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ABSTRACT  21 

While tremendous progress has been made in chemical proteomics for identifying 22 

protein-ligand interactions, it remains challenging for proteome-wide 23 

identification of ligand-binding regions without modifying the ligands. Here, we 24 

discovered that <disruptive trypsinization= amplifies the readout of ligand-induced 25 

protein local stability shifts, and explored this notion in developing <peptide-26 

centric local stability assay= (PELSA), a modification-free approach which 27 

achieves unprecedented sensitivity in proteome-wide target identification and 28 

binding-region determination. We demonstrate the versatility of PELSA by 29 

investigating the interactions across various biological contexts including drug-30 

target interactions, metabolism, epitope mapping, metal proteomics, and post-31 

translational modification recognition. A PELSA study of the oncometabolite 32 

R2HG revealed functional insights about its targets and pathogenic processes in 33 

both cancer and immune cells. Thus, beyond offering users unprecedented 34 

sensitivity for characterizing diverse target-ligand interactions, PELSA supports 35 

informative screening and hypothesis generation studies throughout life science.   36 

 37 

INTRODUCTION 38 

The biochemical functions of proteins invariably involve interactions with ligands of 39 

some type, which act as enzyme substrates or inhibitors, signaling molecules, 40 

allosteric modulators, structural anchors, etc. Monitoring protein-ligand interactions is 41 

thus essential for comprehending various aspects of life science, including drug 42 

mechanisms of action, regulatory processes in cellular metabolism and signaling, and 43 

the functions of uncharacterized proteins1, 2. Additionally, knowledge of the ligand-44 

binding regions holds immense value for structure-based drug design3 and biological 45 

hypothesis generation4.  46 

Modification-based methods which rely on chemical modifications of the ligands 47 

to capture ligand-binding proteins and binding regions5, 6 require extensive chemical 48 
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synthesis and may be not applicable for ligands that lack suitable sites for chemical 49 

modification7. Previously reported modification-free methods8, including CEllular 50 

Thermal Shift Assay (CETSA)9 and Thermal Proteome Profiling (TPP)10 bypass the 51 

need of ligand modification but do not support the identification of specific ligand-52 

binding regions in target proteins.  Paola et al. developed LiP-MS (limited proteolysis 53 

coupled with mass spectrometry)11, which can identify ligand-binding proteins and 54 

binding regions in the cell lysates of microbial organisms. Despite the advancements 55 

brought by LiP-MS and the subsequently developed LiP-Quant12 (a dose-response 56 

version of LiP-MS tailored for complex human cell lysates), their capacity for target 57 

identification remains limited12.  58 

Here, we propose disruptive trypsinization to directly generate MS-detectable 59 

peptides from native proteins to represent protein local stability. This digestion 60 

scheme in couple with a simple separation procedure largely reduces the complexity 61 

of peptide samples and, crucially, amplifies the readout of ligand-induced protein 62 

local stability shifts. Based on this observation, we established a method we term 63 

PEptide-centric Local Stability Assay (PELSA) that enables sensitive identification of 64 

target proteins while also preserving extensive binding-region information. We 65 

demonstrate that PELSA achieves unprecedented sensitivity in revealing ligand-66 

binding proteins through extensive comparisons against alternative methods. For 67 

example, PELSA with one drug dose and one digesting condition identified 12-fold 68 

more kinase targets for a pan-kinase inhibitor than LiP-Quant using seven drug 69 

doses12, and 2.4-fold more targets than TPP using ten temperatures10. We further 70 

demonstrate the wide application scope and excellent performance of PELSA in 71 

studies of drug promiscuity, molecular glue, epitopes, recognition domains for post-72 

translational modifications, metal proteomics, and metabolite sensing and signaling. 73 

 74 

RESULTS 75 
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Disruptive trypsinization amplifies the readout of ligand-induced protein local 76 

stability shifts  77 

Binding with a ligand can increase the stability of the ligand-binding region of a 78 

protein13, 14. The stability of a protein can be measured by its protease susceptibility15, 
79 

16. Therefore, when native proteins are partially digested into small peptides, the 80 

abundance of every individual peptide should represent a measurement of the stability 81 

of the region in which it is located. We speculate these directly generated peptides 82 

could be used for investigating ligand-induced protein local stability shifts. Because 83 

these small peptides can be easily separated from the undigested large counterparts 84 

(e.g., through differences in molecular weight), the complexity of the resulted peptide 85 

mixture will be largely reduced (compared to LiP-MS11, 12, a two-step digestion 86 

scheme for ligand-binding protein identification), which could enable detection of a 87 

rich array of peptides that are informative regarding ligand binding. 88 

Pursuing this, we used trypsinization with a high E/S ratio (enzyme/substrate, 89 

wt/wt) for a short time (i.e., 1 min) to partially digest native proteins into small 90 

peptides. We used trypsin because tryptic peptides are optimal for shotgun proteomics 91 

analysis17, and used a high E/S ratio to enable generation of a large number of small 92 

tryptic peptides. We term this digestion scheme as <disruptive trypsinization=, as 93 

trypsinization also functions here as a denaturant to destroy the protein structures to 94 

facilitate small peptide generation. The generated tryptic peptides are subsequently 95 

enriched by removing large, partially digested protein segments through a filter unit, 96 

followed by proteomics analysis.  97 

To test if our procedure could identify more peptides that are informative 98 

regarding ligand binding than existing LiP-MS methods, we worked with HeLa cell 99 

lysates and two well-studied drugs: Methotrexate (MTX) targeting DHFR18 and 100 

SHP099 targeting PTPN1119. The comparison was performed between our procedure 101 

with an E/S ratio of 1:2 (trypsin: substrate, wt/wt) and the LiP-MS approach with an 102 

initial brief digestion at an E/S ratio of 1:100 (proteinase K: substrate, wt/wt) 103 
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followed by complete trypsin digestion under denaturing conditions12. Note that the 104 

initial data quality assessment confirmed the proper operations of LiP-MS in our 105 

study (Extended Data Fig. 1a,b).  106 

Gratifyingly, both the data from MTX and SHP099 experiments showed that our 107 

procedure identified many more peptides showing statistically significant abundance 108 

changes (Bayes t-test p < 0.01, |log2FC| > 0.3) on target proteins than LiP-MS (Fig. 109 

1a, Extended Data Fig. 1c; 12 and 21 versus 6 and 4). We defined these peptides as 110 

<ligand-responsive target= (LRT) peptides. Strikingly, we observed that the LRT 111 

peptides displayed a remarkably larger <readout= (i.e., magnitude of abundance fold 112 

changes) in our procedure than in LiP-MS (Fig. 1b; medians of |log2FC|: 4.07 and 113 

3.35 versus 0.95 and 0.52). It bears emphasis that only peptides from the ligand-114 

binding domains displayed an amplified readout when using disruptive trypsinization, 115 

whereas peptides from the unbound regions remained no abundance changes upon 116 

ligand treatment (Fig. 1c). The amplified readout may be because disruptive 117 

trypsinization is a continuous multi-stage proteolysis process, in which the abundance 118 

difference of the peptides generated from the ligand-binding regions between bound 119 

and unbound states, reflects an accumulation of differences in the rates of multi-stage 120 

proteolysis (Extended Data Fig. 2). Benefiting from the amplified readout, disruptive 121 

trypsinization yielded more accurate binding region data relative to LiP-MS 122 

(Extended Data Fig. 3a-c). 123 

In conclusion, we demonstrate that our procedure can identify a rich array of 124 

peptides that are informative regarding ligand binding. Crucially, we found that 125 

disruptive trypsinization can amplify the readout of ligand-induced protein local 126 

stability shifts. Based on these observations, we propose a peptide-centric local 127 

stability assay, or PELSA, to probe ligand-binding proteins and binding regions. 128 

 129 

The PELSA approach 130 
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In the PELSA workflow (Fig. 1d), proteome samples extracted from cell lysates 131 

under native conditions are incubated with an analyte ligand (exemplified by 132 

lapatinib20, a marketed inhibitor of a membrane protein, ERBB2) or vehicle, 133 

respectively. The two sample groups are then subjected to trypsinization with a high 134 

E/S ratio (enzyme/substrate, wt/wt) (e.g., 1:2) for a short time (e.g., 1 min) followed 135 

by removing any large, partially digested protein fragments with an ultrafiltration unit 136 

(molecular weight cutoff 10 kDa). The collected peptides are then analyzed by liquid 137 

chromatography-tandem mass spectrometry (LC-MS/MS) in data-independent 138 

acquisition (DIA) mode. The quantified peptides are compared between two groups 139 

(Bayes t-test analysis) (Fig. 1e), and the peptide with the lowest p value among all 140 

quantified peptides of the same protein is selected to represent its corresponding 141 

protein for target protein identification (Fig. 1f). Notably, out of 5866 proteins, we 142 

identified the known lapatinib target protein ERBB2 as the top target candidate 143 

(unless otherwise stated, target prioritization is ranked by -log10Pvalue). Mapping the 144 

quantified peptides to protein sequences generates local stability profiles (Fig. 1g), 145 

which reveal the protein regions responsive to the ligand binding. Consistent with the 146 

previous knowledge that lapatinib binds ERBB2 via its kinase domain20, the PELSA 147 

local stability profile data showed that the ligand-responsive peptides detected for 148 

ERBB2 were all from the kinase domain (Fig. 1g). The dose-dependent local stability 149 

changes can also be assessed when PELSA experiments are performed using multiple 150 

ligand doses. Since the local stability changes of the target protein are dependent on 151 

the ligand occupancy, the dose that produces the half-maximal stability changes 152 

reflects the local binding affinity of the ligand for the corresponding protein segment. 153 

Hence, we termed the dose-response local stability changes as <local affinity profiles= 154 

(Fig. 1h).  155 

We next applied PELSA to investigate the target proteins of rapamycin, an 156 

inhibitor of multiple FKBP family proteins21. A previous LiP-MS study successfully 157 

identified FKBP1A as a rapamycin-binding protein12. Initially, we applied PELSA to 158 
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investigate rapamycin-binding proteins under experimental conditions identical to 159 

those reported in the LiP-MS paper (i.e., HeLa cell lysates, 2 µM rapamycin). 160 

Consistent with the amplified readouts observed for DHFR and PTPN11, PELSA 161 

generated a 25-fold larger readout for FKBP1A than LiP-MS (53.4 versus 2.54) (Fig. 162 

1i). Beyond FKBP1A, PELSA identified five additional FKBP family proteins as 163 

rapamycin-binding proteins (Fig. 1i), which failed to recognize as rapamycin-binding 164 

proteins in LiP-MS due to no detectable fold changes (Fig. 1i). We further 165 

demonstrated these additional FKBP family proteins has a low target occupancy 166 

under 2 µM rapamycin treatment (Extended Data Fig. 3d). These results suggested 167 

that the amplified readout equips PELSA with the sensitivity to identify low 168 

stoichiometry binding events in the cellular context. 169 

PELSA can identify not only ligand-binding regions located on a single protein, 170 

but also those that span two proteins. Rapamycin can act as a molecular glue between 171 

FKBP1A and mTOR (Fig. 1j), and the FKBP1A-rapamycin complex binds to a small 172 

segment of mTOR (residues 2015-2113)22. Beyond successful determination of FKBP 173 

domains as rapamycin-binding regions on the identified FKBP family proteins 174 

(Extended Data Fig. 3e), the PELSA local stability profiles accurately pinpointed the 175 

binding region of the FKBP1A-rapamycin complex on mTOR (Fig. 1k).  176 

Besides DIA, other quantitative proteomics methods can also be used to quantify 177 

PELSA-generated peptides. For example, we coupled PELSA with the data-178 

dependent acquisition (DDA) based cost-effective stable isotope dimethyl labeling23 179 

to investigate the binding profiles of three HSP90 inhibitors with distinct structural 180 

similarities (Extended Data Fig. 4a). PELSA successfully identified HSP90 family 181 

proteins4and determined the known binding regions (i.e., N-terminal ATP-binding 182 

domain)24 4for the three HSP90 inhibitors (Extended Data Fig. 4b,c). As expected, 183 

the structurally close inhibitors, geldanamycin and tanespimycin, shared more off-184 

targets (Extended Data Fig. 4b). The unique off-targets identified for the structurally 185 

distinct inhibitor ganetespib, AKR1C2 and MAT2A, were also validated using 186 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.17.562693doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.17.562693
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

thermal shift assay with purified proteins (Extended Data Fig. 4d), substantiating the 187 

reliability of PELSA for target identification. The dose-dependent PELSA analysis 188 

also yielded accurate binding affinity data (Extended Data Fig. 4e), aligning with 189 

results from microscale thermophoresis (MST) assay (Extended Data Fig. 4f).  190 

Taken together, we demonstrate that PELSA enables efficient target 191 

identification, precise binding-region determination, and accurate binding affinity 192 

quantification on the proteome-wide scale. 193 

 194 

PELSA’s high sensitivity in target identification  195 

Staurosporine, a pan-kinase inhibitor, has been investigated by LiP-Quant (the dose-196 

dependent version of LiP-MS) in HeLa cell lysates12 and TPP in K562 cell lysates10. 197 

To compare the performance of PELSA for target identification against these popular 198 

modification-free methods, we screened the targets of staurosporine by PELSA in 199 

both lysates of HeLa and K562 cells and compared our results with the published 200 

datasets of LiP-Quant and TPP.  201 

Using a true positive rate (TPR, defined as the percentage of kinase targets in 202 

candidate targets) cutoff of 80% (Supplementary Discussion), PELSA with one 203 

staurosporine dose yielded 120/143 (kinases/candidates) and 108/135 204 

(kinases/candidates) in K562 and HeLa cell lysates, respectively (Fig. 2a,b and 205 

Supplementary Table 1). By contrast, a LiP-Quant analysis of staurosporine in HeLa 206 

cell lysates identified 20 kinase targets (TPR of 40%)12, and 9 kinase targets were 207 

identified when the identical criterion4TPR cutoff of 80%4was applied (Fig. 2b 208 

and Supplementary Table 1), albeit with 7 drug doses and a superior LC-MS/MS 209 

analysis depth reflected by more quantified peptides12 and higher protein sequence 210 

coverages (Fig. 2c). In line with our observations in MTX, SHP099, and rapamycin 211 

experiments, the overlapped kinase targets displayed much larger readouts in PELSA 212 

than in LiP-Quant (median values of |log2FC|: 2.2 versus 0.75) (Fig. 2d). Since in 213 
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PELSA the peptides that are most relevant to ligand binding are enriched, PELSA 214 

requires lower protein sequence coverages than LiP-Quant for successful 215 

identification of target proteins (Fig. 2c), which also leads to the high sensitivity of 216 

PELSA.  217 

PELSA with one E/S ratio also identified 2.4-fold more kinase targets than TPP 218 

using ten temperatures (120 versus 51) in lysates of the same cell line (K562) (Fig. 219 

2b), although more proteins were included in the TPP dataset (7638 versus 6310)10. 220 

TPP showed a bias against the thermo-resistant and thermo-susceptible kinases, 221 

whereas PELSA is capable of identifying kinase targets with extreme melting 222 

temperatures (Fig. 2e). Moreover, PELSA also substantially outperforms the recently 223 

updated versions of TPP4iTSA, 2D-TPP, and mTSA4for staurosporine target 224 

identification: compared to PELSA9s 120 kinases/143 candidates, iTSA identified 71 225 

kinases/85 candidates25; 2D-TPP identified 60 kinases/73 candidates26 and mTSA 226 

identified 64 kinases/85 candidates27 (Supplementary Table 1). We compared the 227 

readouts of kinases in PELSA and in iTSA and mTSA, which also determine target 228 

proteins via output of abundance fold changes of proteins (i.e., readout). The 229 

comparison results showed that 44.5% of the kinases in the PELSA staurosporine 230 

dataset displayed readout of >2, while the proportions were 7.1% and 7.6% in iTSA 231 

staurosporine and mTSA staurosporine datasets, respectively (Fig. 2f). Beyond the 232 

high sensitivity in target protein identification, PELSA also brings along the capacity 233 

to identify binding regions: for kinase targets identified by PELSA, over 93% of the 234 

peptides passing the significance cutoff (Supplementary Discussion) are located in 235 

or within 10 residues away from the known staurosporine-binding domain4kinase 236 

domain (Fig. 2g). 237 

 238 

Exploring weak metabolite-protein interactions 239 
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Encouraged by the excellent performance of PELSA in drug target identification, we 240 

next examined whether PELSA is capable of detecting weak metabolite-protein 241 

interactions by investigating the binding proteins of two metabolites4folate and 242 

leucine4which are known to bind their target proteins with micromole-level 243 

affinity18, 28, 29.  244 

Folate PELSA analysis successfully identified dihydrofolate reductase DHFR (a 245 

known folate-binding protein)18 as the top hit (Fig. 3a) and revealed that the top five 246 

DHFR peptides with the most profound stabilization were mainly present in the 247 

folate-binding pocket (Fig. 3b). Beyond DHFR, PELSA also identified three Uniprot-248 

annotated folate-analog-binding proteins, i.e., MTHFR, GART, and ATIC among the 249 

top 6 most significantly stabilized proteins by folate treatment (Fig. 3a); PELSA 250 

revealed that they were all stabilized at known folate-analog-binding sites (Fig. 3c-e), 251 

indicating that folate may compete with these analogies to bind their cellular targets. 252 

The 3rd most significantly stabilized protein was a collagen proline hydroxylase, 253 

P3H1 (Fig. 3a). A previous report indicates that folate may function as a reducing 254 

agent to participate in the hydroxylation of collagen proline30. Coincidentally, the 255 

local stability profiles revealed that, albeit with 11 peptides of P3H1 quantified, only 256 

the three peptides from the prolyl 4-hydroxylase domain were stabilized by folate 257 

treatment (Fig. 3f). Our results thus provide evidence for the participation of folate in 258 

the hydroxylation of collagen proline. 259 

The top four hits (LARS, SESN2, LARS2, and GLUD1) identified for leucine 260 

were all well-known leucine-binding proteins (Fig. 3g). Notably, LARS contains two 261 

leucine-binding sites28: the synthetic site and the editing site. Our PELSA data 262 

revealed that both of the leucine-binding sites were stabilized upon leucine binding, 263 

but with distinct magnitudes (Fig. 3h). This observation supports the potential of 264 

PELSA to informatively differentiate between discrete ligand-binding sites in a single 265 

protein.  266 
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Our PELSA data also showed that leucine treatment destabilized SLC1A5 (Fig. 267 

3g), an amino acid transporter located at the plasma membrane that can accept leucine 268 

as a substrate31. While the PELSA dataset included three SLC1A5 peptides, only one 269 

was destabilized (Fig. 3i): the peptide located at the extracellular segment of the 270 

substrate-binding domain (residues 54 to 483)32, suggesting that leucine binding may 271 

induce this segment to adopt a more flexible conformation. Beyond known leucine-272 

binding targets, PELSA identified additional putative leucine targets including 273 

PPIP5K1 and PPIP5K2 (Fig. 3g), which are reported to involve with cancer cell 274 

proliferation33, 34. Notably, PELSA revealed that leucine binds both PPIP5K1 and 275 

PPIP5K2 at the conserved functional histidine phosphatase domains (Fig. 3j), which 276 

may provide clues for future function studies of leucine.  277 

 278 

Characterizing the recognition domains of PTMs  279 

Post-translational-modifications (PTMs) can be recognized by downstream effector 280 

proteins (so-called 88readers99) through the recognition domains (Fig. 4a) to regulate 281 

cellular events5. However, the interactions between PTMs and reader proteins are 282 

often weak and transient. Despite recent progress in modification-based methods5, 35, 283 

it remains challenging to identify reader proteins and recognition domains of PTMs in 284 

complex cellular environment. We wondered whether PELSA is able to fill this gap. 285 

Here we focused on phosphotyrosine (pY), exemplified by the pYEEI motif 286 

which preferentially binds Src-kinase SH2 domains36. PELSA revealed that 28 287 

proteins were significantly stabilized by pYEEI, among which 9 proteins contain SH2 288 

domains (Fig. 4b). By contrast, we did not identify any SH2-domain-containing 289 

proteins in our pulldown experiment (Fig. 4c), possibly because the weak interactions 290 

between pY and its reader proteins37 are susceptible to loss during the stringent 291 

washing procedure. Beyond the advantages over pulldown in detecting weak PTM-292 

protein interactions, PELSA also featured with recognition domain identification. As 293 
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anticipated, peptides located in the SH2 domains displayed a significantly reduced 294 

abundance, whereas peptides out of the SH2 domains remained unchanged (Fig. 4d). 295 

Notably, SH2 domains from different protein families were stabilized by pYEEI with 296 

varying magnitudes (Fig. 4e and Supplementary Table 2): in accordance with the 297 

binding preference of pYEEI36, the SH2 domain of the Src kinase YES1 displayed the 298 

most profound stabilization. Several Ca2+-regulating proteins were found stabilized by 299 

pYEEI at the Ca2+-regulating regions (Fig. 4f and Supplementary Table 2), although 300 

the underlying mechanism is unclear.  301 

Although only recognition domains of pY were investigated here, it is reasonable 302 

to further extend the application scope to investigate the recognition domains of many 303 

other PTMs, which is crucial to understand the biological functions of the PTMs. 304 

 305 

The high-resolution binding data of PELSA enables epitope identification  306 

We then asked whether PELSA can determine the ligand-binding regions when the 307 

ligand is a protein such as an antibody (Fig. 4g). To this end, two commercial 308 

antibodies (against DHFR or CDK9) were investigated with PELSA using HeLa cell 309 

lysates. PELSA quantified 6806 and 6207 proteins in DHFR and CDK9 antibody 310 

experiments, respectively, and the corresponding antigen proteins DHFR and CDK9 311 

were found in the top 5 most significantly stabilized proteins in respective 312 

experiments (Fig. 4h). Of note, most of the significantly stabilized non-antigen 313 

proteins (-log10Pvalue > 5, log2FC < 0, Bayes t-test) contain multiple stabilized 314 

peptides (Supplementary Table 3) indicating the high confidence of their 315 

interactions with the added antibody, possibly resulting from the low specificity of the 316 

antibodies.   317 

Four out of the 15 quantified DHFR peptides displayed a significantly reduced 318 

abundance (Bayes t-test p < 0.01, log2FC < -0.3) upon DHFR antibody binding (Fig. 319 

4i). Strikingly, their tryptic cleavage sites were located exactly in the known epitope 320 
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(residues 172-187) (Fig. 4i). CDK9 antibody recognizes a 13-amino-acid epitope4321 

sequence PATTNQTEFERVF (residues 360-372)4which is located at the tail of 322 

CDK9. The local stability profiles revealed that peptide NPATTNQTEFER (NPxxER, 323 

residues 358-370) with C terminus cleavage site located exactly in the epitope 324 

displayed a significantly reduced abundance (Bayes t-test p < 0.001, log2FC = -2.28) 325 

(Fig. 4j), whereas even the peptide (residues 346-357) with C terminus two residues 326 

away from the epitope remained unchanged (-log10Pvalue = 0.153, log2FC = 0.07, 327 

Bayes t-test). Notably, the missed cleavage form of NPxxER4NPxxVF (residues 328 

358-372)4displayed an opposite direction of change with NPxxER (Fig. 4j), which 329 

can be explained: binding with antibody inhibited the trypsinization at residue 370; 330 

thus, less amount of NPxxER (residues 358-370) was generated, and thereby more 331 

NPxxVF (residues 358-372) was left (Fig. 4k). Overall, these results indicated that 332 

PELSA can identify the epitopes on antigen proteins at high resolution. 333 

 334 

Assaying Zn2+ responsive regions across the proteome 335 

Next, we wondered whether PELSA is applicable for the ligand with a small size, like 336 

a single-atom metal ion4Zn2+, which typically binds protein on a small zinc-finger 337 

(ZnF) motif composed of ~30 amino acids38. The cell lysates depleted of endogenous 338 

Zn2+ were treated with varying concentrations of Zn2+ or vehicle, and then subjected 339 

to PELSA analysis (Extended Data Fig. 5a). After 30 μM Zn2+ treatment, 280 340 

proteins were significantly stabilized (-log10Pvalue > 3, log2FC < -0.5, Bayes t-test), 341 

among which ~68% (190 proteins) were Uniprot-annotated metal-binding proteins 342 

(Fig. 5a,b). This proportion was substantially higher than that in the measured 343 

proteome (19%) (Fig. 5b). Among the 190 metal-binding proteins identified by 344 

PELSA, 112 are Uniprot-annotated Zn2+-binding proteins, and 78 are proteins known 345 

to be bound by other divalent metal ions highlighted by Ca2+, Mg2+, Fe2+, and Mn2+ 346 

(Fig. 5c and Supplementary Table 4), indicating a divalent-metal-ion promiscuity, 347 

which is frequently observed in metal-binding proteins39. Zn2+-binding proteins have 348 
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been previously investigated with chemical probes40. In that study, 38 putative Zn2+-349 

binding proteins were determined: 6 were Uniprot-annotated Zn2+-binding proteins 350 

and 9 were other-metal-binding proteins (Supplementary Table 5). This comparison 351 

demonstrated the excellent performance of PELSA in identifying metal-binding 352 

proteins.  353 

Beyond precisely determining the small Zn2+-binding sites (Fig. 5d-g, 354 

Supplementary Discussion), PELSA revealed that Zn2+ stabilized the Ca2+-, Fe2+-, 355 

and Mg2+-binding proteins at Ca2+-, Fe2+-, and Mg2+-binding regions, respectively 356 

(Fig. 5h,i, Extended Data Fig. 5b, and Supplementary Table 6) which is agreement 357 

with previous findings that Zn2+ can occupy the binding pockets of other divalent 358 

metal ions41, 42. Our PELSA analysis also provided a local stability atlas of 90 Zn2+-359 

stabilized proteins that were not categorized as metal binding (Extended Data Fig. 360 

5c); Gene ontology analysis of these 90 proteins revealed an enrichment of GTP-361 

binding proteins (Extended Data Fig. 5d), particularly Ras-related proteins 362 

(Supplementary Table 4). One Ras-related protein, RAB1A, has been previously 363 

reported as a Zn2+-buffering protein43. Our results indicate a potential prevalent role 364 

of Ras-related proteins in regulating cellular Zn2+ homeostasis. 365 

Proteins will be destabilized, if ligands bind to their partner proteins and 366 

dissociate the partner proteins from the formed protein complexes10, 44. Among the top 367 

18 proteins destabilized by Zn2+ (log2FC > 0, ranked by -log10Pvalue, Bayes t-test), 12 368 

proteins were destabilized at known protein-protein interaction interfaces (Fig. 5j-l, 369 

Extended Data Fig. 5e, Supplementary Table 6, and Supplementary Discussion). 370 

This specific destabilization is also recapitulated in PELSA 20 μM Zn2+ analysis 371 

(Extended Data Fig. 5f,g and Supplementary Table 6), suggesting the potential of 372 

PELSA to monitor the assembly states of protein complexes.   373 

 374 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.17.562693doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.17.562693
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

Target landscapes of α-ketoglutarate and R-2-hydroxyglutarate in HeLa and 375 

Jurkat cells  376 

Isocitrate dehydrogenase (IDH) gene mutations are frequently observed in multiple 377 

human cancers45; these mutations can impart a neomorphic enzyme activity wherein 378 

α-ketoglutarate (αKG) can be converted to the R enantiomer of 2-hydroxyglutarate 379 

(R2HG)46. R2HG is structurally similar to αKG (Fig. 6a) and has been reported to act 380 

as a weak competitive inhibitor of multiple αKG-dependent dioxygenases (KGDDs)47.  381 

The highly simple and similar structures of these two metabolites make it challenging 382 

to identify their binding proteins through modification-based methods. Moreover, the 383 

low affinity of these two metabolites, especially R2HG (often up to millimole-level 384 

affinity)48, further exacerbates the difficulty of target identification. As a result, 385 

despite wide-recognized roles of R2HG in cancer development49, 50, there is no 386 

proteome-wide investigation of R2HG binding proteins.  387 

We used PELSA to explore the binding proteins of αKG and R2HG in lysates of 388 

HeLa and Jurkat cells. PELSA analysis of 2 mM αKG treated HeLa cell lysates 389 

identified 40 significantly stabilized proteins (-log10Pvalue > 3.4, log2FC < -0.5, 390 

Bayes t-test), among which 30 are previously-known αKG targets (65 in total in this 391 

dataset; Extended Data Fig. 6a,b)51. This represents the largest number of known 392 

αKG targets identified in a single analysis. Although αKG has been investigated in a 393 

LiP-MS study with E.coli lysates52, only 2 previously-known αKG targets were 394 

identified (33 in total in the LiP-MS dataset; Extended Data Fig. 6b).  395 

As anticipated, PELSA R2HG analyses identified fewer known αKG targets than 396 

PELSA αKG analyses in both HeLa and Jurkat cell lysates (Fig. 6a). The cell-line 397 

comparison revealed that protein-hydroxylase targets were underrepresented in Jurkat 398 

cells (Fig. 6b) relative to HeLa cells, which can be explained by the differential 399 

expression levels of protein hydroxylases in these two cell lines (Extended Data Fig. 400 

6c).  401 
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PELSA also enables the determination of αKG-binding regions for tens of αKG 402 

targets in a single analysis (Extended Data Fig. 6d and Supplementary Table 7). 403 

Previous co-crystal structural studies of purified KDM4A in complex with R2HG 404 

revealed that R2HG occupies the same binding pocket as αKG47. Note that for 405 

multiple αKG targets, our PELSA data of both HeLa and Jurkat cell lysates indicate 406 

that R2HG binds the same pockets as αKG (Extended Data Fig. 6d and 407 

Supplementary Table 7). 408 

PELSA determined the binding affinities between αKG (R2HG) and 44 409 

previously-known αKG targets in lysates of HeLa and Jurkat cells (Fig. 6c). In 410 

agreement with previous findings47, PELSA revealed that R2HG has lower binding 411 

affinities for KGDDs compared to αKG (Fig. 6c). Although the binding affinities in 412 

the two cell lysates are well correlated (Extended Data Fig. 6e), we observed that 413 

P3H1 displayed a higher affinity for both αKG and R2HG in Jurkat cell lysates 414 

compared to HeLa cell lysates (Fig. 6c and Extended Data Fig. 6f), which may 415 

represent the distinct regulating factors (e.g., interacting partners and post-416 

translational modifications) of P3H1 in HeLa and Jurkat cells.  417 

 418 

Previously unknown targets of αKG and R2HG 419 

PELSA identified 19 high-confidence (Supplementary Discussion) previously-420 

unknown targets of αKG or R2HG and determined their binding affinities in both 421 

HeLa and Jurkat cell lysates (Supplementary Table 8). Notably, many of these 422 

proteins are involved with energy metabolism, including amino acid metabolism, 423 

glycolysis, oxidative phosphorylation (OXPHOS), and TCA cycle anaplerosis (Fig. 424 

6d). Interestingly, different from KGDDs which bind more strongly to αKG than 425 

R2HG, pyruvate carboxylase (PC), an enzyme critical for TCA anaplerosis, was 426 

identified to bind both αKG and R2HG, but with higher affinity toward R2HG than 427 

αKG in lysates of both HeLa and Jurkat cells (Fig. 6d and Extended Data Fig. 7a). 428 
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This finding was also confirmed by dose-response experiments via western-blot 429 

readouts (Extended Data Fig. 7b). The PELSA local affinity data also revealed that 430 

R2HG stabilized PC on the segment responsible for the transfer of carboxy group to 431 

pyruvate (Extended Data Fig. 7a)53. We purified this segment and verified the 432 

stabilization by R2HG using a thermal shift assay (Extended Data Fig. 7c). IDH 433 

mutations can lead to remarkably high R2HG levels, accompanied by disruption of 434 

redox homeostasis and alteration of amino acid metabolism and TCA cycle 435 

anaplerosis46. Little is known about whether R2HG has a role in these metabolism 436 

alterations and how R2HG functions. Our PELSA evidence for the interactions 437 

between R2HG and the proteins (involved with the TCA cycle anaplerosis, amino 438 

acid metabolism, and OXPHOS) (Fig. 6d) thus yields an insight into the aberrant 439 

cellular metabolism in IDH-mutated cancer cells.  440 

Beyond the enzymes with well-known functions, we also identified two putative 441 

enzymes without known substrates, i.e., HDHD2 and FAHD2A (Supplementary 442 

Table 8); their interactions with αKG/R2HG and relative binding affinities to these 443 

two metabolites (Extended Data Fig. 7d) may afford clues for their biological 444 

functions. 445 

In addition to the targets stabilized by αKG and R2HG, we found that a group of 446 

tyrosine-protein phosphatase domain-containing proteins4PRPRC, PTPRE, PTPN2, 447 

and RNGTT4were destabilized exclusively in R2HG-treated Jurkat cell lysates 448 

(Extended Data Fig. 8a,b). Moreover, these proteins were all destabilized at their 449 

shared tyr-protein phosphatase domains (Fig. 6e); this R2HG-induced Jurkat-specific 450 

destabilization was also confirmed by another biological replicate of PELSA R2HG 451 

analysis (Extended Data Fig. 8c,d). R2HG has been reported to suppress T cell 452 

receptor (TCR) signaling54. Notably, PTPRC, a membrane protein that functions as a 453 

gatekeeper of TCR signaling55, was also among the R2HG-destabilized proteins. 454 

PTPRC is known to employ its tyr-protein phosphatase domains to regulate TCR 455 

signaling (by dephosphorylating, and thus activating LCK) (Fig. 6f). Our PELSA data 456 
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indicating that R2HG destabilized PTPRC9s tyr-protein phosphatase domains 457 

therefore uncovers a possible basis to help explain previous reports of R2HG-458 

mediated suppression of TCR signaling54. Overall, our dose response PELSA 459 

analyses of αKG and R2HG in the two cell lines provide informative interaction data 460 

for future hypothesis generation studies of αKG and R2HG. 461 

 462 

DISCUSSION  463 

In this study, we found that disruptive trypsinization amplifies the readout of ligand-464 

induced protein local stability shifts, and developed this concept into a powerful 465 

technology4PELSA4which allows simultaneous sensitive target protein 466 

identification and ligand-binding region determination in native cellular environment 467 

without ligand modification. Compared against existing modification-free methods 468 

that enable binding region determination (LiP-MS methods)12, PELSA identified 6-469 

fold more FKBP family target proteins (6 versus 1) for rapamycin and 12-fold more 470 

kinase targets (108 versus 9) for a pan-kinase inhibitor (staurosporine) than LiP-MS 471 

and LiP-Quant, respectively. Compared with prevalent modification-free methods that 472 

do not yield binding region information (TPP methods), PELSA identified 1.7-2.4 473 

times more kinase targets for staurosporine than TPP and recently revised TPP 474 

methods (iTSA, 2D-TPP, and mTSA).  475 

Beyond high sensitivity in target identification, PELSA9s peptide-level readout 476 

also enables binding-region determination. PELSA detects the ligand-induced local 477 

stability shifts to deduce ligand-binding regions. In some cases, i.e., when the binding 478 

signals are propagated to distal locations within the domain through cooperative intra-479 

segment interactions56, 57, PELSA can accurately and sensitively determine the ligand-480 

binding domains. For example, PELSA simultaneously determined staurosporine-481 

binding domains for 120 kinases, which represents the largest number of ligand-482 

binding regions determined in a single analysis. In other cases, i.e., when ligand 483 
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binding only affects the stability of certain residues of the proteins, PELSA can 484 

determine the binding residues. This was demonstrated by determining a 13-amino-485 

acid epitope for an antibody and Zn2+ binding residues within a 60-amino-acid 486 

domain.  487 

Our study also provides a powerful solution for identifying recognition domains 488 

of PTMs. A recent study reported that a tri-functional amino acid can enable 489 

identifying PTM-binding regions when it is placed 1 or 2 residues away from the 490 

PTM sites of interest5. However, the case of phosphotyrosine (pY) binding has shown 491 

that alteration of the +2 and +3 positions can profoundly alter the binding profiles of 492 

pY58. PELSA does not require prior modification of the analyte ligand, and we have 493 

successfully applied PELSA to characterize the recognition domains of pY in this 494 

study. Given the ubiquity of PTM-mediated regulation in biology and the many 495 

pathological associations of dysregulation PTMs59, 60, PELSA9s ability to identify 496 

recognition domains of PTMs in human cell lysates will almost certainly motivate its 497 

use in many, highly diverse biological and medical studies.  498 

We also showcase the capacity of PELSA for sensitively and informatively 499 

probing weak interactions by identifying the binding proteins of leucine, folate, αKG, 500 

and R2HG. While previous studies have employed modification-based or 501 

modification-free methods to investigate metabolite-binding proteins52, 61, 62, these 502 

approaches often generate a large number of candidate targets with a limited number 503 

of known metabolite-binding proteins. In contrast, PELSA results consistently exhibit 504 

a significantly higher percentage of known-binding events. For instance, in a prior 505 

LiP-MS study of αKG-treated E.coli lysates52, 34 candidate targets were identified 506 

with 2 known αKG binding proteins. In comparison, PELSA identified 40 candidate 507 

targets, and notably, 30 of these were known αKG binding proteins, despite using a 508 

more complex lysate sample (human HeLa cell lysate). We envision that PELSA9s 509 

improved hit rate has the potential to significantly streamline the validation process in 510 

hypothesis-generation studies.   511 
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In summary, we demonstrate PELSA is a highly sensitive and generic method to 512 

reveal binding regions on proteins of very diverse ligand types (including drugs, 513 

antibodies, phosphorylated peptides, metal ions, and metabolites) on a proteomics 514 

scale, without the need for chemical modification of the analyte ligand. Beyond 515 

ligand binding, the transition of a protein between different proteoforms (e.g, the 516 

presence or absence of post-translational modification)63 may also induce protein 517 

stability shifts, and thus could also be investigated by PELSA. We envision that 518 

PELSA will find wide utilization throughout life science research.  519 
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FIGURES 722 

 723 

Fig. 1 | Establishment of PELSA. a, Volcano plot visualizations of all peptides 724 

generated by LiP-MS (LiP) or Disruptive Trypsinization (DT) of HeLa lysates 725 

exposed to 10 μM methotrexate (MTX) or 10 μM SHP099 (four lysate replicates per 726 

experiment). b, Comparing readouts of the ligand-responsive target (LRT) peptides 727 

generated by LiP-MS and disruptive trypsinization. Central line in the box shows the 728 

median (labeled), box boundaries indicate the upper and lower interquartile range 729 

(IQR), and whiskers correspond to most extreme values, or to 1.5-fold IQR if the 730 

extreme values are above this cutoff. c, Left: the peptide shared in two digestion 731 

schemes and from SHP099-binding domains, display amplified readout when using 732 
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disruptive trypsinization. Right: two peptides located outside the SHP099-binding 733 

region remained unchanged by SHP099 treatment in disruptive trypsinization. Four 734 

replicates (mean ± S.D.). NS, not significant. d, Workflow of PELSA. e, Volcano plot 735 

visualization of all peptides from a PELSA analysis of BT474 lysates exposed to 100 736 

nM lapatinib. f, Volcano plot as in (e) but on the protein-level. g, Local stability 737 

profiles to reveal ligand-binding regions. The upper and lower boundaries of the grey 738 

shaded area represent log2FCs of 0.3 and -0.3, respectively. h, Local affinity profiles 739 

to reveal the local binding affinity of a ligand. Heat map representation of log2 peptide 740 

fold changes of ERBB2 with increasing lapatinib concentrations (0 nM, 100 nM, 1 741 

μM, 10 μM, and 100 μM). i, Volcano plot visualizations of all proteins from a PELSA 742 

analysis or a published LiP-MS analysis12 of HeLa lysates exposed to 2 μM 743 

rapamycin. j, Complex structure of mTOR, rapamycin, and FKBP1A (PDB: 1FAP). k, 744 

Local stability profiles of mTOR for 2 μM rapamycin treatment. 745 
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 747 

Fig. 2 | Comparing target identification performance of PELSA with existing 748 

modification-free methods. a, Volcano plot visualization of all proteins from PELSA 749 

analyses of K562 (left) and HeLa (right) lysates exposed to 20 μM staurosporine. The 750 

lower boundary of the red shadow denotes the threshold of -log10Pvalue, above which 751 

over 80% of the stabilized proteins (log2FC < 0) are kinases. b, True positive rate 752 

(TPR) evaluation for the selected assays in staurosporine target identification. The 753 

labeled points represent the numbers of identified candidate targets and kinase targets 754 

in each assay (TPR up to 80%). LiP-Quant is also labeled at the kinase target number 755 

of 20 (TPR = 40%). The grey line (slope = 1) and black dashed line (slope = 0.8) 756 

represent 100% and 80% of the candidate targets are kinase targets, respectively. c, d, 757 

**p < 0.01 and ***p < 0.001, Wilcoxon signed-rank test; medians are labeled and 758 

other settings are as Fig.1b. (c), Protein sequence coverages for the whole quantified 759 

proteome (left) and identified kinase targets (right) in LiP-Quant HeLa and PELSA 760 

HeLa analyses. (d), Fold changes of kinase targets that were identified by both LiP-761 

Quant (using TPR cutoff of 40%) and PELSA (HeLa). e, Comparing melting 762 

temperatures (Tm) of identified kinase targets and all quantified kinases in the TPP 763 

dataset and two PELSA datasets. Some PELSA kinase targets lack TPP-reported Tm 764 
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values. f, Comparing the fold changes of kinases quantified in PELSA, iTSA, and 765 

mTSA. g, Density plots showing -log10Pvalue distributions of peptides with tryptic 766 

cleavage sites located in and outside the kinase domains for K562 and HeLa PELSA 767 

analyses. The dashed lines indicate the significance cutoffs defined in (a). The 768 

doughnut charts show the location distributions of the kinase peptides that passed the 769 

significance cutoffs.  770 

Note: Kinase targets refer to kinase proteins that are identified as staurosporine-771 

binding proteins; quantified kinases refer to all kinases in the dataset including kinase 772 

proteins that are not identified as staurosporine-binding proteins. LiP-Quant, TPP, 773 

iTSA, and mTSA datasets were retrieved from the literatures10, 12, 25, 27. 774 
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776 

Fig. 3 | Detecting weak metabolite-protein interactions. a, Volcano plot 777 

visualization of all proteins from a PELSA analysis of K562 lysates exposed to 50 778 

μM folate. b, Complex structure of folate and DHFR generated by superposition of 779 

human DHFR (PDB: 1BOZ) against E.coli DHFR-folate complex (PDB: 4EJ1). 780 

Folate, yellow spheres; the top five peptides with the most profound stabilization 781 

(Bayes t-test, -log10Pvalue > 2, ranked by -log2FC) are colored in red. c, Complex 782 

structure of folate analog (yellow spheres) and ATIC (PDB: 1P4R). The peptide with 783 

most profound stabilization is colored in red. d, Local stability profiles of MTHFR by 784 

50 μM folate treatment. e, Complex structure of folate analog (yellow spheres) and 785 

GART (PDB: 1RBY). The absolute log2FC values of all quantified GART peptides 786 

are < 0.5, and thus the top two peptides with the lowest p value (Bayes t-test) are 787 

colored in red. f, Local stability profiles of P3H1 by 50 μM folate treatment. g, 788 

Volcano plot as in (a) but of analysis of K562 lysates exposed to 5 mM leucine. h, 789 

Structure of LARS in complex of leucine (multicolor spheres) both in the editing site 790 

and the synthetic site (PDB: 6KQY) with peptides colored based on their log2FC 791 

values. i, Topology model of SLC1A5 generated by Protter64. Protein sequences are 792 

colored based on their log2FC values. j, Local stability profiles of PPIP5K1 (left) and 793 

PPIP5K2 (right) by 5 mM leucine treatment.  794 
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 795 

Fig. 4 | Identifying recognition domains of a PTM and localizing epitopes of 796 

antigens. a, Schematic representation of PELSA to reveal the PTM-recognition 797 

domain. b, Scatter plot of protein -log10Pvalues in PELSA (pYEEI/YEEI) and PELSA 798 

(pYEEI/pSEEI) (Methods). The dashed lines indicate the significance cutoff (-799 

log10Pvalues = 3.1). The proteins passing the significance cutoff are colored: SH2-800 

containing proteins, red; Ca2+-regulating proteins, blue; others, grey. c, Scatter plot as 801 

in (b) but for the pulldown experiment (three lysate replicates). The dashed lines 802 

indicate a relaxed significance cutoff (-log10Pvalues = 2). No SH2-domain containing 803 

proteins passed the significance cutoff. d, Log2FC distributions of the peptides (from 804 

9 SH2-containing target proteins) that reside in and out of the SH2 domains. Violin 805 
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plots represent relative densities and the settings of the inner boxplots are as Fig. 1b. 806 

***p < 0.001, Wilcoxon signed-rank test. e and f, Local stability profiles of SH2-807 

containing proteins from different protein families (e) and representative Ca2+-808 

regulating proteins (f) by pYEEI treatment. g, Schematic representation of PELSA to 809 

reveal the epitope. h, Volcano plot visualization of all proteins from PELSA analyses 810 

of HeLa lysates exposed to DHFR antibody (left) or CDK9 antibody (right). i and j, 811 

Local stability profiles of DHFR and CDK9 by DHFR antibody and CDK9 antibody 812 

treatment, respectively. k, Intensities of NPxxVF and NPxxER, and their sum. Four 813 

replicates (mean ± S.D.). 814 
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 816 

Fig. 5 | Characterization of Zn2+ proteome revealing the stabilized metal-binding 817 

regions and destabilized protein-protein interfaces. a, Volcano plot visualization of 818 

all proteins from a PELSA analysis of HeLa lysates exposed to 30 μM ZnCl2. The 819 

right boundary and lower boundary of the red shadow denote log2FC of -0.5 and -820 

log10Pvalue of 3, respectively. b, Proportions of metal-binding proteins in the whole 821 

dataset and in the significantly stabilized subset. ***p < 0.001, Fisher9s exact test. 822 

Pie-chart denotes the percentage of known Zn2+-binding proteins among all the 823 

stabilized metal-binding proteins. c, Compositions of the metal-binding proteins that 824 

were stabilized by 30 μM Zn2+ treatment. d, h, i, and k, Log2FC distributions of 825 
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peptides that reside in and out of the indicated domains. ***p < 0.001, Wilcoxon 826 

signed-rank test. (h), EF-hand/EH motifs are known Ca2+-binding motifs65. (k), P-827 

loop-NTPase domains are the binding surfaces of the adjacent members of PSMC 828 

complex66. e, Local stability profiles of representative ZnF-containing proteins. f, 829 

Local stability profiles of LIMA1. g, LIM domain of LIMA1 (PDB: 2D8Y) with 830 

peptides colored based on log2FC values. Zn2+-binding residues: yellow sticks; zinc 831 

ions: dark-purple spheres. j, The zoom-in view of the volcano plot that displayed in 832 

(a). l, Surface representation of PSMC1-6, PSMD11, and PSMD12 complex (PDB: 833 

5LN3) viewed from the lateral side with PSMC3 exposed (left) and viewed from the 834 

top (right). This complex is destabilized at the interacting surfaces of its members 835 

(colored in magenta).  836 
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 838 

Fig. 6 | Characterizing binding profiles of αKG and R2HG in two cell lines. a, 839 

Bubble plots displaying the numbers of αKG and R2HG targets identified by PELSA 840 

(Supplementary Discussion). The inner bubble denotes previously-known αKG 841 

targets; the outer denotes all candidate αKG/R2HG targets identified by PELSA. b, 842 

The radiation diagram depicts categories of the previously-known αKG targets 843 

identified in αKG-HeLa, αKG-Jurkat, R2HG-HeLa, and R2HG-Jurkat. The central 844 

donut reflects the proportions of each protein category occupied in the annotated 845 

PELSA analysis. Each node around the cycle denotes one protein. The linkage 846 
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between the node and the donut denotes the protein is identified as a target protein in 847 

this PELSA analysis. The labeled number denotes the count of previously-known 848 

αKG targets identified in each analysis (total count identified across all 849 

concentrations). c, Heatmap displaying pEC50 values of 44 previously-known αKG 850 

targets toward αKG and R2HG (measured by PELSA in both HeLa and Jurkat cell 851 

lysates). Grey cells in the heatmaps indicate no measurements. d, Schematics of 852 

simplified glycolysis, TCA cycle, amino acid metabolism, and OXPHOS pathways. 853 

The putative αKG and R2HG targets are marked in red with binding affinities 854 

indicated. e, Local affinity profiles of four tyrosine-phosphatase-domain-containing 855 

proteins for R2HG treatment in Jurkat cell lysates. f, PTPRC is an upstream regulator 856 

of TCR signaling. R2HG destabilized PTPRC at its functional domains. 857 

 858 
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 861 

Extended Data Fig. 1 | Data quality assessment of in-house performed LiP-MS 862 

experiments.  863 

a, Intensities of peptides generated by LiP-MS (top) or disruptive trypsinization 864 

(bottom) show excellent correlations across replicates. b, The proportions of half-865 

tryptic peptides in our in-house-performed LiP-MS experiments (40.5% and 39.9%), 866 

agree well with that reported in the literature (i.e., 40%)11. c, Bar-plots displaying the 867 

numbers of ligand-responsive target (LRT) peptides (i.e., target protein peptides that 868 

showed |log2FC| > 0.3 & -log10Pvalue > 2) in the LiP-MS datasets and disruptive 869 

trypsinization datasets.  870 
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 872 

Extended Data Fig. 2 | Possible mechanism for the amplified readout of protein 873 

local stability shifts in disruptive trypsinization 874 

The overall proteolysis process for LiP-MS can be clearly separated into two steps: an 875 

initial proteolysis by proteinase K (PK) and a later denaturation-assisted complete 876 

digestion by trypsin. In contrast, the disruptive trypsinization should be 877 

conceptualized as a continuous, multi-stage proteolysis process, which comprises a 878 

successive sequential 8steps9 (i.e., cleavage reactions) as each new trypsin-sensitive 879 

site is exposed. The initial proteolysis of both LiP-MS and disruptive trypsinization 880 

typically occurs at the flexible segments for their accessibility to the proteolytic sites 881 

of protease, and ligand binding will stabilize the flexible segments, thereby delaying 882 

the initial proteolysis (kb1 < ku1). In the LiP-MS procedure, the initial proteolysis is 883 

performed with a broad-specificity protease, PK, to generate large protein segments. 884 

These large protein segments in both the ligand-treated and control samples are then 885 

subjected to indiscriminate denaturation, followed by complete indiscriminate 886 

trypsinization. As such, only the proteolysis rate in the initial proteolysis is altered 887 

upon ligand binding. In disruptive trypsinization, trypsin is used for the whole multi-888 

stage proteolysis to generate small peptides (shown in the figure). At the initial stage, 889 

only the flexible segments that contain lysine (K) or arginine (R) are cleaved due to 890 

the substrate specificity of trypsin, which results in cleaved proteins. The cleaved 891 

regions of the cleaved proteins are unstable, so they unfold and expose more K or R to 892 

facilitate continuing trypsinization. The cleaved proteins generated under the bound 893 

state are likely to retain the bound ligand for their relatively intact structures. The 894 

bound ligand could again delay the continuing trypsinization (kb2 < ku2). Moreover, 895 

due to the delayed initial trypsinization, the bound cleaved proteins also have a lower 896 

concentration than the unbound form (Pb1 < Pu1). According to Michaelis-Menten 897 

equation, at low substrate concentration (which is likely the case for individual 898 

proteins in the proteome sample), the digestion reaction can be regarded as a first-899 

order reaction: proteolysis rate (R2) = substrate concentration (P1) * rate constant (k2). 900 

With the combination of ligand protection (kb2 < ku2) and the smaller substrate 901 

concentration (Pb1 < Pu1), the rate difference between bound and unbound states in 902 
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stage 2 digestion is larger than that in stage 1 digestion, thus resulting in an amplified 903 

abundance difference of proteolysis products (Pu2/Pb2 > Pu1/Pb1 >1). This 904 

amplification could last until the bound ligand is dissociated from the cleaved proteins. 905 

The substrate of stage n trypsinization is the proteolysis product of stage (n-1). The 906 

slope of the proteolysis profile is defined by the proteolysis rate, R. 907 

 908 

  909 
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 910 

Extended Data Fig. 3 | The amplified readouts in PELSA facilitate the 911 

localization of ligand-binding regions and the identification of ligand-binding 912 

proteins with low target occupancy. a, Complex structure of DHFR-MTX (PDB: 913 

1U72) with protein segments colored based on the quantification results of their 914 

corresponding peptides generated by two-step digestion in LiP-MS (left) or by 915 

disruptive trypsinization in PELSA (middle): changed (-log10Pvalue > 2 and |log2FC| > 916 

0.3), red; unchanged (|log2FC| < 0.3), grey; not available (not quantified or |log2FC| > 917 

0.3 but -log10Pvalue < 2), cyan. The drug ligand MTX is shown as sticks (yellow). 918 

Two labeled segments at a distance of less than 4 Å from MTX displayed large fold 919 

changes in PELSA but remained unchanged in LiP-MS; Euclidean distance in the 920 

table is the minimal distance between the ligand atoms and the peptide atoms of the 921 

corresponding protein segment. b, Complex structure of PTPN11 and SHP099 922 
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(surface representation, PDB: 5EHR). PTPN11 is composed of N-SH2, C-SH2, and 923 

PTP domains; SHP099 is an allosteric inhibitor of PTPN11, known to bind at the 924 

central tunnel formed at the interface of the three domains19. c, Abundance changes of 925 

PTPN11 peptides generated by LiP-MS (left) or disruptive trypsinization (right) under 926 

10 µM SHP099 treatment. The x axis represents the protein sequence from N to C-927 

terminus, with protein length annotated; the y axis shows the log2 fold changes in 928 

abundance of the peptides (log2FC). The upper and lower boundaries of the grey 929 

shaded area represent log2FCs of 0.3 and -0.3, respectively. In LiP-MS, a number of 930 

peptides remained unchanged even though they are located in the domains associated 931 

with allosteric regulation of SHP099. By contrast, all 21 disruptive trypsinization 932 

peptides that are positioned within the domains associated with allosteric regulation of 933 

SHP099, displayed a statistically significant fold change (-log10Pvalue > 2 and 934 

|log2FC| > 0.3), whereas the 2 unchanged peptides are from the C-terminal tail of 935 

PTPN11, which do not participate in SHP099 binding. d, Top: volcano plot 936 

visualization of all proteins from a PELSA analysis of HeLa cell lysates exposed to 10 937 

µM rapamycin; Bottom: comparing magnitude of fold changes (log2 transformed) of 938 

seven FKBP family proteins under 2 µM rapamycin and 10 µM rapamycin treatment. 939 

When increasing concentration of rapamycin to 10 µM, the fold change of FKBP1A 940 

remained relatively constant, while five of the remaining six FKBP family proteins 941 

showed a more than 2-fold increase in the magnitudes of fold changes (the sixth 942 

showed 1.44-fold increase; the labeled values represent log2 transformed increased 943 

values). This result indicates the low target occupancy of the remaining six FKBP 944 

family proteins under 2 µM rapamycin treatment. e, Local stability profiles of FKBP 945 

family proteins under 2 µM rapamycin treatment. Only peptides from FKBP domains 946 

display altered abundance. 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 
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 962 

Extended Data Fig. 4 | PELSA couples with dimethyl labeling quantification for 963 

reliable target protein identification, precise binding region localization, and 964 

accurate binding affinity determination. a, Structures of three HSP90 inhibitors 965 

used in this study. The red cycle indicates the structural difference between 966 

geldanamycin and tanespimycin. b, Scatter plots of protein log2 fold changes 967 

(Supplementary Discussion) in HeLa cell lysates treated with three HSP90 inhibitors 968 

in two MS/MS analyses. Proteins with |log2FC| >1.4 are colored as indicated in the 969 

legend. c, Local stability profiles of HSP90 family proteins under 100 µM 970 

geldanamycin (top), 100 µM tanespimycin (middle), and 100 µM ganetespib (bottom) 971 
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treatment. NTD refers to N-terminal ATP binding domain; CTD refers to C-terminal 972 

domain. d, Protein melting curves of purified recombinant AKR1C2 (top) and 973 

MAT2A (bottom) after incubation with different concentrations of ganetespib. e, 974 

PELSA-determined dose-response curves for HSP90AA1 in HeLa cell lysates 975 

incubated with three HSP90 inhibitors at different concentrations. f, Dose-response 976 

curves as in (e) but measured by microscale thermophoresis assays using purified 977 

HSP90AA1. 978 

  979 
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 980 

Extended Data Fig. 5 | Characterization of the zinc proteome. a, Volcano plot 981 

visualizations of all proteins from PELSA analyses of HeLa lysates exposed to 1 μM, 982 

10 μM, 20 μM, or 40 μM ZnCl2 (four lysate replicates). Uniprot-annotated known 983 

metal-binding proteins are highlighted in red. The Zn2+ concentrations used for 984 

further analysis are 20 μM and 30 μM (Supplementary Discussion). b, 985 

Representative Mg2+-binding proteins that were stabilized by 30 μM Zn2+. From left 986 

to right: ENO1 homodimer in complex with Mg2+ (PDB: 2PSN), HDDC2 in complex 987 

with Mg2+ (PDB: 4DMB), PPA2 (AlphaFold: AF-Q9H2U2-F1-mod), and PPP5C in 988 

complex of Mn2+ (PDB: 1WAO). Protein segments are colored based on log2FC 989 

values as indicated in the legend. NA denotes no detection (cyan). The magnesium 990 

and manganese ions are represented as green and dark-blue spheres, respectively. The 991 

Mg2+-binding residues are shown as yellow sticks. Mg2+ acts as a dimer stabilizer for 992 
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enolases21. Therefore, global stabilization was discovered for ENO1, ENO2, and 993 

ENO3 (see also Supplementary Table 6). For HDHD2, PPA2 and PP5C, the Zn2+-994 

induced stabilization mainly occurs at Mg2+-binding regions. c, Overview of the local 995 

stability profiles of the 90 Zn2+ -stabilized proteins that were not categorized as metal 996 

binding. Each row represents an individual protein with its gene name labeled on the 997 

left. Protein sequence lengths are normalized to 100. Protein segments are colored in a 998 

heatmap color mode based on their log2FC values (not quantified by PELSA, grey). d, 999 

Dot plot showing the protein counts and p values (Fisher9s exact test) of the molecular 1000 

functions enriched among the 90 Zn2+-stabilized proteins that are not categorized as 1001 

metal binding. e, Three IQ-motif-containing proteins (UBE3C, MYO1C, and MYO1B) 1002 

were destabilized at or around IQ motifs by 30 µM Zn2+ treatment. IQ motifs are 1003 

interacting surfaces of EF motifs67 which are observed stabilized by Zn2+ treatment. A 1004 

B30.2/SPRY-domain-containing protein HNRNPU was destabilized at B30.2/SPRY-1005 

domain, which functions as a protein-interacting module in many proteins68.  f and g, 1006 

PELSA analysis of HeLa cell lysates treated with 20 µM Zn2+ (four lysate replicates). 1007 

f, Volcano plot visualization of the top 16 most significantly destabilized proteins 1008 

(log2FC > 0, ranked by -log10Pvaue, Bayes t-test). The 12 proteins destabilized at 1009 

known protein-protein interaction interfaces are colored and labeled in red. g, 1010 

Boxplots displaying the distributions of log2 fold changes of PSMC1-6 peptides 1011 

(grouped by within and outside the P-Loop-NTPase motifs). ***p < 0.001, Wilcox 1012 

signed rank test. 1013 

  1014 
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 1016 

Extended Data Fig. 6 | Characterization of the previously-known αKG and 1017 

R2HG target proteins identified by PELSA. a, Volcano plot visualization of all 1018 

proteins from a PELSA analysis of HeLa cell lysates exposed to 2 mM αKG (four 1019 

lysate replicates). The previously-known αKG target proteins are marked in red. The 1020 

left boundary and lower boundary of the red shadow denote log2FC of -0.5 and -1021 

log10Pvalue of 3.4, respectively. Among the 40 candidate target proteins, 30 are 1022 

previously-known αKG target proteins. b, Venn plots showing the numbers of 1023 

candidate αKG target proteins determined by LiP-MS or PELSA (brown cycle) and 1024 

all previously-known αKG target proteins included in the LiP-MS or PELSA dataset 1025 

(green cycle)52. Known target rate denotes the percentage of previously-known αKG 1026 

target proteins among all determined candidate αKG target proteins; sensitivity 1027 

denotes the percentage of previously-known αKG target proteins that were 1028 

determined as candidate αKG target proteins (true positive / true positive + false 1029 

negative). c, Comparing protein abundance of the previously-known αKG target 1030 

proteins between HeLa cells and Jurkat cells (four lysate replicates). d, Local stability 1031 
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profiles of representative previously-known αKG targets in HeLa cell lysates by 10 1032 

mM αKG treatment (left) and 10 mM R2HG treatment (right). e, Pearson correlation 1033 

between pEC50 values determined in PELSA analyses of HeLa and Jurkat cell lysates. 1034 

Top, αKG toward previously-known αKG target proteins; Bottom, R2HG toward 1035 

previously-known αKG target proteins. f, Dose-response curves of P3H1 measured by 1036 

PELSA in HeLa and Jurkat cell lysates toward αKG and R2HG.  1037 

 1038 
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 1040 

Extended Data Fig. 7 | Characterization of the previously-unknown αKG and 1041 

R2HG target proteins. a, Comparing local affinity profiles of PC toward αKG (left) 1042 

and R2HG (right) in the HeLa and Jurkat cell lysates. b, Western-blot readout 1043 

confirms the higher affinity of PC toward R2HG than αKG. c, Protein melting curves 1044 

for the purified recombinant PC segment (residues 482-1178) under different 1045 

concentrations of R2HG. d, Binding affinities of HDHD2 (left) and FAHD2A (right) 1046 

toward αKG and R2HG in HeLa and Jurkat cell lysates. HDHD2 and FAHD2A are 1047 

two proteins without known functions.  1048 
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 1050 

Extended Data Fig. 8 | Characterization of four tyrosine-phosphatase-domain-1051 

containing proteins identified by PELSA. a, Volcano plot visualizations of all 1052 

proteins from PELSA analyses of HeLa (top) and Jurkat (bottom) cell lysates exposed 1053 

to 10 mM (left) and 2 mM (right) αKG (four lysate replicates). Four tyrosine-protein 1054 

phosphatase domain-containing proteins (PTPRC, PTPN2, PTPRE, and RNGTT) stay 1055 

unchanged by either 10 mM or 2 mM αKG treatment. b, Volcano plot visualizations 1056 

as in (a), but for 10 mM (left) and 5 mM (right) R2HG treatment. PTPRC, PTPN2, 1057 

PTPRE, and RNGTT are only destabilized by R2HG in Jurkat cell lysates. c, A 1058 

biological replicate of PELSA analysis on HeLa and Jurkat cell lysates treated with 10 1059 

mM R2HG confirmed the R2HG-induced Jurkat-specific destabilizations of PTPRC, 1060 

PTPN2, PTPRE, and RNGTT. Results represent four lysate replicates per PELSA 1061 

analysis. d, A biological replicate of PELSA R2HG analysis in Jurkat cell lysates 1062 

confirmed that R2HG-induced destabilizations of PTPRC, PTPN2, PTPRE, and 1063 

RNGTT occur at their Tyr domains. Tyr is an abbreviation of protein tyrosine 1064 

phosphatase domain. 1065 
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