

1 ***Inoviridae* prophage and bacterial host dynamics during diversification, succession and
2 Atlantic invasion of Pacific-native *Vibrio parahaemolyticus*.**

3 Randi L. Foxall^{a,b*}, Jillian Means^{a,c,d*}, Ashley L. Marcinkiewicz^{a,c,e*}, Christopher Schillaci^{a,f,g},
4 Kristin DeRosia-Banick^{a,h}, Feng Xu^{a,b,i}, Jeffrey A. Hall^{a,j}, Stephen H. Jones^{a,f}, Vaughn S.
5 Cooper^{a,b,k}, Cheryl A. Whistler^{a,b,#}

6 ^a Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New
7 Hampshire, USA

8 ^b Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire,
9 USA

10 ^c Graduate program in Microbiology, University of New Hampshire, Durham, New Hampshire,
11 USA

12 ^d Current address: Synlogic Inc., Cambridge, MA, USA

13 ^e Current address: Division of Infectious Disease, Wadsworth Center, New York State,
14 Department of Health, Albany, New York, USA

15 ^f Department of Natural Resources and the Environment, University of New Hampshire,
16 Durham, New Hampshire, USA

17 ^g Current address: NOAA Fisheries Service, Greater Atlantic Regional Fisheries Office,
18 Gloucester Massachusetts

19 ^h Current address: Milken School of Public Health, George Washington University, Washington
20 D.C., USA

21 ⁱ Current address: Children's Hospital of Philadelphia, Philadelphia, PA, USA

22 ^j Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA

23 ^k Department of Microbiology and Molecular Genetics, University of Pittsburgh School of
24 Medicine, Pittsburgh, PA, USA

25 [#]Corresponding Author: Cheryl.Whistler@unh.edu

26

27 * Contributed equally to this work. Ms. Marcinkiewicz initiated the study and documented the
28 phage distribution in clinical and environmental samples, associated phage with aquaculture
29 areas, and conducted initial phylogeographic analyses. Ms. Means extended the research and
30 assembled inovirus genomes, conducted phylogenetic and bioinformatics analyses of phage,
31 produced visuals and tables for the manuscript, and completed the first draft of the manuscript.
32 Ms. Foxall conducted the final genome analyses of both host and inoviruses, completed
33 population structure analyses, identified inoviruses from public databases, conducted
34 comprehensive analyses of global patterns of phage association and relatedness, conducted all
35 analyses requested by reviewers, and produced both visuals and methods for final publication.

36

37 **Running Title:** Inovirus mediated evolution of *Vibrio parahaemolyticus*

38 Abstract word count: 190

39 Importance word count: 120

40 Manuscript word count: 4987

41

42

43

44

45

46

47

48 **Abstract:** The epidemiology of *Vibrio parahaemolyticus*, the leading cause of seafood-borne
49 bacterial gastroenteritis of humans world-wide, dramatically changed in the United States
50 following the establishment of a Pacific native lineage called sequence type (ST) 36 in the
51 Atlantic. In this study we used phylogeography based on traceback to environmental source
52 locations and comparative genomics to identify features that promoted evolution, dispersal, and
53 competitive dominance of ST36. The major genomic differentiation and competitive success of
54 ST36 was associated with a striking succession of filamentous prophage in the family *Inoviridae*
55 (inoviruses), including loss of an inovirus prophage that had been maintained for decades in the
56 endemic north Pacific population. Subsequently, at least five distinct progenitors arising from
57 this diversification translocated from the Pacific into the Atlantic and established four
58 geographically defined clonal subpopulations with remarkably low migration or mixing. Founders
59 of two prevailing Atlantic subpopulations each acquired new stable and diagnostic inoviruses
60 while other subpopulations that apparently declined did not. Broader surveys indicate inoviruses
61 are common and active among the global population of *V. parahaemolyticus* and though
62 inovirus replacements, such as in ST36, appear to be infrequent, they are notable in pathogenic
63 lineages that dispersed.

64 **Importance:** An understanding of the processes that contribute to emergence of pathogens
65 from environmental reservoirs is critical as changing climate precipitates pathogen evolution and
66 population expansion. Phylogeographic analysis of *Vibrio parahaemolyticus* hosts combined
67 with analysis of their *Inoviridae* phage resolved ambiguities of diversification dynamics which
68 preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has
69 been established experimentally that filamentous phage can limit host recombination, but here
70 we show that phage loss is linked to rapid bacterial host diversification during epidemic spread
71 in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of

72 pathogens. This work paves the way for functional analyses to define the contribution of
73 inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.

74

75 **Introduction**

76 Cases of *V. parahaemolyticus*, the leading cause of bacterial seafood-borne
77 gastroenteritis of humans world-wide recently increased along the United States (US) Atlantic
78 coast (1-3). Rising seasonal illnesses were tied to warming ocean temperatures, a growing
79 aquaculture industry, and the emergence of endemic pathogens (3-6). But incursion of a Pacific
80 Northwest (PNW) lineage called sequence type (ST) 36 into the Atlantic following an
81 anomalously mild winter is the most important driver of this shift (3, 5, 7). ST36 began causing
82 infections in 1979 (8) and was originally limited to the Pacific Northwest (PNW) (9). Although
83 sporadic infections were occasionally reported outside the PNW, local sources were rarely
84 implicated (7, 9, 10). This changed in 2012 when ST36 began causing illnesses traced to
85 Atlantic sources and in 2013 it caused a 13-state outbreak traced to multiple northeast US
86 locations (5, 7). Unlike previous non-endemic strains causing outbreaks from Atlantic sources,
87 including the pandemic ST3 (11), and ST8 (12), ST36 continues to cause sporadic disease from
88 a few northeast US locations. A better understanding of how and where ST36 established
89 populations is needed to aid in management to limit illness. Furthermore, this expansion of
90 ST36 provides a unique opportunity to broaden our understanding of the population and
91 environmental context by which pandemic strains arise and spread.

92 Spatiotemporal analyses of the epidemiology of ST36 identified that a new population
93 arose through recombination and replaced the original PNW population by 2000 (9). Disease
94 patterns implied potential reciprocal transfer between both US coasts, though inference was
95 informed by a few cases where infection occurred from shellfish consumed on the opposite
96 coast from where illnesses were reported and further complicated by modeling of a mode of

97 spread through human populations (9), whereas seasonal illnesses by *V. parahaemolyticus* are
98 typically vectored by environmentally contaminated raw seafood. This highlights a continuing
99 challenge where a lack of environmental traceback in clinical reporting that uncouples strains
100 from their source bodies of water obscures environmental distribution (5, 9). As with other
101 human pathogens originating from the natural environment, this leaves a critical gap of
102 knowledge of the ecological context of pathogen evolution and expansion.

103 Bacteriophages, the viruses that infect bacteria, can shape, and quell environmentally
104 vectored human pathogen populations (13-19). Lytic phages alter the dynamics of bacterial
105 competition through selective predation, sometimes of the most numerous bacteria, thereby
106 maintaining population diversity (20-22). Phages also impact diversity through transfer of novel
107 DNA including toxin-encoding genes and lysogenic conversion (23-28). Chromosomally
108 integrated prophages are double-edged swords in that they can benefit their host by excluding
109 superinfections by related phage and by attacking their hosts' competitors, but they can also
110 harm their hosts by diverting resources for virion production or by host death upon lytic induction
111 (25-27, 29, 30). Lytic phages are abundant in habitats of *V. parahaemolyticus* (31), and also
112 under consideration for detection and biological control (32-37). Though the roles of phage in
113 mediating bacterial competition among *Vibrio cholerae* is well appreciated (14, 38), with the
114 exception of a few descriptive reports (39-44), the contribution of prophage to *V.*
115 *parahaemolyticus* population structure is undetermined.

116 Prior studies have produced valuable insight into the growing problem of the ST36
117 lineage's increasing clinical prevalence and potential to spread globally (9, 45), but the
118 adaptations that prompted lineage replacement and dispersal are not evident nor are the
119 ecological factors that spurred diversification. Here, we examined the phylogenomics of the
120 Atlantic ST36 incursion—accompanied by interactions with filamentous *Inoviridae* phage—by
121 capturing a broad geographic and temporal distribution of the population. By curating strains

122 with environmental traceback, we determined the phylogeography of ST36 wherein multiple
123 strains that first diversified in the Pacific, subsequently translocated to the Atlantic, and
124 established spatially distinct and non-mixing subpopulations therein. This also revealed that
125 changes in inovirus content accompanied diversification and lineage replacement in the PNW
126 and preceded clonal expansion by distinct founders of two persisting Atlantic ST36 populations
127 that continue to cause sporadic disease.

128

129 **Results**

130 Multiple distinct ST36 lineages clonally expanded to form geographically stable Atlantic 131 subpopulations

132 To investigate the evolution of ST36 as it translocated from the PNW to the Atlantic, we
133 curated a collection of genomes and mapped their environmental sources onto their constructed
134 whole genome phylogenies. Locations include two Pacific (PNW and California [CA]), and five
135 Atlantic (Galicia Spain, the Gulf of Maine [GOM], an Island south of Cape Cod, [SCC], Long
136 Island Sound [LIS] and the mid-Atlantic coast [MAC] [Table S1]). The phylogenies exemplify
137 how multiple clades emerged from the old-PNW population (Fig. 1) and gave rise to the new-
138 PNW population (9). A single relic of the old-PNW population and 103 isolates from seven
139 lineages arising from the modern ST36 diversification were traced to environmental locations
140 outside the PNW (Fig. 1, clades I-VII). Notably, most translocated clades either contain a PNW-
141 traced isolate or are most closely related to clades dominated by PNW isolates suggesting
142 these differentiated in the PNW prior to translocation rather than after arrival in the Atlantic.

143 Assignment of isolates to environmental sources revealed striking geographic structure
144 of the Atlantic subpopulations in GOM, SCC, and LIS, indicating that each was founded by a
145 genetically unique individual (Fig. 1). All but one isolate traced to the GOM are clonal (clade II)
146 and share ancestry with PNW isolates (9, 46-48), and the 2006 New York isolate VpG-1 (9)(Fig.

147 1, Table S1). Most isolates traced to other Atlantic locations and those from CA share common
148 ancestry with isolates reported from British Columbia Canada in 2005, and later in WA in 2011-
149 2012 (Fig. 1 and Table S1). All but one SCC-traced isolate (clade III) are clonal and only two
150 clade members trace to other nearby locations. LIS-traced isolates are also mostly clonal (76%)
151 (clade VII), though two distinct 2018 isolates group within a mixed-location clade (clade V) with
152 isolates trace to the PNW in 2011, and from oysters consumed in CA in 2015. Phylogenies built
153 with core non-recombinant variation mostly agreed with whole genome phylogenies, though a
154 change in clonal assignment of two strains (CTVP25C and MAVP-48) alluded to the possibility
155 that horizontally acquired variation these shared in common with the GOM and SCC clades
156 respectively may have obscured their distinct heritage (Fig. 1, S1 & S2; Tables S2- S4).

157 Given the geographic linkage of clonal subpopulations (Fig. 1), we examined the
158 population genetic structure of isolates from known locations to identify patterns of coancestry
159 and admixture (49). The conservative use of core variation and eight ancestral populations
160 (which best explains the data, see Fig. S3A & B) identified two old-PNW populations that were
161 replaced by a single modern-day PNW population, comprised of two geographically distinct
162 lineages: one related to GOM isolates and the other to most SCC/LIS/MAC isolates (Fig. 1 &
163 Fig. 2). Six PNW isolates were exceptions in that they belong to the same population and form
164 clades with other translocated isolates, including those traced to Spain. Although no PNW
165 isolates belong to the population that translocated to CA, two PNW isolates exhibit a shared
166 history of admixture with the CA isolates providing clues to this lineage's origin. The clonal
167 clades from SCC and LIS, which are in very close proximity to each other and without
168 geographic barriers, also belong to the same population, whereas two MAC isolates form a
169 distinct population. Atlantic-derived isolates from locations south of the GOM exhibit little
170 coancestry with other populations, whereas the GOM clade displays near equal mixed

171 coancestry between the prevalent modern PNW population and the other Atlantic populations
172 (Fig. 2). Five PNW isolates also exhibited this same pattern of mixed heritage.

173 Analysis of admixture that incorporated horizontally acquired content separated the two
174 Atlantic populations on opposite sides of Cape Cod, MA (GOM and SCC) from the rest of those
175 in the Atlantic which grouped with strains from CA (Fig. S4). This also relocated a single GOM
176 clade isolate (MAVP-20) into the CA/MAC/LIS population. This suggested that horizontally
177 acquired variation in the SCC and GOM lineages (that MAVP-20 lacks) may define their
178 uniqueness. In contrast to the GOM and SCC populations that exhibit little admixture, the
179 modern PNW ST36 isolates exhibit complex admixture as do members of the LIS population
180 (Fig. S4). Relatively few individuals within the GOM and SCC populations display some
181 admixture with each other. Thus, population structures inferred from horizontal variation better
182 aligned most strains to their geographic locations even as horizontal content overshadowed
183 some interesting ancestral patterns, specifically, the shared mixed heritage of the GOM clade
184 with modern PNW strains (Fig. 2).

185 *Inovirus loss and reacquisition accompanied ST36 population replacement and expansion*

186 One explanation for the differences in core versus whole genome population structure is
187 that differential genetic gains or losses preceded clonal expansion. To identify such features, we
188 compared high-quality genomes of four Atlantic clade members, (MAVP-1, MAVP-23, MAVP-
189 36, and MAVP-26), to PNW strains of the new-PNW (12310) and old-PNW (10290) clades. This
190 revealed MAVP-26, MAVP-36, and 10290 each contain a unique prophage integrated into the
191 *dif* site at the replication terminus of chromosome I, similar to prophage f237 found in pandemic
192 O3:K6 strains (39, 41) (Fig.3). In contrast, the other two Atlantic clade members and the new-
193 PNW isolate lack a phage in this location (Fig. 3). These are classified in the family *Inoviridae*
194 (hereafter inoviruses) and we assigned unique names, including “vB” for virus infecting Bacteria,

195 and “Vipa” in reference to the host *Vibrio parahaemolyticus* and isolate name hereafter Vipa26
196 in MAVP-26, Vipa36 in MAVP-36, and Vipa10290 in strain 10290 (50).

197 These inoviruses have a conserved central core (ORF 1-7) and ORF9 and ORF10 (Fig.
198 3A), and two variable regions. Whereas core phage gene functions were identifiable (Table 1),
199 the functions encoded in variable regions were not discernable. Nucleotide variation in the
200 inoviruses represented up to 46% of their host’s genome variation helping to explain differences
201 between whole and core genome phylogenies (Fig. 1, S1 & S2) and population structures (Fig.
202 2 and Fig. S4). Though this content would be credited to recombination, surprisingly, genomes
203 that lack inoviruses had a higher proportion of gene content assigned to blocks of
204 recombination: 2.7% in 12310 and MAVP-1, and 2.0% in MAVP-23, compared to 1.3% in
205 10290, 1.4% in MAVP-26, and 1.8% in MAVP-36 (Fig. S1 and Table S3). Though divergent
206 from one another, inovirus variation likely did not alter function: the 74 variant sites in the core of
207 Vipa26 generated only three non-synonymous mutations, whereas the 78 variant sites in Vipa36
208 produced 13 non-synonymous mutations (Fig. 3B, Table S6). ORF1-7 are under purifying
209 selection (codon-based Z test =9.425, $p < 0.001$) implying these are essential genes, and that
210 their function is preserved. This also suggests the infections not cryptic, and the phage are likely
211 still functional. Comparisons of core inovirus content from additional ST36 lysogens revealed
212 100% identity within the Vipa26 and Vipa36 lineages, whereas Vipa10290 had 18 non-
213 conserved variable sites, perhaps reflecting its long history with a sizeable ST36 population
214 (Fig. 3B).

215 With only one exception (A5Z905), all old-PNW clade members, including CTV44C,
216 contained Vipa10290 or related phage (Fig. 1, square). ST39, a member of the same clonal
217 complex as ST36, also contains Vipa10290 whereas other clonal complex members (ST59 and
218 ST21), share a distinct inovirus (Fig. S5, Tables 2, S9, & S10). Despite this history of lysogeny
219 among the endemic population, no modern-day and definitively traced PNW ST36 isolates
220 harbor inoviruses (Fig. 1 & Table S1 & S7) and this loss coincides with population diversification

221 (Fig. 1). However, like GOM and SCC clade members, a total of nine other modern ST36
222 isolates collected between 2007-2016, some that dispersed to new locations and all others
223 untraced, acquired eight other inoviruses (Fig. 1, Table 2).

224 *The distribution of community-acquired phage offers clues of residency and dispersal.*

225 For the Atlantic ST36 populations, inovirus content was diagnostic of lineage and
226 geography. Vipa26 was absent from only one member (MAVP-20) of the ST36 GOM clonal
227 clade and present in only one distinctive isolate from a different location (CTVP25C)
228 representing either basal or independent acquisition (Fig. 1 circles). Vipa36 (Fig. 1 triangles) is
229 in all members of the SCC clade and only two isolates from this clade were traced to nearby
230 locations. Because these inoviruses, like f237, are not widespread and have been maintained
231 by these lineages tied to two locations, they are diagnostic of these ST36 subpopulations. In
232 contrast, and like the modern PNW traced-ST36 isolates, no isolates of the LIS or MAC clonal
233 clades harbor inoviruses.

234 The association of inoviruses with two Atlantic clades, and their absence in others,
235 suggests that the founding subpopulation progenitors acquired phage upon Atlantic invasion
236 only in some locations perhaps reflecting phage predation pressure. Environmental surveys
237 revealed that although 22% of Northeast US *V. parahaemolyticus* isolates harbor inoviruses,
238 this proportion varied by location (50). Proportions were lower in LIS (10%), than in GOM and
239 SCC (30% and 42% respectively). Whereas no environmental isolates other than ST36 harbor
240 Vipa36, multiple non-ST36 isolates collected in NH as early as 2008 contain Vipa26 (Table S1,
241 Fig. 4, & S6). This suggests Vipa26 was acquired locally as supported by its absence from VpG-
242 1 (Fig. 1, Table S1 & S7).

243 Because comparative phage phylogeny could elucidate the history of ST36 as members
244 moved through other populations, we expanded our search for inoviruses among available
245 genomes of *V. parahaemolyticus*. These prophage genomes added to the *Inoviridae* diversity

246 (Fig. & S5) but display little discernable phylogeographic population structure in that related
247 phage are found in both the Atlantic and Pacific *V. parahaemolyticus* populations, and phage in
248 Asian isolates group among most branches, with the exception of Vipa10290. Two ST36
249 isolates harbor two different inoviruses maintained by members of the PNW co-resident but
250 unrelated ST43 (Table 2, Fig. S5). Though most members of the two ST36 lineages reported in
251 Peru also lack inoviruses, including a 2011 environmental isolate related to the Spain lineage
252 (45), one clinical isolate of this lineage harbors a Vipa10290-related inovirus, whereas a second
253 clinical isolate (1.146-15), harbors f237 (Fig. 4).

254 The phylogenomic distribution of inoviruses in all publicly available *V. parahaemolyticus*
255 genomes indicates they are common, with 46% of genomes containing one or more inovirus
256 (Fig. 5, Fig. S6, and Table S10) yet distributed unevenly. Many lineages harbor a persisting
257 inovirus (Fig. 5 and Fig. S6). A few lineages harbor two evolutionary distinct inoviruses
258 concurrently suggesting that protection from superinfection, a common attribute of both
259 temperate phage and inoviruses (51, 52), is not absolute (Fig. S5). In addition to Vipa26, a
260 second inovirus is present in multiple, unrelated STs (Fig. S6). Even though most STs have an
261 inovirus prophage that they propagate vertically, the inoviruses of some isolates were replaced
262 by another, like ST36 (Table 3, Fig. S6). Notable among these are emergent pathogenic
263 lineages including ST43 and the prevalent Atlantic endemic ST631 lineage that has caused
264 illnesses along the North American Atlantic coast (4), the pandemic complex (ST3) and a
265 diverse and far-spreading Asian lineage that is now an Atlantic resident (ST8).

266

267 **Discussion**

268 Here we demonstrate that changes in inovirus prophage accompanied diversification,
269 competitive replacement, dispersal, and Atlantic invasion of *V. parahaemolyticus* ST36. This

270 suggests that inoviruses could contribute to the emergence of new lineages with the potential
271 to spread more broadly. The misleading nature of disease reporting that does not align illnesses
272 with environmental reservoirs and declining availability of recent ST36 genomes from the US
273 PNW have been obstacles to deciphering the ecological context of ST36 evolution and spread.
274 We addressed these limitations using genomes from isolates reported in Canada and other US
275 states that were publicly available and by augmenting available genomes with a collection of
276 ST36 clinical isolates from the Northeast US. We carefully curated environmental traceback to
277 advance our understanding of ST36 ecological expansion into the Atlantic Ocean.

278 Our analysis indicates five or more unique ST36 progenitors diversified in the Pacific and
279 then translocated into the Atlantic to found subpopulations (Fig. 1, S2, 2, and S4). The earliest
280 sequenced ST36 isolate traced to the Atlantic in 2006 (VpG-1) and several PNW strains share a
281 similar pattern of mixed ancestry with this isolate and group with the GOM clade suggesting its
282 progenitor may have arrived prior to 2006 with little effect on epidemiology until after the
283 anomalously mild winter of 2011-2012 (1, 2). Isolates traced to SCC, LIS and MAC are more
284 related to each other, and multiple Pacific-traced isolates group within or adjacent to their clades
285 (Fig. 1, 2, & S2). This pattern is most simply explained by divergence of these populations'
286 ancestors in the Pacific prior to introduction into the Atlantic (Fig. 1, 2 & S2). Clade V's shared
287 ancestry with CA and PNW isolates further implicates the PNW as the source population. And
288 although imperfect trace back or mislabeled genomes could explain some unexpected patterns,
289 nearly every Pacific-traced relative of Atlantic residential populations were isolated, reported,
290 and sequenced independently and prior to Atlantic isolation (Table S1). Although our
291 interpretations of population evolution and dispersal contrast with previous reports (9), this is
292 mostly explained by differences in geographic assignment of isolates to environmental sources
293 instead of the readily available location of disease reporting as our goal was to understand
294 dynamics affecting reservoirs of emergent pathogenic lineages (See details of Table S1).

295 Traceback confirmation from CA (Table S1), disease reporting in Mexico (53) and
296 environmental isolation in Peru (9, 45) further corroborate that these lineages diversified in the
297 Pacific. And though missing intermediate populations could suggest unknown reservoirs exist, it
298 is more likely that sampling bias, a decrease in availability of PNW genomes, decreased clinical
299 prevalence of ST36 in the PNW, and lack of surveillance there have compounded challenges
300 with deciphering this pathogen's evolution and spread. Based on mounting evidence that most if
301 not all lineages arose in the PNW, this warrants further examination of the PNW environmental
302 reservoir to manage further spread.

303 Even as increasing ocean temperatures and weather events have been tied to both
304 seasonal illnesses by *V. parahaemolyticus* and its spread to new locations (9, 54-57), the stable
305 and non-mixing distribution of Atlantic ST36 lineages suggests that environmental fitness that
306 promotes persistence may be their key to success. It is notable that in BC Canada where many
307 diversified ST36 isolates were first reported, rising infection rates were not fully explained by
308 temperature models but rather attributed to new pathogenic strains (58, 59). Like the Northeast
309 US, the MAC experienced a warming trend in 2012 (9), nonetheless this location has not
310 experienced persistent problems with ST36 (1, 10). Combined, we believe warming ocean
311 temperatures are only part of the picture and that underexplored ecological interactions are at
312 play in driving *V. parahaemolyticus* invasion and persistence (60). Even in locations in the
313 Atlantic with recurrent illness, environmental prevalence of ST36 is extremely rare (Table S1)
314 illustrating how low-level persisting populations can change epidemiology. Identification of
315 unique ecological and population contexts of the MAC compared to more northern locations
316 could provide useful insight.

317 Phage loss and later sequential phage replacement is one of the most striking and
318 common features of ST36 lineage succession in the PNW and population expansion into the
319 Atlantic. Nearly all old PNW lineage members harbor Vipa10290 (Fig. 1 and Table S1), whereas

320 strains of the new ST36 lineages isolated in the PNW after 2002 lack inoviruses, though other
321 phage are not uncommon (Table S3). The presence of Vipa10290 in other clonal complex
322 members could indicate a basally acquired phage was lost during lineage diversification.
323 Though inovirus excision is infrequently reported (61, 62), laboratory passage of ST36 can lead
324 to both phage curing and loss of protection from superinfection (63). The lack of inovirus-
325 harboring PNW ST36 population members indicates they ultimately were at a disadvantage in
326 the context of a changing population even though other residents concurrently maintained
327 inoviruses (e.g., ST43, Table 2) and potentially transmitted these to a few ST36 members. The
328 subsequent acquisition of inoviruses by diverging ST36 lineages (Table 2) indicates ST36
329 remained susceptible to infection, though the persisting inovirus-free state of modern-PNW
330 ST36 lineages suggests that resistance may have evolved during their diversification, as has
331 been described in other sympatric *Vibrio* populations (64). In contrast, that the progenitors of
332 two clinically prevailing Atlantic ST36 lineages acquired inoviruses prior to clonal expansion,
333 while ST36 populations in the LIS where inoviruses are less abundant did not, indicates phage
334 acquisition was not requisite for success, perhaps reflecting differences in phage predation and
335 other population dynamics. Even so, whereas resident ST36 from SCC and GOM have
336 continued to cause sporadic disease, infections from LIS have precipitously declined, in part
337 reflective of successful management.

338 Inovirus prophage confer obvious costs through persistent non-lethal virion production
339 (61), suggesting their loss would be favored; and yet inoviruses have been maintained by
340 prevalent lineages for decades (Table 2 & 4, Fig. 5). This could reflect their fastidious nature,
341 but the success of the two northernmost Atlantic populations harboring inoviruses contrasting
342 with the unsuccessful lineages that lacked them signals alternatives are possible: that
343 inoviruses may confer advantages in some as yet undefined context. For example, shed
344 inovirus virions contribute to biofilm matrix (65) thereby promoting virulence and antimicrobial

345 resistance, but also potentially enhancing survival during long-distance movement on particles
346 (52, 54, 66-68). Shed inoviruses can mislead human immune responses and decrease host
347 ability to clear bacterial infections, thereby enhancing virulence (69). Furthermore, variable
348 content in some inoviruses is linked to anti-predation (17, 70) and virulence (22, 27, 39). We find
349 it intriguing that succession in the PNW and loss of inoviruses by ST36 accompanied its clinical
350 decline there. Future functional studies with these inoviruses are essential to discern whether
351 any of these possibilities are at play.

352 Prophage can also modify their hosts in ways that alter their capacity for horizontal gene
353 transfer (HGT). Prophage can protect against superinfection, including by unrelated lytic phages
354 (27, 61, 71) thereby blocking transduction. They also modulate, and concurrently block
355 conjugative pili (72). The concept that loss of prophage-conferred immunity contributed to ST36
356 evolution is attractive considering DNA release by predation of non-lysogen susceptible hosts
357 could promote transformation through natural competence, though the conditions of natural
358 competence by *V. parahaemolyticus* are unknown (73-75). Type IV pili which are the receptor
359 for some inoviruses also facilitate transformation mediated HGT (51, 52). If the newly inovirus-
360 less ST36 lineages were more vulnerable to phage infections, phage transduction, and conjugal
361 transfer alike this could have contributed to its rapid diversification (Fig. 1) whereas
362 translocating lineages would likely not have evolved mechanisms to resist resident Atlantic
363 phage facilitating re-acquisition (31, 52). In keeping with this premise, many of the most highly
364 divergent ST36 individuals lacking inoviruses evolved by multiple recombination events
365 including an isolate of the MAC clade (VP30). Accumulation of non-inovirus prophage was
366 notable in the early diverging Spain lineage (clade I) (9). And whereas the inovirus-harboring
367 SCC and the GOM clades remain remarkably stable, as do their phage, Atlantic isolates lacking
368 inoviruses, including the single GOM clade member (MAVP-20) and many members of the LIS
369 population exhibit complex admixture (Fig. S4). In contrast, the inovirus-harboring old-PNW relic

370 CTVP44C isolated in LIS in 2013 is virtually unchanged from the last known members of this
371 lineage from the PNW that were isolated in 2002 (Fig. 1, Table S1). Furthermore, a 2005 isolate
372 of this same lineage lacking Vipa10290, A5Z905, is among the most highly divergent ST36
373 strains (Fig. 1, 2, S2). Similarly, pandemic O3:K6 strains, which stably maintain f237, reported in
374 the Americas between 1996-2012 display remarkably little genetic variation from the type strain
375 for this lineage RIMD 2210366 (76). Though these data only establish correlation of phage
376 absence and diversification, it alludes to the possibility that inovirus prophage that provide some
377 level of resistance to superinfection and block conjugation could thwart HGT, and by contrast,
378 loss of inoviruses could remove barriers to recombination and promote rapid diversification. The
379 selective conditions that favor inovirus acquisition and maintenance or loss would thereby
380 influence some mechanisms that could promote rapid evolution, potentially of more or even less
381 pathogenic potential.

382 These analyses suggest an intriguing connection of inovirus prophage to pathogen
383 evolutionary dynamics, alluding to the possibility that inoviruses could be gatekeepers of HGT in
384 natural ecosystems driving changes in human disease epidemiology. With broader population
385 analysis and functional studies, this could lay the foundation for a new evolutionary paradigm
386 where inovirus prophage-mediated immunity is a major governing force beyond the appreciated
387 roles of phage in selective predation (20-22) and phage conversion (23-27). The apparent ability
388 of ST36 and some other lineages (Table 2 & 3) to transition between phage infection states or
389 replace their phage could generate flexibility in the balancing of fitness tradeoffs under different
390 selective regimes that are not yet understood (29, 64). The high prevalence of inoviruses not
391 only among the global population of *V. parahaemolyticus* (Fig. 5) but universally in other
392 bacteria (27) with little clarity of how inoviruses impact the ecology of their hosts calls for more
393 mechanistic analyses which could reveal varied roles for inoviruses in promoting evolution and
394 competitive dominance of emerging pathogens.

395

396 **Materials and Methods**

397 *Vibrio parahaemolyticus* genomes

398 Regional clinical strains spanning 2010-2018, and trace back were acquired from public
399 health laboratories (2). Only isolates with single source traces were assigned a location.

400 Environmental isolates were collected between 2007-2015 (1, 2). Isolates were identified as *V.*
401 *parahaemolyticus* by *tlh* gene amplification (77, 78) and identity confirmed by genome
402 sequencing. Publicly available genomes were acquired from NCBI
403 (<https://www.ncbi.nlm.nih.gov/genome/681>; August 2019).

404 DNA was extracted using the Wizard Genomic DNA purification Kit (Promega, Madison
405 WI USA) or by organic extraction (2). Sequencing libraries were prepared as described (79).

406 Genomic DNA was sequenced using an Illumina – HiSeq2500 device at the Hubbard Center for
407 Genome Studies at the University of New Hampshire, using a 150bp paired-end reads with de-
408 multiplexing and quality filtering prior to analysis. The *de novo* genome assembly were
409 performed using the A5 pipeline (80), and annotations assigned with Prokka1.9 using “*Vibrio*”
410 for the reference database (81). The sequence types were determined using the SRST2
411 pipeline (82) or using assemblies (83) referencing <https://pubmlst.org/vparahaemolyticus/>(84).
412 Reference inoviruses were extracted from genomes sequenced using the Pacific Biosciences
413 RSII technology and with Illumina short read error correction as described (4).

414

415 *V. parahaemolyticus* Phylogenetic Relationships.

416 Because all ST36 strains are closely related (clonal) and recombination contributed to
417 the recent lineage divergence, ST36 strain relationships (Fig. 1) and all *V. parahaemolyticus*
418 relationships (Fig. 5) were determined using reference-free, whole genome alignments using
419 kSNP 3.1 (85) and maximum likelihood phylogenetic trees built by RAxML (86) and visualized
420 with iTOL(87). The optional Kchooser script provided in kSNP3.1 determined the optional kmer

421 size of 19, for each alignment dataset. Whole genome trees were rooted with *Vibrio*
422 *alginolyticus* ARGOS_108 (hidden after rooting in iTOL). Maximum likelihood trees were
423 inferred using the GTR-GAMMA model of nucleotide substitution, and the convergence criteria
424 autoMRE option for automatically determining a sufficient number of rapid bootstrap replicates.
425 RAxML completed a thorough ML search after optimization on every 5th bootstrapped tree,
426 which were mapped on the ML tree with the best likelihood (“raxmlHPC-PTHREADS-AVX -m
427 GTRGAMMA -f a -N autoMRE -x 12345 -p 12345” options). Gene/features were visualized with
428 EasyFig 2.2.0 (88, 89).

429 In parallel, homoplastic regions resulting from recombination were identified in genomes
430 by alignment to reference strain 10296 (90) (summary table S2) using Gubbins 2.3.4 (91) and
431 removed, and the relationships of strains determined based on nucleotide SNP alignments
432 generated with Gubbins 2.3.4 (91) (Fig. 2). Phylogenies were inferred as above, except using
433 the GTR-CAT nucleotide substitution model (because the alpha parameter was >10). ML search
434 and optimization, rapid bootstrap criterion, and mapping of bootstraps were done as described
435 above. Unmapped reads were assembled using SPAdes 3.13.1 (92) and annotated using
436 Prokka 1.14(81) (Table S4).

437 Population structure of ST36 was performed using whole and core SNPs genetic
438 matrixes generated from SNP alignments in the R statistical package LEA (49, 93, 94) (Fig. 2).
439 To determine the number of genetic clusters best explained by the distribution of genomic
440 variation, we explored ancestral populations (K) of between 1-20 and used the entropy criterion
441 to evaluate the quality of fit of the statistical model to the data and selected the probable number
442 of populations based on minimal entropy. Once strains were assigned to populations, the least-
443 squares estimates of ancestry proportions were plotted using ggplot2 (95).

444

445 Inovirus Identification

446 ST36 strains were compared to reference 10290 (5) using Breseq (96). Unique
447 prophage were classified as belonging to the family *Inoviridae* proposed subfamily
448 *Protoinoviridae* (27) and assigned unique names (97, 98) (Table 2). All *V. parahaemolyticus*
449 genomes were independently searched against a BLASTn (99) database constructed using the
450 central core (ORF1 – ORF7) of vB Vipa-26. Nucleotide sequences of 745 phage were extracted
451 and to determine if they were unique, maximum likelihood phylogenies using the GTR-GAMMA
452 model for substitution and rapid bootstraps were constructed via RAxML on nucleotide SNPs
453 generated by kSNP (Fig. S6). Rapid bootstraps reached criterion after 350 replicates and were
454 mapped on the tree as described above. The complete prophage assemblies of unique ST36
455 inoviruses were named from the highest quality assembly as were other prevalent inoviruses
456 (Table S9). Relatedness of select whole phage genomes was visualized using the Genome-
457 BLAST Distance Phylogeny (GBDP) method (100) to conduct pairwise comparisons of the
458 nucleotide sequences under settings recommended for prokaryotic viruses (101). Trees were
459 rooted at the midpoint (28) and visualized using iTOL (87) (Fig. S5).

460 To determine if phage evolved under selection, a Nei-Gojobori codon-based Z test (102)
461 was performed in MEGA 6 (103). Protein sequences for the phages Vf33 (NC_005948.1) (104,
462 105), CTXΦ (MF155889.1)(27), and the type strain for *Inoviridae* M13, which infects *Escherichia*
463 *coli* (GCF_000845205.1) were compared using BLASTp (99).

464 Oligonucleotide primers were designed for multiplex amplification with the species-
465 specific *tlh* primers (77, 78) where primers annealing within ORF3 within ORF5 identified
466 inovirus presence, and primers annealing within HypD and ORF9 produced different size
467 amplicons diagnostic of Vipa26 and Vipa36 (Table 4). Isolates were screened with 0.2μM primer
468 annealed at 55°C with 1.5 min extension and phage identity confirmed by genome sequencing.

469

470 Data Availability

471 Genome accessions are listed in Tables S1, S7, S8 and Table 2.

472

473 **Acknowledgments:** Partial funding was provided by the National Sea Grant College Program
474 and projects R/SFA-4, R-HCE-3, and R/SFA-13, and by the New Hampshire Agricultural
475 Experimentation Station. This work (scientific contribution number 2995) was supported by the
476 USDA National Institute of Food and Agriculture Hatch projects NH00609 [accession number
477 233555], NH00625 [accession number 1004199], NH00658 [accession number 1013479], and
478 NH00698 [accession number 1023165]. We thank Narjol Gonzalez-Escalona for helpful insight
479 and feedback; Kanwit Kohl, Stephen Combes and Heather Grieser from the Maine Center for
480 Disease Control and Prevention for strains and information; Tracy Stiles, Eric Hickey, Coleen
481 Murphy, Michael Moore, and Jana Ferguson from the MA Department of Public Health for
482 helpful insight, strains and epidemiological information; Jeff Kennedy and Christian Pepitas from
483 the MA Division of Marine Fisheries for insight and guidance; Christopher Nash and Robert
484 Atwood from the New Hampshire Department of Environmental Services and the Fish and
485 Game Department, and Colleen Smith from the New Hampshire Department of Health and
486 Human Services for information and discussion. We also thank Zoe Pavlik for curation of
487 genome accessions.

488 Role of authors: JM, AM, RF, FX, CS, KD, JH, VC, SJ, CW collected samples, performed and
489 interpreted analyses, curated databases, and constructed visuals. JM and AM drafted the
490 manuscript and CW and RF completed writing the manuscript. SJ, VC, and CW designed and
491 directed the studies. All coauthors reviewed and edited the manuscript for accuracy and
492 completeness.

493 **Figure 1. Maximum-likelihood phylogeny of ST36 *Vibrio parahaemolyticus*.** ML-
494 phylogenies were built with 1,025,281 aligned variable nucleotide sites identified in quality ST36
495 isolates. Isolates are colored to correspond to geographic environmental traceback, where
496 available (Table S1) and where no color indicates unknown or ambiguous origin. Isolates

497 acquired from four Northeast US States as part of this study are named uniquely by a
498 combination of state (Maine [ME], New Hampshire [NH], Massachusetts [MA], and Connecticut
499 [CT]) of reporting and sequential numbers. Symbols next to isolates indicate identity of inovirus
500 content. The ancestral PNW ST36 population is identified by a black bar, whereas seven
501 different lineages associated with translocation events (I – VII) are identified by greyscale bars.
502 Bootstraps are from 250 replicates (criterion reached).

503 **Figure 2. Population structure of ST36 strains.** Coancestry estimates were inferred from
504 SNP matrices using 741 SNPs identified from core non-recombining genomes of ST36 isolates
505 with known environmental source and at least one close relative (see Table S5 for excluded
506 genomes) by LEA (49). Colored bars represent proportion of genetic variation derived from 8
507 ancestral populations (see Fig S3A). Geographic locations are marked by colors below strain
508 name, followed by phage content (symbol) and year of isolation.

509 **Figure 3. Comparisons of inoviruses in *V. parahaemolyticus* ST36.** (A) Alignments of
510 reference inovirus genomes depicting unique and shared content, and % nucleotide identity
511 between Vipa36 (9,721 bp), Vipa26 (10,893 bp) and Vipa10290 (9,414 bp) as compared to f237
512 (8,784 bp). Orthologous ORFs are depicted by the same color except for non-homologous light
513 blue hypothetical proteins. (B) Core inovirus genome (ORFs 1-7, and ORF9-10) single
514 nucleotide polymorphisms (SNPs) were identified by comparison of quality ST36 genomes to
515 the alignment consensus of reference inovirus genomes for Vipa36 (21 genomes), Vipa26 (24
516 genomes), and Vipa10290 (23 genomes) and used to assess spatial distribution of variation
517 between the inoviruses and within each inovirus lineage. SNPs are mapped by location where
518 ORF identities are labeled and colored to match those in (A), and SNP type designated by
519 colored blocks (see Table S6). This indicates few non-synonymous mutations (see text for
520 details) and uneven distribution of variation with ORF3, an intergenic region between ORF4 and

521 ORF5, and the 5' end of ORF5 being identical in all three phage. Only Vipa10290 displayed
522 non-conserved core genome variation among ST36 prophage.

523 **Table 1. Inferred functions of inovirus genes ¹.**

ORF	Vf33 (E-value/%Identity)	CTXΦ (E-value/%Identity)	M13 (E-value/%Identity)	Predicted Functions ^a
ORF1	Vpf402 (0.0/99%)	RstA (7x10 ⁻⁶⁶ /36%)	gII (size and location)	Replication initiation protein
ORF2 Integrase	Vpf117 (1x10 ⁻⁸⁵ /92.5%)	RstB (0.04/13.3%)	-	Integration
ORF3	Vpf81 (0.004/7.8%)	RstC (size and location)	gV (size and location)	ssDNA binding protein, helix destabilizing
ORF4	Vpf77 (5.3/3.7%)	Cep (7.0/7.3%)	gVIII (0.45/4.9%)	Major coat protein
ORF5	Vpf491 (0.0/59%)	OrfU (0.54/11.9%)	gIII (0.6/11.3%)	Adsorption, termination of assembly, tail protein
ORF6	Vpf104 (0.2/19%)	Ace (5x10 ⁻¹⁰ /18.3%)	gVI (4.1/8.7%)	Minor coat protein, termination of assembly
ORF7	Vpf380 (1x10 ⁻⁴ /13.9%)	Zot (2x10 ⁻²⁷ /17.8%)	gI (5x10 ⁻⁴ /8.5%)	Assembly protein, maturation
ORF9	Vpf122 (4x10 ⁻⁶⁶ /68%)	RstR (0.17/5.7%)	-	Transcriptional repressor, regulator
ORF10	Vpf152 (1 ⁻⁴⁴ /88-86%)	-	-	Function unknown

524 ¹ORF number corresponds to numbers designated for f237, and comparative analyses between
525 homologous ORFs completed with Vipa26 as a reference.

526 ^a Functions summarized from Mai-Prochnow et al., 2015 (36) and Chang et al., 1998 (37)

527

528 **Table 2. Summary of *Inoviridae* prophage in ST36 isolates**

Strain	Inovirus name	NCBI Accession (Genome coordinates)	Additional ST36 genomes with inovirus	Other STs with related inoviruses
10290	vB_Vipa10290	AVOH01000008.1 (1370845..1378511)	Many	38, 39
MAVP-26	vB_Vipa26	MT188662	Many	1574, NF
MAVP-36	vB_Vipa36	MT188663	Many	None
CDC_K5323G	vB_Vipa5323	MIUF01000019.1 (188973..190181) MIUF01000072.1 MIUF01000065.1 MIUF01000002.1 (4141..6171)	None	752, 1132, NF
CDC_K5308	vB_Vipa5308	MIUE01000114.1 (7376..8729) MIUE01000031.1 (5201..8319)	None	43
10-4255	vB_Vipa71 ¹	MT193890 NIXZ01000007.1 (181573..191867)	None	43
CDC_A8962	vB_Vipa8962	LHRO01000017.1 (70737..72090)	None	327
CDC_K5512	vB_Vipa5512	MIUZ01000070.1 (628..7658)	CDC_K5345G, CDC_K5280	1713
MEVP-10	vB_Vipa10	MT188666	None	None
1.146-15	f237	WSRX01000192.1, WSRX01000239.1, WSRX01000194.1, WSRX01000150.1	None	3, 152, 809, 1473, NF
1.220-16	other	AAXNNA010000036.1	None	None

529 NF: Sequence type that is not yet assigned; None: no strains harboring phage.

530 ¹Named for ST43 strain MAVP-71

531

532 **Figure 4. Whole genome phylogenies of representative inoviruses from diverse locations**
533 **and sequence types.** Whole genome phylogenies of select inoviruses from environmental (E)
534 and clinical (C) isolates of *V. parahaemolyticus* labeled by name and year of isolation.
535 Bootstraps criterion met after 350 replicates. Environmental traceback color coding and
536 symbols, representing named phage corresponds to those in Figure 1 where circle is Vipa26,

537 square is Vipa10290, triangle is Vipa36 and grey square is other (Vipa8296). ST36 isolates are
538 in bold.

539 **Figure 5. Maximum-likelihood tree of diverse *V. parahaemolyticus* isolates with their**
540 **inovirus content.** A maximum-likelihood (ML) phylogeny was built on 1,025,281 genome SNPs
541 where 250 bootstraps (criterion met) were mapped onto the best scoring ML tree. Isolates are
542 colored to correspond to geographic region as in Fig. 1, where no color indicates unknown or
543 ambiguous origin. Symbols next to strains indicate unique inovirus content. Outermost label
544 indicates the sequence type (ST) where NF or unlabeled = sequence type not found or not
545 known, followed by year of isolation, if known.

546

547 **Table 3. Lineages other than ST36 with diverse phage genotypes.**

Sequence type	Number of unique Inovirus prophage in lineage	Sequenced strains without prophage
631	4	Yes
674	4	No
43	5	Yes
12	4	No
3	2	Yes
8	2	Yes
308	2	Yes
120	2	Yes

548

549 **Table 4. Multiplex PCR for detection of inoviruses**

Primer	Sequence (5'-3')	Amplicon Size (bp)	
		Host (V.p.)	Inovirus
TLH-F2	AGAACTTCATCTTGATGACACTGC	401	N/A
TLH-R	GCTACTTCTAGCATTCTCTGC		
ST36Phage F2	AGCAACGAAACGCCTGT	N/A	~1000
ST36Phage R2	ACCGTATCACCAATGGACTGT		
PhHypDF3	AAGTGCTACATGAATGAAAGTGCT	N/A	Vipa26: 1440
PhORF9R1	TCAATGAAGTATCACGAAATGACTA		Vipa36: 854

550 N/A: not an amplification template

551

552 **Literature Cited:**

553 1. Urquhart EA, Jones SH, Jong WY, Schuster BM, Marcinkiewicz AL, Whistler CA, Cooper
554 VS. 2016. Environmental conditions associated with elevated *Vibrio parahaemolyticus*
555 concentrations in Great Bay Estuary, New Hampshire. PloS ONE 11:e0155018.

556 2. Xu F, Ilyas S, Hall JA, Jones SH, Cooper VS, Whistler CA. 2015. Genetic
557 characterization of clinical and environmental *Vibrio parahaemolyticus* from the
558 Northeast USA reveals emerging resident and non-indigenous pathogen lineages. Front
559 Microbiol 6:272.

560 3. Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J.
561 2013. Emerging *Vibrio* risk at high latitudes in response to ocean warming. Nature
562 Climate Change 3:73-77.

563 4. Xu F, Gonzalez-Escalona N, Sebra RP, Dress KP, Cooper VS, Jones SH, Whistler CA.
564 2017. Parallel evolution of two clades of a major Atlantic endemic *Vibrio*
565 *parahaemolyticus* pathogen lineage by independent acquisition of related pathogenicity
566 islands. Appl Environ Microbiol doi:<https://doi.org/10.1101/155234>.

567 5. Martinez-Urtaza J, Baker-Austin C, Jones JL, Newton AE, Gonzalez-Aviles GD, DePaola
568 A. 2013. Spread of Pacific Northwest *Vibrio parahaemolyticus* strain. N Engl J Med
569 369:1573-1574.

570 6. Vezzulli L, Grande C, Reid PC, Hélaouët P, Edwards M, Höfle MG, Brettar I, Colwell RR,
571 Pruzzo C. 2016. Climate influence on *Vibrio* and associated human diseases during the
572 past half-century in the coastal North Atlantic. Proceedings of the National Academy of
573 Sciences:201609157.

574 7. Newton AE, Garrett N, Stroika SG, Halpin JL, Turnsek M, Mody RK, Division of
575 Foodborne W, Environmental D. 2014. Notes from the field: Increase in *Vibrio*
576 *parahaemolyticus* infections associated with consumption of Atlantic coast shellfish—
577 2013. MMWR Morbidity Mortality Weekly Report 63:335-336.

578 8. Abbott SL, Powers C, Kaysner CA, Takeda Y, Ishibashi M, Joseph SW, Janda JM. 1989.
579 Emergence of a restricted bioserovar of *Vibrio parahaemolyticus* as the predominant
580 cause of *Vibrio*-associated gastroenteritis on the West Coast of the United States and
581 Mexico. J Clin Microbiol 27:2891-3.

582 9. Martinez-Urtaza J, van Aerle R, Abanto M, Haendiges J, Myers RA, Trinanes J, Baker-
583 Austin C, Gonzalez-Escalona N. 2017. Genomic variation and evolution of *Vibrio*
584 *parahaemolyticus* ST36 over the course of a transcontinental epidemic expansion. MBio
585 8.

586 10. Martinez-Urtaza J, Powell A, Jansa J, Rey JL, Montero OP, Campello MG, Lopez MJ,
587 Pousa A, Valles MJ, Trinanes J, Hervio-Heath D, Keay W, Bayley A, Hartnell R, Baker-
588 Austin C. 2016. Epidemiological investigation of a foodborne outbreak in Spain
589 associated with U.S. West Coast genotypes of *Vibrio parahaemolyticus*. Springerplus
590 5:87.

591 11. CDC. 1999. Outbreak of *Vibrio parahaemolyticus* infection associated with eating raw
592 oysters and clams harvested from Long Island Sound--Connecticut, New Jersey, and
593 New York, 1998. MMWR Morb Mortal Wkly Rep 48:48-51.

594 12. Haendiges J, Jones J, Myers RA, Mitchell CS, Butler E, Toro M, Gonzalez-Escalona N.
595 2016. A nonautochthonous U.S. strain of *Vibrio parahaemolyticus* isolated from
596 Chesapeake Bay oysters caused the outbreak in Maryland in 2010. Appl Environ
597 Microbiol 82:3208-3216.

598 13. Zahid MS, Udden SM, Faruque AS, Calderwood SB, Mekalanos JJ, Faruque SM. 2008.
599 Effect of phage on the infectivity of *Vibrio cholerae* and emergence of genetic variants.
600 Infect Immun 76:5266-73.

601 14. Jensen MA, Faruque SM, Mekalanos JJ, Levin BR. 2006. Modeling the role of
602 bacteriophage in the control of cholera outbreaks. Proc Natl Acad Sci U S A 103:4652-7.

603 15. Faruque SM, Bin Naser I, Fujihara K, Diraphat P, Chowdhury N, Kamruzzaman M, Qadri
604 F, Yamasaki S, Ghosh AN, Mekalanos JJ. 2005. Genomic sequence and receptor for
605 the *Vibrio cholerae* phage KSF-1phi: evolutionary divergence among filamentous
606 vibriophages mediating lateral gene transfer. *J Bacteriol* 187:4095-103.

607 16. Nanda AM, Thormann K, Frunzke J. 2015. Impact of spontaneous prophage induction
608 on the fitness of bacterial populations and host-microbe interactions. *J Bacteriol*
609 197:410-9.

610 17. Brussow H. 2007. Bacteria between protists and phages: from antipredation strategies to
611 the evolution of pathogenicity. *Mol Microbiol* 65:583-9.

612 18. Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. 2023. Role of bacteriophages in the
613 evolution of pathogenic *Vibrios* and lessons for phage therapy. *Adv Exp Med Biol*
614 1404:149-173.

615 19. Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and
616 their phage foes. *Nature* 577:327-336.

617 20. Bohannan BJM, Lenski RE. 2000. The relative importance of competition and predation
618 varies with productivity in a model community. *Am Nat* 156:329-340.

619 21. Joo J, Gunny M, Cases M, Hudson P, Albert R, Harvill E. 2006. Bacteriophage-mediated
620 competition in *Bordetella* bacteria. *Proc Biol Sci* 273:1843-8.

621 22. Ritchie JM, Wagner PL, Acheson DW, Waldor MK. 2003. Comparison of Shiga toxin
622 production by hemolytic-uremic syndrome-associated and bovine-associated Shiga
623 toxin-producing *Escherichia coli* isolates. *Appl Environ Microbiol* 69:1059-66.

624 23. Taylor MJ, Thorne CB. 1963. Transduction of *Bacillus licheniformis* and *Bacillus subtilis*
625 by each of two phages. *J Bacteriol* 86:452-61.

626 24. Romig WR, Brodetsky AM. 1961. Isolation and preliminary characterization of
627 bacteriophages for *Bacillus subtilis*. *J Bacteriol* 82:135-41.

628 25. Buckling A, Rainey PB. 2002. Antagonistic coevolution between a bacterium and a
629 bacteriophage. *Proc Biol Sci* 269:931-6.

630 26. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF,
631 Rohwer F, Mira A. 2009. Explaining microbial population genomics through phage
632 predation. *Nat Rev Microbiol* 7:828-36.

633 27. Roux S, Krupovic M, Daly RA, Borges AL, Nayfach S, Schulz F, Sharrar A, Matheus
634 Carnevali PB, Cheng JF, Ivanova NN, Bondy-Denomy J, Wrighton KC, Woyke T, Visel
635 A, Kyripides NC, Eloe-Fadrosh EA. 2019. Cryptic inoviruses revealed as pervasive in
636 bacteria and archaea across Earth's biomes. *Nat Microbiol* doi:10.1038/s41564-019-
637 0510-x.

638 28. Breitbart M, Rohwer F. 2005. Here a virus, there a virus, everywhere the same virus?
639 *Trends Microbiol* 13:278-84.

640 29. Askora A, Yamada T. 2015. Two different evolutionary lines of filamentous phages in
641 *Ralstonia solanacearum*: their effects on bacterial virulence. *Front Genet* 6:217.

642 30. Yen M, Camilli A. 2017. Mechanisms of the evolutionary arms race between *Vibrio*
643 *cholerae* and Vibriophage clinical isolates. *Int Microbiol* 20:116-120.

644 31. Richards GP, Chintapenta LK, Watson MA, Abbott AG, Ozbay G, Uknalis J, Oyelade
645 AA, Parveen S. 2019. Bacteriophages against pathogenic *Vibrios* in Delaware Bay
646 oysters (*Crassostrea virginica*) during a period of high levels of pathogenic *Vibrio*
647 *parahaemolyticus*. *Food Environ Virol* 11:101-112.

648 32. Onarinde BA, Dixon RA. 2018. Prospects for biocontrol of *Vibrio parahaemolyticus*
649 contamination in blue mussels (*Mytilus edulis*)-a year-long study. *Front Microbiol*
650 9:1043.

651 33. Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, Pang M, Sun L, Zhou X. 2018.
652 Application of a phage in decontaminating *Vibrio parahaemolyticus* in oysters. *Int J Food
653 Microbiol* 275:24-31.

654 34. Wang W, Li M, Li Y. 2015. Intervention strategies for reducing *Vibrio parahaemolyticus*
655 in seafood: a review. *J Food Sci* 80:R10-9.

656 35. Cao Y, Zhang Y, Lan W, Sun X. 2021. Characterization of vB_VpaP_MGD2, a newly
657 isolated bacteriophage with biocontrol potential against multidrug-resistant *Vibrio*
658 *parahaemolyticus*. *Arch Virol* 166:413-426.

659 36. Brossard Stoos KA, Ren J, Shields-Cutler RR, Sams KL, Caldwell S, Ho MB, Rivara G,
660 Whistler CA, Jones SH, Wiedmann M, DeMent J, Getchell RG, Marquis H. 2022.
661 Coastal water bacteriophages infect various sets of *Vibrio parahaemolyticus* sequence
662 types. *Front Microbiol* 13:1041942.

663 37. Ding T, Sun H, Pan Q, Zhao F, Zhang Z, Ren H. 2020. Isolation and characterization of
664 *Vibrio parahaemolyticus* bacteriophage vB_VpaS_PG07. *Virus Res* 286:198080.

665 38. Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA,
666 Mekalanos JJ. 2005. Seasonal epidemics of cholera inversely correlate with the
667 prevalence of environmental cholera phages. *Proc Natl Acad Sci U S A* 102:1702-7.

668 39. Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS, Yokoyama K, Makino K, Shinagawa
669 H, Honda T. 2000. A filamentous phage associated with recent pandemic *Vibrio*
670 *parahaemolyticus* O3:K6 strains. *J Clin Microbiol* 38:2156-61.

671 40. Iida T, Hattori A, Tagomori K, Nasu H, Naim R, Honda T. 2001. Filamentous phage
672 associated with recent pandemic strains of *Vibrio parahaemolyticus*. *Emerg Infect Dis*
673 7:477-8.

674 41. Iida T, Makino K, Nasu H, Yokoyama K, Tagomori K, Hattori A, Okuno T, Shinagawa H,
675 Honda T. 2002. Filamentous bacteriophages of vibrios are integrated into the dif-like site
676 of the host chromosome. *J Bacteriol* 184:4933-5.

677 42. Chan B, Miyamoto H, Taniguchi H, Yoshida S. 2002. Isolation and genetic
678 characterization of a novel filamentous bacteriophage, a deleted form of phage f237,
679 from a pandemic *Vibrio parahaemolyticus* O4:K68 strain. *Microbiol Immunol* 46:565-9.

680 43. Garin-Fernandez A, Wichels A. 2020. Looking for the hidden: characterization of
681 lysogenic phages in potential pathogenic *Vibrio* species from the North Sea. *Mar*
682 *Genomics* 51:100725.

683 44. Garin-Fernandez A, Glockner FO, Wichels A. 2020. Genomic characterization of
684 filamentous phage vB_Vpal_VP-3218, an inducible prophage of *Vibrio*
685 *parahaemolyticus*. *Mar Genomics* 53:100767.

686 45. Abanto M, Gavilan RG, Baker-Austin C, Gonzalez-Escalona N, Martinez-Urtaza J. 2020.
687 Global expansion of Pacific Northwest *Vibrio parahaemolyticus* sequence type 36.
688 *Emerg Infect Dis* 26:323-326.

689 46. Banerjee SK, Kearney AK, Nadon CA, Peterson C-L, Tyler K, Bakouche L, Clark CG,
690 Hoang L, Gilmour MW, Farber JM. 2014. Phenotypic and genotypic characterization of
691 Canadian clinical isolates of *Vibrio parahaemolyticus* collected from 2000 to 2009.
692 *Journal of Clinical Microbiology* 52:1081-1088.

693 47. Ronholm J, Petronella N, Kenwell R, Banerjee S. 2015. Draft whole-genome sequences
694 of 14 *Vibrio parahaemolyticus* clinical isolates with an ambiguous K serogroup. *Genome*
695 *Announc* 3.

696 48. Ronholm J, Petronella N, Chew Leung C, Pightling AW, Banerjee SK. 2016. Genomic
697 features of environmental and clinical *Vibrio parahaemolyticus* isolates lacking
698 recognized virulence factor are dissimilar. *Appl Environ Microbiol* 82:1102-1113.

699 49. Frichot E, François O. 2015. LEA: an R package for landscape and ecological
700 association studies. *Methods in Ecology and Evolution* 6:925-929.

701 50. Marcinkiewicz AL. 2016. Bacterial and phage interactions influencing *Vibrio*
702 *parahaemolyticus* ecology. Master of Science in Microbiology. University of New
703 Hampshire.

704 51. Schmidt AK, Fitzpatrick AD, Schwartzkopf CM, Faith DR, Jennings LK, Coluccio A, Hunt
705 DJ, Michaels LA, Hargil A, Chen Q, Bollyky PL, Dorward DW, Wachter J, Rosa PA,
706 Maxwell KL, Secor PR. 2022. A filamentous bacteriophage protein inhibits Type IV pili to
707 prevent superinfection of *Pseudomonas aeruginosa*. *mBio* 13:e0244121.

708 52. Ismail MH, Michie KA, Goh YF, Noorian P, Kjelleberg S, Duggin IG, McDougald D, Rice
709 SA. 2021. The repressor C protein, Pf4r, controls superinfection of *Pseudomonas*
710 *aeruginosa* PAO1 by the Pf4 filamentous phage and regulates host gene expression.
711 *Viruses* 13.

712 53. Leon-Sicairos N, Zatarain-Lopez R, Angulo-Zamudio UA, Velazquez-Roman J, Flores-
713 Villasenor H, Martinez-Garcia JJ, Moreno-Perez MA, Buelna-Romero A, Hernandez-
714 Monroy I, Lopez-Martinez I, Cuen-Diaz HM, Diaz-Quinonez JA, Canizalez-Roman A.
715 2022. *Vibrio parahaemolyticus* is associated with diarrhea cases in Mexico, with a
716 dominance of pandemic O3:K6 clones. *Int J Environ Res Public Health* 19.

717 54. Rosales D, Ellett A, Jacobs J, Ozbay G, Parveen S, Pitula J. 2022. Investigating the
718 relationship between nitrate, total dissolved nitrogen, and phosphate with abundance of
719 pathogenic *Vibrios* and harmful algal blooms in Rehoboth Bay, Delaware. *Appl Environ
720 Microbiol* 88:e0035622.

721 55. Martinez-Urtaza J, Huapaya B, Gavilan RG, Blanco-Abad V, Ansede-Bermejo J,
722 Cadarso-Suarez C, Figueiras A, Trinanes J. 2008. Emergence of Asiatic *Vibrio* diseases
723 in South America in phase with El Nino. *Epidemiology* 19:829-37.

724 56. McLaughlin JB, DePaola A, Bopp CA, Martinek KA, Napolilli NP, Allison CG, Murray SL,
725 Thompson EC, Bird MM, Middaugh JP. 2005. Outbreak of *Vibrio parahaemolyticus*
726 gastroenteritis associated with Alaskan oysters. *N Engl J Med* 353:1463-70.

727 57. Konrad S, Paduraru P, Romero-Barrios P, Henderson SB, Galanis E. 2017. Remote
728 sensing measurements of sea surface temperature as an indicator of *Vibrio*
729 *parahaemolyticus* in oyster meat and human illnesses. *Environ Health* 16:92.

730 58. Galanis E, Otterstatter M, Taylor M. 2020. Measuring the impact of sea surface
731 temperature on the human incidence of *Vibrio* sp. infection in British Columbia, Canada,
732 1992-2017. *Environ Health* 19:58.

733 59. Taylor M, Cheng J, Sharma D, Bitzikos O, Gustafson R, Fyfe M, Greve R, Murti M,
734 Stone J, Honish L, Mah V, Punja N, Hexemer A, McIntyre L, Henry B, Kendall P,
735 Atkinson R, Buenaventura E, Martinez-Perez A, Galanis E, Team TOI. 2018. Outbreak
736 of *Vibrio parahaemolyticus* associated with consumption of raw oysters in Canada, 2015.
737 *Foodborne Pathog Dis* 15:554-559.

738 60. Hartwick MA, Urquhart EA, Whistler CA, Cooper VS, Naumova EN, Jones SH. 2019.
739 Forecasting seasonal *Vibrio parahaemolyticus* concentrations in New England shellfish.
740 *Int J Environ Res Public Health* 16.

741 61. Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 2015. 'Big
742 things in small packages: the genetics of filamentous phage and effects on fitness of
743 their host'. *FEMS Microbiol Rev* 39:465-87.

744 62. Das B, Bischerour J, Barre FX. 2011. VGJphi integration and excision mechanisms
745 contribute to the genetic diversity of *Vibrio cholerae* epidemic strains. *Proc Natl Acad Sci
746 U S A* 108:2516-21.

747 63. Means J. 2019. Filamentous bacteriophage associated with shaping community structure
748 and fitness of invasive *Vibrio parahaemolyticus* ST36 Master's Theses and Capstones.
749 University of New Hampshire.

750 64. Hussain FA, Dubert J, Elsherbin J, Murphy M, VanInsberghe D, Arevalo P, Kauffman K,
751 Rodino-Janeiro BK, Gavin H, Gomez A, Lopatina A, Le Roux F, Polz MF. 2021. Rapid
752 evolutionary turnover of mobile genetic elements drives bacterial resistance to phages.
753 *Science* 374:488-492.

754 65. Secor PR, Sweere JM, Michaels LA, Malkovskiy AV, Lazzareschi D, Katznelson E,
755 Rajadas J, Birnbaum ME, Arrigoni A, Braun KR, Evanko SP, Stevens DA, Kaminsky W,
756 Singh PK, Parks WC, Bollyky PL. 2015. Filamentous bacteriophage promote biofilm
757 assembly and function. *Cell Host Microbe* 18:549-59.

758 66. Martinez-Urtaza J, Blanco-Abad V, Rodriguez-Castro A, Ansede-Bermejo J, Miranda A,
759 Rodriguez-Alvarez MX. 2012. Ecological determinants of the occurrence and dynamics
760 of *Vibrio parahaemolyticus* in offshore areas. *ISME J* 6:994-1006.

761 67. Doni L, Oliveri C, Lasa A, Di Cesare A, Petrin S, Martinez-Urtaza J, Coman F,
762 Richardson A, Vezzulli L. 2023. Large-scale impact of the 2016 marine heatwave on the
763 plankton-associated microbial communities of the Great Barrier Reef (Australia). *Mar
764 Pollut Bull* 188:114685.

765 68. Xu Y, Yang L, Wang Y, Zhu Z, Yan J, Qin S, Chen L. 2022. Prophage-encoded gene
766 VpaChn25_0734 amplifies ecological persistence of *Vibrio parahaemolyticus* CHN25.
767 *Curr Genet* 68:267-287.

768 69. Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M, Sunkari V, Kaber G,
769 Manasherob R, Suh GA, Cao X, de Vries CR, Lam DN, Marshall PL, Birukova M,
770 Katznelson E, Lazzareschi DV, Balaji S, Keswani SG, Hawn TR, Secor PR, Bollyky PL.
771 2019. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial
772 infection. *Science* 363.

773 70. Erken M, Weitere M, Kjelleberg S, McDougald D. 2011. In situ grazing resistance of
774 *Vibrio cholerae* in the marine environment. *FEMS Microbiol Ecol* 76:504-12.

775 71. Paff ML, Nuismer SL, Ellington A, Molineux IJ, Bull JJ. 2016. Virus wars: using one virus
776 to block the spread of another. *PeerJ* 4:e2166.

777 72. Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esveld KM, Villanueva L, Liu DR, Chen
778 IA. 2011. Inhibition of bacterial conjugation by phage M13 and its protein g3p:
779 quantitative analysis and model. *PLoS One* 6:e19991.

780 73. Molina-Quiroz RC, Dalia TN, Camilli A, Dalia AB, Silva-Valenzuela CA. 2020. Prophage-
781 dependent neighbor predation fosters horizontal gene transfer by natural transformation.
782 *mSphere* 5.

783 74. Matthey N, Stutzmann S, Stoudmann C, Guex N, Iseli C, Blokesch M. 2019. Neighbor
784 predation linked to natural competence fosters the transfer of large genomic regions in
785 *Vibrio cholerae*. *Elife* 8.

786 75. Dalia AB, McDonough E, Camilli A. 2014. Multiplex genome editing by natural
787 transformation. *Proc Natl Acad Sci U S A* 111:8937-42.

788 76. Guerrero A, Gomez-Gil B, Lizarraga-Partida ML. 2021. Genomic stability among O3:K6
789 *V. parahaemolyticus* pandemic strains isolated between 1996 to 2012 in American
790 countries. *BMC Genom Data* 22:38.

791 77. Panicker G, Call DR, Krug MJ, Bej AK. 2004. Detection of pathogenic *Vibrio* spp. in
792 shellfish by using multiplex PCR and DNA microarrays. *Appl Environ Microbiol* 70:7436-
793 7444.

794 78. Whistler CA, Hall JA, Xu F, Ilyas S, Siwakoti P, Cooper VS, Jones SH. 2015. Use of
795 whole-genome phylogeny and comparisons for development of a multiplex PCR assay
796 to identify sequence type 36 *Vibrio parahaemolyticus*. *Journal of clinical microbiology*
797 53:1864-1872.

798 79. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. 2015.
799 Inexpensive multiplexed library preparation for megabase-sized genomes. *PloS one*
800 10:e0128036.

801 80. Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. A5. An integrated pipeline for *de novo*
802 assembly of microbial genomes. *PLoS ONE* 7:e42304 DOI:
803 10.1371/journal.pone.0042304.

804 81. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation.
805 Bioinformatics:DOI:10.1093/bioinformatics/btu153.
806 82. Inouye M, Conway TC, Zobel J, Holt KE. 2012. Short read sequence typing (SRST):
807 multi-locus sequence types from short reads. BMC Genomics 13:338.
808 83. Jolley KA, Maiden MC. 2014. Using MLST to study bacterial variation: prospects in the
809 genomic era. Future microbiology 9:623-630.
810 84. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, Zobel J, Holt KE.
811 2014. SRST2: Rapid genomic surveillance for public health and hospital microbiology
812 labs. Genome Med 6:90.
813 85. Gardner SN, Slezak T, Hall BG. 2015. kSNP3.0: SNP detection and phylogenetic
814 analysis of genomes without genome alignment or reference genome. Bioinformatics
815 31:2877-8.
816 86. Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
817 with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.
818 87. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new
819 developments. Nucleic Acids Res 47:W256-W259.
820 88. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with
821 gene gain, loss and rearrangement. PLoS One 5:e11147.
822 89. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer.
823 Bioinformatics 27:1009-10.
824 90. T. S. 2015. Snippy: fast bacterial variant calling from NGS reads [Internet]. Available
825 from <https://github.com/tseemann/snippy> Accessed
826 91. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J,
827 Harris SR. 2014. Rapid phylogenetic analysis of large samples of recombinant bacterial
828 whole genome sequences using Gubbins. Nucleic acids research:gku1196.
829 92. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using SPAdes
830 De Novo Assembler. Curr Protoc Bioinformatics 70:e102.
831 93. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane
832 T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools.
833 Gigascience 10.
834 94. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. 2016.
835 SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb
836 Genom 2:e000056.
837 95. Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer.
838 96. Deatherage DE, Barrick JE. 2014. Identification of mutations in laboratory-evolved
839 microbes from next-generation sequencing data using breseq. Methods Mol Biol
840 1151:165-88.
841 97. Krupovic M, Dutilh BE, Adriaenssens EM, Wittmann J, Vogensen FK, Sullivan MB,
842 Rumnieks J, Prangishvili D, Lavigne R, Kropinski AM, Klumpp J, Gillis A, Enault F,
843 Edwards RA, Duffy S, Clokie MR, Barylski J, Ackermann HW, Kuhn JH. 2016.
844 Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses
845 subcommittee. Arch Virol 161:1095-9.
846 98. Adriaenssens E, Brister JR. 2017. How to Name and Classify Your Phage: An Informal
847 Guide. Viruses 9.
848 99. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment
849 search tool. J Mol Biol 215:403-10.
850 100. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based
851 species delimitation with confidence intervals and improved distance functions. BMC
852 Bioinformatics 14:60.
853 101. Meier-Kolthoff JP, Goker M. 2017. VICTOR: genome-based phylogeny and classification
854 of prokaryotic viruses. Bioinformatics 33:3396-3404.

855 102. Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous
856 and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418-26.
857 103. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular
858 Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725-9.
859 104. Taniguchi H, Sato K, Ogawa M, Udo T, Mizuguchi Y. 1984. Isolation and
860 characterization of a filamentous phage, Vf33, specific for *Vibrio parahaemolyticus*.
861 Microbiology and immunology 28:327-337.
862 105. Chang B, Yoshida S, Miyamoto H, Ogawa M, Horikawa K, Ogata K, Nishibuchi M,
863 Taniguchi H. 2000. A unique and common restriction fragment pattern of the nucleotide
864 sequences homologous to the genome of vf33, a filamentous bacteriophage, in
865 pandemic strains of *Vibrio parahaemolyticus* O3:K6 O4:K68, and O1:K untypeable.
866 FEMS Microbiol Lett 192:231-6.
867

Figure 1

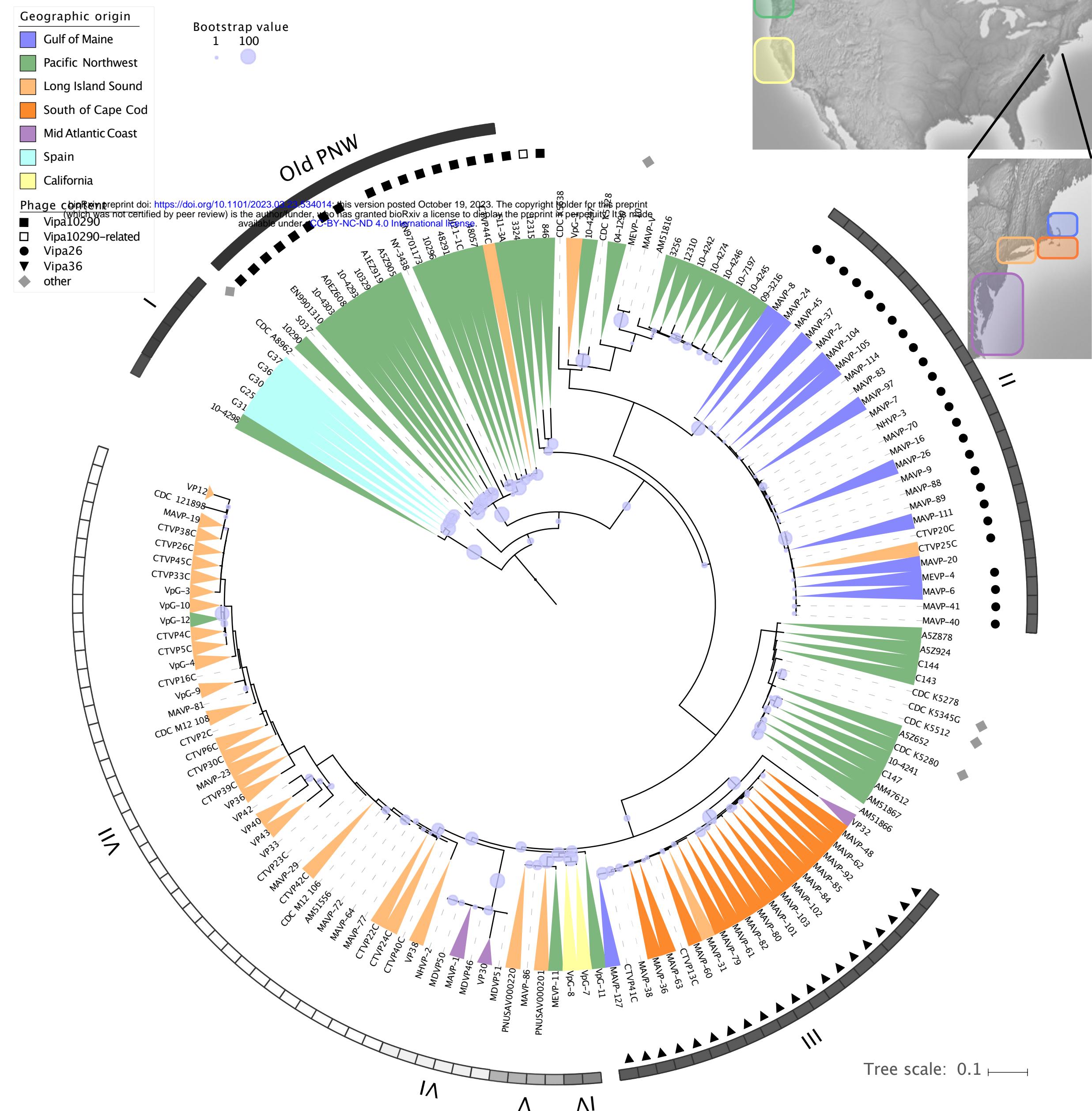
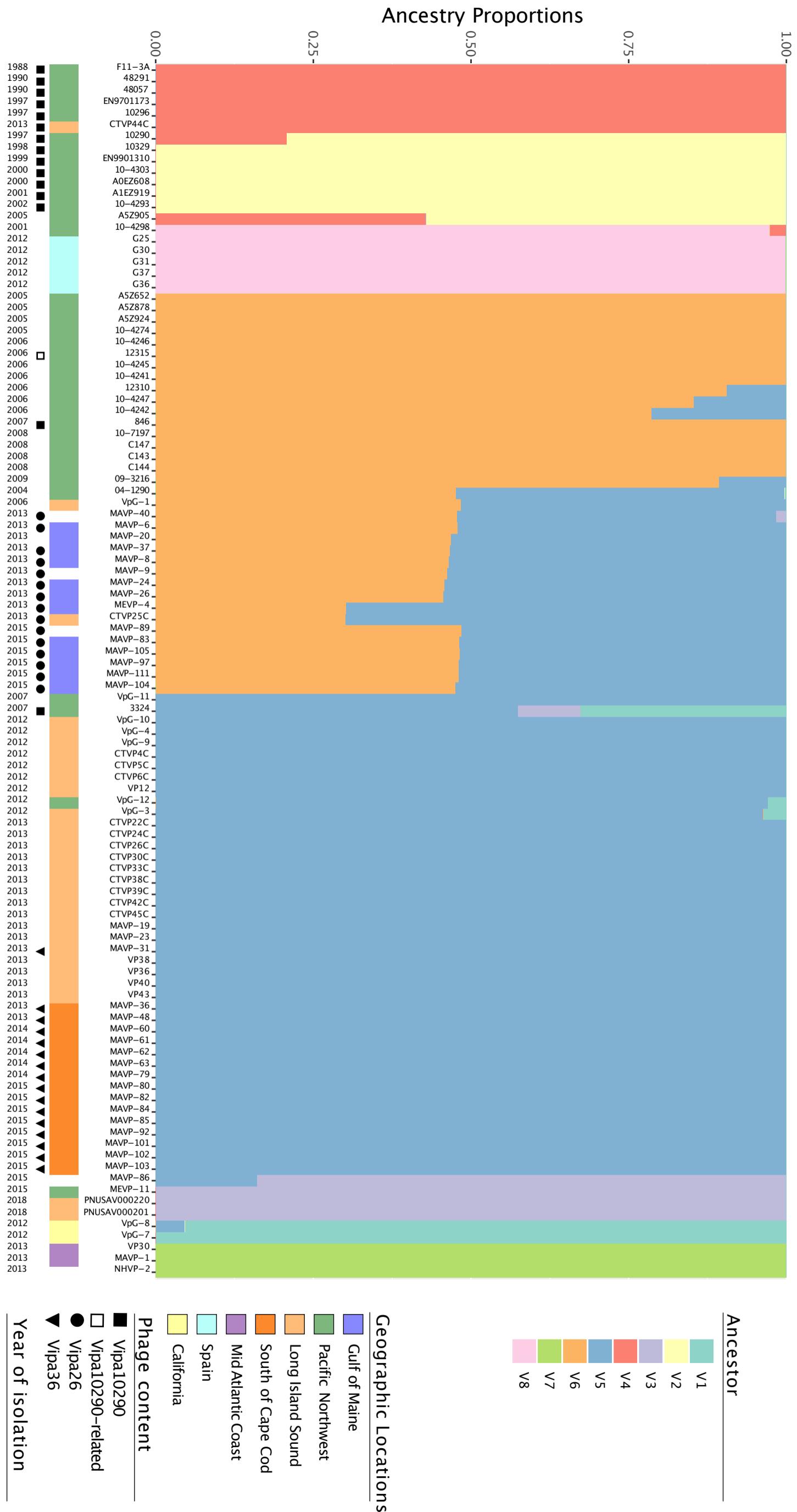
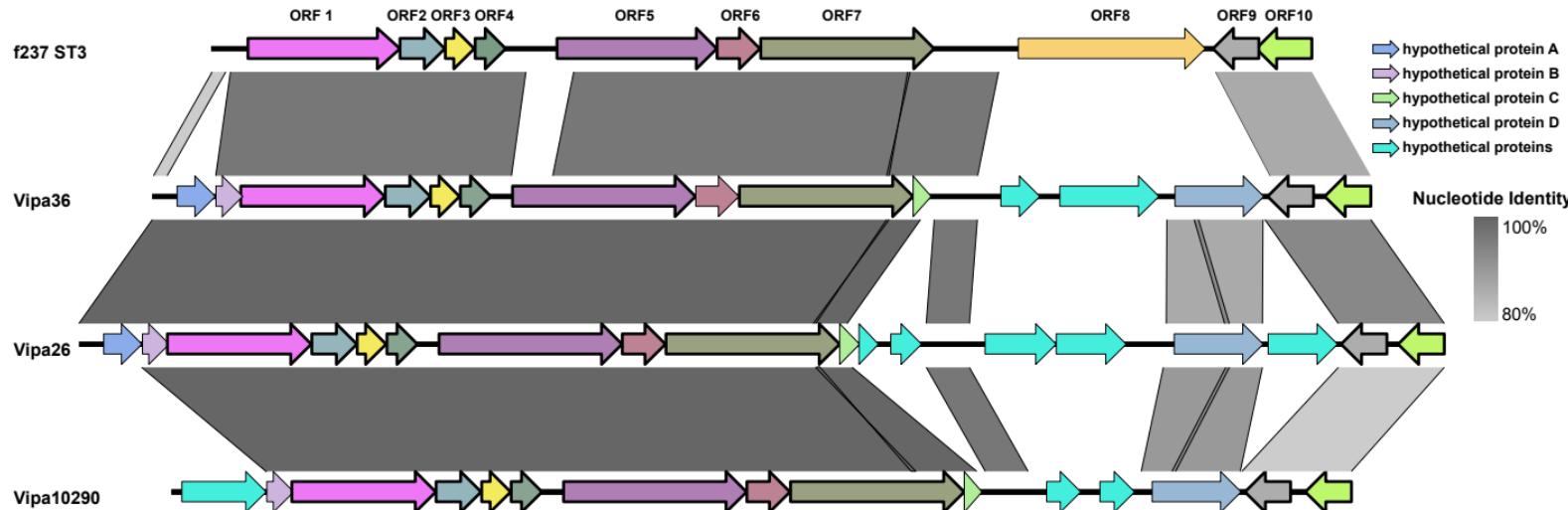
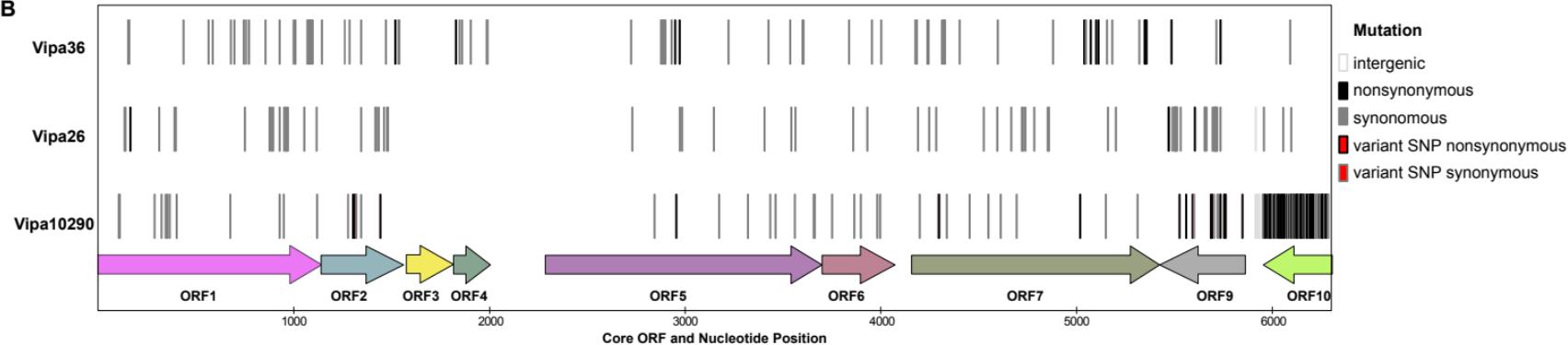





Figure 2

Figure 3**A****B**

Figure 4

bioRxiv preprint doi: <https://doi.org/10.1101/2023.03.23.5534014>; this version posted October 19, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

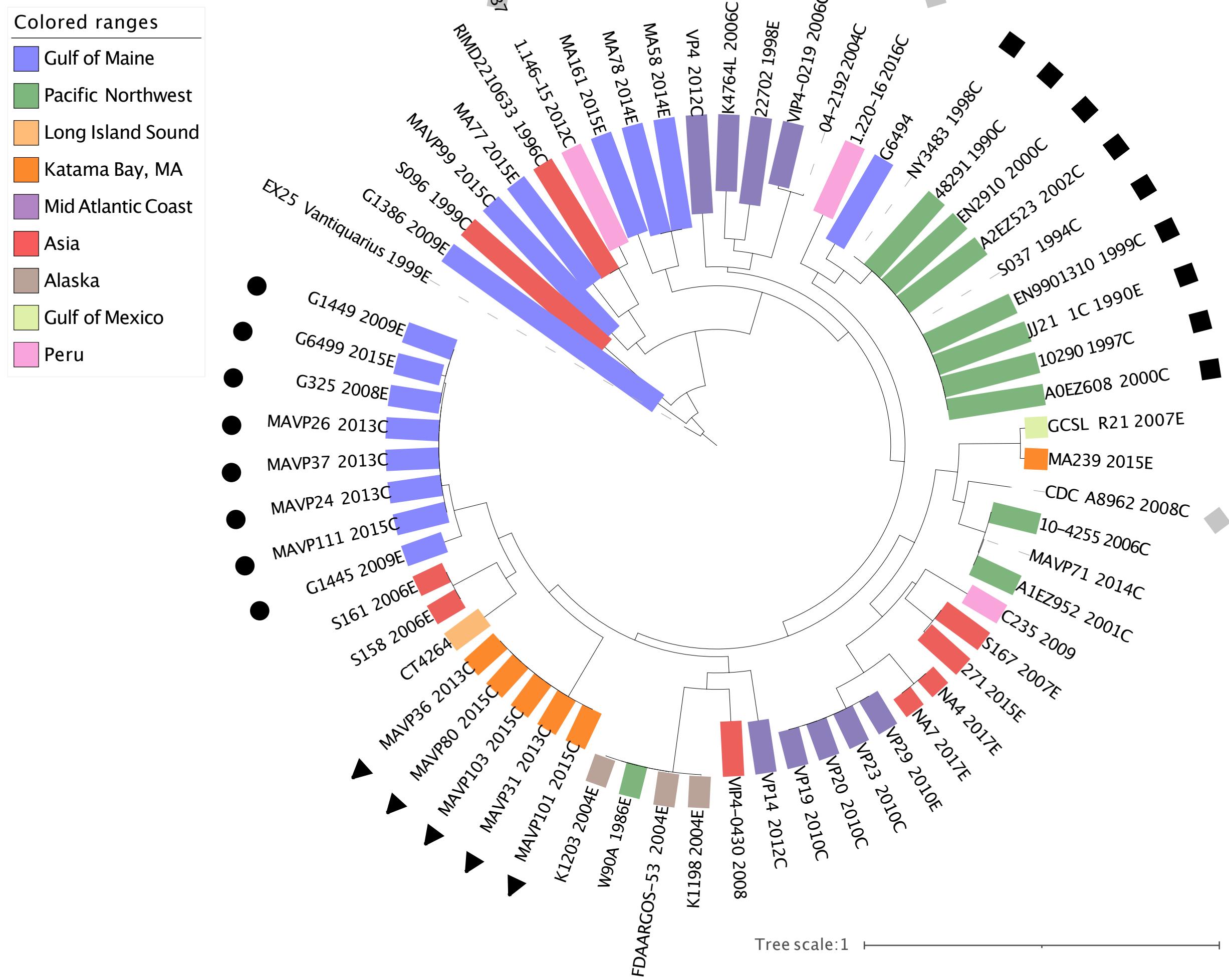
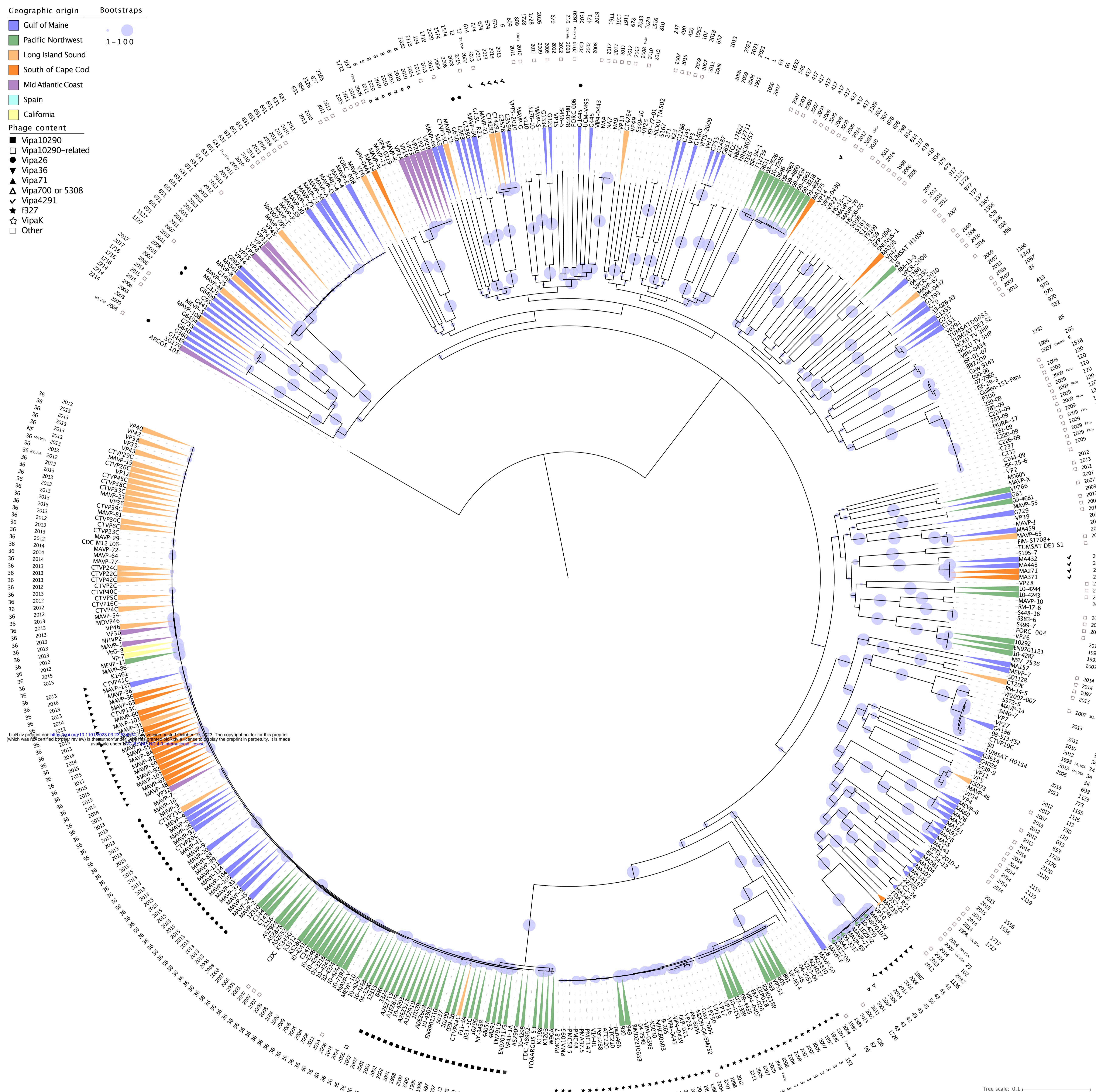



Figure 5

