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Abstract: The epidemiology of Vibrio parahaemolyticus, the leading cause of seafood-borne 48 

bacterial gastroenteritis of humans world-wide, dramatically changed in the United States 49 

following the establishment of a Pacific native lineage called sequence type (ST) 36 in the 50 

Atlantic. In this study we used phylogeography based on traceback to environmental source 51 

locations and comparative genomics to identify features that promoted evolution, dispersal, and 52 

competitive dominance of ST36. The major genomic differentiation and competitive success of 53 

ST36 was associated with a striking succession of filamentous prophage in the family Inoviridae 54 

(inoviruses), including loss of an inovirus prophage that had been maintained for decades in the 55 

endemic north Pacific population. Subsequently, at least five distinct progenitors arising from 56 

this diversification translocated from the Pacific into the Atlantic and established four 57 

geographically defined clonal subpopulations with remarkably low migration or mixing. Founders 58 

of two prevailing Atlantic subpopulations each acquired new stable and diagnostic inoviruses 59 

while other subpopulations that apparently declined did not. Broader surveys indicate inoviruses 60 

are common and active among the global population of V. parahaemolyticus and though 61 

inovirus replacements, such as in ST36, appear to be infrequent, they are notable in pathogenic 62 

lineages that dispersed. 63 

Importance: An understanding of the processes that contribute to emergence of pathogens 64 

from environmental reservoirs is critical as changing climate precipitates pathogen evolution and 65 

population expansion. Phylogeographic analysis of Vibrio parahaemolyticus hosts combined 66 

with analysis of their Inoviridae phage resolved ambiguities of diversification dynamics which 67 

preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has 68 

been established experimentally that filamentous phage can limit host recombination, but here 69 

we show that phage loss is linked to rapid bacterial host diversification during epidemic spread 70 

in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of 71 
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pathogens. This work paves the way for functional analyses to define the contribution of 72 

inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.  73 

 74 

Introduction 75 

Cases of V. parahaemolyticus, the leading cause of bacterial seafood-borne 76 

gastroenteritis of humans world-wide recently increased along the United States (US) Atlantic 77 

coast (1-3). Rising seasonal illnesses were tied to warming ocean temperatures, a growing 78 

aquaculture industry, and the emergence of endemic pathogens (3-6). But incursion of a Pacific 79 

Northwest (PNW) lineage called sequence type (ST) 36 into the Atlantic following an 80 

anomalously mild winter is the most important driver of this shift (3, 5, 7). ST36 began causing 81 

infections in 1979 (8) and was originally limited to the Pacific Northwest (PNW) (9). Although 82 

sporadic infections were occasionally reported outside the PNW, local sources were rarely 83 

implicated (7, 9, 10). This changed in 2012 when ST36 began causing illnesses traced to 84 

Atlantic sources and in 2013 it caused a 13-state outbreak traced to multiple northeast US 85 

locations (5, 7). Unlike previous non-endemic strains causing outbreaks from Atlantic sources, 86 

including the pandemic ST3 (11), and ST8 (12), ST36 continues to cause sporadic disease from 87 

a few northeast US locations. A better understanding of how and where ST36 established 88 

populations is needed to aid in management to limit illness. Furthermore, this expansion of 89 

ST36 provides a unique opportunity to broaden our understanding of the population and 90 

environmental context by which pandemic strains arise and spread.    91 

Spatiotemporal analyses of the epidemiology of ST36 identified that a new population 92 

arose through recombination and replaced the original PNW population by 2000 (9). Disease 93 

patterns implied potential reciprocal transfer between both US coasts, though inference was 94 

informed by a few cases where infection occurred from shellfish consumed on the opposite 95 

coast from where illnesses were reported and further complicated by modeling of a mode of 96 
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spread through human populations (9), whereas seasonal illnesses by V. parahaemolyticus are 97 

typically vectored by environmentally contaminated raw seafood. This highlights a continuing 98 

challenge where a lack of environmental traceback in clinical reporting that uncouples strains 99 

from their source bodies of water obscures environmental distribution (5, 9). As with other 100 

human pathogens originating from the natural environment, this leaves a critical gap of 101 

knowledge of the ecological context of pathogen evolution and expansion.  102 

Bacteriophages, the viruses that infect bacteria, can shape, and quell environmentally 103 

vectored human pathogen populations (13-19). Lytic phages alter the dynamics of bacterial 104 

competition though selective predation, sometimes of the most numerous bacteria, thereby 105 

maintaining population diversity (20-22). Phages also impact diversity through transfer of novel 106 

DNA including toxin-encoding genes and lysogenic conversion (23-28). Chromosomally 107 

integrated prophages are double-edged swords in that they can benefit their host by excluding 108 

superinfections by related phage and by attacking their hosts' competitors, but they can also 109 

harm their hosts by diverting resources for virion production or by host death upon lytic induction 110 

(25-27, 29, 30). Lytic phages are abundant in habitats of V. parahaemolyticus (31), and also 111 

under consideration for detection and biological control (32-37). Though the roles of phage in 112 

mediating bacterial competition among Vibrio cholerae is well appreciated (14, 38), with the 113 

exception of a few descriptive reports (39-44), the contribution of prophage to V. 114 

parahaemolyticus population structure is undetermined.  115 

Prior studies have produced valuable insight into the growing problem of the ST36 116 

lineage’s increasing clinical prevalence and potential to spread globally (9, 45), but the 117 

adaptations that prompted lineage replacement and dispersal are not evident nor are the 118 

ecological factors that spurred diversification. Here, we examined the phylogenomics of the 119 

Atlantic ST36 incursion4accompanied by interactions with filamentous Inoviridae phage4by 120 

capturing a broad geographic and temporal distribution of the population. By curating strains 121 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.03.23.534014doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534014
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

with environmental traceback, we determined the phylogeography of ST36 wherein multiple 122 

strains that first diversified in the Pacific, subsequently translocated to the Atlantic, and 123 

established spatially distinct and non-mixing subpopulations therein. This also revealed that 124 

changes in inovirus content accompanied diversification and lineage replacement in the PNW 125 

and preceded clonal expansion by distinct founders of two persisting Atlantic ST36 populations 126 

that continue to cause sporadic disease.  127 

 128 

Results 129 

Multiple distinct ST36 lineages clonally expanded to form geographically stable Atlantic 130 

subpopulations  131 

 To investigate the evolution of ST36 as it translocated from the PNW to the Atlantic, we 132 

curated a collection of genomes and mapped their environmental sources onto their constructed 133 

whole genome phylogenies. Locations include two Pacific (PNW and California [CA]), and five 134 

Atlantic (Galicia Spain, the Gulf of Maine [GOM], an Island south of Cape Cod, [SCC], Long 135 

Island Sound [LIS] and the mid-Atlantic coast [MAC] [Table S1]). The phylogenies exemplify 136 

how multiple clades emerged from the old-PNW population (Fig. 1) and gave rise to the new-137 

PNW population (9). A single relic of the old-PNW population and 103 isolates from seven 138 

lineages arising from the modern ST36 diversification were traced to environmental locations 139 

outside the PNW (Fig. 1, clades I-VII). Notably, most translocated clades either contain a PNW-140 

traced isolate or are most closely related to clades dominated by PNW isolates suggesting 141 

these differentiated in the PNW prior to translocation rather than after arrival in the Atlantic.  142 

Assignment of isolates to environmental sources revealed striking geographic structure 143 

of the Atlantic subpopulations in GOM, SCC, and LIS, indicating that each was founded by a 144 

genetically unique individual (Fig. 1). All but one isolate traced to the GOM are clonal (clade II) 145 

and share ancestry with PNW isolates (9, 46-48), and the 2006 New York isolate VpG-1 (9)(Fig. 146 
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1, Table S1). Most isolates traced to other Atlantic locations and those from CA share common 147 

ancestry with isolates reported from British Columbia Canada in 2005, and later in WA in 2011-148 

2012 (Fig. 1 and Table S1). All but one SCC-traced isolate (clade III) are clonal and only two 149 

clade members trace to other nearby locations. LIS-traced isolates are also mostly clonal (76%) 150 

(clade VII), though two distinct 2018 isolates group within a mixed-location clade (clade V) with 151 

isolates trace to the PNW in 2011, and from oysters consumed in CA in 2015. Phylogenies built 152 

with core non-recombining variation mostly agreed with whole genome phylogenies, though a 153 

change in clonal assignment of two strains (CTVP25C and MAVP-48) alluded to the possibility 154 

that horizontally acquired variation these shared in common with the GOM and SCC clades 155 

respectively may have obscured their distinct heritage (Fig. 1, S1 & S2; Tables S2- S4).  156 

 Given the geographic linkage of clonal subpopulations (Fig. 1), we examined the 157 

population genetic structure of isolates from known locations to identify patterns of coancestry 158 

and admixture (49). The conservative use of core variation and eight ancestral populations 159 

(which best explains the data, see Fig. S3A & B) identified two old-PNW populations that were 160 

replaced by a single modern-day PNW population, comprised of two geographically distinct 161 

lineages: one related to GOM isolates and the other to most SCC/LIS/MAC isolates (Fig. 1 & 162 

Fig. 2). Six PNW isolates were exceptions in that they belong to the same population and form 163 

clades with other translocated isolates, including those traced to Spain. Although no PNW 164 

isolates belong to the population that translocated to CA, two PNW isolates exhibit a shared 165 

history of admixture with the CA isolates providing clues to this lineage’s origin. The clonal 166 

clades from SCC and LIS, which are in very close proximity to each other and without 167 

geographic barriers, also belong to the same population, whereas two MAC isolates form a 168 

distinct population. Atlantic-derived isolates from locations south of the GOM exhibit little 169 

coancestry with other populations, whereas the GOM clade displays near equal mixed 170 
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coancestry between the prevalent modern PNW population and the other Atlantic populations 171 

(Fig. 2). Five PNW isolates also exhibited this same pattern of mixed heritage.   172 

 Analysis of admixture that incorporated horizontally acquired content separated the two 173 

Atlantic populations on opposite sides of Cape Cod, MA (GOM and SCC) from the rest of those 174 

in the Atlantic which grouped with strains from CA (Fig. S4). This also relocated a single GOM 175 

clade isolate (MAVP-20) into the CA/MAC/LIS population. This suggested that horizontally 176 

acquired variation in the SCC and GOM lineages (that MAVP-20 lacks) may define their 177 

uniqueness. In contrast to the GOM and SCC populations that exhibit little admixture, the 178 

modern PNW ST36 isolates exhibit complex admixture as do members of the LIS population 179 

(Fig. S4). Relatively few individuals within the GOM and SCC populations display some 180 

admixture with each other. Thus, population structures inferred from horizontal variation better 181 

aligned most strains to their geographic locations even as horizontal content overshadowed 182 

some interesting ancestral patterns, specifically, the shared mixed heritage of the GOM clade 183 

with modern PNW strains (Fig. 2).  184 

Inovirus loss and reacquisition accompanied ST36 population replacement and expansion  185 

One explanation for the differences in core versus whole genome population structure is 186 

that differential genetic gains or losses preceded clonal expansion. To identify such features, we 187 

compared high-quality genomes of four Atlantic clade members, (MAVP-1, MAVP-23, MAVP-188 

36, and MAVP-26), to PNW strains of the new-PNW (12310) and old-PNW (10290) clades. This 189 

revealed MAVP-26, MAVP-36, and 10290 each contain a unique prophage integrated into the 190 

dif site at the replication terminus of chromosome I, similar to prophage f237 found in pandemic 191 

O3:K6 strains (39, 41) (Fig.3). In contrast, the other two Atlantic clade members and the new-192 

PNW isolate lack a phage in this location (Fig. 3). These are classified in the family Inoviridae 193 

(hereafter inoviruses) and we assigned unique names, including <vB= for virus infecting Bacteria, 194 
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and <Vipa= in reference to the host Vibrio parahaemolyticus and isolate name hereafter Vipa26 195 

in MAVP-26, Vipa36 in MAVP-36, and Vipa10290 in strain 10290 (50).  196 

These inoviruses have a conserved central core (ORF 1-7) and ORF9 and ORF10 (Fig. 197 

3A), and two variable regions. Whereas core phage gene functions were identifiable (Table 1), 198 

the functions encoded in variable regions were not discernable. Nucleotide variation in the 199 

inoviruses represented up to 46% of their host’s genome variation helping to explain differences 200 

between whole and core genome phylogenies (Fig. 1, S1 & S2) and population structures (Fig. 201 

2 and Fig. S4). Though this content would be credited to recombination, surprisingly, genomes 202 

that lack inoviruses had a higher proportion of gene content assigned to blocks of 203 

recombination: 2.7% in 12310 and MAVP-1, and 2.0% in MAVP-23, compared to 1.3% in 204 

10290, 1.4% in MAVP-26, and 1.8% in MAVP-36 (Fig. S1 and Table S3). Though divergent 205 

from one another, inovirus variation likely did not alter function: the 74 variant sites in the core of 206 

Vipa26 generated only three non-synonymous mutations, whereas the 78 variant sites in Vipa36 207 

produced 13 non-synonymous mutations (Fig. 3B, Table S6). ORF1-7 are under purifying 208 

selection (codon-based Z test =9.425, p < 0.001) implying these are essential genes, and that 209 

their function is preserved. This also suggests the infections not cryptic, and the phage are likely 210 

still functional. Comparisons of core inovirus content from additional ST36 lysogens revealed 211 

100% identity within the Vipa26 and Vipa36 lineages, whereas Vipa10290 had 18 non-212 

conserved variable sites, perhaps reflecting its long history with a sizeable ST36 population 213 

(Fig. 3B).    214 

With only one exception (A5Z905), all old-PNW clade members, including CTVP44C, 215 

contained Vipa10290 or related phage (Fig. 1, square). ST39, a member of the same clonal 216 

complex as ST36, also contains Vipa10290 whereas other clonal complex members (ST59 and 217 

ST21), share a distinct inovirus (Fig. S5, Tables 2, S9, & S10). Despite this history of lysogeny 218 

among the endemic population, no modern-day and definitively traced PNW ST36 isolates 219 

harbor inoviruses (Fig. 1 & Table S1 & S7) and this loss coincides with population diversification 220 
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(Fig. 1). However, like GOM and SCC clade members, a total of nine other modern ST36 221 

isolates collected between 2007-2016, some that dispersed to new locations and all others 222 

untraced, acquired eight other inoviruses (Fig. 1, Table 2). 223 

The distribution of community-acquired phage offers clues of residency and dispersal. 224 

For the Atlantic ST36 populations, inovirus content was diagnostic of lineage and 225 

geography. Vipa26 was absent from only one member (MAVP-20) of the ST36 GOM clonal 226 

clade and present in only one distinctive isolate from a different location (CTVP25C) 227 

representing either basal or independent acquisition (Fig. 1 circles). Vipa36 (Fig. 1 triangles) is 228 

in all members of the SCC clade and only two isolates from this clade were traced to nearby 229 

locations. Because these inoviruses, like f237, are not widespread and have been maintained 230 

by these lineages tied to two locations, they are diagnostic of these ST36 subpopulations. In 231 

contrast, and like the modern PNW traced-ST36 isolates, no isolates of the LIS or MAC clonal 232 

clades harbor inoviruses. 233 

The association of inoviruses with two Atlantic clades, and their absence in others, 234 

suggests that the founding subpopulation progenitors acquired phage upon Atlantic invasion 235 

only in some locations perhaps reflecting phage predation pressure. Environmental surveys 236 

revealed that although 22% of Northeast US V. parahaemolyticus isolates harbor inoviruses, 237 

this proportion varied by location (50). Proportions were lower in LIS (10%), than in GOM and 238 

SCC (30% and 42% respectively). Whereas no environmental isolates other than ST36 harbor 239 

Vipa36, multiple non-ST36 isolates collected in NH as early as 2008 contain Vipa26 (Table S1, 240 

Fig. 4, & S6). This suggests Vipa26 was acquired locally as supported by its absence from VpG-241 

1 (Fig. 1, Table S1 & S7).   242 

Because comparative phage phylogeny could elucidate the history of ST36 as members 243 

moved through other populations, we expanded our search for inoviruses among available 244 

genomes of V. parahaemolyticus. These prophage genomes added to the Inoviridae diversity 245 
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(Fig. & S5) but display little discernable phylogeographic population structure in that related 246 

phage are found in both the Atlantic and Pacific V. parahaemolyticus populations, and phage in 247 

Asian isolates group among most branches, with the exception of Vipa10290. Two ST36 248 

isolates harbor two different inoviruses maintained by members of the PNW co-resident but 249 

unrelated ST43 (Table 2, Fig. S5). Though most members of the two ST36 lineages reported in 250 

Peru also lack inoviruses, including a 2011 environmental isolate related to the Spain lineage 251 

(45), one clinical isolate of this lineage harbors a Vipa10290-related inovirus, whereas a second 252 

clinical isolate (1.146-15), harbors f237 (Fig. 4). 253 

The phylogenomic distribution of inoviruses in all publicly available V. parahaemolyticus 254 

genomes indicates they are common, with 46% of genomes containing one or more inovirus 255 

(Fig. 5, Fig. S6, and Table S10) yet distributed unevenly. Many lineages harbor a persisting 256 

inovirus (Fig. 5 and Fig. S6). A few lineages harbor two evolutionary distinct inoviruses 257 

concurrently suggesting that protection from superinfection, a common attribute of both 258 

temperate phage and inoviruses (51, 52), is not absolute (Fig. S5). In addition to Vipa26, a 259 

second inovirus is present in multiple, unrelated STs (Fig. S6). Even though most STs have an 260 

inovirus prophage that they propagate vertically, the inoviruses of some isolates were replaced 261 

by another, like ST36 (Table 3, Fig. S6). Notable among these are emergent pathogenic 262 

lineages including ST43 and the prevalent Atlantic endemic ST631 lineage that has caused 263 

illnesses along the North American Atlantic coast (4), the pandemic complex (ST3) and a 264 

diverse and far-spreading Asian lineage that is now an Atlantic resident (ST8). 265 

 266 

Discussion 267 

 Here we demonstrate that changes in inovirus prophage accompanied diversification, 268 

competitive replacement, dispersal, and Atlantic invasion of V. parahaemolyticus ST36. This 269 
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suggests that inoviruses could countribute to the emergence of new lineages with the potential 270 

to spread more broadly. The misleading nature of disease reporting that does not align illnesses 271 

with environmental reservoirs and declining availability of recent ST36 genomes from the US 272 

PNW have been obstacles to deciphering the ecological context of ST36 evolution and spread. 273 

We addressed these limitations using genomes from isolates reported in Canada and other US 274 

states that were publicly available and by augmenting available genomes with a collection of 275 

ST36 clinical isolates from the Northeast US. We carefully curated environmental traceback to 276 

advance our understanding of ST36 ecological expansion into the Atlantic Ocean.  277 

 Our analysis indicates five or more unique ST36 progenitors diversified in the Pacific and 278 

then translocated into the Atlantic to found subpopulations (Fig. 1, S2, 2, and S4). The earliest 279 

sequenced ST36 isolate traced to the Atlantic in 2006 (VpG-1) and several PNW strains share a 280 

similar pattern of mixed ancestry with this isolate and group with the GOM clade suggesting its 281 

progenitor may have arrived prior to 2006 with little effect on epidemiology until after the 282 

anomalously mild winter of 2011-2012 (1, 2). Isolates traced to SCC, LIS and MAC are more 283 

related to each other, and multiple Pacific-traced isolates group within or adjacent to their clades 284 

(Fig. 1, 2, & S2). This pattern is most simply explained by divergence of these populations’ 285 

ancestors in the Pacific prior to introduction into the Atlantic (Fig. 1, 2 & S2). Clade V’s shared 286 

ancestry with CA and PNW isolates further implicates the PNW as the source population. And 287 

although imperfect trace back or mislabeled genomes could explain some unexpected patterns, 288 

nearly every Pacific-traced relative of Atlantic residential populations were isolated, reported, 289 

and sequenced independently and prior to Atlantic isolation (Table S1). Although our 290 

interpretations of population evolution and dispersal contrast with previous reports (9), this is 291 

mostly explained by differences in geographic assignment of isolates to environmental sources 292 

instead of the readily available location of disease reporting as our goal was to understand 293 

dynamics affecting reservoirs of emergent pathogenic lineages (See details of Table S1). 294 
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Traceback confirmation from CA (Table S1), disease reporting in Mexico (53) and 295 

environmental isolation in Peru (9, 45) further corroborate that these lineages diversified in the 296 

Pacific. And though missing intermediate populations could suggest unknown reservoirs exist, it 297 

is more likely that sampling bias, a decrease in availability of PNW genomes, decreased clinical 298 

prevalence of ST36 in the PNW, and lack of surveillance there have compounded challenges 299 

with deciphering this pathogen’s evolution and spread. Based on mounting evidence that most if 300 

not all lineages arose in the PNW, this warrants further examination of the PNW environmental 301 

reservoir to manage further spread. 302 

  Even as increasing ocean temperatures and weather events have been tied to both 303 

seasonal illnesses by V. parahaemolyticus and its spread to new locations (9, 54-57), the stable 304 

and non-mixing distribution of Atlantic ST36 lineages suggests that environmental fitness that 305 

promotes persistence may be their key to success. It is notable that in BC Canada where many 306 

diversified ST36 isolates were first reported, rising infection rates were not fully explained by 307 

temperature models but rather attributed to new pathogenic strains (58, 59). Like the Northeast 308 

US, the MAC experienced a warming trend in 2012 (9), nonetheless this location has not 309 

experienced persistent problems with ST36 (1, 10). Combined, we believe warming ocean 310 

temperatures are only part of the picture and that underexplored ecological interactions are at 311 

play in driving V. parahaemolyticus invasion and persistence (60). Even in locations in the 312 

Atlantic with recurrent illness, environmental prevalence of ST36 is extremely rare (Table S1) 313 

illustrating how low-level persisting populations can change epidemiology. Identification of 314 

unique ecological and population contexts of the MAC compared to more northern locations 315 

could provide useful insight.  316 

Phage loss and later sequential phage replacement is one of the most striking and 317 

common features of ST36 lineage succession in the PNW and population expansion into the 318 

Atlantic. Nearly all old PNW lineage members harbor Vipa10290 (Fig. 1 and Table S1), whereas 319 
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strains of the new ST36 lineages isolated in the PNW after 2002 lack inoviruses, though other 320 

phage are not uncommon (Table S3). The presence of Vipa10290 in other clonal complex 321 

members could indicate a basally acquired phage was lost during lineage diversification. 322 

Though inovirus excision is infrequently reported (61, 62), laboratory passage of ST36 can lead 323 

to both phage curing and loss of protection from superinfection (63). The lack of inovirus- 324 

harboring PNW ST36 population members indicates they ultimately were at a disadvantage in 325 

the context of a changing population even though other residents concurrently maintained 326 

inoviruses (e.g., ST43, Table 2) and potentially transmitted these to a few ST36 members. The 327 

subsequent acquisition of inoviruses by diverging ST36 lineages (Table 2) indicates ST36 328 

remained susceptible to infection, though the persisting inovirus-free state of modern-PNW 329 

ST36 lineages suggests that resistance may have evolved during their diversification, as has 330 

been described in other sympatric Vibrio populations (64). In contrast, that the progenitors of 331 

two clinically prevailing Atlantic ST36 lineages acquired inoviruses prior to clonal expansion, 332 

while ST36 populations in the LIS where inoviruses are less abundant did not, indicates phage 333 

acquisition was not requisite for success, perhaps reflecting differences in phage predation and 334 

other population dynamics. Even so, whereas resident ST36 from SCC and GOM have 335 

continued to cause sporadic disease, infections from LIS have precipitously declined, in part 336 

reflective of successful management.  337 

Inovirus prophage confer obvious costs through persistent non-lethal virion production 338 

(61), suggesting their loss would be favored; and yet inoviruses have been maintained by 339 

prevalent lineages for decades (Table 2 & 4, Fig. 5). This could reflect their fastidious nature, 340 

but the success of the two northernmost Atlantic populations harboring inoviruses contrasting 341 

with the unsuccessful lineages that lacked them signals alternatives are possible: that 342 

inoviruses may confer advantages in some as yet undefined context. For example, shed 343 

inovirus virions contribute to biofilm matrix (65) thereby promoting virulence and antimicrobial 344 
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resistance, but also potentially enhancing survival during long-distance movement on particles 345 

(52, 54, 66-68). Shed inoviruses can mislead human immune responses and decrease host 346 

ability to clear bacterial infections, thereby enhancing virulence (69). Furthermore, variable 347 

content in some inoviruses is linked to anti-predation (17, 70) and virulence (22, 27, 39). We find 348 

it intriguing that succession in the PNW and loss of inoviruses by ST36 accompanied its clinical 349 

decline there. Future functional studies with these inoviruses are essential to discern whether 350 

any of these possibilities are at play.  351 

Prophage can also modify their hosts in ways that alter their capacity for horizontal gene 352 

transfer (HGT). Prophage can protect against superinfection, including by unrelated lytic phages 353 

(27, 61, 71) thereby blocking transduction. They also modulate, and concurrently block 354 

conjugative pili (72). The concept that loss of prophage-conferred immunity contributed to ST36 355 

evolution is attractive considering DNA release by predation of non-lysogen susceptible hosts 356 

could promote transformation through natural competence, though the conditions of natural 357 

competence by V. parahaemolyticus are unknown (73-75). Type IV pili which are the receptor 358 

for some inoviruses also facilitate transformation mediated HGT (51, 52). If the newly inovirus-359 

less ST36 lineages were more vulnerable to phage infections, phage transduction, and conjugal 360 

transfer alike this could have contributed to its rapid diversification (Fig. 1) whereas 361 

translocating lineages would likely not have evolved mechanisms to resist resident Atlantic 362 

phage facilitating re-acquisition (31, 52). In keeping with this premise, many of the most highly 363 

divergent ST36 individuals lacking inoviruses evolved by multiple recombination events 364 

including an isolate of the MAC clade (VP30). Accumulation of non-inovirus prophage was 365 

notable in the early diverging Spain lineage (clade I) (9). And whereas the inovirus-harboring 366 

SCC and the GOM clades remain remarkably stable, as do their phage, Atlantic isolates lacking 367 

inoviruses, including the single GOM clade member (MAVP-20) and many members of the LIS 368 

population exhibit complex admixture (Fig. S4). In contrast, the inovirus-harboring old-PNW relic 369 
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CTVP44C isolated in LIS in 2013 is virtually unchanged from the last known members of this 370 

lineage from the PNW that were isolated in 2002 (Fig. 1, Table S1). Furthermore, a 2005 isolate 371 

of this same lineage lacking Vipa10290, A5Z905, is among the most highly divergent ST36 372 

strains (Fig. 1, 2, S2). Similarly, pandemic O3:K6 strains, which stably maintain f237, reported in 373 

the Americas between 1996-2012 display remarkably little genetic variation from the type strain 374 

for this lineage RIMD 2210366 (76). Though these data only establish correlation of phage 375 

absence and diversification, it alludes to the possibility that inovirus prophage that provide some 376 

level of resistance to superinfection and block conjugation could thwart HGT, and by contrast, 377 

loss of inoviruses could remove barriers to recombination and promote rapid diversification. The 378 

selective conditions that favor inovirus acquisition and maintenance or loss would thereby 379 

influence some mechanisms that could promote rapid evolution, potentially of more or even less 380 

pathogenic potential. 381 

These analyses suggest an intriguing connection of inovirus prophage to pathogen 382 

evolutionary dynamics, alluding to the possibility that inoviruses could be gatekeepers of HGT in 383 

natural ecosystems driving changes in human disease epidemiology. With broader population 384 

analysis and functional studies, this could lay the foundation for a new evolutionary paradigm 385 

where inovirus prophage-mediated immunity is a major governing force beyond the appreciated 386 

roles of phage in selective predation (20-22) and phage conversion (23-27). The apparent ability 387 

of ST36 and some other lineages (Table 2 & 3) to transition between phage infection states or 388 

replace their phage could generate flexibility in the balancing of fitness tradeoffs under different 389 

selective regimes that are not yet understood (29, 64). The high prevalence of inoviruses not 390 

only among the global population of V. parahaemolyticus (Fig. 5) but universally in other 391 

bacteria (27) with little clarity of how inoviruses impact the ecology of their hosts calls for more 392 

mechanistic analyses which could reveal varied roles for inoviruses in promoting evolution and 393 

competitive dominance of emerging pathogens.  394 
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 395 

Materials and Methods 396 

Vibrio parahaemolyticus genomes 397 

Regional clinical strains spanning 2010-2018, and trace back were acquired from public 398 

health laboratories (2). Only isolates with single source traces were assigned a location. 399 

Environmental isolates were collected between 2007-2015 (1, 2). Isolates were identified as V. 400 

parahaemolyticus by tlh gene amplification (77, 78) and identity confirmed by genome 401 

sequencing. Publicly available genomes were acquired from NCBI 402 

(https://www.ncbi.nlm.nih.gov/genome/681; August 2019). 403 

DNA was extracted using the Wizard Genomic DNA purification Kit (Promega, Madison 404 

WI USA) or by organic extraction (2). Sequencing libraries were prepared as described (79). 405 

Genomic DNA was sequenced using an Illumina 3 HiSeq2500 device at the Hubbard Center for 406 

Genome Studies at the University of New Hampshire, using a 150bp paired-end reads with de-407 

multiplexing and quality filtering prior to analysis. The de novo genome assembly were 408 

performed using the A5 pipeline (80), and annotations assigned with Prokka1.9 using <Vibrio” 409 

for the reference database (81). The sequence types were determined using the SRST2 410 

pipeline (82) or using assemblies (83) referencing https://pubmlst.org/vparahaemolyticus/(84). 411 

Reference inoviruses were extracted from genomes sequenced using the Pacific Biosciences 412 

RSII technology and with Illumina short read error correction as described (4). 413 

 414 

V. parahaemolyticus Phylogenetic Relationships.  415 

 Because all ST36 strains are closely related (clonal) and recombination contributed to 416 

the recent lineage divergence, ST36 strain relationships (Fig. 1) and all V. parahaemolyticus 417 

relationships (Fig. 5) were determined using reference-free, whole genome alignments using 418 

kSNP 3.1 (85) and maximum likelihood phylogenetic trees built by RAxML (86) and visualized 419 

with iTOL(87). The optional Kchooser script provided in kSNP3.1 determined the optional kmer 420 
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size of 19, for each alignment dataset. Whole genome trees were rooted with Vibrio 421 

alginolyticus ARGOS_108 (hidden after rooting in iTOL). Maximum likelihood trees were 422 

inferred using the GTR-GAMMA model of nucleotide substitution, and the convergence criteria 423 

autoMRE option for automatically determining a sufficient number of rapid bootstrap replicates. 424 

RAxML completed a thorough ML search after optimization on every 5th bootstrapped tree, 425 

which were mapped on the ML tree with the best likelihood (<raxmlHPC-PTHREADS-AVX -m 426 

GTRGAMMA -f a -N autoMRE -x 12345 -p 12345= options). Gene/features were visualized with 427 

EasyFig 2.2.0 (88, 89). 428 

 In parallel, homoplastic regions resulting from recombination were identified in genomes 429 

by alignment to reference strain 10296 (90) (summary table S2) using Gubbins 2.3.4 (91) and 430 

removed, and the relationships of strains determined based on nucleotide SNP alignments 431 

generated with Gubbins 2.3.4 (91) (Fig. 2). Phylogenies were inferred as above, except using 432 

the GTR-CAT nucleotide substitution model (because the alpha parameter was >10). ML search 433 

and optimization, rapid bootstrap criterion, and mapping of bootstraps were done as described 434 

above. Unmapped reads were assembled using SPAdes 3.13.1 (92) and annotated using 435 

Prokka 1.14(81) (Table S4).  436 

Population structure of ST36 was performed using whole and core SNPs genetic 437 

matrixes generated from SNP alignments in the R statistical package LEA (49, 93, 94) (Fig. 2). 438 

To determine the number of genetic clusters best explained by the distribution of genomic 439 

variation, we explored ancestral populations (K) of between 1-20 and used the entropy criterion 440 

to evaluate the quality of fit of the statistical model to the data and selected the probable number 441 

of populations based on minimal entropy. Once strains were assigned to populations, the least-442 

squares estimates of ancestry proportions were plotted using ggplot2 (95).  443 

 444 

Inovirus Identification 445 
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 ST36 strains were compared to reference 10290 (5) using Breseq (96). Unique 446 

prophage were classified as belonging to the family Inoviridae proposed subfamily 447 

Protoinoviridae (27) and assigned unique names (97, 98) (Table 2). All V. parahaemolyticus 448 

genomes were independently searched against a BLASTn (99) database constructed using the 449 

central core (ORF1 3 ORF7) of vB Vipa-26. Nucleotide sequences of 745 phage were extracted 450 

and to determine if they were unique, maximum likelihood phylogenies using the GTR-GAMMA 451 

model for substitution and rapid bootstraps were constructed via RAxML on nucleotide SNPs 452 

generated by kSNP (Fig. S6). Rapid bootstraps reached criterion after 350 replicates and were 453 

mapped on the tree as described above. The complete prophage assemblies of unique ST36 454 

inoviruses were named from the highest quality assembly as were other prevalent inoviruses 455 

(Table S9). Relatedness of select whole phage genomes was visualized using the Genome-456 

BLAST Distance Phylogeny (GBDP) method (100) to conduct pairwise comparisons of the 457 

nucleotide sequences under settings recommended for prokaryotic viruses (101). Trees were 458 

rooted at the midpoint (28) and visualized using iTOL (87) (Fig. S5). 459 

To determine if phage evolved under selection, a Nei-Gojobori codon-based Z test (102) 460 

was performed in MEGA 6 (103). Protein sequences for the phages Vf33 (NC_005948.1) (104, 461 

105), CTXΦ (MF155889.1)(27), and the type strain for Inoviridae M13, which infects Escherichia 462 

coli (GCF_000845205.1) were compared using BLASTp (99).  463 

 Oligonucleotide primers were designed for multiplex amplification with the species-464 

specific tlh primers (77, 78) where primers annealing within ORF3 within ORF5 identified 465 

inovirus presence, and primers annealing within HypD and ORF9 produced different size 466 

amplicons diagnostic of Vipa26 and Vipa36 (Table 4). Isolates were screened with 0.2µM primer 467 

annealed at 55°C with 1.5 min extension and phage identity confirmed by genome sequencing. 468 

 469 

Data Availability 470 

Genome accessions are listed in Tables S1, S7, S8 and Table 2. 471 
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Figure 1. Maximum-likelihood phylogeny of ST36 Vibrio parahaemolyticus. ML-493 

phylogenies were built with 1,025,281 aligned variable nucleotide sites identified in quality ST36 494 

isolates. Isolates are colored to correspond to geographic environmental traceback, where 495 

available (Table S1) and where no color indicates unknown or ambiguous origin. Isolates 496 
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acquired from four Northeast US States as part of this study are named uniquely by a 497 

combination of state (Maine [ME], New Hampshire [NH], Massachusetts [MA], and Connecticut 498 

[CT]) of reporting and sequential numbers. Symbols next to isolates indicate identity of inovirus 499 

content. The ancestral PNW ST36 population is identified by a black bar, whereas seven 500 

different lineages associated with translocation events (I 3 VII) are identified by greyscale bars. 501 

Bootstraps are from 250 replicates (criterion reached). 502 

Figure 2. Population structure of ST36 strains. Coancestry estimates were inferred from 503 

SNP matrices using 741 SNPs identified from core non-recombining genomes of ST36 isolates 504 

with known environmental source and at least one close relative (see Table S5 for excluded 505 

genomes) by LEA (49). Colored bars represent proportion of genetic variation derived from 8 506 

ancestral populations (see Fig S3A). Geographic locations are marked by colors below strain 507 

name, followed by phage content (symbol) and year of isolation.  508 

Figure 3. Comparisons of inoviruses in V. parahaemolyticus ST36. (A) Alignments of 509 

reference inovirus genomes depicting unique and shared content, and % nucleotide identity 510 

between Vipa36 (9,721 bp), Vipa26 (10,893 bp) and Vipa10290 (9,414 bp) as compared to f237 511 

(8,784 bp). Orthologous ORFs are depicted by the same color except for non-homologous light 512 

blue hypothetical proteins. (B) Core inovirus genome (ORFs 1-7, and ORF9-10) single 513 

nucleotide polymorphisms (SNPs) were identified by comparison of quality ST36 genomes to 514 

the alignment consensus of reference inovirus genomes for Vipa36 (21 genomes), Vipa26 (24 515 

genomes), and Vipa10290 (23 genomes) and used to assess spatial distribution of variation 516 

between the inoviruses and within each inovirus lineage. SNPs are mapped by location where 517 

ORF identities are labeled and colored to match those in (A), and SNP type designated by 518 

colored blocks (see Table S6). This indicates few non-synonymous mutations (see text for 519 

details) and uneven distribution of variation with ORF3, an intergenic region between ORF4 and 520 
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ORF5, and the 5’ end of ORF5 being identical in all three phage. Only Vipa10290 displayed 521 

non-conserved core genome variation among ST36 prophage. 522 

Table 1. Inferred functions of inovirus genes 1. 523 

ORF 
Vf33                 

(E-value/%Identity) 
CTXΦ               

 (E-value/%Identity) 
M13                   

(E-value/%Identity) 
Predicted 
Functionsa 

ORF1 
Vpf402             

(0.0/99%) 
RstA                

(7x10-66/36%) 
gII                      

(size and location) 
Replication 

initiation protein 

ORF2 
Integrase 

Vpf117               
 (1x10-85/92.5%) 

RstB              
(0.04/13.3%) 

- Integration 

ORF3 
Vpf81              

(0.004/7.8%) 
RstC                     

(size and location) 
gV                    

(size and location) 

ssDNA binding 
protein, helix 
destabilizing 

ORF4 
Vpf77              

(5.3/3.7%) 
Cep                

 (7.0/7.3%) 
gVIII                 

(0.45/4.9%) 
Major coat protein 

ORF5 
Vpf491               

(0.0/59%) 
OrfU                

(0.54/11.9%) 
gIII                     

(0.6/11.3%) 

Adsorption, 
termination of 
assembly, tail 

protein 

ORF6 
Vpf104             

(0.2/19%) 
Ace                

(5x10-10/18.3%) 
gVI                   

(4.1/8.7%) 

Minor coat protein, 
termination of 

assembly 

ORF7 
Vpf380               

 (1x10-4/13.9%) 
Zot                 

(2x10-27/17.8%) 
gI                   

(5x10-4/8.5%) 
Assembly protein, 

maturation 

ORF9 
Vpf122               

(4x10-66/68%) 
RstR                   

(0.17/5.7%) 
- 

Transcriptional 
repressor, 
regulator 

ORF10 
Vpf152 

(1-44/88-86%) 
- - Function unknown 

1ORF number corresponds to numbers designated for f237, and comparative analyses between 524 

homologous ORFs completed with Vipa26 as a reference. 525 

a Functions summarized from Mai-Prochnow et al., 2015 (36) and Chang et al., 1998 (37) 526 

 527 
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Table 2. Summary of Inoviridae prophage in ST36 isolates  528 

Strain Inovirus name NCBI Accession  
(Genome coordinates) 

Additional ST36 
genomes with 
inovirus 

Other STs 
with related 
inoviruses 

10290 vB_Vipa10290 AVOH01000008.1       
(1370845..1378511) 

Many  38, 39  

MAVP-26 vB_Vipa26 MT188662 Many 1574, NF 

MAVP-36  vB_Vipa36 MT188663 Many None 

CDC_K5323G vB_Vipa5323 MIUF01000019.1 
(188973..190181) 
MIUF01000072.1 
MIUF01000065.1 
MIUF01000002.1 
(4141..6171) 

None 752, 1132, 
NF 

CDC_K5308 vB_Vipa5308 MIUE01000114.1 
(7376..8729) 
MIUE01000031.1 
(5201..8319) 

None 43 

10-4255 vB_Vipa711 MT193890 

NIXZ01000007.1 
(181573..191867)  

None 43 

CDC_A8962 vB_Vipa8962 LHRO01000017.1 
(70737..72090) 

None 327 

CDC_K5512 vB_Vipa5512 MIUZ01000070.1 
(628..7658) 

CDC_K5345G, 
CDC_K5280 

1713 

MEVP-10 vB_Vipa10 MT188666 None None 

1.146-15 f237 WSRX01000192.1, 
WSRX01000239.1, 
WSRX01000194.1, 
WSRX01000150.1 

None 3, 152, 809, 
1473, NF 

1.220-16 other AAXNNA010000036.1 None None 
NF: Sequence type that is not yet assigned; None: no strains harboring phage. 529 

1Named for ST43 strain MAVP-71 530 

 531 

Figure 4. Whole genome phylogenies of representative inoviruses from diverse locations 532 

and sequence types. Whole genome phylogenies of select inoviruses from environmental (E) 533 

and clinical (C) isolates of V. parahaemolyticus labeled by name and year of isolation. 534 

Bootstraps criterion met after 350 replicates. Environmental traceback color coding and 535 

symbols, representing named phage corresponds to those in Figure 1 where circle is Vipa26, 536 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.03.23.534014doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.534014
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

square is Vipa10290, triangle is Vipa36 and grey square is other (Vipa8296).  ST36 isolates are 537 

in bold. 538 

Figure 5. Maximum-likelihood tree of diverse V. parahaemolyticus isolates with their 539 

inovirus content. A maximum-likelihood (ML) phylogeny was built on 1,025,281 genome SNPs 540 

where 250 bootstraps (criterion met) were mapped onto the best scoring ML tree. Isolates are 541 

colored to correspond to geographic region as in Fig. 1, where no color indicates unknown or 542 

ambiguous origin. Symbols next to strains indicate unique inovirus content. Outermost label 543 

indicates the sequence type (ST) where NF or unlabled = sequence type not found or not 544 

known, followed by year of isolation, if known. 545 

 546 

Table 3. Lineages other than ST36 with diverse phage genotypes. 547 

Sequence type Number of unique Inovirus 
prophage in lineage 

Sequenced strains without 
prophage 

631 4 Yes 
674 4 No 
43 5 Yes 
12 4 No 
3 2 Yes 
8 2 Yes 
308 2 Yes 
120 2 Yes 

 548 

Table 4. Multiplex PCR for detection of inoviruses   549 

Primer Sequence (5’-3’) Amplicon Size (bp) 

  Host  
(V.p.) 

Inovirus 
 

TLH-F2 
TLH-R 

AGAACTTCATCTTGATGACACTGC 
GCTACTTTCTAGCATTTTCTCTGC 

401 N/A 

ST36Phage F2 
ST36Phage R2 

AGCAACGAAAACGCCTGT 
ACCGTATCACCAATGGACTGT 

N/A ~1000 

PhHypDF3 
PhORF9R1 

AAGTGCTACATGAATGAAAGTGCT 
TCAATGAAGTATCACGAAATGACTA 

N/A Vipa26: 1440 
Vipa36: 854 

N/A: not an amplification template 550 

 551 
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