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SUMMARY 

Immune exclusion and evasion are central barriers to the success of immunotherapies and cell therapies 

in solid tumors. Here we applied single cell spatial and perturbational transcriptomics alongside clinical, 

histological, and genomic profiling to elucidate immune exclusion and evasion in high-grade serous tubo-

ovarian cancer (HGSC). Using high-plex spatial transcriptomics we profiled more than 1.3 million cells 

from 95 tumors and 60 patients, revealing generalizable principles in HGSC tumor tissue organization. 

Our data demonstrates that effector T cells resist stroma-mediated trapping and sequestration. However, 

upon infiltration into the tumor, T cells, as well as Natural Killer (NK) cells, preferentially co-localize 

only with a subset of malignant cells that manifest a distinct transcriptional cell state. The latter consists 

of dozens of co-regulated genes and is repressed under various copy number alterations. Performing 

CRISPR Perturb-seq screens in ovarian cancer cells, we identified functionally diverse genetic 

perturbations 3 including knockout of the insulin sensing repressor PTPN1 and the epigenetic regulator 

ACTR8 3 that de-repress the proposed immunogenic malignant cell state identified in patients and indeed 

sensitize ovarian cancer cells to T cell and NK cell cytotoxicity. Taken together, our study uncovered a 

profound connection between somatic genetic aberrations, malignant cell transcriptional dysregulation, 

and immune evasion at the cellular and tissue level, allowing us to identify targets that reprogram 

malignant cell states as an avenue to unleash anti-tumor immune responses. 
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INTRODUCTION 

Multicellular dysregulation plays a key role in the initiation and progression of a wide range of diseases, 

including cancer, where tumor development and accompanying immune responses depend on (and shape) 

the location of diverse cell type populations, tissue properties, and organization (137). Cellular and animal 

models have been instrumental in recovering central immune suppressors (8310) and led to major 

breakthroughs in cancer patient care. However, many cancer patients do not respond to current 

immunotherapies (11313), resulting, at least in part, from two central gaps. First, in contrast to the study 

of cancer genetics, where genome sequencing of tumors across large and diverse patient populations 

provided a strong foundation to study the genetic basis of cancer and develop targeted therapies, we still 

lack equivalent maps of tumor tissue organization to study the inherently spatial processes of multicellular 

dynamics and immune exclusion in patients. Second, identifying the regulators of cell states and reciprocal 

intercellular interactions poses additional challenges and requires functional interrogation across a larger 

search space of combinatorial gene-environment perturbations.  

In tubo-ovarian high grade serous carcinoma (HGSC) 3 the most common and aggressive form of ovarian 

cancer (14) 3 this gap of knowledge is pronounced. HGSC is often diagnosed at advanced stages, has poor 

response to current immunotherapies (15,16), and is prone to chemoresistance, resulting in 5-year survival 

rate below 50% (14). Underscoring the need to elucidate the clinically relevant barriers that prevent anti-

tumor immunity in HGSC, it is well known that, despite poor response to immunotherapies, abundant 

tumor infiltrating lymphocytes (TILs) are a robust prognostic marker of better clinical outcomes in HGSC 

patients (17,18). The genetic properties of HGSC have been thoroughly characterized (19322) 3 

demonstrating nearly ubiquitous TP53 mutations, massive copy number alterations (CNA), along with 

mutation in homologous recombination genes such as BRCA1 and BRCA2 3 and recent single-cell studies 

provided important resources and insights by characterizing the cellular properties of HGSC in different 

anatomical sites and genetic backgrounds (6,23). Yet, the molecular and cellular modalities that promote 

or suppress immune recruitment and infiltration in HGSC patients remain elusive.  

Here, we applied high-plex image-based spatial transcriptomics (ST) with subcellular resolution to more 

than 1.36 million cells across 95 HGSC tumors. Our data demonstrates that effector T cells and NK 

(T/NK) cells are rarely retained in the tumor stroma. However, T/NK cell infiltration into the tumor 

parenchyma is skewed towards subsets of transcriptionally distinct malignant cells, leaving other 

malignant areas immune deserted. This, together with high-content CRISPR screens, revealed malignant 

cell transcriptional immunogenicity that is repressed by copy number alterations and can be de-repressed 
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by an array of functionally diverse gene knockouts to sensitize ovarian cancer cells to T and NK cell 

cytotoxicity. Taken together, our study provides a molecular map of HGSC tumor tissue spatial 

organization in patients, delineates generalizable principles that predict lymphocyte location and state, 

and, through integration of spatial and perturbational maps, identified novel targets that reprogram tubo-

ovarian malignant cell states as an avenue to unleash anti-tumor immune responses in this aggressive 

disease. 

 

RESULTS 

Single cell spatial transcriptomics mapping of tubo-ovarian high-grade serous carcinoma 

To spatially map HGSC in the setting of metastatic disease, we applied in situ imaging with high-plex 

RNA detection at the single cell resolution to 95 HGSC tumors from a total of 60 patients and 136 tissue 

sections, yielding a total of 1,365,244 high quality single cells9 spatial transcriptomics profiles (Figure 

1a, Table S1). Tumor sections were obtained from the adnexa (ovaries/fallopian tube, n = 73), and/or 

omentum (n = 63), with 37 patient-matched pairs of adnexal and omental tumors. All tumor tissue sections 

were obtained from debulking surgeries in either the treatment naïve (n = 66) or neoadjuvant 

chemotherapy treatment (n = 70) setting, with associated patient clinical data including treatment and 

survival outcomes (Figure 1a, Table S2, Methods). For 40 patients we also obtained DNA sequencing 

data spanning a 648-gene panel (Figure 1b, Table S1, Methods), focused on actionable single nucleotide 

variations (SNV), somatic copy number alterations (CNA), chromosomal rearrangements, and tumor 

mutational burden (TMB), providing a basis to probe the connection between tissue structure and somatic 

genetic aberrations. 

The spatial data was collected using three spatial transcriptomic (ST) platforms, allowing rigorous cross-

platform validation of these recently developed technologies. A discovery ST dataset spanning 100 tissue 

sections was profiled with Spatial Molecular Imaging (SMI) (24), allowing in situ image-based 

quantification of 960 genes with subcellular resolution (n = 100, formalin-fixed paraffin-embedded 

(FFPE) tissue sections). For comparison and validation, in situ sequencing (ISS via Xenium(25); n = 32, 

FFPE tissue sections) and MERFISH (26) (Multiplexed Error-Robust Fluorescence In Situ Hybridization, 

n = 4, fresh-frozen tissue sections) were applied to profile 280 genes and 140 genes, respectively 

(Methods, Table S1b). 

Applying a recursive clustering-based cell type annotation procedure (Methods) on processed gene 

expression profiles (Figure S1a-d, Methods, Supplementary Information) we identified malignant cells 
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(n = 314,191), T and NK cells (T/NK, n = 28,676), B cells (n = 16,373), monocytes (n = 45,549), mast 

cells (n = 606), fibroblasts/stromal cells (n = 72,861), and endothelial cells (n = 13,536, Figure 1c, 

Extended Data 1c,d) in the discovery dataset (SMI). The same procedure resulted in similar annotations 

of the validation datasets (Figure 1c). T/NK cells were then further stratified to NK (n = 4,293), CD4 T 

(n = 6,040), CD8 T (n = 8,439), and regulatory T cells (Tregs, n = 1,905) in the discovery dataset (Figure 

S1e-i, Methods, Supplementary Information), with similar T/NK stratification results obtained in 

validation dataset 1 (Figure S1j-k, Methods, Supplementary Information).  

Cell type annotations were validated in several ways. First, de novo cell type signatures identified based 

on the assigned cells recapitulate well known cell type markers (Methods, Table S3, Figure S1c). Second, 

cell type annotations are aligned with matching H&E and immunohistochemical markers (Figure 1d, 

Figure S2a-d). Third, for biological and technical replicate-matched tissue samples between the discovery 

and validation dataset 1, the cell type assignments aligned both spatially (Figure S2e) and compositionally 

(Figure S2f). Fourth, by integrating the HGSC spatial data with 6 publicly available single-cell RNA-

sequencing (scRNA-seq) datasets (23,27332), we generated a unified HGSC single-cell transcriptomic 

atlas (Figure S2g) and showed that cell type assignments aligned based on the unified co-embedding 

(Figure 1e) and corroborated the cell type annotations obtained independently based on the ST data alone 

(Methods). Lastly, using patient-matched CNA data, we show that only in malignant cells, the expression 

of 42% of the genes matches their CNAs (Benjamini-Hochberg False Discovery Rate (BH FDR) < 0.05, 

mixed-effects test; Methods, Figure S3a).  

As expected, patients with higher T/NK cell abundance had improved clinical outcomes (p = 5.0*10-2, 

Univariate Cox regression Wald Test, p = 3.34*10-3 log-rank test, Figure S2h), and consistent enrichment 

of T/NK cells (p = 9.1*10-3, fisher test) and B cells (p = 8.29*10-3, fisher test) is observed in the omental  

vs. adnexal tumors. Malignant cells and fibroblasts are found to form spatially distinct compartments (i.e., 

the tumor parenchyma versus the stroma; Figure 1g), with significantly low intermixing between the two 

cell types (BH FDR < 0.05, hypergeometric test, Figure 1g), such that T/NK cells are preferentially 

localized in the stroma rather than within the tumor parenchyma (p < 1*10-4, paired Wilcoxon sum rank 

test, co-localization quotient, Figure 1h, Figure S2i-k, Methods). 

Taken together, these findings demonstrate the quality of our data and validity of our processing pipelines 

and provide an initial mapping of the tumor organization into spatially segregated compartments (tumor 

parenchyma and stroma). This dataset sets the stage to probe into cellular transcriptional states to delineate 

multi-scale mechanisms underlying immune infiltration and evasion. 
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Effector T cells preferentially infiltrate into the tumor 

Using the ST cohort, we mapped the immune cell intrinsic and extrinsic factors that mark immune 

infiltration and exclusion. Starting with immune cell intrinsic properties, we mapped immune cell states 

as a function of their tumor infiltration status, defined based on proximity to malignant cells (Methods). 

Unsupervised embedding and clustering using single cell expression profiles alone, without any spatial 

information provided, shows that immune cells residing in the malignant compartment (tumor 

parenchyma) are transcriptionally distinct from those that reside outside (i.e., in the fibroblast 

compartment (stroma), Figure 2a). For each of the five immune cell subtypes robustly represented in the 

data (CD8 T cells, CD4 T cells, Tregs, NK cells, and monocytes), we identified tumor infiltration 

associated genes that are significantly (BH FDR < 0.05, mixed-effect, Methods) over or under-expressed 

as a function of proximity to malignant cells (Figure 2b,c, Figure S3b, Table S4). 

The CD8 T cell infiltration program demonstrates that effector and exhausted CD8 T cells are rarely 

excluded and frequently co-localize with malignant cells (p = 3.24*10-53, mixed effects). Tumor 

infiltrating CD8 T cells are characterized (BH FDR < 0.05, mixed-effects) by effector cytotoxicity genes 

(e.g., GZMB and PRF1) and exhaustion markers (CTLA4, PD1, TIM3), as well as the pan-cancer 

exhaustion marker CXCR6 (33335) (Figure 2b,c). CD8 T cells that are distant from malignant cells are 

characterized (BH FDR < 0.05, mixed effects) by naïve and memory T cell markers (IL7R, SELL), 

overexpress the chemokine receptor CXCR4 (Figure 2b), and reside in the stroma, next to fibroblasts 

(Figure 2a).  Expanding the CD8 T cell infiltration program to whole-transcriptome level based on 

scRNA-seq data (23) (Methods; Table S4) identified TCF7 3 a central regulator of naïve and resting T 

cells (34,35) that directly represses CXCR6 expression 3 as one of the top gene negatively associated with 

a CD8 T cell infiltration (p < 1*10-16, rs = 0.23, Spearman correlation).  

To investigate the role of the stroma in retaining naïve and memory T cells whilst permitting effector T 

cells to infiltrate the tumor parenchyma, we integrated sample-matched H&E stains independently 

annotated by a gynecologic pathologist (Figure S3c), with ST data. Analyzing these data with 

unsupervised embedding (Figure 2d) and non-linear classifiers (Methods) revealed two fibroblast 

subsets, one marking normal adnexal stroma and the other marking desmoplasia (Figure 2d-f, Extended 

Data Fig 3d-f i.e., a neoplasia-associated alteration in fibroblasts and extracellular matrix with distinct 

tissue morphology (36340)), which we find to be more prevalent in the omentum (Figure 2e, Figure S3e-

j). As expected (41,42), desmoplastic fibroblasts overexpress collagen fibril organization and extracellular 
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matrix genes (p < 1*10-2, permutation test, Figure S3d, Table S5), but also upregulate CXCL12 (the 

cognate ligand of CXCR4, overexpressed in naïve/memory T cells, Figure 2b) and are associated with 

T/NK rich niches (Figure 2g. p < 1*10-4, mixed effects).  

To systematically map spatially dependent multicellular circuits we identify all the ligand-receptor pairs 

that show significant (BH FDR < 0.05, mixed effects) spatial co-expression across cell types (Methods), 

revealing suppressive ligand-receptor interactions in the malignant compartment (e.g., 

CD80/CD86:CTLA4, CD8 T cell:monocyte; TIM3:LAGLS9, CD8 T cell:malignant cell) and CD8 T cell 

mediated chemoattraction of other immune cells via CCL2 and CCL5. Co-localization of CXCR6:CXCL16 

(CD8 T cell:malignant cell) and CXCR4:CXCL12 (CD8 T cell: fibroblasts) mark chemoattraction cell-

cell interactions of infiltrating and excluded CD8 T cells, respectively (Figure 2h, BH FDR < 1*10-10, 

mixed effects test). 

Collectively, these findings demonstrate a differential infiltration process wherein naïve/memory T cells 

primarily co-localize with the stroma, whereas effector/exhausted T cells reside primarily in the malignant 

compartment of the tumor (Figure 2a-c). While the data suggests that the stroma is not playing a major 

role in suppressing or trapping effector T cells (43) in HGSC patients, we find that Tumor Infiltrating 

Lymphocytes (TILs) are spatially segregated within the tumor parenchyma itself, as described next.  

 

Tumor infiltrating lymphocytes preferentially co-localize with a transcriptionally defined subset of 

malignant cells 

Mapping the spatial distributions of Tumor Infiltrating Lymphocytes (TILs, defined here as both T cells 

and NK cells) revealed that TILs preferentially co-localize with a subset of malignant cells (Methods, 

Figure 3a-c, Table S6). Although malignant cell states are highly patient-specific (Figure S4a) and vary 

also within patients (Figure S4b-d), the connection between TIL location and malignant cell gene 

expression appeared repeatedly across the heterogenous tumors in our cohort (Figure 3, Figure S4e-i).  

Formulating these findings, we identified a Malignant Transcriptional program that robustly marks the 

presence of Infiltrating Lymphocytes, denoted as MTIL (Figure 3a, Table S6). The program consists of 

100 up- and 100 down-regulated genes whose expression in malignant cells is significantly (BH FDR < 

0.05, mixed-effects test) positively (MTIL-up) and negatively (MTIL-down) correlated with and predictive 

of T/NK cell infiltration (Figure 3d,e). MTIL overall expression in malignant cells (Methods) reflects both 

inter- and intra-sample variation in TIL levels (Figure 3d,e), irrespective of anatomical site (p < 1*10-30, 

mixed effects test; Figure S4g). MTIL continuously increases as a function of T/NK cell abundance and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.16.562592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.16.562592
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

proximity (Figure 3d), also when stratifying the T/NK population into its respective cell subtypes (Figure 

S4h) and in validation datasets (Figure 3f, Figure S4i, p = 2.20*10-16). Likewise, an independent scRNA-

seq dataset(44) demonstrates that the MTIL program expression in malignant cells is highest in tumors 

annotated as <infiltrated=, moderate in tumors annotated as <excluded=, and lowest in tumors annotated as 

<immune desert= (Figure S4j). 

Gene set enrichment analyses demonstrate the connection between MTIL and immune evasion(45350). 

MTIL-up includes chemokines (e.g., CCL5, CXCL10, CXCL9, and CXCL16 the cognate ligand to CXCR6), 

and oxidative stress genes (e.g., GPX3, SOD2, Figure 3a,b), and is enriched with multiple immune 

response genes, including antigen presentation (e.g., B2M, CIITA, HLA-A/B/C), interferon gamma 

response genes (e.g., IDO1, IFI27, IFIH1, OAS1/2/3, JAK1, STAT1), and cell adhesion molecules (e.g., 

ICAM1, ITGAV, ITGB2; BH FDR = 1.91*10-9, 2.86*10-10, 4.59*10-2, respectively, hypergeometric test, 

Figure 3b, Table S6b). MTIL-up also includes immune suppression genes, most notable is LGALS9, 

encoding for galectin 9 3 the ligand of the immune checkpoint TIM3 (i.e., HAVCR2), which is upregulated 

in the infiltrating T/NK cells (Figure 2h). MTIL-down reflects diverse processes including Wnt signaling 

(e.g., CTNNB1, FZD3/4/6, SMO, FGFR2, WNT7A), epigenetic regulation (DNMT3A, HDAC1/11/4/5), as 

well as genes involved in insulin signaling (e.g., IGFR1, IGFBP5) and cell differentiation (BH FDR < 

0.05, hypergeometric test; Figure 3b, Table S6).  

The majority of the MTIL genes have never been described in the context of HGSC immune evasion. 

However, supporting its role in this context, a collection of CRISPR screens(45349) assembled and 

analyzed here shows that MTIL-up is enriched with genes that sensitize cancer cells to immune mediated 

selection pressures (including ICAM1, JAK1, NLRC5, SOD2, STAT1, p = 1.82*10-4, hypergeometric test), 

while MTIL-down includes genes with desensitizing effects (BCL2, FGFR1, HDAC1, HDAC5, ITGB5, and 

RELA). 

Given these findings, we turned to examine if MTIL repression is linked to somatic genomic aberrations as 

a genetic basis driving immune exclusion and tolerance. 

 

Copy number aberrations as repressors of the MTIL program and drivers of immune exclusion 

Our cohort and independent genomic data suggest that somatic genetic variation intrinsically regulates the 

MTIL program and in turn impacts T/NK cell influx and non-uniform spread (Figure 4a-c). 
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First, MTIL overall expression varies across HGSC patients and is associated with improved overall 

survival (p = 7.2*10-2, Univariate Cox regression Wald Test, p = 4.1*10-2 log-rank test, based on mean 

expression in the malignant cells, Figure 4d, Methods). Specifically, MTIL inter-patient variation 

supersedes its intra-tumoral variation, as observed also after regressing out the impact of the TME 

compositions, or when considering only malignant cells in TIL deprived environments (Figure 4a, p < 

1*10-30, ANOVA test). 

Second, aligned with the finding that malignant cell transcriptomes are tightly associated with CNAs in 

cis (Figure S3a), MTIL expression strongly correlates with the copy number of multiple genes in our 

cohort, the top ones being IFNGR2 and IFNAR1 (positively correlated) and TCF7L2, FGFR2, and AXL 

(negatively correlated, p < 5*10-3, mixed effects, Methods, Figure 4b-c). 

Third, CNAs of MTIL genes are predictive of TIL abundance scores (Methods) in an independent TCGA 

cohort of 578 HGSC tumors(20) (AUROC = 0.82, on unseen test samples, supervised vector machines 

(SVM) model, Methods), where tumors with amplification of MTIL-down genes (e.g., DNMT3A, FZD3, 

MYL9, SRC, and TGFB2) or deletion of MTIL-up genes (e.g., CX3CL1, CXCL10, CXCL9, ICAM1, GPX3, 

NR3C1) have significantly lower TIL abundance scores compared to tumors without these copy number 

changes (BH FDR < 5*10-3, one-sided t-test, Figure 4e).  

These findings propose a genetic basis to immune evasion and tolerance in HGSC, where the 

transcriptional CNA-driven malignant cell states can impact cancer-TIL interactions and shape TIL 

recruitment. To examine this model, we turned to identify regulators controlling the MTIL program and 

examine their functional impact on cancer cell response and susceptibility to T/NK cell-mediated 

cytotoxicity. 

 

Genetic perturbations de-repress the MTIL program and sensitize cancer cells to T cell and NK cell 

cytotoxicity 

To functionally probe the MTIL program genes and examine their effect on cancer cell response to 

lymphocyte cytotoxicity, we performed high content CRISPR knockout (KO) screens in ovarian cancer 

cells in monoculture and co-culture with cytotoxic lymphocytes, including T Cell Receptor (TCR)-

engineered CD8+ T cells and NK cells. Using this approach, we sought to functionally identify and 

distinguish between co-regulated immune response and immune suppressive genes captured by the MTIL 

program (e.g., ICAM1 and LAGSL9) and identify perturbations that trigger the former.  
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Instead of targeting only genes in the MTIL program itself, we devised a meta-analysis pipeline to identify 

program regulators based on available Perturb-seq datasets (Methods). Using four previously published 

Perturb-seq datasets(51353), we identified 43 and 104 perturbations that result in significantly higher or 

lower expression of the program, respectively (Figure 5, Table S6, Methods). Demonstrating the value 

of this approach, it revealed a wider and more diverse set of regulators, most of which are not included in 

the MTIL program itself or not included in the spatial data gene panels (Table S1b). Negative MTIL 

regulators are enriched for chromatin organization (e.g., DNMT1, INO80, TAF10, WDR5), Wnt pathway, 

Myc targets, and immune resistance genes (45349,54) (BH FDR < 1*10-3, hypergeometric test). The top 

negative regulator identified here is PTPN1, which is supported by both gene activation and inhibition 

(Figure 5a,c) experiments.  

This approach guided our design of the pooled knockout of 74 MTIL genes and regulators (Table S7) in 

ovarian cancer cells (TYK-nu cell line, Figure 6a, Figure S5-6). Mapping fitness upon genetic 

perturbations under both innate and adaptive immune selection pressures (Figure 6a,b, BH FDR < 0.05, 

MAGeCK, Methods) along with Perturb-seq scRNA-seq readouts in monoculture and co-culture with 

NK cells (Figure 6a,c), allowed us to identify perturbations that activate or repress the program and track 

subsequent effects of these perturbations on immune escape. In total we profiled 18,585 high quality single 

cell transcriptomes, each assigned to an ovarian cancer cell with a single sgRNA confidently identified, 

and a median of 4,251 genes detected per cell (Figure 6c, Figure S7a). Differentially expressed genes 

were identified for each gene knockout across the three conditions (fisher method; Methods), resulting in 

74 gene <perturbation signatures= (Methods) that were then used to identify gene knockouts that 

significantly repress or activated the MTIL program, denoted as -activators and -repressors, respectively 

(Figure 6d, Methods).  

Validating our hypothesis and approach, the top perturbations activating the program 3 PTPN1 and ACTR8 

knockouts 3 sensitize malignant cells to T/NK cell cytotoxicity (Figure 6b,d-e, Figure S7b), while the 

top perturbations that repress the program, IFNGR1 and STAT1 knockouts, allow ovarian cancer cells to 

resist T cell mediated killing (Figure 6b,d-e, Figure S7b). Knockout of ACTR8 and PTPN1, as well as 

other top  repressors FGFR1, MAPK1, and MED12 were found to sensitize cancer cells to immune 

elimination also in based on data from previous in vivo CRISPR screens(45349). Moreover, we find that 

knockout of MTIL repressors (ACTR8, DNMT1, FGFR1, PTPN1, MED12, and MIF) mimics and amplifies 

the transcriptional responses to NK cells, while knockout of MTIL activators, as STAT1, IFNGR1, INTS2, 

IRF1, PARP12 and others, represses and counteracts the transcriptional response to NK cells (Figure 6f-

h, Extended Data 7c-f). Lastly, knockout of specific genes within the program, including GPX3 and 
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TAGLN show substantial impact on the ovarian cancer cell susceptibility to NK mediated killing (Figure 

6b), demonstrating both global and gene-specific effects.  

Taken together, coupling HGSC spatial tumor organization with multimodal functional probing, identified 

new and clinically relevant targets to sensitize ovarian cancer cells to innate and adaptive cytotoxic 

lymphocytes and demonstrated the role of cancer cell intrinsic transcriptional dysregulation as an 

important driver dictating the outcomes of the malignant-T/NK cell interplay.  

 

DISCUSSION 

Our study maps the tumor tissue landscape in HGSC patients and reveals generalizable principles of tissue 

organization that dictate lymphocyte location and state within these aggressive and genetically unstable 

tumors. It uncovers a profound connection between somatic genetic aberrations, malignant transcriptional 

dysregulation, and immune evasion at the cellular and tissue level, providing a new perspective to the 

barriers preventing the anti-tumor immune response in HGSC patients and new leads to derepress HGSC 

cancer immunogenicity.  

Innate and adaptive cytotoxic lymphocytes (CTLs) have a substantial effect on cancer cell transcriptome 

(Figure 6c). As shown here, genetic dysregulation that prevents this transcriptional response can have 

significant effects on cancer cell susceptibility to immune elimination even in the highly controlled co-

cultures as those used here, where CTLs are already primed and activated, and spatial segregation is 

unlikely to occur. These effects can be amplified in the context of in vivo cancer-immune co-evolution 

where immune tolerance is reinforced due to positive feedback loops across cells. Indeed, immune 

checkpoint blockade and other immunotherapies have shown modest effects in tumors with low TIL levels 

at baseline (17,55). The data shown here proposes that this may not be only due to immune exclusion per 

se, but also due to cancer intrinsic differences between TIL-rich and TIL-deprive tumors that protect 

malignant cells even in the presence of targeting CTLs. Our findings and approach open new directions 

for further investigation of the genetic basis of tumor immune evasion through the lens of spatial 

organization and put forward a framework to design targeted strategies to counteract or bypass these 

resistant mechanisms. 

More generally, as more spatial datasets become available, there is a growing need to use this rich 

information to delineate new drivers of complex multicellular processes and phenotypes. Here we show 

the value of mapping spatial cell states to genetic information across individuals and to design 

perturbational screens with single cell readouts. Importantly, we show that using existing Perturb-seq 
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datasets to identify latent regulators of gene expression programs is critical and provides a data-driven 

framework to uncover regulators that are not necessarily included in the program itself. As more Perturb-

seq datasets, as the one generated here, become available across a more diverse range of cell types and 

conditions, it will be possible to use this information more effectively to extrapolate from one context to 

another with increasing accuracy (56,57). 

The key findings from our study can fuel new lines of investigation towards new clinical interventions in 

HGSC patients. We anticipate that the detailed mapping of HGSC tumors provided here will help inform 

the design of new T/NK cell engineering strategies to reach better control of cell delivery and location in 

a more precise manner that is aligned with the tumor cellular and molecular structure in patients. Our 

findings demonstrate that the stroma forms a differential <filter= that supports differential occupancy of 

effector T cells in the malignant compartment 3 this calls for dynamic tracking of tumor reactive T/NK 

cells across non-tumor sites (i.e., in the circulation and lymph nodes) and within the tumor to help elucidate 

this process and examine if T cells can also egress back to the stroma cells to avoid or reverse 

exhaustion(58) and how to best leverage, as opposed to eliminate or target, the stroma. 

Our data provides new leads to target HGSC resistance, including epigenetic regulators (e.g., ACTR8 and 

MED12), fibroblast growth factor receptors (FGFR1/2), GPX3, and PTPN1. PTPN1, which we found to 

be one of the most potent MTIL repressors, provides pre-clinical rationale to test new PTPN1/N2 inhibitors 

(NCT04777994, NCT04417465, phase I clinical trials)(59364) in HGSC patients, and demonstrates a 

connection between immune evasion, insulin resistance, and type 2 diabetes. PTPN1 is a negative 

regulator of insulin and leptin signaling (65) that has been an attractive drug target for treatment of type 2 

diabetes and obesity (66369). PTPN19s protein product PTP1b is inactivated by oxidation(70), which may 

explain MTIL activation under oxidative stress (as indicated by the up regulation of GPX3 and SOD2). 

Further supporting the connection to insulin resistance, TCF7L2, which we identified as a top gene 

amplification associated with the repression of the MTIL program in the HGSC cohort (Figure 5b-c) 

harbors the most significant SNP associated with type 2 diabetes risk (71). 

Taken together, this integrative study provides a blueprint to functionally map and probe the molecular 

landscape of multicellular interplay in complex biological tissues and reveals unrecognized spatial, 

molecular, and genetic regulation of immune escape in HGSC, opening new avenues to activate targeted 

immune responses in this aggressive disease. 
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FIGURES 

Figure 1. Single cell spatial transcriptomics (ST) mapping of HGSC. (a) Overview of the ST cohort, 

collected across three platforms: SMI (discovery dataset), ISS (validation dataset 1), and MERFISH 
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(validation dataset 2); n denotes the number of tissue sections profiled. (b) Clinical annotations of the 

patients and samples included in the cohort. (c) Uniform Manifold Approximation and Projection (UMAP) 

embedding of cell transcriptomes from the discovery dataset (top left), validation dataset 1 (top right), and 

validation dataset 2 (bottom left). Cells are colored according to their cell type annotations. n denotes 

number of cells with each cell type annotation. (d) Representative ST images (right) and corresponding 

H&E (left, where available) depicting cell segmentations with each cell colored based its cell type 

annotations. (e) Co-embedding spatial cell transcriptomes from this study with publicly available scRNA-

seq datasets (27,29332,72,73). Unified UMAP of co-embedded cell transcriptomes is shown with cells 

colored by cell types (top) and dataset (bottom). (f)  Cell type composition (y axis) per sample (x axis) 

from this study and in publicly available scRNA-seq HGSC cohorts(27,29332,72,73). (g) Pairwise co-

localization analysis: the number of samples (x axis) where each pair of cell types (y axis) 133shows 

significantly (BH FDR < 0.05, hypergeometric test) higher (red), lower (blue), or expected (grey) 

colocalization frequencies compared to those expected by random. (h) Log2 Co-localization Quotient 

(CLQ, y-axis) of T/NK cells with fibroblasts (blue, x axis) and T/NK cells with malignant cells (green, x 

axis) in each tissue section from the discovery dataset (****p < 1*10-4, paired Wilcoxon rank sum test). 

Light grey lines connect paired fibroblasts and malignant cells within each tissue section. Boxplots middle 

line: median; box edges: 25th and 75th percentiles; whiskers: most extreme points that do not exceed ± IQR 

x 1.5; further outliers are marked individually.  
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Figure 2. Differential immune infiltration. (a) UMAPs of CD8 T cells (discovery cohort) derived when 

considering all genes (top) or only T cell specific genes (bottom, for further confirmation). Cells are 

colored according to the frequency of malignant cells (1, 2) or fibroblasts (3) in the T cell 

microenvironment (Methods), the overall expression (OE) of the CD8 T cell infiltration program (4, 5) 

or their k-Nearest Neighbor cluster (6). (b) CD8 T cell tumor infiltration program, showing the association 

(p-value and effect size) of each gene (row) with infiltration status, when considering only specific 

immune cell subsets (columns). (c) Representative ST images from validation dataset 1 depicting the CD8 

T cell tumor infiltration program identified in the discovery dataset. Malignant cells are in grey, CD8 T 

cells are colored according to the Overall Expression (OE) of the infiltration program identified in the 

discovery dataset (color bar). The respective p-values denote per tissue section if the OE of the CD8 T 

cell infiltration program is significantly higher in CD8 T cells with a high (above median) vs. low (below 

median) abundance of malignant cells within a radius of 30¿m (one-sided t-test). (d) UMAP embedding 

of fibroblast cell ST profiles colored by stromal morphology (left) and anatomical site (right) annotations. 

(e) Average gene expression (z-score, red/blue top middle color bar) of the top 50 desmoplasia associated 

genes (columns) across fibroblasts in each sample (rows), sorted by overall expression score of the 50 

genes (Methods, left color bar), and labeled by their anatomical site (middle color bar) and stromal 

morphology annotation (right color bar). (f) Representative tissue section (HGSC24, adnexa, discovery 

dataset) wherein the desmoplasia associated genes capture intra-tumoral differential stromal morphology 

(p-value = 7.23*10-80, Wilcoxon rank sum test). Hematoxylin & Eosin Stain (left), Cell Types in situ 

(middle), and cells plotted in situ with fibroblasts colored according to the overall expression (OE) of 

desmoplasia associated genes and all other cells in grey. (g) OE score of top 50 desmoplasia associated 

genes per fibroblast (x axis) as a function of T/NK cell density within a 30-¿m radius (y axis) in the adnexa 

(left) and in the omentum (right). (h) Ligand-receptor interactions (lines) consisting of genes from the 

CD8 T cell infiltration program (up-regulated in yellow, down-regulated in dark purple) and their 

respective ligand/receptor in the cancer compartment (light blue, i.e., tumor infiltrating programs of other 

immune cells or genes specific to cancer cells in T cell rich areas) and stroma compartment (light purple, 

i.e., genes specific to fibroblasts in T cell rich areas). The arrows connect each gene to the cell type where 

it was found to mark the respective spatial pattern, namely, tumor infiltration in immune cells, and co-

localization with T/NK cells in the non-immune (fibroblast or malignant) cells. 
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Figure 3. T/NK cells preferentially co-localize with a transcriptionally distinct subset of malignant 

cells. (a) Heatmap of MTIL genes. Average expression (z score, red/blue color bar) of the MTIL genes 

(rows) across spatial frames (columns), sorted by MTIL overall expression (OE), and labeled by (color bar 

from top to bottom): anatomical site, sample ID, the detection of different T/NK cell subsets. (b) MTIL 

gene ontology enrichment analysis. (c) Spatial distribution of T/NK cells (black) and MTIL OE in 

malignant cells (color bar, top right) shown in representative tumor tissue sections from six different 

patients and anatomical sites; other non-malignant cell types are colored grey. p-values denote if MTIL OE 
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is significantly (one-sided t-test) higher in frames with high vs. low T/NK abundance (defined based on 

the median level) in the respective tissue section. (d) MTIL OE (y axis) in malignant cells, stratified based 

on the relative abundance of T/NK cells in their surroundings (top) and the presence of T/NK cells at 

different distances (bottom). Middle line: median; box edges: 25th and 75th percentiles; whiskers: most 

extreme points that do not exceed ± IQR x 1.5; further outliers are marked individually. ****p < 1*10-4, 

mixed effects (Methods). (e) ROC curves obtained for cross-validated Support Vector Machine classifier 

using MTIL expression in malignant cells to predict T/NK cell levels, at the sample (black), spatial frames 

(red) and single cell levels (blue). Abbreviations: AUROC = area under the ROC curve. (f) Single cells 

visualized in situ in one representative whole tissue section from validation dataset 2 (left), juxtaposed 

with magnified region (right). T/NK cells are in black, malignant cells are colored via normalized MTIL 

overall expression in the color bar, and non-malignant cells are in grey (MTIL expression in TIL-high 

versus TIL-low niches, p = 2.2*10-16, Wilcoxon rank sum test).  
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Figure 4. Copy number alterations associated with MTIL and T/NK levels. (a) MTIL Overall Expression 

(OE) in malignant cells (y axis) residing in spatial frames where T/NK cells were not detected, stratified 

by patients (x axis). (b) MTIL OE in malignant cells (y axis), stratified by somatic copy number of the 

respective gene (x axis) based on patient-matched bulk tumor genomic profiles. (c) Top CNAs showing a 

significant (BH FDR < 0.05, mixed-effects; Methods) positive (red) or negative (light blue) association 

with MTIL OE in malignant cells in the discovery spatial cohort. (d) Kaplan Meier Survival curves 

depicting differential survival probability (y axis) as a function of average MTIL OE in the malignant cells 

of each patient (log rank test p = 4.09*10-2) (e) Deletion (red) of MTIL-up genes and amplification (light 

blue) of MTIL-down genes (x axis) are signifcantly (BH FDR < 0.05, one side t-test) associated with low 

T/NK levels (y axis; inferred based on gene expression of T/NK cell signatures) in an independent TCGA 
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HGSC cohort of 578 patients (20). Grey distribution depicts the T/NK levels in tumors without the 

respective genomic abberation.  
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Figure 5. Meta-analyses of Perturb-seq datasets identifies regulators of the MTIL program. (a-b) 

Differential MTIL Overall Expression (OE) when comparing cells with different genetic perturbations (x 

axis) to cells with control sgRNAs, showing the statistical significance (two-sided t-test, y axis) for the 

top perturbations identified to repress (light blue) or activate (grey) MTIL expression in (a) K562 

(myelogenous leukemia) and (b) RPE1 (human retinal pigment epithelial) cell lines Perturb-seq 

data(51,52). (c-d) Representative UMAP embeddings of MTIL altering perturbation: cells are labeled based 

on the sgRNA detected (top) and based on MTIL OE (bottom) in K562 (c) and RPE1 (d) cell lines. Z 

denotes -log10 (p-value), two-sided t-test, comparing MTIL OE in the perturbed vs. control cells. 
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Figure 6. High content CRISPR screen uncovers genetic perturbations that de-repress MTIL 

expression and sensitize ovarian cancer cells to NK and CD8 T cell cytotoxicity. (a) Overview of 
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experimental design. Abbreviations: TCR = T cell receptor, KO = knockout. (b) Ovarian cancer cell 

(TYK-nu) differential fitness (MAGeCK (74)) under CD8+ T cell selection pressure (x axis) and NK cell 

selection pressure (y axis), showcasing gene KOs that confer response (green), resistance (blue) to both 

CD8+ and NK cell-mediated killing, or differential response and resistance to CD8+ T and NK cell-

mediated killing (orange and yellow). (c) UMAP of single cell RNA-seq (scRNA-seq) profiles from 

Perturb-seq screen. Each dot corresponds to an ovarian cancer cell (TYK-nu) with one of the 232 guides 

confidently detected, cultured in monoculture (blue) or co-culture with NK cells in 1:1 (purple) or 2.5:1 

(yellow) effector to target ratio. (d) Differential expression of MTIL genes (fisher combined test; Methods) 

when comparing ovarian cancer cells with the respective gene KO to those with non-targeting control 

(NTC) sgRNAs. (e) Differential expression MTIL-up genes (columns) upon different gene KOs (rows) 

under different conditions (monoculture and co-culture with NK cells; vertical rightmost color bar), shown 

for genes identified as MTIL repressors (red) or activators (blue). (f-h) Gene knockouts alter the cancer cell 

transcriptional response to NK cells. (f) Gene knockouts (x axis) activate (red) or repress (blue) the cancer 

cell transcriptional response to NK cells (t-test p-values, y axis). (g) Overall expression (y axis) of different 

gene KO signatures (x axis) in unperturbed ovarian cancer cells in monoculture (grey) and co-culture 

(light blue); statistical significance shown in (f). (h) UMAPs as in (a) with cells colored according to the 

overall expression of four different gene KO signatures. 
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METHODS 

Human tumor specimen collection 

For the discovery (SMI) and validation 1 (ISS) spatial cohorts, all tumor tissues were archival clinical 

formalin fixed paraffin embedded (FFPE) tumor tissues, retrospectively procured from archival storage 

under Institutional Review Board (IRB) approved protocol (#44615). In patients with both adnexal and 

omental tumors available for study, tumor blocks from both sites were selected by an expert gynecologic 

pathologist (B.E.H) using histopathologic review of the associated H&E slides. HGSC diagnosis was 

confirmed in all cases. Tumor content as well as tissue quality and preservation were assessed for inclusion 

in the study. For the validation 2 (MERFISH) ST dataset, fresh HGSC tumors were collected at the time 

of surgery by Stanford Tissue Procurement Shared Resource facility with the appropriate written informed 

consent and institutional IRB approval (#11977). Samples were flash frozen and stored at -80# until 

requested for this study. Samples were embedded in optimal cutting temperature (OCT). Sections were 

generated using a cryostat and stained with H&E, which were reviewed by an expert gynecologic 

pathologist (B.E.H.) to confirm the diagnosis, quality, and tumor content. Summary statistics of tissue 

sections, tumors, and patients profiled are available in Table S1a. Annotations at the patient level and 

tissue level are provided in Figure 1b and Table S2. 

 

Bulk tumor tissue Next Generation Sequencing (NGS) 

HGSC tumor sample selection for NGS was based on the assessment of overall tumor content by a board-

certified expert pathologist (B.E.H). Solid tumor tissue was digested by proteinase K. Total nucleic acid 

was extracted from FFPE tissue sections using Chemagic 360 sample-specific extraction kits (Perkin 

Elmer). Percent tumor cellularity as a ratio of tumor to normal nuclei was verified against pathologist-

derived assessment, with a minimum requirement of 20% tumor content. Macro-dissection was utilized 

as required to enrich specimens below the 20% threshold. Specimens that met the 20% threshold of tumor 

to normal nuclei were selected for DNA sequencing. DNA sequencing was subsequently performed via 

Tempus Labs according to the xT platform protocol (75). Additional information about NGS data 

generation and processing is provided in Supplementary Information. 

 

Spatial Molecular Imaging (SMI) 
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SMI data was generated using the CosMx SMI instrument, according to the company9s protocols, as 

described here and in Supplementary Information. CosMx pre-commercial RNA 960 gene panel was 

used (Table S1b), consisting of in situ hybridization (ISH) probes. Each reporter set contains 16 readout 

rounds with four different fluorophores, creating a 64-bit barcode design with Hamming distance)4 (HD4) 

and Hamming weight)4 (HW4) to ensure low error rates. Probe fluorescence was detected at subcellular 

resolution via the CosMx SMI instrument and the signal was aggregated to identify the specific RNA 

molecule measured in each location (24).   

SMI tissue preparation and RNA assay. Five-micron tissue sections were cut from FFPE TMA tissue 

blocks and adhered onto VWR Superfrost Plus Micro Slides (VWR, 48311-703). After sectioning, the 

tissue sections were air-dried overnight at room temperature. Tissue preparation was performed as 

described in the CosMx SMI Manual Slide Preparation Manual (MAN-10159-01). Briefly, the tissues 

underwent deparaffinization, heat-induced epitope retrieval using a pressure cooker for 15 minutes at 

100#, and enzymatic permeabilization with 3 µg/mL digestion buffer for 30 minutes at 40#. 

Subsequently, a 0.0005% working concentration of fiducials were applied to the tissue, followed by post-

fixation and blocking using NHS-acetate. Finally, an overnight hybridization was performed using the 

pre-commercial 960 plex RNA Panel of probes. The next day, the tissues were subjected to stringent 

washes to eliminate any unbound probes. The tissues were stained with CosMx Nuclear Stain, CosMx Hs 

CD298/B2M, CosMx Hs PanCK/CD45, CosMx Hs CD3 nuclear and segmentation markers. An additional 

round of blocking using NHS-acetate was performed before loading on to the instrument. The slide and 

coverslip constitute the flow cell, which was placed within a fluidic manifold on the SMI instrument for 

analyte readout and morphological imaging. Analysis run on the instrument was set up using the 60 

seconds per FOV pre-bleaching profile and segmentation profile for human tissue. Twenty FOVs were 

selected per slide resulting in a total of 100 tissue profiles. 

 

In Situ sequencing (ISS)  

ISS was performed using 10X Genomics9 Xenium platform, according to the company9s protocols as 

described here and in Supplementary Information. In brief, 10X Genomics9 Xenium ISS technology 

was uses with the Xenium Human Breast Panel that consists of 280 genes (Table S1b). Xenium 

hybridization padlock probes were designed to contain two complementary sequences that hybridize to 

the target RNA(76). Probes also contain a third sequence encoding for a gene-specific barcode such that 

once the paired ends of the probe bind to the target RNA and ligate a circular DNA probe is generated for 
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Rolling Circle Amplification (RCA). This system increases specificity and minimizes off-target signals 

as ligation should not occur in off-target binding events. 

Xenium tissue preparation and RNA assay. Five-micron FFPE TMAs were sectioned onto a Xenium slide. 

Deparaffinization and permeabilization was performed to expose mRNA. The mRNAs were targeted by 

280 probes and two negative controls: one to assess non-specific binding and the other a genomic DNA 

(gDNA) control to ensure signal comes from mRNA. Tissue slides were incubated overnight at 50# with 

a probe concentration of 10 nM. Following stringent washes to remove un-hybridized probes, probes were 

ligated for two hours at 37#. At this step an RCA primer was annealed. Circularized probes were 

enzymatically amplified for one hour at 4# followed by two hours at 37# to generate multiple copies of 

gene-specific barcodes for each RNA binding event which increases the signal-to-noise ratio. Following 

washing, background fluorescence was quenched chemically to mitigate auto fluorescence that is caused 

by lipofuscins, elastin, collagen, red blood cells and formalin fixation (76). Slides were placed into an 

imaging cassette and loaded on the Xenium Analyzer instrument. 

Image pre-processing. The Xenium Analyzer captured a Z-stack of images every cycle and in every 

channel. Images were processed and stitched to build a spatial map of the transcripts across the tissue 

section. Stitching was performed on the DAPI image, taking all the stacks from different FOVs and colors 

to create a single image representative of one tissue section.  

 

Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH) 

Data was generated on the Vizgen Inc. platform according to the company9s protocols. A custom 140 gene 

panel was designed with an additional set of 50 blank negative control barcodes based on the MERFISH 

design that incorporates combinatorial labeling with an error-robust encoding scheme to mitigate detection 

errors(77). 

Tissue Sectioning and Permeabilization. Four HGSC fresh frozen tissue samples were preserved in OCT 

compound and stored at -80# prior to sectioning. Ten-micron tissue sections were cut from the fresh 

frozen OCT tissue blocks and adhered onto MERSCOPE slides (Vizgen, 20400001). After sectioning, the 

tissue sections were fixed with 4% paraformaldehyde in 1X PBS for 15 minutes, washed three times with 

1X PBS, and incubated overnight at 4# in 70% ethanol. 

Cell boundary and antibody stain. Following overnight permeabilization, the tissue sections were placed 

in the MERSCOPE Photobleacher (Vizgen, 1010003) for four hours to quench autofluorescence. 
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Subsequently, the tissue samples were stained using Vizgen9s Cell Boundary Kit (Vizgen, 10400009) and 

blocked in blocking solution (Vizgen, 20300012) supplemented with a 1:20 dilution of Rnase inhibitor 

(NEB, M0314L) for one hour. The tissue sections were washed with 1X PBS and stained with the Cell 

Boundary Primary Staining Mix (Vizgen, 20300010) at a 1:100 dilution supplemented with a 1:20 dilution 

of Rnase inhibitor for one hour. After a series of washing with 1X PBS, the tissue samples were stained 

with the oligo conjugated secondary antibodies that were supplemented with 1:20 dilution of Rnase 

inhibitor for one hour. After incubation, the tissue sections were fixed with 4% paraformaldehyde in 1X 

PBS for 15 minutes and washed in 1X PBS. 

Encoding Probe Hybridization. Tissue sections were washed for five minutes in Sample Prep Wash Buffer 

(Vizgen, 20300001) and incubated in Formamide Wash Buffer (Vizgen, 20300002) for 30 minutes at 

37#. The custom MERSCOPE Gene Panel Mix (Vizgen, 20300008) was applied to the tissues and the 

slides were incubated at 37# for 36 to 48 hours. After hybridization, the tissue sections were washed with 

Formamide Wash Buffer for 30 minutes at 47°C and then subsequently washed with Sample Prep Wash 

Buffer for two minutes. 

Gel embedding and tissue clearing. Tissue samples were embedded in a gel solution and incubated for one 

minute. The gel was made from a gel embedding solution that was comprised of Gel Embedding Premix 

(Vizgen, 20300004), 10% ammonium persulfate (Sigma, 09913-100G), and TEMED (N,N,N9,N9-

tetramethylethylenediamine, Sigma, T7024-25ML). The gel solution was then removed, and an additional 

gel solution was added to the top of the sample sandwiched beneath a 20 mm Gel coverslip (Vizgen, 

20400003). The samples were incubated for 1.5 hours at room temperature to allow the gel solution to 

polymerize. The gel coverslips were prepared using RNAseZap and 70% ethanol prior to being covered 

with Gel Slick (VWR, 12001-812). Following the incubation, the Gel Coverslip was removed, and the 

samples were incubated overnight at 47# in clearing solution comprised of Protease K (NEB, P8107S) 

and Clearing Premix (Vizgen, 20300003). The tissue samples were then incubated overnight at 37#. 

Sample Imaging. Following the series of overnight incubations, tissue sections were washed in Sample  

Prep Buffer for ten minutes and incubated at room temperature for 15 minutes in DAPI and Poly T Reagent 

(Vizgen, 20300021). Tissue samples were then washed in Formamide Wash Buffer for ten minutes, 

transferred into Sample Prep Wash Buffer, and loaded onto the MERSCOPE instrument (Vizgen, 

10000001) for morphological imaging and analyte readout. The appropriate fluorescently labeled probe 

solution was applied to the tissue, imaged, and photobleached to remove the probes for the next round. 
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Cell segmentation 

Cell segmentation was performed using a deep-learning based segmentation image processing algorithm, 

Mesmer (78) (Figure S1a,b) from within the DeepCell platform on raw TIFF images. The inputs for 

whole cell segmentation for SMI images included immunofluorescent (IF) images of DAPI and 

CD298/B2M for nuclear and cell membrane detection, respectively. Similarly, MERFISH whole cell 

image segmentation was performed with DAPI and cell membrane stains (Vizgen stain boundary kit, 

10400009). Nuclear segmentation was performed for ISS images wherein the input includes DAPI IF 

stain. 

 

Gene expression quantification from spatial transcriptomics data 

Preprocessed RNA in situ data includes RNA transcripts confidently identified for each gene and their 

spatial coordinates. Given this data each RNA transcript was aligned to the cell segmentation outputs 

described above based on its spatial coordinates. Cell count matrices, �, were generated by counting the 

number of RNA transcripts detected within the segmentation boundaries of each cell � for each gene � to 

yield �!,# for entry of � in each ST dataset. Cell counts were converted to transcripts per million: 

���!,# = ) �!,#3 �!,#$
!%&

+ 7 10' 

wherein G is the total number of genes in each ST dataset.  

Expression levels were quantified as: 

�!,# = ���( 3���!,#10 + 15 

The average expression of a gene can across a population of N cells, denoted here as P, was defined as: 

�!,) = ���( )3 ���!,##	*,� + 1+ 

Cells with fewer than 50, 20, and 5 genes detected in the SMI, Xenium, and MERFISH data were 

excluded, as well as cells with exceptionally large volume (> 441 ¿m2).  

Overall Expression (OE) of a gene signature was computed with additional normalizations to filter 

technical variation, similar to the procedure reported before (79) with some modifications as described in 

Supplementary Information <Gene set Overall Expression (OE)=. 
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Cell neighborhoods and niche definition  

The location of each cell was defined based on the location of its centroid. The r-neighborhood of a cell 

was defined as all the cells that reside at a distance of at most r ¿m from the cell. Spatial frames were 

defined by binning the tissue section FOV to 75 ¿m x 75 ¿m (i.e., 5625 ¿m2) sized squares, with a median 

number of 53 cells per frame. 

 

Cell type annotations 

The cell type annotation procedure was applied separately for each of the three spatial datasets via an 

initial cell type assignment followed by an iterative subsampling procedure to obtain robust cell type 

assignments with confidence levels. The pipeline is described in Supplementary Information <Cell type 

annotations= and <T/NK subtype annotations= and will be provided in the study GitHub repository. 

 

Deriving cell type signatures 

scRNA-Seq data of three HGSC cohorts was used to identify cell type specific signatures (Table S3a) 

used for cell type annotations. Preprocessed gene expression matrixes were downloaded from 

https://lambrechtslab.sites.vib.be/en/data-access (30,32), GSE146026 (80), and GSE173682 (29). Cell 

type annotations as reported in each of these studies were used. For each of the three cohorts cell type 

signatures (t-test p-value < 1*10-10 and log2 fold change > 0.2 for all pairwise comparisons) were derived 

and genes supported by at least two datasets were included in the final signatures. Cell type signatures 

were also derived from the discovery data set (Table S3b) via a similar approach with modifications 

described in Supplementary Information under <Deriving cell type signatures from spatial 

transcriptomics data= 

 

Co-embedding for a high-quality reference single cell atlas 

A reference single cell atlas was generated to examine consistency across spatial and scRNA-seq cohorts 

and validate cell type annotations. The atlas includes three spatial datasets collected here and six scRNA-

seq HGSC cohorts (23,27332). Preprocessed gene expression matrixes were downloaded from Synapse 
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(syn33521743 (23)), GSE118828 (27), GSE173682 (29), GSE147082 (28), GSE154600 (31), and 

https://lambrechtslab.sites.vib.be/en/data-access (30,32). 

Tumor samples derived from other anatomical sites, other than the adnexa or omentum, were removed to 

match the scope of this study. For each scRNA-seq dataset, max{5000,			�-} cells were subsampled from 

each of cell type annotations, where �- denotes the number of cells labeled with cell type annotation t. 

Each of the ST datasets were subsampled as follows. For each non-malignant cell type, max{5000,			�-} 
high confidence cells were subsampled, where �- denotes the number of high confidence cells labeled 

with cell type annotation t. From malignant cells, max?500,			�.)@ high confidence malignant cells were 

sampled per patient, where �.) denotes the number of malignant cells per patient p.  

All nine subsampled datasets were co-embedded with reciprocal principal components analysis (RPCA) 

using the top 30 PCs fit on each dataset, using the Seurat R Package v4 implementation (81), and then 

visualized with two dimensional Uniform Manifold Approximation and Projection (UMAP) (82). More 

details on cell type matching across publicly available datasets are available in Supplementary 

Information under <Cell Type Annotation Harmonization across Datasets=.  

 

Mixed effects modeling  

Mixed effect models were used to capture co-dependencies and the hierarchical structure of the data, 

where covariates at different levels (e.g., cell, spatial frame, sample, etc.) are sampled from different 

distributions. 

The following model was used to decompose a feature of interest y: 

�!#/~�C�#/ +E�0�!#/,0
0

, �&(I 

Where �!#/ is the value of the feature in cell i in frame j of sample k, �!#/,0 is a cell-type-level covariate 

(e.g., log-transformed number of reads), and �#/ is the spatial frame j intercept, defined as 

�#/~�J�/1 +E�-�-#/
-

, �((M ; �/1~�J�21 +E�-1�-/1
-

, �3(M 

where �-#/ are frame-level covariates of frame j in sample k (e.g., T cell abundance in the frame), and  �-/1  

are sample-level covariates of sample k (e.g., sample site, treatment status). Patient-level covariates were 
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added in the same manner as a fourth level. The lme4 (83) and lmerTest R packages (84) were used to fit 

the model, compute p-values and sum of squares (SS) in type II ANOVA (aNalysis Of vAriance) via the 

Satterthwait9's degrees of freedom method, and identify the latent variables that maximize the posterior 

probability.  

 

Spatial transcriptional program identification 

Immune infiltration programs (Table S4) were identified with the mixed-effect models described above 

using the frame-level abundance of malignant cells as a measure of the infiltration level. To prevent impact 

of ambient RNA, only genes that have a significantly higher expression levels (pairwise one-sided t-test 

p-value > 1*10-3) in respective cell type were considered, using pairwise t-tests when comparing the 

respective cell type to all other cell types. The CD8 T cell infiltration program was extended based on 

scRNA-seq data (23). Analyzing the CD8 T cells from this scRNA-Seq cohort the top 50 genes that were 

significantly correlated (BH FDR < 1*10-10, Spearman Correlation) with the OE of the CD8 T cell 

infiltration signature were identified (Table S4). Malignant TIL (MTIL) program (Table S6) was identified 

in a similar manner, using the presence of T/NK cells as a binary covariate at the frame-level. P-values 

were corrected for multiple hypotheses testing using the BH test, and topmost genes with FDR < 0.05 

were reported. 

 

CNA and anatomical site analyses of spatial transcriptomics 

Mixed-effect models were used to compute the association between the expression of each gene in the 

different cell types and the patient-matched CNA measurements obtained at the bulk tumor level. Of the 

626 genes with CNA measurements, 159 were also included in the discovery dataset (SMI) panel. For 

each cell type and each of these 159 genes the following model was fit: tpm ~ (1 | patient) + cna + nact + 

sites, where tpm denotes the expression of the gene in cells from cell type k, cna denote the copy number 

of the same gene, nact denotes treatment status, and sites denote the anatomical site. Similarly, to examine 

the connection between the MTIL program OE and CNAs, all 626 genes with CNA were tested with this 

model, considering only malignant cells from the samples with genomic profiling, with MTIL OE as the 

dependent variable. To derive associations of treatment status and anatomical site, a similar model was fit 

(tpm ~ (1 | patients) + nact + sites) on all 960 genes in the discovery dataset. 
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CNA analyses of TCGA data 

The Cancer Genome Atlas (TCGA) data of Array-based Gene Expression (EXP-A) and Copy Number 

Somatic Mutations (CNSM) was downloaded from the International Cancer Genome Consortium (ICGC; 

https://dcc.icgc.org/projects). The TIL levels of each sample were computed as the overall expression of 

T cell signatures. Amplifications and deletions were defined as a copy number log-transformed value 

(<segment_mean=) above or below 0.5 and -0.5, respectively. To examine the hypothesis that repressing 

the MTIL-up genes drives T cell exclusion, a one-sided t-test was preformed to examine if samples with 

deletion in the MTIL-up genes have significantly lower TIL scores compared to all other samples. Likewise, 

to examine if induction of MTIL-down genes drives T cell exclusion, a one-sided t-test was preformed to 

examine if samples with amplifications in the MTIL-down genes have significantly lower TIL scores 

compared to all other samples. Support Vector Machine (SVM) classifiers were generated to predict if a 

tumor has a high (above median) TIL levels based on the CNA levels of all MTIL genes, using the e1071 

R package. 

 

Perturb-seq meta-analyses and target selection 

Publicly available Perturb-seq datasets were used to identify MTIL regulators and identify targets for the 

ovarian cancer Perturb-seq screen performed here. The Perturb-seq collections used include the following 

datasets. (1) large-scale CRISPR KO Perturb-seq screens in K562 and RPE1 cell lines (52). Counts data 

and metadata were downloaded from https://gwps.wi.mit.edu/, focusing on K562 day 8 Perturb-seq (KD8; 

targeting all expressed genes at day 8 after transduction) and RPE1 day 7 Perturb-seq (RD7; targeting 

DepMap essential genes at day 7 after transduction). (2) Perturb-seq CRISPR KO data from primary 

melanoma cells under standard mono-culture and co-culture with autologous TILs (53). Processed counts 

data was downloaded from https://singlecell.broadinstitute.org/single_cell/study/SCP1064/multi-modal-

pooled-perturb-cite-seq-screens-in-patient-models-define-novel-mechanisms-of-cancer-immune-

evasion. (3) CRISPR activation Perturb-seq screen in K562 cells (51), downloaded from GEO 

(GSE133344). For each dataset counts were converted to transcript per million (TPM) values as described 

above and two-sided t-tests were performed to identify differentially expressed genes for each perturbation 

in each one of the screens, comparing the cells with the perturbation to those with control sgRNAs. MTIL 

overall expression (OE, Supplementary Information) was computed, and a two-sided t-test was 

performed to examine if OE was significantly higher or lower in the cells with the perturbation compared 

to the control cells (with control sgRNAs). For perturbations that showed a significant effect on the MTIL 
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OE (BH FDR < 0.05, t-test), hypergeometric tests were used to further confirm that the perturbation 

significantly repress or activates the MTIL genes, having opposite effects on the MTIL-up and MTIL-down 

gene subsets.  

 

Transduction and pooled gene knockouts in ovarian cancer cells 

Plasmid amplification. LentiCas9-Blast was a gift from Feng Zhang (Addgene, Plasmid #52962; 

RRID:Addgene_52962). Stbl3 bacterial stab was streaked onto a LB broth plate with ampicillin and 

incubated overnight at 37#. A single colony was picked and inoculated in 3 mL of LB liquid media 

supplemented with ampicillin and incubated overnight at 37# with 300 rpm agitation. An aliquot of 

starter culture was then cultured overnight in 10 mL of LB liquid media supplemented with ampicillin. 

Plasmid extraction was performed using the NucleoBond Xtra Midi EF kit (Takara Bio, 740420.10).  

Pooled sgRNA Perturb-seq library design. Individual guide sequences were selected from the Human 

CRISPR Knockout Pooled Library (GeCKO v2) (85). The pooled sgRNA library was purchased from 

GenScript in a plasmid format utilizing the pLentiGuide-Puro vector. In total, it includes 232 sgRNAs 

targeting 74 genes, with three guides per gene including ten non-targeting controls (Table S7). 

Lentivirus production. To obtain lentiviral stocks of lentiCas9-Blast and the pooled lentiviral library, 

LentiCas9-Blast and the custom sgRNA lentiviral library were transfected into Lenti-X 293T cells 

(Takara, 632180) respectively. Lenti-X 293T cells were cultured in cOPTI-MEM (opti-MEM, Gibco, 

31985088), 1x GlutaMAX (Gibco, 35050061), 1 mM Sodium Pyruvate (Corning, 25-000-Cl), 5% FBS, 

1x non-essential amino acid (Corning, 25-025-CI). At ~90% confluency, cells were incubated with 

TransIT-Lenti (MirusBio, 6603) transfection mixture at 37# with 5% CO2. The transfection mixture 

included cOPTI-MEM supplemented with 14 µg of the respective transfer plasmid, 10 µg psPAX2 

(Addgene, Plasmid #12260), and 4.33 µg pMD2.G (Addgene, Plasmid #12259). After six hours of 

transfection, the media was replaced with fresh cOPTI-MEM supplemented with 1x ViralBoost (Alstem 

Bio, VB100) and incubated for an additional 16 hours. The supernatant was harvested 24 and 48 hours 

post-transduction. Harvested viral supernatants were pooled and concentrated with Lenti-X Concentrator 

(Takara Bio, 631232) by centrifugation at 1,500 x g for 45 minutes. Viral pellets were resuspended in 

media at a volume 100x smaller than the original volume and stored at -80# until retrieved for 

experiments. 

Cas9 and sgRNA lentiviral transductions in TYK-nu cells. To obtain stable Cas9 expression in TYK-nu 

cell line, 100,000 wildtype TYK-nu cells were seeded in a 24-well plate (Corning, 3526) and incubated 
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overnight. Cells were transduced with the lentiCas9-Blast lentivirus at an MOI of 0.2 with 8 µg/mL of 

polybrene (MilliporeSigma, TR-1003) and incubated overnight in 37# with 5% CO2. Transduced TYK-

nu cells were then washed with DPBS, and post-transduction selection was conducted over ten days with 

10 µg/mL of Blasticidin (Invivogen, ant-bl-05) supplementation in TYK-nu media. Successful 

transduction of Cas9 was validated via western blot (Figure S6a,c) and flow cytometry analyses (Figure 

S6b,d). The same process was performed for the custom sgRNA lentiviral library transduction. Post-

transduction selection was conducted over five days with 0.5 µg/mL of puromycin (Invivogen, ant-pr-1) 

at an MOI of 0.15. 

To validate knockout efficiency in the TYK-nu Cas9 cell line, TYK-nu Cas9 cells were transduced with 

pMCB306 (a generous gift from the Bassik Lab), which contains a Puromycin-T2A-EGFP with EF-1 

alpha promoter and an EGFP-targeting sgRNA driven by a mU6 promoter. Following cell transduction 

with the pMCB306 plasmid, loss of GFP fluorescence indicates functional Cas9 activity, as cleavage of 

GFP by Cas9 results in loss of fluorescence whereas intact GFP retains fluorescence. TYK-nu Cas9 cells 

were transduced at an MOI of 0.15 with pMCB306 virus and 8 µg/mL of polybrene and incubated 

overnight at 37# with 5% CO2. Transduced TYK-nu Cas9 cells were washed with DPBS, and selection 

was conducted over five days with 0.5 µg/mL of puromycin (Invivogen, ant-pr-1) supplemented in TYK-

nu media. Successful transduction was validated via flow cytometry and Western Blot analyses. 

Flow cytometry analysis of TYK-nu cells. Flow cytometry analysis was conducted to sort and analyze 

TYK-nu Cas9 B2M knockout cell line and a TYK-nu Cas9 GFP transduced cell line. For flow cytometry 

of the TYK-nu Cas9 B2M KO cell line, cells were washed in 1X PBS and stained with Alexa Fluor 700 

anti-human B2M antibody (BioLegend, 395708; 1:20 dilution) for 20 minutes. Additional cells were set 

aside to use as unstained controls and to adjust gating. The cells were washed twice in PBS with 1.5% 

FBS after staining and were filtered through a 35 µm cell strainer prior to analysis. Flow cytometry was 

performed on the LSRII instrument in the Stanford Shared FACS Facility. For flow cytometry of the TYK-

nu Cas9 GFP cell line, cells were resuspended in 1X PBS, washed twice in PBS with 1.5% FBS, and 

filtered through a 35 µm cell strainer prior to analysis on a Sony Biotechnology SH800S Cell Sorter at the 

Chan Zuckerberg Biohub Stanford location. All plots were generated with FlowJo Version 10.8.1. 

 

Co-culture system for high content CRISPR screens 

Co-cultures of TYK-nu and NY-ESO-1 TCR+ CD8 T cells. Procedures for generating TYK-nu Cas9 cells 

with stable expression of the NY-ESO-1 antigen and for primary human CD8 T cell isolation and TCR-
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engineering are described in Supplementary Information. Following isolation and editing of CD8 T 

cells and TYK-nu cells, co-culture experiments were performed as follows. 4,800 NY-ESO-1 Cas9 TYK-

nu cells were seeded into a clear-bottom, black-walled 96-well plate and incubated in 100 µl of T cell 

medium per well overnight. The next day, CD8 T cell activating Dynabeads were magnetically removed 

from the NY-ESO-1 TCR+ CD8 T cells. The activated NY-ESO-1 TCR+ T cells were added at varying 

effector-to-target ratios (E:T) to a total volume of 100 µL per well. The cells were co-cultured for 24 to 

72 hours. TYK-nu cell viability and IFNg levels in the co-culture were measured to validate the 

cytotoxicity of the edited CD8 T cells. At the end of each co-culture period, supernatants were collected 

from the 96 well plate, spun down at 400 x g for five minutes, and stored at -20°C in single use aliquots 

for subsequent ELISA assays (Figure S5h). Each well was washed twice with 200 µl of DPBS to remove 

the T cells. Following the manufacturer9s protocol, PrestoBlue cell viability dye diluted in T cell medium 

mixtures were added to each well and incubated for 30 minutes prior to fluorescence plate reader reading 

(Tecan Infinite M1000). The supernatants collected were diluted 1:1000 prior to the IFNg ELISA assay 

(BioLegend, 430104). The same co-culture procedure was performed in parallel with wildtype CD8 T 

cells from the same donor as a control.  

Co-cultures of TYK-nu and NK-92 cells. TYK-nu ovarian cancer cells (JRCB Cell Bank, JCRB0234.0) 

were cultured in EMEM (ATCC, 30-2003) with 10% heat-inactivated FBS (Life Technologies, 

A3840102). NK-92 cells (ATCC, CRL-2407) were cultured in RPMI 1640 Medium, GlutaMAX 

Supplement, HEPES medium (Gibco, 72400-047) with 10% heat-inactivated FBS (Life Technologies, 

A3840102), 200 U/mL recombinant human IL-2 (PeproTech, 200-02), and 1% penicillin-streptomycin 

100X solution (Cytiva, SV30010). NK-92 cell line cytotoxicity was validated using PrestoBlue cell 

viability dye (Thermo Scientific, A13261) following the manufacturer9s protocol. TYK-nu cells were 

seeded in a clear bottom, black walled 96 well plate (Greiner, 655090) and incubated overnight. NK-92 

cells were added in varying effector to target ratios (E:T) and the cells were incubated for 24 to 72 hours 

(Figure S6e). To validate the specificity of NK cell cytotoxicity in the co-culture experiments, a TYK-nu 

B2M KO cell line was generated. B2M is a subunit of the major histocompatibility complex 1 (MHC-1), 

and its knockout increases cell susceptibility to NK-mediated cytotoxicity by disabling MHC-1 

interactions with inhibitory KIRs and NKG2A (86). TYK-nu Cas9 cell lines were transduced with B2M 

sgRNA lentivirus at an MOI of 0.15. Successful transduction was validated via flow cytometry and 

western blot analyses (Figure S6c-d). All cell lines were routinely tested for mycoplasma using the 

Promokine PCR Mycoplasma Test Kit I/C (PromoKine, PK-CA91-1024). 
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CRISPR screen in cancer CD8 T cell co-cultures 

TYK-nu Cas9 NY-ESO-1 cells were transduced with the sgRNA library at an MOI of 0.15. NY-ESO-1 

expressing TYK-nu Cas9 cells were selected with 0.5 µg/mL of puromycin over a period of five days. 

1,875,000 NY-ESO-1 expressing TYK-Nu Cas9 library cells were seeded in a 75 mm dish and allowed 

to adhere overnight to achieve 8,000X coverage. NY-ESO-1 TCR+ CD8 T cells were added at 5-to-1 

effector-to-target cell ratio (9,325,000 cells). TYK-nu Cas9 NY-ESO-1 cells were grown in: (1) 

monoculture, (2) co-culture with wild type (WT) CD8+ T cells, and (3) co-culture with NY-ESO-1 TCR+ 

CD8 T cells. In all three conditions TYK-nu cells were incubated for 72 hours, either in monoculture or 

co-culture, before being washed twice in 1X DPBS to remove the CD8 T cells. TYK-nu cells were snap 

frozen and stored at -80# prior to genomic DNA extraction and sgRNA amplification. As a second 

selection, two days after recovery, cells were grown under the same conditions again for 72 hours and 

then allowed to recover again before collection and sequencing. All samples were sequenced on a MiSeq 

Micro V2 in a single-end run at the Chan Zuckerberg Biohub Stanford location. 

 

CRISPR and Perturb-seq screens in cancer NK co-culture models 

TYK-nu Cas9 cells were transduced with the HGSC sgRNA library at MOI of 0.15. TYK-nu Cas9 cells 

were puromycin selected at 0.5 µg/mL for five days and allowed to recover to confluency prior to 

downstream experiments.  

The first screen was performed for sgRNA and Perturb-seq readouts. TYK-nu Cas9 library cells were 

seeded in a 75 mm dish (Corning, 353136) and allowed to adhere overnight. NK-92 cells were added at 

1-to-1 and 1-to-2.5 effector-to-target (E:T) cell ratios. Perturb-Seq readouts (53,87) were obtained  from 

TYK-nu Cas9 cells grown for 48 hours in monoculture and co-culture with NK-92 cells. After the 

completed growth timeline, TYK-nu Cas9 library cells were washed twice with 10 mL 1X DPBS to 

remove the suspended NK-92 cells. Two replicates from each condition were put into a single cell 

suspension according to the 10X Single Cell Suspensions from Cultured Cell Lines for Single Cell RNA 

Sequencing protocol (10X Genomics, CG00054 Rev B). The libraries were prepared by the Stanford 

Genomics Service Center according to the Chromium Next GEM Single Cell 5' Reagent Kits v2 (Dual 

Index) with Feature Barcode technology for CRISPR Screening protocol (10X Genomics, CG000510 Rev 

B). Equimolar amounts of indexed libraries were pooled together and sequenced on a NextSeq2000 P3 in 

a paired-end run at the Chan Zuckerberg Biohub Stanford location. 
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A subset of replicated cells was allowed to recover for an additional day until confluency prior to being 

snap frozen and stored at -80#. Genomic DNA of the snap frozen cells was extracted using the Quick-

DNA Midiprep Plus Kit (Zymo Research, D4075). sgRNA amplification was performed following a 

previously published protocol(49). Equimolar amounts of indexed libraries were pooled together and 

sequenced on a MiSeq Nano V2 in a single-end run at the Stanford Genomics Service Center. 

A second screen was performed for sgRNA sequencing. TYK-nu Cas9 library cells were seeded in a 6 

well dish (Cole-Parmer, 0192770) and were allowed to adhere overnight. NK-92 cells were added at a 

2.5-to-1, 5-to-1, and 7.5-to-1 effector-to-target ratios for 48 hours. TYK-nu cells were allowed to recover 

for three days prior to being snap frozen and prepared for genomic DNA extraction as described above. 

Each experimental condition was performed in triplicates with > 1000x cells per sgRNA, resulting in 6 

and 12 sequencing samples from the first and second screen. 

 

CRISPR screen and Perturb-seq data analyses 

Raw fastq files were processed using the cellranger pipeline (10x Genomics Cell Ranger 7.1.0). Counts 

were converted to transcript per million (TPM) values. For each condition (monoculture, 1:1 co-culture, 

and 2.5:1 co-culture) data was analyzed to remove non-malignant cells. Seurat R package was used for 

KNN clustering, resulting in a distinct NK cluster in the co-culture conditions, with expression of CD3E 

and NCAM1. This cluster was removed and only cancer cells with a detection of a single sgRNA were 

retained for downstream analyses. For each of the three conditions, DEGs were identified for each 

perturbation using a two-sided t-test comparing the cells with the perturbation to those with NTCs. Fisher 

test was used to combine the three p-values. Hypergeometric tests were performed to examine if the up or 

down regulated genes identified for each perturbation were enriched with MTIL-up or MTIL-down genes, 

or vice versa, and the combined p-value (fisher test) was reported as the final summary statistics. 

MAGeCK algorithm was used to compute differential fitness effects on the cancer cells under the 

monoculture and co-culture conditions, either with the different types of CD8+ T cells or with the NK 

cells. Each experimental condition was performed in triplicates. First, the sgRNA counts of the different 

samples were median normalized to adjust for the effect of library sizes and read count distributions. 

Second, the variance of read counts was estimated by sharing information across the different sgRNAs, 

allowing to fit a negative binomial (NB) model to test whether sgRNA abundance differs significantly 

between treatments (i.e., co-culture) and controls (i.e., monoculture or co-culture with non-specific T 

cells). Third, sgRNAs were ranked based on p-values calculated from the NB model, and an ³ robust 
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ranking aggregation (³-RRA) algorithm was used to identify positively or negatively selected genes. The 

pairwise tests were performed considering each of the co-cultures (CD8 T cell or NK cell) compared to 

the monoculture and the two co-cultures (with specific and non-specific T cells) to compute a combined 

Fisher statistics, one for T cell and another for NK cell sensitizing and desensitizing hits. 

 

DATA AVAILABILITY 

All the data collected in this study, including spatial transcriptomics data, single-cell Perturb-

seq data, targeted genomics, deidentified clinical meta-data, and processed tissue images will be deposited 

and made publicly accessible through Gene Expression Omnibus (GEO), Zenodo, and CELLxGENE. 

Processed data in the form of standardized RObjects will be available via Zenodo. Upon publication raw 

and processed spatial transcriptomics data will be available on CELLxGENE for download in .h5ad format 

and interactive exploration. Processed gene expression matrices with cell type annotations from 6 scRNA-

seq studies with HGSC tumor samples were downloaded from publicly available repositories specified in 

their respective publications (23,27332). Specifically, preprocessed gene expression and metadata 

matrixes of HGSC scRNA-seq data were downloaded from Synapse (syn33521743 (23)), GEO 

(GSE118828 (27), GSE173682 (29), GSE147082 (28), GSE154600 (31), GSE146026 (80)), and 

https://lambrechtslab.sites.vib.be/en/data-access (30,32). An additional external validation dataset (44) 

hosted on the European Genome-Phenome Archive (EGAD00001006973, EGAD00001006974) was 

made available for this study through a Data Access Agreement with Genentech, Inc..   

 

CODE AVAILABILITY  

All data processing and analysis code will be available via GitHub once the paper is published. The study 

GitHub repository includes documented code for data processing and code required to reproduce the main 

figures and supplementary tables of the study. 
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SUPPLEMENTAL FIGURES 

Figure S1. Cell segmentation and cell type annotations of spatial transcriptomics. (a) Representative 
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whole-cell segmentation performed for the discovery dataset. Input data includes DAPI 

immunofluorescent (IF) stain (green) and cell membrane stain (blue). Cell boundaries represented as white 

contours. (b) Representative nuclear segmentation performed for validation dataset 1. Input data includes 

DAPI IF stain. Cell boundaries represented as white contours. (c) UMAP of cell transcriptomes, cells 

colored by overall expression of cell type signatures (Supplementary Table 3, Methods) corresponding 

to the following cell types: malignant, monocyte, T/NK cell, B cell, fibroblast, and endothelial cells. (d) 

Reference UMAP embedding fit of single cell transcriptomes from the discovery dataset, shown for a 

subsample with high confidence cell type annotations (top) and all cells projected onto the reference 

embedding (bottom), colored by cell type annotations. (e-f) UMAP embedding of single positive T cell 

transcriptomes in the discovery dataset, cells colored by (e) CD8 and CD4 expression, and (f) expression 

of de novo CD8 (left) and CD4 (right) T cell expression signatures. (g) Projection of double negative 

T/NK cell transcriptomes onto UMAP embedding in (e), with cells colored by overall expression of the 

de novo CD8 (left) and CD4 (right) T cell gene signatures (Supplementary Table 3). (h) UMAP 

embedding of CD4 T cell transcriptomes, cells colored by CD4 expression (left) and FOXP3 expression 

(right). (i) UMAP as in (h), with cells colored with de novo FOXP3+CD4 T cell gene signature expression 

score (left) and cells colored with the regulatory T cell signature derived from publicly available scRNA-

Seq datasets (Methods; Supplementary Table 3). (j-k) UMAP embedding of validation dataset 1 T/NK 

single cell transcriptomes, cells colored by (j) T/NK cell subtype annotations, (k) detection of (from left 

to right): CD4, CD8A/B, FOXP3 (regulatory T cell marker), and NCAMI (NK cell marker). All signatures 

used in and generated by these analyses are provided in Supplementary Table 3.  
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Figure S2. Cross-platform validation and evaluation of cell type annotations, compositions, and 

tumor architecture. (a) Immunofluorescence (left column) of cell type markers paired with cell type 

annotations plotted in situ (right column) for four representative patient samples (rows) in the discovery 

dataset. (b-g) Cell types colored according to cell type legend in (a). (b) Hematoxylin & Eosin staining 

(H&E, left), Immunohistochemistry (IHC) stain for CD163 (middle; monocyte marker) with 

corresponding cell type annotations in situ (right) in a representative tissue FOV in validation dataset 1. 

(c) H&E (left), IHC stain for FOXP3 (middle, Treg marker), and corresponding cell type annotations in 

situ (right) in one representative tissue FOV from validation dataset 1. (d) High power H&E stains of 

HGSC6 omentum tumor tissue resolving morphology of plasma cells identified based on the discovery 

cohort in this sample as shown in panel a (iii). (e) H&E (left), annotated cell types in situ from ISS 

validation dataset 1 (middle) and SMI discovery dataset (right) showing matching data (same patient, 

same tumor) from two tumors (rows). White box denotes region of tissue profiled by ISS that corresponds 

to FOV profiled by SMI in the same row. (f) Cell type proportion in biological replicates profiled by both 

SMI (x axis) and by ISS (y axis). Straight lines correspond to the linear regression fit. rs denotes the 

Spearman correlation coefficient. (g) Stacked barplot show the number of cells (y axes) profiled stratified 

by cell type (color) and shown for the individual samples (x axes) and datasets (panes, labeled by ST 

platform name or first author of published scRNA-seq dataset)(27,29332,72,73). (h) Kaplan Meier 

Survival curves depicting differential survival probability (y axis) as a function of average T/NK 

abundance in each patient (log rank test p = 3.34*10-3). (i-k) Log2 Co-localization Quotient (CLQ, y axes) 

of T/NK cells with fibroblasts (blue, x axis) and T/NK cells with malignant cells (green, x axis) in (i) the 

discovery dataset, stratified by adnexal samples (left) and omentum samples (right), (j) all samples in 

validation dataset 1 (k), all 4 tissue section samples in validation dataset 2 (all adnexal). Light grey lines 

connect paired fibroblasts and malignant cells derived from the same tissue section. **p < 1*10-2, ***p < 

1*10-3, ****p < 1*10-4, paired Wilcoxon rank sum test. Boxplots middle line: median; box edges: 25th and 

75th percentiles; whiskers: most extreme points that do not exceed ± IQR x 1.5; further outliers are marked 

individually.  
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Figure S3. Cellular programs linked to anatomical sites and desmoplasia. (a) Percentage of genes (y 

axis) that are significantly associated with (p < 0.05, mixed effects BH FDR) somatic copy number 

alterations (CNA; top), treatment status (NACT = neoadjuvant chemotherapy; middle), and tumor 
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anatomical site (i.e., adnexa or omentum; bottom) in the discovery dataset. (b) Size (horizontal bars) and 

overlap (vertical bars) between the tumor infiltration programs identified for the five different immune 

cell subsets, shown for the up-regulated (left) and down-regulated (right) subsets. (c) H&E of normal 

ovarian stroma morphology (left), and desmoplastic stroma morphology (right). (d) Gene ontology 

enrichment analysis (Methods) of the top desmoplasia associated genes. Abbreviations: BP = biological 

process, CC = cellular component, MF = molecular function. (e-g) overall expression (OE) of desmoplasia 

associated genes (Supplementary Table 5) per fibroblast (y axis) in (e) discovery dataset, stratified by 

sample, (f) discovery dataset, per sample (y axis) as a function of stromal morphology annotations (x axis) 

across all samples (left) and in adnexal samples only (right). **p < 1*10-2, ***p < 1*10-3, mixed effects test. 

(g) fibroblasts the Vazquez-Garcia et al(72) scRNA-seq dataset, stratified by anatomical site **p < 1*10-2, 

****p < 1*10-4. (h) UMAP embeddings of adnexal and omentum fibroblasts from the Vazquez-Garcia et al 

(72) scRNA-seq dataset with each cell colored by anatomical site (left), unsupervised shared nearest 

neighbors clusters (middle), and the OE of desmoplasia associated genes (right) (i) proportion of cells (y-

axis) from the adnexa vs. omentum in each cluster (x-axis) as defined in (h). (j) OE of desmoplasia 

associated genes (y-axis) in each cluster (x-axis) as defined in (h), ****p < 1*10-4.   
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Figure S4. MTIL marks T/NK infiltration across multiple scales and datasets. (a) UMAP embedding 

of malignant cell ST profiles from the discovery dataset, colored by patient. (b) Receiver Operating 

Characteristic (ROC) curve obtained for Random Forest (RF) classifiers trained to predict if a cell was 

obtained from adnexal or omentum tumors. Area under the receiver operator curve (AUROC) is reported 

in parenthesis. Left: Patient-specific RF classifiers trained to predict the anatomical site of malignant cells. 

Each classifier was trained per patient and tested on unseen malignant cells from the same patient. Right: 
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Cell type specific RF classifiers trained per cell type and tested on unseen patients. (c) Variation in 

malignant cell gene expression <drift= score (y axis, Supplementary Information) across patients with 

paired adnexa and omentum tumor samples. (d) UMAP embedding of malignant cell ST profiles from the 

adnexa (blue) and omentum (pink), depicted for four representative patients. The magnitude of the 

malignant gene expression drift identified per patient is denoted by d (Supplementary Information). (e) 

Significance (y axis) and effect size (x axis) of association of malignant gene expression with T/NK levels 

quantified via mixed effect models in the discovery dataset (Methods). (f-h) Discovery dataset: MTIL 

overall expression (OE; y axis) as a function of (f) discretized T/NK levels (x axis) across samples (left) 

and spatial frames (right), (g) T/NK levels (color) and anatomical site (x axis), (h) presence of T/NK cell 

subtypes in the spatial frame: CD4 T cells (left), CD8 T cells (middle), and NK cells (right). AUROC: 

Area Under the Receiver Operating Characteristic Curve. (i-j) MTIL OE (y axis) in malignant cells as a 

function of (i) T/NK levels (x axis) in validation data 1 (left) and validation data 2 (middle), and (j) sample 

immune type (x axis) labeled by expert pathologists from Hornburg et al scRNA-seq study (44). In (f-i) 

boxplots: middle line = median; box edges = 25th and 75th percentiles; whiskers = most extreme points 

that do not exceed ± IQR x 1.5; further outliers are marked individually.  
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Figure S5. Validation and design of ovarian cancer-CD8+ T cell CRISPR screen. (a) Top: NY-ESO-

1 [1G4] TCR lentiviral construct used to engineer primary human CD8+ T cells (88) , with ³ and ³-chains 

tagged by HA and PC tags, respectively. Bottom: NY-ESO-1 peptide with 1G4 epitope lentiviral construct 

used to edit TYK-nu Cas9 (88) cells to express the 1G4 NY-ESO-1 antigen. A non-functional, 

extracellular domain of human growth factor receptor (NGFR) was used as a tag to identify and sort NY-

ESO-1 expressing cancer cells via flow cytometry. (b) Representative flow cytometric analysis gated on 

the expression of the non-functional NGFR tag to quantify TYK-nu Cas9 cells transduced to express NY-

ESO-1 antigen. (c) qPCR quantification of CTAG1B mRNA expression in NY-ESO-1 transduced TYK-

nu Cas9 cell line (TYK-nuNY-ESO-1+) relative to A375 melanoma cell line with endogenous CTAG1B 
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expression, encoding for NY-ESO1. All data shown represents the mean +/- s.e.m. (d) Western blot of 

NY-ESO-1 expression from NY-ESO-1 transduced MDA-MB-231 Cas9, TYK-nucas9,NY-ESO-1+, TYK-nu 

Cas9, and A375 whole cell lysates. GAPDH was used as a loading control. (e) Representative flow 

cytometric analysis of CD8+ T cells isolated from PBMC of a healthy human adult donor. (f) 

Representative flow cytometric analysis of NY-ESO-1 TCR transduced CD8 T cells. HA (³ chain) and 

PC (³ chain) tags double-positive CD8+ T cells were sorted via flow cytometry to ensure complete 

expression of NY-ESO-1 TCR. (g) 24-to-72-hour time course T cell co-culture cytotoxicity assay with 

CD8 T cells from three different donors (x axis). NY-ESO-1 TCR expressing primary CD8 T cells were 

co-cultured with TYK-nu Cas9 cells or TYK-nuCas9,NY-ESO-1+ cells at variable effector to target cell ratios 

(E:T). The percentage of killed (PrestoBlue negative) tumor cells was calculated by normalizing to tumor 

cell monoculture conditions. Co-cultures were performed using 3 replicates per condition and three 

biological replicates. All data shown represent the mean +/- s.e.m. (h) ELISA quantification of IFN´ 

secreted in the co-culture supernatant (1:1000). Co-culture was conducted in the same manner as described 

in (g). All data shown represent the mean +/- s.e.m.  
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Figure S6. Validation and design of ovarian cancer NK cell co-culture model used in the Perturb-

Seq screen. (a) Western blot of Cas9 protein from WT and Cas9 transduced whole cell lysates. Alpha 

tubulin measured as loading control. (b) Representative flow cytometric analysis gated on GFP expression 

to measure Cas9 efficiency using pMCB306 plasmid (Methods), comparing GFP levels WT vs. Cas9 

TYK-nu cells following pMCB306 transduction. Loss of GFP denotes Cas9 activity. (c) Western blot of 

beta-2-microglobulin (B2M) from whole cell lysates of WT, Cas9, and B2MKO TYK-nu. GAPDH 

measured as a loading control. (d) B2M surface expression by flow cytometry in B2Mwt and B2MKO Cas9 

TYK-nu cells. (e) 24-to-72-hour time course cell viability co-culture with TYK-nu Cas9 and NK-92 cell 

lines at variable effector to target cell ratios. Percent killing was calculated by normalizing to monoculture 

conditions. Co-cultures were performed in 4 replicates per condition as shown. (f) 48-hour cell viability 
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of B2MKO and B2MWT TYK-nu cell lines in co-culture with NK-92 cells. Percent killing was calculated 

by normalizing to the monoculture conditions. Co-culture data is represented by the mean +/- s.e.m. and 

each experiment preformed in four replicates. ****p< 1*10-4, *p < 0.05, two-way analysis of variance 

(ANOVA). All statistical tests were conducted on GraphPad Prism 9.  
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Figure S7. Perturb-seq screen in ovarian cancer identifies immune response regulators.  (a) Number 

of cells (y axis) detected with sgRNAs targeting each gene (x axis) in the CRISPR knockout (KO) library. 

(b) Gene expression (color bar) of MTIL-up genes (x axis) under different gene knockouts (KO; y axis). 

Dot color and size represents the average expression and percent of cells expressing the gene, respectively. 

(c-f) Gene KOs mimic (c-d) and repress (e-f) transcriptional response to NK cells: KO gene signature 

overall expression in each condition and gene KO combination (x axis), shown for ACTR8 (c) MED12 

(d), IRF1 (e), and STAT1 (f). 
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SUPPLEMENTAL INFORMATION  

Table S1. Specifications of datasets collected and/or analyzed in this study.  

Table S2. Metadata for each tissue section profiled by spatial transcriptomics.  

Table S3. Cell Type Signature Genes. Includes both gene signature derived from scRNA-seq and 

CellTypist Immune Encyclopedia (a) and from the HGSC spatial transcriptomics data collected here (b).  

Table S4. Immune tumor infiltration signatures derived from discovery dataset, shown for different 

immune cell subsets (a) and for the CD8 T cell infiltration program expanded to whole-transcriptome 

using scRNA-seq data of CD8 T cells  (b).  

Table S5. Fibroblast desmoplasia associated genes (a) and their Gene Ontology enrichment analysis 

(b).  

Table S6. MTIL genes (a) and its Gene Ontology enrichment analysis (b).  

Table S7. High-content CRISPR screens sgRNA library.  
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