.*, the
517 presence or absence of post-translational modification)⁶³ may also induce protein
518 stability shifts, and thus could also be investigated by PELSA. We envision that
519 PELSA will find wide utilization throughout life science research.

520

521 **ACKNOWLEDGMENTS**

522 This work was supported, in part, by funds from the National Key Research and
523 Development Program of China (2021YFA1302601, 2020YFE0202200 to M.Y.), the
524 National Natural Science Foundation of China (92153302, 22034007 to M.Y.,
525 91853205, 81625022 to C.L., and 22137002 to K.W.), the innovation program of
526 science and research from the DICP, CAS (DICP I201935, DICP I202139 to M.Y.),
527 the project of National Multidisciplinary Innovation Team of Traditional Chinese
528 Medicine from National Administration of Traditional Chinese Medicine
529 (ZYYCXTD-202004 to C.L.), the Youth Innovation Promotion Association of CAS
530 (No.2022279 to S.C.), and Supported by Innovation Academy for Precision
531 Measurement Science and Technology, CAS to M.Y.

532

533

534 **AUTHOR CONTRIBUTIONS**

535 M.Y., K.L., and K.W. conceived and designed the project; K.L. developed the method,
536 carried out the experiments, and analyzed the results under the supervision of M.Y.;
537 S.C., F.Y., and S.G. measured the binding affinities of purified HSP90AA1 to HSP90
538 inhibitors and validated the off-targets identified for HSP90 inhibitors and R2HG
539 under the supervision of C.L.; K.W. advised on the experimental design. Y.W. set up

540 the MS analysis methods, discussed the experiment results, and edited the manuscript.
541 Z.F. gave help with data processing. J.L. helped in the experiment of investigating
542 PTM's readers. H.Z. helped in data processing in the Zn²⁺ experiment. Y.L. helped to
543 correct the manuscript; T.Y. advised on investigating the leucine-binding proteins. J.Z.
544 helped in calculating the Euclidean distances between peptides and ligands. X.Z.,
545 C.R., and Q.W. gave scientific advice; K.L. and M.Y. wrote the paper with input from
546 other authors.

547 DECLARATION OF INTERESTS

548 The authors declare no competing interests.

549

550 **Data and materials availability:** The raw mass spectrometry proteomics data,
551 protein identification and quantification results have been deposited with the
552 ProteomeXchange Consortium via the PRIDE partner repository with the dataset
553 identifier PXD034606 and will be made accessible upon publication.

554

555

556

557 REFERENCE

- 558 1. Li, F., Xu, W. & Zhao, S. Regulatory roles of metabolites in cell signaling
559 networks. *Journal of Genetics and Genomics* **40**, 367-374 (2013).
- 560 2. Klaeger, S. et al. The target landscape of clinical kinase drugs. *Science* **358**
561 (2017).
- 562 3. Bhagavat, R., Sankar, S., Srinivasan, N. & Chandra, N. An Augmented
563 Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in
564 Proteins of Known 3D Structure. *Structure* **26**, 499-512 e492 (2018).
- 565 4. Cappelletti, V. et al. Dynamic 3D proteomes reveal protein functional
566 alterations at high resolution *in situ*. *Cell* (2020).
- 567 5. Lin, J., Bao, X. & Li, X.D. A tri-functional amino acid enables mapping of
568 binding sites for posttranslational-modification-mediated protein-protein
569 interactions. *Molecular Cell* (2021).
- 570 6. Huth, S.W. et al. muMap Photoproximity Labeling Enables Small Molecule
571 Binding Site Mapping. *J Am Chem Soc* (2023).
- 572 7. Meissner, F., Geddes-McAlister, J., Mann, M. & Bantscheff, M. The emerging
573 role of mass spectrometry-based proteomics in drug discovery. *Nat Rev Drug*
574 *Discov* (2022).
- 575 8. Lyu, J., Wang, K. & Ye, M. Modification-free approaches to screen drug

576 targets at proteome level. *TrAC Trends in Analytical Chemistry* **124**, 115574
577 (2020).

578 9. Martinez Molina, D. et al. Monitoring drug target engagement in cells and
579 tissues using the cellular thermal shift assay. *Science (New York, N.Y.)* **341**, 84-
580 87 (2013).

581 10. Savitski, M.M. et al. Tracking cancer drugs in living cells by thermal profiling
582 of the proteome. *Science* **346**, 55-+ (2014).

583 11. Schopper, S. et al. Measuring protein structural changes on a proteome-wide
584 scale using limited proteolysis-coupled mass spectrometry. *Nat Protoc* **12**,
585 2391-2410 (2017).

586 12. Piazza, I. et al. A machine learning-based chemoproteomic approach to
587 identify drug targets and binding sites in complex proteomes. *Nat Commun* **11**,
588 4200 (2020).

589 13. Pantoliano, M.W. et al. High-density miniaturized thermal shift assays as a
590 general strategy for drug discovery. *Journal of biomolecular screening* **6**, 429-
591 440 (2001).

592 14. Stone, M.J. NMR relaxation studies of the role of conformational entropy in
593 protein stability and ligand binding. *Accounts of chemical research* **34**, 379-
594 388 (2001).

595 15. Rocklin, G.J. et al. Global analysis of protein folding using massively parallel
596 design, synthesis, and testing. *Science* **357**, 168-174 (2017).

597 16. Tsuboyama, K. et al. Mega-scale experimental analysis of protein folding
598 stability in biology and design. *Nature* (2023).

599 17. Dau, T., Bartolomucci, G. & Rappaport, J. Proteomics Using Protease
600 Alternatives to Trypsin Benefits from Sequential Digestion with Trypsin. *Anal
601 Chem* **92**, 9523-9527 (2020).

602 18. Ozaki, Y., King, R. & Carey, P. Methotrexate and folate binding to
603 dihydrofolate reductase. Separate characterization of the pteridine and p-
604 aminobenzoyl binding sites by resonance Raman spectroscopy. *Biochemistry*
605 **20**, 3219-3225 (1981).

606 19. Chen, Y.N. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers
607 driven by receptor tyrosine kinases. *Nature* **535**, 148-152 (2016).

608 20. Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces
609 stabilization and accumulation of HER2 and potentiates trastuzumab-
610 dependent cell cytotoxicity. *Oncogene* **28**, 803-814 (2009).

611 21. Consortium, U. UniProt: a worldwide hub of protein knowledge. *Nucleic
612 Acids Res.* **47**, D506-D515 (2019).

613 22. Schreiber, S.L. The rise of molecular glues. *Cell* **184**, 3-9 (2021).

614 23. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J.
615 Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics.
616 *Nature protocols* **4**, 484-494 (2009).

617 24. Shimamura, T. et al. Ganetespib (STA-9090), a nongeldanamycin HSP90

618 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-
619 small cell lung cancer. *Clin Cancer Res* **18**, 4973-4985 (2012).

620 25. Ball, K.A. et al. An isothermal shift assay for proteome scale drug-target
621 identification. *Commun Biol* **3**, 75 (2020).

622 26. Zinn, N. et al. Improved Proteomics-Based Drug Mechanism-of-Action
623 Studies Using 16-Plex Isobaric Mass Tags. *J Proteome Res* (2021).

624 27. Ruan, C. et al. Matrix Thermal Shift Assay for Fast Construction of
625 Multidimensional Ligand–Target Space. *Anal. Chem.* **94**, 6482-6490 (2022).

626 28. Kim, S. et al. Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for
627 mTORC1 activation. *Cell Rep* **35**, 109031 (2021).

628 29. Wolfson, R.L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway.
629 *Science* **351**, 43-48 (2016).

630 30. Hautvast, J.G. & Barnes, M.J. Collagen metabolism in folic acid deficiency.
631 *Br J Nutr* **32**, 457-469 (1974).

632 31. Scalise, M., Pochini, L., Console, L., Losso, M.A. & Indiveri, C. The Human
633 SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and
634 Role in Cell Biology. *Front Cell Dev Biol* **6**, 96 (2018).

635 32. Garaeva, A.A. et al. Cryo-EM structure of the human neutral amino acid
636 transporter ASCT2. *Nat Struct Mol Biol* **25**, 515-521 (2018).

637 33. Gu, C. et al. Metabolic supervision by PPIP5K, an inositol pyrophosphate
638 kinase/phosphatase, controls proliferation of the HCT116 tumor cell line.
639 *Proceedings of the National Academy of Sciences* **118**, e2020187118 (2021).

640 34. Cao, C.-H. et al. PPIP5K2 promotes colorectal carcinoma pathogenesis
641 through facilitating DNA homologous recombination repair. *Oncogene* **40**,
642 6680-6691 (2021).

643 35. Xiang David Li1 Menin “reads” H3K79me2 mark in a nucleosomal context.
644 (2023).

645 36. Gan, W. & Roux, B. Binding specificity of SH2 domains: insight from free
646 energy simulations. *Proteins* **74**, 996-1007 (2009).

647 37. Kaneko, T. et al. Superbinder SH2 domains act as antagonists of cell signaling.
648 *Science signaling* **5**, ra68-ra68 (2012).

649 38. Klug, A. & Schwabe, J.W. Zinc fingers. *The FASEB journal* **9**, 597-604 (1995).

650 39. Eom, H. & Song, W.J. Emergence of metal selectivity and promiscuity in
651 metalloenzymes. *J Biol Inorg Chem* **24**, 517-531 (2019).

652 40. Pace, N.J. & Weerapana, E. A competitive chemical-proteomic platform to
653 identify zinc-binding cysteines. *ACS Chem Biol* **9**, 258-265 (2014).

654 41. Dudev, T. & Lim, C. Principles governing Mg, Ca, and Zn binding and
655 selectivity in proteins. *Chem Rev* **103**, 773-787 (2003).

656 42. Tsvetkov, P.O. et al. Functional Status of Neuronal Calcium Sensor-1 Is
657 Modulated by Zinc Binding. *Front Mol Neurosci* **11**, 459 (2018).

658 43. Miki, T. et al. A conditional proteomics approach to identify proteins involved
659 in zinc homeostasis. *Nat Methods* **13**, 931-937 (2016).

660 44. Ahsan, A. et al. Destabilization of the epidermal growth factor receptor
661 (EGFR) by a peptide that inhibits EGFR binding to heat shock protein 90 and
662 receptor dimerization. *J. Biol. Chem.* **288**, 26879-26886 (2013).

663 45. Tommasini-Ghelfi, S. et al. Cancer-associated mutation and beyond: The
664 emerging biology of isocitrate dehydrogenases in human disease. *Science
665 Advances* **5**, eaaw4543 (2019).

666 46. Hvinden, I.C., Cadoux-Hudson, T., Schofield, C.J. & McCullagh, J.S.O.
667 Metabolic adaptations in cancers expressing isocitrate dehydrogenase
668 mutations. *Cell Rep Med* **2**, 100469 (2021).

669 47. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of
670 alpha-ketoglutarate-dependent dioxygenases. *Cancer Cell* **19**, 17-30 (2011).

671 48. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone
672 lysine demethylases. *EMBO Rep* **12**, 463-469 (2011).

673 49. Su, R. et al. R-2HG Exhibits Anti-tumor Activity by Targeting
674 FTO/m(6)A/MYC/CEBPA Signaling. *Cell* **172**, 90-105 e123 (2018).

675 50. McBrayer, S.K. et al. Transaminase Inhibition by 2-Hydroxyglutarate Impairs
676 Glutamate Biosynthesis and Redox Homeostasis in Glioma. *Cell* **175**, 101-116
677 e125 (2018).

678 51. Losman, J.A., Koivunen, P. & Kaelin, W.G., Jr. 2-Oxoglutarate-dependent
679 dioxygenases in cancer. *Nat Rev Cancer* **20**, 710-726 (2020).

680 52. Piazza, I. et al. A Map of Protein-Metabolite Interactions Reveals Principles of
681 Chemical Communication. *Cell* **172**, 358-372.e323 (2018).

682 53. Liu, Y., Budelier, M.M., Stine, K. & St Maurice, M. Allosteric regulation
683 alters carrier domain translocation in pyruvate carboxylase. *Nat Commun* **9**,
684 1384 (2018).

685 54. Bunse, L. et al. Suppression of antitumor T cell immunity by the
686 oncometabolite (R)-2-hydroxyglutarate. *Nat Med* **24**, 1192-1203 (2018).

687 55. Courtney, A.H. et al. CD45 functions as a signaling gatekeeper in T cells.
688 *Science signaling* **12**, eaaw8151 (2019).

689 56. Luque, I., Leavitt, S.A. & Freire, E. The linkage between protein folding and
690 functional cooperativity: two sides of the same coin? *Annual review of
691 biophysics and biomolecular structure* **31**, 235 (2002).

692 57. Porter, L.L. & Rose, G.D. A thermodynamic definition of protein domains.
693 *Proceedings of the National Academy of Sciences* **109**, 9420-9425 (2012).

694 58. Lundby, A. et al. Oncogenic Mutations Rewire Signaling Pathways by
695 Switching Protein Recruitment to Phosphotyrosine Sites. *Cell* **179**, 543-560
696 e526 (2019).

697 59. Kolch, W. & Pitt, A. Functional proteomics to dissect tyrosine kinase
698 signalling pathways in cancer. *Nature Reviews Cancer* **10**, 618-629 (2010).

699 60. Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and
700 treatment. *Nat. Med.* **20**, 1242-1253 (2014).

701 61. Sileikyte, J., Sundalam, S., David, L.L. & Cohen, M.S. Chemical Proteomics

Approach for Profiling the NAD Interactome. *J Am Chem Soc* **143**, 6787-6791 (2021).

62. Dasovich, M. et al. Identifying Poly(ADP-ribose)-Binding Proteins with Photoaffinity-Based Proteomics. *J Am Chem Soc* **143**, 3037-3042 (2021).

63. Aebersold, R. et al. How many human proteoforms are there? *Nat Chem Biol* **14**, 206-214 (2018).

64. Omasits, U., Ahrens, C.H., Müller, S. & Wollscheid, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. *Bioinformatics* **30**, 884-886 (2014).

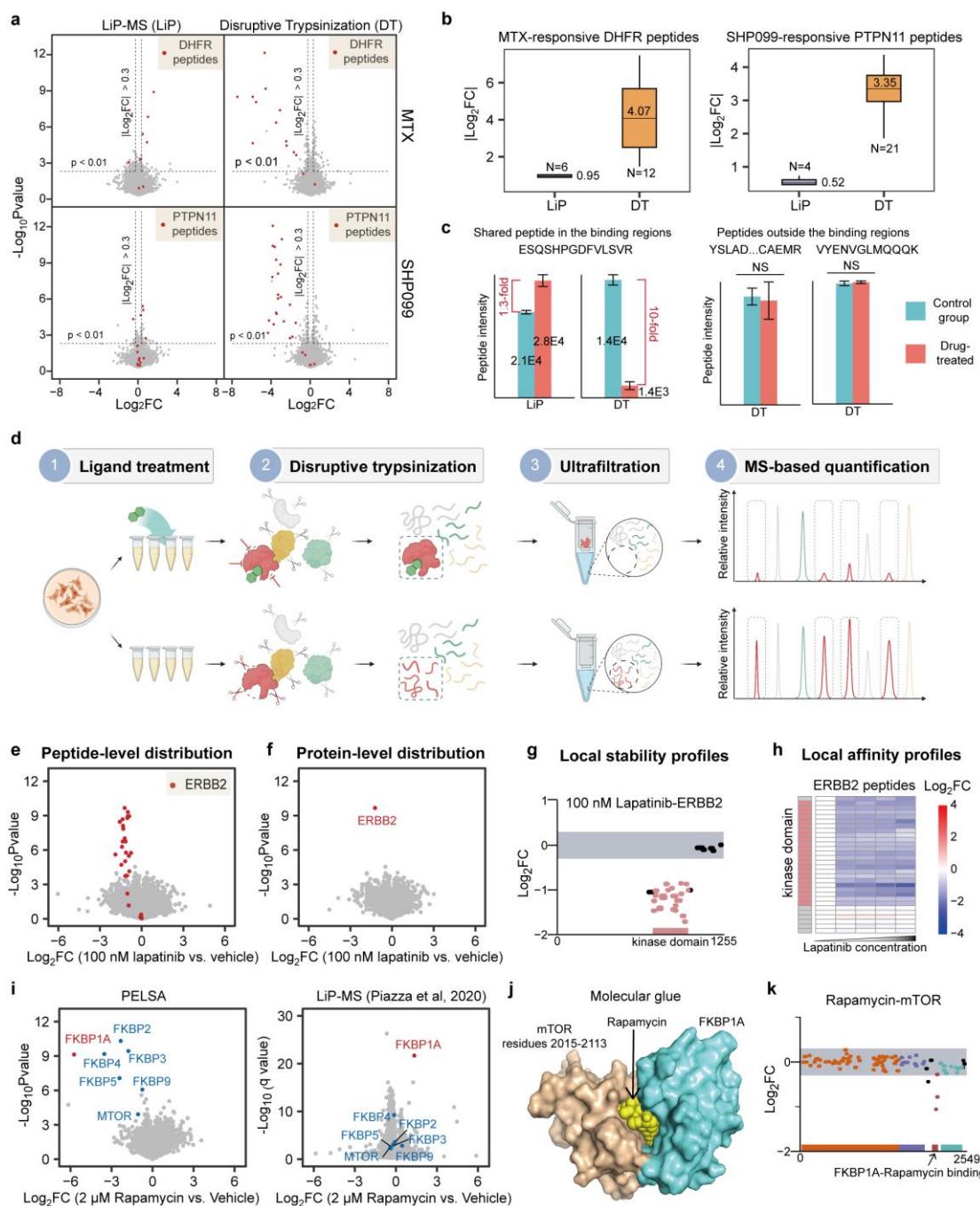
65. Chazin, W.J. Relating form and function of EF-hand calcium binding proteins. *Accounts of chemical research* **44**, 171-179 (2011).

66. Miller, J.M. & Enemark, E.J. Fundamental Characteristics of AAA+ Protein Family Structure and Function. *Archaea* **2016**, 9294307 (2016).

67. Shah, V.N. et al. Calcium-dependent regulation of the voltage-gated sodium channel hH1: intrinsic and extrinsic sensors use a common molecular switch. *Proceedings of the National Academy of Sciences* **103**, 3592-3597 (2006).

68. Woo, J.S. et al. Structural and functional insights into the B30. 2/SPRY domain. *The EMBO journal* **25**, 1353-1363 (2006).

722 **FIGURES**

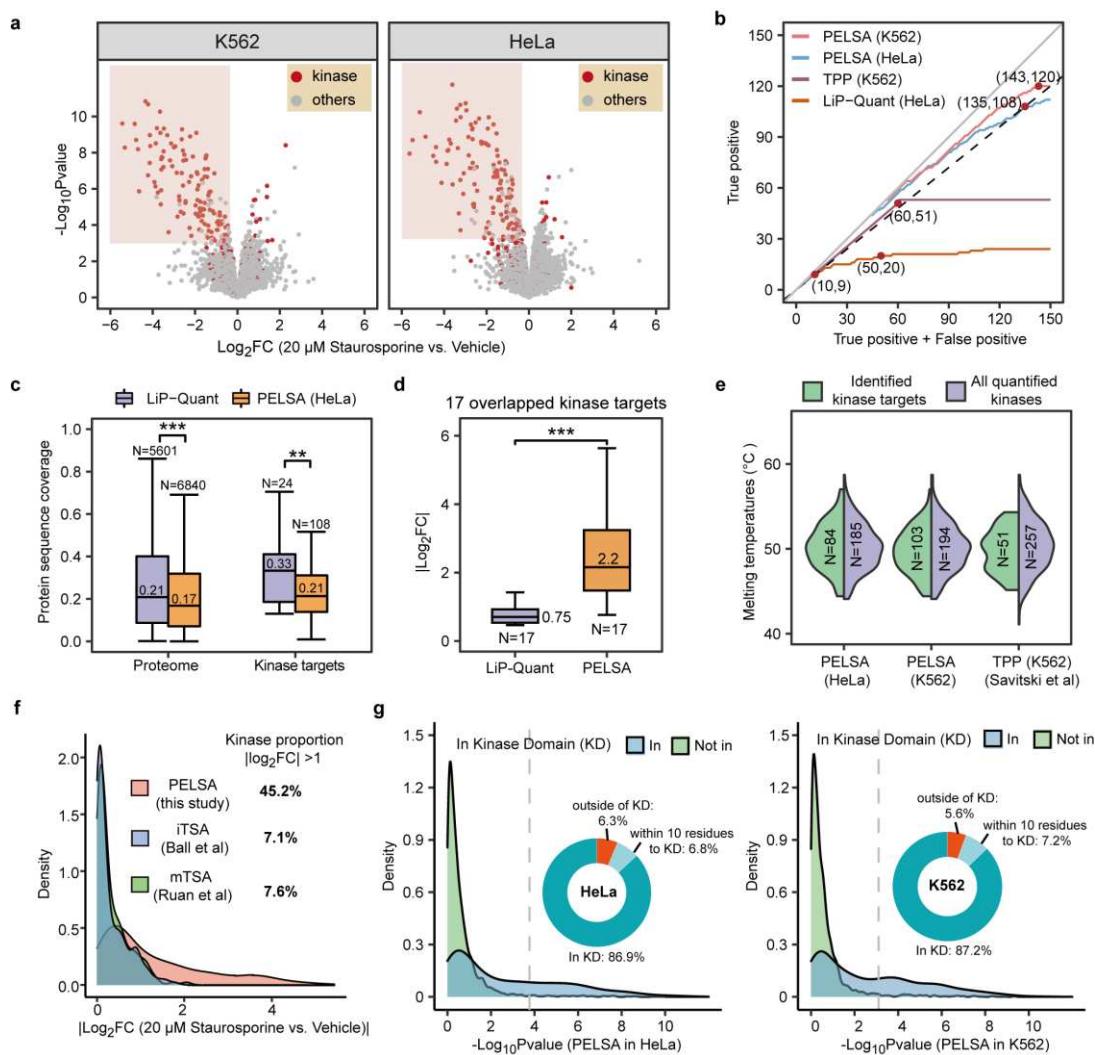


723

724 **Fig. 1 | Establishment of PELSA.** **a**, Volcano plot visualizations of all peptides
725 generated by LiP-MS (LiP) or Disruptive Trypsinization (DT) of HeLa lysates
726 exposed to 10 μ M methotrexate (MTX) or 10 μ M SHP099 (four lysate replicates per
727 experiment). **b**, Comparing readouts of the ligand-responsive target (LRT) peptides
728 generated by LiP-MS and disruptive trypsinization. Central line in the box shows the
729 median (labeled), box boundaries indicate the upper and lower interquartile range
730 (IQR), and whiskers correspond to most extreme values, or to 1.5-fold IQR if the
731 extreme values are above this cutoff. **c**, Left: the peptide shared in two digestion
732 schemes and from SHP099-binding domains, display amplified readout when using

733 disruptive trypsinization. Right: two peptides located outside the SHP099-binding
734 region remained unchanged by SHP099 treatment in disruptive trypsinization. Four
735 replicates (mean \pm S.D.). NS, not significant. **d**, Workflow of PELSA. **e**, Volcano plot
736 visualization of all peptides from a PELSA analysis of BT474 lysates exposed to 100
737 nM lapatinib. **f**, Volcano plot as in (e) but on the protein-level. **g**, Local stability
738 profiles to reveal ligand-binding regions. The upper and lower boundaries of the grey
739 shaded area represent \log_2 FCs of 0.3 and -0.3, respectively. **h**, Local affinity profiles
740 to reveal the local binding affinity of a ligand. Heat map representation of \log_2 peptide
741 fold changes of ERBB2 with increasing lapatinib concentrations (0 nM, 100 nM, 1
742 μ M, 10 μ M, and 100 μ M). **i**, Volcano plot visualizations of all proteins from a PELSA
743 analysis or a published LiP-MS analysis¹² of HeLa lysates exposed to 2 μ M
744 rapamycin. **j**, Complex structure of mTOR, rapamycin, and FKBP1A (PDB: 1FAP). **k**,
745 Local stability profiles of mTOR for 2 μ M rapamycin treatment.

746



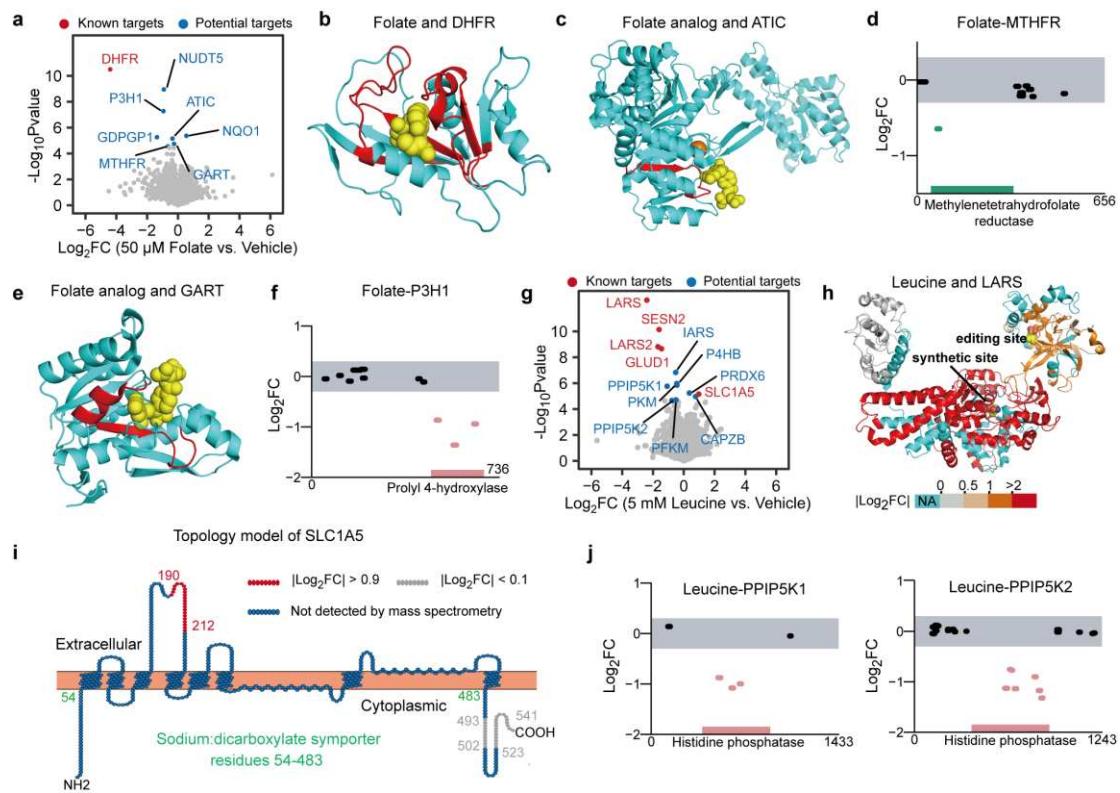
747

748 **Fig. 2 | Comparing target identification performance of PELSA with existing**
749 **modification-free methods. a, Volcano plot visualization of all proteins from PELSA**
750 **analyses of K562 (left) and HeLa (right) lysates exposed to 20 μM staurosporine. The**
751 **lower boundary of the red shadow denotes the threshold of $-\text{log}_{10}\text{Pvalue}$, above which**
752 **over 80% of the stabilized proteins ($\text{log}_2\text{FC} < 0$) are kinases. b, True positive rate**
753 **(TPR) evaluation for the selected assays in staurosporine target identification. The**
754 **labeled points represent the numbers of identified candidate targets and kinase targets**
755 **in each assay (TPR up to 80%). LiP-Quant is also labeled at the kinase target number**
756 **of 20 (TPR = 40%). The grey line (slope = 1) and black dashed line (slope = 0.8)**
757 **represent 100% and 80% of the candidate targets are kinase targets, respectively. c, d,**
758 **** $p < 0.01$ and *** $p < 0.001$, Wilcoxon signed-rank test; medians are labeled and**
759 **other settings are as Fig.1b. (c), Protein sequence coverages for the whole quantified**
760 **proteome (left) and identified kinase targets (right) in LiP-Quant HeLa and PELSA**
761 **HeLa analyses. (d), Fold changes of kinase targets that were identified by both LiP-**
762 **Quant (using TPR cutoff of 40%) and PELSA (HeLa). e, Comparing melting**
763 **temperatures (Tm) of identified kinase targets and all quantified kinases in the TPP**
764 **dataset and two PELSA datasets. Some PELSA kinase targets lack TPP-reported Tm**

765 values. **f**, Comparing the fold changes of kinases quantified in PELSA, iTSA, and
766 mTSA. **g**, Density plots showing $-\log_{10}P\text{value}$ distributions of peptides with tryptic
767 cleavage sites located in and outside the kinase domains for K562 and HeLa PELSA
768 analyses. The dashed lines indicate the significance cutoffs defined in **(a)**. The
769 doughnut charts show the location distributions of the kinase peptides that passed the
770 significance cutoffs.

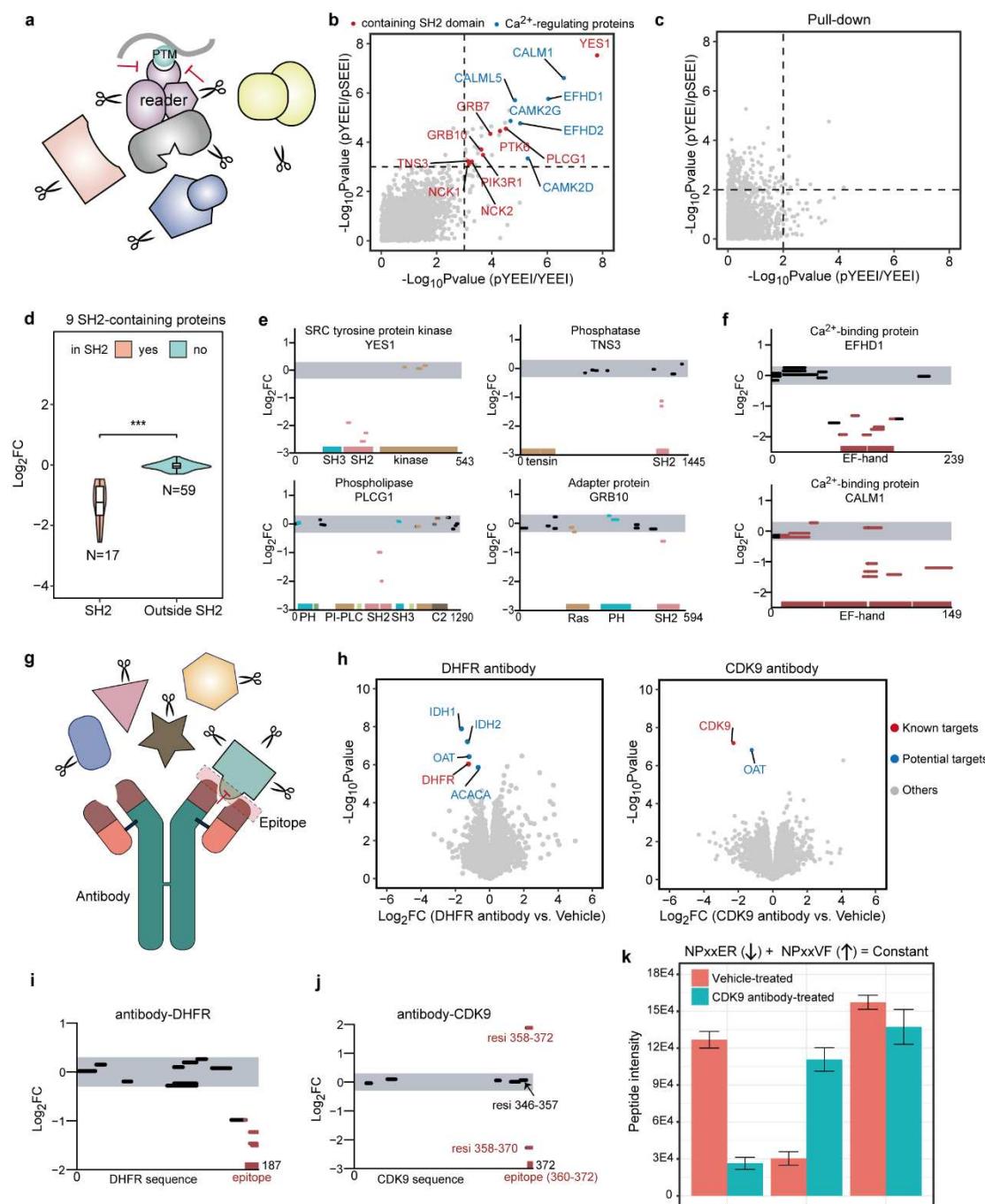
771 *Note:* Kinase targets refer to kinase proteins that are identified as staurosporine-
772 binding proteins; quantified kinases refer to all kinases in the dataset including kinase
773 proteins that are not identified as staurosporine-binding proteins. LiP-Quant, TPP,
774 iTSA, and mTSA datasets were retrieved from the literatures^{10, 12, 25, 27}.

775



776

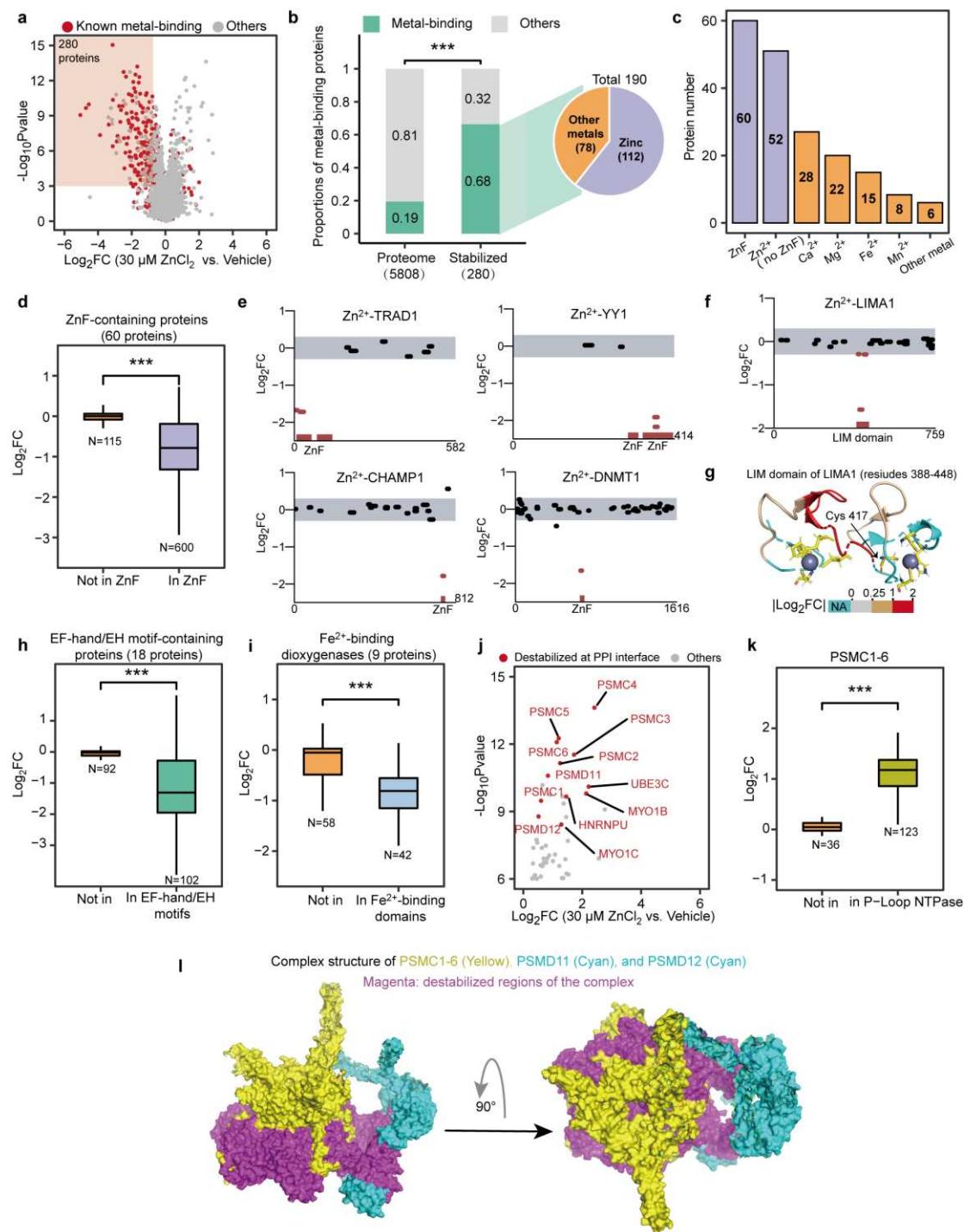
777 **Fig. 3 | Detecting weak metabolite-protein interactions.** **a**, Volcano plot
778 visualization of all proteins from a PELSA analysis of K562 lysates exposed to 50
779 μM folate. **b**, Complex structure of folate and DHFR generated by superposition of
780 human DHFR (PDB: 1BOZ) against *E.coli* DHFR-folate complex (PDB: 4EJ1).
781 Folate, yellow spheres; the top five peptides with the most profound stabilization
782 (Bayes t-test, $-\log_{10}\text{Pvalue} > 2$, ranked by $-\log_2\text{FC}$) are colored in red. **c**, Complex
783 structure of folate analog (yellow spheres) and ATIC (PDB: 1P4R). The peptide with
784 most profound stabilization is colored in red. **d**, Local stability profiles of MTHFR by
785 50 μM folate treatment. **e**, Complex structure of folate analog (yellow spheres) and
786 GART (PDB: 1RBY). The absolute $\log_2\text{FC}$ values of all quantified GART peptides
787 are < 0.5 , and thus the top two peptides with the lowest p value (Bayes t-test) are
788 colored in red. **f**, Local stability profiles of P3H1 by 50 μM folate treatment. **g**,
789 Volcano plot as in (a) but of analysis of K562 lysates exposed to 5 mM leucine. **h**,
790 Structure of LARS in complex of leucine (multicolor spheres) both in the editing site
791 and the synthetic site (PDB: 6KQY) with peptides colored based on their $\log_2\text{FC}$
792 values. **i**, Topology model of SLC1A5 generated by Protter⁶⁴. Protein sequences are
793 colored based on their $\log_2\text{FC}$ values. **j**, Local stability profiles of PPIP5K1 (left) and
794 PPIP5K2 (right) by 5 mM leucine treatment.



795

796 **Fig. 4 | Identifying recognition domains of a PTM and localizing epitopes of**
 797 **antigens. a, Schematic representation of PELSA to reveal the PTM-recognition**
 798 **domain. b, Scatter plot of protein -log₁₀Pvalues in PELSA (pYEEI/YEEI) and PELSA**
 799 **(pYEEI/pSEEI) (Methods). The dashed lines indicate the significance cutoff (-**
 800 **log₁₀Pvalues = 3.1). The proteins passing the significance cutoff are colored: SH2-**
 801 **containing proteins, red; Ca²⁺-regulating proteins, blue; others, grey. c, Scatter plot as**
 802 **in (b) but for the pulldown experiment (three lysate replicates). The dashed lines**
 803 **indicate a relaxed significance cutoff (-log₁₀Pvalues = 2). No SH2-domain containing**
 804 **proteins passed the significance cutoff. d, Log₂FC distributions of the peptides (from**
 805 **9 SH2-containing target proteins) that reside in and out of the SH2 domains. Violin**

806 plots represent relative densities and the settings of the inner boxplots are as Fig. 1b.
807 ***p < 0.001, Wilcoxon signed-rank test. **e and f**, Local stability profiles of SH2-
808 containing proteins from different protein families (**e**) and representative Ca²⁺-
809 regulating proteins (**f**) by pYEEI treatment. **g**, Schematic representation of PELSA to
810 reveal the epitope. **h**, Volcano plot visualization of all proteins from PELSA analyses
811 of HeLa lysates exposed to DHFR antibody (left) or CDK9 antibody (right). **i** and **j**,
812 Local stability profiles of DHFR and CDK9 by DHFR antibody and CDK9 antibody
813 treatment, respectively. **k**, Intensities of NPxxVF and NPxxER, and their sum. Four
814 replicates (mean ± S.D.).
815



816

817 **Fig. 5 | Characterization of Zn²⁺ proteome revealing the stabilized metal-binding**
 818 **regions and destabilized protein-protein interfaces.** **a**, Volcano plot visualization of

819 all proteins from a PELSA analysis of HeLa lysates exposed to 30 μM ZnCl₂. The

820 right boundary and lower boundary of the red shadow denote log₂FC of -0.5 and

821 -log₁₀Pvalue of 3, respectively. **b**, Proportions of metal-binding proteins in the whole

822 dataset and in the significantly stabilized subset. ***p < 0.001, Fisher's exact test.

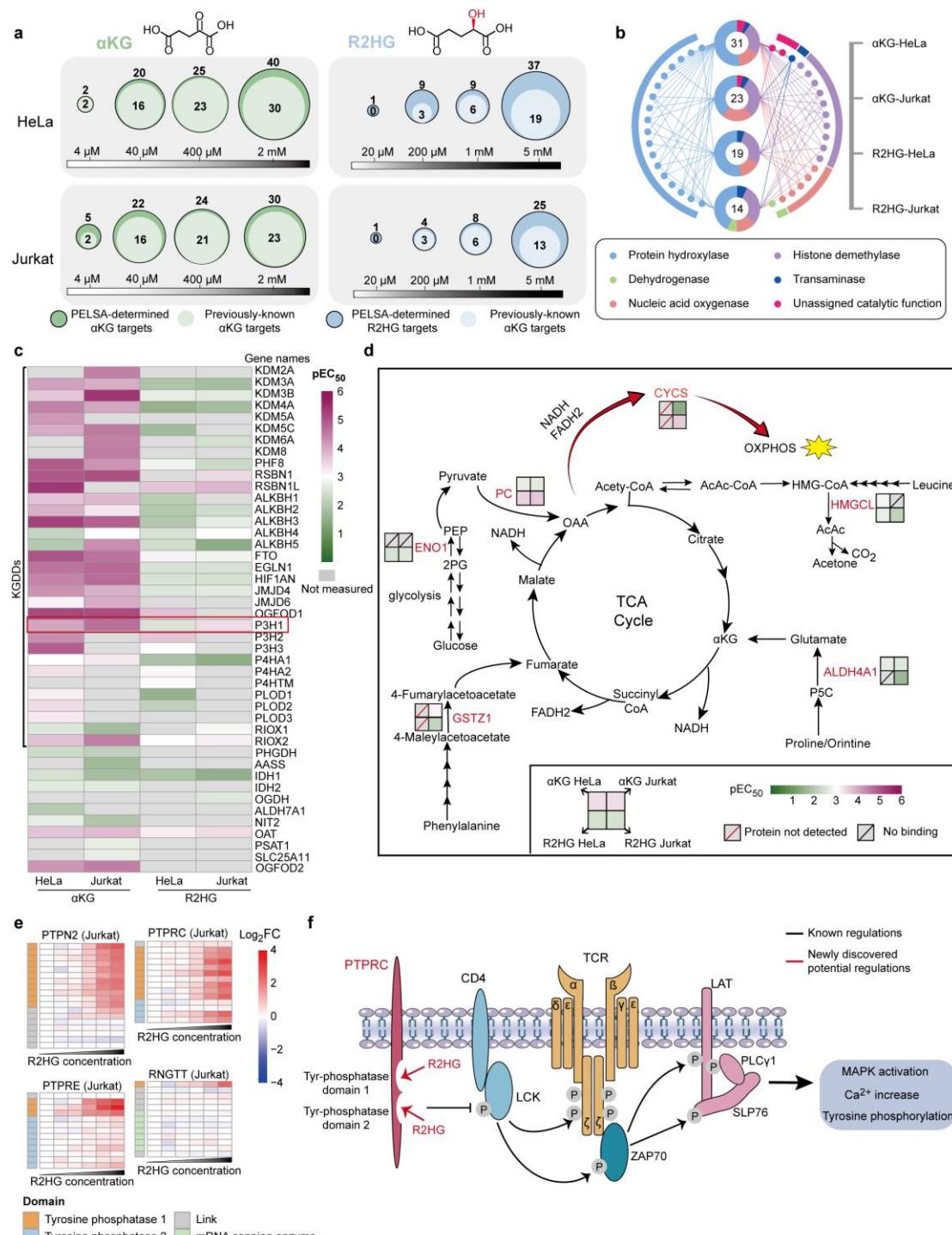
823 Pie-chart denotes the percentage of known Zn²⁺-binding proteins among all the

824 stabilized metal-binding proteins. **c**, Compositions of the metal-binding proteins that

825 were stabilized by 30 μM Zn²⁺ treatment. **d, h, i, and k**, Log₂FC distributions of

826 peptides that reside in and out of the indicated domains. ***p < 0.001, Wilcoxon
827 signed-rank test. **(h)**, EF-hand/EH motifs are known Ca^{2+} -binding motifs⁶⁵. **(k)**, P-
828 loop-NTPase domains are the binding surfaces of the adjacent members of PSMC
829 complex⁶⁶. **e**, Local stability profiles of representative ZnF-containing proteins. **f**,
830 Local stability profiles of LIMA1. **g**, LIM domain of LIMA1 (PDB: 2D8Y) with
831 peptides colored based on log₂FC values. Zn^{2+} -binding residues: yellow sticks; zinc
832 ions: dark-purple spheres. **j**, The zoom-in view of the volcano plot that displayed in
833 **(a)**. **l**, Surface representation of PSMC1-6, PSMD11, and PSMD12 complex (PDB:
834 5LN3) viewed from the lateral side with PSMC3 exposed (left) and viewed from the
835 top (right). This complex is destabilized at the interacting surfaces of its members
836 (colored in magenta).

837



838

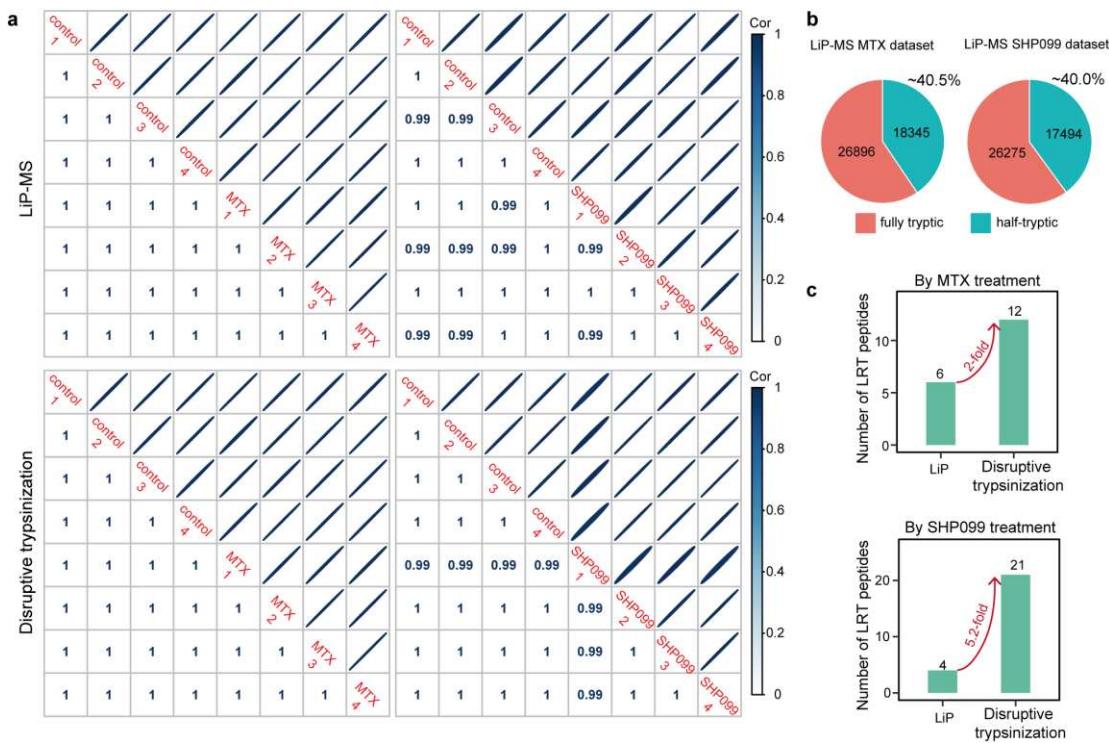
839 **Fig. 6 | Characterizing binding profiles of αKG and R2HG in two cell lines.** **a**,
840 Bubble plots displaying the numbers of αKG and R2HG targets identified by PELSA
841 (**Supplementary Discussion**). The inner bubble denotes previously-known αKG
842 targets; the outer denotes all candidate αKG/R2HG targets identified by PELSA. **b**,
843 The radiation diagram depicts categories of the previously-known αKG targets
844 identified in αKG-HeLa, αKG-Jurkat, R2HG-HeLa, and R2HG-Jurkat. The central
845 donut reflects the proportions of each protein category occupied in the annotated
846 PELSA analysis. Each node around the cycle denotes one protein. The linkage

847 between the node and the donut denotes the protein is identified as a target protein in
848 this PELSA analysis. The labeled number denotes the count of previously-known
849 α KG targets identified in each analysis (total count identified across all
850 concentrations). **c**, Heatmap displaying pEC₅₀ values of 44 previously-known α KG
851 targets toward α KG and R2HG (measured by PELSA in both HeLa and Jurkat cell
852 lysates). Grey cells in the heatmaps indicate no measurements. **d**, Schematics of
853 simplified glycolysis, TCA cycle, amino acid metabolism, and OXPHOS pathways.
854 The putative α KG and R2HG targets are marked in red with binding affinities
855 indicated. **e**, Local affinity profiles of four tyrosine-phosphatase-domain-containing
856 proteins for R2HG treatment in Jurkat cell lysates. **f**, PTPRC is an upstream regulator
857 of TCR signaling. R2HG destabilized PTPRC at its functional domains.

858

859

860

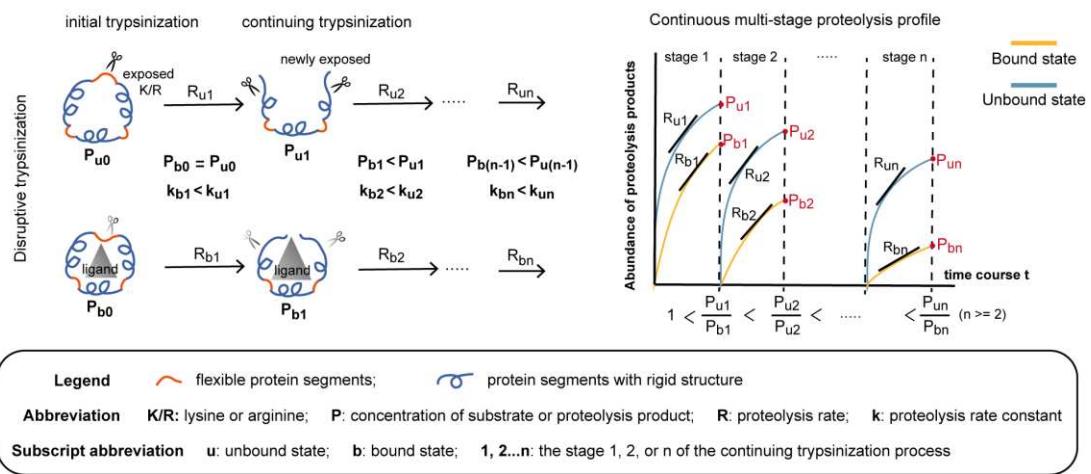


861

862 **Extended Data Fig. 1 | Data quality assessment of in-house performed LiP-MS**
 863 **experiments.**

864 **a**, Intensities of peptides generated by LiP-MS (top) or disruptive trypsinization
 865 (bottom) show excellent correlations across replicates. **b**, The proportions of half-
 866 tryptic peptides in our in-house-performed LiP-MS experiments (40.5% and 39.9%),
 867 agree well with that reported in the literature (*i.e.*, 40%)¹¹. **c**, Bar-plots displaying the
 868 numbers of ligand-responsive target (LRT) peptides (*i.e.*, target protein peptides that
 869 showed $|\log_2\text{FC}| > 0.3$ & $-\log_{10}\text{Pvalue} > 2$) in the LiP-MS datasets and disruptive
 870 trypsinization datasets.

871

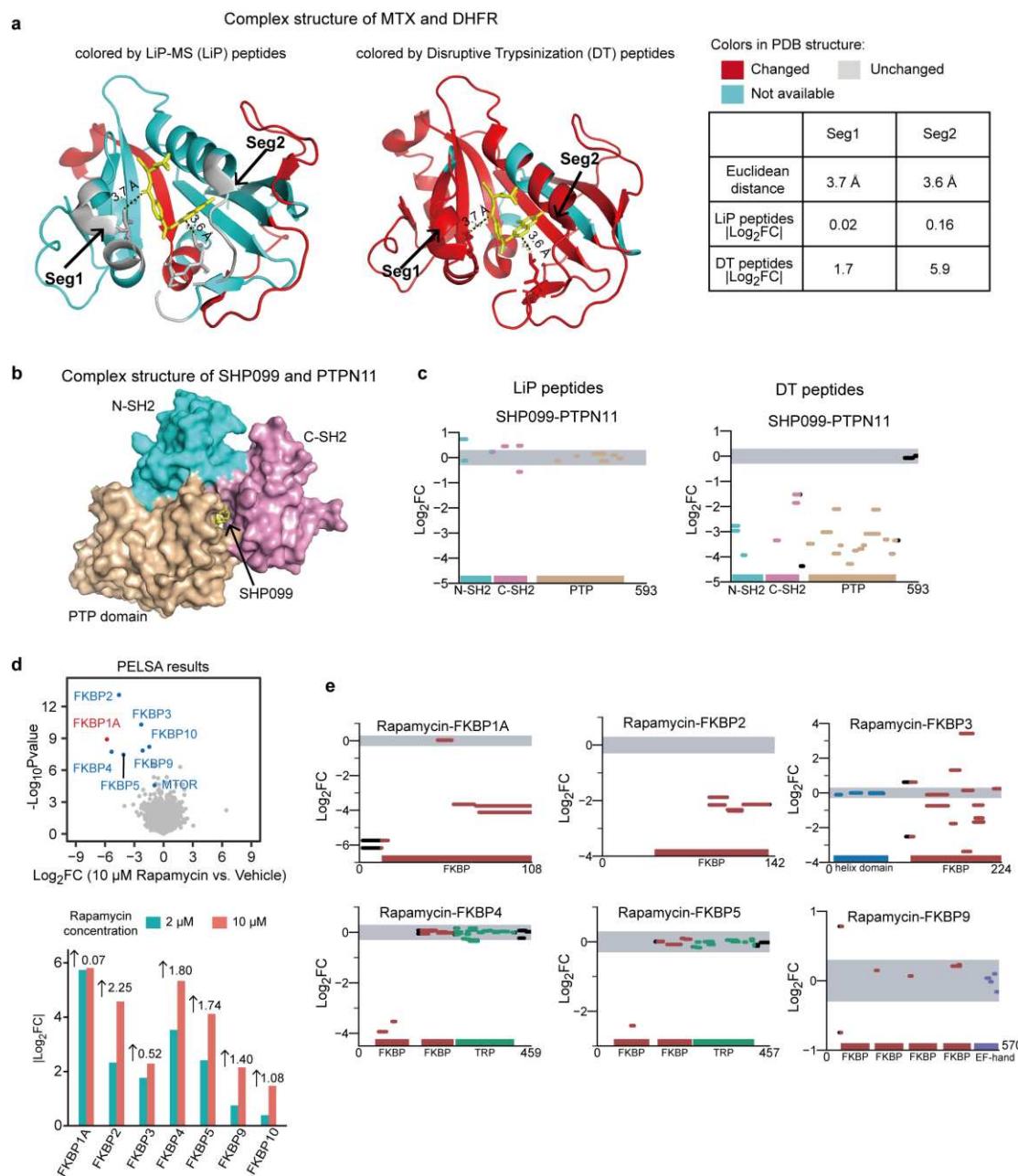


872

873 **Extended Data Fig. 2 | Possible mechanism for the amplified readout of protein**
 874 **local stability shifts in disruptive trypsinization**

875 The overall proteolysis process for LiP-MS can be clearly separated into two steps: an
 876 initial proteolysis by proteinase K (PK) and a later denaturation-assisted complete
 877 digestion by trypsin. In contrast, the disruptive trypsinization should be
 878 conceptualized as a continuous, multi-stage proteolysis process, which comprises a
 879 successive sequential ‘steps’ (*i.e.*, cleavage reactions) as each new trypsin-sensitive
 880 site is exposed. The initial proteolysis of both LiP-MS and disruptive trypsinization
 881 typically occurs at the flexible segments for their accessibility to the proteolytic sites
 882 of protease, and ligand binding will stabilize the flexible segments, thereby delaying
 883 the initial proteolysis ($k_{b1} < k_{u1}$). In the LiP-MS procedure, the initial proteolysis is
 884 performed with a broad-specificity protease, PK, to generate large protein segments.
 885 These large protein segments in both the ligand-treated and control samples are then
 886 subjected to indiscriminate denaturation, followed by complete indiscriminate
 887 trypsinization. As such, only the proteolysis rate in the initial proteolysis is altered
 888 upon ligand binding. In disruptive trypsinization, trypsin is used for the whole multi-
 889 stage proteolysis to generate small peptides (shown in the figure). At the initial stage,
 890 only the flexible segments that contain lysine (K) or arginine (R) are cleaved due to
 891 the substrate specificity of trypsin, which results in cleaved proteins. The cleaved
 892 regions of the cleaved proteins are unstable, so they unfold and expose more K or R to
 893 facilitate continuing trypsinization. The cleaved proteins generated under the bound
 894 state are likely to retain the bound ligand for their relatively intact structures. The
 895 bound ligand could again delay the continuing trypsinization ($k_{b2} < k_{u2}$). Moreover,
 896 due to the delayed initial trypsinization, the bound cleaved proteins also have a lower
 897 concentration than the unbound form ($P_{b1} < P_{u1}$). According to Michaelis-Menten
 898 equation, at low substrate concentration (which is likely the case for individual
 899 proteins in the proteome sample), the digestion reaction can be regarded as a first-
 900 order reaction: proteolysis rate (R_2) = substrate concentration (P_1) * rate constant (k_2).
 901 With the combination of ligand protection ($k_{b2} < k_{u2}$) and the smaller substrate
 902 concentration ($P_{b1} < P_{u1}$), the rate difference between bound and unbound states in

903 stage 2 digestion is larger than that in stage 1 digestion, thus resulting in an amplified
904 abundance difference of proteolysis products ($P_{u2}/P_{b2} > P_{u1}/P_{b1} > 1$). This
905 amplification could last until the bound ligand is dissociated from the cleaved proteins.
906 The substrate of stage n trypsinization is the proteolysis product of stage (n-1). The
907 slope of the proteolysis profile is defined by the proteolysis rate, R.
908
909



910

911 Extended Data Fig. 3 | The amplified readouts in PELSA facilitate the
912 localization of ligand-binding regions and the identification of ligand-binding
913 proteins with low target occupancy. a, Complex structure of DHFR-MTX (PDB:
914 1U72) with protein segments colored based on the quantification results of their
915 corresponding peptides generated by two-step digestion in LiP-MS (left) or by
916 disruptive trypsinization in PELSA (middle): changed (-log₁₀Pvalue > 2 and |log₂FC| >
917 0.3), red; unchanged (|log₂FC| < 0.3), grey; not available (not quantified or |log₂FC| >
918 0.3 but -log₁₀Pvalue < 2), cyan. The drug ligand MTX is shown as sticks (yellow).
919 Two labeled segments at a distance of less than 4 Å from MTX displayed large fold
920 changes in PELSA but remained unchanged in LiP-MS; Euclidean distance in the
921 table is the minimal distance between the ligand atoms and the peptide atoms of the
922 corresponding protein segment. b, Complex structure of PTPN11 and SHP099

923 (surface representation, PDB: 5EHR). PTPN11 is composed of N-SH2, C-SH2, and
924 PTP domains; SHP099 is an allosteric inhibitor of PTPN11, known to bind at the
925 central tunnel formed at the interface of the three domains¹⁹. **c**, Abundance changes of
926 PTPN11 peptides generated by LiP-MS (left) or disruptive trypsinization (right) under
927 10 μ M SHP099 treatment. The x axis represents the protein sequence from N to C-
928 terminus, with protein length annotated; the y axis shows the \log_2 fold changes in
929 abundance of the peptides (\log_2 FC). The upper and lower boundaries of the grey
930 shaded area represent \log_2 FCs of 0.3 and -0.3, respectively. In LiP-MS, a number of
931 peptides remained unchanged even though they are located in the domains associated
932 with allosteric regulation of SHP099. By contrast, all 21 disruptive trypsinization
933 peptides that are positioned within the domains associated with allosteric regulation of
934 SHP099, displayed a statistically significant fold change ($-\log_{10}Pvalue > 2$ and
935 $|\log_2FC| > 0.3$), whereas the 2 unchanged peptides are from the C-terminal tail of
936 PTPN11, which do not participate in SHP099 binding. **d**, Top: volcano plot
937 visualization of all proteins from a PELSA analysis of HeLa cell lysates exposed to 10
938 μ M rapamycin; Bottom: comparing magnitude of fold changes (\log_2 transformed) of
939 seven FKBP family proteins under 2 μ M rapamycin and 10 μ M rapamycin treatment.
940 When increasing concentration of rapamycin to 10 μ M, the fold change of FKBP1A
941 remained relatively constant, while five of the remaining six FKBP family proteins
942 showed a more than 2-fold increase in the magnitudes of fold changes (the sixth
943 showed 1.44-fold increase; the labeled values represent \log_2 transformed increased
944 values). This result indicates the low target occupancy of the remaining six FKBP
945 family proteins under 2 μ M rapamycin treatment. **e**, Local stability profiles of FKBP
946 family proteins under 2 μ M rapamycin treatment. Only peptides from FKBP domains
947 display altered abundance.

948

949

950

951

952

953

954

955

956

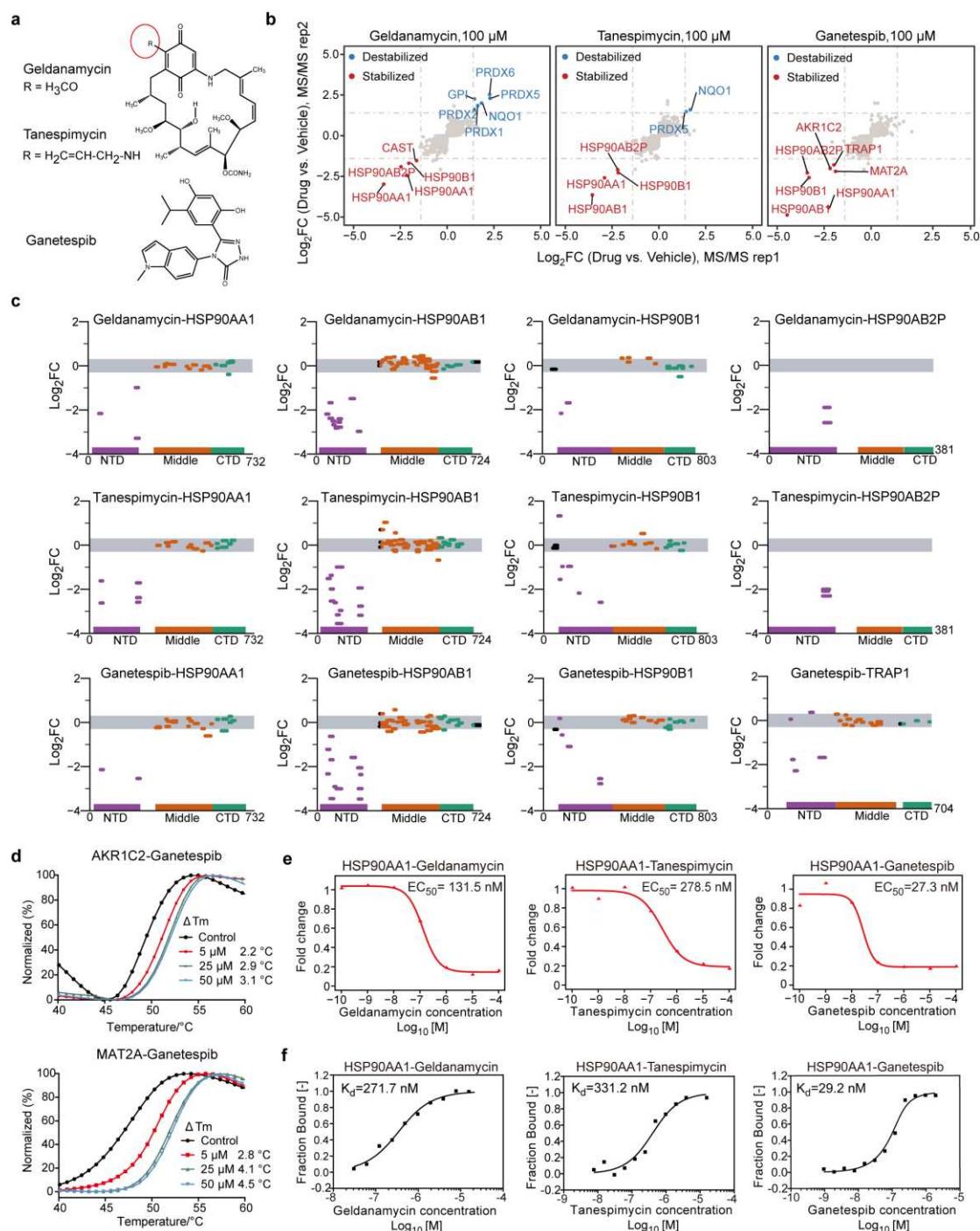
957

958

959

960

961

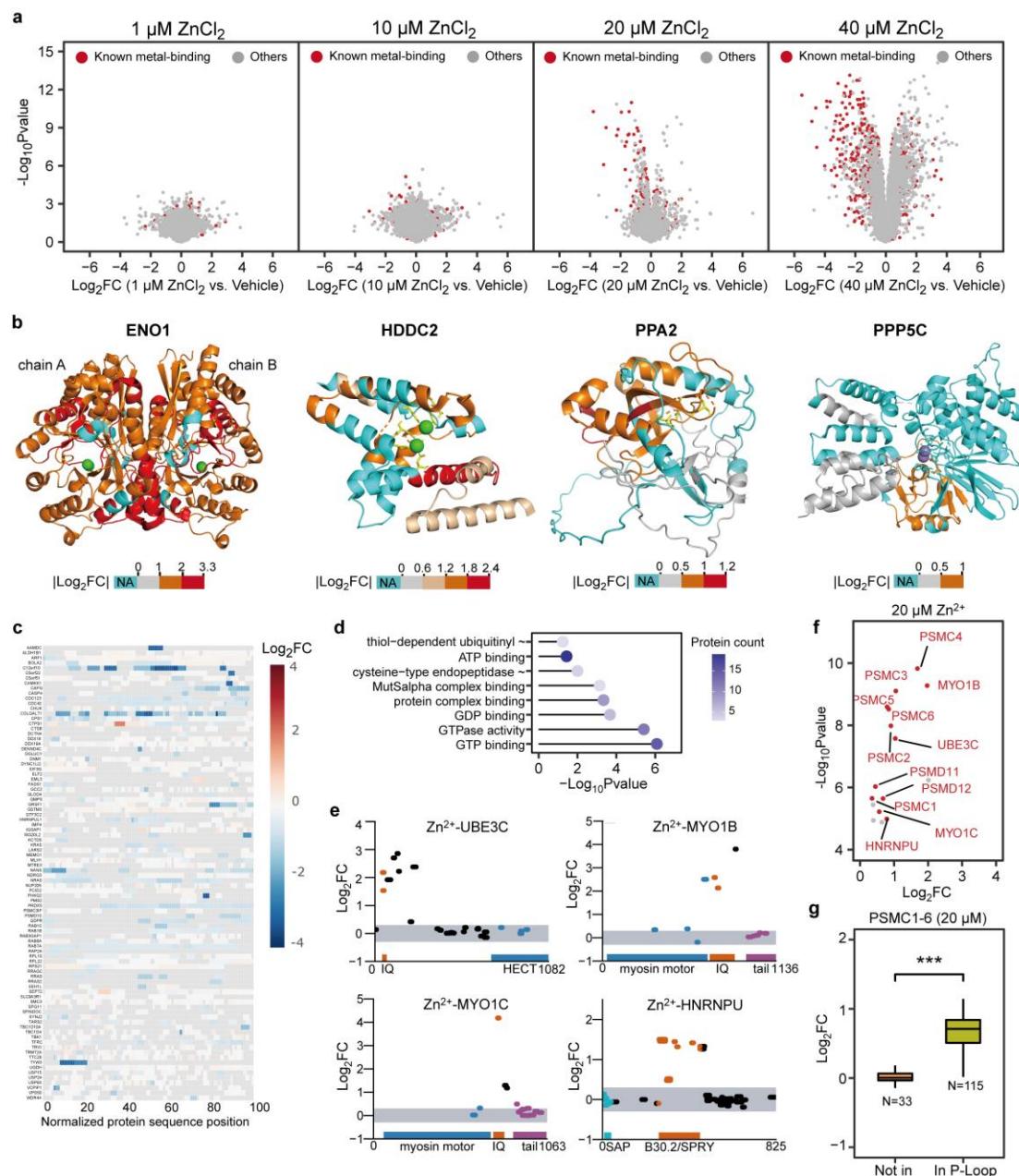


962

963 **Extended Data Fig. 4 | PELSA couples with dimethyl labeling quantification for**
 964 **reliable target protein identification, precise binding region localization, and**
 965 **accurate binding affinity determination. a, Structures of three HSP90 inhibitors**
 966 **used in this study. The red cycle indicates the structural difference between**
 967 **geldanamycin and tanespimycin. b, Scatter plots of protein log₂ fold changes**
 968 **(Supplementary Discussion) in HeLa cell lysates treated with three HSP90 inhibitors**
 969 **in two MS/MS analyses. Proteins with |log₂FC| > 1.4 are colored as indicated in the**
 970 **legend. c, Local stability profiles of HSP90 family proteins under 100 μ M**
 971 **geldanamycin (top), 100 μ M tanespimycin (middle), and 100 μ M ganetespib (bottom)**

972 treatment. NTD refers to N-terminal ATP binding domain; CTD refers to C-terminal
973 domain. **d**, Protein melting curves of purified recombinant AKR1C2 (top) and
974 MAT2A (bottom) after incubation with different concentrations of ganetespib. **e**,
975 PELSA-determined dose-response curves for HSP90AA1 in HeLa cell lysates
976 incubated with three HSP90 inhibitors at different concentrations. **f**, Dose-response
977 curves as in (e) but measured by microscale thermophoresis assays using purified
978 HSP90AA1.

979



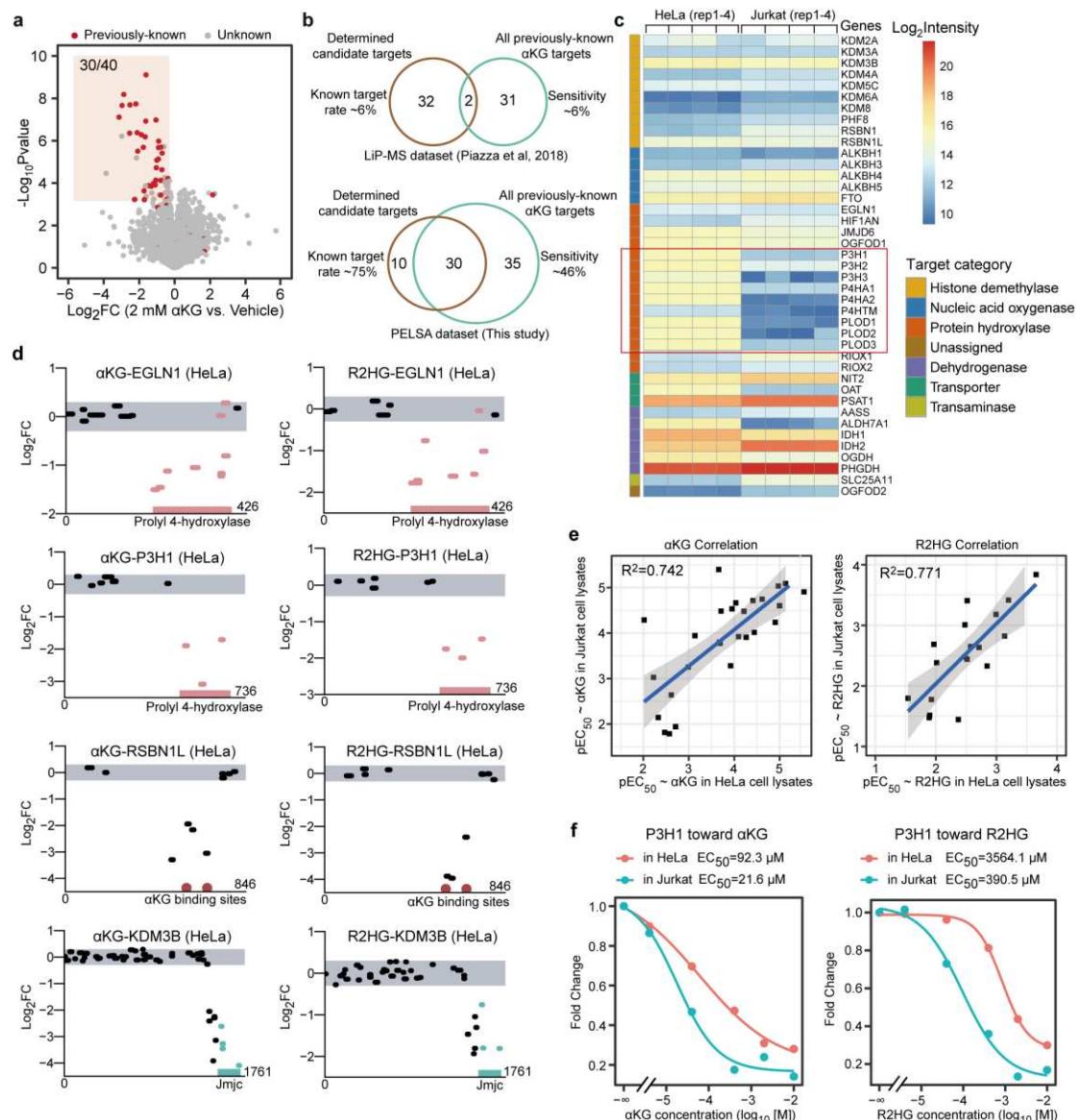
980

981 **Extended Data Fig. 5 | Characterization of the zinc proteome.** **a**, Volcano plot visualizations of all proteins from PELSA analyses of HeLa lysates exposed to 1 μM , 10 μM , 20 μM , or 40 μM ZnCl_2 (four lysate replicates). Uniprot-annotated known metal-binding proteins are highlighted in red. The Zn^{2+} concentrations used for further analysis are 20 μM and 30 μM (Supplementary Discussion). **b**, Representative Mg^{2+} -binding proteins that were stabilized by 30 μM Zn^{2+} . From left to right: ENO1 homodimer in complex with Mg^{2+} (PDB: 2PSN), HDDC2 in complex with Mg^{2+} (PDB: 4DMB), PPA2 (AlphaFold: AF-Q9H2U2-F1-mod), and PPP5C in complex of Mn^{2+} (PDB: 1WAO). Protein segments are colored based on log_2FC values as indicated in the legend. NA denotes no detection (cyan). The magnesium and manganese ions are represented as green and dark-blue spheres, respectively. The Mg^{2+} -binding residues are shown as yellow sticks. Mg^{2+} acts as a dimer stabilizer for

993 enolases²¹. Therefore, global stabilization was discovered for ENO1, ENO2, and
994 ENO3 (see also **Supplementary Table 6**). For HDHD2, PPA2 and PP5C, the Zn²⁺-
995 induced stabilization mainly occurs at Mg²⁺-binding regions. **c**, Overview of the local
996 stability profiles of the 90 Zn²⁺-stabilized proteins that were not categorized as metal
997 binding. Each row represents an individual protein with its gene name labeled on the
998 left. Protein sequence lengths are normalized to 100. Protein segments are colored in a
999 heatmap color mode based on their log₂FC values (not quantified by PELSA, grey). **d**,
1000 Dot plot showing the protein counts and p values (Fisher's exact test) of the molecular
1001 functions enriched among the 90 Zn²⁺-stabilized proteins that are not categorized as
1002 metal binding. **e**, Three IQ-motif-containing proteins (UBE3C, MYO1C, and MYO1B)
1003 were destabilized at or around IQ motifs by 30 μM Zn²⁺ treatment. IQ motifs are
1004 interacting surfaces of EF motifs⁶⁷ which are observed stabilized by Zn²⁺ treatment. A
1005 B30.2/SPRY-domain-containing protein HNRNPU was destabilized at B30.2/SPRY-
1006 domain, which functions as a protein-interacting module in many proteins⁶⁸. **f and g**,
1007 PELSA analysis of HeLa cell lysates treated with 20 μM Zn²⁺ (four lysate replicates).
1008 **f**, Volcano plot visualization of the top 16 most significantly destabilized proteins
1009 (log₂FC > 0, ranked by -log₁₀Pvalue, Bayes t-test). The 12 proteins destabilized at
1010 known protein-protein interaction interfaces are colored and labeled in red. **g**,
1011 Boxplots displaying the distributions of log₂ fold changes of PSMC1-6 peptides
1012 (grouped by within and outside the P-Loop-NTPase motifs). ***p < 0.001, Wilcox
1013 signed rank test.

1014

1015



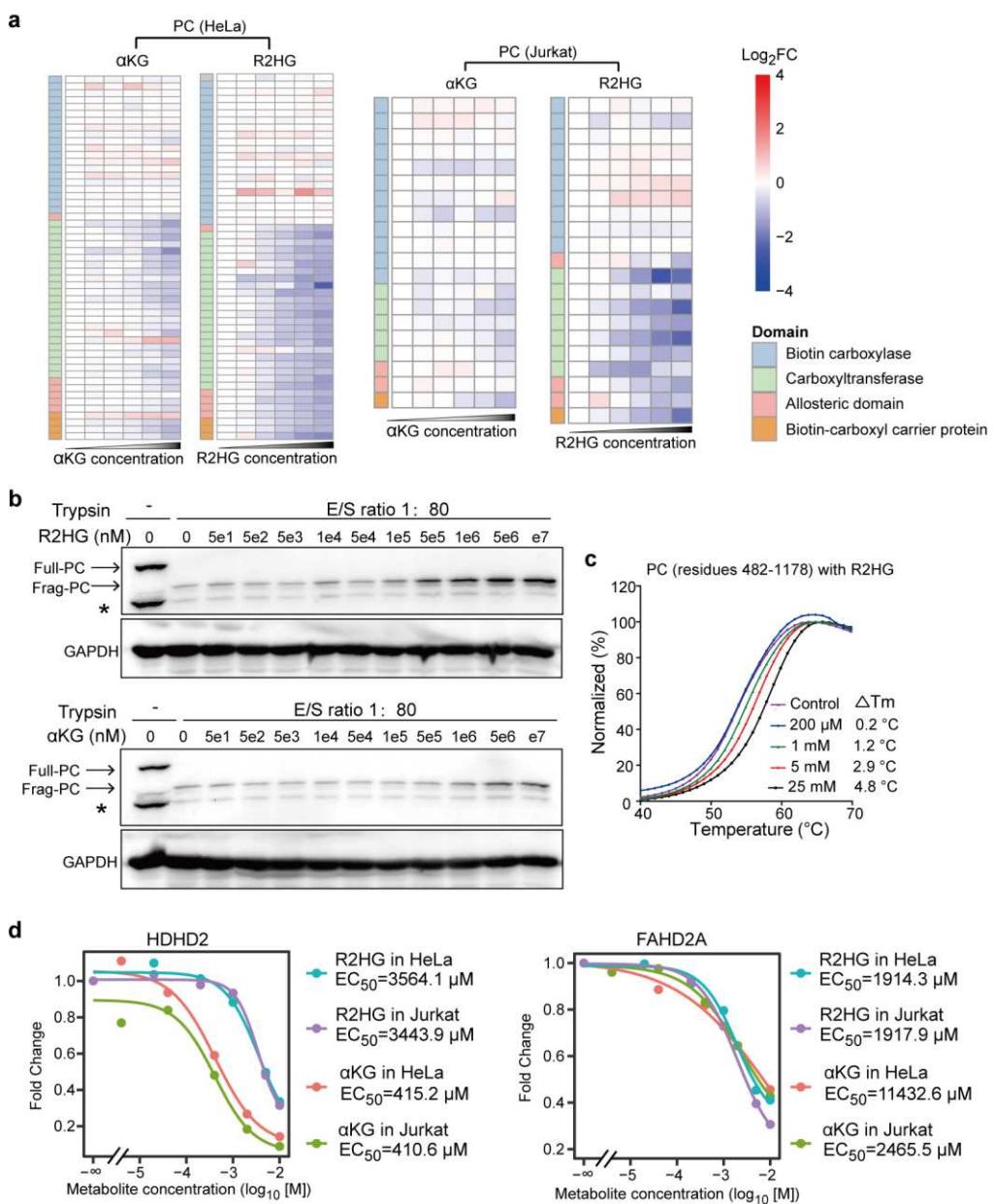
1016

1017 **Extended Data Fig. 6 | Characterization of the previously-known αKG and**
 1018 **R2HG target proteins identified by PELSA. a, Volcano plot visualization of all**
 1019 **proteins from a PELSA analysis of HeLa cell lysates exposed to 2 mM αKG (four**
 1020 **lysate replicates). The previously-known αKG target proteins are marked in red. The**
 1021 **left boundary and lower boundary of the red shadow denote log₂FC of -0.5 and -**
 1022 **log₁₀Pvalue of 3.4, respectively. Among the 40 candidate target proteins, 30 are**
 1023 **previously-known αKG target proteins. b, Venn plots showing the numbers of**
 1024 **candidate αKG target proteins determined by LiP-MS or PELSA (brown cycle)**
 1025 **and all previously-known αKG target proteins included in the LiP-MS or PELSA dataset**
 1026 **(green cycle)⁵². Known target rate denotes the percentage of previously-known αKG**
 1027 **target proteins among all determined candidate αKG target proteins; sensitivity**
 1028 **denotes the percentage of previously-known αKG target proteins that were**
 1029 **determined as candidate αKG target proteins (true positive / true positive + false**
 1030 **negative). c, Comparing protein abundance of the previously-known αKG target**
 1031 **proteins between HeLa cells and Jurkat cells (four lysate replicates). d, Local stability**

1032 profiles of representative previously-known α KG targets in HeLa cell lysates by 10
1033 mM α KG treatment (left) and 10 mM R2HG treatment (right). **e**, Pearson correlation
1034 between pEC₅₀ values determined in PELSA analyses of HeLa and Jurkat cell lysates.
1035 Top, α KG toward previously-known α KG target proteins; Bottom, R2HG toward
1036 previously-known α KG target proteins. **f**, Dose-response curves of P3H1 measured by
1037 PELSA in HeLa and Jurkat cell lysates toward α KG and R2HG.

1038

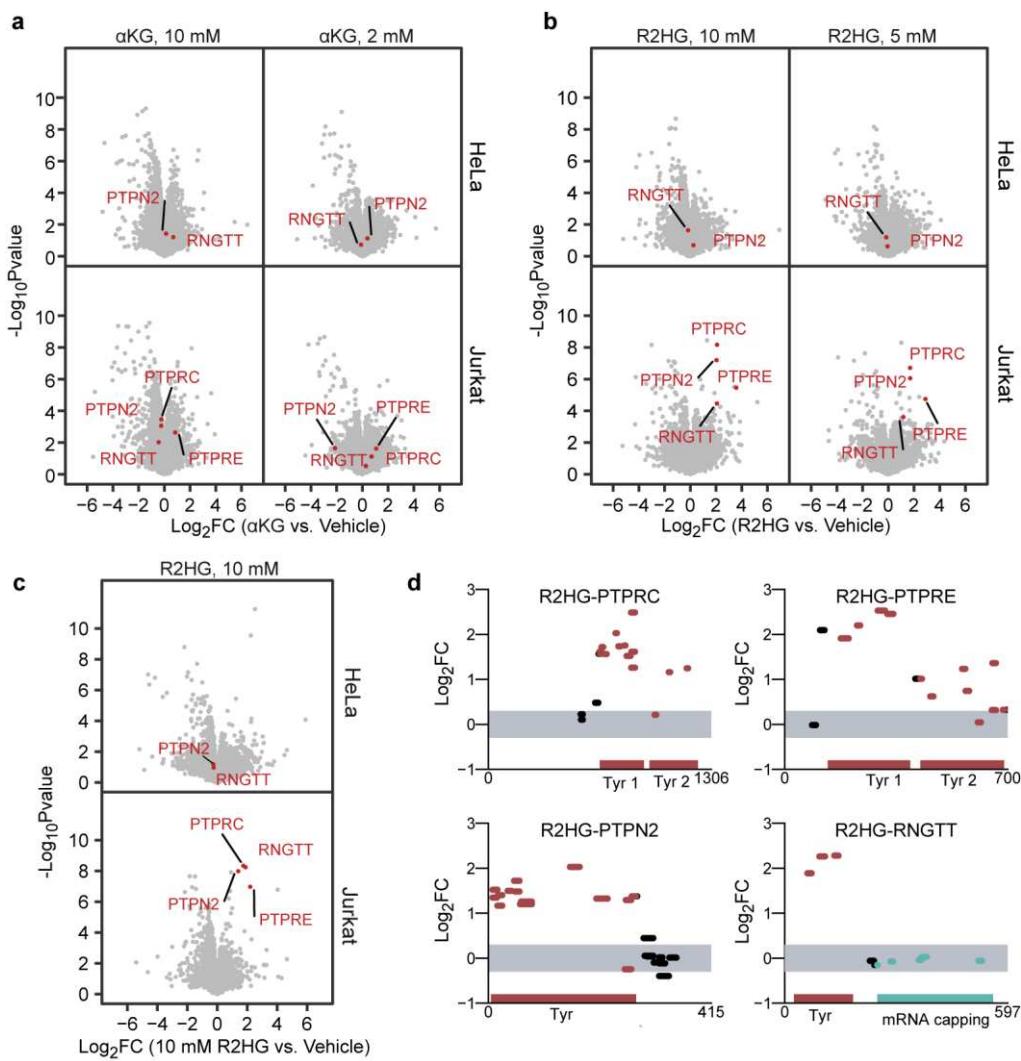
1039



1040

1041 **Extended Data Fig. 7 | Characterization of the previously-unknown αKG and**
 1042 **R2HG target proteins. a, Comparing local affinity profiles of PC toward αKG (left)**
 1043 **and R2HG (right) in the HeLa and Jurkat cell lysates. b, Western-blot readout**
 1044 **confirms the higher affinity of PC toward R2HG than αKG. c, Protein melting curves**
 1045 **for the purified recombinant PC segment (residues 482-1178) under different**
 1046 **concentrations of R2HG. d, Binding affinities of HDHD2 (left) and FAHD2A (right)**
 1047 **toward αKG and R2HG in HeLa and Jurkat cell lysates. HDHD2 and FAHD2A are**
 1048 **two proteins without known functions.**

1049



1050

1051 **Extended Data Fig. 8 | Characterization of four tyrosine-phosphatase-domain-**
1052 **containing proteins identified by PELSA.** **a**, Volcano plot visualizations of all
1053 proteins from PELSA analyses of HeLa (top) and Jurkat (bottom) cell lysates exposed
1054 to 10 mM (left) and 2 mM (right) αKG (four lysate replicates). Four tyrosine-protein
1055 phosphatase domain-containing proteins (PTPRC, PTPN2, PTPRE, and RNGTT) stay
1056 unchanged by either 10 mM or 2 mM αKG treatment. **b**, Volcano plot visualizations
1057 as in (a), but for 10 mM (left) and 5 mM (right) R2HG treatment. PTPRC, PTPN2,
1058 PTPRE, and RNGTT are only destabilized by R2HG in Jurkat cell lysates. **c**, A
1059 biological replicate of PELSA analysis on HeLa and Jurkat cell lysates treated with 10
1060 mM R2HG confirmed the R2HG-induced Jurkat-specific destabilizations of PTPRC,
1061 PTPN2, PTPRE, and RNGTT. Results represent four lysate replicates per PELSA
1062 analysis. **d**, A biological replicate of PELSA R2HG analysis in Jurkat cell lysates
1063 confirmed that R2HG-induced destabilizations of PTPRC, PTPN2, PTPRE, and
1064 RNGTT occur at their Tyr domains. Tyr is an abbreviation of protein tyrosine
1065 phosphatase domain.

1066