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Abstract

There is growing interest in designing multidrug therapies that leverage tradeoffs to combat drug resistance. Tradeoffs are
common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions
remain about the extent to which the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question
is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory
settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that
provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing
lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fithess advantage in fluconazole, a common
antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these
mutants group into six classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of
mutants affects fitness through different molecular mechanisms. Some of the groupings we find are surprising. For example,
we find some mutants that resist single drugs do not resist their combination, and some mutants to the same gene have
different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive
tradeoffs when designing multidrug treatments that thwart resistance. On the other hand, by demonstrating that hundreds
of adaptive mutations can be reduced to a relatively smaller number of groups, our findings suggest that resistance evolves
through a relatively small number of mechanisms, which may facilitate multidrug strategies to thwart resistance as well as
more general evolutionary predictions. By grouping mutants that likely affect fithess through similar underlying mechanisms,
our findings also inform efforts to map the phenotypic impacts of mutation.
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Introduction

How many different molecular mechanisms can a microbe
exploit to adapt to a challenging environment? Answering this
question is particularly urgent in the field of drug resistance
because infectious populations are adapting to available
drugs faster than new drugs are developed (Ventola 2015;
Centers for Disease Control and Prevention (U.S.) 2019).
Understanding the mechanistic basis of drug resistance
can inform strategies for how to combine existing drugs in
a way that prevents the evolution of resistance (Andersson
and Hughes 2010; Melnikov et al. 2020; Pinheiro et al.
2021). For example, one strategy exposes an infectious
population to one drug (Drug A) knowing that the mechanism
of resistance to Drug A makes cells susceptible to Drug B
(Hall et al. 2009; Pal et al. 2015; Baym et al. 2016; Roemhild
et al. 2020). Problematically, these multi-drug strategies
perform best when all mutants that resist Drug A have a
tradeoff in the second drug (Figure 1A). If there are multiple
different mechanisms to resist Drug A, some of which come
with different tradeoffs, these treatment strategies could fail

(Figure 1B), and they sometimes do (Grier et al. 2003; Abel
zur Wiesch et al. 2014; Wang et al. 2019; Scarborough et al.
2020).

Laboratory experiments that have power to search for
universal tradeoffs — where all the mutants that perform
well in one environment perform poorly in another — often
find there are mutants that violate trends or the absence of
trends altogether (Hill et al. 2015; Nichol et al. 2019; Kinsler
et al. 2020; Gjini and Wood 2021; Ardell and Kryazhimskiy
2021; Herren and Baym 2022). Another way to phrase this
observation is to say that adaptive mutations often have
effects in environments other than the one in which they
originally evolved. These effects, referred to as ‘pleiotropic’
effects, are unpredictable and context dependent (Jerison et
al. 2020; Geiler-Samerotte et al. 2020; Bakerlee et al. 2021;
Chen et al. 2023). In sum, observations from many fields
suggest that diverse mechanisms can improve a microbe’s
performance in a given environment resulting in diverse
tradeoffs in other environments.
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Figure 1: A multidrug treatment strategy that relies on all mutants having the same tradeoffs. (A) All of the mutants that resist Drug A do so via a
similar mechanism such that all are sensitive to Drug B. (B) There are multiple different types of mutants that resist Drug A, not all of which are sensitive

to Drug B.

Arelated conclusion is that our knowledge of the mechanisms
contributing to adaptation, even adaptation resulting in
resistance to widely used drugs, is incomplete. This gap in
knowledge is partly due to the fact that mutations that provide
the strongest fitness advantage often dominate evolution.
Thus, in the clinic, and in laboratory experiments, the same
drug-resistant mutations repeatedly emerge (Lupetti et al.
2002; Berkow and Lockhart 2017; Melnikov et al. 2020;
Ksiezopolska et al. 2021), potentially leading to the false
impression that the mechanistic basis of resistance to a
particular drug is less varied than may be true. This problem is
amplified by the limitations of most DNA sequencing methods,
particularly that they cannot detect mutations present in
less than 10% of cells (Good et al. 2017). The problem also
reflects the expense of whole genome sequencing and the
challenge of identifying novel adaptive mutations (Martinez
and Lang 2023), both of which can encourage screens for
known resistance mutations (Su et al. 2019) and impede
searches for novel targets. In order to design better multi-
drug treatment strategies that thwart resistance, or to see
if such strategies are even feasible, we need methods to
survey a more complete set of mutations (and mechanisms)
that can contribute to adaptation.

Fortunately, single-cell and single-lineage DNA sequencing
technologies are allowing us to more deeply sample genetic
diversity in evolving populations of microbes (Schmidt and
Efferth 2016). Here, we leverage a platform to perform
massively-replicate evolution experiments in yeast. This
platform has been shown to reveal the full spectrum of
mutations underlying adaptation to a particular environment
(Levy et al. 2015). The key to its success is that it uses DNA
barcodes to track all competing adaptive lineages, not just the
ones that ultimately rise to appreciable frequency. We apply
this platform to investigate mechanisms underlying resistance
to a specific antifungal drug: fluconazole (FLU) (Wang et al.
2022; Logan et al. 2022). Although serious fungal infections

are most common in immunocompromised individuals, their
impact on global health is still striking, resulting in over 1.5
million deaths annually (Xie et al. 2014; lyer et al. 2022).
Fungi are eukaryotes, which severely limits the number of
possible drug targets that do not cause host toxicity (Xie et
al. 2014). As a result, azoles are one of only three classes of
antifungal drugs used to treat fungal infections. This amplifies
the problem of drug resistance, as resistance to one azole
commonly confers resistance to others of the same class,
decreasing treatment options (Berman and Krysan 2020).
By focusing on mechanisms of azole resistance, we to
contribute to a growing literature about the tradeoffs that
may be leveraged to design multidrug treatment strategies
(Cowen and Lindquist 2005; Hill et al. 2015; Ksiezopolska et
al. 2021; lyer et al. 2022). However, our primary goal is more
generic: we seek to explore the utility of a high-throughput
evolutionary approach to enumerate the mechanisms of drug
resistance.

To enhance the diversity of mechanisms underlying drug
resistance in our experiment, we performed multiple
laboratory evolutions in a range of FLU concentrations
and sometimes in combination with a second drug. We did
so0 because previous work has shown that different drug
concentrations and combinations select for different azole
resistance mechanisms (Cowen and Lindquist 2005; Hill et al.
2015). Ultimately, we obtained a large collection of 774 yeast
strains that are adaptive in at least one of the environments
we study from which we could begin to investigate the
mechanistic basis of FLU-resistance.

But how do we go about deciphering the molecular
mechanisms that contribute to drug resistance and
susceptibility across such a large collection of mutants?
Typical phenotyping methods, e.g., quantifying expression
levels of drug export pumps (Miyazaki et al. 1998) or of the
drug targets themselves (Palmer and Kishony 2014), are
low throughput and require some a priori knowledge of the
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phenotypes that may be involved in resistance. Instead, many
studies focus on identifying the genetic basis of adaptation
in order to glean insights about the underlying mechanisms
(Tenaillon et al. 2012; Cowen et al. 2014; Venkataram et al.
2016). However, genotyping lineages from barcoded pools
is technically challenging (Venkataram et al. 2016), and
further, genotype does not necessarily predict phenotype
(Eguchi et al. 2019; Brettner et al. 2022b). For example,
previous work using the same massively-replicate evolution
platform that we use here discovered that many of mutations
that provide an advantage in glucose-limited conditions are
in genes comprising a canonical glucose-sensing pathway
(Venkataram et al. 2016). Yet despite this similarity at the
genetic level, follow-up work showed that these mutants did
not all experience the same tradeoffs when exposed to new
environments (Li et al. 2018b; Kinsler et al. 2020).

Instead of trying to identify the phenotypic or even the
genetic basis of adaptation, here we strive to enumerate
different classes of FLU-resistant mutants. Understanding
how many different mutant classes exist informs questions
about the feasibility (or infeasibility) of multi-drug therapy
(Figure 1). We sort evolved FLU-resistant yeast strains
into classes based on whether they share similar tradeoffs
across environments. Previous work suggests that mutants
with different fitness tradeoffs may affect fithess through
different molecular mechanisms (Rodrigues et al. 2016; Li
et al. 2019; Pinheiro et al. 2021). Our work is thus part of a
growing push to flip the problem of mechanism on its head
by, instead of using mechanism to predict fitness, using
how fitness varies across environments to learn about the
causative mechanisms underlying fitness differences (Li et
al. 2019; Kinsler et al. 2020; Petti et al. 2023).

Across our collection of 774 adaptive yeast lineages we
discovered at least six distinct groups with characteristic
tradeoffs. For example, we find some drug resistant mutants
are generally advantageous, while others are advantageous
only in specific environments. And we find some mutants
that resist single drugs also resist combinations of those
drugs, while others do not. By grouping mutants with similar
tradeoffs, we reduce the number of unique drug-resistant
mutants from more than can be easily phenotyped (774) to a
manageable panel for investigating the mechanistic basis of
drug resistance.

With regard to drug regimens that exploit tradeoffs (Figure 1),
our finding of multiple mutant classes with different tradeoffs
suggests this may not be straightforward. The outlook is
further complicated by our finding that some classes of FLU-
resistant mutant primarily emerge from evolution experiments
that did not contain FLU. This, as well as limits on our power
to observe mutants with strong tradeoffs, suggest there
may be additional mechanisms of FLU resistance beyond
what we sampled (see (Cowen and Lindquist 2005)). Still,
nuanced strategies to thwart resistance in cases where
there are multiple types of resistant mutant are emerging
(Maltas and Wood 2019; Gjini and Wood 2021; Wang et al.
2023). For example, one idea is to apply a drug regimen
that enriches for mutants that suffer strong tradeoffs before

exploiting those tradeoffs (Iram et al. 2020). Another idea is
to perform single-cell sequencing on infectious populations
to discover which classes of mutants are present (Nagasawa
et al. 2021; Forsyth et al. 2021) and design treatments
specific to those (Maltas and Wood 2019; Aissa et al. 2021;
Hsieh et al. 2022). Our findings support that such ideas may
be feasible by demonstrating that there are not as many
unique fitness tradeoffs as there are mutations. Our work —
showing that 774 mutants fall into a much smaller number
of groups — contributes to growing literature suggesting that
the phenotypic basis of adaptation is not as diverse as the
genetic basis (Kinsler et al. 2020; Iwasawa et al. 2022; Petti et
al. 2023). This winnowing of diversity may make evolutionary
processes, for example, whether an infectious population will
adapt to resist a drug, somewhat more predictable (Rodrigues
et al. 2016; Lassig et al. 2017; Kinsler et al. 2020; Yoon et al.
2021; King et al. 2022; Wortel et al. 2023).

Results

Barcoded evolution experiments uncover hundreds of
yeast lineages with adaptive mutations

In order to create a sizable collection of drug-resistant
mutants, we performed high-replicate evolution experiments
utilizing barcoded yeast (Levy et al. 2015; Li et al. 2018b;
Boyer et al. 2021). This barcoding system allows evolving
hundreds of thousands of genetically identical yeast lineages
together in a single flask. Each lineage is tagged with a
uniqgue DNA barcode, which is a 26 base pair sequence of
DNA located within an artificial intron. Lineages with unique
barcodes can be thought of as independent replicates of
an evolution experiment. This high-replicate system has
the potential to generate many different yeast lineages that
differ by single adaptive mutations (Venkataram et al. 2016;
Kinsler et al. 2020).

We performed a total of 12 barcoded evolution experiments,
each of which started from the same pool of approximately
300,000 barcoded yeast lineages (Figure S1). These
evolutions survey how yeast cells adapt to different
concentrations and combinations of two drugs: fluconazole
(FLU) and radicicol (RAD) (Table 1). FLU is a first line of
defense against yeast infections, but over the past two
decades diverse resistant mutations have been identified
(Bongomin et al. 2017; Rybak et al. 2022; Osset-Trénor et
al. 2023). Some earlier work suggested that FLU-resistant
mutants are sensitive to the second drug we study, radicicol
(RAD) (Cowen and Lindquist 2005; Cowen et al. 2009), and
more generally that RAD can prevent the emergence of drug
resistance in other systems (Whitesell et al. 2014). However,
there are some mutants that are cross resistant to both FLU
and RAD (Hill et al. 2015), and the prominent mechanism
of resistance can differ with the intensity of selection and
drug concentration (Cowen and Lindquist 2005; Yang et
al. 2023). We thus chose to evolve yeast to resist different
concentrations and combinations of FLU and RAD to
generate a diverse pool of adaptive mutations comprising
different mechanisms of drug resistance.

We evolved yeast to resist three different concentrations of
either FLU and RAD for a total of six single-drug conditions
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Evolution Condition Abbreviation | SYMBOL

4 ug/ml Fluconazole Low Flu

6 ug/ml Fluconazole Med Flu 7

8 ug/ml Fluconazole High Flu @

5 uM Radicicol Low Rad

15 M Radicicol Med Rad

20 uM Radicicol High Rad

5 uM Radicicol + 4 pg/ml Fluconazole LRLF

5 uM Radicicol + 8 pg/ml Fluconazole LRHF

15 pM Radicicol + 4 pg/ml Fluconazole HRLF @

15 pM Radicicol +8 pg/ml Fluconazole HRHF @
AP\

0.5% DMSO DMS0 W

No Drug No Drug

Table 1: Alist of the environments included in this study

(Table 1). We also studied four conditions containing
combinations of both drugs, as well as two control conditions,
for a total of 12 evolution experiments (Table 1). We chose
to study subclinical drug concentrations with the hope that
no drug treatment would be strong enough to reduce the
population of yeast cells to only a handful of unique barcodes
(Figure S2). We needed to maintain barcode diversity in
order to evolve a large number of unique lineages that each
accumulate different mutations.

With the goal of collecting adaptive lineages from each
evolution experiment, we took samples from each of our 12
barcoded evolutions after 3 - 6 growth/transfer cycles (Figure
S1). This represents roughly 24 to 48 generations of growth
assuming 8 generations per growth/transfer cycle (Levy et al.
2015). We sampled early because previous work using this
barcoded evolution system demonstrated that the diversity of
adaptive lineages is highest after just a few dozen generations
(Levy et al. 2015; Venkataram et al. 2016). We sampled
about 2,000 cells from each evolution experiment except
those three containing high FLU from which we sampled
only 1,000 cells. We then tested our sampled lineages for
the presence of adaptive mutations by measuring the fithess
of all ~21,000 isolates (2,000 cells x 9 conditions + 1000
cells x 3 conditions) relative to their ancestor (Venkataram
et al. 2016). To do so, we pooled these 21,000 isolates and
used this pool to initiate fithess competition experiments. We
competed the pool against control strains, i.e., strains of the
ancestral genotype that do not possess adaptive mutations
(Venkataram et al. 2016; Kinsler et al. 2020). We performed
24 such competitive fithess experiments, 2 per each of the
original 12 evolution conditions. In each experiment, we
emulated the growth and transfer conditions of the original
evolution experiments as precisely as possible, tracking how
barcode frequencies changed over 5 growth/transfer cycles

(~40 generations). We used the log-linear slope of this
change, relative to the average slope for the control strains,
to quantify relative fitness.

We found many barcodes had slopes that were more
positive than the control strains, suggesting that they
possess adaptive mutations that improved their fitness
(Figure S3). In fact, some of these adaptive lineages
outcompeted the other lineages so quickly that it posed a
challenge. Barcodes pertaining to outcompeted lineages
were often not present at high enough coverage to track
their fithess. We applied a conservative filter, preserving
only 774 lineages with barcodes that were observed >500
times in at least one replicate experiment per each of the
12 environments. Lineages that have low fithess rarely
pass this filter, thus our 774 lineages are biased towards
those that are reproducibly adaptive in the environments
we study (Figure S4). Despite this biased sample, we will
go on to demonstrate that there are likely many different
mechanisms of adaptation represented among these 774
lineages.

To provide evidence that these 774 barcoded yeast lineages
indeed possess adaptive mutations, we performed whole
genome sequencing on a subset of 62 strains. Because we
sampled these lineages after only a few dozen generations
of evolution, each lineage differs from the ancestor by just
a few mutations, making it easy to pinpoint the genetic
basis of adaptation. Doing so revealed mutations that have
previously been shown to be adaptive in our evolution
conditions (Table S1). For example, we sequenced many
FLU-resistant yeast lineages finding 35 with unique single
nucleotide mutations in either PDR1 or PDRS3, and a few
with mutations in SUR1 or UPC2, genes which have all
been shown to contribute to FLU resistance in previous
work (Flowers et al. 2012; Vasicek et al. 2014; Tanaka and
Tani 2018; Uemura and Moriguchi 2022; Vu and Moye-
Rowley 2022). Similarly, lineages that have very high
fitness in RAD were found to possess single nucleotide
mutations in genes associated with RAD resistance, such
as HDA1 (Robbins et al. 2012) and HSC82, which is the
target of RAD (Roe et al. 1999). We also observed several
lineages with similar mutations to those observed in other
studies using this barcoded evolution regime, including
mutations to IRA1, IRA2 and GPB2 (Venkataram et al.
2016; Kinsler et al. 2020). Previous barcoded evolutions
also observed that increases in ploidy were adaptive, with
43 to 60% of cells becoming diploid during the course
of evolution (Venkataram et al. 2016). However, ploidy
changes contributed less to adaptation in our experiment,
with at most 9.4% of cells becoming diploid by the time
point when we sampled, but often less than 2% (Table S2).
In sum, we conclude that we have created a diverse pool of
774 barcoded yeast lineages, most of which have a fithess
advantage in one of the conditions we study and are likely
to possess a unique adaptive mutation. The question we
address for the rest of this study is to what extent these
hundreds of mutant lineages differ from one another in terms
of the mechanism/s underlying their fithess advantages.
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Figure 2: Two different classes of FLU-resistant mutants with unique tradeoffs. (A) This panel describes the 100 mutant lineages with the highest
fitness relative to the control strains in the high FLU environment (8ug/ml FLU). The vertical axis depicts the fitnesses (log-linear slopes relative to control
strains) for these 100 strains in four selected environments, including the high FLU environment (boxed). Boxplots summarize the distribution across all
100 lineages for each environment, displaying the median (center line), interquartile range (IQR) (upper and lower hinges), and highest value within 1.5 x
IQR (whiskers). (B) The 100 lineages with highest fitness in high FLU were most often sampled from evolution experiments containing FLU. (C) Similar to
panel A, this panel describes the 100 mutant lineages with the highest fitness relative to the control strains in the high RAD environment (20uM Rad). (D)
The 100 lineages with highest fitness in high RAD were most often sampled from evolution experiments that did not contain FLU, and yet they provide a
fitness advantage in the high FLU condition. (E) A pairwise correlation plot showing that all 774 mutants, not just the two groups of 100 depicted in panels
A and C, to some extent fall into two groups defined by their fitness in high FLU and high RAD. The contours (black curves) were generated using kernel
density estimation with bins = 7. These contours describe the density of the underlying data, which is concentrated into two clusters defined by the two
smallest black circles. The 100 mutants with highest fitness in high FLU are blue, highest fitness in high RAD are red, and the seven that overlap between

the two aforementioned categories are black.

A unique mechanisms of FLU resistance emerges among
mutants isolated in RAD evolutions

The majority of the 774 adaptive lineages that we study have
higher fitness than the ancestral strains in not one, but often
in several drug conditions. This suggests that pleiotropy,
and in particular cross-resistance, is prevalent among the
lineages we study. But not all lineages show the same
patterns of cross resistance (Figure 2). For example, the 100
most fit lineages in our highest concentration of fluconazole
are also beneficial in our highest concentration of radicicol
(Figure 2A; leftmost two boxplots). As expected, these
100 lineages also have high fitness in conditions where high
concentrations of FLU and RAD are combined (Figure 2A;
third boxplot). And these 100 most-fit lineages in FLU lose
their fitness advantage in conditions where no drug is present
(Figure 2A; rightmost boxplot).

Given their high fitness in conditions containing FLU, it
seems likely that these 100 mutants originated from evolution
experiments containing FLU. Before we pooled the lineages
we sampled from each of our 12 evolution experiments,
we independently sequenced each sample. This allows us
to trace every lineage back to the evolution experiment/s it
originated from. As we expected, these 100 best performing
lineages in high FLU largely originate from evolution
experiments containing FLU (Figure 2B). Given that these

lineages have no fithess advantage in conditions containing
no drug, it is also unsurprising that they are underrepresented
in evolution experiments lacking RAD and FLU (Figure 2B).

It might be tempting to generalize that most mutations that
provide drug resistance are not beneficial in environments
without drugs. Afterall, we show this is true for a large
number of independent lineages (Figure 2A). Further, many
previous studies find a similar pattern, whereby drug resistant
mutants often do not have high fitness in the absence of
drug (Andersson and Hughes 2010; Basra et al. 2018;
Allen et al. 2019; Melnikov et al. 2020), such that treatment
strategies have emerged that cycle patients between drug
and no drug states, albeit with mixed success (Baker et al.
2018; Raymond 2019; Wang et al. 2019; Algazi et al. 2020).
However, this type of generalization is not supported by our
data. We find that drug resistance can sometimes come with
an advantage, rather than a cost, in the absence of a drug
(Figure 2C). The top 100 most fit mutants in our highest
concentration of RAD provide a fithess advantage in high
RAD, high FLU, as well as in environments with no drug
(Figure 2C). These observations suggest that there are at
least two different mechanisms by which to resist FLU that
result in different tradeoffs in other environments (Figure 2A
vs. 2C).
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Intriguingly, these multidrug resistant lineages that maintain
their fithess advantage in the absence of drug (Figure 2C)
mainly originate from evolution experiments performed in
conditions lacking FLU (Figure 2D). This highlights how the
potential mechanisms by which a microbe can resist a drug
may be more varied than is often believed. Typically, one
doesn’t search for FLU-resistant mutants by evolving yeast
to resist RAD. Thus typical studies might miss this unique
class of FLU-resistant mutants.

In sum, there appear to be at least two different types of
mutants present among our collection of 774 adaptive yeast
lineages. One group has almost equally high fithess in RAD
and FLU but has no fitness advantage over the ancestral strain
in conditions without either drug (Figure 2A & 2E). Another
group is defined by very high fitness in RAD, moderately
high fitness in FLU and moderately high fitness in conditions
without either drug (Figure 2C & 2E). When comparing
fitness in RAD vs. FLU across all 774 lineages, not only the
top 100 best performing in each drug, we see some evidence
that they largely fall into the two main categories highlighted
in figures 2A and 2C (Figure 2E). Thus it might be tempting
to conclude that there are two different types of FLU-resistant
mutant in our dataset. However, sorting mutants into groups
using a pairwise correlation plot (Figure 2E) excludes data
from ten of our twelve environments.

A strategy to differentiate classes of drug-resistant
mutants with different tradeoffs

The observation of two distinct types of adaptive mutants
(Figure 2) made us wonder whether there were additional
unique types of FLU-resistant mutants with their own
characteristic tradeoffs. This is difficult to tell by using pairwise
correlation like that in Figure 2E because we are not studying
pairs of conditions, as is somewhat common when looking
for tradeoffs to leverage in multidrug therapies (Scarborough
et al. 2020; Melnikov et al. 2020; Ardell and Kryazhimskiy
2021; Larkins-Ford et al. 2022). Instead, we have collected
fitness data from across 12 conditions to yield a more
comprehensive set of gene-by-environment interactions for
each mutant. This type of data, describing how a particular
genotype responds to environmental change, is sometimes
called a ‘reaction norm’ and can inform quantitative genetic
models of how selection operates in fluctuating environments
(Gomulkiewicz and Kirkpatrick 1992; Ogbunugafor 2022)
and how much pleiotropy exists in nature (Yadav et al. 2015).
More recent studies refer to the changing performance of
a genotype across environments as a ‘fitness profile’ or in
aggregate, a ‘fitness seascape,’ and suggest these type of
dynamic measurements are the key to designing effective
multi-drug treatments (King et al. 2022) and to predicting
evolution (Lassig et al. 2017; Kinsler et al. 2020; Cairns et
al. 2022; lwasawa et al. 2022; Chen et al. 2023). And when
the environments studied represent different drugs, these
types of data are often referred to as “collateral sensitivity
profiles” a term chosen to convey how resistance to one drug
can have “collateral” effects on performance in other drugs
(Pal et al. 2015; Maltas and Wood 2019; Gjini and Wood
2021). Despite the wide interest in this type of fithess data,
it is technically challenging to generate, thus many previous

studies of fitness profiles focus on a much smaller number
of isolates (Imamovic et al. 2018; Nichol et al. 2019; Maltas
and Wood 2019), sometimes with variation restricted to a
single gene (Mira et al. 2015; King et al. 2022), or evolved
in response to a single selection pressure (Li et al. 2018b;
Kinsler et al. 2020). Here, we have generated fitness profiles
for a large and diverse group of drug-resistant strains using
the power of DNA barcodes. Now we seek to understand
whether these mutants fall into distinct classes that each have
characteristic fithess profiles (i.e., characteristic tradeoffs,
characteristic reaction norms, or characteristic gene-by-
environment interactions).

To address this question, we perform dimensional reduction,
clustering mutants with fithess profiles that have a similar
shape. It is in theory possible for all mutants to have similar
profiles, perhaps implying they all affect fithess through
similar underlying mechanisms (Figure 3A). However, the
disparity reported in Figure 2 suggests otherwise. It’s also
possible that every mutant will have a different profile. This
could happen if each mutant affects different molecular-
level phenotypes that underlie its drug resistance (Figure
3B). But previous work suggests that the phenotypic basis
of adaptation is less diverse than the genotypic basis. This
is important because it means that evolutionary outcomes
are more predictable at the level of phenotype (Kinsler et al.
2020; Brettner et al. 2022b; lwasawa et al. 2022). Even so,
every mutant could have a slightly different fithess profile if
each affects the same handful of molecular-level phenotypes
but to relatively different degrees. This would allow every
mutant to have a unique response to environmental change,
without requiring that there be as many unique molecular
mechanisms underlying drug resistance as there are mutants.
A final possibility is that there exist discrete classes of drug-
resistant mutants with characteristic tradeoffs (Figure 3C).
This might imply that each class of mutants provides drug
resistance via a different molecular mechanism, or a different
set of mechanisms. In sum, our endeavor to enumerate
mutants with different fithess profiles speaks to general
questions about the extent of pleiotropy in the genotype-
phenotype-fitness map (Boyle et al. 2017; Geiler-Samerotte
et al. 2020; Bakerlee et al. 2021; Chen et al. 2023), the
extent to which fitness tradeoffs are universal (Andersson
and Hughes 2010; Li et al. 2019; Herren and Baym 2022),
and relatedly, the predictability of evolution and potential for
controlling evolutionary processes (Lassig et al. 2017; Iram
et al. 2020; Kinsler et al. 2020; King et al. 2022; Petti et al.
2023).

To see whether there are distinct classes of adaptive mutants
among our drug-resistant yeast lineages, we applied uniform
manifold approximation and projection (UMAP) (Mclnnes
et al. 2018a) to fithess measurements for 774 yeast strains
across all 12 environments. This method places mutants with
similar fitness profiles near each other in two-dimensional
space. As might be expected, it largely places mutants in
each of the two categories described in Figure 2 far apart,
with drug-resistant mutants that lose their benefit in the
absence of drug in the top half of the graph, and those that
maintain their benefit in the bottom half (Figure 3D & Figure
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S5).

Beyond the obvious divide between the top and bottom
clusters of mutants on the UMAP, we used a gaussian
mixture model (Fraley and Raftery 2003) to identify clusters. A
common problem in this type of analysis is the risk of dividing
the data into clusters based on variation that represents
measurement noise rather than reproducible differences
between mutants (Zhao et al. 2008; Mirkin 2011). One way
we avoided this was by ceasing to split out additional clusters

before doing so no longer improved model performance
(Figure S6). The model we chose consists of seven
clusters, including one pertaining to the control strains, and
six others pertaining to different classes of adaptive mutant
(Figure 3D). We investigated whether these clusters capture
reproducible differences between mutants, rather than
measurement noise, by reducing the amount of noise in our
data and asking if the same clusters are still present. To do
s0, we reduced our collection of adaptive lineages from 774
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Figure 3: Clustering evolved lineages with similar fitness profiles. (A-C) Simulated data showing potential fitness profiles when (A) all mutants have
similar responses to environmental change and thus a similar fithess profile, (B) every mutant has a different profile (five unique profiles are highlighted in
color), or (C) every mutant has one of a small number of unique profiles (two unique profiles are depicted). (D) Every point in this plot represents one of
the barcoded lineages colored by cluster; clusters were identified using a gaussian mixture model. The 774 adaptive lineages cluster into 6 groups based
on variation in their fitness profiles; the control lineages cluster separately into the leftmost cluster in light green. (E) The fitness profiles of each cluster of
adaptive lineages. Boxplots summarize the distribution across all lineages within each cluster in each environment, displaying the median (center line),
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Figure 4: Evolved lineages comprising cluster 1 have different
genotypes and phenotypes from neighboring clusters. (A) The three
clusters on the top half of the UMAP differ in their targets of adaptation with
cluster 1 being unique in that it does not contain mutations to PDR1 or PDR3.
(B) Evolved lineages comprising cluster 1 do not have consistent fitness
advantages in conditions containing RAD, while lineages comprising clusters
2 and 3 are uniformly adaptive in RAD. Boxplots summarize the distribution
across all lineages within each cluster in each environment, displaying the
median (center line), interquartile range (IQR) (upper and lower hinges), and
highest value within 1.5 x IQR (whiskers). (C) Lineages comprising cluster
1 are most fit in low concentrations of FLU, and this advantage dwindles
as the FLU concentration increases. Lineages comprising clusters 2 and 3
show the opposite trend.

to 617 by requiring 5,000 rather than 500 reads per lineage
in order to infer fitness. This procedure reduced noise; the
Pearson correlation across replicate experiments improved
from 0.756% to 0.813%. Despite this reduction in variation,
these 617 lineages cluster into the same six groups (plus a
seventh pertaining to the control strains) as do the original
774 (Figure S7). The groupings are also preserved when
we perform alternate methods for dimensionality reduction
while adhering to a seven cluster model (Figure S8). Each
of the six clusters of adaptive mutants that we identify has
a characteristic fitness profile (Figure 3E). In any given
environment, the fitnesses of the mutants within each cluster
are often very similar to one another and often significantly
different from other clusters (Figure 3E). Our follow-
up investigations provide additional evidence that these
clusters of adaptive mutants each have characteristically
different tradeoffs, suggesting they affect fitness via different
molecular mechanisms.

A group of mutants with distinct genotypes are primarily
resistant to low concentrations of FLU

The upper three clusters of mutants on the UMAP (Figure 3D)
are all similar in that they have elevated fitness in at least one
FLU-containing environment but ancestor-like fitness in the
absence of drug (Figure 3E; upper three profiles). Despite
these similarities, there are major differences between these
three groups of mutant lineages, both at the level of genotype
and fitness profile (Figure 4). For example, in cluster
1 (depicted in purple in Figures 3 & 4), the 3 sequenced
lineages have single nucleotide mutations to either SUR1 or
UPC2 (Figure 4A). But in clusters 2 and 3 (depicted in blue
and orange in Figures 3 & 4), 35/36 sequenced lineages
have unique single nucleotide mutations to one of two genes
associated with ‘Pleiotropic Drug Resistance’ (PDR1 or
PDR3).

PDR1 and PDR3 are transcription factors that are well
known to contribute to fluconazole resistance through
increased transcription of a drug pump (PDR5) that removes
FLU from cells (Fardeau et al. 2007; Osset-Trénor et al.
2023). However, SUR1 and UPC2 are less commonly
mentioned in literature pertaining to FLU resistance, and
have different functions within the cell as compared to PDR1
and PDRS3 (Kapitzky et al. 2010; Hill et al. 2015). SUR1
converts inositol phosphorylceramide to mannosylinositol
phosphorylceramide, which is a component of the plasma
membrane (Uemura and Moriguchi 2022). Similarly, UPC2
is a transcription factor with a key role in activating the
ergosterol biosynthesis genes, which contribute to membrane
formation (Vik and Rine 2001; Tan et al. 2022). The presence
of adaptive mutations in genes involved in membrane
synthesis is consistent with fluconazole’s disruptive effect on
membranes (Sorgo et al. 2011).

Interestingly, the lineages with mutations to UPC2 and
SURH1, and the unsequenced lineages in the same cluster, do
not consistently have cross resistance in RAD (Figure 4B;
cluster 1). Oppositely, lineages with mutations to PDR1 or
PDRS3, and the unsequenced lineages in the same clusters,
are uniformly cross resistant to RAD (Figure 4B; clusters 2
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Figure 5: Evolved lineages in clusters 2 and 3 have characteristic
differences despite similarities at the genetic level. (A) This panel shows
the similarities between clusters 2 and 3. The upper right inset displays the
same UMAP from Figure 3D with only clusters 2 and 3 highlighted and
with lineages possessing mutations to the PDR genes depicted as blue
diamonds. The line plot displays the same fitness profiles for clusters 2
and 3 as Figure 3E, plotting the average fitness for each cluster in each
environment and a 95% confidence interval. Dotted lines represent the
same data, normalized such that every lineage has an average fitness of 0
across all environments. These line plots show that the fitness profiles for
clusters 2 and 3 have a very similar shape. Pie charts display the relative
frequency with which lineages in clusters 2 and 3 were sampled from each
of the 12 evolution conditions, colors match those in the horizontal axis
of the line plot and table 1. (B) This panel shows the differences between
the new clusters 2 and 3 created after fitness profiles were normalized to
eliminate magnitude differences. The upper right inset displays a new UMAP
(also see Figure S9) that summarizes from variation in fitness profiles after
each profile was normalized by setting its average fitness to 0. The line plot
displays the fitness profiles for the new clusters 2 and 3, which look different
from those in panel A because 37% of mutants in the original clusters 2 and
3 switched identity from 2 to 3 or vice versa. The new clusters 2 and 3 are
depicted in slightly different shades of blue and orange to reflect that these
are not the same groupings as those depicted in Figure 3. Pie charts display
the relative frequency with which lineages in new clusters 2 and 3 were
sampled from each of the 12 evolution conditions, colors match those in the
horizontal axis of the line plot and table 1.

and 3). Perhaps this cross resistance is reflective of the fact
that the drug efflux pump that PDR1/3 regulates (PDR5) can
transport a wide range of drugs and molecules out of yeast
cells (Kolaczkowski et al. 1996; Harris et al. 2021). Overall,
the targets of adaptation in cluster 1 have disparate functions
within the cell as compared to the targets of adaptation in
clusters 2 and 3. This may suggest that the mutants in cluster
1 confer FLU resistance via a different mechanism than

clusters 2 and 3.

The lineages in cluster 1 have additional important differences
from clusters 2 and 3. The lineages in cluster 1 perform best
in the lowest concentration of FLU and have decreasing
gains as the concentration of FLU rises (Figure 4C). In fact,
about 15% of these mutant lineages perform worse than their
ancestor in the highest concentration of FLU, suggesting the
very mutations that provide resistance to low FLU are costly
in higher concentrations of the same drug. The mutants in
clusters 2 and 3 show the opposite trend from those in cluster
1: they perform best in the highest concentration of FLU and
have reduced gains in lower concentrations (Figure 4C).
These findings provide additional evidence that a distinct
mechanism of FLU resistance distinguishes cluster 1 from
clusters 2 and 3. The implication that different resistance
mechanisms will dominate evolution in slightly different
concentrations of the same drug highlights the complexity
of adaptation and the need to more deeply understand the
diversity of potential adaptive mechanisms before designing
treatment strategies (Berman and Krysan 2020; Yang et al.
2023).

Two groups of mutant lineages possessing similar
adaptive mutations differ in sensitivity to RAD

While cluster 1 appears fairly different from its neighbors,
it is not immediately obvious why the mutant lineages in
clusters 2 and 3 are placed into separate groups. For one,
the mutants in each cluster have fitness profiles with a very
similar shape (Figure 3E & 5A). The sequenced lineages
in each of these clusters also possess mutations to the
same genes: PDR1 and PDR3 (Figure 4A). And finally,
the lineages in each cluster originate from similar evolution
experiments, largely those containing FLU (Figure 5B; pie
charts). These observations made us wonder whether the
difference between cluster 2 and 3 arose entirely because
the mutants in cluster 3 have stronger effects than those in
cluster 2 (Figure 5A; the solid blue line is above the solid
orange line). In other words, we wondered whether the
mutant lineages in clusters 2 and 3 affect fitness via the same
mechanism, but to different degrees. To investigate this idea,
we normalized all fitness profiles to have the same height
on the vertical axis; this does not affect their shape (Figure
5A; dotted lines). Then we re-clustered and asked whether
mutants pertaining to the original clusters 2 and 3 were now
merged into a single cluster.

Normalizing in this way did not radically alter the UMAP, which
still contains largely the same 6 clusters of mutants (Figure
S9). Clusters 2 and 3, containing lineages with mutations to
PDR1 or PDR 3, experienced the largest changes with 37%
of mutants switching from one of these two groups to the
other. The new clusters 2 and 3 now differ in the shape of
their fithess profiles, whereby slight differences that existed
between the original fitness profiles are exaggerated (Figure
5B). For example, mutants in cluster 3 perform better in
high and medium concentrations of RAD (Figure 5B). This
difference in fitness is reflected in the evolution experiments,
with more mutant lineages in cluster 3 originating from the
evolutions performed in RAD (Figure 5B). Though cluster
3 mutants tend to have stronger RAD resistance, they tend
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has an unexpected fitness disadvantage in the HRLF multidrug environment relative to cluster 4 (green), given that cluster 5 lineages do not have a fitness

disadvantage in the relevant single drug environments. Boxplots summarize
displaying the median (center line), interquartile range (IQR) (upper and lower

the distribution across all lineages within each cluster in each environment,
hinges), and highest value within 1.5 x IQR (whiskers). (C) Pie charts display

the relative frequency with which lineages in each cluster were sampled from each of the 12 evolution conditions, colors match those in table 1. (D) The
maximum exponential growth rate for a single lineage isolated from each of clusters 4 (green) and 5 (red), relative to the ancestor. The growth rate of each
lineage in each condition was measured twice by measuring changes in optical density over time. Tested lineage from cluster 4 has a mutation to GBP2

(S317T) while the lineage from cluster 5 has mutation to HDA1 (S600S).

to have reduced fitness in conditions containing neither
FLU nor RAD as compared to cluster 2 lineages (Figure
5B). In sum, the differences between lineages in clusters 2
and 3 were not resolved upon normalizing fitness profiles
to reduce magnitude differences, instead they were made
more apparent (Figure 5). These differences do not appear
to be random because they persist across experiments. For
example, cluster 3 mutants are more fit in both medium and
high RAD environments (Figure 5B; line plot) and were
more often isolated from evolutions containing RAD (Figure
5B; pie charts). These observations beg a question: how
can different mutations to the same gene affect fitness via
different molecular mechanisms?

Asking this question forces us to consider what we mean by
“mechanism.” The mechanism by which mutations to PDR1
and PDR3 affect FLU resistance is well established: they
increase transcription of an efflux pump that removes FLU
from cells (Moye-Rowley 2019; Buechel and Pinkett 2020;
Osset-Trénor et al. 2023). But if this is the only molecular-
level effect of mutations to these genes, it is difficult to
reconcile why PDR mutants fall into two distinct clusters with
differently shaped fitness profiles. Others have also recently
observed that mutants to PDR1 do not all behave the same
way when exposed to novel drugs or changes in pH (Chen et

al. 2023). This phenomenon is not reserved to PDR mutants,
as adaptive missense mutations to another gene, IRA1, also
do not share similarly shaped fitness profiles either (Kinsler
et al. 2020). One explanation may be that, while all adaptive
mutations within the same gene improve fitness via the
same mechanism, not all mutants suffer the same costs. For
example, perhaps the adaptive PDR mutations in cluster 2
cause misfolding of the PDR protein, resulting in lower fitness
in RAD because this drug inhibits a chaperone that helps
proteins to fold. In this case, it might be more correct to say
that each of our six clusters affects fitness through a different,
but potentially overlapping, suite of mechanisms (Wang
et al. 2023). Previous work demonstrating that mutations
commonly affect multiple traits supports this broader view
of the mechanistic differences between clusters (Paaby and
Rockman 2013; Boyle et al. 2017; Geiler-Samerotte et al.
2020; Kinsler et al. 2020).

Alternatively, perhaps not all adaptive mutations to PDR
improve fitness via the same mechanism. PDR1 and PDR3
regulate transcription of YOR1 and SNQ2 as well as PDR5,
and maybe the different clusters we observe represent
mutants that upregulate one of these downstream targets
more than the other (Osset-Trénor et al. 2023). Or, the
mutants in each cluster might harbor different aneuploidi1e8
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Figure 7: Evolved lineages in cluster 6 have higher fitness than other
lineages in the absence of FLU and RAD. (A) Same UMAP as Figure
3D with clusters 4, 5, and 6 highlighted and sequenced isolates in these
clusters represented as diamonds. Diamond colors correspond to the
targets of adaptation in the sequenced isolates. Pie charts display the
relative frequency with which lineages in cluster 6 were sampled from each
of the 12 evolution conditions; colors match those in table 1. (B) Of the three
clusters on the bottom half of the UMAP, cluster 6 lineages perform best in
conditions without any drug and in the highest concentration of FLU. Yet
they perform worst in the lowest concentration of FLU. Boxplots summarize
the distribution across all lineages within each cluster in each environment,
displaying the median (center line), interquartile range (IQR) (upper and
lower hinges), and highest value within 1.5 x IQR (whiskers).

or small, difficult to sequence chromosomal insertions or
deletions that affect fitness. We leave identification of the
precise mechanisms that differentiate these clusters for
future work. Here, using the example of PDR mutants, we
showcase how genotype may not predict fithess tradeoffs,
suggesting there is more to learn about the mechanisms
underlying FLU resistance.

One group of RAD resistant mutants does not respond
as expected to drug combinations

Though the three clusters of mutants on the bottom half of
the UMAP are all advantageous in RAD and in conditions
without any drug (Figure 3E; lower three plots), they differ
in their fitness in conditions containing FLU. For example,
the cluster of yeast lineages highlighted in green (cluster 4 in
Figures 3 & 6A) is unique in that it has a slight advantage in
the HRLF environment (Figure 6B). We found it especially
strange that the neighboring cluster 5 does not also have a
fitness advantage in this condition. Mutants in cluster 5 have
a slight advantage in the LF condition, and a big advantage in
the high RAD condition, thus we expect them to have at least
some fithess advantage in the condition where these two
drugs are combined (HRLF), but they do not (Figure 6B). The
same is true for the combination of LRLF: cluster 5 mutants
have an advantage in both single drug conditions which is
lost when the drugs are combined (Figure S10). However,
the mutants in cluster 4 (green) exhibit no such sensitivity to
combined treatment. They have a slight advantage in all of the
aforementioned single drug conditions, which is preserved in
the relevant multidrug conditions (Figure 6B & Figure S10).
To obtain an independent measure of the fitness of cluster 4
vs. cluster 5 lineages in these multidrug conditions, we asked
from where the lineages in each cluster originate. About 10%
of cluster 4 lineages originated from the HRLF evolution,

while almost none of the lineages in cluster 5 came from this
experiment, confirming that cluster 5 lineages are uniquely
sensitive to this multidrug environment (Figure 6C).

The different fitness profiles of mutants in cluster 4 versus
5 (Figure 6B & Figure S10) might imply that they affect
different phenotypes that ultimately underlie their drug
resistance. We performed a follow-up experiment that
supports this observation. We asked whether there are
differences in the growth phenotypes of cluster 4 versus 5
mutants by measuring a growth curve for the lineage we
were able to isolate from cluster 5, comparing it to a growth
curve from a cluster 4 lineage (Figure 6D). Indeed, mutants
in cluster 4 and 5 appear to have different growth curves in
the relevant conditions (Figure S10). The growth differences
echo those we see in the fithess data. For example, mutants
in cluster 5 have a lower maximum growth rate in the HRLF
multidrug condition, corresponding with their lower fitness
in this condition relative to mutants in cluster 4 (Figure 6B
& 6D). However, the pattern reverses in the single drug
conditions, both in terms of the fithess and growth data.
These results suggest that the fitness differences we capture
that differentiate these clusters are derived from differences
in growth phenotypes.

One group of RAD resistant mutants is exceptionally
adaptive in conditions without drug

One group of mutants in the lower half of the UMAP (cluster
6 in Figure 7A) appears distinct from the other two in that it
has the largest fitness advantage in conditions lacking any
drug (Figure 7B). This might imply that cluster 6 lineages
rose to high frequency during our evolution experiments in
environments without either drug, specifically the “no drug”
and “DMSO” control conditions. Indeed, this is what we
observe: over 50% of the lineages in cluster 6 were sampled
from one of these two evolution experiments (Figure 7A).
On the contrary, the other clusters in the lower half of the
UMAP consist mainly of lineages sampled from one of the
RAD evolutions (Figure 6C). Since our fithess experiments
were performed independently of the evolution experiments,
this provides two independent pieces of evidence suggesting
that lineages in cluster 6 perform best in conditions lacking
any drug.

In line with the success of cluster 6 mutants in no drug
conditions, the five sequenced mutants in this cluster include
three that have mutations to IRA1, which was the most
common target of adaptation in another evolution experiment
in the conditions we call “no drug” (Figure 7A) (Venkataram
et al. 2016). In that experiment, and in ours, mutations to
IRA1 result in a greater fithess advantage than mutations to
its paralog, IRA2, or mutations to other negative regulators of
the RAS/PKA pathway such as GPB2 (Figure 7A). Previous
work showed that sometimes IRA1 mutants have very strong
tradeoffs, for example, they become extremely maladaptive
in environments containing salt or benomyl (Kinsler et al.
2020). We do not observe this to be the case for either FLU
or RAD. In fact, we observe that cluster 6 mutants, including
those in IRA1, maintain a fitness advantage in our highest
concentration of both drugs (Figure 3), being more fit in high
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FLU than mutants in either of the other clusters in the lower
half of the UMAP (Figure 7B). However, cluster 6 mutants
are unique in that they lose their fithess advantage in the
lowest concentration of FLU (Figure 7B). Being singularly
sensitive to a low concentration of drug seems unusual, so
much so that when this was observed previously for IRA1
mutants the authors added a note about the possibility of a
technical error (Kinsler et al. 2020). Our results suggest that
there is indeed something uniquely treacherous about the
low fluconazole environment, at least for some genotypes.

Discussion:

Here, we present a barcoded collection of fluconazole (FLU)
resistant yeast strains that is unique in its size, its diversity,
and its tractability. One way we were able to isolate diverse
types of FLU-resistance was by evolving yeast to resist
diverse drug concentrations and combinations. But the more
important tool used to increase both the number and type of
mutants in our collection was DNA barcodes. These allowed
us to sample beyond the drug resistant mutants that rise
to appreciable frequency and to collect mutants that would
eventually have been outcompeted by others. Our primary
goal in collecting these mutants was to get a rough sense
of how many different mechanisms of FLU resistance may
exist. This question is relevant to evolutionary medicine
(because more mechanisms of resistance make it harder to
design strategies to avoid resistance), evolutionary theory
(because more mechanisms of adaptation make it harder to
predict how evolution will proceed), and genotype-phenotype
mapping (because more mechanisms makes it more difficult
to map which ones are associated with which mutations).

We distinguish mutants that act via different mechanisms
by identifying those with different fitness tradeoffs across 12
environments, leveraging the mutants’ barcodes to track their
relative fithess following previous work (Kinsler et al. 2020).
The 774 FLU-resistant mutants studied here clustered into
a handful of groups (6) with characteristic tradeoffs. Some
groupings are unintuitive in that they segregate mutations
within the same gene (Figure 5) or are distinguished by
unexpectedly low fitness in multidrug conditions (Figure
6). These findings are important because they challenge
strategies in evolutionary medicine that rely on consistent
tradeoffs or intuitive trends when designing sequential drug
treatments. On the other hand, the observation that some
mutants have very similar tradeoffs such that they cluster
together is promising in that it suggests predicting the impact
of some mutations by understanding the impacts of others
may be feasible. Overall, our findings shed light on the
degree of tractability in the genotype-phenotype map while
emphasizing the need for enumerating classes of mutants
before making predictions about the evolution of drug
resistance.

Problematically, it is unclear to what extent it is possible to
enumerate classes of mutant that resist a given drug. The
six classes we present are incomplete and bound to change
as additional data presents itself. For one, we have shown
that additional FLU-resistant mutants emerge from evolution
experiments in conditions lacking FLU (Figure 2C & 2D).

This begs questions about what other FLU-resistant mutants
might emerge in environments we have not studied here.
Additionally, previous work has shown that some mutants
that group together in our study (e.g., GPB2 and IRA2) have
different fitness profiles in conditions that we did not include
here (Kinsler et al. 2020). Also of note is that our evolution
experiments were conducted for only a few generations and
all started from the same genetic background. Additional
types of FLU-resistant mutants with unique fitness profiles
may emerge from other genetic backgrounds or arise after
more mutations are allowed to accumulate (Brandis et
al. 2012; Bosch et al. 2021; Allen et al. 2021). Finally, by
requiring that all included mutants have sufficient sequencing
coverage in all 12 environments, our study is underpowered
to detect adaptive lineages that have low fitness in any of the
12 environments. This is bound to exclude large numbers of
adaptive mutants. For example, previous work has shown
some FLU resistant mutants have strong tradeoffs in RAD
(Cowen and Lindquist 2005). Perhaps we are unable to
detect these mutants because their barcodes are at too low a
frequency in RAD environments, thus they are excluded from
our collection of 774. All of the aforementioned observations
combined suggest that there are more unique types of
FLU-resistant mutations than those represented by these
6 clusters, and that the molecular mechanisms that can
contribute to fitness in FLU are more diverse than we know.

On the up side, not every infection harbors all possible types
of mutants. This might explain why strategies that exploit one
or two common tradeoffs have mixed success in delaying or
preventing the emergence of resistance (Amin et al. 2015;
Kaiser 2017; Imamovic et al. 2018; Wang et al. 2019; Krishna
et al. 2022; Nyhoegen and Uecker 2023; Waller et al. 2023).
Our results encourage more complex strategies to thwart
resistance (Iram et al. 2020), such as those that focus on
advance screening to determine the resistance mechanisms
that are present (Andersson et al. 2019a), or on cycling a
larger number of drugs to exploit a larger number of tradeoffs
(Yoshida et al. 2017; Thomas et al. 2022). Problematically,
these strategies rely on knowledge about the diversity of
mutants and tradeoffs that exist (or that can emerge) within
an infectious population. While information about population
heterogeneity, heteroresistance, and substructure is
expensive and arduous to obtain (Andersson et al. 2019b;
Bottery et al. 2021), new methods, in addition to the one
presented in this study, are emerging (Kuchina et al. 2021;
Aissa et al. 2021; Nagasawa et al. 2021; Forsyth et al. 2021;
Hsieh et al. 2022; Brettner et al. 2022a). This type of richer
data dovetails with emerging population genetic models that
predict the likelihood of resistance to a given drug regimen
(Read and Huijben 2009; Day et al. 2015; Wilson et al. 2016;
Cannataro et al. 2018; Somarelli et al. 2020; Feder et al.
2021; King et al. 2022). In short, our observation of numerous
different types of drug-resistant mutations suggests that
designing resistance-detering therapies is challenging, but
perhaps not impossible.

Outside of predicting the evolution of resistance, our findings
provide a tool to investigate the phenotypic impacts of
mutation. This task has proven daunting in light of work
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demonstrating that mutations often have many phenotypic
impacts (Paaby and Rockman 2013; Boyle et al. 2017)
and that these impacts change with contexts including the
environment (Paaby et al. 2015; Geiler-Samerotte et al. 2016,
2020; Lee et al. 2019; Eguchi et al. 2019). The approach
presented in this study provides a way forward, not only by
identifying mutations that likely affect similar phenotypes
given their similar fithess tradeoffs, but also by identifying
environments that differentiate one group of mutants from
another. This suggests where to look to understand the
different phenotypic impacts of each group of mutants. For
example, we were able to show that the growth phenotypes
of mutants from clusters 4 and 5 are different because we
knew in which environments their fitness is different (Figure
6). Similarly, our results suggest radicicol environments may
be helpful in teasing out any phenotypic differences that set
apart some PDR mutations from others (Figure 5). In sum,
our approach guides efforts to understand the phenotypic
effects of mutation, while also guiding efforts to predict the
effects of some mutations from others and to predict the
outcomes of evolution.
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Methods:

Base yeast strains

All of the yeast lineages studied here originated from the
same starting strain referred to as the “landing pad strain”
(SHA185) in previous work (Levy et al. 2015). We transformed
a barcode library into this strain as described below, creating
a strain with the following genetic background: MATaq,
ura3A0, ybr209w::Gal-Cre-KanMX-1/2URA3-loxP-Barcode-
1/2URA3-HygMX-lox66/71.

Base media

All experiments were conducted in “M3” media defined in
the same study as the landing pad strain (Levy et al. 2015),
which is a glucose-limited media lacking uracil. In our study,
we supplemented this media with fluconazole, radicicol, or
DMSO when appropriate.

Selecting drug concentrations
Our goal was to choose concentrations of each drug that

would not kill so many yeast cells as to dramatically decrease
barcode diversity. We wanted to maintain a high number of
unique barcodes so we could track a high number of yeast
lineages as they independently evolved drug resistance. We
measured the effect of each drug and drug combination on
the growth rate of a single barcoded yeast strain using a
plate reader to track changes in optical density (OD) over
time. Ultimately we chose a “low” concentration of each
drug that appeared to have no effect on growth rate, and
a “high” concentration that appeared to reduce growth rate
by about 15% (Figure S2). Though the lowest concentration
of radicicol that we tested on a plate reader was 10 pM, we
chose 5 uM as our low RAD concentration because previous
work suggested this concentration had widespread effects
on yeast physiology without affecting growth (Jarosz and
Lindquist 2010; Geiler-Samerotte et al. 2016). To perform
our plate reader experiment, a single colony was grown to
saturation. From this culture, 5 pl was added to every well of a
96-well plate, where every well contained 195 ul of M3 media.
Some wells also contained either fluconazole, radicicol,
DMSO, or combinations of these drugs. The concentrations
that were tested are listed on the horizontal axis of figure
S2; each drug condition was replicated six times. The 96-well
plate was incubated at 30°C for 48 hours on a plate reader
and OD measurements were taken every 30 minutes. Raw
OD values were exported and maximum exponential growth
rates for all tested conditions were calculated from the log-
linear changes in OD over time.

Inserting 300,000 unique DNA barcodes into otherwise
genetically identical yeast cells

In order to track many yeast lineages as they independently
develop drug resistance, we needed to insert unique DNA
barcodes into many yeast cells. Plasmids harboring barcodes
(pBar3) were the same as those used in a previous barcoded
evolution experiment (Levy et al. 2015) and were generously
provided to us by Sasha Levy. These barcodes are 25 base
pairsinlength. They are targeted to an artificial intron within the
Ura3 gene, such that they must be retained in media lacking
uracil but are not expressed and thus do not themselves
affect fithess (Levy et al. 2015). We transformed this barcode
library (pBar3) into the landing pad strain (SHA185) as was
done previously, activating a Cre-lox recombination system
by growing the cells in YP-galactose, which resulted in
genomic integration of the barcode. However, our efforts to
perform extremely high efficiency transformations from which
we could isolate hundreds of thousands of uniquely barcoded
yeast were unsuccessful, despite manipulating the levels and
timing of the inducer (galactose). Ultimately we performed 24
separate transformations and pooled many of these to obtain
a large pool of barcoded yeast where every yeast cell was
genetically identical except for its DNA barcode.

Examining the frequency of each barcode in the starting
pool of cells

We sequenced eachofthese 24 transformedyeast populations
on the Hiseq X platform using a dual index system (Kinsler et
al. 2023) to discern barcode coverage, i.e., how many total
unique barcodes were successfully inserted into yeast cells
and how evenly these barcodes were sampled. We needed
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many uniquely barcoded yeast in order to observe many
different adaptive lineages within each evolution experiment.
But barcodes with very high frequencies, referred to
herein as monster lineages, were present in 10 of the 24
transformations and present a problem. Monster lineages
allow too many cells to carry the same barcode, giving that
barcode more chances to develop an adaptive mutation. This
could allow different cells harboring that same barcode to pick
up different adaptive mutations, destroying our ability to draw
conclusions about adaptive mutations by using barcodes.
Therefore, our final library of barcoded lineages was created
by pooling 14 individual transformations together, choosing
those 14 that lacked monster lineages, which we defined as
lineages representing greater than 1% of all transformants.
Our sequencing results suggest that this library contains
about 300,000 unique barcodes.

Initiating 12 barcoded evolution experiments

All evolution experiments started from the same pool of
roughly 300,000 uniquely barcoded yeast lineages. To start
the evolution experiments, a pea sized amount of the frozen
yeast barcode library was grown up in 4 ml YPD for 4 hours at
30 °C in a shaking incubator at 220 rpm. Then, 300 ul of the
grown barcode library was added to each of 12 pre-prepared
500mL flasks representing the 12 evolution experiments
listed in Table 1. To prepare these flasks, first, 1.2 L of M3
media was warmed at 30°C. Then, 100 ml was added to
each of 12 flat bottom flasks. Next, 500 ul of the appropriate
drug or drug combination was added to each flask. Drugs
were pre-diluted, aliquoted and frozen such that 500 ul of
the appropriate tube could be added to each flask to achieve
the desired concentration as listed in Table 1. All drugs were
resuspended in DMSO such that the final concentration of
DMSO in all experiments (except the “no drug” control) was
0.5%.

Performing barcoded evolution experiments

Evolution experiments were performed following previous
work (Levy et al. 2015). After initiation (see above), the yeast
in every flask were allowed to grow at 30°C with shaking at 200
RPM for 48 hours. Then, the flasks were removed from the
incubator and 400 — 1000 p1 of each culture was transferred to
a new pre-prepared flask with identical conditions to the first.
The reason we added more volume (1000 ul) to some flasks
than previous work was that the cell counts at the end of the
48 hours were lower for some of our higher drug conditions.
We adjusted the transfer volume to maintain a transfer
population of 4x107 cells, which was the same as in previous
work (Levy et al. 2015). We completed a total of 24 growth/
transfer cycles, corresponding to 192 generations of growth
assuming 8 generations per 48-hour cycle (Levy et al. 2015).
Following each transfer, the remaining culture from each
flask were split into two 50 ml conical vials, centrifuged for
3 minutes at 4000 rpm, and the supernatant was discarded.
The final pellet was resuspended in 30% glycerol up to a total
volume of 6 ml before being split into three 2 ml cryovials and
stored at -80°C. These frozen samples were later utilized for
barcode sequencing and isolating adaptive mutants.

Isolating a large pool of adaptive mutants

We performed evolution experiments in order to generate a
large pool of diverse adaptive mutants. Our goal was to collect
a sample from each evolution experiment at a time point when
there were many different adaptive lineages competing. If
we sampled too late, the adaptive lineage with the greatest
fitness advantage would have already risen to high frequency,
thus reducing diversity. But if we sampled too early, adaptive
lineages would not yet have risen in frequency above other
lineages. Therefore, we chose to sample cells from a time
in each evolution experiment when many barcoded lineages
appeared to be rising in frequency (Figure S1). We sampled
either 1 or 2 thousand cells per each evolution experiment
by spreading frozen stock from the chosen time point onto
agarose plates, scraping 1 or 2 thousand colonies into a
15mL conical tube containing a final concentration of 30%
glycerol, and freezing the pool pertaining to each of the 12
evolutions. We sampled 2,000 cells from most evolution
experiments, but sampled only 1,000 from those containing
a high concentration of FLU as those evolutions appeared to
have reduced barcoded diversity (Figure S1), presumably
because high FLU represents a strong selective pressure. We
sequenced the barcodes from each of these 12 pools so that
we could track which adaptive mutants originated from which
evolution experiment (see methods section below entitled,
“Inferring where adaptive lineages originally evolved”).

Initiating barcoded fithess competition experiments

To assess the fithesses of the 1 or 2 thousand barcoded
lineages that we sampled from each evolution experiment,
we pooled all sampled lineages together into a larger pool of
roughly 21,000 barcoded lineages. We used this larger pool
to initiate 24 fitness competition experiments, 2 replicates
for each of the 12 conditions listed in Table 1. In this type
of competition, we measure fitness by tracking changes in
each barcode’s frequency over time. Barcodes that rise in
frequency represent strains that have higher fitness than
others.

Our goal was to calculate the fitness effect of adaptive
mutations. Therefore, we needed to calculate the fithess of
every evolved lineage relative to the unmutated ancestor of
the evolution experiments. To do so, we followed previous
work by spiking in a large quantity of this unmutated ancestor
strain into each fitness competition, with this ancestor
making up at least 90% of the final culture (Venkataram et
al. 2016; Kinsler et al. 2020). In environments containing a
high concentration of FLU which resulted in the ancestral
strain having a more severe growth defect, we spiked in the
ancestor such that it represented 95% of the final pool.

To avoid wasting 90% or more of our sequencing reads on
the ancestor strain’s barcode, we created a barcodeless
ancestor strain. This strain was created by transforming
SHA185 with a linear piece of DNA such that the genetic
background was identical to the strains of the barcoded
library, but the homology to the primers used to amplify the
barcode was missing. Thus the DNA from these cells does
not get amplified or sequenced during subsequent steps.

In addition to this barcodeless ancestor, we also spiked in
14


https://doi.org/10.1101/2023.10.17.562616
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.17.562616; this version posted October 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

some barcoded ancestral strains at lower frequency (1%)
to use as “reference” or “control” strains, following previous
work (Kinsler et al. 2020, 2023). These strains have been
previously shown to possess no fitness differences from
the ancestor. We used these strains as a baseline when
calculating relative fitness by setting the fitness of these
strains to zero during our fitness inference procedure (see
methods section below entitled, “Inferring fithess”).

All 24 fitness competitions were performed simultaneously in
one big batch (Kinsler et al. 2023) and initiated from the same
pool of roughly 21,000 barcoded evolved yeast lineages,
barcodeless ancestor, and control strains. To initiate the
competitions, 7x107 cells from this pool were added to 24
pre-prepared 500mL flasks corresponding to the conditions
listed in Table 1. These flasks were prepared exactly the
same way as was done for the evolution experiments (see
above in “Performing barcoded evolution experiments”).
Each flask was allowed to grow for 48 hours at 30°C with
shaking at 200 RPM.

Performing barcoded fithess competition experiments
Fitness competitions were performed following previous
work (Kinsler et al. 2020). After the initial flasks were allowed
to grow for 48 hours, they were removed from the incubator
and 4x107 cells from each culture representing 400 ul were
transferred to a new flask with identical media. For each of
24 competitions, we completed a total of 4 growth/transfer
cycles, corresponding to 40 generations of growth assuming
8 generations per 48-hour cycle (Levy et al. 2015). Following
each transfer, the remaining culture from each flask was
split into two 50 ml conical vials, centrifuged for 3 minutes
at 4000 rpm, and the supernatant was discarded. The final
pellet was resuspended in 30% glycerol up to a total volume
of 6 ml before being split into three 2 ml cryovials and stored
at -80°C. These frozen samples were later utilized for DNA
extraction and subsequent barcode sequencing.

Extracting genomic DNA

DNA was extracted from 500 pl of concentrated frozen
stocks pertaining to the evolution experiments and fithess
competitions. Frozen cells were thawed and pelleted. Cells
were treated with 250 pl of 0.1 M Na2EDTA, 1M sorbitol and
5U/ul zymolyase for a minimum of 15 minutes at 37 °C to
remove the cell wall. Lysis was completed by adding 250 pl
of 1% SDS, 0.2N NaOH and inverting to mix. Proteins and
cell debris were removed with 5M KOACc by spinning for 5 min
at 15,000 rpm. Supernatant was moved to a new tube and
DNA was precipitated with 600 ul isopropanol by spinning for
5 min at 15,000 rpm. The resulting pellet was washed 1 ml of
70% ethanol before being resuspended in 50 ul water plus
10pg/ml RNAse. Extracted DNA was quantified using the
NanoDrop spectrophotometer and all samples were diluted
to a concentration of 50 ng/uL for barcode amplification and
sequencing library preparation.

Preparing barcodes for high-throughput multiplexed
sequencing using PCR

Extracted DNA was prepared for sequencing using a two-
step PCR that preserves information about the relative

frequency of each barcode in each sample (Venkataram et
al. 2016; Kinsler et al. 2020, 2023). Briefly, in the first step
PCR, the barcode region is amplified from the genomic DNA,
labeled with a sample-specific combination of primers, and
tagged with a UMI. This step utilizes a short 3 cycle PCR with
New England Biolabs OneTaq polymerase. Purification of the
first step product to remove excess reagents was performed
using Thermo Scientific GeneJET PCR Purification Kit.
The second step PCR attached lllumina indices that were
used to distinguish samples from different experiments and
timepoints. We utilized a dual indexing scheme to prevent
index misassignment that is common when sequencing
amplicon libraries using patterned flow cell technology
(Kinsler et al. 2023). Amplification of this second step of PCR
was done with a longer 23 cycle PCR using Q5 polymerase.
Final libraries were bead purified using 0.8X Quantabio sparQ
Pure Mag beads. Quantification of the final PCR products
was done using the Invitrogen Qubit Fluorometer before all
samples were pooled at equimolar ratios for sequencing.

Sequencing and clustering barcodes

Next Generation Sequencing was performed at either
Psomagen (Rockville, MD) or at the Translation Genomics
Research Institute (Phoenix, AZ) on patterned flow cells
(either an lllumina HiSegX or NovaSeq) using 2 x 150 base
pair paired end reads. Samples were dual indexed to allow
multiplexing while minimizing contamination from index
misassignments (Kinsler et al. 2023). The 20 base pairs
of variable sequence referred to as a DNA barcode were
identified and clustered to determine the number of unique
barcodes and the frequency of each barcode in each sample.
For the evolution experiments, this was done following our
previous work (Venkataram et al. 2016; Kinsler et al. 2020).
For the fithess competition experiments, this was done
using updated software (Zhao et al. 2018) with the following
command:

bartender_extractor_com -f ${SAMPLE} R1_001.fastq -o
${SAMPLE} extracted -q 0 -p GTACCI[5]AA[5]AA[5]TT[5]
ATAAC -m2-df-u0,8

Inferring fitness

In fitness competition experiments, fitness is often inferred
from the log-linear change in a strain’s frequency over time
(Geiler-Samerotte et al. 2011; Bakerlee et al. 2021; Kinsler
et al. 2023). Recently, more advanced methods to infer
fitness have emerged that take into account nonlinearities
in frequency changes over time, for example, nonlinearities
that reflect changes in the mean fitness of the population
(Venkataram et al. 2016; Li et al. 2018a, 2023; Kinsler et al.
2020). We had trouble implementing these newer methods
on our fithess data, perhaps because many of our evolved
lineages, and our control strains, have low fitness in some
drugs. This caused their barcodes to rapidly decline in
frequency such that they received low counts only at later
time points. Their counts could become so low that these
lineages would seemingly disappear due to sampling error,
and then reappear at a subsequent time point. This dramatic
(but false) increase in frequency was sometimes interpreted
as evidence of very high fitness, especially when we inferred
fitness using approaches that account for nonlinearities.
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To contend with this issue, we applied strict coverage
thresholds to every fitness measurement: we required at
least 500 counts across all timepoints in order to infer fithess
for a given lineage in a given environment. This is stricter
than previous work that does not require a minimum number
of reads per fitness measurement and instead thresholds on
the average coverage per lineage per time point (Kinsler et
al. 2020). We found that 774 lineages passed our threshold
in at least one replicate experiment per all 12 environments.
Of these, 729 passed for both replicates and the final fithess
value we report represents the average of both replicates.

Even with our strict coverage threshold, some fitness
inference methods still interpreted minor stochastic
fluctuations in fithess at later time points as evidence of a
fitness advantage, even if fitness dramatically declined in
earlier time points. Therefore, we calculated fithess via the
traditional method, as the slope of the log-linear change in
barcode frequency relative to the average slope of the control
strains, as this method is less sensitive to that type of error.
Using this method, we found that our fitness inferences were
reproducible between replicates (Figure S4A), and between
experiments performed in similar conditions (e.g., medium
vs. high concentrations of the same drug) (Figure S4B).
When we increased our coverage threshold to require an
order of magnitude more reads per lineage per measurement
(from 500 to 5000), we lost 157 lineages (from 774 to 617),
saw reproducibility increase across replicates (from an
average Pearson correlation of 0.756 to 0.813) and the main
conclusions of our study were unchanged in that the same 6
clusters were present on a UMAP (Figure S7).

Identifying adaptive mutations using whole-genome
sequencing

One downside of barcoded evolution experiments is that
all lineages exist together in a pooled culture. Fishing
out adaptive lineages in order to perform whole genome
sequencing is a major challenge (Venkataram et al. 2016).
Here, we randomly selected cells from these mixed pools
for whole genome sequencing, sometimes selecting from
later time points in the evolution experiments and sometimes
selecting from the samples of 1 or 2 thousand cells that were
isolated to initiate fitness competitions.

To perform whole genome sequencing, cells from mixed pools
were spread onto M3 agarose plates, single colonies were
selected and grown in YPD to saturation. DNA was extracted
using the PureLink™ Genomic DNA Mini Kit (K182002).
Sequencing libraries were made using lllumina DNA Prep kit
by diluting reactions by 1/5. Briefly, samples were prepared
such that the starting concentration in 6 ul was between 20
and 100 ng of DNA. 2ul of BLT and TB1were added to the
starting material and incubated on a thermocycler at 55°C (lid
100°C) for 15 min. 2 ul of TSB was added to each reaction
and incubated at 37 C (lid 100°C) for 15 min. Beads were
washed 2 times with 20 ul of TWB. Following the final wash,
4 ul of EPM, 4 pl of water and 2 pl of UD indexes were added
to each sample. Depending on starting concentration, PCR
was performed based on lllumina guidelines as follows: lid

100°C, 68°C for 3 min, 98C for 3 min, [98°C for 45s, 62°C for
30s, 68°C for 2min] for 6 to 10 cycles, 68°C for 1 min, 10°C
hold. PCR products were cleaned with a double side sized
selection as follows: 4 ul of each sample was pooled together
(32 pl total for 8 samples) and added to 28 pl of water plus 32
pl of SPB. After a 5 min incubation 25 ul of supernatant was
moved to a new tube containing 3 pl of SPB. Beads were
washed with fresh 80% ethanol and libraries were eluted in
12 pl RSB. Samples were multiplexed using lllumina’s unique
dual (UD) index plates (A-D) and sequencing was performed
with 2x150 paired end sequencing on HiSeq X at Psomagen
(Rockville, MD).

In total 122 colonies were randomly picked and sequenced.
As one might expect, barcodes that rose to high frequency
were more likely to be picked multiple times. In an attempt
to avoid this and find lineages with unique attributes, some
cultures were grown at 37°C or plated to high concentrations
of drug prior to picking isolated colonies for sequencing. Of
the 122 genomes we sequenced, only 53 pertained to the
774 lineages for which we obtained high enough barcode
coverage to infer fitness. Only two of these 53 had no
sequenced mutations suggesting its fithess increase over
ancestor is due to a change in ploidy. The other 51 all had
at least one single nucleotide mutation in a gene reported in
supplemental table 1.

Variant calling was done using GATK as described here:
https://github.com/gencorefacility/variant-calling-pipeline-
gatk4. ldentified variants were annotated using SnpEff
(Cingolani et al. 2012). Variant call files from 132 (53
unique/in CS) sequenced lineages were analyzed in R and
compared to reference strain GCF_000146045.2 (Genome
assembly 64: sacCer3). SNPs present in the ancestor (as
well as all evolved lineages) were ignored as these could
not have caused the fitness differences we observed. We
also ignored SNPS that were present in a substantial number
of evolved lineages, as these likely represent background
mutations that were present in a substantial portion of the
cells representing the landing pad strain (SHA185). These
are reported in supplemental table 1 and include: SRD1-
Glu97Lys, RSC30-Gly571Asp, OPT1-Val143lle and LYS20-
Thr29Met.

Measuring growth rates of evolved lineages with
unexpected fithess in multidrug conditions

Though fitness differences are not necessarily due to
differences in maximum growth rate (Li et al. 2018b), we
measured growth curves for a few lineages to investigate a
case where an evolved lineage had unexpectedly low fitness
in multidrug conditions (Figure 6B). Indeed, we found that
this mutant grew more slowly in those conditions. To perform
this test, lineages with mutations to GBP2 and HDA1 as well
the ancestor strain were streaked to YPD plates. We used the
barcodeless ancestor strain, which is identical to the evolved
lineages in every way except for lacking a barcode, and is
described above in the methods section entitled, “Initiating
barcoded fithess competition experiments”. A single colony
of each strain was isolated from YPD plates and was used to
inoculate an overnight YPD culture. After ~24 hours, a coulter
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counter (BD) was used to determine the number of cells/
ml present in each culture. Next,, all cultures were diluted
such that the starting number of cells in each growth curve
measurement was 250,000 in 6 ml of M3 plus drug (HR, LF
and HRLF). To measure cell growth rates, these samples
were allowed to grow at 30 degrees C. OD was measured
every 10 minutes as the cultures were grown to saturation
using the compact rocking incubator TVS062CA (Advantec
Mfs). Raw growth curves for these conditions are shown in
Figure S10B. Maximum growth rate was calculated using
a sliding window approach to determine the region of each
growth curve with the steepest log-linear slope.

Determining ploidy

While our barcoded yeast strain is haploid, previous studies
observed that some cells diploidize during the course
of evolution in M3 media and by doing so gain a fithess
advantage (Levy et al. 2015; Venkataram et al. 2016). To
ensure that observed fitness effects in our experiments were
not largely due to the effects of diploids, we estimated the
percent of diploid cells in each of our populations. We chose
to make our estimates from frozen samples taken at the
same time points from which we sampled 1 or 2 thousand
cells to initiate fitness competitions (Figure S1). As such,
our estimates also report on the percent of diploids that were
present at the start of the fitness competitions experiments
(Table S2).

To study ploidy, we used the nucleic acid stain SYTOX
Green, which is capable of selectively staining the nucleus
of fixed cells and has been shown to be more optimal for use
in budding yeast than the standard propidium iodide stain
(Haase 2004). For each of the 12 evolution experiments
conditions, a small amount of freezer stock from the chosen
timepoints (Figure S1) was plated to YPD and grown for ~48
hours. Individual colonies were picked and transferred to 96-
well plates, 1 full plate for each condition, before being fixed
with 95% ethanol for 1 hour. Plates were centrifuged at 4500
rpm and supernatant was discarded. 50 pL RNase A was
added to the samples at a concentration of 2mg/mL, and the
plates were then incubated for 2 hours at 37°C. Cells were
pelleted by centrifuge and the supernatant was removed,
which was followed by treatment with 20 uL of the protease
pepsin at a concentration of 5mg/uL. Pepsin treated samples
incubated at 37°C for 30 minutes before centrifugation and
removal of supernatant. Finally, cells were resuspended in
50 uL TrisCL (50 mM, pH 8) and stained with 100 pL of 1uM
SYTOX Green. Known diploid and haploid strains were used
as controls alongside our samples to determine the expected
fluorescence of stained diploid vs. haploid cells. Analysis was
performed using a ThermoFisher Attune NxT, housed in the
Flow Cytometry Core Facility at Arizona State University.

Dimensional reduction

Our fitness inference procedure resulted in a data set
consisting of nearly 10,000 fithess measurements (774
lineages x 12 conditions = 9288 fithess measurements).
Dimensional reduction was performed on these data using
UMAP (Mclnnes et al. 2018b). Clusters of similar mutants
were identified and colored using a gaussian mixed model

(Fraley and Raftery 2003); Bayesian Information Criteria were
used to select the number of clusters (Figure S6). These
analyses were performed in R; code can be found https://osf.
io/pxyv9/?view_only=51241d8f00c24f7e83f1ece3ae31a53b.

In order to prevent conditions with the most variation in fitness
(e.g., high FLU) from dominating, we normalized fitness
measurements from each of the 12 environments to have the
same overall mean and variance (we transformed the data
from every environment to have a mean of 0 and a standard
deviation of 1) before performing dimensional reduction. This
normalization procedure did not have a dramatic effect on the
UMAP (Figure S7A). We also explored normalizing all data
to account for magnitude differences by setting the average
fitness of each lineage across all 12 environments to O.
Doing so did not significantly change the groupings present
in the UMAP from those displayed in Figure 3 (Figure S9)
other than in the ways we describe in Figure 5. Reducing our
data set to 617 adaptive lineages with very high sequencing
coverage (Figure S7B) also did not significantly affect the
way that mutants cluster into groups, nor did using a different
dimensional reduction algorithm altogether (Figure S8). In
short, the clustering of mutants was robust to the different
decisions we made when choosing how to analyze these
data.

In order to assess whether clusters identified from the UMAP
are robust to alternative clustering methods, we also used
hierarchical clustering to identify clusters of mutants with
similar fitness profiles. First, we computed the pairwise
distance of all lineages across the fithess profiles. Then, we
used Ward’s method from scikit-learn to iteratively cluster
lineages such that the within-cluster variation is minimized
(Ward 1963; Pedregosa et al. 2012). To test the consistency
of lineage clustering, we chose a pairwise cluster distance
cutoff of 11, which results in the same number of clusters
(7) as identified with the UMAP clustering approach used in
the main text. We then compared the identity of the lineages
within each of these clusters with the UMAP clusters. We
found that, for most clusters, over 80% of lineages from the
UMAP cluster corresponded with a unique hierarchical cluster
and labeled these hierarchical clusters according to this
correspondence (Figure S8). For UMAP cluster 1, lineages
were more evenly split between two clusters. 64% of these
lineages clustered together in what is labeled as hierarchical
cluster 1 and 30% in hierarchical cluster 1/7 (Figure S8),
which contains all of the control lineages that comprise
UMAP cluster 7. Despite these lineages clustering more
closely with control lineages than the remainder of the cluster
1, they do tend to cluster distinctly with the control lineages,
suggesting they have behavior that is distinguishable from
the control lineages. If we consider these cluster 1 mutants
that end up in cluster 3/7 as “mis-clustered”, we find that 85%
of lineages from each UMAP cluster are clustered together in
the corresponding hierarchical cluster. If we consider these
as “consistently clustered”, this metric increases to 90% of
lineages correctly clustered. Altogether, this analysis shows
that the results we show are robust to alternative methods of
clustering.
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Inferring where adaptive lineages originally evolved

All 774 adaptive lineages were isolated from one of the 12
evolution experiments at the timepoint indicated in figure
S1 (see Methods section entitled, “Isolating a large pool
of adaptive mutants”). The sample we isolated from each
evolution experiment was sequenced prior to pooling. This
allows us to computationally determine which barcoded
lineages originated from which evolution experiment to
generate the pie charts in Figures 2, 4,5, 6 and 7.

If adaptive mutation arose independently during the course
of each evolution experiment, it would be unlikely for any
adaptive lineage we study to be present in more than one
of the evolution conditions. This would make it very easy
to assign each barcode to the evolution experiment from
which it originated. However, this was not the case for many
barcoded lineages.

Previous work explained that the transformation procedure
used to insert a barcode into the landing pad of SHA185
was itself mutagenic, such that many of the mutations arose
prior to the start of the evolution experiments (Levy et al.
2015). Since all our evolution experiments were started
from the same pool of barcoded lineages, we thus expect
that many adaptive lineages will be present in more than one
condition. However, it is not expected that these adaptive
lineages will be present at the same frequency in every
condition; instead these frequencies change with the fitness
of the mutation each lineage possesses. Therefore, when
an adaptive lineage appeared in multiple conditions, we
weighted its origin to reflect its frequency in each condition.
In other words, adaptive lineages that were only present
in the sample taken from a single evolution condition were
identified and assigned a single origin condition in the pie
charts in Figures 2, 4, 5,6, and 7. But for adaptive lineages
found in the samples taken from more than one evolution
condition, the proportions assigned to each origin condition in
the pie charts was scaled to equal the relative frequencies of
that lineage in all evolution conditions where it was observed.
Associated data and code can be found here: https://osf.io/
pxyv9/?view_only=51241d8f00c24{7e83f1ece3ae31a53b.
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Figure S1: Twelve barcoded evolution experiments track ~300,000 lineages as they adapt to different drug concentrations and combinations. In
each plot, every line represents a unique barcoded lineage. The vertical axis represents barcode frequency. When lineages reach a frequency of zero it
means they were not sampled at that time point of the experiment. The black boxes indicate the transfer number of each evolution experiment from which
evolved lineages are sampled; the number of cells sampled (colonies picked) is in the upper right hand corner.
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Figure S2: Chosen drug concentrations do not dramatically reduce yeast’s maximum growth rate. We measured the growth rate of a single
barcoded yeast lineage, prior to the evolution experiment, in different concentrations and combinations of drugs using a plate reader to track changes
in optical density over time. Maximum growth rate is reported as a percentage of the maximum growth rate in conditions lacking FLU or RAD. Maximum
growth rate was calculated as the maximum log-linear slope of the change in optical density over time.
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Figure S3: Twenty four fitness competitions track evolved lineages as their barcodes change frequency. In each plot, every line represents a
barcoded lineage. Lineages with >5 reads per experiment are shown (4,815). Control lineages, known to possess no sequenced mutations from the
ancestor, are highlighted in black. Evolved lineages with higher fitness than controls are yellow, similar fitness to controls (i.e., relative fitness ~0) are
purple, and lower fitness than controls are orange. When a lineage declines in frequency so much that its associated barcode is no longer observed, its
line abruptly ends. Some lineages appear to decline and then increase in frequency; this happens because low frequency lineages are subject to sampling
noise.
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Figure S4: Fitness measurements are reproducible between replicates and closely related conditions.

A. Every point depicts one of the evolved lineages that was observed more than 500 times in both replicates of the fitness competition experiment for a
given condition. The average Pearson correlation across all pairs of replicates in all conditions is 0.75. B. Every point depicts one of the 774 lineages that
was observed more than 500 times in at least one replicate fitness competition. Here, instead of comparing the fitness of replicates, we compare fithess
across conditions for 3 closely related pairs of conditions. Comparisons across conditions may be less noisy than those across replicates because fitness
in a particular condition represents the average fitness across replicates in that condition.
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Figure S5: The two types of adaptive mutants depicted in figure 2 sort into different clusters on the UMAP. The top 100 highest fitness lineages in
high FLU (blue) and high RAD (red) largely cluster into different groups, with the 7 overlapping mutants (black) falling into the uppermost group.
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igure S6: Bayesian information criteria (BIC) scores suggest the 774 mutants cluster into between 6 and 13

groups. We used a gaussian mixture model to distinguish clusters of mutants with unique fitness profiles. A. BIC
scores for analysis performed on 774 mutant lineages that each were observed at minimum 500 times per environment.
B BIC scores for analysis performed on 617 mutant lineages that each were observed at minimum 5000 times per

environment.
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Figure S7. UMAP structure is robust. A. In this UMAP plot, relative fitness of the 774 lineages is fed directly into UMAP prior to normalizing the data
to have equal variance across all environments as was done in figure 3D. This has little impact on the appearance of the UMAP. B. UMAP made with
617 lineages that were observed more than 5000 times in at least one replicate. While the appearance of the UMAP is inverted relative to figure 3D, the
clusters largely retain the same lineages. As lower coverage (noisier) data points are removed from this dataset, the observation that the overall patterns
are maintained suggests our original clusters were not based on noisy fithess measurements.
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Figure S8. Clusters are robust to a hierarchical clustering method. A. In order to assess whether clusters identified from the UMAP are robust to
alternative clustering methods, we used hierarchical clustering to identify clusters of mutants with similar fitness profiles. This figure depicts a dendrogram
where the branch length between each lineage (or group of lineages) represents the distance between the clustered groups as measured across all
measured conditions. The terminal branch leading to each lineage is colored by that lineage’s cluster from the UMAP clustering used in figure 3 of the
main text. Dark gray lines show clusters identified using a between-cluster cutoff of 11, which creates 7 clusters, consistent with the number of clusters we
identified in figure 3 via clustering on the UMAP space. Hierarchical clusters are labeled and colored corresponding to whichever of the UMAP clusters they
share the most overlapping lineages with. Note that the y-axis is linearly scaled between 0 and 10 and log2 scaled above 10 for visualization purposes. B.
A matrix quantifying how well the results of this hierarchical clustering method correspond with those of the UMAP method presented in figure 3, depicting
the percentage of a given UMAP cluster that ends up with each corresponding hierarchical cluster. For the most part, mutants that are clustered together
in the UMAP in figure 3 are also clustered together in panel A. Even though it appears that mutants in cluster 1 (which are those most resistant to low FLU)
move to a different cluster, these mutants move together to the cluster pertaining to the control strains as they have the least severe effects on fitness.
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Figure S9: UMAP on data for 774 lineages that were normalized to account for magnitude differences (row means set to 0). A. Every point in this
plot represents one of the barcoded lineages colored by cluster; clusters were identified using a gaussian mixture model. The 774 adaptive lineages cluster
into 6 groups based on variation in their fitness profiles; the control lineages cluster into the middle cluster in light green. B. Original cluster calls were
mapped on the new UMAP. While the blue and orange clusters show mixing, other cluster structures are largely retained. C. Plot shows all lineages that
are present in cluster 1-3 in either not normalized or normalized dataset. Lineages that do not change clusters are represented by diamonds while those
that switch are noted with circles. Nearly 67% of lineages remain in their original cluster after accounting for normalization differences.
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Figure S10: Unexpected tradeoffs in evolved lineages in cluster 4 and 5 in response to combined drugs. A. Cluster 5 (red) has an unexpected fitness
disadvantage in the LRLF multidrug environment relative to cluster 4 (green), given that cluster 5 lineages do not have a relative fitness disadvantage in
the relevant single drug environments. Boxplots summarize the distribution across all lineages within each cluster in each environment, displaying the
median (center line), interquartile range (IQR) (upper and lower hinges), and highest value within 1.5 x IQR (whiskers). B. Raw growth curve data for
relative maximum growth rates presented in Figure 6D. Two mutants, one to GBP2 (cluster 4) and one to HDA1 (cluster 5) were grown individually in the
conditions shown.
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Table S1: The sequenced mutations present in each of the adaptive lineages on which we performed whole genome sequencing.
https://ost.io/pxyv9/files/osfstorage/6516049b3d9bde04078d871f

Table S2: The percent of isolates from each evolution experiment that became diploid by the timepoint we sampled from.

Evolution Conditions Diploids detected (96 sampled) Estimated % diploid
Low Rad 8 8.3%
Med Rad 0 0.0%
High Rad 0 0.0%
Low Flu 9 9.4%
Med Flu 0 0.0%
High Flu 1 1.0%
LR+LF 4 4.2%
HR +LF* 1 1.1%
LR +HF 1 1.0%
HR + HF 3 3.1%
DMSO 6 6.3%
No Drug 9 9.4%

Estimated percentage of diploid cells in each evolution condition, determined using nuclear staining and flow cytometry
as described in Materials and Methods. *For the High Radicicol + Low Fluconazole condition, 95 instead of 96 samples
were measured due to undetectable growth in one well.
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