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ABSTRACT

While tremendous progress has been made in chemical proteomics for identifying
protein-ligand interactions, it remains challenging for proteome-wide
identification of ligand-binding regions without modifying the ligands. Here, we
discovered that “disruptive trypsinization” amplifies the readout of ligand-induced
protein local stability shifts, and explored this notion in developing “peptide-
centric local stability assay” (PELSA), a modification-free approach which
achieves unprecedented sensitivity in proteome-wide target identification and
binding-region determination. We demonstrate the versatility of PELSA by
investigating the interactions across various biological contexts including drug-
target interactions, metabolism, epitope mapping, metal proteomics, and post-
translational modification recognition. A PELSA study of the oncometabolite
R2HG revealed functional insights about its targets and pathogenic processes in
both cancer and immune cells. Thus, beyond offering users unprecedented
sensitivity for characterizing diverse target-ligand interactions, PELSA supports

informative screening and hypothesis generation studies throughout life science.

INTRODUCTION

The biochemical functions of proteins invariably involve interactions with ligands of
some type, which act as enzyme substrates or inhibitors, signaling molecules,
allosteric modulators, structural anchors, etc. Monitoring protein-ligand interactions is
thus essential for comprehending various aspects of life science, including drug
mechanisms of action, regulatory processes in cellular metabolism and signaling, and
the functions of uncharacterized proteins' 2. Additionally, knowledge of the ligand-
binding regions holds immense value for structure-based drug design® and biological

hypothesis generation®.

Modification-based methods which rely on chemical modifications of the ligands
to capture ligand-binding proteins and binding regions> ® require extensive chemical
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synthesis and may be not applicable for ligands that lack suitable sites for chemical
modification’. Previously reported modification-free methods®, including CEllular
Thermal Shift Assay (CETSA)® and Thermal Proteome Profiling (TPP)' bypass the
need of ligand modification but do not support the identification of specific ligand-
binding regions in target proteins. Paola et al. developed LiP-MS (limited proteolysis
coupled with mass spectrometry)!!, which can identify ligand-binding proteins and
binding regions in the cell lysates of microbial organisms. Despite the advancements
brought by LiP-MS and the subsequently developed LiP-Quant'? (a dose-response
version of LiP-MS tailored for complex human cell lysates), their capacity for target

identification remains limited'?.

Here, we propose disruptive trypsinization to directly generate MS-detectable
peptides from native proteins to represent protein local stability. This digestion
scheme in couple with a simple separation procedure largely reduces the complexity
of peptide samples and, crucially, amplifies the readout of ligand-induced protein
local stability shifts. Based on this observation, we established a method we term
PEptide-centric Local Stability Assay (PELSA) that enables sensitive identification of
target proteins while also preserving extensive binding-region information. We
demonstrate that PELSA achieves unprecedented sensitivity in revealing ligand-
binding proteins through extensive comparisons against alternative methods. For
example, PELSA with one drug dose and one digesting condition identified 12-fold
more kinase targets for a pan-kinase inhibitor than LiP-Quant using seven drug
doses'?, and 2.4-fold more targets than TPP using ten temperatures'®. We further
demonstrate the wide application scope and excellent performance of PELSA in
studies of drug promiscuity, molecular glue, epitopes, recognition domains for post-

translational modifications, metal proteomics, and metabolite sensing and signaling.

RESULTS
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76  Disruptive trypsinization amplifies the readout of ligand-induced protein local

77  stability shifts

78 Binding with a ligand can increase the stability of the ligand-binding region of a
79  protein'® !4, The stability of a protein can be measured by its protease susceptibility'>:
80 !¢, Therefore, when native proteins are partially digested into small peptides, the
81 abundance of every individual peptide should represent a measurement of the stability
82  of the region in which it is located. We speculate these directly generated peptides
83  could be used for investigating ligand-induced protein local stability shifts. Because
84  these small peptides can be easily separated from the undigested large counterparts
85 (e.g., through differences in molecular weight), the complexity of the resulted peptide
86  mixture will be largely reduced (compared to LiP-MS'! 12, a two-step digestion
87  scheme for ligand-binding protein identification), which could enable detection of a

88  rich array of peptides that are informative regarding ligand binding.

89 Pursuing this, we used trypsinization with a high E/S ratio (enzyme/substrate,
90 wt/wt) for a short time (i.e., 1 min) to partially digest native proteins into small
91 peptides. We used trypsin because tryptic peptides are optimal for shotgun proteomics
92  analysis'’, and used a high E/S ratio to enable generation of a large number of small
93 tryptic peptides. We term this digestion scheme as “disruptive trypsinization”, as
94  trypsinization also functions here as a denaturant to destroy the protein structures to
95 facilitate small peptide generation. The generated tryptic peptides are subsequently
96 enriched by removing large, partially digested protein segments through a filter unit,

97 followed by proteomics analysis.

98 To test if our procedure could identify more peptides that are informative
99 regarding ligand binding than existing LiP-MS methods, we worked with HeLa cell
100 lysates and two well-studied drugs: Methotrexate (MTX) targeting DHFR'® and
101  SHPO099 targeting PTPN11'°. The comparison was performed between our procedure
102  with an E/S ratio of 1:2 (trypsin: substrate, wt/wt) and the LiP-MS approach with an

103  initial brief digestion at an E/S ratio of 1:100 (proteinase K: substrate, wt/wt)
4
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104  followed by complete trypsin digestion under denaturing conditions'?. Note that the
105 initial data quality assessment confirmed the proper operations of LiP-MS in our

106  study (Extended Data Fig. 1a,b).

107 Gratifyingly, both the data from MTX and SHP099 experiments showed that our
108  procedure identified many more peptides showing statistically significant abundance
109  changes (Bayes t-test p < 0.01, |logzFC| > 0.3) on target proteins than LiP-MS (Fig.
110 1a, Extended Data Fig. 1c; 12 and 21 versus 6 and 4). We defined these peptides as
111  “ligand-responsive target” (LRT) peptides. Strikingly, we observed that the LRT
112 peptides displayed a remarkably larger “readout” (i.e., magnitude of abundance fold
113 changes) in our procedure than in LiP-MS (Fig. 1b; medians of |log2FC|: 4.07 and
114 3.35 versus 0.95 and 0.52). It bears emphasis that only peptides from the ligand-
115  binding domains displayed an amplified readout when using disruptive trypsinization,
116  whereas peptides from the unbound regions remained no abundance changes upon
117  ligand treatment (Fig. 1c). The amplified readout may be because disruptive
118 trypsinization is a continuous multi-stage proteolysis process, in which the abundance
119  difference of the peptides generated from the ligand-binding regions between bound
120  and unbound states, reflects an accumulation of differences in the rates of multi-stage
121  proteolysis (Extended Data Fig. 2). Benefiting from the amplified readout, disruptive
122 trypsinization yielded more accurate binding region data relative to LiP-MS

123  (Extended Data Fig. 3a-c).

124 In conclusion, we demonstrate that our procedure can identify a rich array of
125  peptides that are informative regarding ligand binding. Crucially, we found that
126  disruptive trypsinization can amplify the readout of ligand-induced protein local
127  stability shifts. Based on these observations, we propose a peptide-centric local

128  stability assay, or PELSA, to probe ligand-binding proteins and binding regions.
129

130 The PELSA approach
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131  In the PELSA workflow (Fig. 1d), proteome samples extracted from cell lysates
132  under native conditions are incubated with an analyte ligand (exemplified by
133 lapatinib®®, a marketed inhibitor of a membrane protein, ERBB2) or vehicle,
134  respectively. The two sample groups are then subjected to trypsinization with a high
135  E/S ratio (enzyme/substrate, wt/wt) (e.g., 1:2) for a short time (e.g., 1 min) followed
136 by removing any large, partially digested protein fragments with an ultrafiltration unit
137  (molecular weight cutoff 10 kDa). The collected peptides are then analyzed by liquid
138  chromatography-tandem mass spectrometry (LC-MS/MS) in data-independent
139  acquisition (DIA) mode. The quantified peptides are compared between two groups
140  (Bayes t-test analysis) (Fig. 1e), and the peptide with the lowest p value among all
141  quantified peptides of the same protein is selected to represent its corresponding
142  protein for target protein identification (Fig. 1f). Notably, out of 5866 proteins, we
143  identified the known lapatinib target protein ERBB2 as the top target candidate
144  (unless otherwise stated, target prioritization is ranked by -logioPvalue). Mapping the
145 quantified peptides to protein sequences generates local stability profiles (Fig. 1g),
146  which reveal the protein regions responsive to the ligand binding. Consistent with the
147  previous knowledge that lapatinib binds ERBB2 via its kinase domain®°, the PELSA
148  local stability profile data showed that the ligand-responsive peptides detected for
149  ERBB2 were all from the kinase domain (Fig. 1g). The dose-dependent local stability
150 changes can also be assessed when PELSA experiments are performed using multiple
151 ligand doses. Since the local stability changes of the target protein are dependent on
152  the ligand occupancy, the dose that produces the half-maximal stability changes
153  reflects the local binding affinity of the ligand for the corresponding protein segment.
154  Hence, we termed the dose-response local stability changes as “local affinity profiles”

155  (Fig. 1h).

156 We next applied PELSA to investigate the target proteins of rapamycin, an
157  inhibitor of multiple FKBP family proteins®'. A previous LiP-MS study successfully
158  identified FKBPIA as a rapamycin-binding protein'?. Initially, we applied PELSA to

6
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159 investigate rapamycin-binding proteins under experimental conditions identical to
160 those reported in the LiP-MS paper (i.e., HeLa cell lysates, 2 uM rapamycin).
161  Consistent with the amplified readouts observed for DHFR and PTPN11, PELSA
162  generated a 25-fold larger readout for FKBP1A than LiP-MS (53.4 versus 2.54) (Fig.
163  1i). Beyond FKBP1A, PELSA identified five additional FKBP family proteins as
164  rapamycin-binding proteins (Fig. 1i), which failed to recognize as rapamycin-binding
165 proteins in LiP-MS due to no detectable fold changes (Fig. 1i). We further
166  demonstrated these additional FKBP family proteins has a low target occupancy
167  under 2 uM rapamycin treatment (Extended Data Fig. 3d). These results suggested
168  that the amplified readout equips PELSA with the sensitivity to identify low

169  stoichiometry binding events in the cellular context.

170 PELSA can identify not only ligand-binding regions located on a single protein,
171  but also those that span two proteins. Rapamycin can act as a molecular glue between
172 FKBPI1A and mTOR (Fig. 1j), and the FKBP1A-rapamycin complex binds to a small
173  segment of mTOR (residues 2015-2113)%*. Beyond successful determination of FKBP
174  domains as rapamycin-binding regions on the identified FKBP family proteins
175 (Extended Data Fig. 3e), the PELSA local stability profiles accurately pinpointed the

176  binding region of the FKBP1A-rapamycin complex on mTOR (Fig. 1k).

177 Besides DIA, other quantitative proteomics methods can also be used to quantify
178 PELSA-generated peptides. For example, we coupled PELSA with the data-
179  dependent acquisition (DDA) based cost-effective stable isotope dimethyl labeling®?
180 to investigate the binding profiles of three HSP90 inhibitors with distinct structural
181  similarities (Extended Data Fig. 4a). PELSA successfully identified HSP90 family
182  proteins—and determined the known binding regions (i.e., N-terminal ATP-binding
183  domain)?** —for the three HSP90 inhibitors (Extended Data Fig. 4b,c). As expected,
184  the structurally close inhibitors, geldanamycin and tanespimycin, shared more off-
185 targets (Extended Data Fig. 4b). The unique off-targets identified for the structurally

186  distinct inhibitor ganetespib, AKR1C2 and MAT2A, were also validated using

7
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187  thermal shift assay with purified proteins (Extended Data Fig. 4d), substantiating the
188  reliability of PELSA for target identification. The dose-dependent PELSA analysis
189  also yielded accurate binding affinity data (Extended Data Fig. 4e), aligning with

190  results from microscale thermophoresis (MST) assay (Extended Data Fig. 4f).

191 Taken together, we demonstrate that PELSA enables efficient target
192  identification, precise binding-region determination, and accurate binding affinity

193  quantification on the proteome-wide scale.
194
195 PELSA’s high sensitivity in target identification

196  Staurosporine, a pan-kinase inhibitor, has been investigated by LiP-Quant (the dose-
197  dependent version of LiP-MS) in HeLa cell lysates'> and TPP in K562 cell lysates'®.
198  To compare the performance of PELSA for target identification against these popular
199 modification-free methods, we screened the targets of staurosporine by PELSA in
200 Dboth lysates of HelLa and K562 cells and compared our results with the published

201  datasets of LiP-Quant and TPP.

202 Using a true positive rate (TPR, defined as the percentage of kinase targets in
203  candidate targets) cutoff of 80% (Supplementary Discussion), PELSA with one
204  staurosporine dose yielded 120/143  (kinases/candidates) and  108/135
205  (kinases/candidates) in K562 and HeLa cell lysates, respectively (Fig. 2a,b and
206  Supplementary Table 1). By contrast, a LiP-Quant analysis of staurosporine in HeLa
207  cell lysates identified 20 kinase targets (TPR of 40%)'2, and 9 kinase targets were
208 identified when the identical criterion—TPR cutoff of 80%—was applied (Fig. 2b
209 and Supplementary Table 1), albeit with 7 drug doses and a superior LC-MS/MS
210 analysis depth reflected by more quantified peptides!? and higher protein sequence
211 coverages (Fig. 2¢). In line with our observations in MTX, SHP099, and rapamycin
212 experiments, the overlapped kinase targets displayed much larger readouts in PELSA
213 than in LiP-Quant (median values of [log2FC|: 2.2 versus 0.75) (Fig. 2d). Since in

8
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214  PELSA the peptides that are most relevant to ligand binding are enriched, PELSA
215 requires lower protein sequence coverages than LiP-Quant for successful

216  identification of target proteins (Fig. 2¢), which also leads to the high sensitivity of

217  PELSA.

218 PELSA with one E/S ratio also identified 2.4-fold more kinase targets than TPP
219  using ten temperatures (120 versus 51) in lysates of the same cell line (K562) (Fig.
220  2b), although more proteins were included in the TPP dataset (7638 versus 6310)'°.
221  TPP showed a bias against the thermo-resistant and thermo-susceptible kinases,
222 whereas PELSA is capable of identifying kinase targets with extreme melting
223 temperatures (Fig. 2e). Moreover, PELSA also substantially outperforms the recently
224  updated versions of TPP—iTSA, 2D-TPP, and mTSA—for staurosporine target
225  identification: compared to PELSA’s 120 kinases/143 candidates, iTSA identified 71
226  kinases/85 candidates®; 2D-TPP identified 60 kinases/73 candidates®® and mTSA
227  identified 64 kinases/85 candidates’’ (Supplementary Table 1). We compared the
228 readouts of kinases in PELSA and in iTSA and mTSA, which also determine target
229 proteins via output of abundance fold changes of proteins (i.e., readout). The
230 comparison results showed that 44.5% of the kinases in the PELSA staurosporine
231  dataset displayed readout of >2, while the proportions were 7.1% and 7.6% in iTSA
232 staurosporine and mTSA staurosporine datasets, respectively (Fig. 2f). Beyond the
233 high sensitivity in target protein identification, PELSA also brings along the capacity
234  to identify binding regions: for kinase targets identified by PELSA, over 93% of the
235  peptides passing the significance cutoff (Supplementary Discussion) are located in
236  or within 10 residues away from the known staurosporine-binding domain—Xkinase

237  domain (Fig. 2g).
238

239  Exploring weak metabolite-protein interactions
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240  Encouraged by the excellent performance of PELSA in drug target identification, we
241 next examined whether PELSA is capable of detecting weak metabolite-protein
242  interactions by investigating the binding proteins of two metabolites—folate and
243 leucine—which are known to bind their target proteins with micromole-level

244 affinity! 2829,

245 Folate PELSA analysis successfully identified dihydrofolate reductase DHFR (a
246  known folate-binding protein)'® as the top hit (Fig. 3a) and revealed that the top five
247 DHFR peptides with the most profound stabilization were mainly present in the
248  folate-binding pocket (Fig. 3b). Beyond DHFR, PELSA also identified three Uniprot-
249  annotated folate-analog-binding proteins, i.e., MTHFR, GART, and ATIC among the
250 top 6 most significantly stabilized proteins by folate treatment (Fig. 3a); PELSA
251 revealed that they were all stabilized at known folate-analog-binding sites (Fig. 3c-e),
252  indicating that folate may compete with these analogies to bind their cellular targets.
253  The 3rd most significantly stabilized protein was a collagen proline hydroxylase,
254  P3HI (Fig. 3a). A previous report indicates that folate may function as a reducing
255 agent to participate in the hydroxylation of collagen proline®®. Coincidentally, the
256 local stability profiles revealed that, albeit with 11 peptides of P3H1 quantified, only
257  the three peptides from the prolyl 4-hydroxylase domain were stabilized by folate
258  treatment (Fig. 3f). Our results thus provide evidence for the participation of folate in

259  the hydroxylation of collagen proline.

260 The top four hits (LARS, SESN2, LARS2, and GLUD1) identified for leucine
261  were all well-known leucine-binding proteins (Fig. 3g). Notably, LARS contains two
262  leucine-binding sites?®: the synthetic site and the editing site. Our PELSA data
263  revealed that both of the leucine-binding sites were stabilized upon leucine binding,
264  but with distinct magnitudes (Fig. 3h). This observation supports the potential of
265 PELSA to informatively differentiate between discrete ligand-binding sites in a single

266  protein.

10
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267 Our PELSA data also showed that leucine treatment destabilized SLC1AS5 (Fig.
268  3g), an amino acid transporter located at the plasma membrane that can accept leucine
269  as a substrate’!. While the PELSA dataset included three SLC1AS5 peptides, only one
270  was destabilized (Fig. 3i): the peptide located at the extracellular segment of the
271  substrate-binding domain (residues 54 to 483)*, suggesting that leucine binding may
272 induce this segment to adopt a more flexible conformation. Beyond known leucine-
273  binding targets, PELSA identified additional putative leucine targets including
274  PPIP5K1 and PPIP5SK2 (Fig. 3g), which are reported to involve with cancer cell
275  proliferation®® **, Notably, PELSA revealed that leucine binds both PPIP5K1 and
276  PPIPSK2 at the conserved functional histidine phosphatase domains (Fig. 3j), which

277  may provide clues for future function studies of leucine.
278
279  Characterizing the recognition domains of PTMs

280  Post-translational-modifications (PTMs) can be recognized by downstream effector
281  proteins (so-called ‘‘readers’’) through the recognition domains (Fig. 4a) to regulate
282  cellular events’. However, the interactions between PTMs and reader proteins are
283  often weak and transient. Despite recent progress in modification-based methods™ ¥,

284 it remains challenging to identify reader proteins and recognition domains of PTMs in

285  complex cellular environment. We wondered whether PELSA is able to fill this gap.

286 Here we focused on phosphotyrosine (pY), exemplified by the pYEEI motif
287  which preferentially binds Src-kinase SH2 domains®. PELSA revealed that 28
288  proteins were significantly stabilized by pYEEI, among which 9 proteins contain SH2
289  domains (Fig. 4b). By contrast, we did not identify any SH2-domain-containing
290 proteins in our pulldown experiment (Fig. 4c¢), possibly because the weak interactions
291 between pY and its reader proteins®’ are susceptible to loss during the stringent
292  washing procedure. Beyond the advantages over pulldown in detecting weak PTM-

293  protein interactions, PELSA also featured with recognition domain identification. As

11
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294  anticipated, peptides located in the SH2 domains displayed a significantly reduced
295  abundance, whereas peptides out of the SH2 domains remained unchanged (Fig. 4d).
296  Notably, SH2 domains from different protein families were stabilized by pYEEI with
297  varying magnitudes (Fig. 4e and Supplementary Table 2): in accordance with the
298  binding preference of pYEEI®®, the SH2 domain of the Src kinase YES1 displayed the
299  most profound stabilization. Several Ca**-regulating proteins were found stabilized by
300 pYEEI at the Ca®*-regulating regions (Fig. 4f and Supplementary Table 2), although

301 the underlying mechanism is unclear.

302 Although only recognition domains of pY were investigated here, it is reasonable
303 to further extend the application scope to investigate the recognition domains of many

304  other PTMs, which is crucial to understand the biological functions of the PTMs.
305
306 The high-resolution binding data of PELSA enables epitope identification

307 We then asked whether PELSA can determine the ligand-binding regions when the
308 ligand is a protein such as an antibody (Fig. 4g). To this end, two commercial
309 antibodies (against DHFR or CDK9) were investigated with PELSA using HeLa cell
310 lysates. PELSA quantified 6806 and 6207 proteins in DHFR and CDK9 antibody
311  experiments, respectively, and the corresponding antigen proteins DHFR and CDK9
312 were found in the top 5 most significantly stabilized proteins in respective
313  experiments (Fig. 4h). Of note, most of the significantly stabilized non-antigen
314  proteins (-logioPvalue > 5, log2FC < 0, Bayes t-test) contain multiple stabilized
315 peptides (Supplementary Table 3) indicating the high confidence of their
316 interactions with the added antibody, possibly resulting from the low specificity of the

317 antibodies.

318 Four out of the 15 quantified DHFR peptides displayed a significantly reduced
319 abundance (Bayes t-test p < 0.01, log2FC < -0.3) upon DHFR antibody binding (Fig.
320  4i). Strikingly, their tryptic cleavage sites were located exactly in the known epitope

12
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321  (residues 172-187) (Fig. 4i). CDKO9 antibody recognizes a 13-amino-acid epitope—
322  sequence PATTNQTEFERVF (residues 360-372)—which is located at the tail of
323 CDKO9. The local stability profiles revealed that peptide NPATTNQTEFER (NPxxER,
324  residues 358-370) with C terminus cleavage site located exactly in the epitope
325 displayed a significantly reduced abundance (Bayes t-test p < 0.001, log2FC = -2.28)
326  (Fig. 4j), whereas even the peptide (residues 346-357) with C terminus two residues
327 away from the epitope remained unchanged (-logioPvalue = 0.153, log2FC = 0.07,
328 Bayes t-test). Notably, the missed cleavage form of NPxXxER—NPxxVF (residues
329  358-372)—displayed an opposite direction of change with NPxxER (Fig. 4j), which
330 can be explained: binding with antibody inhibited the trypsinization at residue 370;
331  thus, less amount of NPxXER (residues 358-370) was generated, and thereby more
332  NPxxVF (residues 358-372) was left (Fig. 4k). Overall, these results indicated that

333  PELSA can identify the epitopes on antigen proteins at high resolution.
334
335  Assaying Zn>* responsive regions across the proteome

336  Next, we wondered whether PELSA is applicable for the ligand with a small size, like
337 a single-atom metal ion—Zn>*, which typically binds protein on a small zinc-finger
338  (ZnF) motif composed of ~30 amino acids*®. The cell lysates depleted of endogenous
339  Zn** were treated with varying concentrations of Zn** or vehicle, and then subjected
340 to PELSA analysis (Extended Data Fig. 5a). After 30 uM Zn?* treatment, 280
341 proteins were significantly stabilized (-logioPvalue > 3, log2FC < -0.5, Bayes t-test),
342  among which ~68% (190 proteins) were Uniprot-annotated metal-binding proteins
343  (Fig. S5a,b). This proportion was substantially higher than that in the measured
344  proteome (19%) (Fig. Sb). Among the 190 metal-binding proteins identified by
345  PELSA, 112 are Uniprot-annotated Zn**-binding proteins, and 78 are proteins known
346  to be bound by other divalent metal ions highlighted by Ca?*, Mg>*, Fe?*, and Mn**
347  (Fig. 5¢ and Supplementary Table 4), indicating a divalent-metal-ion promiscuity,

348  which is frequently observed in metal-binding proteins*®. Zn**-binding proteins have
13
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349  been previously investigated with chemical probes®. In that study, 38 putative Zn**-
350  binding proteins were determined: 6 were Uniprot-annotated Zn**-binding proteins
351 and 9 were other-metal-binding proteins (Supplementary Table 5). This comparison
352 demonstrated the excellent performance of PELSA in identifying metal-binding

353  proteins.

354 Beyond precisely determining the small Zn>**-binding sites (Fig. 5d-g,
355  Supplementary Discussion), PELSA revealed that Zn?* stabilized the Ca**-, Fe?*-,
356 and Mg>*-binding proteins at Ca®**-, Fe’*-, and Mg?*-binding regions, respectively
357  (Fig. 5h,i, Extended Data Fig. Sb, and Supplementary Table 6) which is agreement
358  with previous findings that Zn** can occupy the binding pockets of other divalent
359  metal ions*" %%, Our PELSA analysis also provided a local stability atlas of 90 Zn**-
360 stabilized proteins that were not categorized as metal binding (Extended Data Fig.
361 Sc); Gene ontology analysis of these 90 proteins revealed an enrichment of GTP-
362 binding proteins (Extended Data Fig. 5d), particularly Ras-related proteins
363  (Supplementary Table 4). One Ras-related protein, RABIA, has been previously
364 reported as a Zn**-buffering protein*’. Our results indicate a potential prevalent role

365  of Ras-related proteins in regulating cellular Zn** homeostasis.

366 Proteins will be destabilized, if ligands bind to their partner proteins and
367  dissociate the partner proteins from the formed protein complexes'® 4. Among the top
368 18 proteins destabilized by Zn?** (log2FC > 0, ranked by -logioPvalue, Bayes t-test), 12
369  proteins were destabilized at known protein-protein interaction interfaces (Fig. Sj-l,
370 Extended Data Fig. Se, Supplementary Table 6, and Supplementary Discussion).
371  This specific destabilization is also recapitulated in PELSA 20 pM Zn>* analysis
372  (Extended Data Fig. 5f,g and Supplementary Table 6), suggesting the potential of

373  PELSA to monitor the assembly states of protein complexes.

374

14
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375 Target landscapes of a-ketoglutarate and R-2-hydroxyglutarate in HelLLa and

376  Jurkat cells

377  Isocitrate dehydrogenase (IDH) gene mutations are frequently observed in multiple
378  human cancers®; these mutations can impart a neomorphic enzyme activity wherein
379  o-ketoglutarate (aKG) can be converted to the R enantiomer of 2-hydroxyglutarate
380 (R2HG)*. R2HG is structurally similar to aKG (Fig. 6a) and has been reported to act
381  as a weak competitive inhibitor of multiple aKG-dependent dioxygenases (KGDDs)*.
382  The highly simple and similar structures of these two metabolites make it challenging
383  to identify their binding proteins through modification-based methods. Moreover, the
384 low affinity of these two metabolites, especially R2ZHG (often up to millimole-level
385 affinity)*®, further exacerbates the difficulty of target identification. As a result,

386  despite wide-recognized roles of R2HG in cancer development* 3°  there is no

387  proteome-wide investigation of R2ZHG binding proteins.

388 We used PELSA to explore the binding proteins of aKG and R2HG in lysates of
389 Hela and Jurkat cells. PELSA analysis of 2 mM aKG treated HeLa cell lysates
390 identified 40 significantly stabilized proteins (-logioPvalue > 3.4, log2FC < -0.5,
391  Bayes t-test), among which 30 are previously-known aKG targets (65 in total in this
392  dataset; Extended Data Fig. 6a,b)’!. This represents the largest number of known
393  oKG targets identified in a single analysis. Although oKG has been investigated in a
394 LiP-MS study with E.coli lysates®*, only 2 previously-known oKG targets were

395 identified (33 in total in the LiP-MS dataset; Extended Data Fig. 6b).

396 As anticipated, PELSA R2HG analyses identified fewer known oK G targets than
397 PELSA oKG analyses in both HeLa and Jurkat cell lysates (Fig. 6a). The cell-line
398 comparison revealed that protein-hydroxylase targets were underrepresented in Jurkat
399 cells (Fig. 6b) relative to HeLa cells, which can be explained by the differential
400 expression levels of protein hydroxylases in these two cell lines (Extended Data Fig.

401  6¢).

15


https://doi.org/10.1101/2023.10.17.562693
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562693; this version posted October 19, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

402 PELSA also enables the determination of aKG-binding regions for tens of aKG
403  targets in a single analysis (Extended Data Fig. 6d and Supplementary Table 7).
404  Previous co-crystal structural studies of purified KDM4A in complex with R2HG
405 revealed that R2HG occupies the same binding pocket as aKG*. Note that for
406  multiple aKG targets, our PELSA data of both HeLa and Jurkat cell lysates indicate
407 that R2ZHG binds the same pockets as oKG (Extended Data Fig. 6d and

408 Supplementary Table 7).

409 PELSA determined the binding affinities between oKG (R2HG) and 44
410 previously-known oKG targets in lysates of HelLa and Jurkat cells (Fig. 6c¢). In
411  agreement with previous findings*’, PELSA revealed that R2ZHG has lower binding
412  affinities for KGDDs compared to aKG (Fig. 6¢). Although the binding affinities in
413  the two cell lysates are well correlated (Extended Data Fig. 6e), we observed that
414  P3HI1 displayed a higher affinity for both aKG and R2HG in Jurkat cell lysates
415  compared to HeLa cell lysates (Fig. 6¢ and Extended Data Fig. 6f), which may
416 represent the distinct regulating factors (e.g., interacting partners and post-

417  translational modifications) of P3H1 in Hela and Jurkat cells.
418
419  Previously unknown targets of tKG and R2ZHG

420 PELSA identified 19 high-confidence (Supplementary Discussion) previously-
421  unknown targets of aKG or R2ZHG and determined their binding affinities in both
422 HeLa and Jurkat cell lysates (Supplementary Table 8). Notably, many of these
423  proteins are involved with energy metabolism, including amino acid metabolism,
424  glycolysis, oxidative phosphorylation (OXPHOS), and TCA cycle anaplerosis (Fig.
425  6d). Interestingly, different from KGDDs which bind more strongly to aKG than
426  R2HG, pyruvate carboxylase (PC), an enzyme critical for TCA anaplerosis, was
427  identified to bind both aKG and R2HG, but with higher affinity toward R2HG than

428 oKG in lysates of both HelLa and Jurkat cells (Fig. 6d and Extended Data Fig. 7a).
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429  This finding was also confirmed by dose-response experiments via western-blot
430 readouts (Extended Data Fig. 7b). The PELSA local affinity data also revealed that
431 R2HG stabilized PC on the segment responsible for the transfer of carboxy group to
432  pyruvate (Extended Data Fig. 7a)’. We purified this segment and verified the
433  stabilization by R2ZHG using a thermal shift assay (Extended Data Fig. 7¢). IDH
434  mutations can lead to remarkably high R2ZHG levels, accompanied by disruption of
435 redox homeostasis and alteration of amino acid metabolism and TCA cycle
436  anaplerosis*. Little is known about whether R2ZHG has a role in these metabolism
437  alterations and how R2HG functions. Our PELSA evidence for the interactions
438  between R2HG and the proteins (involved with the TCA cycle anaplerosis, amino
439  acid metabolism, and OXPHOS) (Fig. 6d) thus yields an insight into the aberrant

440  cellular metabolism in IDH-mutated cancer cells.

441 Beyond the enzymes with well-known functions, we also identified two putative
442  enzymes without known substrates, i.e., HDHD2 and FAHD2A (Supplementary
443  Table 8); their interactions with aKG/R2HG and relative binding affinities to these
444  two metabolites (Extended Data Fig. 7d) may afford clues for their biological

445  functions.

446 In addition to the targets stabilized by aKG and R2HG, we found that a group of
447  tyrosine-protein phosphatase domain-containing proteins—PRPRC, PTPRE, PTPN2,
448 and RNGTT—were destabilized exclusively in R2HG-treated Jurkat cell lysates
449  (Extended Data Fig. 8a,b). Moreover, these proteins were all destabilized at their
450  shared tyr-protein phosphatase domains (Fig. 6e); this R2ZHG-induced Jurkat-specific
451  destabilization was also confirmed by another biological replicate of PELSA R2HG
452  analysis (Extended Data Fig. 8c,d). R2ZHG has been reported to suppress T cell
453  receptor (TCR) signaling®*. Notably, PTPRC, a membrane protein that functions as a
454  gatekeeper of TCR signaling™, was also among the R2HG-destabilized proteins.
455  PTPRC is known to employ its tyr-protein phosphatase domains to regulate TCR

456  signaling (by dephosphorylating, and thus activating LCK) (Fig. 6f). Our PELSA data
17
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457  indicating that R2HG destabilized PTPRC’s tyr-protein phosphatase domains
458  therefore uncovers a possible basis to help explain previous reports of R2HG-
459  mediated suppression of TCR signaling®. Overall, our dose response PELSA
460 analyses of aKG and R2HG in the two cell lines provide informative interaction data

461  for future hypothesis generation studies of aKG and R2HG.
462
463  DISCUSSION

464  In this study, we found that disruptive trypsinization amplifies the readout of ligand-
465 induced protein local stability shifts, and developed this concept into a powerful
466  technology—PELSA—which allows simultaneous sensitive target protein
467  identification and ligand-binding region determination in native cellular environment
468  without ligand modification. Compared against existing modification-free methods
469  that enable binding region determination (LiP-MS methods)'?, PELSA identified 6-
470  fold more FKBP family target proteins (6 versus 1) for rapamycin and 12-fold more
471  kinase targets (108 versus 9) for a pan-kinase inhibitor (staurosporine) than LiP-MS
472  and LiP-Quant, respectively. Compared with prevalent modification-free methods that
473  do not yield binding region information (TPP methods), PELSA identified 1.7-2.4
474  times more kinase targets for staurosporine than TPP and recently revised TPP

475  methods (iTSA, 2D-TPP, and mTSA).

476 Beyond high sensitivity in target identification, PELSA’s peptide-level readout
477  also enables binding-region determination. PELSA detects the ligand-induced local
478  stability shifts to deduce ligand-binding regions. In some cases, i.e., when the binding
479  signals are propagated to distal locations within the domain through cooperative intra-
480  segment interactions®®>’, PELSA can accurately and sensitively determine the ligand-
481  binding domains. For example, PELSA simultaneously determined staurosporine-
482  binding domains for 120 kinases, which represents the largest number of ligand-

483  binding regions determined in a single analysis. In other cases, i.e., when ligand
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484  binding only affects the stability of certain residues of the proteins, PELSA can
485  determine the binding residues. This was demonstrated by determining a 13-amino-
486  acid epitope for an antibody and Zn** binding residues within a 60-amino-acid

487  domain.

488 Our study also provides a powerful solution for identifying recognition domains
489 of PTMs. A recent study reported that a tri-functional amino acid can enable
490 identifying PTM-binding regions when it is placed 1 or 2 residues away from the
491  PTM sites of interest’. However, the case of phosphotyrosine (pY) binding has shown
492  that alteration of the +2 and +3 positions can profoundly alter the binding profiles of
493  pY>®. PELSA does not require prior modification of the analyte ligand, and we have
494  successfully applied PELSA to characterize the recognition domains of pY in this
495  study. Given the ubiquity of PTM-mediated regulation in biology and the many
496  pathological associations of dysregulation PTMs*- . PELSA’s ability to identify
497  recognition domains of PTMs in human cell lysates will almost certainly motivate its

498 use in many, highly diverse biological and medical studies.

499 We also showcase the capacity of PELSA for sensitively and informatively
500 probing weak interactions by identifying the binding proteins of leucine, folate, aKG,
501 and R2HG. While previous studies have employed modification-based or
502 modification-free methods to investigate metabolite-binding proteins®> °!- 2 these
503  approaches often generate a large number of candidate targets with a limited number
504  of known metabolite-binding proteins. In contrast, PELSA results consistently exhibit
505 a significantly higher percentage of known-binding events. For instance, in a prior
506 LiP-MS study of aKG-treated E.coli lysates™, 34 candidate targets were identified
507  with 2 known aKG binding proteins. In comparison, PELSA identified 40 candidate
508 targets, and notably, 30 of these were known aKG binding proteins, despite using a
509 more complex lysate sample (human HeLa cell lysate). We envision that PELSA’s
510 improved hit rate has the potential to significantly streamline the validation process in

511  hypothesis-generation studies.
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512 In summary, we demonstrate PELSA is a highly sensitive and generic method to
513 reveal binding regions on proteins of very diverse ligand types (including drugs,
514  antibodies, phosphorylated peptides, metal ions, and metabolites) on a proteomics
515 scale, without the need for chemical modification of the analyte ligand. Beyond
516 ligand binding, the transition of a protein between different proteoforms (e.g, the
517  presence or absence of post-translational modification)®® may also induce protein
518  stability shifts, and thus could also be investigated by PELSA. We envision that
519 PELSA will find wide utilization throughout life science research.
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Fig. 1 | Establishment of PELSA. a, Volcano plot visualizations of all peptides
generated by LiP-MS (LiP) or Disruptive Trypsinization (DT) of Hela lysates
exposed to 10 uM methotrexate (MTX) or 10 uM SHP099 (four lysate replicates per
experiment). b, Comparing readouts of the ligand-responsive target (LRT) peptides
generated by LiP-MS and disruptive trypsinization. Central line in the box shows the
median (labeled), box boundaries indicate the upper and lower interquartile range
(IQR), and whiskers correspond to most extreme values, or to 1.5-fold IQR if the
extreme values are above this cutoff. ¢, Left: the peptide shared in two digestion
schemes and from SHP099-binding domains, display amplified readout when using
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733  disruptive trypsinization. Right: two peptides located outside the SHP099-binding
734  region remained unchanged by SHP099 treatment in disruptive trypsinization. Four
735  replicates (mean + S.D.). NS, not significant. d, Workflow of PELSA. e, Volcano plot
736  visualization of all peptides from a PELSA analysis of BT474 lysates exposed to 100

737  nM lapatinib. f, Volcano plot as in (e) but on the protein-level. g, Local stability
738  profiles to reveal ligand-binding regions. The upper and lower boundaries of the grey
739  shaded area represent log2FCs of 0.3 and -0.3, respectively. h, Local affinity profiles

740  to reveal the local binding affinity of a ligand. Heat map representation of logz peptide
741  fold changes of ERBB2 with increasing lapatinib concentrations (0 nM, 100 nM, 1

742 uM, 10 uM, and 100 uM). i, Volcano plot visualizations of all proteins from a PELSA
743  analysis or a published LiP-MS analysis'?> of HeLa lysates exposed to 2 pM
744  rapamycin. j, Complex structure of mTOR, rapamycin, and FKBP1A (PDB: 1FAP). k,
745  Local stability profiles of mTOR for 2 uM rapamycin treatment.

746
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748 Fig. 2 | Comparing target identification performance of PELSA with existing
749  modification-free methods. a, Volcano plot visualization of all proteins from PELSA
750  analyses of K562 (left) and HeLa (right) lysates exposed to 20 uM staurosporine. The
751  lower boundary of the red shadow denotes the threshold of -logioPvalue, above which
752 over 80% of the stabilized proteins (log2FC < 0) are kinases. b, True positive rate
753  (TPR) evaluation for the selected assays in staurosporine target identification. The
754  labeled points represent the numbers of identified candidate targets and kinase targets
755  in each assay (TPR up to 80%). LiP-Quant is also labeled at the kinase target number
756  of 20 (TPR = 40%). The grey line (slope = 1) and black dashed line (slope = 0.8)
757  represent 100% and 80% of the candidate targets are kinase targets, respectively. ¢, d,
758  **p < 0.01 and ***p < 0.001, Wilcoxon signed-rank test; medians are labeled and
759  other settings are as Fig.1b. (¢), Protein sequence coverages for the whole quantified
760  proteome (left) and identified kinase targets (right) in LiP-Quant HelLa and PELSA
761  HelLa analyses. (d), Fold changes of kinase targets that were identified by both LiP-
762  Quant (using TPR cutoff of 40%) and PELSA (HeLa). e, Comparing melting
763  temperatures (Tm) of identified kinase targets and all quantified kinases in the TPP
764  dataset and two PELSA datasets. Some PELSA kinase targets lack TPP-reported Tm
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765  values. f, Comparing the fold changes of kinases quantified in PELSA, iTSA, and
766  mTSA. g, Density plots showing -logioPvalue distributions of peptides with tryptic
767  cleavage sites located in and outside the kinase domains for K562 and HeLLa PELSA
768  analyses. The dashed lines indicate the significance cutoffs defined in (a). The
769  doughnut charts show the location distributions of the kinase peptides that passed the
770  significance cutoffs.

771  Note: Kinase targets refer to kinase proteins that are identified as staurosporine-
772 binding proteins; quantified kinases refer to all kinases in the dataset including kinase
773  proteins that are not identified as staurosporine-binding proteins. LiP-Quant, TPP,
774  iTSA, and mTSA datasets were retrieved from the literatures'® %2327,

775
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Fig. 3 | Detecting weak metabolite-protein interactions. a, Volcano plot
visualization of all proteins from a PELSA analysis of K562 lysates exposed to 50
uM folate. b, Complex structure of folate and DHFR generated by superposition of
human DHFR (PDB: 1BOZ) against E.coli DHFR-folate complex (PDB: 4EJ1).
Folate, yellow spheres; the top five peptides with the most profound stabilization
(Bayes t-test, -logioPvalue > 2, ranked by -log2FC) are colored in red. ¢, Complex
structure of folate analog (yellow spheres) and ATIC (PDB: 1P4R). The peptide with
most profound stabilization is colored in red. d, Local stability profiles of MTHFR by
50 uM folate treatment. e, Complex structure of folate analog (yellow spheres) and
GART (PDB: IRBY). The absolute logoFC values of all quantified GART peptides
are < 0.5, and thus the top two peptides with the lowest p value (Bayes t-test) are
colored in red. f, Local stability profiles of P3H1 by 50 uM folate treatment. g,
Volcano plot as in (a) but of analysis of K562 lysates exposed to 5 mM leucine. h,
Structure of LARS in complex of leucine (multicolor spheres) both in the editing site
and the synthetic site (PDB: 6KQY) with peptides colored based on their log2FC
values. i, Topology model of SLC1A5 generated by Protter®*. Protein sequences are
colored based on their log2FC values. j, Local stability profiles of PPIP5K1 (left) and
PPIP5K2 (right) by 5 mM leucine treatment.
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Fig. 4 | Identifying recognition domains of a PTM and localizing epitopes of
antigens. a, Schematic representation of PELSA to reveal the PTM-recognition
domain. b, Scatter plot of protein -logioPvalues in PELSA (pYEEI/YEEI) and PELSA
(pYEEI/pSEEI) (Methods). The dashed lines indicate the significance cutoff (-
logioPvalues = 3.1). The proteins passing the significance cutoff are colored: SH2-
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806  plots represent relative densities and the settings of the inner boxplots are as Fig. 1b.
807  ***p < 0.001, Wilcoxon signed-rank test. e and f, Local stability profiles of SH2-
808  containing proteins from different protein families (e) and representative Ca’*-
809  regulating proteins (f) by pYEEI treatment. g, Schematic representation of PELSA to
810 reveal the epitope. h, Volcano plot visualization of all proteins from PELSA analyses
811 of HeLa lysates exposed to DHFR antibody (left) or CDK9 antibody (right). i and j,
812  Local stability profiles of DHFR and CDK9 by DHFR antibody and CDK9 antibody
813  treatment, respectively. K, Intensities of NPxxVF and NPxxER, and their sum. Four
814  replicates (mean £ S.D.).

815
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Fig. 5 | Characterization of Zn** proteome revealing the stabilized metal-binding
regions and destabilized protein-protein interfaces. a, Volcano plot visualization of
all proteins from a PELSA analysis of HeLa lysates exposed to 30 uM ZnClz. The
right boundary and lower boundary of the red shadow denote log2FC of -0.5 and -

logioPvalue of 3, respectively. b, Proportions of metal-binding proteins in the whole
dataset and in the significantly stabilized subset. ***p < 0.001, Fisher’s exact test.
Pie-chart denotes the percentage of known Zn?>*-binding proteins among all the
stabilized metal-binding proteins. ¢, Compositions of the metal-binding proteins that
were stabilized by 30 uM Zn?** treatment. d, h, i, and k, Log:FC distributions of
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826  peptides that reside in and out of the indicated domains. ***p < 0.001, Wilcoxon
827  signed-rank test. (h), EF-hand/EH motifs are known Ca®*-binding motifs®. (k), P-
828  loop-NTPase domains are the binding surfaces of the adjacent members of PSMC
829  complex®. e, Local stability profiles of representative ZnF-containing proteins. f,
830 Local stability profiles of LIMA1. g, LIM domain of LIMA1 (PDB: 2D8Y) with
831  peptides colored based on log2FC values. Zn**-binding residues: yellow sticks; zinc
832  ions: dark-purple spheres. j, The zoom-in view of the volcano plot that displayed in
833  (a). 1, Surface representation of PSMC1-6, PSMD11, and PSMD12 complex (PDB:
834  5LN3) viewed from the lateral side with PSMC3 exposed (left) and viewed from the
835  top (right). This complex is destabilized at the interacting surfaces of its members
836  (colored in magenta).
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839  Fig. 6 | Characterizing binding profiles of «KG and R2HG in two cell lines. a,
840  Bubble plots displaying the numbers of aKG and R2HG targets identified by PELSA
841  (Supplementary Discussion). The inner bubble denotes previously-known aKG
842  targets; the outer denotes all candidate aKG/R2HG targets identified by PELSA. b,
843  The radiation diagram depicts categories of the previously-known oKG targets
844  identified in aKG-Hela, aKG-Jurkat, R2ZHG-Hel.a, and R2HG-Jurkat. The central
845  donut reflects the proportions of each protein category occupied in the annotated
846  PELSA analysis. Each node around the cycle denotes one protein. The linkage
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847  between the node and the donut denotes the protein is identified as a target protein in
848  this PELSA analysis. The labeled number denotes the count of previously-known
849 oKG targets identified in each analysis (total count identified across all
850  concentrations). ¢, Heatmap displaying pECso values of 44 previously-known aKG
851 targets toward oKG and R2ZHG (measured by PELSA in both HeLa and Jurkat cell
852  lysates). Grey cells in the heatmaps indicate no measurements. d, Schematics of
853  simplified glycolysis, TCA cycle, amino acid metabolism, and OXPHOS pathways.
854  The putative aKG and R2HG targets are marked in red with binding affinities
855 indicated. e, Local affinity profiles of four tyrosine-phosphatase-domain-containing
856  proteins for R2ZHG treatment in Jurkat cell lysates. f, PTPRC is an upstream regulator
857  of TCR signaling. R2HG destabilized PTPRC at its functional domains.
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Extended Data Fig. 1 | Data quality assessment of in-house performed LiP-MS

experiments.

a, Intensities of peptides generated by LiP-MS (top) or disruptive trypsinization

(bottom) show excellent correlations across replicates. b, The proportions of half-

tryptic peptides in our in-house-performed LiP-MS experiments (40.5% and 39.9%),
agree well with that reported in the literature (i.e., 40%)'!. ¢, Bar-plots displaying the

numbers of ligand-responsive target (LRT) peptides (i.e., target protein peptides that
showed [log2FC| > 0.3 & -logioPvalue > 2) in the LiP-MS datasets and disruptive

trypsinization datasets.
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873  Extended Data Fig. 2 | Possible mechanism for the amplified readout of protein
874  local stability shifts in disruptive trypsinization

875  The overall proteolysis process for LiP-MS can be clearly separated into two steps: an
876 initial proteolysis by proteinase K (PK) and a later denaturation-assisted complete
877  digestion by trypsin. In contrast, the disruptive trypsinization should be
878  conceptualized as a continuous, multi-stage proteolysis process, which comprises a
879  successive sequential ‘steps’ (i.e., cleavage reactions) as each new trypsin-sensitive
880  site is exposed. The initial proteolysis of both LiP-MS and disruptive trypsinization
881  typically occurs at the flexible segments for their accessibility to the proteolytic sites
882  of protease, and ligand binding will stabilize the flexible segments, thereby delaying
883  the initial proteolysis (ko1 < kur). In the LiP-MS procedure, the initial proteolysis is
884  performed with a broad-specificity protease, PK, to generate large protein segments.
885  These large protein segments in both the ligand-treated and control samples are then
886  subjected to indiscriminate denaturation, followed by complete indiscriminate
887  trypsinization. As such, only the proteolysis rate in the initial proteolysis is altered
888  upon ligand binding. In disruptive trypsinization, trypsin is used for the whole multi-
889  stage proteolysis to generate small peptides (shown in the figure). At the initial stage,
890 only the flexible segments that contain lysine (K) or arginine (R) are cleaved due to
891 the substrate specificity of trypsin, which results in cleaved proteins. The cleaved
892  regions of the cleaved proteins are unstable, so they unfold and expose more K or R to
893 facilitate continuing trypsinization. The cleaved proteins generated under the bound
894  state are likely to retain the bound ligand for their relatively intact structures. The
895  bound ligand could again delay the continuing trypsinization (kv2 < ku2). Moreover,
896  due to the delayed initial trypsinization, the bound cleaved proteins also have a lower
897  concentration than the unbound form (Pbi < Pu1). According to Michaelis-Menten
898  equation, at low substrate concentration (which is likely the case for individual
899  proteins in the proteome sample), the digestion reaction can be regarded as a first-
900 order reaction: proteolysis rate (R2) = substrate concentration (P1) * rate constant (k2).
901  With the combination of ligand protection (kb2 < ku2) and the smaller substrate
902 concentration (Pv1 < Pu1), the rate difference between bound and unbound states in
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903  stage 2 digestion is larger than that in stage 1 digestion, thus resulting in an amplified
904 abundance difference of proteolysis products (Pu2/Pb2 > Pul/Poi >1). This
905 amplification could last until the bound ligand is dissociated from the cleaved proteins.
906 The substrate of stage n trypsinization is the proteolysis product of stage (n-1). The
907 slope of the proteolysis profile is defined by the proteolysis rate, R.

908
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Extended Data Fig. 3 | The amplified readouts in PELSA facilitate the

912 localization of ligand-binding regions and the identification of ligand-binding
913 proteins with low target occupancy. a, Complex structure of DHFR-MTX (PDB:
914  1U72) with protein segments colored based on the quantification results of their
915 corresponding peptides generated by two-step digestion in LiP-MS (left) or by
916  disruptive trypsinization in PELSA (middle): changed (-logioPvalue > 2 and |log2FC| >
917  0.3), red; unchanged (|log2FC| < 0.3), grey; not available (not quantified or |log2FC| >
918 0.3 but -logioPvalue < 2), cyan. The drug ligand MTX is shown as sticks (yellow).
919  Two labeled segments at a distance of less than 4 A from MTX displayed large fold
920 changes in PELSA but remained unchanged in LiP-MS; Euclidean distance in the
921 table is the minimal distance between the ligand atoms and the peptide atoms of the
922  corresponding protein segment. b, Complex structure of PTPN11 and SHP(099
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923  (surface representation, PDB: SEHR). PTPN11 is composed of N-SH2, C-SH2, and
924  PTP domains; SHP099 is an allosteric inhibitor of PTPN11, known to bind at the
925  central tunnel formed at the interface of the three domains'®. ¢, Abundance changes of
926  PTPNI11 peptides generated by LiP-MS (left) or disruptive trypsinization (right) under
927 10 uM SHPO099 treatment. The x axis represents the protein sequence from N to C-
928 terminus, with protein length annotated; the y axis shows the logz fold changes in
929 abundance of the peptides (log2FC). The upper and lower boundaries of the grey
930 shaded area represent log2FCs of 0.3 and -0.3, respectively. In LiP-MS, a number of
931 peptides remained unchanged even though they are located in the domains associated
932  with allosteric regulation of SHP099. By contrast, all 21 disruptive trypsinization
933  peptides that are positioned within the domains associated with allosteric regulation of
934  SHPO099, displayed a statistically significant fold change (-logioPvalue > 2 and
935  |log2FC| > 0.3), whereas the 2 unchanged peptides are from the C-terminal tail of
936 PTPNI11, which do not participate in SHP099 binding. d, Top: volcano plot
937  visualization of all proteins from a PELSA analysis of HeLa cell lysates exposed to 10
938  uM rapamycin; Bottom: comparing magnitude of fold changes (log2 transformed) of
939  seven FKBP family proteins under 2 uM rapamycin and 10 pM rapamycin treatment.
940 When increasing concentration of rapamycin to 10 uM, the fold change of FKBP1A
941 remained relatively constant, while five of the remaining six FKBP family proteins
942  showed a more than 2-fold increase in the magnitudes of fold changes (the sixth
943  showed 1.44-fold increase; the labeled values represent log2 transformed increased
944  values). This result indicates the low target occupancy of the remaining six FKBP
945  family proteins under 2 uM rapamycin treatment. e, Local stability profiles of FKBP
946  family proteins under 2 uM rapamycin treatment. Only peptides from FKBP domains
947  display altered abundance.
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Extended Data Fig. 4 | PELSA couples with dimethyl labeling quantification for
reliable target protein identification, precise binding region localization, and
accurate binding affinity determination. a, Structures of three HSP90 inhibitors
used in this study. The red cycle indicates the structural difference between
geldanamycin and tanespimycin. b, Scatter plots of protein log: fold changes
(Supplementary Discussion) in HeLa cell lysates treated with three HSP90 inhibitors
in two MS/MS analyses. Proteins with [log2FC| >1.4 are colored as indicated in the
legend. ¢, Local stability profiles of HSP90 family proteins under 100 uM

geldanamycin (top), 100 uM tanespimycin (middle), and 100 uM ganetespib (bottom)
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972  treatment. NTD refers to N-terminal ATP binding domain; CTD refers to C-terminal
973  domain. d, Protein melting curves of purified recombinant AKRIC2 (top) and
974 MAT2A (bottom) after incubation with different concentrations of ganetespib. e,
975 PELSA-determined dose-response curves for HSP9OAAI in HeLa cell lysates
976  incubated with three HSP90 inhibitors at different concentrations. f, Dose-response

977  curves as in (e) but measured by microscale thermophoresis assays using purified
978 HSP90AAIL.
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Extended Data Fig. 5 | Characterization of the zinc proteome. a, Volcano plot
visualizations of all proteins from PELSA analyses of HeLa lysates exposed to 1 uM,
10 uM, 20 uM, or 40 uM ZnCl: (four lysate replicates). Uniprot-annotated known
metal-binding proteins are highlighted in red. The Zn** concentrations used for
further analysis are 20 pM and 30 puM (Supplementary Discussion). b,
Representative Mg>*-binding proteins that were stabilized by 30 uM Zn>*. From left
to right: ENO1 homodimer in complex with Mg?* (PDB: 2PSN), HDDC2 in complex
with Mg?* (PDB: 4DMB), PPA2 (AlphaFold: AF-Q9H2U2-F1-mod), and PPP5C in
complex of Mn** (PDB: 1WAO). Protein segments are colored based on log2FC
values as indicated in the legend. NA denotes no detection (cyan). The magnesium
and manganese ions are represented as green and dark-blue spheres, respectively. The

Mg?*-binding residues are shown as yellow sticks. Mg>* acts as a dimer stabilizer for
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993  enolases®!. Therefore, global stabilization was discovered for ENO1, ENO2, and
994  ENOS3 (see also Supplementary Table 6). For HDHD2, PPA2 and PP5C, the Zn?*-
995  induced stabilization mainly occurs at Mg**-binding regions. ¢, Overview of the local
996  stability profiles of the 90 Zn** -stabilized proteins that were not categorized as metal
997  binding. Each row represents an individual protein with its gene name labeled on the
998  left. Protein sequence lengths are normalized to 100. Protein segments are colored in a
999  heatmap color mode based on their log2FC values (not quantified by PELSA, grey). d,
1000 Dot plot showing the protein counts and p values (Fisher’s exact test) of the molecular
1001  functions enriched among the 90 Zn**-stabilized proteins that are not categorized as
1002  metal binding. e, Three IQ-motif-containing proteins (UBE3C, MYOI1C, and MYO1B)
1003  were destabilized at or around IQ motifs by 30 uM Zn** treatment. IQ motifs are
1004  interacting surfaces of EF motifs®’ which are observed stabilized by Zn>* treatment. A
1005 B30.2/SPRY-domain-containing protein HNRNPU was destabilized at B30.2/SPRY-
1006  domain, which functions as a protein-interacting module in many proteins®®. f and g,
1007  PELSA analysis of HeLa cell lysates treated with 20 uM Zn** (four lysate replicates).
1008 f, Volcano plot visualization of the top 16 most significantly destabilized proteins
1009  (log2FC > 0, ranked by -logioPvaue, Bayes t-test). The 12 proteins destabilized at
1010 known protein-protein interaction interfaces are colored and labeled in red. g,
1011  Boxplots displaying the distributions of logz fold changes of PSMCI1-6 peptides
1012  (grouped by within and outside the P-Loop-NTPase motifs). ***p < 0.001, Wilcox
1013  signed rank test.

1014
1015
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1017 Extended Data Fig. 6 | Characterization of the previously-known oKG and
1018 R2HG target proteins identified by PELSA. a, Volcano plot visualization of all
1019  proteins from a PELSA analysis of HeLa cell lysates exposed to 2 mM oKG (four
1020  lysate replicates). The previously-known aKG target proteins are marked in red. The
1021  left boundary and lower boundary of the red shadow denote log2FC of -0.5 and -
1022  logioPvalue of 3.4, respectively. Among the 40 candidate target proteins, 30 are
1023  previously-known oKG target proteins. b, Venn plots showing the numbers of
1024  candidate aKG target proteins determined by LiP-MS or PELSA (brown cycle) and
1025  all previously-known aKG target proteins included in the LiP-MS or PELSA dataset
1026  (green cycle)’’. Known target rate denotes the percentage of previously-known aKG
1027  target proteins among all determined candidate aKG target proteins; sensitivity
1028 denotes the percentage of previously-known oKG target proteins that were
1029  determined as candidate aKG target proteins (true positive / true positive + false
1030 negative). ¢, Comparing protein abundance of the previously-known aKG target
1031  proteins between HeLa cells and Jurkat cells (four lysate replicates). d, Local stability
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profiles of representative previously-known oKG targets in HeLa cell lysates by 10
mM oKG treatment (left) and 10 mM R2HG treatment (right). e, Pearson correlation
between pECso values determined in PELSA analyses of HeLLa and Jurkat cell lysates.
Top, aKG toward previously-known oKG target proteins; Bottom, R2ZHG toward
previously-known aKG target proteins. f, Dose-response curves of P3H1 measured by
PELSA in HeLa and Jurkat cell lysates toward aKG and R2HG.
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1041 Extended Data Fig. 7 | Characterization of the previously-unknown aKG and
1042 R2HG target proteins. a, Comparing local affinity profiles of PC toward aKG (left)
1043 and R2HG (right) in the HeLa and Jurkat cell lysates. b, Western-blot readout
1044  confirms the higher affinity of PC toward R2HG than aKG. ¢, Protein melting curves
1045  for the purified recombinant PC segment (residues 482-1178) under different
1046  concentrations of R2HG. d, Binding affinities of HDHD2 (left) and FAHD2A (right)
1047  toward aKG and R2HG in HeLa and Jurkat cell lysates. HDHD2 and FAHD2A are
1048  two proteins without known functions.
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1051 Extended Data Fig. 8 | Characterization of four tyrosine-phosphatase-domain-
1052  containing proteins identified by PELSA. a, Volcano plot visualizations of all
1053  proteins from PELSA analyses of HeLa (top) and Jurkat (bottom) cell lysates exposed
1054  to 10 mM (left) and 2 mM (right) oKG (four lysate replicates). Four tyrosine-protein
1055  phosphatase domain-containing proteins (PTPRC, PTPN2, PTPRE, and RNGTT) stay
1056  unchanged by either 10 mM or 2 mM oKG treatment. b, Volcano plot visualizations
1057 as in (a), but for 10 mM (left) and 5 mM (right) R2HG treatment. PTPRC, PTPN2,
1058 PTPRE, and RNGTT are only destabilized by R2HG in Jurkat cell lysates. ¢, A
1059  biological replicate of PELSA analysis on HeLa and Jurkat cell lysates treated with 10
1060 mM R2HG confirmed the R2ZHG-induced Jurkat-specific destabilizations of PTPRC,
1061 PTPN2, PTPRE, and RNGTT. Results represent four lysate replicates per PELSA
1062  analysis. d, A biological replicate of PELSA R2HG analysis in Jurkat cell lysates
1063  confirmed that R2HG-induced destabilizations of PTPRC, PTPN2, PTPRE, and
1064 RNGTT occur at their Tyr domains. Tyr is an abbreviation of protein tyrosine
1065  phosphatase domain.
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