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Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat drug resistance. Tradeoffs are 
common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions 
remain about the extent to which the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question 
is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory 
settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that 
provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing 
lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common 
antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these 
mutants group into six classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of 
mutants affects fitness through different molecular mechanisms. Some of the groupings we find are surprising. For example, 
we find some mutants that resist single drugs do not resist their combination, and some mutants to the same gene have 
different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive 
tradeoffs when designing multidrug treatments that thwart resistance. On the other hand, by demonstrating that hundreds 
of adaptive mutations can be reduced to a relatively smaller number of groups, our findings suggest that resistance evolves 
through a relatively small number of mechanisms, which may facilitate multidrug strategies to thwart resistance as well as 
more general evolutionary predictions. By grouping mutants that likely affect fitness through similar underlying mechanisms, 
our findings also inform efforts to map the phenotypic impacts of mutation. 
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Introduction
How many different molecular mechanisms can a microbe 
exploit to adapt to a challenging environment? Answering this 
question is particularly urgent in the field of drug resistance 
because infectious populations are adapting to available 
drugs faster than new drugs are developed (Ventola 2015; 
Centers for Disease Control and Prevention (U.S.) 2019). 
Understanding the mechanistic basis of drug resistance 
can inform strategies for how to combine existing drugs in 
a way that prevents the evolution of resistance (Andersson 
and Hughes 2010; Melnikov et al. 2020; Pinheiro et al. 
2021). For example, one strategy exposes an infectious 
population to one drug (Drug A) knowing that the mechanism 
of resistance to Drug A makes cells susceptible to Drug B 
(Hall et al. 2009; Pál et al. 2015; Baym et al. 2016; Roemhild 
et al. 2020). Problematically, these multi-drug strategies 
perform best when all mutants that resist Drug A have a 
tradeoff in the second drug (Figure 1A). If there are multiple 
different mechanisms to resist Drug A, some of which come 
with different tradeoffs, these treatment strategies could fail 

(Figure 1B), and they sometimes do (Grier et al. 2003; Abel 
zur Wiesch et al. 2014; Wang et al. 2019; Scarborough et al. 
2020). 

Laboratory experiments that have power to search for 
universal tradeoffs – where all the mutants that perform 
well in one environment perform poorly in another – often 
find there are mutants that violate trends or the absence of 
trends altogether (Hill et al. 2015; Nichol et al. 2019; Kinsler 
et al. 2020; Gjini and Wood 2021; Ardell and Kryazhimskiy 
2021; Herren and Baym 2022). Another way to phrase this 
observation is to say that adaptive mutations often have 
effects in environments other than the one in which they 
originally evolved. These effects, referred to as ‘pleiotropic’ 
effects, are unpredictable and context dependent (Jerison et 
al. 2020; Geiler-Samerotte et al. 2020; Bakerlee et al. 2021; 
Chen et al. 2023). In sum, observations from many fields 
suggest that diverse mechanisms can improve a microbe’s 
performance in a given environment resulting in diverse 
tradeoffs in other environments. 
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A related conclusion is that our knowledge of the mechanisms 
contributing to adaptation, even adaptation resulting in 
resistance to widely used drugs, is incomplete. This gap in 
knowledge is partly due to the fact that mutations that provide 
the strongest fitness advantage often dominate evolution. 
Thus, in the clinic, and in laboratory experiments, the same 
drug-resistant mutations repeatedly emerge (Lupetti et al. 
2002; Berkow and Lockhart 2017; Melnikov et al. 2020; 
Ksiezopolska et al. 2021), potentially leading to the false 
impression that the mechanistic basis of resistance to a 
particular drug is less varied than may be true. This problem is 
amplified by the limitations of most DNA sequencing methods, 
particularly that they cannot detect mutations present in 
less than 10% of cells (Good et al. 2017). The problem also 
reflects the expense of whole genome sequencing and the 
challenge of identifying novel adaptive mutations (Martínez 
and Lang 2023), both of which can encourage screens for 
known resistance mutations (Su et al. 2019) and impede 
searches for novel targets. In order to design better multi-
drug treatment strategies that thwart resistance, or to see 
if such strategies are even feasible, we need methods to 
survey a more complete set of mutations (and mechanisms) 
that can contribute to adaptation. 

Fortunately, single-cell and single-lineage DNA sequencing 
technologies are allowing us to more deeply sample genetic 
diversity in evolving populations of microbes (Schmidt and 
Efferth 2016). Here, we leverage a platform to perform 
massively-replicate evolution experiments in yeast. This 
platform has been shown to reveal the full spectrum of 
mutations underlying adaptation to a particular environment 
(Levy et al. 2015). The key to its success is that it uses DNA 
barcodes to track all competing adaptive lineages, not just the 
ones that ultimately rise to appreciable frequency. We apply 
this platform to investigate mechanisms underlying resistance 
to a specific antifungal drug: fluconazole (FLU) (Wang et al. 
2022; Logan et al. 2022). Although serious fungal infections 

are most common in immunocompromised individuals, their 
impact on global health is still striking, resulting in over 1.5 
million deaths annually (Xie et al. 2014; Iyer et al. 2022). 
Fungi are eukaryotes, which severely limits the number of 
possible drug targets that do not cause host toxicity (Xie et 
al. 2014). As a result, azoles are one of only three classes of 
antifungal drugs used to treat fungal infections. This amplifies 
the problem of drug resistance, as resistance to one azole 
commonly confers resistance to others of the same class, 
decreasing treatment options (Berman and Krysan 2020). 
By focusing on mechanisms of azole resistance, we to 
contribute to a growing literature about the tradeoffs that 
may be leveraged to design multidrug treatment strategies 
(Cowen and Lindquist 2005; Hill et al. 2015; Ksiezopolska et 
al. 2021; Iyer et al. 2022). However, our primary goal is more 
generic: we seek to explore the utility of a high-throughput 
evolutionary approach to enumerate the mechanisms of drug 
resistance. 

To enhance the diversity of mechanisms underlying drug 
resistance in our experiment, we performed multiple 
laboratory evolutions in a range of FLU concentrations 
and sometimes in combination with a second drug. We did 
so because previous work has shown that different drug 
concentrations and combinations select for different azole 
resistance mechanisms (Cowen and Lindquist 2005; Hill et al. 
2015). Ultimately, we obtained a large collection of 774 yeast 
strains that are adaptive in at least one of the environments 
we study from which we could begin to investigate the 
mechanistic basis of FLU-resistance. 

But how do we go about deciphering the molecular 
mechanisms that contribute to drug resistance and 
susceptibility across such a large collection of mutants? 
Typical phenotyping methods, e.g., quantifying expression 
levels of drug export pumps (Miyazaki et al. 1998) or of the 
drug targets themselves (Palmer and Kishony 2014), are 
low throughput and require some a priori knowledge of the 
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Figure 1: A multidrug treatment strategy that relies on all mutants having the same tradeoffs. (A) All of the mutants that resist Drug A do so via a 
similar mechanism such that all are sensitive to Drug B. (B) There are multiple different types of mutants that resist Drug A, not all of which are sensitive 
to Drug B.
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phenotypes that may be involved in resistance. Instead, many 
studies focus on identifying the genetic basis of adaptation 
in order to glean insights about the underlying mechanisms 
(Tenaillon et al. 2012; Cowen et al. 2014; Venkataram et al. 
2016). However, genotyping lineages from barcoded pools 
is technically challenging (Venkataram et al. 2016), and 
further, genotype does not necessarily predict phenotype 
(Eguchi et al. 2019; Brettner et al. 2022b). For example, 
previous work using the same massively-replicate evolution 
platform that we use here discovered that many of mutations 
that provide an advantage in glucose-limited conditions are 
in genes comprising a canonical glucose-sensing pathway 
(Venkataram et al. 2016). Yet despite this similarity at the 
genetic level, follow-up work showed that these mutants did 
not all experience the same tradeoffs when exposed to new 
environments (Li et al. 2018b; Kinsler et al. 2020). 

Instead of trying to identify the phenotypic or even the 
genetic basis of adaptation, here we strive to enumerate 
different classes of FLU-resistant mutants. Understanding 
how many different mutant classes exist informs questions 
about the feasibility (or infeasibility) of multi-drug therapy 
(Figure 1). We sort evolved FLU-resistant yeast strains 
into classes based on whether they share similar tradeoffs 
across environments. Previous work suggests that mutants 
with different fitness tradeoffs may affect fitness through 
different molecular mechanisms (Rodrigues et al. 2016; Li 
et al. 2019; Pinheiro et al. 2021). Our work is thus part of a 
growing push to flip the problem of mechanism on its head 
by, instead of using mechanism to predict fitness, using 
how fitness varies across environments to learn about the 
causative mechanisms underlying fitness differences (Li et 
al. 2019; Kinsler et al. 2020; Petti et al. 2023). 

Across our collection of 774 adaptive yeast lineages we 
discovered at least six distinct groups with characteristic 
tradeoffs. For example, we find some drug resistant mutants 
are generally advantageous, while others are advantageous 
only in specific environments. And we find some mutants 
that resist single drugs also resist combinations of those 
drugs, while others do not. By grouping mutants with similar 
tradeoffs, we reduce the number of unique drug-resistant 
mutants from more than can be easily phenotyped (774) to a 
manageable panel for investigating the mechanistic basis of 
drug resistance. 

With regard to drug regimens that exploit tradeoffs (Figure 1), 
our finding of multiple mutant classes with different tradeoffs 
suggests this may not be straightforward. The outlook is 
further complicated by our finding that some classes of FLU-
resistant mutant primarily emerge from evolution experiments 
that did not contain FLU. This, as well as limits on our power 
to observe mutants with strong tradeoffs, suggest there 
may be additional mechanisms of FLU resistance beyond 
what we sampled (see (Cowen and Lindquist 2005)). Still, 
nuanced strategies to thwart resistance in cases where 
there are multiple types of resistant mutant are emerging 
(Maltas and Wood 2019; Gjini and Wood 2021; Wang et al. 
2023). For example, one idea is to apply a drug regimen 
that enriches for mutants that suffer strong tradeoffs before 

exploiting those tradeoffs (Iram et al. 2020). Another idea is 
to perform single-cell sequencing on infectious populations 
to discover which classes of mutants are present (Nagasawa 
et al. 2021; Forsyth et al. 2021) and design treatments 
specific to those (Maltas and Wood 2019; Aissa et al. 2021; 
Hsieh et al. 2022). Our findings support that such ideas may 
be feasible by demonstrating that there are not as many 
unique fitness tradeoffs as there are mutations. Our work – 
showing that 774 mutants fall into a much smaller number 
of groups – contributes to growing literature suggesting that 
the phenotypic basis of adaptation is not as diverse as the 
genetic basis (Kinsler et al. 2020; Iwasawa et al. 2022; Petti et 
al. 2023). This winnowing of diversity may make evolutionary 
processes, for example, whether an infectious population will 
adapt to resist a drug, somewhat more predictable (Rodrigues 
et al. 2016; Lässig et al. 2017; Kinsler et al. 2020; Yoon et al. 
2021; King et al. 2022; Wortel et al. 2023).

Results
Barcoded evolution experiments uncover hundreds of 
yeast lineages with adaptive mutations
In order to create a sizable collection of drug-resistant 
mutants, we performed high-replicate evolution experiments 
utilizing barcoded yeast (Levy et al. 2015; Li et al. 2018b; 
Boyer et al. 2021). This barcoding system allows evolving 
hundreds of thousands of genetically identical yeast lineages 
together in a single flask. Each lineage is tagged with a 
unique DNA barcode, which is a 26 base pair sequence of 
DNA located within an artificial intron. Lineages with unique 
barcodes can be thought of as independent replicates of 
an evolution experiment. This high-replicate system has 
the potential to generate many different yeast lineages that 
differ by single adaptive mutations (Venkataram et al. 2016; 
Kinsler et al. 2020). 

We performed a total of 12 barcoded evolution experiments, 
each of which started from the same pool of approximately 
300,000 barcoded yeast lineages (Figure S1). These 
evolutions survey how yeast cells adapt to different 
concentrations and combinations of two drugs: fluconazole 
(FLU) and radicicol (RAD) (Table 1). FLU is a first line of 
defense against yeast infections, but over the past two 
decades diverse resistant mutations have been identified 
(Bongomin et al. 2017; Rybak et al. 2022; Osset-Trénor et 
al. 2023). Some earlier work suggested that FLU-resistant 
mutants are sensitive to the second drug we study, radicicol 
(RAD) (Cowen and Lindquist 2005; Cowen et al. 2009), and 
more generally that RAD can prevent the emergence of drug 
resistance in other systems (Whitesell et al. 2014). However, 
there are some mutants that are cross resistant to both FLU 
and RAD (Hill et al. 2015), and the prominent mechanism 
of resistance can differ with the intensity of selection and 
drug concentration (Cowen and Lindquist 2005; Yang et 
al. 2023). We thus chose to evolve yeast to resist different 
concentrations and combinations of FLU and RAD to 
generate a diverse pool of adaptive mutations comprising 
different mechanisms of drug resistance. 

We evolved yeast to resist three different concentrations of 
either FLU and RAD for a total of six single-drug conditions 
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(Table 1). We also studied four conditions containing 
combinations of both drugs, as well as two control conditions, 
for a total of 12 evolution experiments (Table 1). We chose 
to study subclinical drug concentrations with the hope that 
no drug treatment would be strong enough to reduce the 
population of yeast cells to only a handful of unique barcodes 
(Figure S2). We needed to maintain barcode diversity in 
order to evolve a large number of unique lineages that each 
accumulate different mutations. 

With the goal of collecting adaptive lineages from each 
evolution experiment, we took samples from each of our 12 
barcoded evolutions after 3 - 6 growth/transfer cycles (Figure 
S1). This represents roughly 24 to 48 generations of growth 
assuming 8 generations per growth/transfer cycle (Levy et al. 
2015). We sampled early because previous work using this 
barcoded evolution system demonstrated that the diversity of 
adaptive lineages is highest after just a few dozen generations 
(Levy et al. 2015; Venkataram et al. 2016). We sampled 
about 2,000 cells from each evolution experiment except 
those three containing high FLU from which we sampled 
only 1,000 cells. We then tested our sampled lineages for 
the presence of adaptive mutations by measuring the fitness 
of all ~21,000 isolates (2,000 cells x 9 conditions + 1000 
cells x 3 conditions) relative to their ancestor (Venkataram 
et al. 2016). To do so, we pooled these 21,000 isolates and 
used this pool to initiate fitness competition experiments. We 
competed the pool against control strains, i.e., strains of the 
ancestral genotype that do not possess adaptive mutations 
(Venkataram et al. 2016; Kinsler et al. 2020). We performed 
24 such competitive fitness experiments, 2 per each of the 
original 12 evolution conditions. In each experiment, we 
emulated the growth and transfer conditions of the original 
evolution experiments as precisely as possible, tracking how 
barcode frequencies changed over 5 growth/transfer cycles 
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Table 1: A list of the environments included in this study

(~40 generations). We used the log-linear slope of this 
change, relative to the average slope for the control strains, 
to quantify relative fitness. 

We found many barcodes had slopes that were more 
positive than the control strains, suggesting that they 
possess adaptive mutations that improved their fitness 
(Figure S3). In fact, some of these adaptive lineages 
outcompeted the other lineages so quickly that it posed a 
challenge. Barcodes pertaining to outcompeted lineages 
were often not present at high enough coverage to track 
their fitness. We applied a conservative filter, preserving 
only 774 lineages with barcodes that were observed >500 
times in at least one replicate experiment per each of the 
12 environments. Lineages that have low fitness rarely 
pass this filter, thus our 774 lineages are biased towards 
those that are reproducibly adaptive in the environments 
we study (Figure S4). Despite this biased sample, we will 
go on to demonstrate that there are likely many different 
mechanisms of adaptation represented among these 774 
lineages. 

To provide evidence that these 774 barcoded yeast lineages 
indeed possess adaptive mutations, we performed whole 
genome sequencing on a subset of 62 strains. Because we 
sampled these lineages after only a few dozen generations 
of evolution, each lineage differs from the ancestor by just 
a few mutations, making it easy to pinpoint the genetic 
basis of adaptation. Doing so revealed mutations that have 
previously been shown to be adaptive in our evolution 
conditions (Table S1). For example, we sequenced many 
FLU-resistant yeast lineages finding 35 with unique single 
nucleotide mutations in either PDR1 or PDR3, and a few 
with mutations in SUR1 or UPC2, genes which have all 
been shown to contribute to FLU resistance in previous 
work (Flowers et al. 2012; Vasicek et al. 2014; Tanaka and 
Tani 2018; Uemura and Moriguchi 2022; Vu and Moye-
Rowley 2022). Similarly, lineages that have very high 
fitness in RAD were found to possess single nucleotide 
mutations in genes associated with RAD resistance, such 
as HDA1 (Robbins et al. 2012) and HSC82, which is the 
target of RAD (Roe et al. 1999). We also observed several 
lineages with similar mutations to those observed in other 
studies using this barcoded evolution regime, including 
mutations to IRA1, IRA2 and GPB2 (Venkataram et al. 
2016; Kinsler et al. 2020). Previous barcoded evolutions 
also observed that increases in ploidy were adaptive, with 
43 to 60% of cells becoming diploid during the course 
of evolution (Venkataram et al. 2016). However, ploidy 
changes contributed less to adaptation in our experiment, 
with at most 9.4% of cells becoming diploid by the time 
point when we sampled, but often less than 2% (Table S2). 
In sum, we conclude that we have created a diverse pool of 
774 barcoded yeast lineages, most of which have a fitness 
advantage in one of the conditions we study and are likely 
to possess a unique adaptive mutation. The question we 
address for the rest of this study is to what extent these 
hundreds of mutant lineages differ from one another in terms 
of the mechanism/s underlying their fitness advantages. 
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Figure 2: Two different classes of FLU-resistant mutants with unique tradeoffs. (A) This panel describes the 100 mutant lineages with the highest 
fitness relative to the control strains in the high FLU environment (8μg/ml FLU). The vertical axis depicts the fitnesses (log-linear slopes relative to control 
strains) for these 100 strains in four selected environments, including the high FLU environment (boxed). Boxplots summarize the distribution across all 
100 lineages for each environment, displaying the median (center line), interquartile range (IQR) (upper and lower hinges), and highest value within 1.5 × 
IQR (whiskers). (B) The 100 lineages with highest fitness in high FLU were most often sampled from evolution experiments containing FLU. (C) Similar to 
panel A, this panel describes the 100 mutant lineages with the highest fitness relative to the control strains in the high RAD environment (20uM Rad). (D) 
The 100 lineages with highest fitness in high RAD were most often sampled from evolution experiments that did not contain FLU, and yet they provide a 
fitness advantage in the high FLU condition. (E) A pairwise correlation plot showing that all 774 mutants, not just the two groups of 100 depicted in panels 
A and C, to some extent fall into two groups defined by their fitness in high FLU and high RAD. The contours (black curves) were generated using kernel 
density estimation with bins = 7. These contours describe the density of the underlying data, which is concentrated into two clusters defined by the two 
smallest black circles.  The 100 mutants with highest fitness in high FLU are blue, highest fitness in high RAD are red, and the seven that overlap between 
the two aforementioned categories are black. 

A unique mechanisms of FLU resistance emerges among 
mutants isolated in RAD evolutions
The majority of the 774 adaptive lineages that we study have 
higher fitness than the ancestral strains in not one, but often 
in several drug conditions. This suggests that pleiotropy, 
and in particular cross-resistance, is prevalent among the 
lineages we study. But not all lineages show the same 
patterns of cross resistance (Figure 2). For example, the 100 
most fit lineages in our highest concentration of fluconazole 
are also beneficial in our highest concentration of radicicol 
(Figure 2A; leftmost two boxplots). As expected, these 
100 lineages also have high fitness in conditions where high 
concentrations of FLU and RAD are combined (Figure 2A; 
third boxplot). And these 100 most-fit lineages in FLU lose 
their fitness advantage in conditions where no drug is present 
(Figure 2A; rightmost boxplot). 

Given their high fitness in conditions containing FLU, it 
seems likely that these 100 mutants originated from evolution 
experiments containing FLU. Before we pooled the lineages 
we sampled from each of our 12 evolution experiments, 
we independently sequenced each sample. This allows us 
to trace every lineage back to the evolution experiment/s it 
originated from. As we expected, these 100 best performing 
lineages in high FLU largely originate from evolution 
experiments containing FLU (Figure 2B). Given that these 

lineages have no fitness advantage in conditions containing 
no drug, it is also unsurprising that they are underrepresented 
in evolution experiments lacking RAD and FLU (Figure 2B).

It might be tempting to generalize that most mutations that 
provide drug resistance are not beneficial in environments 
without drugs. Afterall, we show this is true for a large 
number of independent lineages (Figure 2A). Further, many 
previous studies find a similar pattern, whereby drug resistant 
mutants often do not have high fitness in the absence of 
drug (Andersson and Hughes 2010; Basra et al. 2018; 
Allen et al. 2019; Melnikov et al. 2020), such that treatment 
strategies have emerged that cycle patients between drug 
and no drug states, albeit with mixed success (Baker et al. 
2018; Raymond 2019; Wang et al. 2019; Algazi et al. 2020). 
However, this type of generalization is not supported by our 
data. We find that drug resistance can sometimes come with 
an advantage, rather than a cost, in the absence of a drug 
(Figure 2C). The top 100 most fit mutants in our highest 
concentration of RAD provide a fitness advantage in high 
RAD, high FLU, as well as in environments with no drug 
(Figure 2C). These observations suggest that there are at 
least two different mechanisms by which to resist FLU that 
result in different tradeoffs in other environments (Figure 2A 
vs. 2C). 
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Intriguingly, these multidrug resistant lineages that maintain 
their fitness advantage in the absence of drug (Figure 2C) 
mainly originate from evolution experiments performed in 
conditions lacking FLU (Figure 2D). This highlights how the 
potential mechanisms by which a microbe can resist a drug 
may be more varied than is often believed. Typically, one 
doesn’t search for FLU-resistant mutants by evolving yeast 
to resist RAD. Thus typical studies might miss this unique 
class of FLU-resistant mutants. 

In sum, there appear to be at least two different types of 
mutants present among our collection of 774 adaptive yeast 
lineages. One group has almost equally high fitness in RAD 
and FLU but has no fitness advantage over the ancestral strain 
in conditions without either drug (Figure 2A & 2E). Another 
group is defined by very high fitness in RAD, moderately 
high fitness in FLU and moderately high fitness in conditions 
without either drug (Figure 2C & 2E). When comparing 
fitness in RAD vs. FLU across all 774 lineages, not only the 
top 100 best performing in each drug, we see some evidence 
that they largely fall into the two main categories highlighted 
in figures 2A and 2C (Figure 2E). Thus it might be tempting 
to conclude that there are two different types of FLU-resistant 
mutant in our dataset. However, sorting mutants into groups 
using a pairwise correlation plot (Figure 2E) excludes data 
from ten of our twelve environments. 

A strategy to differentiate classes of drug-resistant 
mutants with different tradeoffs
The observation of two distinct types of adaptive mutants 
(Figure 2) made us wonder whether there were additional 
unique types of FLU-resistant mutants with their own 
characteristic tradeoffs. This is difficult to tell by using pairwise 
correlation like that in Figure 2E because we are not studying 
pairs of conditions, as is somewhat common when looking 
for tradeoffs to leverage in multidrug therapies (Scarborough 
et al. 2020; Melnikov et al. 2020; Ardell and Kryazhimskiy 
2021; Larkins-Ford et al. 2022). Instead, we have collected 
fitness data from across 12 conditions to yield a more 
comprehensive set of gene-by-environment interactions for 
each mutant. This type of data, describing how a particular 
genotype responds to environmental change, is sometimes 
called a ‘reaction norm’ and can inform quantitative genetic 
models of how selection operates in fluctuating environments 
(Gomulkiewicz and Kirkpatrick 1992; Ogbunugafor 2022) 
and how much pleiotropy exists in nature (Yadav et al. 2015). 
More recent studies refer to the changing performance of 
a genotype across environments as a ‘fitness profile’ or in 
aggregate, a ‘fitness seascape,’ and suggest these type of 
dynamic measurements are the key to designing effective 
multi-drug treatments (King et al. 2022) and to predicting 
evolution (Lässig et al. 2017; Kinsler et al. 2020; Cairns et 
al. 2022; Iwasawa et al. 2022; Chen et al. 2023). And when 
the environments studied represent different drugs, these 
types of data are often referred to as “collateral sensitivity 
profiles” a term chosen to convey how resistance to one drug 
can have “collateral” effects on performance in other drugs 
(Pál et al. 2015; Maltas and Wood 2019; Gjini and Wood 
2021). Despite the wide interest in this type of fitness data, 
it is technically challenging to generate, thus many previous 

studies of fitness profiles focus on a much smaller number 
of isolates (Imamovic et al. 2018; Nichol et al. 2019; Maltas 
and Wood 2019), sometimes with variation restricted to a 
single gene (Mira et al. 2015; King et al. 2022), or evolved 
in response to a single selection pressure (Li et al. 2018b; 
Kinsler et al. 2020). Here, we have generated fitness profiles 
for a large and diverse group of drug-resistant strains using 
the power of DNA barcodes. Now we seek to understand 
whether these mutants fall into distinct classes that each have 
characteristic fitness profiles (i.e., characteristic tradeoffs, 
characteristic reaction norms, or characteristic gene-by-
environment interactions). 

To address this question, we perform dimensional reduction, 
clustering mutants with fitness profiles that have a similar 
shape. It is in theory possible for all mutants to have similar 
profiles, perhaps implying they all affect fitness through 
similar underlying mechanisms (Figure 3A). However, the 
disparity reported in Figure 2 suggests otherwise. It’s also 
possible that every mutant will have a different profile. This 
could happen if each mutant affects different molecular-
level phenotypes that underlie its drug resistance (Figure 
3B). But previous work suggests that the phenotypic basis 
of adaptation is less diverse than the genotypic basis. This 
is important because it means that evolutionary outcomes 
are more predictable at the level of phenotype (Kinsler et al. 
2020; Brettner et al. 2022b; Iwasawa et al. 2022). Even so, 
every mutant could have a slightly different fitness profile if 
each affects the same handful of molecular-level phenotypes 
but to relatively different degrees. This would allow every 
mutant to have a unique response to environmental change, 
without requiring that there be as many unique molecular 
mechanisms underlying drug resistance as there are mutants. 
A final possibility is that there exist discrete classes of drug-
resistant mutants with characteristic tradeoffs (Figure 3C). 
This might imply that each class of mutants provides drug 
resistance via a different molecular mechanism, or a different 
set of mechanisms. In sum, our endeavor to enumerate 
mutants with different fitness profiles speaks to general 
questions about the extent of pleiotropy in the genotype-
phenotype-fitness map (Boyle et al. 2017; Geiler-Samerotte 
et al. 2020; Bakerlee et al. 2021; Chen et al. 2023), the 
extent to which fitness tradeoffs are universal (Andersson 
and Hughes 2010; Li et al. 2019; Herren and Baym 2022), 
and relatedly, the predictability of evolution and potential for 
controlling evolutionary processes (Lässig et al. 2017; Iram 
et al. 2020; Kinsler et al. 2020; King et al. 2022; Petti et al. 
2023).

To see whether there are distinct classes of adaptive mutants 
among our drug-resistant yeast lineages, we applied uniform 
manifold approximation and projection (UMAP) (McInnes 
et al. 2018a) to fitness measurements for 774 yeast strains 
across all 12 environments. This method places mutants with 
similar fitness profiles near each other in two-dimensional 
space. As might be expected, it largely places mutants in 
each of the two categories described in Figure 2 far apart, 
with drug-resistant mutants that lose their benefit in the 
absence of drug in the top half of the graph, and those that 
maintain their benefit in the bottom half (Figure 3D & Figure 
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S5). 
Beyond the obvious divide between the top and bottom 
clusters of mutants on the UMAP, we used a gaussian 
mixture model (Fraley and Raftery 2003) to identify clusters. A 
common problem in this type of analysis is the risk of dividing 
the data into clusters based on variation that represents 
measurement noise rather than reproducible differences 
between mutants (Zhao et al. 2008; Mirkin 2011). One way 
we avoided this was by ceasing to split out additional clusters 

before doing so no longer improved model performance 
(Figure S6). The model we chose consists of seven 
clusters, including one pertaining to the control strains, and 
six others pertaining to different classes of adaptive mutant 
(Figure 3D). We investigated whether these clusters capture 
reproducible differences between mutants, rather than 
measurement noise, by reducing the amount of noise in our 
data and asking if the same clusters are still present. To do 
so, we reduced our collection of adaptive lineages from 774 
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Figure 3: Clustering evolved lineages with similar fitness profiles. (A-C) Simulated data showing potential fitness profiles when (A) all mutants have 
similar responses to environmental change and thus a similar fitness profile, (B) every mutant has a different profile (five unique profiles are highlighted in 
color), or (C) every mutant has one of a small number of unique profiles (two unique profiles are depicted). (D) Every point in this plot represents one of 
the barcoded lineages colored by cluster; clusters were identified using a gaussian mixture model. The 774 adaptive lineages cluster into 6 groups based 
on variation in their fitness profiles; the control lineages cluster separately into the leftmost cluster in light green. (E) The fitness profiles of each cluster of 
adaptive lineages. Boxplots summarize the distribution across all lineages within each cluster in each environment, displaying the median (center line), 
interquartile range (IQR) (upper and lower hinges), and highest value within 1.5 × IQR (whiskers).
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to 617 by requiring 5,000 rather than 500 reads per lineage 
in order to infer fitness. This procedure reduced noise; the 
Pearson correlation across replicate experiments improved 
from 0.756% to 0.813%. Despite this reduction in variation, 
these 617 lineages cluster into the same six groups (plus a 
seventh pertaining to the control strains) as do the original 
774 (Figure S7). The groupings are also preserved when 
we perform alternate methods for dimensionality reduction 
while adhering to a seven cluster model (Figure S8). Each 
of the six clusters of adaptive mutants that we identify has 
a characteristic fitness profile (Figure 3E). In any given 
environment, the fitnesses of the mutants within each cluster 
are often very similar to one another and often significantly 
different from other clusters (Figure 3E). Our follow-
up investigations provide additional evidence that these 
clusters of adaptive mutants each have characteristically 
different tradeoffs, suggesting they affect fitness via different 
molecular mechanisms. 

A group of mutants with distinct genotypes are primarily 
resistant to low concentrations of FLU
The upper three clusters of mutants on the UMAP (Figure 3D) 
are all similar in that they have elevated fitness in at least one 
FLU-containing environment but ancestor-like fitness in the 
absence of drug (Figure 3E; upper three profiles). Despite 
these similarities, there are major differences between these 
three groups of mutant lineages, both at the level of genotype 
and fitness profile (Figure 4). For example, in cluster 
1 (depicted in purple in Figures 3 & 4), the 3 sequenced 
lineages have single nucleotide mutations to either SUR1 or 
UPC2 (Figure 4A). But in clusters 2 and 3 (depicted in blue 
and orange in Figures 3 & 4), 35/36 sequenced lineages 
have unique single nucleotide mutations to one of two genes 
associated with ‘Pleiotropic Drug Resistance’ (PDR1 or 
PDR3). 

PDR1 and PDR3 are transcription factors that are well 
known to contribute to fluconazole resistance through 
increased transcription of a drug pump (PDR5) that removes 
FLU from cells (Fardeau et al. 2007; Osset-Trénor et al. 
2023). However, SUR1 and UPC2 are less commonly 
mentioned in literature pertaining to FLU resistance, and 
have different functions within the cell as compared to PDR1 
and PDR3 (Kapitzky et al. 2010; Hill et al. 2015). SUR1 
converts inositol phosphorylceramide to mannosylinositol 
phosphorylceramide, which is a component of the plasma 
membrane (Uemura and Moriguchi 2022). Similarly, UPC2 
is a transcription factor with a key role in activating the 
ergosterol biosynthesis genes, which contribute to membrane 
formation (Vik and Rine 2001; Tan et al. 2022). The presence 
of adaptive mutations in genes involved in membrane 
synthesis is consistent with fluconazole’s disruptive effect on 
membranes (Sorgo et al. 2011). 

Interestingly, the lineages with mutations to UPC2 and 
SUR1, and the unsequenced lineages in the same cluster, do 
not consistently have cross resistance in RAD (Figure 4B; 
cluster 1). Oppositely, lineages with mutations to PDR1 or 
PDR3, and the unsequenced lineages in the same clusters, 
are uniformly cross resistant to RAD (Figure 4B; clusters 2 

Figure 4: Evolved lineages comprising cluster 1 have different 
genotypes and phenotypes from neighboring clusters. (A) The three 
clusters on the top half of the UMAP differ in their targets of adaptation with 
cluster 1 being unique in that it does not contain mutations to PDR1 or PDR3. 
(B) Evolved lineages comprising cluster 1 do not have consistent fitness 
advantages in conditions containing RAD, while lineages comprising clusters 
2 and 3 are uniformly adaptive in RAD. Boxplots summarize the distribution 
across all lineages within each cluster in each environment, displaying the 
median (center line), interquartile range (IQR) (upper and lower hinges), and 
highest value within 1.5 × IQR (whiskers). (C) Lineages comprising cluster 
1 are most fit in low concentrations of FLU, and this advantage dwindles 
as the FLU concentration increases. Lineages comprising clusters 2 and 3 
show the opposite trend. 
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and 3). Perhaps this cross resistance is reflective of the fact 
that the drug efflux pump that PDR1/3 regulates (PDR5) can 
transport a wide range of drugs and molecules out of yeast 
cells (Kolaczkowski et al. 1996; Harris et al. 2021). Overall, 
the targets of adaptation in cluster 1 have disparate functions 
within the cell as compared to the targets of adaptation in 
clusters 2 and 3. This may suggest that the mutants in cluster 
1 confer FLU resistance via a different mechanism than 

clusters 2 and 3.
The lineages in cluster 1 have additional important differences 
from clusters 2 and 3. The lineages in cluster 1 perform best 
in the lowest concentration of FLU and have decreasing 
gains as the concentration of FLU rises (Figure 4C). In fact, 
about 15% of these mutant lineages perform worse than their 
ancestor in the highest concentration of FLU, suggesting the 
very mutations that provide resistance to low FLU are costly 
in higher concentrations of the same drug. The mutants in 
clusters 2 and 3 show the opposite trend from those in cluster 
1: they perform best in the highest concentration of FLU and 
have reduced gains in lower concentrations (Figure 4C). 
These findings provide additional evidence that a distinct 
mechanism of FLU resistance distinguishes cluster 1 from 
clusters 2 and 3. The implication that different resistance 
mechanisms will dominate evolution in slightly different 
concentrations of the same drug highlights the complexity 
of adaptation and the need to more deeply understand the 
diversity of potential adaptive mechanisms before designing 
treatment strategies (Berman and Krysan 2020; Yang et al. 
2023).

Two groups of mutant lineages possessing similar 
adaptive mutations differ in sensitivity to RAD 
While cluster 1 appears fairly different from its neighbors, 
it is not immediately obvious why the mutant lineages in 
clusters 2 and 3 are placed into separate groups. For one, 
the mutants in each cluster have fitness profiles with a very 
similar shape (Figure 3E & 5A). The sequenced lineages 
in each of these clusters also possess mutations to the 
same genes: PDR1 and PDR3 (Figure 4A). And finally, 
the lineages in each cluster originate from similar evolution 
experiments, largely those containing FLU (Figure 5B; pie 
charts). These observations made us wonder whether the 
difference between cluster 2 and 3 arose entirely because 
the mutants in cluster 3 have stronger effects than those in 
cluster 2 (Figure 5A; the solid blue line is above the solid 
orange line). In other words, we wondered whether the 
mutant lineages in clusters 2 and 3 affect fitness via the same 
mechanism, but to different degrees. To investigate this idea, 
we normalized all fitness profiles to have the same height 
on the vertical axis; this does not affect their shape (Figure 
5A; dotted lines). Then we re-clustered and asked whether 
mutants pertaining to the original clusters 2 and 3 were now 
merged into a single cluster.

Normalizing in this way did not radically alter the UMAP, which 
still contains largely the same 6 clusters of mutants (Figure 
S9). Clusters 2 and 3, containing lineages with mutations to 
PDR1 or PDR 3, experienced the largest changes with 37% 
of mutants switching from one of these two groups to the 
other. The new clusters 2 and 3 now differ in the shape of 
their fitness profiles, whereby slight differences that existed 
between the original fitness profiles are exaggerated (Figure 
5B). For example, mutants in cluster 3 perform better in 
high and medium concentrations of RAD (Figure 5B). This 
difference in fitness is reflected in the evolution experiments, 
with more mutant lineages in cluster 3 originating from the 
evolutions performed in RAD (Figure 5B). Though cluster 
3 mutants tend to have stronger RAD resistance, they tend 
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Figure 5: Evolved lineages in clusters 2 and 3 have characteristic 
differences despite similarities at the genetic level. (A) This panel shows 
the similarities between clusters 2 and 3. The upper right inset displays the 
same UMAP from Figure 3D with only clusters 2 and 3 highlighted and 
with lineages possessing mutations to the PDR genes depicted as blue 
diamonds. The line plot displays the same fitness profiles for clusters 2 
and 3 as Figure 3E, plotting the average fitness for each cluster in each 
environment and a 95% confidence interval. Dotted lines represent the 
same data, normalized such that every lineage has an average fitness of 0 
across all environments. These line plots show that the fitness profiles for 
clusters 2 and 3 have a very similar shape. Pie charts display the relative 
frequency with which lineages in clusters 2 and 3 were sampled from each 
of the 12 evolution conditions, colors match those in the horizontal axis 
of the line plot and table 1. (B) This panel shows the differences between 
the new clusters 2 and 3 created after fitness profiles were normalized to 
eliminate magnitude differences. The upper right inset displays a new UMAP 
(also see Figure S9) that summarizes from variation in fitness profiles after 
each profile was normalized by setting its average fitness to 0. The line plot 
displays the fitness profiles for the new clusters 2 and 3, which look different 
from those in panel A because 37% of mutants in the original clusters 2 and 
3 switched identity from 2 to 3 or vice versa. The new clusters 2 and 3 are 
depicted in slightly different shades of blue and orange to reflect that these 
are not the same groupings as those depicted in Figure 3. Pie charts display 
the relative frequency with which lineages in new clusters 2 and 3 were 
sampled from each of the 12 evolution conditions, colors match those in the 
horizontal axis of the line plot and table 1. 
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to have reduced fitness in conditions containing neither 
FLU nor RAD as compared to cluster 2 lineages (Figure 
5B). In sum, the differences between lineages in clusters 2 
and 3 were not resolved upon normalizing fitness profiles 
to reduce magnitude differences, instead they were made 
more apparent (Figure 5). These differences do not appear 
to be random because they persist across experiments. For 
example, cluster 3 mutants are more fit in both medium and 
high RAD environments (Figure 5B; line plot) and were 
more often isolated from evolutions containing RAD (Figure 
5B; pie charts). These observations beg a question: how 
can different mutations to the same gene affect fitness via 
different molecular mechanisms? 

Asking this question forces us to consider what we mean by 
“mechanism.” The mechanism by which mutations to PDR1 
and PDR3 affect FLU resistance is well established: they 
increase transcription of an efflux pump that removes FLU 
from cells (Moye-Rowley 2019; Buechel and Pinkett 2020; 
Osset-Trénor et al. 2023). But if this is the only molecular-
level effect of mutations to these genes, it is difficult to 
reconcile why PDR mutants fall into two distinct clusters with 
differently shaped fitness profiles. Others have also recently 
observed that mutants to PDR1 do not all behave the same 
way when exposed to novel drugs or changes in pH (Chen et 

al. 2023). This phenomenon is not reserved to PDR mutants, 
as adaptive missense mutations to another gene, IRA1, also 
do not share similarly shaped fitness profiles either (Kinsler 
et al. 2020). One explanation may be that, while all adaptive 
mutations within the same gene improve fitness via the 
same mechanism, not all mutants suffer the same costs. For 
example, perhaps the adaptive PDR mutations in cluster 2 
cause misfolding of the PDR protein, resulting in lower fitness 
in RAD because this drug inhibits a chaperone that helps 
proteins to fold. In this case, it might be more correct to say 
that each of our six clusters affects fitness through a different, 
but potentially overlapping, suite of mechanisms (Wang 
et al. 2023). Previous work demonstrating that mutations 
commonly affect multiple traits supports this broader view 
of the mechanistic differences between clusters (Paaby and 
Rockman 2013; Boyle et al. 2017; Geiler-Samerotte et al. 
2020; Kinsler et al. 2020).

Alternatively, perhaps not all adaptive mutations to PDR 
improve fitness via the same mechanism. PDR1 and PDR3 
regulate transcription of YOR1 and SNQ2 as well as PDR5, 
and maybe the different clusters we observe represent 
mutants that upregulate one of these downstream targets 
more than the other (Osset-Trénor et al. 2023). Or, the 
mutants in each cluster might harbor different aneuploidies 
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Figure 6: Evolved lineages in cluster 4 and 5 differ in response to combined drugs. (A) Adjacent clusters 4 and 5 each contain a small number of 
sequenced isolates depicted as diamonds; diamond colors corresponding to the genes containing adaptive mutations in each isolate. (B) Cluster 5 (red) 
has an unexpected fitness disadvantage in the HRLF multidrug environment relative to cluster 4 (green), given that cluster 5 lineages do not have a fitness 
disadvantage in the relevant single drug environments. Boxplots summarize the distribution across all lineages within each cluster in each environment, 
displaying the median (center line), interquartile range (IQR) (upper and lower hinges), and highest value within 1.5 × IQR (whiskers). (C) Pie charts display 
the relative frequency with which lineages in each cluster were sampled from each of the 12 evolution conditions, colors match those in table 1. (D) The 
maximum exponential growth rate for a single lineage isolated from each of clusters 4 (green) and 5 (red), relative to the ancestor. The growth rate of each 
lineage in each condition was measured twice by measuring changes in optical density over time. Tested lineage from cluster 4 has a mutation to GBP2 
(S317T) while the lineage from cluster 5 has mutation to HDA1 (S600S).
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or small, difficult to sequence chromosomal insertions or 
deletions that affect fitness. We leave identification of the 
precise mechanisms that differentiate these clusters for 
future work. Here, using the example of PDR mutants, we 
showcase how genotype may not predict fitness tradeoffs, 
suggesting there is more to learn about the mechanisms 
underlying FLU resistance. 

One group of RAD resistant mutants does not respond 
as expected to drug combinations
Though the three clusters of mutants on the bottom half of 
the UMAP are all advantageous in RAD and in conditions 
without any drug (Figure 3E; lower three plots), they differ 
in their fitness in conditions containing FLU. For example, 
the cluster of yeast lineages highlighted in green (cluster 4 in 
Figures 3 & 6A) is unique in that it has a slight advantage in 
the HRLF environment (Figure 6B). We found it especially 
strange that the neighboring cluster 5 does not also have a 
fitness advantage in this condition. Mutants in cluster 5 have 
a slight advantage in the LF condition, and a big advantage in 
the high RAD condition, thus we expect them to have at least 
some fitness advantage in the condition where these two 
drugs are combined (HRLF), but they do not (Figure 6B). The 
same is true for the combination of LRLF: cluster 5 mutants 
have an advantage in both single drug conditions which is 
lost when the drugs are combined (Figure S10). However, 
the mutants in cluster 4 (green) exhibit no such sensitivity to 
combined treatment. They have a slight advantage in all of the 
aforementioned single drug conditions, which is preserved in 
the relevant multidrug conditions (Figure 6B & Figure S10). 
To obtain an independent measure of the fitness of cluster 4 
vs. cluster 5 lineages in these multidrug conditions, we asked 
from where the lineages in each cluster originate. About 10% 
of cluster 4 lineages originated from the HRLF evolution, 

while almost none of the lineages in cluster 5 came from this 
experiment, confirming that cluster 5 lineages are uniquely 
sensitive to this multidrug environment (Figure 6C). 

The different fitness profiles of mutants in cluster 4 versus 
5 (Figure 6B & Figure S10) might imply that they affect 
different phenotypes that ultimately underlie their drug 
resistance. We performed a follow-up experiment that 
supports this observation. We asked whether there are 
differences in the growth phenotypes of cluster 4 versus 5 
mutants by measuring a growth curve for the lineage we 
were able to isolate from cluster 5, comparing it to a growth 
curve from a cluster 4 lineage (Figure 6D). Indeed, mutants 
in cluster 4 and 5 appear to have different growth curves in 
the relevant conditions (Figure S10). The growth differences 
echo those we see in the fitness data. For example, mutants 
in cluster 5 have a lower maximum growth rate in the HRLF 
multidrug condition, corresponding with their lower fitness 
in this condition relative to mutants in cluster 4 (Figure 6B 
& 6D). However, the pattern reverses in the single drug 
conditions, both in terms of the fitness and growth data. 
These results suggest that the fitness differences we capture 
that differentiate these clusters are derived from differences 
in growth phenotypes. 

One group of RAD resistant mutants is exceptionally 
adaptive in conditions without drug
One group of mutants in the lower half of the UMAP (cluster 
6 in Figure 7A) appears distinct from the other two in that it 
has the largest fitness advantage in conditions lacking any 
drug (Figure 7B). This might imply that cluster 6 lineages 
rose to high frequency during our evolution experiments in 
environments without either drug, specifically the “no drug” 
and “DMSO” control conditions. Indeed, this is what we 
observe: over 50% of the lineages in cluster 6 were sampled 
from one of these two evolution experiments (Figure 7A). 
On the contrary, the other clusters in the lower half of the 
UMAP consist mainly of lineages sampled from one of the 
RAD evolutions (Figure 6C). Since our fitness experiments 
were performed independently of the evolution experiments, 
this provides two independent pieces of evidence suggesting 
that lineages in cluster 6 perform best in conditions lacking 
any drug. 

In line with the success of cluster 6 mutants in no drug 
conditions, the five sequenced mutants in this cluster include 
three that have mutations to IRA1, which was the most 
common target of adaptation in another evolution experiment 
in the conditions we call “no drug” (Figure 7A) (Venkataram 
et al. 2016). In that experiment, and in ours, mutations to 
IRA1 result in a greater fitness advantage than mutations to 
its paralog, IRA2, or mutations to other negative regulators of 
the RAS/PKA pathway such as GPB2 (Figure 7A). Previous 
work showed that sometimes IRA1 mutants have very strong 
tradeoffs, for example, they become extremely maladaptive 
in environments containing salt or benomyl (Kinsler et al. 
2020). We do not observe this to be the case for either FLU 
or RAD. In fact, we observe that cluster 6 mutants, including 
those in IRA1, maintain a fitness advantage in our highest 
concentration of both drugs (Figure 3), being more fit in high 

11

Figure 7: Evolved lineages in cluster 6 have higher fitness than other 
lineages in the absence of FLU and RAD. (A) Same UMAP as Figure 
3D with clusters 4, 5, and 6 highlighted and sequenced isolates in these 
clusters represented as diamonds. Diamond colors correspond to the 
targets of adaptation in the sequenced isolates. Pie charts display the 
relative frequency with which lineages in cluster 6 were sampled from each 
of the 12 evolution conditions; colors match those in table 1. (B) Of the three 
clusters on the bottom half of the UMAP, cluster 6 lineages perform best in 
conditions without any drug and in the highest concentration of FLU. Yet 
they perform worst in the lowest concentration of FLU. Boxplots summarize 
the distribution across all lineages within each cluster in each environment, 
displaying the median (center line), interquartile range (IQR) (upper and 
lower hinges), and highest value within 1.5 × IQR (whiskers).
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FLU than mutants in either of the other clusters in the lower 
half of the UMAP (Figure 7B). However, cluster 6 mutants 
are unique in that they lose their fitness advantage in the 
lowest concentration of FLU (Figure 7B). Being singularly 
sensitive to a low concentration of drug seems unusual, so 
much so that when this was observed previously for IRA1 
mutants the authors added a note about the possibility of a 
technical error (Kinsler et al. 2020). Our results suggest that 
there is indeed something uniquely treacherous about the 
low fluconazole environment, at least for some genotypes.

Discussion:
Here, we present a barcoded collection of fluconazole (FLU) 
resistant yeast strains that is unique in its size, its diversity, 
and its tractability. One way we were able to isolate diverse 
types of FLU-resistance was by evolving yeast to resist 
diverse drug concentrations and combinations. But the more 
important tool used to increase both the number and type of 
mutants in our collection was DNA barcodes. These allowed 
us to sample beyond the drug resistant mutants that rise 
to appreciable frequency and to collect mutants that would 
eventually have been outcompeted by others. Our primary 
goal in collecting these mutants was to get a rough sense 
of how many different mechanisms of FLU resistance may 
exist. This question is relevant to evolutionary medicine 
(because more mechanisms of resistance make it harder to 
design strategies to avoid resistance), evolutionary theory 
(because more mechanisms of adaptation make it harder to 
predict how evolution will proceed), and genotype-phenotype 
mapping (because more mechanisms makes it more difficult 
to map which ones are associated with which mutations). 

We distinguish mutants that act via different mechanisms 
by identifying those with different fitness tradeoffs across 12 
environments, leveraging the mutants’ barcodes to track their 
relative fitness following previous work (Kinsler et al. 2020). 
The 774 FLU-resistant mutants studied here clustered into 
a handful of groups (6) with characteristic tradeoffs. Some 
groupings are unintuitive in that they segregate mutations 
within the same gene (Figure 5) or are distinguished by 
unexpectedly low fitness in multidrug conditions (Figure 
6). These findings are important because they challenge 
strategies in evolutionary medicine that rely on consistent 
tradeoffs or intuitive trends when designing sequential drug 
treatments. On the other hand, the observation that some 
mutants have very similar tradeoffs such that they cluster 
together is promising in that it suggests predicting the impact 
of some mutations by understanding the impacts of others 
may be feasible. Overall, our findings shed light on the 
degree of tractability in the genotype-phenotype map while 
emphasizing the need for enumerating classes of mutants 
before making predictions about the evolution of drug 
resistance. 

Problematically, it is unclear to what extent it is possible to 
enumerate classes of mutant that resist a given drug. The 
six classes we present are incomplete and bound to change 
as additional data presents itself. For one, we have shown 
that additional FLU-resistant mutants emerge from evolution 
experiments in conditions lacking FLU (Figure 2C & 2D). 

This begs questions about what other FLU-resistant mutants 
might emerge in environments we have not studied here. 
Additionally, previous work has shown that some mutants 
that group together in our study (e.g., GPB2 and IRA2) have 
different fitness profiles in conditions that we did not include 
here (Kinsler et al. 2020). Also of note is that our evolution 
experiments were conducted for only a few generations and 
all started from the same genetic background. Additional 
types of FLU-resistant mutants with unique fitness profiles 
may emerge from other genetic backgrounds or arise after 
more mutations are allowed to accumulate (Brandis et 
al. 2012; Bosch et al. 2021; Allen et al. 2021). Finally, by 
requiring that all included mutants have sufficient sequencing 
coverage in all 12 environments, our study is underpowered 
to detect adaptive lineages that have low fitness in any of the 
12 environments. This is bound to exclude large numbers of 
adaptive mutants. For example, previous work has shown 
some FLU resistant mutants have strong tradeoffs in RAD 
(Cowen and Lindquist 2005). Perhaps we are unable to 
detect these mutants because their barcodes are at too low a 
frequency in RAD environments, thus they are excluded from 
our collection of 774. All of the aforementioned observations 
combined suggest that there are more unique types of 
FLU-resistant mutations than those represented by these 
6 clusters, and that the molecular mechanisms that can 
contribute to fitness in FLU are more diverse than we know. 

On the up side, not every infection harbors all possible types 
of mutants. This might explain why strategies that exploit one 
or two common tradeoffs have mixed success in delaying or 
preventing the emergence of resistance (Amin et al. 2015; 
Kaiser 2017; Imamovic et al. 2018; Wang et al. 2019; Krishna 
et al. 2022; Nyhoegen and Uecker 2023; Waller et al. 2023). 
Our results encourage more complex strategies to thwart 
resistance (Iram et al. 2020), such as those that focus on 
advance screening to determine the resistance mechanisms 
that are present (Andersson et al. 2019a), or on cycling a 
larger number of drugs to exploit a larger number of tradeoffs 
(Yoshida et al. 2017; Thomas et al. 2022). Problematically, 
these strategies rely on knowledge about the diversity of 
mutants and tradeoffs that exist (or that can emerge) within 
an infectious population. While information about population 
heterogeneity, heteroresistance, and substructure is 
expensive and arduous to obtain (Andersson et al. 2019b; 
Bottery et al. 2021), new methods, in addition to the one 
presented in this study, are emerging (Kuchina et al. 2021; 
Aissa et al. 2021; Nagasawa et al. 2021; Forsyth et al. 2021; 
Hsieh et al. 2022; Brettner et al. 2022a). This type of richer 
data dovetails with emerging population genetic models that 
predict the likelihood of resistance to a given drug regimen 
(Read and Huijben 2009; Day et al. 2015; Wilson et al. 2016; 
Cannataro et al. 2018; Somarelli et al. 2020; Feder et al. 
2021; King et al. 2022). In short, our observation of numerous 
different types of drug-resistant mutations suggests that 
designing resistance-detering therapies is challenging, but 
perhaps not impossible. 

Outside of predicting the evolution of resistance, our findings 
provide a tool to investigate the phenotypic impacts of 
mutation. This task has proven daunting in light of work 
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demonstrating that mutations often have many phenotypic 
impacts (Paaby and Rockman 2013; Boyle et al. 2017) 
and that these impacts change with contexts including the 
environment (Paaby et al. 2015; Geiler-Samerotte et al. 2016, 
2020; Lee et al. 2019; Eguchi et al. 2019). The approach 
presented in this study provides a way forward, not only by 
identifying mutations that likely affect similar phenotypes 
given their similar fitness tradeoffs, but also by identifying 
environments that differentiate one group of mutants from 
another. This suggests where to look to understand the 
different phenotypic impacts of each group of mutants. For 
example, we were able to show that the growth phenotypes 
of mutants from clusters 4 and 5 are different because we 
knew in which environments their fitness is different (Figure 
6). Similarly, our results suggest radicicol environments may 
be helpful in teasing out any phenotypic differences that set 
apart some PDR mutations from others (Figure 5). In sum, 
our approach guides efforts to understand the phenotypic 
effects of mutation, while also guiding efforts to predict the 
effects of some mutations from others and to predict the 
outcomes of evolution.
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Methods:
Base yeast strains
All of the yeast lineages studied here originated from the 
same starting strain referred to as the “landing pad strain” 
(SHA185) in previous work (Levy et al. 2015). We transformed 
a barcode library into this strain as described below, creating 
a strain with the following genetic background: MATɑ, 
ura3Δ0, ybr209w::Gal-Cre-KanMX-1/2URA3-loxP-Barcode-
1/2URA3-HygMX-lox66/71. 

Base media
All experiments were conducted in “M3” media defined in 
the same study as the landing pad strain (Levy et al. 2015), 
which is a glucose-limited media lacking uracil. In our study, 
we supplemented this media with fluconazole, radicicol, or 
DMSO when appropriate. 

Selecting drug concentrations
Our goal was to choose concentrations of each drug that 

would not kill so many yeast cells as to dramatically decrease 
barcode diversity. We wanted to maintain a high number of 
unique barcodes so we could track a high number of yeast 
lineages as they independently evolved drug resistance. We 
measured the effect of each drug and drug combination on 
the growth rate of a single barcoded yeast strain using a 
plate reader to track changes in optical density (OD) over 
time. Ultimately we chose a “low” concentration of each 
drug that appeared to have no effect on growth rate, and 
a “high” concentration that appeared to reduce growth rate 
by about 15% (Figure S2). Though the lowest concentration 
of radicicol that we tested on a plate reader was 10 μM, we 
chose 5 μM as our low RAD concentration because previous 
work suggested this concentration had widespread effects 
on yeast physiology without affecting growth (Jarosz and 
Lindquist 2010; Geiler-Samerotte et al. 2016). To perform 
our plate reader experiment, a single colony was grown to 
saturation. From this culture, 5 μl was added to every well of a 
96-well plate, where every well contained 195 μl of M3 media. 
Some wells also contained either fluconazole, radicicol, 
DMSO, or combinations of these drugs. The concentrations 
that were tested are listed on the horizontal axis of figure 
S2; each drug condition was replicated six times. The 96-well 
plate was incubated at 30°C for 48 hours on a plate reader 
and OD measurements were taken every 30 minutes. Raw 
OD values were exported and maximum exponential growth 
rates for all tested conditions were calculated from the log-
linear changes in OD over time.  

Inserting 300,000 unique DNA barcodes into otherwise 
genetically identical yeast cells
In order to track many yeast lineages as they independently 
develop drug resistance, we needed to insert unique DNA 
barcodes into many yeast cells. Plasmids harboring barcodes 
(pBar3) were the same as those used in a previous barcoded 
evolution experiment (Levy et al. 2015) and were generously 
provided to us by Sasha Levy.  These barcodes are 25 base 
pairs in length. They are targeted to an artificial intron within the 
Ura3 gene, such that they must be retained in media lacking 
uracil but are not expressed and thus do not themselves 
affect fitness (Levy et al. 2015). We transformed this barcode 
library (pBar3) into the landing pad strain (SHA185) as was 
done previously, activating a Cre-lox recombination system 
by growing the cells in YP-galactose, which resulted in 
genomic integration of the barcode. However, our efforts to 
perform extremely high efficiency transformations from which 
we could isolate hundreds of thousands of uniquely barcoded 
yeast were unsuccessful, despite manipulating the levels and 
timing of the inducer (galactose). Ultimately we performed 24 
separate transformations and pooled many of these to obtain 
a large pool of barcoded yeast where every yeast cell was 
genetically identical except for its DNA barcode. 

Examining the frequency of each barcode in the starting 
pool of cells
We sequenced each of these 24 transformed yeast populations 
on the Hiseq X platform using a dual index system (Kinsler et 
al. 2023) to discern barcode coverage, i.e., how many total 
unique barcodes were successfully inserted into yeast cells 
and how evenly these barcodes were sampled. We needed 
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many uniquely barcoded yeast in order to observe many 
different adaptive lineages within each evolution experiment. 
But barcodes with very high frequencies, referred to 
herein as monster lineages, were present in 10 of the 24 
transformations and present a problem. Monster lineages 
allow too many cells to carry the same barcode, giving that 
barcode more chances to develop an adaptive mutation. This 
could allow different cells harboring that same barcode to pick 
up different adaptive mutations, destroying our ability to draw 
conclusions about adaptive mutations by using barcodes. 
Therefore, our final library of barcoded lineages was created 
by pooling 14 individual transformations together, choosing 
those 14 that lacked monster lineages, which we defined as 
lineages representing greater than 1% of all transformants. 
Our sequencing results suggest that this library contains 
about 300,000 unique barcodes. 

Initiating 12 barcoded evolution experiments
All evolution experiments started from the same pool of 
roughly 300,000 uniquely barcoded yeast lineages. To start 
the evolution experiments, a pea sized amount of the frozen 
yeast barcode library was grown up in 4 ml YPD for 4 hours at 
30 °C in a shaking incubator at 220 rpm. Then, 300 µl of the 
grown barcode library was added to each of 12 pre-prepared 
500mL flasks representing the 12 evolution experiments 
listed in Table 1. To prepare these flasks, first, 1.2 L of M3 
media was warmed at 30°C. Then, 100 ml was added to 
each of 12 flat bottom flasks. Next, 500 µl of the appropriate 
drug or drug combination was added to each flask. Drugs 
were pre-diluted, aliquoted and frozen such that 500 µl of 
the appropriate tube could be added to each flask to achieve 
the desired concentration as listed in Table 1. All drugs were 
resuspended in DMSO such that the final concentration of 
DMSO in all experiments (except the “no drug” control) was 
0.5%. 

Performing barcoded evolution experiments
Evolution experiments were performed following previous 
work (Levy et al. 2015). After initiation (see above), the yeast 
in every flask were allowed to grow at 30°C with shaking at 200 
RPM for 48 hours. Then, the flasks were removed from the 
incubator and 400 – 1000 µl of each culture was transferred to 
a new pre-prepared flask with identical conditions to the first. 
The reason we added more volume (1000 µl) to some flasks 
than previous work was that the cell counts at the end of the 
48 hours were lower for some of our higher drug conditions. 
We adjusted the transfer volume to maintain a transfer 
population of 4x107 cells, which was the same as in previous 
work (Levy et al. 2015). We completed a total of 24 growth/
transfer cycles, corresponding to 192 generations of growth 
assuming 8 generations per 48-hour cycle (Levy et al. 2015). 
Following each transfer, the remaining culture from each 
flask were split into two 50 ml conical vials, centrifuged for 
3 minutes at 4000 rpm, and the supernatant was discarded. 
The final pellet was resuspended in 30% glycerol up to a total 
volume of 6 ml before being split into three 2 ml cryovials and 
stored at -80°C. These frozen samples were later utilized for 
barcode sequencing and isolating adaptive mutants.

Isolating a large pool of adaptive mutants

We performed evolution experiments in order to generate a 
large pool of diverse adaptive mutants. Our goal was to collect 
a sample from each evolution experiment at a time point when 
there were many different adaptive lineages competing. If 
we sampled too late, the adaptive lineage with the greatest 
fitness advantage would have already risen to high frequency, 
thus reducing diversity. But if we sampled too early, adaptive 
lineages would not yet have risen in frequency above other 
lineages. Therefore, we chose to sample cells from a time 
in each evolution experiment when many barcoded lineages 
appeared to be rising in frequency (Figure S1). We sampled 
either 1 or 2 thousand cells per each evolution experiment 
by spreading frozen stock from the chosen time point onto 
agarose plates, scraping 1 or 2 thousand colonies into a 
15mL conical tube containing a final concentration of 30% 
glycerol, and freezing the pool pertaining to each of the 12 
evolutions. We sampled 2,000 cells from most evolution 
experiments, but sampled only 1,000 from those containing 
a high concentration of FLU as those evolutions appeared to 
have reduced barcoded diversity (Figure S1), presumably 
because high FLU represents a strong selective pressure. We 
sequenced the barcodes from each of these 12 pools so that 
we could track which adaptive mutants originated from which 
evolution experiment (see methods section below entitled, 
“Inferring where adaptive lineages originally evolved”).

Initiating barcoded fitness competition experiments
To assess the fitnesses of the 1 or 2 thousand barcoded 
lineages that we sampled from each evolution experiment, 
we pooled all sampled lineages together into a larger pool of 
roughly 21,000 barcoded lineages. We used this larger pool 
to initiate 24 fitness competition experiments, 2 replicates 
for each of the 12 conditions listed in Table 1. In this type 
of competition, we measure fitness by tracking changes in 
each barcode’s frequency over time. Barcodes that rise in 
frequency represent strains that have higher fitness than 
others.

Our goal was to calculate the fitness effect of adaptive 
mutations. Therefore, we needed to calculate the fitness of 
every evolved lineage relative to the unmutated ancestor of 
the evolution experiments. To do so, we followed previous 
work by spiking in a large quantity of this unmutated ancestor 
strain into each fitness competition, with this ancestor 
making up at least 90% of the final culture (Venkataram et 
al. 2016; Kinsler et al. 2020). In environments containing a 
high concentration of FLU which resulted in the ancestral 
strain having a more severe growth defect, we spiked in the 
ancestor such that it represented 95% of the final pool. 

To avoid wasting 90% or more of our sequencing reads on 
the ancestor strain’s barcode, we created a barcodeless 
ancestor strain. This strain was created by transforming 
SHA185 with a linear piece of DNA such that the genetic 
background was identical to the strains of the barcoded 
library, but the homology to the primers used to amplify the 
barcode was missing. Thus the DNA from these cells does 
not get amplified or sequenced during subsequent steps. 

In addition to this barcodeless ancestor, we also spiked in 
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some barcoded ancestral strains at lower frequency (1%) 
to use as “reference” or “control” strains, following previous 
work (Kinsler et al. 2020, 2023). These strains have been 
previously shown to possess no fitness differences from 
the ancestor. We used these strains as a baseline when 
calculating relative fitness by setting the fitness of these 
strains to zero during our fitness inference procedure (see 
methods section below entitled, “Inferring fitness”).

All 24 fitness competitions were performed simultaneously in 
one big batch (Kinsler et al. 2023) and initiated from the same 
pool of roughly 21,000 barcoded evolved yeast lineages, 
barcodeless ancestor, and control strains. To initiate the 
competitions, 7x107 cells from this pool were added to 24 
pre-prepared 500mL flasks corresponding to the conditions 
listed in Table 1. These flasks were prepared exactly the 
same way as was done for the evolution experiments (see 
above in “Performing barcoded evolution experiments”). 
Each flask was allowed to grow for 48 hours at 30°C with 
shaking at 200 RPM.

Performing barcoded fitness competition experiments
Fitness competitions were performed following previous 
work (Kinsler et al. 2020). After the initial flasks were allowed 
to grow for 48 hours, they were removed from the incubator 
and 4x107 cells from each culture representing 400 μl were 
transferred to a new flask with identical media. For each of 
24 competitions, we completed a total of 4 growth/transfer 
cycles, corresponding to 40 generations of growth assuming 
8 generations per 48-hour cycle (Levy et al. 2015). Following 
each transfer, the remaining culture from each flask was 
split into two 50 ml conical vials, centrifuged for 3 minutes 
at 4000 rpm, and the supernatant was discarded. The final 
pellet was resuspended in 30% glycerol up to a total volume 
of 6 ml before being split into three 2 ml cryovials and stored 
at -80°C. These frozen samples were later utilized for DNA 
extraction and subsequent barcode sequencing.

Extracting genomic DNA
DNA was extracted from 500 μl of concentrated frozen 
stocks pertaining to the evolution experiments and fitness 
competitions. Frozen cells were thawed and pelleted. Cells 
were treated with 250 μl of 0.1 M Na2EDTA, 1M sorbitol and 
5U/μl zymolyase for a minimum of 15 minutes at 37 °C to 
remove the cell wall. Lysis was completed by adding 250 μl 
of 1% SDS, 0.2N NaOH and inverting to mix. Proteins and 
cell debris were removed with 5M KOAc by spinning for 5 min 
at 15,000 rpm. Supernatant was moved to a new tube and 
DNA was precipitated with 600 μl  isopropanol by spinning for 
5 min at 15,000 rpm. The resulting pellet was washed 1 ml of 
70% ethanol before being resuspended in 50 μl water plus 
10μg/ml RNAse. Extracted DNA was quantified using the 
NanoDrop spectrophotometer and all samples were diluted 
to a concentration of 50 ng/µL for barcode amplification and 
sequencing library preparation. 

Preparing barcodes for high-throughput multiplexed 
sequencing using PCR
Extracted DNA was prepared for sequencing using a two-
step PCR that preserves information about the relative 

frequency of each barcode in each sample (Venkataram et 
al. 2016; Kinsler et al. 2020, 2023). Briefly, in the first step 
PCR, the barcode region is amplified from the genomic DNA, 
labeled with a sample-specific combination of primers, and 
tagged with a UMI. This step utilizes a short 3 cycle PCR with 
New England Biolabs OneTaq polymerase. Purification of the 
first step product to remove excess reagents was performed 
using Thermo Scientific GeneJET PCR Purification Kit. 
The second step PCR attached Illumina indices that were 
used to distinguish samples from different experiments and 
timepoints. We utilized a dual indexing scheme to prevent 
index misassignment that is common when sequencing 
amplicon libraries using patterned flow cell technology 
(Kinsler et al. 2023). Amplification of this second step of PCR 
was done with a longer 23 cycle PCR using Q5 polymerase. 
Final libraries were bead purified using 0.8X Quantabio sparQ 
Pure Mag beads. Quantification of the final PCR products 
was done using the Invitrogen Qubit Fluorometer before all 
samples were pooled at equimolar ratios for sequencing.

Sequencing and clustering barcodes
Next Generation Sequencing was performed at either 
Psomagen (Rockville, MD) or at the Translation Genomics 
Research Institute (Phoenix, AZ) on patterned flow cells 
(either an Illumina HiSeqX or NovaSeq) using 2 x 150 base 
pair paired end reads. Samples were dual indexed to allow 
multiplexing while minimizing contamination from index 
misassignments (Kinsler et al. 2023). The 20 base pairs 
of variable sequence referred to as a DNA barcode were 
identified and clustered to determine the number of unique 
barcodes and the frequency of each barcode in each sample. 
For the evolution experiments, this was done following our 
previous work (Venkataram et al. 2016; Kinsler et al. 2020). 
For the fitness competition experiments, this was done 
using updated software (Zhao et al. 2018) with the following 
command: 
bartender_extractor_com -f ${SAMPLE}_R1_001.fastq -o 
${SAMPLE}_extracted -q 0 -p GTACC[5]AA[5]AA[5]TT[5]
ATAAC -m 2 -d f -u 0,8

Inferring fitness
In fitness competition experiments, fitness is often inferred 
from the log-linear change in a strain’s frequency over time 
(Geiler-Samerotte et al. 2011; Bakerlee et al. 2021; Kinsler 
et al. 2023). Recently, more advanced methods to infer 
fitness have emerged that take into account nonlinearities 
in frequency changes over time, for example, nonlinearities 
that reflect changes in the mean fitness of the population 
(Venkataram et al. 2016; Li et al. 2018a, 2023; Kinsler et al. 
2020). We had trouble implementing these newer methods 
on our fitness data, perhaps because many of our evolved 
lineages, and our control strains, have low fitness in some 
drugs. This caused their barcodes to rapidly decline in 
frequency such that they received low counts only at later 
time points. Their counts could become so low that these 
lineages would seemingly disappear due to sampling error, 
and then reappear at a subsequent time point. This dramatic 
(but false) increase in frequency was sometimes interpreted 
as evidence of very high fitness, especially when we inferred 
fitness using approaches that account for nonlinearities. 
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To contend with this issue, we applied strict coverage 
thresholds to every fitness measurement: we required at 
least 500 counts across all timepoints in order to infer fitness 
for a given lineage in a given environment. This is stricter 
than previous work that does not require a minimum number 
of reads per fitness measurement and instead thresholds on 
the average coverage per lineage per time point (Kinsler et 
al. 2020). We found that 774 lineages passed our threshold 
in at least one replicate experiment per all 12 environments. 
Of these, 729 passed for both replicates and the final fitness 
value we report represents the average of both replicates. 

Even with our strict coverage threshold, some fitness 
inference methods still interpreted minor stochastic 
fluctuations in fitness at later time points as evidence of a 
fitness advantage, even if fitness dramatically declined in 
earlier time points. Therefore, we calculated fitness via the 
traditional method, as the slope of the log-linear change in 
barcode frequency relative to the average slope of the control 
strains, as this method is less sensitive to that type of error. 
Using this method, we found that our fitness inferences were 
reproducible between replicates (Figure S4A), and between 
experiments performed in similar conditions (e.g., medium 
vs. high concentrations of the same drug) (Figure S4B). 
When we increased our coverage threshold to require an 
order of magnitude more reads per lineage per measurement 
(from 500 to 5000), we lost 157 lineages (from 774 to 617), 
saw reproducibility increase across replicates (from an 
average Pearson correlation of 0.756 to 0.813) and the main 
conclusions of our study were unchanged in that the same 6 
clusters were present on a UMAP (Figure S7).

Identifying adaptive mutations using whole-genome 
sequencing
One downside of barcoded evolution experiments is that 
all lineages exist together in a pooled culture. Fishing 
out adaptive lineages in order to perform whole genome 
sequencing is a major challenge (Venkataram et al. 2016). 
Here, we randomly selected cells from these mixed pools 
for whole genome sequencing, sometimes selecting from 
later time points in the evolution experiments and sometimes 
selecting from the samples of 1 or 2 thousand cells that were 
isolated to initiate fitness competitions. 

To perform whole genome sequencing, cells from mixed pools 
were spread onto M3 agarose plates, single colonies were 
selected and grown in YPD to saturation. DNA was extracted 
using the PureLink™ Genomic DNA Mini Kit (K182002). 
Sequencing libraries were made using Illumina DNA Prep kit 
by diluting reactions by 1/5. Briefly, samples were prepared 
such that the starting concentration in 6 ul was between 20 
and 100 ng of DNA. 2μl of BLT and TB1were added to the 
starting material and incubated on a thermocycler at 55°C (lid 
100°C) for 15 min. 2 μl of TSB was added to each reaction 
and incubated at 37 C (lid 100°C) for 15 min. Beads were 
washed 2 times with 20 μl of TWB. Following the final wash, 
4 μl of EPM, 4 μl of water and 2 μl of UD indexes were added 
to each sample. Depending on starting concentration, PCR 
was performed based on Illumina guidelines as follows: lid 

100°C, 68°C for 3 min, 98C for 3 min, [98°C for 45s, 62°C for 
30s, 68°C for 2min] for 6 to 10 cycles, 68°C for 1 min, 10°C 
hold. PCR products were cleaned with a double side sized 
selection as follows: 4 μl of each sample was pooled together 
(32 μl total for 8 samples) and added to 28 μl of water plus 32 
μl of SPB. After a 5 min incubation 25 μl of supernatant was 
moved to a new tube containing 3 μl of SPB. Beads were 
washed with fresh 80% ethanol and libraries were eluted in 
12 μl RSB. Samples were multiplexed using Illumina’s unique 
dual (UD) index plates (A-D) and sequencing was performed 
with 2x150 paired end sequencing on HiSeq X at Psomagen 
(Rockville, MD). 

In total 122 colonies were randomly picked and sequenced. 
As one might expect, barcodes that rose to high frequency 
were more likely to be picked multiple times. In an attempt 
to avoid this and find lineages with unique attributes, some 
cultures were grown at 37°C or plated to high concentrations 
of drug prior to picking isolated colonies for sequencing. Of 
the 122 genomes we sequenced, only 53 pertained to the 
774 lineages for which we obtained high enough barcode 
coverage to infer fitness. Only two of these 53 had no 
sequenced mutations suggesting its fitness increase over 
ancestor is due to a change in ploidy. The other 51 all had 
at least one single nucleotide mutation in a gene reported in 
supplemental table 1. 

Variant calling was done using GATK as described here: 
https://github.com/gencorefacility/variant-calling-pipeline-
gatk4. Identified variants were annotated using SnpEff 
(Cingolani et al. 2012). Variant call files from 132 (53 
unique/in CS) sequenced lineages were analyzed in R and 
compared to reference strain GCF_000146045.2 (Genome 
assembly 64: sacCer3). SNPs present in the ancestor (as 
well as all evolved lineages) were ignored as these could 
not have caused the fitness differences we observed. We 
also ignored SNPS that were present in a substantial number 
of evolved lineages, as these likely represent background 
mutations that were present in a substantial portion of the 
cells representing the landing pad strain (SHA185). These 
are reported in supplemental table 1 and include: SRD1-
Glu97Lys, RSC30-Gly571Asp, OPT1-Val143Ile and LYS20-
Thr29Met. 

Measuring growth rates of evolved lineages with 
unexpected fitness in multidrug conditions
Though fitness differences are not necessarily due to 
differences in maximum growth rate (Li et al. 2018b), we 
measured growth curves for a few lineages to investigate a 
case where an evolved lineage had unexpectedly low fitness 
in multidrug conditions (Figure 6B). Indeed, we found that 
this mutant grew more slowly in those conditions. To perform 
this test, lineages with mutations to GBP2 and HDA1 as well 
the ancestor strain were streaked to YPD plates. We used the 
barcodeless ancestor strain, which is identical to the evolved 
lineages in every way except for lacking a barcode, and is 
described above in the methods section entitled, “Initiating 
barcoded fitness competition experiments”. A single colony 
of each strain was isolated from YPD plates and was used to 
inoculate an overnight YPD culture. After ~24 hours, a coulter 
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counter (BD) was used to determine the number of cells/
ml present in each culture. Next,, all cultures were diluted 
such that the starting number of cells in each growth curve 
measurement was 250,000 in 6 ml of M3 plus drug (HR, LF 
and HRLF). To measure cell growth rates, these samples 
were allowed to grow at 30 degrees C. OD was measured 
every 10 minutes as the cultures were grown to saturation 
using the compact rocking incubator TVS062CA (Advantec 
Mfs). Raw growth curves for these conditions are shown in 
Figure S10B. Maximum growth rate was calculated using 
a sliding window approach to determine the region of each 
growth curve with the steepest log-linear slope. 

Determining ploidy 
While our barcoded yeast strain is haploid, previous studies 
observed that some cells diploidize during the course 
of evolution in M3 media and by doing so gain a fitness 
advantage (Levy et al. 2015; Venkataram et al. 2016). To 
ensure that observed fitness effects in our experiments were 
not largely due to the effects of diploids, we estimated the 
percent of diploid cells in each of our populations. We chose 
to make our estimates from frozen samples taken at the 
same time points from which we sampled 1 or 2 thousand 
cells to initiate fitness competitions (Figure S1). As such, 
our estimates also report on the percent of diploids that were 
present at the start of the fitness competitions experiments 
(Table S2). 

To study ploidy, we used the nucleic acid stain SYTOX 
Green, which is capable of selectively staining the nucleus 
of fixed cells and has been shown to be more optimal for use 
in budding yeast than the standard propidium iodide stain 
(Haase 2004). For each of the 12 evolution experiments 
conditions, a small amount of freezer stock from the chosen 
timepoints (Figure S1) was plated to YPD and grown for ~48 
hours. Individual colonies were picked and transferred to 96-
well plates, 1 full plate for each condition, before being fixed 
with 95% ethanol for 1 hour. Plates were centrifuged at 4500 
rpm and supernatant was discarded. 50 μL RNase A was 
added to the samples at a concentration of 2mg/mL, and the 
plates were then incubated for 2 hours at 37°C. Cells were 
pelleted by centrifuge and the supernatant was removed, 
which was followed by treatment with 20 μL of the protease 
pepsin at a concentration of 5mg/uL. Pepsin treated samples 
incubated at 37°C for 30 minutes before centrifugation and 
removal of supernatant.  Finally, cells were resuspended in 
50 μL TrisCL (50 mM, pH 8) and stained with 100 μL of 1μM 
SYTOX Green. Known diploid and haploid strains were used 
as controls alongside our samples to determine the expected 
fluorescence of stained diploid vs. haploid cells. Analysis was 
performed using a ThermoFisher Attune NxT, housed in the 
Flow Cytometry Core Facility at Arizona State University.

Dimensional reduction
Our fitness inference procedure resulted in a data set 
consisting of nearly 10,000 fitness measurements (774 
lineages x 12 conditions = 9288 fitness measurements). 
Dimensional reduction was performed on these data using 
UMAP (McInnes et al. 2018b). Clusters of similar mutants 
were identified and colored using a gaussian mixed model 

(Fraley and Raftery 2003); Bayesian Information Criteria were 
used to select the number of clusters (Figure S6). These 
analyses were performed in R; code can be found https://osf.
io/pxyv9/?view_only=51241d8f00c24f7e83f1ece3ae31a53b.

In order to prevent conditions with the most variation in fitness 
(e.g., high FLU) from dominating, we normalized fitness 
measurements from each of the 12 environments to have the 
same overall mean and variance (we transformed the data 
from every environment to have a mean of 0 and a standard 
deviation of 1) before performing dimensional reduction. This 
normalization procedure did not have a dramatic effect on the 
UMAP (Figure S7A). We also explored normalizing all data 
to account for magnitude differences by setting the average 
fitness of each lineage across all 12 environments to 0. 
Doing so did not significantly change the groupings present 
in the UMAP from those displayed in Figure 3 (Figure S9) 
other than in the ways we describe in Figure 5. Reducing our 
data set to 617 adaptive lineages with very high sequencing 
coverage (Figure S7B) also did not significantly affect the 
way that mutants cluster into groups, nor did using a different 
dimensional reduction algorithm altogether (Figure S8). In 
short, the clustering of mutants was robust to the different 
decisions we made when choosing how to analyze these 
data.

In order to assess whether clusters identified from the UMAP 
are robust to alternative clustering methods, we also used 
hierarchical clustering to identify clusters of mutants with 
similar fitness profiles. First, we computed the pairwise 
distance of all lineages across the fitness profiles. Then, we 
used Ward’s method from scikit-learn to iteratively cluster 
lineages such that the within-cluster variation is minimized 
(Ward 1963; Pedregosa et al. 2012). To test the consistency 
of lineage clustering, we chose a pairwise cluster distance 
cutoff of 11, which results in the same number of clusters 
(7) as identified with the UMAP clustering approach used in 
the main text. We then compared the identity of the lineages 
within each of these clusters with the UMAP clusters. We 
found that, for most clusters, over 80% of lineages from the 
UMAP cluster corresponded with a unique hierarchical cluster 
and labeled these hierarchical clusters according to this 
correspondence (Figure S8). For UMAP cluster 1, lineages 
were more evenly split between two clusters. 64% of these 
lineages clustered together in what is labeled as hierarchical 
cluster 1 and 30% in hierarchical cluster 1/7 (Figure S8), 
which contains all of the control lineages that comprise 
UMAP cluster 7. Despite these lineages clustering more 
closely with control lineages than the remainder of the cluster 
1, they do tend to cluster distinctly with the control lineages, 
suggesting they have behavior that is distinguishable from 
the control lineages. If we consider these cluster 1 mutants 
that end up in cluster 3/7 as “mis-clustered”, we find that 85% 
of lineages from each UMAP cluster are clustered together in 
the corresponding hierarchical cluster. If we consider these 
as “consistently clustered”, this metric increases to 90% of 
lineages correctly clustered. Altogether, this analysis shows 
that the results we show are robust to alternative methods of 
clustering.
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Inferring where adaptive lineages originally evolved
All 774 adaptive lineages were isolated from one of the 12 
evolution experiments at the timepoint indicated in figure 
S1 (see Methods section entitled, “Isolating a large pool 
of adaptive mutants”). The sample we isolated from each 
evolution experiment was sequenced prior to pooling. This 
allows us to computationally determine which barcoded 
lineages originated from which evolution experiment to 
generate the pie charts in Figures 2, 4, 5, 6 and 7. 

If adaptive mutation arose independently during the course 
of each evolution experiment, it would be unlikely for any 
adaptive lineage we study to be present in more than one 
of the evolution conditions. This would make it very easy 
to assign each barcode to the evolution experiment from 
which it originated. However, this was not the case for many 
barcoded lineages.

Previous work explained that the transformation procedure 
used to insert a barcode into the landing pad of SHA185 
was itself mutagenic, such that many of the mutations arose 
prior to the start of the evolution experiments (Levy et al. 
2015). Since all our evolution experiments were started 
from the same pool of barcoded lineages, we thus expect 
that many adaptive lineages will be present in more than one 
condition. However, it is not expected that these adaptive 
lineages will be present at the same frequency in every 
condition; instead these frequencies change with the fitness 
of the mutation each lineage possesses. Therefore, when 
an adaptive lineage appeared in multiple conditions, we 
weighted its origin to reflect its frequency in each condition. 
In other words, adaptive lineages that were only present 
in the sample taken from a single evolution condition were 
identified and assigned a single origin condition in the pie 
charts in Figures 2, 4, 5,6, and 7. But for adaptive lineages 
found in the samples taken from more than one evolution 
condition, the proportions assigned to each origin condition in 
the pie charts was scaled to equal the relative frequencies of 
that lineage in all evolution conditions where it was observed. 
Associated data and code can be found here: https://osf.io/
pxyv9/?view_only=51241d8f00c24f7e83f1ece3ae31a53b. 
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Supplemental Figures and Tables

Figure S1: Twelve barcoded evolution experiments track ~300,000 lineages as they adapt to different drug concentrations and combinations. In 
each plot, every line represents a unique barcoded lineage. The vertical axis represents barcode frequency. When lineages reach a frequency of zero it 
means they were not sampled at that time point of the experiment. The black boxes indicate the transfer number of each evolution experiment from which 
evolved lineages are sampled; the number of cells sampled (colonies picked) is in the upper right hand corner.
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Figure S2: Chosen drug concentrations do not dramatically reduce yeast’s maximum growth rate. We measured the growth rate of a single 
barcoded yeast lineage, prior to the evolution experiment, in different concentrations and combinations of drugs using a plate reader to track changes 
in optical density over time. Maximum growth rate is reported as a percentage of the maximum growth rate in conditions lacking FLU or RAD. Maximum 
growth rate was calculated as the maximum log-linear slope of the change in optical density over time. 
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Figure S3: Twenty four fitness competitions track evolved lineages as their barcodes change frequency. In each plot, every line represents a 
barcoded lineage. Lineages with >5 reads per experiment are shown (4,815). Control lineages, known to possess no sequenced mutations from the 
ancestor, are highlighted in black. Evolved lineages with higher fitness than controls are yellow, similar fitness to controls (i.e., relative fitness ~0) are 
purple, and lower fitness than controls are orange. When a lineage declines in frequency so much that its associated barcode is no longer observed, its 
line abruptly ends. Some lineages appear to decline and then increase in frequency; this happens because low frequency lineages are subject to sampling 
noise.
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Figure S4: Fitness measurements are reproducible between replicates and closely related conditions.
A. Every point depicts one of the evolved lineages that was observed more than 500 times in both replicates of the fitness competition experiment for a 
given condition. The average Pearson correlation across all pairs of replicates in all conditions is 0.75. B. Every point depicts one of the 774 lineages that 
was observed more than 500 times in at least one replicate fitness competition. Here, instead of comparing the fitness of replicates, we compare fitness 
across conditions for 3 closely related pairs of conditions. Comparisons across conditions may be less noisy than those across replicates because fitness 
in a particular condition represents the average fitness across replicates in that condition.
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Figure S5: The two types of adaptive mutants depicted in figure 2 sort into different clusters on the UMAP. The top 100 highest fitness lineages in 
high FLU (blue) and high RAD (red) largely cluster into different groups, with the 7 overlapping mutants (black) falling into the uppermost group.  
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Figure S6: Bayesian information criteria (BIC) scores suggest the 774 mutants cluster into between 6 and 13 
groups. We used a gaussian mixture model to distinguish clusters of mutants with unique fitness profiles. A. BIC 
scores for analysis performed on 774 mutant lineages that each were observed at minimum 500 times per environment. 
B BIC scores for analysis performed on 617 mutant lineages that each were observed at minimum 5000 times per 
environment.  

Figure S7. UMAP structure is robust. A. In this UMAP plot, relative fitness of the 774 lineages is fed directly into UMAP prior to normalizing the data 
to have equal variance across all environments as was done in figure 3D. This has little impact on the appearance of the UMAP. B. UMAP made with 
617 lineages that were observed more than 5000 times in at least one replicate. While the appearance of the UMAP is inverted relative to figure 3D, the 
clusters largely retain the same lineages. As lower coverage (noisier) data points are removed from this dataset, the observation that the overall patterns 
are maintained suggests our original clusters were not based on noisy fitness measurements. 
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Figure S8. Clusters are robust to a hierarchical clustering method. A. In order to assess whether clusters identified from the UMAP are robust to 
alternative clustering methods, we used hierarchical clustering to identify clusters of mutants with similar fitness profiles. This figure depicts a dendrogram 
where the branch length between each lineage (or group of lineages) represents the distance between the clustered groups as measured across all 
measured conditions. The terminal branch leading to each lineage is colored by that lineage’s cluster from the UMAP clustering used in figure 3 of the 
main text. Dark gray lines show clusters identified using a between-cluster cutoff of 11, which creates 7 clusters, consistent with the number of clusters we 
identified in figure 3 via clustering on the UMAP space. Hierarchical clusters are labeled and colored corresponding to whichever of the UMAP clusters they 
share the most overlapping lineages with. Note that the y-axis is linearly scaled between 0 and 10 and log2 scaled above 10 for visualization purposes. B. 
A matrix quantifying how well the results of this hierarchical clustering method correspond with those of the UMAP method presented in figure 3, depicting 
the percentage of a given UMAP cluster that ends up with each corresponding hierarchical cluster. For the most part, mutants that are clustered together 
in the UMAP in figure 3 are also clustered together in panel A. Even though it appears that mutants in cluster 1 (which are those most resistant to low FLU) 
move to a different cluster, these mutants move together to the cluster pertaining to the control strains as they have the least severe effects on fitness.
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Figure S9: UMAP on data for 774 lineages that were normalized to account for magnitude differences (row means set to 0). A. Every point in this 
plot represents one of the barcoded lineages colored by cluster; clusters were identified using a gaussian mixture model. The 774 adaptive lineages cluster 
into 6 groups based on variation in their fitness profiles; the control lineages cluster into the middle cluster in light green. B. Original cluster calls were 
mapped on the new UMAP. While the blue and orange clusters show mixing, other cluster structures are largely retained. C. Plot shows all lineages that 
are present in cluster 1-3 in either not normalized or normalized dataset. Lineages that do not change clusters are represented by diamonds while those 
that switch are noted with circles. Nearly 67% of lineages remain in their original cluster after accounting for normalization differences. 
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Figure S10: Unexpected tradeoffs in evolved lineages in cluster 4 and 5 in response to combined drugs. A. Cluster 5 (red) has an unexpected fitness 
disadvantage in the LRLF multidrug environment relative to cluster 4 (green), given that cluster 5 lineages do not have a relative fitness disadvantage in 
the relevant single drug environments. Boxplots summarize the distribution across all lineages within each cluster in each environment, displaying the 
median (center line), interquartile range (IQR) (upper and lower hinges), and highest value within 1.5 × IQR (whiskers). B. Raw growth curve data for 
relative maximum growth rates presented in Figure 6D. Two mutants, one to GBP2 (cluster 4) and one to HDA1 (cluster 5) were grown individually in the 
conditions shown.
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Table S1: The sequenced mutations present in each of the adaptive lineages on which we performed whole genome sequencing. 
https://osf.io/pxyv9/files/osfstorage/6516049b3d9bde04078d871f

Table S2: The percent of isolates from each evolution experiment that became diploid by the timepoint we sampled from.

Estimated percentage of diploid cells in each evolution condition, determined using nuclear staining and flow cytometry 
as described in Materials and Methods. *For the High Radicicol + Low Fluconazole condition, 95 instead of 96 samples 
were  measured due to undetectable growth in one well.
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