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ABSTRACT 
 
Biological aging is a multifactorial process involving complex interactions of cellular and 
biochemical processes that is reflected in omic profiles. Using common clinical laboratory 
measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive 
biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality 
risk and can be broadly recapitulated across EMRs. We then applied elastic-net regression to 
model EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge 
and OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic 
diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, 
n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic 
biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search 
space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a 
measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections 
central to the aging process. 
 
Keywords: epigenetics, proteomics, metabolomics, biological aging,  multi-omics, aging, clock, 
biobank 
 
MAIN 
 
A major goal of aging research is to define biomarkers of aging that capture inter-individual 
differences in functional decline, chronic disease development, and mortality not identified 
through chronological age alone1. Both molecular and clinical data have been used to quantify 
various attributes of the biological aging process. Multiple molecular biomarkers of aging, or 
“clocks'', have been developed as proxies for these hallmarks of aging2. These biomarkers have 
been variously based on telomere length3, neuro-imaging data4–7, immune cell counts8, and 
large-scale omics including DNA methylation (DNAm)2,9–11, metabolomics12, glycomics13, and 
proteomics14–16. 

 
Over the last two decades, electronic medical records (EMR) have been widely used in clinical 
research, in particular for precision medicine, enabling deep phenotype mining from dense, 
comprehensive time-dependent data17. By utilizing comprehensive EMR data, we can capture 
clinical physiological changes over time that robustly illustrate phenotypic changes in real-time 
health status. Capitalizing on EMRs provides a unique opportunity to quantify the aging process 
in a reproducible way across clinical settings. While healthy aging encompasses both quality of 
life and life span, metrics of biological age have traditionally focused on using either clinical data 
to quantify quality of life18,19, or mortality risk to quantify life span20, resulting in biological 
phenotypes that are optimized to one of these attributes, while not fully capturing the other. With 
the wealth of data captured via EMRs, biological aging phenotypes that incorporate both dense 
clinical data and mortality can be created to synthesize these important attributes of aging into a 
single measure.  
   

While clinical data are essential in creating aging phenotypes, connecting these phenotypes to 
the molecular underpinnings of the aging process is equally important. We do so by combining 
EMR data with comprehensive ‘omic profiling to assess the biological processes that ultimately 
govern aging. The strong molecular link between DNA methylation (DNAm) and the aging 
process has resulted in the widespread development and success of DNAm clocks with various 
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biologic aging phenotypes aimed at reflecting clinical biomarkers (e.g. PhenoAge18), mortality 
(e.g. GrimAge20), and the rate of aging (e.g. DunedinPACE21).  

Despite their broad use across both research and commercial settings, DNAm clocks have 
notable limitations. One such limitation is the difficulty of accurately reducing dimensionality due 
to the technical noise in measuring individual CpGs , which subsequently affects the precision 
22. The heterogeneity of immune cell subsets is also a confounder of DNAm aging estimates , 
and whilst cellular deconvolution methods have been applied, to date immune deconvolution 
has considered a limited number of cell types23,24. Further, the inclusion of a CpG in a predictive 
aging clock does not necessarily imply causality nor functionality25, and identifying causal CpGs 
from  DNAm clocks remains a challenging task, one that limits their biological potential.  

Proteomics and metabolomics are more directly related to biological phenomena and may have 
utility as components of aging clocks. The proteome is altered by hallmarks of aging including 
loss of proteostasis, dysregulated nutrient sensing26, altered intercellular communication27 and 
cellular senescence28. Further, blood plasma contains circulating proteins derived from nearly all 
organs and cell types, making it possible to associate findings in peripheral blood with specific 
tissues and organs21. The metabolome not only provides critical information about metabolic 
processes, but it also provides measures of environmental exposures, including xenobiotics, 
that may be critically linked to the aging process. Further, the peripheral blood metabolome 

carries information from multiple tissues across the body, increasing the potential aging 
information of metabolomics compared to methylation and transcriptomic clocks of blood cells29. 

Despite the important advantages of other omics, the development of transcriptomic, proteomic, 
and metabolomic clocks  for biologic aging phenotypes has been limited. Initial work has 
demonstrated that while individual omics clocks share commonalities, each omic data type 
provides a distinct window of features that illustrate  the aging process30, suggesting that the 
best and most clinically informative approach would harmonize combined information from 
multiple omic measurements to create an optimized aging clock. However, the integration of 
multiple omics into a multi-omic clock or to optimize and further inform upon the biological 
processes of improvement upon DNAm clocks remains an area of unfulfilled clinical potential. 

Using ~30,000 participants from the Massachusetts General Brigham (MGB) Biobank, we 
developed and validated three distinct and clinically relevant measures of biological age: 1) 
EMRAge, a clinically-based and versatile death mortality predictor that can be broadly 
recapitulated across EMRs; 2) DNAmEMRAge, a DNA methylation aging biomarker trained to 
predict EMRAge; and 3) OMICmAge, the first DNA methylation-based multi-omic aging 
biomarker trained to predict EMRAge, that integrates proteomic, metabolomic, and clinical data 
through the use of Epigenetic Biomarker Proxies (EBP) (i.e., methylation surrogates) 

31–33. By 
outperforming current methylation-based clocks in associations with chronic disease outcomes 
and mortality, we demonstrate the value of DNAmEMRAge, and OMICmAge, while further 
substantiating the biological relevance and value of  integrating multiple omic data into one 
biological aging phenotype. 
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RESULTS 

Overview of Study Design 

To develop and validate EMRAge, DNAmEMRAge, and OMICmAge, we used participants in the 
Massachusetts General Brigham (MGB) Biobank. Individuals with available plasma and clinical 
data were used to develop EMRAge (n=30,884) (Extended Figure S1). A subset of these 
individuals who had available omic data were used to develop DNAmEMRAge and OMICmAge 
(MGB Aging Biobank Cohort (MGB-ABC), n=3,451). Finally, we validated these aging 
biomarkers using an independent cohort, the TruDiagnostic Biobank (n=12,666) (Figure 1). The 
additional clinical characteristics and demographics for these cohorts are described in 
Extended Table S1. Overall the population in the MGB Biobank cohort has a higher prevalence 
and broader range of comorbidities than individuals enrolled in the TruDiagnostic Biobank 
cohort.  
 
Development of EMRAge  
First, 30,884 individuals were apportioned randomly into training and testing sets using a 70:30 
ratio. A Cox proportional hazards (Cox-PH) model was fitted in the training set to estimate the 
weightings of the 19 selected features (Extended Table S7). In a manner analogous to the 
GrimAge approach20, we converted the linear combination of estimated weights and predictor 
values into an "age" metric (Method). The Pearson correlation coefficient between EMRAge 
and chronological age was found to be greater than 0.75 (Extended Figure S2). We validated 
the EMRAge predictors by re-training the algorithm at four time points in 2-year increments: 
January 1st of 2008, 2010, 2012, and 2014. The four derived equations were then applied to 
participants (N=11,673) on January 1st of 2016. The Pearson correlations amongst these 
estimates were nearly 1, affirming the robustness of the EMRAge predictors (Figure 2A). 
Figure 2B shows that all aging-related health outcomes, including all-cause mortality, stroke, 
type-2 diabetes, chronic obstructive pulmonary disease (COPD), depression, other 
cardiovascular diseases (CVD), and any type of cancer, are significantly positively associated 
with higher EMRAge. The highest hazard ratio was seen for all-cause mortality (HR = 1.10 with 
95% CI [1.10, 1.11]), followed by stroke and COPD. For the odds ratio, type-2 diabetes (OR = 
1.08 with 95% CI [1.08, 1.09]) showed the highest values, followed by CVD and COPD. The 
training and testing sets showed very similar results for all the health outcomes. As illustrated in 
Figure 2C, participants with older EMRAge and older PhenoAge exhibit a markedly higher 
mortality risk than their younger counterparts. However, EMRAge more effectively discriminates 
between populations with high versus low survival probabilities, particularly among the oldest 
demographic. Furthermore, after adjusting for covariates, EMRAge has higher HR for all aging-
related outcomes, with the exception of Type 2 Diabetes, when compared with PhenoAge 
(Figure 2D). 

Development of DNAmEMRAge 

After developing the EMRAge measure, we created a DNAm surrogate predictor of EMRAge, 
DNAmEMRAge, using DNA methylation data in an elastic net regression model (alpha=0.1) to 
select the CpGs that are most predictive of EMRAge (Method). The model for DNAmEMRAge 
included 1,097 CpG sites and age as predictors. A 25-fold cross validation showed an 
R2=0.827, suggesting good concordance in prediction. However, to further assess the 
agreement between DNAmEMRAge and the EMRAge, the data was resampled to identify a 
new training data set composed of samples used to generate the model and samples not in the 
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model (N=2,762). Within the training data, the resulting DNAmEMRAge and EMRAge values 
showed high correlation (Figure 3A, N=2,762, R2=0.82, p<2.2e-16, Rho=0.91, p<2.2e-16). 
Finally, we also used a smaller test dataset which was not used for training to assess 
concordance; we find comparable correlations within this test set (N = 689, R2=0.83, p<2.2e-16, 
Rho=0.91, p<2.2e-16, see Figure 3B). Finally, the mean absolute error between 
DNAmEMRAge to EMRAge is 8.33 years in the training set and 8.50 years in the testing set 
and the intraclass correlation coefficient (ICC) was 0.995 (Figure 3C). 
 
 
Development of OMICmAge 
 
Metabolomic, Proteomic, and Clinical Epigenetic Biomarker Proxies (EBPs) 

Untargeted global plasma metabolomic profiling was performed on the Metabolon platform. 
After preprocessing and scaling, the final dataset consists of 1,459 metabolites, that cover a 
broad range of metabolic pathways (Extended Figure S3), across 1,986 individuals, among 
which 1,691 were matched to methylation data. Global proteomic data were generated using the 
Seer SP100 platform, based on liquid chromatography mass spectrometry. The final processed 
dataset consisted of 2,805 non-unique and 536 unique protein groups (denoted as “proteins”) 
across 1,789 individuals, among which 1,475 were matched with methylation data. We further 
considered 46 clinical variables that have potential relationships with aging and aging-related 
outcomes. We selected proteins, metabolites, and clinical variables with a significant Pearson 
correlation (p<0.05) to EMRAge greater than 0.1, resulting in 299 metabolites, 110 proteins, and 
25 clinical variables. We then generated Epigenetic Biomarker Proxies (EBPs) - epigenetic 
predictors for each selected metabolite, protein, and clinical variable - via an elastic net 
regression model. We retained all EBPs with a significant (p<0.05) Pearson correlation above 
0.2 with their estimated metabolite/protein/clinical value. In total, 266 metabolite EBPs, 109 
protein EBPs, and 21 clinical EBPs were retained, totaling 396 EBPs to be included as features 
in the predictive model for OMICmAge (Extended Table S2). OMICmAge was then generated 
by integrating proteomic, metabolomic, and clinical data into a DNA methylation clock. 
 
 
Predictive model for the OMICmAge 

OMICmAge was generated via a penalized elastic net regression model of EMRAge that 
included methylation CpG values, relative percentages of 12 immune cell subsets, 396 EBPs 
(Extended Table S2), age and sex as features in the model. This model retained 990 CpGs, 40 
EBPs (16 protein EBPs, 14 metabolite EBPs, and 10 clinical EBPs) (Figure 4A) and age as 
significant predictors of EMRAge with varying weightings in the final model. Interestingly, the 
model did not retain any of the immune cell subsets after penalization. We tested an 
independent model including them as unpenalized features, but results did not change 
substantially. Thus, we continued with the model where all the features were penalized. Figure 
3 shows the correlation between EMRAge and OMICmAge in the training (N = 2,762, R2=0.83, 
p<2.2e-16; rho=0.91, p<2.2e-16) and testing sets (N = 689, R2=0.84, p<2.2e-16; rho=0.92, 
p<2.2e-16), as well as the ICC using 30 replicates (0.998). In terms of error, the mean absolute 
error between OMICmAge and EMRAge was 4.96 years in the training set and 4.97 years in the 
testing set, which was notably lower than the mean absolute error for DNAmEMRAge (8.33 and 
8.50, respectively).  
 
 
Inferring the underlying biology from selected EBPs in the OMICmAge 
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A total of 40 EBPs spanning 8 biological systems are incorporated into OMICmAge and they 
predominantly represent cardiovascular, inflammatory, and endocrine systems; however, 
several of the selected metabolites and proteins EBPs do not have current clinical applications. 
We observed strong correlations between several of the selected EBPs and actual clinical 
values (e.g. rho=0.66 and 0.63 for EBP(CRP) and EBP(HbA1C) respectively). We also found 
significant associations between traditional disease biomarkers and EBPs, including positive 
associations between EBP(glucose), EBP(HbA1c) and type 2 diabetes and negative 
associations between EBP(FEV1) and COPD. Together, the directionality of these EBPs  and 
their associated disease states are consistent with clinical disease biomarkers in both cohorts 
(Figure 4B-C). We observed more significant disease associations with EBPs in the MGB-ABC, 
which is likely due to the decreased health in MGB-ABC (Extended Table S1). We observed 
multiple associations between lifestyle factors and EBPs (Figure 4B-C). Overall, the direction of 
effect for these associations was consistent with the known biological knowledge for the 
relationship between the actual metabolite, protein, and clinical measurements and the specific 
chronic disease and lifestyle features being tested. This suggests that the EBPs are effective at 
capturing the underlying biological relationship of the original biomarkers.  
 
 
Comparison of OMICmAge to previous epigenetic biomarkers of aging   
 
We compared DNAmEMRAge and OMICmAge to previous epigenetic clocks in terms of their 
relationship with immune cell subsets, the CpGs sites included in the predictive model, the 
relationship with age-related disease outcomes, and five- and ten-year mortality. We generally 
observed consistent correlations between all epigenetic clocks and immune subsets; however, 
we observed stronger correlations with sex for both OMICmAge and DNAmEMRAge (R=0.28, 
p-value = 0.02, and R=0.36, p-value = 0.009, respectively) in comparison to previous clocks 
(Extended Figure S4B). There was minimal overlap between the CpG sites selected for 
estimating DNAmEMRAge and OMICmAge compared with previous clocks (Figure 5A); 
DNAmEMRAge and OMICmAge had 660 and 657 unique CpG sites respectively. Interestingly 
411 CpG sites are shared between these two clocks. While PhenoAge and Horvath clock share 
50 CpG sites and Horvath and Hannum share 29, the maximum number of probes shared 
between OMICmAge and any previous clock is 3. We also compared the prevalence and 
incidence of age-related disease outcomes between DNAmEMRAge, OMICmAge, and other 
aging clocks in the MGB-ABC and Tru Diagnostic Biobank cohorts (Figure 5B, Extended Table 
S3). For MGB-ABC OMICmAge or DNAmEMRAge had the highest ORs for type-2 diabetes, 
stroke, CVD and depression whereas PCGrimAge had the highest OR for COPD and the first-
generation clocks (PCHorvath pan tissue, PCHorvath skin and blood, and PCHannum) had the 
highest ORs for cancer. Regarding HRs in MGB-ABC, OMICmAge or DNAmEMRAge had the 
highest HRs for type-2 diabetes, stroke, CVD, depression, COPD and all-cause mortality 
whereas PCGrimAge and PCHorvath pan tissue had the highest HRs with cancer. We observed 
comparable findings for prevalent disease associations in the Tru Diagnostic Biobank cohort, 
with OMICmAge or DNAmEMRAge having the highest ORs for all comorbidities except COPD 
where PCGrimAge had the highest observed OR. We also calculated the Area Under the Curve 
(AUC) for 5-year and 10-year survival using prediction classifiers for OMICmAge, 
DNAmEMRAge, PCGrimAge, and chronological age (Figure 5C).  DNAmEMRAge showed the 
highest AUC values (5-year: 0.894, 10-year: 0.889), followed by OMICmAge with very similar 
values (5-year: 0.889, 10-year: 0.874). PC GrimAge and chronological age had AUC values that 
were approximately 5 percent less accurate than either DNAmEMRAge or OMICmAge.  
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Using MGB-ABC, we observed strong positive associations between OMICmAge and male sex, 
tobacco smoking, chronological age, and body mass index (BMI) while we observed significant 
negative associations with physical activity and higher education (Figure 6A). In the 
TruDiagnostic cohort (Figure 6B), we observed similar estimated effects for sex, tobacco 
smoking, chronological age, BMI, and physical activity. When evaluating other lifestyle factors, 
recreational drug consumption was associated with a higher OMICmAge while high sexual 
activity, fish oil supplementation, and antioxidants were associated with a lower OMICmAge 
(Extended Table S4).  
 
 
DISCUSSION 
 
Previously defined aging biomarkers have been developed using either clinical data or mortality 
prediction models alone22,23. Recognizing that both clinical measures that reflect overall health 
and the overall risk of death are critical yet distinct attributes of aging, we developed EMRAge, a 
hybrid aging phenotype that distills measures of both health and wellness and mortality into a 
single measure, as demonstrated by the robustness of EMRAge. We created a predictive model 
of time until death using 27 clinical EMR measures and mortality data from ~30,000 individuals 
in the MBG Biobank, spanning up to 30 years. When assessing mortality, we found that 
EMRAge demonstrates more accurate mortality risk prediction than either chronologic age or 
PhenoAge over a 10-year period. By creating multiple predictive models of EMRAge at different 
points in time in the EMR, we found strong reproducibility of EMRAge as an aging phenotype 
trained with common laboratory measures. We then created both DNAm and multi-omic 
biomarkers for aging for EMRAge, DNAmEMRAge, and OMICmAge.  We demonstrate that both 
DNAmEMRAge and OMICmAge have strong associations with chronic diseases and mortality 
and outperformed current DNAm aging biomarkers. Importantly, we observe strong associations 
with multiple age-related diseases across two diverse cohorts representing poor to moderate 
overall health (MGB-ABC) and moderate to excellent overall health (TruDiagnostic Biobank) as 
demonstrated in Extended Table S1. Furthermore, we demonstrate marked improvements in 
the accuracy of both 5- and 10-year mortality risk. While both DNAmEMRAge and OMICmAge 
have similar overall performance, through the use of EBPs, the generation of OMICmAge has 
expanded the predictive search space to consider age-relevant proteins, metabolites, and 
clinical data while being generated through DNA methylation data alone. This expanse of 
biological input via multiple omics provides new translational opportunities for identifying 
clinically-relevant interconnections that are central to the aging process. 
 
To date, aging clocks have been generated predominantly using singular omic data types, with 
varying degrees of accuracy31,37. It is clear that DNA methylation is one of the strongest 
predictors of aging phenotypes26; however, other omic data - in particular proteomics and 
metabolomics - have also demonstrated strong predictive accuracy and add the distinct 
advantage of providing more tangible biological insights into the aging process24. While the 
epigenome is a central mechanism for aging, the biological functions of epigenetic perturbations 
are often less clear to identify. In contrast, proteins capture a broad range of age-related 
biology, including immune function and inflammatory processes that are often well-understood 
and have clear clinical implications for treatment and/or modification. Changes in oxidative 
stress, hormones, and lipid profiles are just a few examples of the metabolic processes 
captured via the metabolome that reflect specific biology relevant for aging processes27. As 
such, by including the metabolome, proteome, epigenome, and clinical data into predictive 
space for OMICmAge, our modeling approach captures the aging processes on multiple levels 
of systems biology that may further elucidate relevant biological aging functions.  
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One ongoing challenge with multi-omic approaches is the complexity of integrating different 
omic data together and the subsequent interpretation of the findings. Moreover, final biological 
models that include multiple omic data types are most often impractical from a clinical 
perspective due to high costs, logistical difficulties, and time delays from multiple assay 
measurements. While our development of OMICmAge incorporates metabolomics, epigenetics, 
proteomics, and clinical data, we distilled OMICmAge into a single DNAm based aging algorithm 
through the creation and inclusion of EBP for associated metabolites, proteins, and clinical 
measures32–34. The resulting algorithm, OMICmAge, showed several important improvements 
over previous epigenetic biomarkers. First, OMICmAge had stronger associations with all cause 
mortality relative to the other epigenetic based aging biomarkers we evaluated. We also 
observed increased accuracy of 10-year death prediction when compared to GrimAge. Notably, 
we observed strong associations between OMICmAge and major age-related diseases across 
two distinctly different cohorts. This consistency suggests its broad applicability to population 
outcomes in a clinical setting. Furthermore, the congruence in our findings remains noteworthy 
even when considering the use of both ICD9/10 codes and self-diagnoses for prevalent 
diseases. Besides, high levels of reproducibility has previously been an issue with epigenetic 
biomarkers which has traditionally only been improved through the inclusion of summary 
features such as principal components 2231,32. With OMICmAge alone, we observed high ICCs, 
demonstrating the strong reproducibility of this metric.  

The inclusion of EBPs into the feature space and predictive model for aging biomarkers 
expands the biological processes that may be represented in epigenetic aging biomarkers. 
Previously, these biomarkers have had difficulty explaining why aging biomarkers might be 
accelerated or decelerated in an individual. This has limited the utility of aging biomarkers in 
clinical practice, as the large heterogeneity in accelerated aging can manifest through many 
different biological mechanisms. Through the measurement of OMICmAge and EBPs, we may 
better identify the specific biology associated with aging that is captured via the metabolome, 
proteome, or other clinical factors and assess their overall relationship with OMICmAge. The 
strong correlations between EBPs and the biological measures they are predicting as well as 
the observed associations with relevant disease and lifestyle factors suggests that some EBPs 
capture important biology of what they are predicting through DNAm alone.  
 
The relationships between aging and several of the protein and metabolite EBPs selected in 
OMICmAge are well-known. Albumin was selected as the largest weighted EBP in OMICmAge 
and is a protein known to decrease with age33. OMICmAge also included the androsterone 
sulfate. Androsterone sulfate is a well-known androgenic steroid that declines with age in men 
and women due to andropause and menopause that was also retained as a EBP in OMICmAge. 
However, OMICmAge also selected proteins and metabolites EBPs with little or no known 
relationship with aging, such as ribitol which has been identified as a metabolite predictive of 
mortality but has very little mechanistic information34.  Furthermore, it is important to recognize 
that all EBPs and CPGs retained in the predictive model for OMICmAge are not causal; nor do 
they necessarily have the strongest overall associations with OMICmAge. They are merely 
included as predictive variables; further functional work and/or causal modeling via Mendelian 
Randomization is necessary to infer causality. 
 
There are several limitations which need to be addressed in future work. First is the notion that, 
while our EMRAge model is predicated on EMR data, it's essential to recognize that real-world 
data, such as EMRs, might not match the quality of data derived from clinical trials or surveys. 
This discrepancy arises because EMRs are primarily tailored for clinical care rather than 
research objectives. The quality of our data was influenced by three primary factors: 1) the 
absence of complete clinical lab values on the plasma collection date; 2) potential selection bias 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.16.562114doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.16.562114
http://creativecommons.org/licenses/by-nd/4.0/


 

 

due to reliance on a singular data source, which could impact the broader applicability of 
EMRAge; and 3) the unavailability of lab test results in the initial study phase, attributed to the 
limited use of sophisticated analyzers. To mitigate the first concern, we calculated the median 
lab test value from a five-year span surrounding the collection date, ensuring a robust sample 
size for EMRAge development. The validity of our chosen EMRAge predictors was further 
reinforced by the near-perfect pairwise correlations among four reconstructed EMRAge 
estimates. To address the third limitation, we prioritized commonly conducted lab tests as 
EMRAge predictors. While this strategy might introduce a new selection bias, it effectively 
maximizes the sample size and maintains a manageable predictor pool. To circumvent the 
second limitation, we introduced OMICmAge and DNAmAge models, subsequently 
corroborating their strong associations with various aging-related diseases across two diverse 
cohorts. More work will continue to improve the accuracy and precision of EBPs. There are also 
important considerations with regard to omic data. The profiling platforms for both proteomics 
and metabolomics do not provide absolute quantification of proteins or metabolites which 
prevents EBPs from reflecting clinical levels of each variant. Refinement and the use of targeted 
assays will improve the accuracy of the EBPs. Furthermore, proteomic and metabolomic EBPs 
could be improved by regressing out known genetic proteinQTL and metaboliteQTL effects from 
the protein/metabolites levels prior to generating the EBPs. This should be done to preclude the 
signatures being driven by common SNP data that are invariant across the lifespan. Finally, 
there is room to expand upon the EBPs that were included into the feature space for 
OMICmAge, both with additional metabolites/proteins and also with other omics. While our omic 
profiling platforms covered a broad range of metabolites/proteins, we only included 396 EBPs 
with a significant correlation with EMRAge. Future analyses we will expand upon the EBPs in 
the training of OMICmAge. Finally, additional validation of OMICmAge across diverse 
populations will continue to highlight potential limitations in our phenotype. By identifying a 
healthy biobank cohort, we purposely selected a validation cohort that was distinctly different 
from MGB-ABC, which had more comorbidities than the general population. We found 
consistency in the observed associations in our findings, suggesting that OMICmAge is robust; 
however, further interrogation will continue to inform upon our overall understanding of this 
phenotype.  
 
Overall, we believe the creation of DNAmEMRAge and OMICmAge represents a step forward in 
the evolution of improvement of epigenetic aging clocks. EMRAge is the first clinical biomarker 
based clock trained using EMR data to the phenotype of time until death. This provides a unique 
EMR resource to quantify aging and longevity in large EMR populations. Additionally, 
OMICmAge is the first epigenetic clock that integrates metabolomic, clinical, and proteomic data 
via EBPs. Finally, DNAmEMRAge and OMICmAge have the strongest overall associations with 
prevalent and incidents chronic diseases outcomes and the most accurate 5- and 10-year 
mortality prediction that were observed.    
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METHODS 
 
Discovery Cohort 
 
Massachusetts General Brigham (MGB) Biobank 
 
The Massachusetts General Brigham (MGB) Biobank is a large biorepository that provides 
access to research data and approximately 130,000 high-quality banked samples (plasma, 
serum, and DNA) from >100,000 consented patients enrolled in the MGB system35. These 
patients can be linked to corresponding Electronic Medical Record (EMR) data, dating from the 
start of their medical history within the MGB network, in addition to survey data on lifestyle, 
environment, and family history. The original number of participants from the MGB Biobank who 
provided plasma samples was 60,371. Of these, 124 participants were excluded because they 
were younger than 18 years old at the time of plasma collection. Among the remaining adult 
participants, the vital status of 59,213 has been verified as either alive or deceased, with an 
accurate record of the date of death as of 07/28/2022. The other 1,034 participants were 
excluded due to missing verification of their vital status (Extended Figure S1). 

Massachusetts General Brigham Aging Biobank Cohort (MGB-ABC) 
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The MGB-Aging Biobank Cohort (MGB-ABC) is a cohort of 3,451 randomly selected participants 
from the MGB Biobank to create a proportionate aging biobank population. The cohort was 
selected based on even weighting in terms of age, sex and BMI, representative of the MGB 
Biobank. Comprehensive EMR, metabolomic profiling, proteomic profiling, and epigenetics are 
available for select subjects in MGB-ABC.  

Blood samples, collected either as part of clinical care or through research draws at Brigham 
and Women's Hospital (BWH) or Massachusetts General Hospital (MGH), were used for serum, 
plasma, and DNA/genomic research. Each blood draw typically involved collecting 30-50 ml of 
blood, which was linked to the corresponding clinical data from the Electronic Medical Record 
(EMR). The Biobank team also gathered additional health-related information during the blood 
draw process. 
  
The administration of questionnaires for the study was carried out electronically or in written 
form, and participants spent approximately 10-15 minutes completing the surveys. The survey 
included questions related to family history, lifestyle, and environment. and utmost care was 
taken to ensure the confidentiality and security of the information. Participants' identities were 
protected, as no personally identifiable information was requested. The survey data was 
encrypted to ensure privacy.  
 
The Phenotype Discovery Center (PDC) of MGB integrates various data sources, including the 
Research Patient Data Registry (RPDR), health information surveys, and genotype results, into 
the Biobank Portal. This portal combines specimen data with EMR data, creating a 
comprehensive SQL Server database with a user-friendly web-based application35. Researchers 
can perform queries, visualize longitudinal data with timestamps, employ established algorithms 
to define phenotypes, utilize automated natural language processing (NLP) tools for analyzing 
EMR data using the Informatics for Integrating Biology and the Bedside (i2b2) toolkit36, and 
request samples from cases and controls. Data in the Biobank Portal database includes 
narrative data from clinic notes, text reports (cardiology, pathology, radiology, operative, 
discharge summaries), codified data (e.g., demographics, diagnoses, procedures, labs and 
medications) as well as patient-reported data from the health information survey on exposures 
and family history. Validated phenotypes are available in the Biobank Portal user interface for 
genotyped Biobank participants. Other relevant measures such as lung function were extracted 
using a self-developed algorithm incorporating NLP. 
 
 
Metabolomic Profiling 
 
Untargeted global plasma metabolomics profiling was generated by Metabolon Inc. Coefficients 
of variation were measured in blinded QC samples randomly distributed among study samples. 
Batch variation was controlled for in the analysis. Sample preparation and global metabolomics 
profiling was performed according to methods described previously37. Metabolomic profiling was 
performed using four liquid chromatography tandem mass spectrometry (LC-MS) methods that 
measure complementary sets of metabolite classes described previously38: 1) Amines and polar 
metabolites that ionize in the positive ion mode; 2) Central metabolites and polar metabolites 
that ionize in the negative ion mode; 3) Polar and non-polar lipids; 4) Free fatty acids, bile acids, 
and metabolites of intermediate polarity. All reagents and columns for this project will be 
purchased in bulk from a single lot and all instruments will be calibrated for mass resolution and 
mass accuracy daily39. 
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Metabolite peaks are quantified using area-under-the-curve. Raw area counts for each 
metabolite in each sample are normalized to correct for variation resulting from instrument inter-
day tuning differences by the median value for each run-day, therefore, setting the medians to 
1.0 for each run. Metabolites are identified by automated comparison of the ion features in the 
experimental samples to a reference library of ~8,000 chemical standard entries that include 
retention time, molecular weight (m/z), preferred adducts, and in-source fragments as well as 
associated MS spectra and curated by visual inspection for quality control using software 
developed at Metabolon, Inc.39. Identification of known chemical entities is based on comparison 
to metabolomic library entries of purified standards. Additional mass spectral entries will be 
created for structurally unnamed biochemicals, which are identified by virtue of their recurrent 
nature.  These compounds have the potential to be identified by future acquisition of a matching 
purified standard or by classical structural analysis. Quality control (QC) and data processing 
was performed using an in-house method that has now been adopted by colleagues across the 
Boston Longwood Medical Area40–42. Briefly, metabolite features with a signal-to-noise ratio <10 
were considered unquantifiable and excluded, as were features with undetectable/missing 
levels for >10% of the samples. All remaining missing values were imputed with the half the 
minimum peak intensity for that feature across the whole population. Features with a CV in the 
pooled samples greater than 25% were excluded to ensure good technical reproducibility. 
Metabolite features were analyzed as measured LC-MS peak areas and were log-transformed 
to create approximately Gaussian distributions and to stabilize variance, and pareto scaled to 
account for the differences in the scales of measurements across the metabolome. After the 
QC, 1,459 metabolites across a sample size of 1,986 samples were used in the subsequent 
analyses.  
 

Methylation profiling 

DNA methylation/epigenetic data was generated using the Illumina Infinium® MethylationEPIC 
850K BeadChip. The MethylationEPIC 850K BeadChip combines comprehensive coverage and 
high-throughput capabilities with comprehensive genome-wide coverage (greater than 850,000 
methylation sites), including CpG islands, non-CpG and differentially methylated sites, 
FANTOM5 enhancers, ENCODE open chromatin, ENCODE transcription factor binding sites, 
and miRNA promoter regions. Biobanked samples were stored in -80C prior to shipment to the 
TruDiagnostic Inc. (Lexington, KY) for DNA extraction and preprocessing. Briefly, 500 ng of 
DNA was extracted from whole blood samples and bisulfite converted using the Zymo Research 
EZ DNA methylation kit. All manufacturer’s instructions were followed. Bisulfite-converted DNA 
was randomly assigned to chip wells on the Infinium HumanMethylationEPIC array. Lab 
preprocessing included the following: 1) DNA amplification, 2) hybridization to the EPIC array, 3) 
stain, washing, and imaging with the Illumina iScan SQ instrument to generate raw image 
intensities. 

Raw  methylation data for the MGB-Biobank was processed using the minfi pipeline43, and low 
quality samples were identified using the qcfilter() function from the ENmix package44, using 
default parameters. Overall, a total of 4,803 samples passed the QA/QC (p < 0.05) and were 
deemed to be high quality samples. In addition, we removed low quality probes (p < 0.05 out-of-
band) that were identified among the samples. This process retained 721,802 among 866,239 
probes that were high quality and indicated that the large portion of the methylation data was of 
high quality. A combinatorial normalization processing using the Funnorm procedure (minfi 
package), followed by RCP method (ENmix package) was performed in order to minimize 
sample to sample variation as noted in Foox et al. 202145. 
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Proteomic Profiling 
 
We used the Seer proteomic platform for its ability to discover novel proteins and peptides 
related to chronological and biological aging.  While Seer uses LC-MS/MS like other proteomic 
platforms, its patented and novel nanoparticles strategy uses nanoparticles with different 
binding capabilities to isolate and extract peptides and proteins via corona covalent attachment 
to its surface. This technique is unique as it gives the platform the ability to detect low 
abundance peptides and proteins without the need to depletion of the fraction which can be 10x 
more expensive. Moreover, this increases the number of quantified proteins by 3–5 fold 
compared to depleted and un-depleted serum proteomics. The Proteograph untargeted 
approach is also different from other popular platforms based on aptamer technologies which 
only quantifies peptides which they specifically target. This also allows for an unbiased 
discovery of proteomic associations.  
 
Relative protein levels were quantified for 2,000 samples - 1,600 from the MGB-ABC and 400 
process controls - using the Proteograph Product Suite (Seer, Inc.) and LC-MS. Briefly, the 
samples were incubated with five proprietary nanoparticles which formed protein coronas on the 
Seer SP100 proteograph, which allowed for the capture of proteins using physicochemical 
binding. The resulting proteins were digested using trypsin, and relative levels were quantified 
using the default DIA method provided in the Protograph Analysis Software (PAS). Protein 
groups were ultimately considered for downstream analyses for two reasons: peptides identified 
can ambiguously map to multiple proteins, and combining peptides into protein groups can 
improve protein quantification devoid of spurious quantification. Thus, protein group data was 
sent through pre-processing, control based normalization, and outlier detection. This produced 
estimations of a total of 28,490 peptides across blood samples (average 15,239), and 10,265 
(average 4,281) across the controls. Peptides were then further consolidated into 3,695 total 
protein groups (average 2,587) in MGB-ABC samples, and 1,360 total protein groups among 
the plate controls. Following the signal drift and batch effect correction via the Quality Control-
Robust Spline Correction (QCRSC) algorithm46, we applied Log10 Transformation, Pareto 
Scaling, and kNN imputation based on current guidelines47. Stringent filters, including 80% 
protein presence, RSD-qc < 0.20%, and D-ratio < 0.70 , were utilized to reinforce data validity 
and reliability48. The final processed dataset consists of 2,805 non-unique, or 536 unique, 
protein groups, across 1,789 samples, in which the majority of samples (N = 1,475) matched to 
methylation data.   
 
Definition of age-related diseases 
 
We utilized ICD-9/10 codes to identify age-related diseases, including type-2 diabetes, COPD, 
depression, cancer, stroke, and other cardiovascular diseases, as detailed in Extended Table 
S5. 
 
 
Validation cohort 
 
TruDiagnostic Biobank cohort 
 
The TruDiagnostic Biobank cohort included 13,109 individuals who took the commercial 
TruDiagnostic TruAge test and had their DNA methylation data generated. The participants 
were recruited between October 2020 and April 2023 and were predominantly  from the United 
States. These participants were in better health compared with individuals from Mass General 
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Biobank, likely due to their proactive interest in health and willingness to pay for epigenetic 
testing. The majority of these samples were performed under a healthcare provider’s 
recommendation and guidance while less than 5% were in a direct-to-consumer setting. As a 
result, these individuals may experience a self selection bias whereby they seek preventative 
medicine and have fewer comorbidities than normal patient populations.  During the recruitment 
of participants, they were asked to complete a survey that included questions about personal 
information, medical history, social history, lifestyle, and family history. The study involving 
human participants was reviewed and approved by the IRCM IRB and the participants provided 
written informed consent to take part in the study. 
 

Methylation profiling 

Peripheral blood samples were collected using a lancet and capillary method and placed in a 
lysis buffer for DNA extraction. Then, 500 ng of DNA was treated with bisulfite using the EZ 
DNA Methylation kit from Zymo Research following the manufacturer's instructions. The 
bisulfite-treated DNA samples were randomly assigned to a well on the Infinium 
HumanMethylationEPIC BeadChip, which was then amplified, hybridized, stained, washed, and 
imaged with the Illumina iScan SQ instrument to obtain raw image intensities. 
 
To pre-process the TruDiagnostic methylation data, we used the same pipeline as for the MGB-
ABC cohort. A total of 12,666 individuals, representing 96.7% of the original samples, passed 
the QA/QC (p < 0.05) and were deemed to be high quality samples. However, we did not 
remove any probe in order to keep all the CpG sites needed for clock calculation. Due to 
computational limitations, we were unable to apply the same normalization methods as in the 
MGB-ABC cohort. Thus, we applied normal-exponential out-of-band (Noob) normalization using 
the preprocessNoob function from the minfi package. Finally, we used a 12 cell immune 
deconvolution method to estimate cell type proportions49,50. 
 
 
Statistical analysis 
 
Development of EMRAge 

We extracted 27 clinical phenotypes from 59,213 participants in the MGB Biobank with plasma 
samples (Extended Table S6). To address missing values and instrumental variations, the 
median value of all numerical observations, except height and age, were replaced with missing 
median values of all median observations within 5 years around the first plasma collection. The 
resulting individuals with complete data for all clinical phenotypes were used in the analysis 
(n=28,733). Selected samples were divided into training and testing sets using a 70:30 ratio, 
and then fitted a Cox proportional hazards (Cox-PH) model in the training set to estimate the 
weightings (i.e., coefficients) of the selected features. To assure the generalizability of the 
equation, we did not scale the training data. Using the trained model, we calculated the risk 
estimate for each individual in the training set by linearly combining the estimated weightings 
and predictor values (Xβ). This estimate was further transformed into the EMRAge value using 
the equation below to get the same mean and variance as chronological age: 

EMRAge = 9.95006 * Xβ_{train} + 52.14512 

Where 9.95006 belongs to the mean of chronological age and 52.14512 to the standard 
deviation. 
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We utilized one-hot encoding to convert categorical variables into binary variables and 
standardized the numerical variables. Then we used a LASSO Cox regression model to predict 
time-til-death among 28,733 individuals. To determine the optimal model, we assessed model 
performance based on Harrell's C index. As a result, the optimized model selected 25 clinical 
variables, which were then passed to a Cox Proportional-Hazard (Cox-PH) model for further 
filtering. Ultimately, 19 clinical variables remained as they had an adjusted p-value ≤ 0.05 in the 
fitted Cox-PH model. As a result, 30,884 participants with all available electronic medical 
records of selected clinical variables remained in the final cohort. We then evaluated the 
Pearson correlation of EMRAge to chronological age in the training and testing sets.  

Since the EMRAge predictors (i.e., clinical phenotypes) were selected based on imputed data, 
we validated their robustness by re-training the algorithm at four different time points: Jan 1st of 
2008, 2010, 2012, and 2014. During each time point, we replaced the values of the selected 
phenotypes with the median values of observations within a one-year timeframe, ensuring no 
overlap of data scans. To make a sensible comparison, we excluded the Charlson Comorbidity 
Index indicators because they are less sensitive to time in our data. As a result, we had 4 
estimating equations trained using the same predictors but different data. Then we applied 
these equations to calculate the EMRAge value of the participants (N=11,673) with complete 
data of predictors around 1-year centered on January 1st of 2016, and then checked Pearson's 
correlations among these four estimates.  

We then assessed the relationship between EMRAge and both incident and prevalent aging-
related health outcomes, including all-cause mortality, stroke, type-2 diabetes, COPD, 
depression, other cardiovascular diseases (CVD), and any type of cancer. We used the 
following criteria based from the patient EMRs for a positive diagnosis of an age-related health 
outcome: 1) at least 2 relevant ICD-9/10 codes were recorded in the patient's EMR, and 2) the 
first and last dates of the relevant ICD codes should be at least 1 day apart. We estimated the 
incident risk of the EMRAge for all prospective adverse events in the Cox-PH model, adjusting 
for age, sex, race, BMI, smoking status and alcohol consumption. We also estimated the odds 
ratio of the EMRAge for all prevalent morbidities in the logistic regression model, adjusting for 
the same covariates.   

 
Comparison of EMRAge and PhenoAge 

We compared the incidence and prevalence of age-related health outcomes between EMRAge 
and PhenoAge by applying the same linear models described above with PhenoAge as the 
outcome. We calculated PhenoAge for our MGB Biobank cohort using the established toolkit, as 
initially proposed by Levine et al. (2018) and developed by Belsky and Kwon51. Although 
PhenoAge is derived from eight clinical lab metrics, one specific parameter, C-reactive protein, 
is not frequently ordered in routine clinical settings. To maximize sample retention, we employed 
the same strategy to retain the median value of observations over a 5-year window centered on 
the plasma collection date. Following this imputation, our sub-cohort consisted of 17,093 
participants, with 11,945 samples in the training set and 5,148 in the testing set.  

 
Development of DNAmEMRAge 
 
After developing the EMRAge measure, we next created a DNAm surrogate predictor of 
EMRAge using matched EPIC array data (DNAmEMRAge). To this end, we used the MGB-ABC 
cohort, which is a subset of the MGB Biobank that was created with the aim of possessing a 
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proportionate aging biobank population. DNA Methylation was generated from a total of 4,803 
samples using the EPICv1 array. To allow for training, samples were then selected for having 
EMRAge quantified and the availability of chronological age and sex information, which retained 
3,451 samples. To develop DNAmEMRAge, the normalized DNA methylation dataset was 
transposed so that CpG sites were considered features, and trained to EMRAge values. Using 
an 80-20 train to test split, the glmnet R package52 (version 4.1-8) was used to train a Gaussian 
penalized regression model using an alpha parameter of 0.1. Using a cross validation fold 
number of 25, an optimal lambda was selected based on the alpha parameter. Sex was 
classified as Gender_M (males) and Gender_F (females) using one-hot encoding, and was 
included as penalized features along with chronological age and the relative cell proportions of 
12 immune cell types. All CpGs and the covariates mentioned were included as penalized 
features. Those features that showed a non zero coefficient were selected for the final model.  
 
 
Development of Epigenetic Biomarker Proxies (EBP) models 
 
To generate EBPs elastic net models, the normalized DNA methylation dataset was transposed 
to which the features were considered to be CpG sites. CpGs were not pre-filtered, and all 
CpGs that passed QC were used for training. Training was conducted to each significant 
clinical, metabolite, and protein group values. To ensure the best model associated with 
EMRAge was generated, the glmnet R package was used to train Gaussian penalized 
regression models across all measures. In order to maximize the number of CpGs, an alpha 
value of 0.1 was utilized. However, for three clinical values (smoking pack years, total bilirubin, 
and total cholesterol), an alpha of 0.5 was applied as they produced the highest correlation 
between predicted and observed values. Using a cross validation fold number of 25, an optimal 
lambda was selected at each alpha threshold and implemented to select the features. Sex was 
classified as Gender_M (males) and Gender_F (females) using one-hot encoding, and was 
included as penalized features along with chronological age. Features that showed a non zero 
coefficient were selected for each EBP.  EBPs with a significant (p<0.05) Pearson correlation 
greater than 0.2 were selected to include as features in the model to train OMICmAge. 
 
We assessed the association between the EBPs and multiple chronic disease and lifestyle 
outcomes in both MGB-ABC and TruDiagnostic Biobank cohort. Specifically, we standardized 
all EBPs and utilized a generalized linear regression model with disease/lifestyle as the 
outcome and each individual EBP as the predictor variable, adjusting for age, sex, ethnicity, 
BMI, and tobacco smoking.  
  
 
Development of OMICmAge 
 
OMICmAge was developed using the individuals used to develop DNAmEMRAge (N = 3,451), 
and applying a similar 80:20 train:test split.  Penalized regression models using an alpha of 0.1 
and the optimal lambda identified after a 25 cross-validation were used to train a single 
composite model among the train samples. For training, the following values were inputted as 
penalized features regression model and trained to EMRAge: all CpG sites present in the first 
and second generation of Illumina EPIC arrays; all selected clinical, metabolite, and proteins 
EBPs estimates from the training samples; relative estimates of 12 cell immune cell subtypes; 
and the demographic information (Age, sex, and BMI). For sex, a similar one-hot encoding was 
used to identify males (Gender_M) and females (Gender_F). Features which showed non-0 
coefficients were kept in the final multivariate model. 
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Comparison of OMICmAge, EMRAge and Previous Clocks 
 
For comparison of OMICmAge and EMRage clocks to previous methods of biological age 
prediction, we chose to analyze PCHorvath10, PCHannum11, PCPhenoAge51, PCGrimAge20, and 
DunedinPACE53. We chose their PC (i.e., principal component) versions as they have much 
better precision while still maintaining their relationships to health outcomes54. In order to 
compare the CpG sites included in each model, we used the non-PC clocks because the PC 
models do not contain CpG sites as predictors. 
 
We used the Cox Proportional-Hazard regression model to assess the association between 
each clock and incident age-related diseases, such as type-2 diabetes, stroke, depression, 
COPD, other cardiovascular diseases, and any type of cancer. We also employed the logistic 
regression model to assess the association between each clock and prevalent age-related 
diseases. Each model was adjusted for age, gender, race, BMI, smoking status, and alcohol 
drinking habits. Furthermore, to predict the 5-year and 10-year survival probability, we used a 
simple logistic regression model with a binary survival flag as the outcome and each clock as 
the sole predictor. We drew ROC curves and estimated the Area Under the Curve (AUC) based 
on this model. 
 
 
Figure 1. Overall study design. A) Workflow of the study. B) Description of the study 
population used in the study. MGB: Massachusetts General Brigham. MGB-ABC: MGB Aging 
Biobank Cohort. TruD: TruDiagnostic. EBP: Epigenetic Biomarker Proxy. 
 
Figure 2. Development, Robustness, and Comparaters of EMRAge. A) Pairwise correlation 
between different 4 estimates of EMRAge at timepoints Jan 1st of 2008, 2010, 2012, and 2014. 
B) Forest plot of hazard ratio and odds ratio between EMRAge and aging-related health 
outcomes. C) Kaplan-Meier Plot of EMR Age vs. PhenoAge. D) Hazard ratios and confidence 
intervals of one standard deviation change to onset of aging-related diseases. These values 
were estimated in the testing dataset from the MGB Cohort (N = 5,148) adjusting for 
chronological age, sex, race, smoking status, and alcohol consumption. 
 
Figure 3. Correlation plots to EMRAge and intra-class correlation coefficients (ICC) for 
DNAmEMRAge and OMICmAge. A) Correlation between DNAmEMRAge and EMRAge in the 
training set (N=2762). B) Correlation between DNAmEMRAge and EMRAge in the testing set 
(N=689). C) Intra-class correlation coefficients for DNAmEMRAge using 30 replicates. D) 
Correlation between OMICmAge and EMRAge in the training set (N=2762). E) Correlation 
between OMICmAge and EMRAge in the testing set (N=689). F) Intra-class correlation 
coefficients for OMICmAge using 30 replicates. 
 
Figure 4. Epigenetic Biomarker Proxies (EBPs) included in the OMICmAge. A) EBPs 
selected in OMICmAge after penalization of the OMICmAge segmented by a system approach. 
Each color represents one of the 7 systems. B) Association of EBPs to diseases and lifestyle 
factors in the MGB-Aging Biobank Cohort. C)  Association of EBPs to diseases and lifestyle 
factors in the TruDiagnostic biobank. We evaluated the association between each EBP and 6 
major diseases (Depression, Stroke, COPD, Cancer, CVD, and Type-2 Diabetes Mellitus) and 
multiple lifestyle factors, including alcohol consumption, education level, and exercise per week, 
among others. The strength of the color is proportional to the estimate of the linear regression 
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adjusted by age, sex, ethnicity, BMI, and tobacco smoking. In red, positive associations. In blue, 
negative associations. 
 
Figure 5. Comparison of OMICmAge and DNAmEMRAge to previously established aging 
biomarkers. A) Intersection of predictive CpG sites included in the previously published 
epigenetic clocks, DNAmEMRAge, and OMICmAge. The horizontal bars represent the total 
number of CpG sites included in each epigenetic clock. The vertical bars represent the number 
of unique or shared CpG sites between clocks. PhenoAge refers to the DNA methylation 
version. B) Horizontal errorbar plot of odds/hazard ratios of each methylation clock to aging-
related diseases in TruDiagnostic Biobank cohort or testing set of MGB-ABC cohort. C) ROC 
curves for 5-year and 10-year survival prediction classifiers utilizing prior methylation clocks or 
chronological age. The orange line represents OMICmAge, the purple line represents DNAm 
EMRAge, the light blue line represents PCGrimAge, the remaining grey lines represent other 
PC aging clocks. 
 
Figure 6. Bubble plot for the representation of the lifestyle factors associated with 
OMICmAge. A) MGB-ABC Biobank. B) TruDiagnostic Biobank. Visual representation of the 
effect sizes found with the OMICmAge. Circle diameter represents the calculated estimated 
value of the factor. Significant positive associations are represented in green whereas 
significant negative associations in red. All the associations are adjusted by chronological age, 
biological sex, ethnicity, body mass index (BMI), and tobacco use. 
 
Extended Figure S1. Flowchart for inclusion of participants from the Massachusetts 
General Brigham (MGB) Biobank for the development of EMRAge. 
 
Extended Figure S2.  Pearson’s correlation between EMRAge and chronological age in 
the test and train sets. 
 
Extended Figure S3. Distribution of super pathways (A) and subpathways for all the 
metabolites (B). 
 
Extended Figure S4.  Correlation plots between epigenetic clocks and immune cells in 
the MGB-ABC and TruDiagnostic biobanks. A) Discovery cohort - MGB-ABC biobank. B) 
Validation cohort - TruDiagnostic biobank. Each column represents a covariate among age, 
gender male, gender female, and immune cells. The size is related to the magnitude of the 
correlation and the color to the direction (positive or negative). *: p-value < 0.05, **: p-value < 
0.01, ***: p-value < 0.001. 
 
Extended Table S1. Demographics for the study populations used for developing 
EMRAge, DNAmEMRAge, and OMICmAge and for the study population used for 
validating the clocks. 
 
Extended Table S2. Information of the 396 Epigenetic Biomarker Proxies (EBPs) included 
as features in the predictive model for OMICmAge development. Among them, 266 are 
metabolite EBPs, 109 are protein EBPs, and 21 are clinical EBPs. The table contains 
information on MSE, the R2, and the Pearson correlation between the EBPs and the values for 
each feature. For those EBPs selected for the OMICmAge after penalization, there is also a 
description of the biomarker. 
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Extended Table S3a. Hazard/Odds ratios of one unit change to disease for multiple aging 
biomarkers in the MBG-ABC and TruDiagnostic Biobank.  
 
Extended Table S3b. Hazard/Odds ratios of one standard deviation change to disease for 
multiple aging biomarkers in the MBG-ABC and TruDiagnostic Biobank.  
 
Extended Table S4. Association between OMICmAge and lifestyle factors in MGB-ABC 
and TruDiagnostic biobank3 
 
Extended Table S5. Table of the ICD-9/10 codes  
 
Extended Table S6. Table of the extracted clinical phenotypes (N = 27) from the 
Massachusetts General Brigham (MGB) Biobank. 
 
Extended Table S7. Table of the selected phenotypes and respective estimated weighting 
for development of EMRAge 
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