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SUMMARY

Immune exclusion and evasion are central barriers to the success of immunotherapies and cell therapies
in solid tumors. Here we applied single cell spatial and perturbational transcriptomics alongside clinical,
histological, and genomic profiling to elucidate immune exclusion and evasion in high-grade serous tubo-
ovarian cancer (HGSC). Using high-plex spatial transcriptomics we profiled more than 1.3 million cells
from 95 tumors and 60 patients, revealing generalizable principles in HGSC tumor tissue organization.
Our data demonstrates that effector T cells resist stroma-mediated trapping and sequestration. However,
upon infiltration into the tumor, T cells, as well as Natural Killer (NK) cells, preferentially co-localize
only with a subset of malignant cells that manifest a distinct transcriptional cell state. The latter consists
of dozens of co-regulated genes and is repressed under various copy number alterations. Performing
CRISPR Perturb-seq screens in ovarian cancer cells, we identified functionally diverse genetic
perturbations — including knockout of the insulin sensing repressor PTPNI and the epigenetic regulator
ACTRS — that de-repress the proposed immunogenic malignant cell state identified in patients and indeed
sensitize ovarian cancer cells to T cell and NK cell cytotoxicity. Taken together, our study uncovered a
profound connection between somatic genetic aberrations, malignant cell transcriptional dysregulation,
and immune evasion at the cellular and tissue level, allowing us to identify targets that reprogram
malignant cell states as an avenue to unleash anti-tumor immune responses.
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INTRODUCTION

Multicellular dysregulation plays a key role in the initiation and progression of a wide range of diseases,
including cancer, where tumor development and accompanying immune responses depend on (and shape)
the location of diverse cell type populations, tissue properties, and organization (1-7). Cellular and animal
models have been instrumental in recovering central immune suppressors (8—10) and led to major
breakthroughs in cancer patient care. However, many cancer patients do not respond to current
immunotherapies (11-13), resulting, at least in part, from two central gaps. First, in contrast to the study
of cancer genetics, where genome sequencing of tumors across large and diverse patient populations
provided a strong foundation to study the genetic basis of cancer and develop targeted therapies, we still
lack equivalent maps of tumor tissue organization to study the inherently spatial processes of multicellular
dynamics and immune exclusion in patients. Second, identifying the regulators of cell states and reciprocal
intercellular interactions poses additional challenges and requires functional interrogation across a larger

search space of combinatorial gene-environment perturbations.

In tubo-ovarian high grade serous carcinoma (HGSC) — the most common and aggressive form of ovarian
cancer (14) — this gap of knowledge is pronounced. HGSC is often diagnosed at advanced stages, has poor
response to current immunotherapies (15,16), and is prone to chemoresistance, resulting in 5-year survival
rate below 50% (14). Underscoring the need to elucidate the clinically relevant barriers that prevent anti-
tumor immunity in HGSC, it is well known that, despite poor response to immunotherapies, abundant
tumor infiltrating lymphocytes (TILs) are a robust prognostic marker of better clinical outcomes in HGSC
patients (17,18). The genetic properties of HGSC have been thoroughly characterized (19-22) —
demonstrating nearly ubiquitous 7P53 mutations, massive copy number alterations (CNA), along with
mutation in homologous recombination genes such as BRCAI and BRCA2 — and recent single-cell studies
provided important resources and insights by characterizing the cellular properties of HGSC in different
anatomical sites and genetic backgrounds (6,23). Yet, the molecular and cellular modalities that promote

or suppress immune recruitment and infiltration in HGSC patients remain elusive.

Here, we applied high-plex image-based spatial transcriptomics (ST) with subcellular resolution to more
than 1.36 million cells across 95 HGSC tumors. Our data demonstrates that effector T cells and NK
(T/NK) cells are rarely retained in the tumor stroma. However, T/NK cell infiltration into the tumor
parenchyma is skewed towards subsets of transcriptionally distinct malignant cells, leaving other
malignant areas immune deserted. This, together with high-content CRISPR screens, revealed malignant

cell transcriptional immunogenicity that is repressed by copy number alterations and can be de-repressed
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by an array of functionally diverse gene knockouts to sensitize ovarian cancer cells to T and NK cell
cytotoxicity. Taken together, our study provides a molecular map of HGSC tumor tissue spatial
organization in patients, delineates generalizable principles that predict lymphocyte location and state,
and, through integration of spatial and perturbational maps, identified novel targets that reprogram tubo-
ovarian malignant cell states as an avenue to unleash anti-tumor immune responses in this aggressive

disease.

RESULTS
Single cell spatial transcriptomics mapping of tubo-ovarian high-grade serous carcinoma

To spatially map HGSC in the setting of metastatic disease, we applied in situ imaging with high-plex
RNA detection at the single cell resolution to 95 HGSC tumors from a total of 60 patients and 136 tissue
sections, yielding a total of 1,365,244 high quality single cells’ spatial transcriptomics profiles (Figure
1a, Table S1). Tumor sections were obtained from the adnexa (ovaries/fallopian tube, n = 73), and/or
omentum (n = 63), with 37 patient-matched pairs of adnexal and omental tumors. All tumor tissue sections
were obtained from debulking surgeries in either the treatment naive (n = 66) or neoadjuvant
chemotherapy treatment (n = 70) setting, with associated patient clinical data including treatment and
survival outcomes (Figure 1a, Table S2, Methods). For 40 patients we also obtained DNA sequencing
data spanning a 648-gene panel (Figure 1b, Table S1, Methods), focused on actionable single nucleotide
variations (SNV), somatic copy number alterations (CNA), chromosomal rearrangements, and tumor
mutational burden (TMB), providing a basis to probe the connection between tissue structure and somatic

genetic aberrations.

The spatial data was collected using three spatial transcriptomic (ST) platforms, allowing rigorous cross-
platform validation of these recently developed technologies. A discovery ST dataset spanning 100 tissue
sections was profiled with Spatial Molecular Imaging (SMI) (24), allowing in situ image-based
quantification of 960 genes with subcellular resolution (n = 100, formalin-fixed paraffin-embedded
(FFPE) tissue sections). For comparison and validation, in situ sequencing (ISS via Xenium(25); n = 32,
FFPE tissue sections) and MERFISH (26) (Multiplexed Error-Robust Fluorescence In Situ Hybridization,
n = 4, fresh-frozen tissue sections) were applied to profile 280 genes and 140 genes, respectively

(Methods, Table S1b).

Applying a recursive clustering-based cell type annotation procedure (Methods) on processed gene

expression profiles (Figure S1a-d, Methods, Supplementary Information) we identified malignant cells
4
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(n =314,191), T and NK cells (T/NK, n = 28,676), B cells (n = 16,373), monocytes (n = 45,549), mast
cells (n = 606), fibroblasts/stromal cells (n = 72,861), and endothelial cells (n = 13,536, Figure lc,
Extended Data 1c¢,d) in the discovery dataset (SMI). The same procedure resulted in similar annotations
of the validation datasets (Figure 1c¢). T/NK cells were then further stratified to NK (n =4,293), CD4 T
(n=6,040), CD8 T (n = 8,439), and regulatory T cells (Tregs, n = 1,905) in the discovery dataset (Figure
Sle-i, Methods, Supplementary Information), with similar T/NK stratification results obtained in

validation dataset 1 (Figure S1j-k, Methods, Supplementary Information).

Cell type annotations were validated in several ways. First, de novo cell type signatures identified based
on the assigned cells recapitulate well known cell type markers (Methods, Table S3, Figure S1c¢). Second,
cell type annotations are aligned with matching H&E and immunohistochemical markers (Figure 1d,
Figure S2a-d). Third, for biological and technical replicate-matched tissue samples between the discovery
and validation dataset 1, the cell type assignments aligned both spatially (Figure S2e) and compositionally
(Figure S2f). Fourth, by integrating the HGSC spatial data with 6 publicly available single-cell RNA-
sequencing (scRNA-seq) datasets (23,27-32), we generated a unified HGSC single-cell transcriptomic
atlas (Figure S2g) and showed that cell type assignments aligned based on the unified co-embedding
(Figure 1e) and corroborated the cell type annotations obtained independently based on the ST data alone
(Methods). Lastly, using patient-matched CNA data, we show that only in malignant cells, the expression
of 42% of the genes matches their CNAs (Benjamini-Hochberg False Discovery Rate (BH FDR) < 0.05,
mixed-effects test; Methods, Figure S3a).

As expected, patients with higher T/NK cell abundance had improved clinical outcomes (p = 5.0%102,
Univariate Cox regression Wald Test, p = 3.34*107 log-rank test, Figure S2h), and consistent enrichment
of T/NK cells (p = 9.1*1073, fisher test) and B cells (p = 8.29*1073, fisher test) is observed in the omental
vs. adnexal tumors. Malignant cells and fibroblasts are found to form spatially distinct compartments (i.e.,
the tumor parenchyma versus the stroma; Figure 1g), with significantly low intermixing between the two
cell types (BH FDR < 0.05, hypergeometric test, Figure 1g), such that T/NK cells are preferentially
localized in the stroma rather than within the tumor parenchyma (p < 1*10, paired Wilcoxon sum rank

test, co-localization quotient, Figure 1h, Figure S2i-k, Methods).

Taken together, these findings demonstrate the quality of our data and validity of our processing pipelines
and provide an initial mapping of the tumor organization into spatially segregated compartments (tumor
parenchyma and stroma). This dataset sets the stage to probe into cellular transcriptional states to delineate

multi-scale mechanisms underlying immune infiltration and evasion.
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Effector T cells preferentially infiltrate into the tumor

Using the ST cohort, we mapped the immune cell intrinsic and extrinsic factors that mark immune
infiltration and exclusion. Starting with immune cell intrinsic properties, we mapped immune cell states
as a function of their tumor infiltration status, defined based on proximity to malignant cells (Methods).
Unsupervised embedding and clustering using single cell expression profiles alone, without any spatial
information provided, shows that immune cells residing in the malignant compartment (tumor
parenchyma) are transcriptionally distinct from those that reside outside (i.e., in the fibroblast
compartment (stroma), Figure 2a). For each of the five immune cell subtypes robustly represented in the
data (CD8 T cells, CD4 T cells, Tregs, NK cells, and monocytes), we identified tumor infiltration
associated genes that are significantly (BH FDR < 0.05, mixed-effect, Methods) over or under-expressed

as a function of proximity to malignant cells (Figure 2b,c, Figure S3b, Table S4).

The CDS8 T cell infiltration program demonstrates that effector and exhausted CD8 T cells are rarely
excluded and frequently co-localize with malignant cells (p = 3.24*10">, mixed effects). Tumor
infiltrating CD8 T cells are characterized (BH FDR < 0.05, mixed-effects) by effector cytotoxicity genes
(e.g., GZMB and PRFI) and exhaustion markers (CTLA4, PDI, TIM3), as well as the pan-cancer
exhaustion marker CXCR6 (33-35) (Figure 2b,c). CD8 T cells that are distant from malignant cells are
characterized (BH FDR < 0.05, mixed effects) by naive and memory T cell markers (/IL7R, SELL),
overexpress the chemokine receptor CXCR4 (Figure 2b), and reside in the stroma, next to fibroblasts
(Figure 2a). Expanding the CD8 T cell infiltration program to whole-transcriptome level based on
scRNA-seq data (23) (Methods; Table S4) identified 7CF7 — a central regulator of naive and resting T
cells (34,35) that directly represses CXYCR6 expression — as one of the top gene negatively associated with
a CDS8 T cell infiltration (p < 1*107!6, r, = 0.23, Spearman correlation).

To investigate the role of the stroma in retaining naive and memory T cells whilst permitting effector T
cells to infiltrate the tumor parenchyma, we integrated sample-matched H&E stains independently
annotated by a gynecologic pathologist (Figure S3c), with ST data. Analyzing these data with
unsupervised embedding (Figure 2d) and non-linear classifiers (Methods) revealed two fibroblast
subsets, one marking normal adnexal stroma and the other marking desmoplasia (Figure 2d-f, Extended
Data Fig 3d-f i.e., a neoplasia-associated alteration in fibroblasts and extracellular matrix with distinct
tissue morphology (36—40)), which we find to be more prevalent in the omentum (Figure 2e, Figure S3e-

j)- As expected (41,42), desmoplastic fibroblasts overexpress collagen fibril organization and extracellular
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matrix genes (p < 1*1072, permutation test, Figure S3d, Table S5), but also upregulate CXCLI2 (the
cognate ligand of CXCR4, overexpressed in naive/memory T cells, Figure 2b) and are associated with

T/NK rich niches (Figure 2g. p < 1*10*, mixed effects).

To systematically map spatially dependent multicellular circuits we identify all the ligand-receptor pairs
that show significant (BH FDR < 0.05, mixed effects) spatial co-expression across cell types (Methods),
revealing suppressive ligand-receptor interactions in the malignant compartment (e.g.,
CD80/CD86:CTLA4, CD8 T cell:monocyte; TIM3:LAGLS9, CDS8 T cell:malignant cell) and CD8 T cell
mediated chemoattraction of other immune cells via CCL2 and CCLS5. Co-localization of CXCR6:CXCL16
(CD8 T cell:malignant cell) and CXCR4:CXCL12 (CD8 T cell: fibroblasts) mark chemoattraction cell-
cell interactions of infiltrating and excluded CD8 T cells, respectively (Figure 2h, BH FDR < 1*10°!°,

mixed effects test).

Collectively, these findings demonstrate a differential infiltration process wherein naive/memory T cells
primarily co-localize with the stroma, whereas effector/exhausted T cells reside primarily in the malignant
compartment of the tumor (Figure 2a-c). While the data suggests that the stroma is not playing a major
role in suppressing or trapping effector T cells (43) in HGSC patients, we find that Tumor Infiltrating

Lymphocytes (TILs) are spatially segregated within the tumor parenchyma itself, as described next.

Tumor infiltrating lymphocytes preferentially co-localize with a transcriptionally defined subset of

malignant cells

Mapping the spatial distributions of Tumor Infiltrating Lymphocytes (TILs, defined here as both T cells
and NK cells) revealed that TILs preferentially co-localize with a subset of malignant cells (Methods,
Figure 3a-c, Table S6). Although malignant cell states are highly patient-specific (Figure S4a) and vary
also within patients (Figure S4b-d), the connection between TIL location and malignant cell gene

expression appeared repeatedly across the heterogenous tumors in our cohort (Figure 3, Figure S4e-i).

Formulating these findings, we identified a Malignant Transcriptional program that robustly marks the
presence of Infiltrating Lymphocytes, denoted as Mt (Figure 3a, Table S6). The program consists of
100 up- and 100 down-regulated genes whose expression in malignant cells is significantly (BH FDR <
0.05, mixed-effects test) positively (Mri-up) and negatively (Mri.-down) correlated with and predictive
of T/NK cell infiltration (Figure 3d,e). M. overall expression in malignant cells (Methods) reflects both
inter- and intra-sample variation in TIL levels (Figure 3d,e), irrespective of anatomical site (p < 1*¥107,

mixed effects test; Figure S4g). M1iL continuously increases as a function of T/NK cell abundance and
7
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proximity (Figure 3d), also when stratifying the T/NK population into its respective cell subtypes (Figure
S4h) and in validation datasets (Figure 3f, Figure S4i, p =2.20*1071%). Likewise, an independent scRNA-
seq dataset(44) demonstrates that the Mt program expression in malignant cells is highest in tumors
annotated as “infiltrated”, moderate in tumors annotated as “excluded”, and lowest in tumors annotated as

“immune desert” (Figure S4j).

Gene set enrichment analyses demonstrate the connection between M and immune evasion(45-50).
Mr-up includes chemokines (e.g., CCL5, CXCL10, CXCL9, and CXCL16 the cognate ligand to CXCRO0),
and oxidative stress genes (e.g., GPX3, SOD2, Figure 3a,b), and is enriched with multiple immune
response genes, including antigen presentation (e.g., B2M, CIITA, HLA-A/B/C), interferon gamma
response genes (e.g., IDOI, IFI27, IFIHI, OAS1/2/3, JAKI, STATI), and cell adhesion molecules (e.g.,
ICAM1, ITGAV, ITGB2; BH FDR = 1.91*107, 2.86*10°'°, 4.59*102, respectively, hypergeometric test,
Figure 3b, Table S6b). Mri-up also includes immune suppression genes, most notable is LGALSY,
encoding for galectin 9 — the ligand of the immune checkpoint TIM3 (i.e., HAVCR2), which is upregulated
in the infiltrating T/NK cells (Figure 2h). Mri.-down reflects diverse processes including Wnt signaling
(e.g., CTNNBI, FZD3/4/6, SMO, FGFR2, WNT7A), epigenetic regulation (DNMT3A, HDAC1/11/4/5), as
well as genes involved in insulin signaling (e.g., IGFRI, IGFBP5) and cell differentiation (BH FDR <
0.05, hypergeometric test; Figure 3b, Table S6).

The majority of the Mt genes have never been described in the context of HGSC immune evasion.
However, supporting its role in this context, a collection of CRISPR screens(45—49) assembled and
analyzed here shows that MtiL-up is enriched with genes that sensitize cancer cells to immune mediated
selection pressures (including ICAM1, JAKI, NLRCS5, SOD2, STATI, p = 1.82*10*, hypergeometric test),
while Mti-down includes genes with desensitizing effects (BCL2, FGFRI, HDACI, HDACS, ITGBS, and
RELA).

Given these findings, we turned to examine if ML repression is linked to somatic genomic aberrations as

a genetic basis driving immune exclusion and tolerance.

Copy number aberrations as repressors of the Mty program and drivers of immune exclusion

Our cohort and independent genomic data suggest that somatic genetic variation intrinsically regulates the

ML program and in turn impacts T/NK cell influx and non-uniform spread (Figure 4a-c).
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First, ML overall expression varies across HGSC patients and is associated with improved overall
survival (p = 7.2*102, Univariate Cox regression Wald Test, p = 4.1*107? log-rank test, based on mean
expression in the malignant cells, Figure 4d, Methods). Specifically, M. inter-patient variation
supersedes its intra-tumoral variation, as observed also after regressing out the impact of the TME
compositions, or when considering only malignant cells in TIL deprived environments (Figure 4a, p <

1*#103°, ANOVA test).

Second, aligned with the finding that malignant cell transcriptomes are tightly associated with CNAs in
cis (Figure S3a), Mt expression strongly correlates with the copy number of multiple genes in our
cohort, the top ones being /JFNGR2 and IFNARI (positively correlated) and TCF7L2, FGFR2, and AXL
(negatively correlated, p < 5*1073, mixed effects, Methods, Figure 4b-c).

Third, CNAs of MriL genes are predictive of TIL abundance scores (Methods) in an independent TCGA
cohort of 578 HGSC tumors(20) (AUROC = 0.82, on unseen test samples, supervised vector machines
(SVM) model, Methods), where tumors with amplification of Mti.-down genes (e.g., DNMT3A4, FZD3,
MYLY9, SRC, and TGFB2) or deletion of MriL-up genes (e.g., CX3CLI, CXCL10, CXCLY9, ICAM1, GPX3,
NR3C1I) have significantly lower TIL abundance scores compared to tumors without these copy number

changes (BH FDR < 5*1073, one-sided t-test, Figure 4e).

These findings propose a genetic basis to immune evasion and tolerance in HGSC, where the
transcriptional CNA-driven malignant cell states can impact cancer-TIL interactions and shape TIL
recruitment. To examine this model, we turned to identify regulators controlling the Mt program and
examine their functional impact on cancer cell response and susceptibility to T/NK cell-mediated

cytotoxicity.

Genetic perturbations de-repress the Mt program and sensitize cancer cells to T cell and NK cell

cytotoxicity

To functionally probe the Mt program genes and examine their effect on cancer cell response to
lymphocyte cytotoxicity, we performed high content CRISPR knockout (KO) screens in ovarian cancer
cells in monoculture and co-culture with cytotoxic lymphocytes, including T Cell Receptor (TCR)-
engineered CD8" T cells and NK cells. Using this approach, we sought to functionally identify and
distinguish between co-regulated immune response and immune suppressive genes captured by the M.

program (e.g., [CAMI and LAGSLY) and identify perturbations that trigger the former.
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Instead of targeting only genes in the MriL program itself, we devised a meta-analysis pipeline to identify
program regulators based on available Perturb-seq datasets (Methods). Using four previously published
Perturb-seq datasets(51-53), we identified 43 and 104 perturbations that result in significantly higher or
lower expression of the program, respectively (Figure 5, Table S6, Methods). Demonstrating the value
of this approach, it revealed a wider and more diverse set of regulators, most of which are not included in
the MriL program itself or not included in the spatial data gene panels (Table S1b). Negative ML
regulators are enriched for chromatin organization (e.g., DNMT1, INOS0, TAF10, WDRS5), Wnt pathway,
Myc targets, and immune resistance genes (45-49,54) (BH FDR < 1*10-, hypergeometric test). The top
negative regulator identified here is PTPNI, which is supported by both gene activation and inhibition

(Figure 5a,c) experiments.

This approach guided our design of the pooled knockout of 74 M. genes and regulators (Table S7) in
ovarian cancer cells (TYK-nu cell line, Figure 6a, Figure S5-6). Mapping fitness upon genetic
perturbations under both innate and adaptive immune selection pressures (Figure 6a,b, BH FDR < 0.05,
MAGeCK, Methods) along with Perturb-seq scRNA-seq readouts in monoculture and co-culture with
NK cells (Figure 6a,c¢), allowed us to identify perturbations that activate or repress the program and track
subsequent effects of these perturbations on immune escape. In total we profiled 18,585 high quality single
cell transcriptomes, each assigned to an ovarian cancer cell with a single sgRNA confidently identified,
and a median of 4,251 genes detected per cell (Figure 6c, Figure S7a). Differentially expressed genes
were identified for each gene knockout across the three conditions (fisher method; Methods), resulting in
74 gene “perturbation signatures” (Methods) that were then used to identify gene knockouts that
significantly repress or activated the Mt program, denoted as -activators and -repressors, respectively

(Figure 6d, Methods).

Validating our hypothesis and approach, the top perturbations activating the program — PTPNI and ACTRS
knockouts — sensitize malignant cells to T/NK cell cytotoxicity (Figure 6b,d-e, Figure S7b), while the
top perturbations that repress the program, /FNGR1 and STAT! knockouts, allow ovarian cancer cells to
resist T cell mediated killing (Figure 6b,d-e, Figure S7b). Knockout of ACTRS and PTPNI1, as well as
other top repressors FGFRI, MAPKI, and MED12 were found to sensitize cancer cells to immune
elimination also in based on data from previous in vivo CRISPR screens(45-49). Moreover, we find that
knockout of Mt repressors (ACTRS, DNMTI1, FGFRI, PTPNI, MED12, and MIF) mimics and amplifies
the transcriptional responses to NK cells, while knockout of Mt activators, as STATI, IFNGRI, INTS?2,
IRF1, PARPI2 and others, represses and counteracts the transcriptional response to NK cells (Figure 6f-

h, Extended Data 7c-f). Lastly, knockout of specific genes within the program, including GPX3 and
10
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TAGLN show substantial impact on the ovarian cancer cell susceptibility to NK mediated killing (Figure

6b), demonstrating both global and gene-specific effects.

Taken together, coupling HGSC spatial tumor organization with multimodal functional probing, identified
new and clinically relevant targets to sensitize ovarian cancer cells to innate and adaptive cytotoxic
lymphocytes and demonstrated the role of cancer cell intrinsic transcriptional dysregulation as an

important driver dictating the outcomes of the malignant-T/NK cell interplay.

DISCUSSION

Our study maps the tumor tissue landscape in HGSC patients and reveals generalizable principles of tissue
organization that dictate lymphocyte location and state within these aggressive and genetically unstable
tumors. It uncovers a profound connection between somatic genetic aberrations, malignant transcriptional
dysregulation, and immune evasion at the cellular and tissue level, providing a new perspective to the
barriers preventing the anti-tumor immune response in HGSC patients and new leads to derepress HGSC

cancer immunogenicity.

Innate and adaptive cytotoxic lymphocytes (CTLs) have a substantial effect on cancer cell transcriptome
(Figure 6¢). As shown here, genetic dysregulation that prevents this transcriptional response can have
significant effects on cancer cell susceptibility to immune elimination even in the highly controlled co-
cultures as those used here, where CTLs are already primed and activated, and spatial segregation is
unlikely to occur. These effects can be amplified in the context of in vivo cancer-immune co-evolution
where immune tolerance is reinforced due to positive feedback loops across cells. Indeed, immune
checkpoint blockade and other immunotherapies have shown modest effects in tumors with low TIL levels
at baseline (17,55). The data shown here proposes that this may not be only due to immune exclusion per
se, but also due to cancer intrinsic differences between TIL-rich and TIL-deprive tumors that protect
malignant cells even in the presence of targeting CTLs. Our findings and approach open new directions
for further investigation of the genetic basis of tumor immune evasion through the lens of spatial
organization and put forward a framework to design targeted strategies to counteract or bypass these

resistant mechanisms.

More generally, as more spatial datasets become available, there is a growing need to use this rich
information to delineate new drivers of complex multicellular processes and phenotypes. Here we show
the value of mapping spatial cell states to genetic information across individuals and to design

perturbational screens with single cell readouts. Importantly, we show that using existing Perturb-seq
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datasets to identify latent regulators of gene expression programs is critical and provides a data-driven
framework to uncover regulators that are not necessarily included in the program itself. As more Perturb-
seq datasets, as the one generated here, become available across a more diverse range of cell types and
conditions, it will be possible to use this information more effectively to extrapolate from one context to

another with increasing accuracy (56,57).

The key findings from our study can fuel new lines of investigation towards new clinical interventions in
HGSC patients. We anticipate that the detailed mapping of HGSC tumors provided here will help inform
the design of new T/NK cell engineering strategies to reach better control of cell delivery and location in
a more precise manner that is aligned with the tumor cellular and molecular structure in patients. Our
findings demonstrate that the stroma forms a differential “filter” that supports differential occupancy of
effector T cells in the malignant compartment — this calls for dynamic tracking of tumor reactive T/NK
cells across non-tumor sites (i.e., in the circulation and lymph nodes) and within the tumor to help elucidate
this process and examine if T cells can also egress back to the stroma cells to avoid or reverse

exhaustion(58) and how to best leverage, as opposed to eliminate or target, the stroma.

Our data provides new leads to target HGSC resistance, including epigenetic regulators (e.g., ACTRS and
MEDI12), fibroblast growth factor receptors (FGFR1/2), GPX3, and PTPNI. PTPN1, which we found to
be one of the most potent Mty repressors, provides pre-clinical rationale to test new PTPNI/N2 inhibitors
(NCTO04777994, NCT04417465, phase I clinical trials)(59-64) in HGSC patients, and demonstrates a
connection between immune evasion, insulin resistance, and type 2 diabetes. PTPNI is a negative
regulator of insulin and leptin signaling (65) that has been an attractive drug target for treatment of type 2
diabetes and obesity (66—69). PTPN1’s protein product PTP1b is inactivated by oxidation(70), which may
explain Mt activation under oxidative stress (as indicated by the up regulation of GPX3 and SOD?2).
Further supporting the connection to insulin resistance, TCF7L2, which we identified as a top gene
amplification associated with the repression of the M. program in the HGSC cohort (Figure Sb-c)

harbors the most significant SNP associated with type 2 diabetes risk (71).

Taken together, this integrative study provides a blueprint to functionally map and probe the molecular
landscape of multicellular interplay in complex biological tissues and reveals unrecognized spatial,
molecular, and genetic regulation of immune escape in HGSC, opening new avenues to activate targeted

immune responses in this aggressive disease.
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Figure 1. Single cell spatial transcriptomics (ST) mapping of HGSC. (a) Overview of the ST cohort,

collected across three platforms: SMI (discovery dataset), ISS (validation dataset 1), and MERFISH
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(validation dataset 2); n denotes the number of tissue sections profiled. (b) Clinical annotations of the
patients and samples included in the cohort. (¢) Uniform Manifold Approximation and Projection (UMAP)
embedding of cell transcriptomes from the discovery dataset (top left), validation dataset 1 (top right), and
validation dataset 2 (bottom left). Cells are colored according to their cell type annotations. n» denotes
number of cells with each cell type annotation. (d) Representative ST images (right) and corresponding
H&E (left, where available) depicting cell segmentations with each cell colored based its cell type
annotations. (e) Co-embedding spatial cell transcriptomes from this study with publicly available scRNA-
seq datasets (27,29-32,72,73). Unified UMAP of co-embedded cell transcriptomes is shown with cells
colored by cell types (top) and dataset (bottom). (f) Cell type composition (y axis) per sample (x axis)
from this study and in publicly available scRNA-seq HGSC cohorts(27,29-32,72,73). (g) Pairwise co-
localization analysis: the number of samples (x axis) where each pair of cell types (y axis) *“shows
significantly (BH FDR < 0.05, hypergeometric test) higher (red), lower (blue), or expected (grey)
colocalization frequencies compared to those expected by random. (h) Log, Co-localization Quotient
(CLQ, y-axis) of T/NK cells with fibroblasts (blue, x axis) and T/NK cells with malignant cells (green, x
axis) in each tissue section from the discovery dataset (**p < 1*10*, paired Wilcoxon rank sum test).
Light grey lines connect paired fibroblasts and malignant cells within each tissue section. Boxplots middle
line: median; box edges: 25" and 75™ percentiles; whiskers: most extreme points that do not exceed + IQR

x 1.5; further outliers are marked individually.
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Figure 2. Differential immune infiltration. (a) UMAPs of CD8 T cells (discovery cohort) derived when
considering all genes (top) or only T cell specific genes (bottom, for further confirmation). Cells are
colored according to the frequency of malignant cells (1, 2) or fibroblasts (3) in the T cell
microenvironment (Methods), the overall expression (OE) of the CD8 T cell infiltration program (4, 5)
or their k-Nearest Neighbor cluster (6). (b) CD8 T cell tumor infiltration program, showing the association
(p-value and effect size) of each gene (row) with infiltration status, when considering only specific
immune cell subsets (columns). (¢) Representative ST images from validation dataset 1 depicting the CD8
T cell tumor infiltration program identified in the discovery dataset. Malignant cells are in grey, CD8 T
cells are colored according to the Overall Expression (OE) of the infiltration program identified in the
discovery dataset (color bar). The respective p-values denote per tissue section if the OE of the CD8 T
cell infiltration program is significantly higher in CD8 T cells with a high (above median) vs. low (below
median) abundance of malignant cells within a radius of 30pum (one-sided #-test). (d) UMAP embedding
of fibroblast cell ST profiles colored by stromal morphology (left) and anatomical site (right) annotations.
(e) Average gene expression (z-score, red/blue top middle color bar) of the top 50 desmoplasia associated
genes (columns) across fibroblasts in each sample (rows), sorted by overall expression score of the 50
genes (Methods, left color bar), and labeled by their anatomical site (middle color bar) and stromal
morphology annotation (right color bar). (f) Representative tissue section (HGSC24, adnexa, discovery
dataset) wherein the desmoplasia associated genes capture intra-tumoral differential stromal morphology
(p-value = 7.23*10%°, Wilcoxon rank sum test). Hematoxylin & Eosin Stain (left), Cell Types in situ
(middle), and cells plotted in situ with fibroblasts colored according to the overall expression (OE) of
desmoplasia associated genes and all other cells in grey. (g) OE score of top 50 desmoplasia associated
genes per fibroblast (x axis) as a function of T/NK cell density within a 30-um radius (y axis) in the adnexa
(left) and in the omentum (right). (h) Ligand-receptor interactions (lines) consisting of genes from the
CDS8 T cell infiltration program (up-regulated in yellow, down-regulated in dark purple) and their
respective ligand/receptor in the cancer compartment (light blue, i.e., tumor infiltrating programs of other
immune cells or genes specific to cancer cells in T cell rich areas) and stroma compartment (light purple,
i.e., genes specific to fibroblasts in T cell rich areas). The arrows connect each gene to the cell type where
it was found to mark the respective spatial pattern, namely, tumor infiltration in immune cells, and co-

localization with T/NK cells in the non-immune (fibroblast or malignant) cells.

16


https://doi.org/10.1101/2023.10.16.562592
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.562592; this version posted October 19, 2023. The copyright holder for this preprint

(which was not certified by peer review)

is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a Gene expression b M"L up My, DOWN d 1x107%
M Detected [ Omentum in malignant cells MHC class Il prolem complex Y stem cell differentiation e 10 fr= _l_
i (GO:0042613) (G0:0048863) ® Gene Ontology o
W Not detected [l Adnexa e ® '
-1 0 1 MHC class | protein complex P histone deaoelylase activity, & (GO)Type E ’ '
| ) T 0 AR 21 (oo azon) (€0:0004407) ¥ Biological Process & s ' : :
IFN signaling chromati odeli w . ' ' .
(Gooos0237) | @ oM Go0o0esae | @ M Celular Component ] ;
> intracellular zinc ion homeos(ams . ATP binding W Molscular Function § H
G0:0006882) (G0:0005524) L & 00 :
early endosome membrane histone deacetylase complex No. Genes £ ' A
i (G0:0031901) (té/o;oooonpa) » . & T ! :
IL-27-mediated signaling DNA-binding TF binding S -05 ] |
F“” I §§§<‘:u (GG 0ororoe) | @ (GO:0140297) 1@ ® 6-10 % :
T cell receptor binding intracellular organelle lumen, @ 1120 s 1 T .
f :0042608) (G0:0070013) . >21 -1.0 T
I\ CXCL9 protection from NK cell higtora mudmcallon
medlated cytotoxmlty " (G0:0016570) S i &
I ’
0042270) *mpmrere e TLtevel &t @
-log(pvaluey T T T 7T
TINK Other M . Expression in 1 0 <
- -
003, Adnexa, p = 171 10" 108, Omentt 567 1(]3 ° s
oW PR “',’ 2 [
e 1
) o .
3
i w
- 3
o
>
o
£ 0
e
=)
3
o
o
I3
= -1
T T T
A 18pm = - - +
TINK cells
EEEEA%’}‘ in radius of 36HM - - ik +
E || SasTm1 soum-  + o+ +
@ S
) TAP1
2 € M, predicts TINK levels
Q ]
g
=
«©
2]
2 ©
2 &
=
©
8 <
N oA
11 p I |‘n
~N
b 1‘ =5 Z Samples (AUROC = 0.79)
I\ il ~ Spatial frames (AUROC = 0.77)
\ & - Cells (AUROC = 0.75)
| =y T T T T T
= 0.0 0.2 04 06 08 10
% 1- Sensitivity
o
TINK
. Cell
Other
Non-Malignant
Cell
M,-,L Expression in
Malignant Cells
(Normalized)
' 1
| VEGEB
"I WNT7A

Spatial frames

Figure 3. T/NK cells preferentially co-localize with a transcriptionally distinct subset of malignant

cells. (a) Heatmap of M. genes. Average expression (z score, red/blue color bar) of the M genes

(rows) across spatial frames (columns), sorted by Mt overall expression (OE), and labeled by (color bar

from top to bottom): anatomical site, sample ID, the detection of different T/NK cell subsets. (b) M

gene ontology enrichment analysis. (¢) Spatial distribution of T/NK cells (black) and Mt OE in

malignant cells (color bar, top right) shown in representative tumor tissue sections from six different

patients and anatomical sites; other non-malignant cell types are colored grey. p-values denote if Mti. OE

17


https://doi.org/10.1101/2023.10.16.562592
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.562592; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is significantly (one-sided t-test) higher in frames with high vs. low T/NK abundance (defined based on
the median level) in the respective tissue section. (d) Mt OE (y axis) in malignant cells, stratified based
on the relative abundance of T/NK cells in their surroundings (top) and the presence of T/NK cells at
different distances (bottom). Middle line: median; box edges: 25" and 75™ percentiles; whiskers: most
extreme points that do not exceed + IQR x 1.5; further outliers are marked individually. ***p < 1*10,
mixed effects (Methods). () ROC curves obtained for cross-validated Support Vector Machine classifier
using M expression in malignant cells to predict T/NK cell levels, at the sample (black), spatial frames
(red) and single cell levels (blue). Abbreviations: AUROC = area under the ROC curve. (f) Single cells
visualized in situ in one representative whole tissue section from validation dataset 2 (left), juxtaposed
with magnified region (right). T/NK cells are in black, malignant cells are colored via normalized ML
overall expression in the color bar, and non-malignant cells are in grey (MriL expression in TIL-high

versus TIL-low niches, p = 2.2*10'%, Wilcoxon rank sum test).
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Figure 4. Copy number alterations associated with M, and T/NK levels. (a) Mt Overall Expression
(OE) in malignant cells (y axis) residing in spatial frames where T/NK cells were not detected, stratified
by patients (x axis). (b) Mt OE in malignant cells (y axis), stratified by somatic copy number of the
respective gene (x axis) based on patient-matched bulk tumor genomic profiles. (¢) Top CNAs showing a
significant (BH FDR < 0.05, mixed-effects; Methods) positive (red) or negative (light blue) association
with M1, OE in malignant cells in the discovery spatial cohort. (d) Kaplan Meier Survival curves
depicting differential survival probability (y axis) as a function of average M. OE in the malignant cells
of each patient (log rank test p = 4.09*102) (e) Deletion (red) of Mri-up genes and amplification (light
blue) of MriL-down genes (x axis) are signifcantly (BH FDR < 0.05, one side t-test) associated with low
T/NK levels (y axis; inferred based on gene expression of T/NK cell signatures) in an independent TCGA
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HGSC cohort of 578 patients (20). Grey distribution depicts the T/NK levels in tumors without the

respective genomic abberation.
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Figure 5. Meta-analyses of Perturb-seq datasets identifies regulators of the M. program. (a-b)
Differential Mt Overall Expression (OE) when comparing cells with different genetic perturbations (x
axis) to cells with control sgRNAs, showing the statistical significance (two-sided #-test, y axis) for the
top perturbations identified to repress (light blue) or activate (grey) Mt expression in (a) K562
(myelogenous leukemia) and (b) RPE1 (human retinal pigment epithelial) cell lines Perturb-seq
data(51,52). (c-d) Representative UMAP embeddings of Mt altering perturbation: cells are labeled based
on the sgRNA detected (top) and based on Mt OE (bottom) in K562 (c) and RPE1 (d) cell lines. Z

denotes -logio (p-value), two-sided #-test, comparing Mt OE in the perturbed vs. control cells.
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experimental design. Abbreviations: TCR = T cell receptor, KO = knockout. (b) Ovarian cancer cell
(TYK-nu) differential fitness (MAGeCK (74)) under CD8" T cell selection pressure (x axis) and NK cell
selection pressure (y axis), showcasing gene KOs that confer response (green), resistance (blue) to both
CD8" and NK cell-mediated killing, or differential response and resistance to CD8" T and NK cell-
mediated killing (orange and yellow). (¢) UMAP of single cell RNA-seq (scRNA-seq) profiles from
Perturb-seq screen. Each dot corresponds to an ovarian cancer cell (TYK-nu) with one of the 232 guides
confidently detected, cultured in monoculture (blue) or co-culture with NK cells in 1:1 (purple) or 2.5:1
(yellow) effector to target ratio. (d) Differential expression of Mt genes (fisher combined test; Methods)
when comparing ovarian cancer cells with the respective gene KO to those with non-targeting control
(NTC) sgRNAs. (e) Differential expression MriL-up genes (columns) upon different gene KOs (rows)
under different conditions (monoculture and co-culture with NK cells; vertical rightmost color bar), shown
for genes identified as Mty repressors (red) or activators (blue). (f-h) Gene knockouts alter the cancer cell
transcriptional response to NK cells. (f) Gene knockouts (x axis) activate (red) or repress (blue) the cancer
cell transcriptional response to NK cells (t-test p-values, y axis). (g) Overall expression (y axis) of different
gene KO signatures (x axis) in unperturbed ovarian cancer cells in monoculture (grey) and co-culture
(light blue); statistical significance shown in (f). (h) UMAPs as in (a) with cells colored according to the

overall expression of four different gene KO signatures.
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METHODS
Human tumor specimen collection

For the discovery (SMI) and validation 1 (ISS) spatial cohorts, all tumor tissues were archival clinical
formalin fixed paraffin embedded (FFPE) tumor tissues, retrospectively procured from archival storage
under Institutional Review Board (IRB) approved protocol (#44615). In patients with both adnexal and
omental tumors available for study, tumor blocks from both sites were selected by an expert gynecologic
pathologist (B.E.H) using histopathologic review of the associated H&E slides. HGSC diagnosis was
confirmed in all cases. Tumor content as well as tissue quality and preservation were assessed for inclusion
in the study. For the validation 2 (MERFISH) ST dataset, fresh HGSC tumors were collected at the time
of surgery by Stanford Tissue Procurement Shared Resource facility with the appropriate written informed
consent and institutional IRB approval (#11977). Samples were flash frozen and stored at -80°C until
requested for this study. Samples were embedded in optimal cutting temperature (OCT). Sections were
generated using a cryostat and stained with H&E, which were reviewed by an expert gynecologic
pathologist (B.E.H.) to confirm the diagnosis, quality, and tumor content. Summary statistics of tissue
sections, tumors, and patients profiled are available in Table S1a. Annotations at the patient level and

tissue level are provided in Figure 1b and Table S2.

Bulk tumor tissue Next Generation Sequencing (NGS)

HGSC tumor sample selection for NGS was based on the assessment of overall tumor content by a board-
certified expert pathologist (B.E.H). Solid tumor tissue was digested by proteinase K. Total nucleic acid
was extracted from FFPE tissue sections using Chemagic 360 sample-specific extraction kits (Perkin
Elmer). Percent tumor cellularity as a ratio of tumor to normal nuclei was verified against pathologist-
derived assessment, with a minimum requirement of 20% tumor content. Macro-dissection was utilized
as required to enrich specimens below the 20% threshold. Specimens that met the 20% threshold of tumor
to normal nuclei were selected for DNA sequencing. DNA sequencing was subsequently performed via
Tempus Labs according to the xT platform protocol (75). Additional information about NGS data

generation and processing is provided in Supplementary Information.

Spatial Molecular Imaging (SMI)

24


https://doi.org/10.1101/2023.10.16.562592
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.562592; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SMI data was generated using the CosMx SMI instrument, according to the company’s protocols, as
described here and in Supplementary Information. CosMx pre-commercial RNA 960 gene panel was
used (Table S1b), consisting of in situ hybridization (ISH) probes. Each reporter set contains 16 readout
rounds with four different fluorophores, creating a 64-bit barcode design with Hamming distance 4 (HD4)
and Hamming weight 4 (HW4) to ensure low error rates. Probe fluorescence was detected at subcellular
resolution via the CosMx SMI instrument and the signal was aggregated to identify the specific RNA

molecule measured in each location (24).

SMI tissue preparation and RNA assay. Five-micron tissue sections were cut from FFPE TMA tissue

blocks and adhered onto VWR Superfrost Plus Micro Slides (VWR, 48311-703). After sectioning, the

tissue sections were air-dried overnight at room temperature. Tissue preparation was performed as
described in the CosMx SMI Manual Slide Preparation Manual (MAN-10159-01). Briefly, the tissues
underwent deparaffinization, heat-induced epitope retrieval using a pressure cooker for 15 minutes at
100°C, and enzymatic permeabilization with 3 pg/mL digestion buffer for 30 minutes at 40°C.
Subsequently, a 0.0005% working concentration of fiducials were applied to the tissue, followed by post-
fixation and blocking using NHS-acetate. Finally, an overnight hybridization was performed using the
pre-commercial 960 plex RNA Panel of probes. The next day, the tissues were subjected to stringent
washes to eliminate any unbound probes. The tissues were stained with CosMx Nuclear Stain, CosMx Hs
CD298/B2M, CosMx Hs PanCK/CD45, CosMx Hs CD3 nuclear and segmentation markers. An additional
round of blocking using NHS-acetate was performed before loading on to the instrument. The slide and
coverslip constitute the flow cell, which was placed within a fluidic manifold on the SMI instrument for
analyte readout and morphological imaging. Analysis run on the instrument was set up using the 60
seconds per FOV pre-bleaching profile and segmentation profile for human tissue. Twenty FOVs were

selected per slide resulting in a total of 100 tissue profiles.

In Situ sequencing (ISS)

ISS was performed using 10X Genomics’ Xenium platform, according to the company’s protocols as
described here and in Supplementary Information. In brief, 10X Genomics’ Xenium ISS technology
was uses with the Xenium Human Breast Panel that consists of 280 genes (Table S1b). Xenium
hybridization padlock probes were designed to contain two complementary sequences that hybridize to
the target RNA(76). Probes also contain a third sequence encoding for a gene-specific barcode such that

once the paired ends of the probe bind to the target RNA and ligate a circular DNA probe is generated for
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Rolling Circle Amplification (RCA). This system increases specificity and minimizes off-target signals

as ligation should not occur in off-target binding events.

Xenium tissue preparation and RNA assay. Five-micron FFPE TMAs were sectioned onto a Xenium slide.

Deparaffinization and permeabilization was performed to expose mRNA. The mRNAs were targeted by
280 probes and two negative controls: one to assess non-specific binding and the other a genomic DNA
(gDNA) control to ensure signal comes from mRNA. Tissue slides were incubated overnight at 50°C with
a probe concentration of 10 nM. Following stringent washes to remove un-hybridized probes, probes were
ligated for two hours at 37°C. At this step an RCA primer was annealed. Circularized probes were
enzymatically amplified for one hour at 4°C followed by two hours at 37°C to generate multiple copies of
gene-specific barcodes for each RNA binding event which increases the signal-to-noise ratio. Following
washing, background fluorescence was quenched chemically to mitigate auto fluorescence that is caused
by lipofuscins, elastin, collagen, red blood cells and formalin fixation (76). Slides were placed into an

imaging cassette and loaded on the Xenium Analyzer instrument.

Image pre-processing. The Xenium Analyzer captured a Z-stack of images every cycle and in every

channel. Images were processed and stitched to build a spatial map of the transcripts across the tissue
section. Stitching was performed on the DAPI image, taking all the stacks from different FOVs and colors

to create a single image representative of one tissue section.

Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH)

Data was generated on the Vizgen Inc. platform according to the company’s protocols. A custom 140 gene
panel was designed with an additional set of 50 blank negative control barcodes based on the MERFISH
design that incorporates combinatorial labeling with an error-robust encoding scheme to mitigate detection

errors(77).

Tissue Sectioning and Permeabilization. Four HGSC fresh frozen tissue samples were preserved in OCT

compound and stored at -80°C prior to sectioning. Ten-micron tissue sections were cut from the fresh
frozen OCT tissue blocks and adhered onto MERSCOPE slides (Vizgen, 20400001). After sectioning, the
tissue sections were fixed with 4% paraformaldehyde in 1X PBS for 15 minutes, washed three times with

1X PBS, and incubated overnight at 4°C in 70% ethanol.

Cell boundary and antibody stain. Following overnight permeabilization, the tissue sections were placed

in the MERSCOPE Photobleacher (Vizgen, 1010003) for four hours to quench autofluorescence.
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Subsequently, the tissue samples were stained using Vizgen’s Cell Boundary Kit (Vizgen, 10400009) and
blocked in blocking solution (Vizgen, 20300012) supplemented with a 1:20 dilution of Rnase inhibitor
(NEB, M0314L) for one hour. The tissue sections were washed with 1X PBS and stained with the Cell
Boundary Primary Staining Mix (Vizgen, 20300010) at a 1:100 dilution supplemented with a 1:20 dilution
of Rnase inhibitor for one hour. After a series of washing with 1X PBS, the tissue samples were stained
with the oligo conjugated secondary antibodies that were supplemented with 1:20 dilution of Rnase
inhibitor for one hour. After incubation, the tissue sections were fixed with 4% paraformaldehyde in 1X

PBS for 15 minutes and washed in 1X PBS.

Encoding Probe Hybridization. Tissue sections were washed for five minutes in Sample Prep Wash Buffer
(Vizgen, 20300001) and incubated in Formamide Wash Buffer (Vizgen, 20300002) for 30 minutes at
37°C. The custom MERSCOPE Gene Panel Mix (Vizgen, 20300008) was applied to the tissues and the

slides were incubated at 37°C for 36 to 48 hours. After hybridization, the tissue sections were washed with
Formamide Wash Buffer for 30 minutes at 47°C and then subsequently washed with Sample Prep Wash

Buffer for two minutes.

Gel embedding and tissue clearing. Tissue samples were embedded in a gel solution and incubated for one
minute. The gel was made from a gel embedding solution that was comprised of Gel Embedding Premix
(Vizgen, 20300004), 10% ammonium persulfate (Sigma, 09913-100G), and TEMED (N,N,N’,N’-
tetramethylethylenediamine, Sigma, T7024-25ML). The gel solution was then removed, and an additional
gel solution was added to the top of the sample sandwiched beneath a 20 mm Gel coverslip (Vizgen,
20400003). The samples were incubated for 1.5 hours at room temperature to allow the gel solution to
polymerize. The gel coverslips were prepared using RNAseZap and 70% ethanol prior to being covered
with Gel Slick (VWR, 12001-812). Following the incubation, the Gel Coverslip was removed, and the
samples were incubated overnight at 47°C in clearing solution comprised of Protease K (NEB, P8107S)

and Clearing Premix (Vizgen, 20300003). The tissue samples were then incubated overnight at 37°C.

Sample Imaging. Following the series of overnight incubations, tissue sections were washed in Sample

Prep Buffer for ten minutes and incubated at room temperature for 15 minutes in DAPI and Poly T Reagent
(Vizgen, 20300021). Tissue samples were then washed in Formamide Wash Buffer for ten minutes,
transferred into Sample Prep Wash Buffer, and loaded onto the MERSCOPE instrument (Vizgen,
10000001) for morphological imaging and analyte readout. The appropriate fluorescently labeled probe

solution was applied to the tissue, imaged, and photobleached to remove the probes for the next round.
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Cell segmentation

Cell segmentation was performed using a deep-learning based segmentation image processing algorithm,
Mesmer (78) (Figure Sla,b) from within the DeepCell platform on raw TIFF images. The inputs for
whole cell segmentation for SMI images included immunofluorescent (IF) images of DAPI and
CD298/B2M for nuclear and cell membrane detection, respectively. Similarly, MERFISH whole cell
image segmentation was performed with DAPI and cell membrane stains (Vizgen stain boundary Kkit,
10400009). Nuclear segmentation was performed for ISS images wherein the input includes DAPI IF

stain.

Gene expression quantification from spatial transcriptomics data

Preprocessed RNA in situ data includes RNA transcripts confidently identified for each gene and their
spatial coordinates. Given this data each RNA transcript was aligned to the cell segmentation outputs
described above based on its spatial coordinates. Cell count matrices, C, were generated by counting the
number of RNA transcripts detected within the segmentation boundaries of each cell j for each gene i to
yield ¢; ; for entry of C in each ST dataset. Cell counts were converted to transcripts per million:

C. .

TPM;; = (%) *10°

i=1Cij

wherein G is the total number of genes in each ST dataset.

Expression levels were quantified as:

TPM;
Ei,j = l0g2< 10 +1)

The average expression of a gene can across a population of N cells, denoted here as P, was defined as:

E;, = log, (—Z’ i - by 1)

Cells with fewer than 50, 20, and 5 genes detected in the SMI, Xenium, and MERFISH data were

excluded, as well as cells with exceptionally large volume (> 441 pum?).

Overall Expression (OE) of a gene signature was computed with additional normalizations to filter
technical variation, similar to the procedure reported before (79) with some modifications as described in

Supplementary Information “Gene set Overall Expression (OE)”.
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Cell neighborhoods and niche definition

The location of each cell was defined based on the location of its centroid. The r-neighborhood of a cell
was defined as all the cells that reside at a distance of at most » um from the cell. Spatial frames were
defined by binning the tissue section FOV to 75 pm x 75 pum (i.e., 5625 pum?2) sized squares, with a median

number of 53 cells per frame.

Cell type annotations

The cell type annotation procedure was applied separately for each of the three spatial datasets via an
initial cell type assignment followed by an iterative subsampling procedure to obtain robust cell type
assignments with confidence levels. The pipeline is described in Supplementary Information “Cell type

annotations” and “T/NK subtype annotations” and will be provided in the study GitHub repository.

Deriving cell type signatures

scRNA-Seq data of three HGSC cohorts was used to identify cell type specific signatures (Table S3a)
used for cell type annotations. Preprocessed gene expression matrixes were downloaded from

https://lambrechtslab.sites.vib.be/en/data-access (30,32), GSE146026 (80), and GSE173682 (29). Cell

type annotations as reported in each of these studies were used. For each of the three cohorts cell type
signatures (¢-test p-value < 1*10°!% and log, fold change > 0.2 for all pairwise comparisons) were derived
and genes supported by at least two datasets were included in the final signatures. Cell type signatures
were also derived from the discovery data set (Table S3b) via a similar approach with modifications
described in Supplementary Information under “Deriving cell type signatures from spatial

transcriptomics data”

Co-embedding for a high-quality reference single cell atlas

A reference single cell atlas was generated to examine consistency across spatial and scRNA-seq cohorts
and validate cell type annotations. The atlas includes three spatial datasets collected here and six scRNA-

seq HGSC cohorts (23,27-32). Preprocessed gene expression matrixes were downloaded from Synapse
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(syn33521743 (23)), GSE118828 (27), GSE173682 (29), GSE147082 (28), GSE154600 (31), and
https://lambrechtslab.sites.vib.be/en/data-access (30,32).

Tumor samples derived from other anatomical sites, other than the adnexa or omentum, were removed to
match the scope of this study. For each scRNA-seq dataset, max{5000, N.} cells were subsampled from
each of cell type annotations, where N, denotes the number of cells labeled with cell type annotation .
Each of the ST datasets were subsampled as follows. For each non-malignant cell type, max{5000, N}
high confidence cells were subsampled, where N; denotes the number of high confidence cells labeled
with cell type annotation ¢. From malignant cells, max{SOO, Nmp} high confidence malignant cells were

sampled per patient, where Np,,, denotes the number of malignant cells per patient p.

All nine subsampled datasets were co-embedded with reciprocal principal components analysis (RPCA)
using the top 30 PCs fit on each dataset, using the Seurat R Package v4 implementation (81), and then
visualized with two dimensional Uniform Manifold Approximation and Projection (UMAP) (82). More
details on cell type matching across publicly available datasets are available in Supplementary

Information under “Cell Type Annotation Harmonization across Datasets”.

Mixed effects modeling

Mixed effect models were used to capture co-dependencies and the hierarchical structure of the data,
where covariates at different levels (e.g., cell, spatial frame, sample, etc.) are sampled from different

distributions.

The following model was used to decompose a feature of interest y:
Yijk~N|{ @ + z BrXijif»0f
f

Where y; i is the value of the feature in cell i in frame j of sample k, x;jy ; is a cell-type-level covariate

(e.g., log-transformed number of reads), and ajy is the spatial frame j intercept, defined as

aje~N (a,s +Znuuk,a§>;a,§~w (yg + nyufk,cfgz)
t t

where u, i, are frame-level covariates of frame j in sample & (e.g., T cell abundance in the frame), and ug,

are sample-level covariates of sample & (e.g., sample site, treatment status). Patient-level covariates were
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added in the same manner as a fourth level. The Ime4 (83) and ImerTest R packages (84) were used to fit
the model, compute p-values and sum of squares (SS) in type I ANOVA (aNalysis Of vAriance) via the
Satterthwait’'s degrees of freedom method, and identify the latent variables that maximize the posterior

probability.

Spatial transcriptional program identification

Immune infiltration programs (Table S4) were identified with the mixed-effect models described above
using the frame-level abundance of malignant cells as a measure of the infiltration level. To prevent impact
of ambient RNA, only genes that have a significantly higher expression levels (pairwise one-sided #-test
p-value > 1*1073) in respective cell type were considered, using pairwise t-tests when comparing the
respective cell type to all other cell types. The CD8 T cell infiltration program was extended based on
scRNA-seq data (23). Analyzing the CD8 T cells from this scRNA-Seq cohort the top 50 genes that were
significantly correlated (BH FDR < 1*10°!°, Spearman Correlation) with the OE of the CD8 T cell
infiltration signature were identified (Table S4). Malignant TIL (M) program (Table S6) was identified
in a similar manner, using the presence of T/NK cells as a binary covariate at the frame-level. P-values
were corrected for multiple hypotheses testing using the BH test, and topmost genes with FDR < 0.05

were reported.

CNA and anatomical site analyses of spatial transcriptomics

Mixed-effect models were used to compute the association between the expression of each gene in the
different cell types and the patient-matched CNA measurements obtained at the bulk tumor level. Of the
626 genes with CNA measurements, 159 were also included in the discovery dataset (SMI) panel. For
each cell type and each of these 159 genes the following model was fit: tpm ~ (1 | patient) + cna + nact +
sites, where tpm denotes the expression of the gene in cells from cell type &, cna denote the copy number
of the same gene, nact denotes treatment status, and sites denote the anatomical site. Similarly, to examine
the connection between the M. program OE and CNAs, all 626 genes with CNA were tested with this
model, considering only malignant cells from the samples with genomic profiling, with Mt OE as the
dependent variable. To derive associations of treatment status and anatomical site, a similar model was fit

(tpm ~ (1 | patients) + nact + sites) on all 960 genes in the discovery dataset.
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CNA analyses of TCGA data

The Cancer Genome Atlas (TCGA) data of Array-based Gene Expression (EXP-A) and Copy Number
Somatic Mutations (CNSM) was downloaded from the International Cancer Genome Consortium (ICGC;
https://dcc.icge.org/projects). The TIL levels of each sample were computed as the overall expression of
T cell signatures. Amplifications and deletions were defined as a copy number log-transformed value
(“segment_mean’’) above or below 0.5 and -0.5, respectively. To examine the hypothesis that repressing
the MriL-up genes drives T cell exclusion, a one-sided t-test was preformed to examine if samples with
deletion in the MriL-up genes have significantly lower TIL scores compared to all other samples. Likewise,
to examine if induction of MriL-down genes drives T cell exclusion, a one-sided t-test was preformed to
examine if samples with amplifications in the Mti.-down genes have significantly lower TIL scores
compared to all other samples. Support Vector Machine (SVM) classifiers were generated to predict if a
tumor has a high (above median) TIL levels based on the CNA levels of all M. genes, using the €1071
R package.

Perturb-seq meta-analyses and target selection

Publicly available Perturb-seq datasets were used to identify MriL regulators and identify targets for the
ovarian cancer Perturb-seq screen performed here. The Perturb-seq collections used include the following
datasets. (1) large-scale CRISPR KO Perturb-seq screens in K562 and RPE1 cell lines (52). Counts data
and metadata were downloaded from https://gwps.wi.mit.edu/, focusing on K562 day 8 Perturb-seq (KDS;

targeting all expressed genes at day 8 after transduction) and RPE1 day 7 Perturb-seq (RD7; targeting
DepMap essential genes at day 7 after transduction). (2) Perturb-seq CRISPR KO data from primary
melanoma cells under standard mono-culture and co-culture with autologous TILs (53). Processed counts

data was downloaded from https://singlecell.broadinstitute.org/single cell/study/SCP1064/multi-modal-

pooled-perturb-cite-seg-screens-in-patient-models-define-novel-mechanisms-of-cancer-immune-

evasion. (3) CRISPR activation Perturb-seq screen in K562 cells (51), downloaded from GEO

(GSE133344). For each dataset counts were converted to transcript per million (TPM) values as described
above and two-sided t-tests were performed to identify differentially expressed genes for each perturbation
in each one of the screens, comparing the cells with the perturbation to those with control sgRNAs. ML
overall expression (OE, Supplementary Information) was computed, and a two-sided #-test was
performed to examine if OE was significantly higher or lower in the cells with the perturbation compared

to the control cells (with control sgRNAs). For perturbations that showed a significant effect on the ML
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OE (BH FDR < 0.05, t-test), hypergeometric tests were used to further confirm that the perturbation
significantly repress or activates the M. genes, having opposite effects on the Mti-up and Mri.-down

gene subsets.

Transduction and pooled gene knockouts in ovarian cancer cells

Plasmid amplification. LentiCas9-Blast was a gift from Feng Zhang (Addgene, Plasmid #52962;
RRID:Addgene 52962). Stbl3 bacterial stab was streaked onto a LB broth plate with ampicillin and

incubated overnight at 37°C. A single colony was picked and inoculated in 3 mL of LB liquid media
supplemented with ampicillin and incubated overnight at 37°C with 300 rpm agitation. An aliquot of
starter culture was then cultured overnight in 10 mL of LB liquid media supplemented with ampicillin.

Plasmid extraction was performed using the NucleoBond Xtra Midi EF kit (Takara Bio, 740420.10).

Pooled sgRNA Perturb-seq library design. Individual guide sequences were selected from the Human

CRISPR Knockout Pooled Library (GeCKO v2) (85). The pooled sgRNA library was purchased from

GenScript in a plasmid format utilizing the pLentiGuide-Puro vector. In total, it includes 232 sgRNAs

targeting 74 genes, with three guides per gene including ten non-targeting controls (Table S7).

Lentivirus production. To obtain lentiviral stocks of lentiCas9-Blast and the pooled lentiviral library,

LentiCas9-Blast and the custom sgRNA lentiviral library were transfected into Lenti-X 293T cells
(Takara, 632180) respectively. Lenti-X 293T cells were cultured in cOPTI-MEM (opti-MEM, Gibco,
31985088), 1x GlutaMAX (Gibco, 35050061), 1 mM Sodium Pyruvate (Corning, 25-000-Cl), 5% FBS,
Ix non-essential amino acid (Corning, 25-025-CI). At ~90% confluency, cells were incubated with
TransIT-Lenti (MirusBio, 6603) transfection mixture at 37°C with 5% CO,. The transfection mixture
included cOPTI-MEM supplemented with 14 pg of the respective transfer plasmid, 10 pg psPAX2
(Addgene, Plasmid #12260), and 4.33 pg pMD2.G (Addgene, Plasmid #12259). After six hours of
transfection, the media was replaced with fresh cOPTI-MEM supplemented with 1x ViralBoost (Alstem
Bio, VB100) and incubated for an additional 16 hours. The supernatant was harvested 24 and 48 hours
post-transduction. Harvested viral supernatants were pooled and concentrated with Lenti-X Concentrator
(Takara Bio, 631232) by centrifugation at 1,500 x g for 45 minutes. Viral pellets were resuspended in
media at a volume 100x smaller than the original volume and stored at -80°C until retrieved for

experiments.

Cas9 and sgRNA lentiviral transductions in TYK-nu cells. To obtain stable Cas9 expression in TYK-nu

cell line, 100,000 wildtype TYK-nu cells were seeded in a 24-well plate (Corning, 3526) and incubated
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overnight. Cells were transduced with the lentiCas9-Blast lentivirus at an MOI of 0.2 with 8 pg/mL of
polybrene (MilliporeSigma, TR-1003) and incubated overnight in 37°C with 5% CO». Transduced TYK-
nu cells were then washed with DPBS, and post-transduction selection was conducted over ten days with
10 pg/mL of Blasticidin (Invivogen, ant-bl-05) supplementation in TYK-nu media. Successful
transduction of Cas9 was validated via western blot (Figure Séa,c) and flow cytometry analyses (Figure
S6b,d). The same process was performed for the custom sgRNA lentiviral library transduction. Post-
transduction selection was conducted over five days with 0.5 pg/mL of puromycin (Invivogen, ant-pr-1)

at an MOI of 0.15.

To validate knockout efficiency in the TYK-nu Cas9 cell line, TYK-nu Cas9 cells were transduced with
pMCB306 (a generous gift from the Bassik Lab), which contains a Puromycin-T2A-EGFP with EF-1
alpha promoter and an EGFP-targeting sgRNA driven by a mU6 promoter. Following cell transduction
with the pMCB306 plasmid, loss of GFP fluorescence indicates functional Cas9 activity, as cleavage of
GFP by Cas9 results in loss of fluorescence whereas intact GFP retains fluorescence. TYK-nu Cas9 cells
were transduced at an MOI of 0.15 with pMCB306 virus and 8 pg/mL of polybrene and incubated
overnight at 37°C with 5% CO». Transduced TYK-nu Cas9 cells were washed with DPBS, and selection
was conducted over five days with 0.5 pg/mL of puromycin (Invivogen, ant-pr-1) supplemented in TYK-

nu media. Successful transduction was validated via flow cytometry and Western Blot analyses.

Flow cytometry analysis of TYK-nu cells. Flow cytometry analysis was conducted to sort and analyze
TYK-nu Cas9 B2M knockout cell line and a TYK-nu Cas9 GFP transduced cell line. For flow cytometry
of the TYK-nu Cas9 B2M KO cell line, cells were washed in 1X PBS and stained with Alexa Fluor 700
anti-human B2M antibody (BioLegend, 395708; 1:20 dilution) for 20 minutes. Additional cells were set

aside to use as unstained controls and to adjust gating. The cells were washed twice in PBS with 1.5%
FBS after staining and were filtered through a 35 ym cell strainer prior to analysis. Flow cytometry was
performed on the LSRII instrument in the Stanford Shared FACS Facility. For flow cytometry of the TYK-
nu Cas9 GFP cell line, cells were resuspended in 1X PBS, washed twice in PBS with 1.5% FBS, and
filtered through a 35 pym cell strainer prior to analysis on a Sony Biotechnology SH800S Cell Sorter at the
Chan Zuckerberg Biohub Stanford location. All plots were generated with FlowJo Version 10.8.1.

Co-culture system for high content CRISPR screens

Co-cultures of TYK-nu and NY-ESO-1 TCR* CD8 T cells. Procedures for generating TYK-nu Cas9 cells

with stable expression of the NY-ESO-1 antigen and for primary human CDS8 T cell isolation and TCR-
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engineering are described in Supplementary Information. Following isolation and editing of CD8 T
cells and TYK-nu cells, co-culture experiments were performed as follows. 4,800 NY-ESO-1 Cas9 TYK-
nu cells were seeded into a clear-bottom, black-walled 96-well plate and incubated in 100 pl of T cell
medium per well overnight. The next day, CD8 T cell activating Dynabeads were magnetically removed
from the NY-ESO-1 TCR* CD8 T cells. The activated NY-ESO-1 TCR" T cells were added at varying
effector-to-target ratios (E:T) to a total volume of 100 yL per well. The cells were co-cultured for 24 to
72 hours. TYK-nu cell viability and IFNy levels in the co-culture were measured to validate the
cytotoxicity of the edited CD8 T cells. At the end of each co-culture period, supernatants were collected
from the 96 well plate, spun down at 400 x g for five minutes, and stored at -20°C in single use aliquots
for subsequent ELISA assays (Figure S5h). Each well was washed twice with 200 pl of DPBS to remove
the T cells. Following the manufacturer’s protocol, PrestoBlue cell viability dye diluted in T cell medium
mixtures were added to each well and incubated for 30 minutes prior to fluorescence plate reader reading
(Tecan Infinite M1000). The supernatants collected were diluted 1:1000 prior to the IFNy ELISA assay
(BioLegend, 430104). The same co-culture procedure was performed in parallel with wildtype CD8 T

cells from the same donor as a control.

Co-cultures of TYK-nu and NK-92 cells. TYK-nu ovarian cancer cells (JRCB Cell Bank, JCRB0234.0)
were cultured in EMEM (ATCC, 30-2003) with 10% heat-inactivated FBS (Life Technologies,
A3840102). NK-92 cells (ATCC, CRL-2407) were cultured in RPMI 1640 Medium, GlutaMAX
Supplement, HEPES medium (Gibco, 72400-047) with 10% heat-inactivated FBS (Life Technologies,
A3840102), 200 U/mL recombinant human IL-2 (PeproTech, 200-02), and 1% penicillin-streptomycin
100X solution (Cytiva, SV30010). NK-92 cell line cytotoxicity was validated using PrestoBlue cell

viability dye (Thermo Scientific, A13261) following the manufacturer’s protocol. TYK-nu cells were
seeded in a clear bottom, black walled 96 well plate (Greiner, 655090) and incubated overnight. NK-92
cells were added in varying effector to target ratios (E:T) and the cells were incubated for 24 to 72 hours
(Figure Sé6e). To validate the specificity of NK cell cytotoxicity in the co-culture experiments, a TYK-nu
B2M KO cell line was generated. B2M is a subunit of the major histocompatibility complex 1 (MHC-1),
and its knockout increases cell susceptibility to NK-mediated cytotoxicity by disabling MHC-1
interactions with inhibitory KIRs and NKG2A (86). TYK-nu Cas9 cell lines were transduced with B2M
sgRNA lentivirus at an MOI of 0.15. Successful transduction was validated via flow cytometry and
western blot analyses (Figure S6c-d). All cell lines were routinely tested for mycoplasma using the

Promokine PCR Mycoplasma Test Kit I/C (PromoKine, PK-CA91-1024).
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CRISPR screen in cancer CD8 T cell co-cultures

TYK-nu Cas9 NY-ESO-1 cells were transduced with the sgRNA library at an MOI of 0.15. NY-ESO-1
expressing TYK-nu Cas9 cells were selected with 0.5 pg/mL of puromycin over a period of five days.
1,875,000 NY-ESO-1 expressing TYK-Nu Cas9 library cells were seeded in a 75 mm dish and allowed
to adhere overnight to achieve 8,000X coverage. NY-ESO-1 TCR" CD8 T cells were added at 5-to-1
effector-to-target cell ratio (9,325,000 cells). TYK-nu Cas9 NY-ESO-1 cells were grown in: (1)
monoculture, (2) co-culture with wild type (WT) CD8" T cells, and (3) co-culture with NY-ESO-1 TCR*
CDS8 T cells. In all three conditions TYK-nu cells were incubated for 72 hours, either in monoculture or
co-culture, before being washed twice in 1X DPBS to remove the CD8 T cells. TYK-nu cells were snap
frozen and stored at -80°C prior to genomic DNA extraction and sgRNA amplification. As a second
selection, two days after recovery, cells were grown under the same conditions again for 72 hours and
then allowed to recover again before collection and sequencing. All samples were sequenced on a MiSeq

Micro V2 in a single-end run at the Chan Zuckerberg Biohub Stanford location.

CRISPR and Perturb-seq screens in cancer NK co-culture models

TYK-nu Cas9 cells were transduced with the HGSC sgRNA library at MOI of 0.15. TYK-nu Cas9 cells
were puromycin selected at 0.5 pg/mL for five days and allowed to recover to confluency prior to

downstream experiments.

The first screen was performed for sgRNA and Perturb-seq readouts. TYK-nu Cas9 library cells were
seeded in a 75 mm dish (Corning, 353136) and allowed to adhere overnight. NK-92 cells were added at
1-to-1 and 1-to-2.5 effector-to-target (E:T) cell ratios. Perturb-Seq readouts (53,87) were obtained from
TYK-nu Cas9 cells grown for 48 hours in monoculture and co-culture with NK-92 cells. After the
completed growth timeline, TYK-nu Cas9 library cells were washed twice with 10 mL 1X DPBS to
remove the suspended NK-92 cells. Two replicates from each condition were put into a single cell
suspension according to the 10X Single Cell Suspensions from Cultured Cell Lines for Single Cell RNA
Sequencing protocol (10X Genomics, CG00054 Rev B). The libraries were prepared by the Stanford
Genomics Service Center according to the Chromium Next GEM Single Cell 5' Reagent Kits v2 (Dual
Index) with Feature Barcode technology for CRISPR Screening protocol (10X Genomics, CG000510 Rev
B). Equimolar amounts of indexed libraries were pooled together and sequenced on a NextSeq2000 P3 in

a paired-end run at the Chan Zuckerberg Biohub Stanford location.
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A subset of replicated cells was allowed to recover for an additional day until confluency prior to being
snap frozen and stored at -80°C. Genomic DNA of the snap frozen cells was extracted using the Quick-
DNA Midiprep Plus Kit (Zymo Research, D4075). sgRNA amplification was performed following a
previously published protocol(49). Equimolar amounts of indexed libraries were pooled together and

sequenced on a MiSeq Nano V2 in a single-end run at the Stanford Genomics Service Center.

A second screen was performed for sgRNA sequencing. TYK-nu Cas9 library cells were seeded in a 6
well dish (Cole-Parmer, 0192770) and were allowed to adhere overnight. NK-92 cells were added at a
2.5-to-1, 5-to-1, and 7.5-to-1 effector-to-target ratios for 48 hours. TYK-nu cells were allowed to recover
for three days prior to being snap frozen and prepared for genomic DNA extraction as described above.
Each experimental condition was performed in triplicates with > 1000x cells per sgRNA, resulting in 6

and 12 sequencing samples from the first and second screen.

CRISPR screen and Perturb-seq data analyses

Raw fastq files were processed using the cellranger pipeline (10x Genomics Cell Ranger 7.1.0). Counts
were converted to transcript per million (TPM) values. For each condition (monoculture, 1:1 co-culture,
and 2.5:1 co-culture) data was analyzed to remove non-malignant cells. Seurat R package was used for
KNN clustering, resulting in a distinct NK cluster in the co-culture conditions, with expression of CD3E
and NCAM]. This cluster was removed and only cancer cells with a detection of a single sgRNA were
retained for downstream analyses. For each of the three conditions, DEGs were identified for each
perturbation using a two-sided t-test comparing the cells with the perturbation to those with NTCs. Fisher
test was used to combine the three p-values. Hypergeometric tests were performed to examine if the up or
down regulated genes identified for each perturbation were enriched with Mri-up or Mrti.-down genes,

or vice versa, and the combined p-value (fisher test) was reported as the final summary statistics.

MAGeCK algorithm was used to compute differential fitness effects on the cancer cells under the
monoculture and co-culture conditions, either with the different types of CD8* T cells or with the NK
cells. Each experimental condition was performed in triplicates. First, the sgRNA counts of the different
samples were median normalized to adjust for the effect of library sizes and read count distributions.
Second, the variance of read counts was estimated by sharing information across the different sgRNAs,
allowing to fit a negative binomial (NB) model to test whether sgRNA abundance differs significantly
between treatments (i.e., co-culture) and controls (i.e., monoculture or co-culture with non-specific T
cells). Third, sgRNAs were ranked based on p-values calculated from the NB model, and an o robust
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ranking aggregation (a-RRA) algorithm was used to identify positively or negatively selected genes. The
pairwise tests were performed considering each of the co-cultures (CD8 T cell or NK cell) compared to
the monoculture and the two co-cultures (with specific and non-specific T cells) to compute a combined

Fisher statistics, one for T cell and another for NK cell sensitizing and desensitizing hits.

DATA AVAILABILITY

All the data collected in this study, including spatial transcriptomics data, single-cell Perturb-
seq data, targeted genomics, deidentified clinical meta-data, and processed tissue images will be deposited
and made publicly accessible through Gene Expression Omnibus (GEO), Zenodo, and CELLxGENE.
Processed data in the form of standardized RObjects will be available via Zenodo. Upon publication raw
and processed spatial transcriptomics data will be available on CELLxGENE for download in .h5ad format
and interactive exploration. Processed gene expression matrices with cell type annotations from 6 scRNA-
seq studies with HGSC tumor samples were downloaded from publicly available repositories specified in
their respective publications (23,27-32). Specifically, preprocessed gene expression and metadata
matrixes of HGSC scRNA-seq data were downloaded from Synapse (syn33521743 (23)), GEO
(GSE118828 (27), GSE173682 (29), GSE147082 (28), GSE154600 (31), GSE146026 (80)), and
https://lambrechtslab.sites.vib.be/en/data-access (30,32). An additional external validation dataset (44)
hosted on the European Genome-Phenome Archive (EGAD00001006973, EGADO00001006974) was

made available for this study through a Data Access Agreement with Genentech, Inc..

CODE AVAILABILITY

All data processing and analysis code will be available via GitHub once the paper is published. The study
GitHub repository includes documented code for data processing and code required to reproduce the main

figures and supplementary tables of the study.
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whole-cell segmentation performed for the discovery dataset. Input data includes DAPI
immunofluorescent (IF) stain (green) and cell membrane stain (blue). Cell boundaries represented as white
contours. (b) Representative nuclear segmentation performed for validation dataset 1. Input data includes
DAPI IF stain. Cell boundaries represented as white contours. (¢) UMAP of cell transcriptomes, cells
colored by overall expression of cell type signatures (Supplementary Table 3, Methods) corresponding
to the following cell types: malignant, monocyte, T/NK cell, B cell, fibroblast, and endothelial cells. (d)
Reference UMAP embedding fit of single cell transcriptomes from the discovery dataset, shown for a
subsample with high confidence cell type annotations (top) and all cells projected onto the reference
embedding (bottom), colored by cell type annotations. (e-f) UMAP embedding of single positive T cell
transcriptomes in the discovery dataset, cells colored by (e) CD8 and CD4 expression, and (f) expression
of de novo CDS (left) and CD4 (right) T cell expression signatures. (g) Projection of double negative
T/NK cell transcriptomes onto UMAP embedding in (e), with cells colored by overall expression of the
de novo CD8 (left) and CD4 (right) T cell gene signatures (Supplementary Table 3). (h) UMAP
embedding of CD4 T cell transcriptomes, cells colored by CD4 expression (left) and FOXP3 expression
(right). (i) UMAP as in (h), with cells colored with de novo FOXP3"CD4 T cell gene signature expression
score (left) and cells colored with the regulatory T cell signature derived from publicly available scRNA-
Seq datasets (Methods; Supplementary Table 3). (j-k) UMAP embedding of validation dataset 1 T/NK
single cell transcriptomes, cells colored by (j) T/NK cell subtype annotations, (k) detection of (from left
to right): CD4, CD8A/B, FOXP3 (regulatory T cell marker), and NCAMI (NK cell marker). All signatures

used in and generated by these analyses are provided in Supplementary Table 3.
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Figure S2. Cross-platform validation and evaluation of cell type annotations, compositions, and
tumor architecture. (a) Immunofluorescence (left column) of cell type markers paired with cell type
annotations plotted in situ (right column) for four representative patient samples (rows) in the discovery
dataset. (b-g) Cell types colored according to cell type legend in (a). (b) Hematoxylin & Eosin staining
(H&E, left), Immunohistochemistry (IHC) stain for CD163 (middle; monocyte marker) with
corresponding cell type annotations in sifu (right) in a representative tissue FOV in validation dataset 1.
(¢) H&E (left), IHC stain for FOXP3 (middle, Treg marker), and corresponding cell type annotations in
situ (right) in one representative tissue FOV from validation dataset 1. (d) High power H&E stains of
HGSC6 omentum tumor tissue resolving morphology of plasma cells identified based on the discovery
cohort in this sample as shown in panel a (iii). (¢) H&E (left), annotated cell types in situ from ISS
validation dataset 1 (middle) and SMI discovery dataset (right) showing matching data (same patient,
same tumor) from two tumors (rows). White box denotes region of tissue profiled by ISS that corresponds
to FOV profiled by SMI in the same row. (f) Cell type proportion in biological replicates profiled by both
SMI (x axis) and by ISS (y axis). Straight lines correspond to the linear regression fit. 7, denotes the
Spearman correlation coefficient. (g) Stacked barplot show the number of cells (y axes) profiled stratified
by cell type (color) and shown for the individual samples (x axes) and datasets (panes, labeled by ST
platform name or first author of published scRNA-seq dataset)(27,29-32,72,73). (h) Kaplan Meier
Survival curves depicting differential survival probability (y axis) as a function of average T/NK
abundance in each patient (log rank test p = 3.34*10). (i-k) Log> Co-localization Quotient (CLQ, y axes)
of T/NK cells with fibroblasts (blue, x axis) and T/NK cells with malignant cells (green, x axis) in (i) the
discovery dataset, stratified by adnexal samples (left) and omentum samples (right), (j) all samples in
validation dataset 1 (k), all 4 tissue section samples in validation dataset 2 (all adnexal). Light grey lines
connect paired fibroblasts and malignant cells derived from the same tissue section. “p < 1*¥102, **'p <
1*1073, **p < 1*104, paired Wilcoxon rank sum test. Boxplots middle line: median; box edges: 25" and
75" percentiles; whiskers: most extreme points that do not exceed + IQR x 1.5; further outliers are marked

individually.
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Figure S3. Cellular programs linked to anatomical sites and desmoplasia. (a) Percentage of genes (y

axis) that are significantly associated with (p < 0.05, mixed effects BH FDR) somatic copy number

alterations (CNA; top), treatment status (NACT = neoadjuvant chemotherapy; middle), and tumor
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anatomical site (i.e., adnexa or omentum; bottom) in the discovery dataset. (b) Size (horizontal bars) and
overlap (vertical bars) between the tumor infiltration programs identified for the five different immune
cell subsets, shown for the up-regulated (left) and down-regulated (right) subsets. (¢) H&E of normal
ovarian stroma morphology (left), and desmoplastic stroma morphology (right). (d) Gene ontology
enrichment analysis (Methods) of the top desmoplasia associated genes. Abbreviations: BP = biological
process, CC = cellular component, MF = molecular function. (e-g) overall expression (OE) of desmoplasia
associated genes (Supplementary Table 5) per fibroblast (y axis) in (e) discovery dataset, stratified by
sample, (f) discovery dataset, per sample (y axis) as a function of stromal morphology annotations (x axis)
across all samples (left) and in adnexal samples only (right). “p < 1*102, *p < 1*¥10-*, mixed effects test.
(g) fibroblasts the Vazquez-Garcia et al(72) scRNA-seq dataset, stratified by anatomical site “p < 1¥102,
“p < 1*10*. (h) UMAP embeddings of adnexal and omentum fibroblasts from the Vazquez-Garcia et al
(72) scRNA-seq dataset with each cell colored by anatomical site (left), unsupervised shared nearest
neighbors clusters (middle), and the OE of desmoplasia associated genes (right) (i) proportion of cells (y-
axis) from the adnexa vs. omentum in each cluster (x-axis) as defined in (h). (j) OE of desmoplasia

associated genes (y-axis) in each cluster (x-axis) as defined in (h), ““p < 1*¥10.
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Figure S4. M. marks T/NK infiltration across multiple scales and datasets. (a) UMAP embedding

of malignant cell ST profiles from the discovery dataset, colored by patient. (b) Receiver Operating

Characteristic (ROC) curve obtained for Random Forest (RF) classifiers trained to predict if a cell was

obtained from adnexal or omentum tumors. Area under the receiver operator curve (AUROC) is reported

in parenthesis. Left: Patient-specific RF classifiers trained to predict the anatomical site of malignant cells.

Each classifier was trained per patient and tested on unseen malignant cells from the same patient. Right:
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Cell type specific RF classifiers trained per cell type and tested on unseen patients. (¢) Variation in
malignant cell gene expression “drift” score (y axis, Supplementary Information) across patients with
paired adnexa and omentum tumor samples. (d) UMAP embedding of malignant cell ST profiles from the
adnexa (blue) and omentum (pink), depicted for four representative patients. The magnitude of the
malignant gene expression drift identified per patient is denoted by d (Supplementary Information). (e)
Significance (y axis) and effect size (x axis) of association of malignant gene expression with T/NK levels
quantified via mixed effect models in the discovery dataset (Methods). (f-h) Discovery dataset: ML
overall expression (OE; y axis) as a function of (f) discretized T/NK levels (x axis) across samples (left)
and spatial frames (right), (g) T/NK levels (color) and anatomical site (x axis), (h) presence of T/NK cell
subtypes in the spatial frame: CD4 T cells (left), CD8 T cells (middle), and NK cells (right). AUROC:
Area Under the Receiver Operating Characteristic Curve. (i-j) Mt OE (y axis) in malignant cells as a
function of (i) T/NK levels (x axis) in validation data 1 (left) and validation data 2 (middle), and (j) sample
immune type (x axis) labeled by expert pathologists from Hornburg et a/ scRNA-seq study (44). In (f-1)
boxplots: middle line = median; box edges = 25" and 75" percentiles; whiskers = most extreme points

that do not exceed = IQR x 1.5; further outliers are marked individually.
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Figure S5. Validation and design of ovarian cancer-CD8" T cell CRISPR screen. (a) Top: NY-ESO-

1 [1G4] TCR lentiviral construct used to engineer primary human CD8" T cells (88) , with a and B-chains

tagged by HA and PC tags, respectively. Bottom: NY-ESO-1 peptide with 1G4 epitope lentiviral construct
used to edit TYK-nu Cas9 (88) cells to express the 1G4 NY-ESO-1 antigen. A non-functional,

extracellular domain of human growth factor receptor (NGFR) was used as a tag to identify and sort NY-

ESO-1 expressing cancer cells via flow cytometry. (b) Representative flow cytometric analysis gated on

the expression of the non-functional NGFR tag to quantify TYK-nu Cas9 cells transduced to express NY-
ESO-1 antigen. (¢) gPCR quantification of CTAGIB mRNA expression in NY-ESO-1 transduced TYK-

nu Cas9 cell line (TYK-nuNY-ESO-1%) relative to A375 melanoma cell line with endogenous CTAGIB
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expression, encoding for NY-ESOI. All data shown represents the mean +/- s.e.m. (d) Western blot of
NY-ESO-1 expression from NY-ESO-1 transduced MDA-MB-231 Cas9, TYK-nu¢**NY-ESO-1* "TYK._nu
Cas9, and A375 whole cell lysates. GAPDH was used as a loading control. (e) Representative flow
cytometric analysis of CD8" T cells isolated from PBMC of a healthy human adult donor. (f)
Representative flow cytometric analysis of NY-ESO-1 TCR transduced CD8 T cells. HA (a chain) and
PC (B chain) tags double-positive CD8" T cells were sorted via flow cytometry to ensure complete
expression of NY-ESO-1 TCR. (g) 24-to-72-hour time course T cell co-culture cytotoxicity assay with
CDS8 T cells from three different donors (x axis). NY-ESO-1 TCR expressing primary CD8 T cells were
co-cultured with TYK-nu Cas9 cells or TYK-nu®®NY-ESO-I* ¢e]|g at variable effector to target cell ratios
(E:T). The percentage of killed (PrestoBlue negative) tumor cells was calculated by normalizing to tumor
cell monoculture conditions. Co-cultures were performed using 3 replicates per condition and three
biological replicates. All data shown represent the mean +/- s.e.m. (h) ELISA quantification of IFNy
secreted in the co-culture supernatant (1:1000). Co-culture was conducted in the same manner as described

in (g). All data shown represent the mean +/- s.e.m.
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Figure S6. Validation and design of ovarian cancer NK cell co-culture model used in the Perturb-

Seq screen. (a) Western blot of Cas9 protein from WT and Cas9 transduced whole cell lysates. Alpha

tubulin measured as loading control. (b) Representative flow cytometric analysis gated on GFP expression

to measure Cas9 efficiency using pMCB306 plasmid (Methods), comparing GFP levels WT vs. Cas9

TYK-nu cells following pMCB306 transduction. Loss of GFP denotes Cas9 activity. (¢) Western blot of
beta-2-microglobulin (B2M) from whole cell lysates of WT, Cas9, and B2MX° TYK-nu. GAPDH

measured as a loading control. (d) B2M surface expression by flow cytometry in B2M™ and B2MX© Cas9

TYK-nu cells. (e) 24-to-72-hour time course cell viability co-culture with TYK-nu Cas9 and NK-92 cell

lines at variable effector to target cell ratios. Percent killing was calculated by normalizing to monoculture

conditions. Co-cultures were performed in 4 replicates per condition as shown. (f) 48-hour cell viability
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of B2MX© and B2MW“T TYK-nu cell lines in co-culture with NK-92 cells. Percent killing was calculated

by normalizing to the monoculture conditions. Co-culture data is represented by the mean +/- s.e.m. and

*

p < 0.05, two-way analysis of variance

(ANOVA). All statistical tests were conducted on GraphPad Prism 9.

each experiment preformed in four replicates. ~“p< 1*¥104,
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Figure S7. Perturb-seq screen in ovarian cancer identifies immune response regulators. (a) Number

of cells (y axis) detected with sgRNAs targeting each gene (x axis) in the CRISPR knockout (KO) library.

(b) Gene expression (color bar) of MriL-up genes (x axis) under different gene knockouts (KO; y axis).

Dot color and size represents the average expression and percent of cells expressing the gene, respectively.

(c-

f) Gene KOs mimic (c-d) and repress (e-f) transcriptional response to NK cells: KO gene signature

overall expression in each condition and gene KO combination (x axis), shown for ACTRS (¢) MEDI2

(d), IRF1 (e), and STAT1I ().
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SUPPLEMENTAL INFORMATION
Table S1. Specifications of datasets collected and/or analyzed in this study.
Table S2. Metadata for each tissue section profiled by spatial transcriptomics.

Table S3. Cell Type Signature Genes. Includes both gene signature derived from scRNA-seq and
CellTypist Immune Encyclopedia (a) and from the HGSC spatial transcriptomics data collected here (b).

Table S4. Immune tumor infiltration signatures derived from discovery dataset, shown for different
immune cell subsets (a) and for the CD8 T cell infiltration program expanded to whole-transcriptome

using scRNA-seq data of CD8 T cells (b).

Table S5. Fibroblast desmoplasia associated genes (a) and their Gene Ontology enrichment analysis
(b).
Table S6. ML genes (a) and its Gene Ontology enrichment analysis (b).

Table S7. High-content CRISPR screens sgRNA library.
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