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Abstract

Robust characterization of cellular phenotypes from single-cell gene expression data is of paramount
importance in studying complex biological systems and diseases. Single-cell RNA-sequencing (scCRNA-
seq), coupled with robust computational analysis, facilitates characterization of phenotypic heterogeneity
in tumors. Current sScCRNA-seq analysis pipelines are capable of accurately identifying a myriad of
malignant and non-malignant cell subtypes from single-cell profiling of tumor microenvironments.
Unfortunately, given the extent of phenotypic heterogeneity, it is not straightforward to assess the risk
associated with individual malignant cell subpopulations in a tumor, primarily due to the complexity of the
cancer phenotype space and the lack of clinical annotations associated with tumor scRNA-seq studies,
involving prospectively collected tissue samples. Effective risk-stratification of individual malignant
subclones holds promise for formulating tailored therapeutic interventions. To this end, we present
SCellBOW, a computational approach that facilitates risk-stratification by leveraging scRNA-seq profiles
and language modeling techniques. We compared SCellBOW with existing best practice methods for its
ability to precisely represent phenotypically divergent cell types across multiple scRNA-seq datasets,
including our in-house generated human splenocyte and matched peripheral blood mononuclear cell
(PBMC) dataset. SCellBOW offers a remarkable feature for executing algebraic operations such as '+' and
"' on single-cells in the latent space while preserving the biological meanings. This feature catalyzes the
simulation of the residual phenotype of tumors, following positive and negative selection of specific
malignant cell subtypes in a tumor. As a proof of concept, we tested and validated phenotype algebra across
three independent cancer types — glioblastoma multiforme, breast cancer and metastatic prostate cancer. In
particular, we demonstrate how the negative selection of specific clones may lead to variable prognosis.
From the metastatic prostate cancer scRNA-seq data, SCellBOW identifies a hitherto unknown and
pervasive AR—/NE,oy (androgen receptor negative, neuroendocrine-low) malignant cell subpopulation with
a conspicuously high predictive risk score. We could trace this back in a large-scale spatial omics atlas of
141 well-characterized metastatic prostate cancer samples at the spot resolution.

Keywords - Intra-tumor heterogeneity, single-cell RNA-seq, risk stratification, transfer learning, clustering,
phenotype algebra
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Introduction

Intra- and inter-tumoral heterogeneity are pervasive in cancer and manifest as a constellation of molecular
alterations in tumor tissues. The late-stage clonal proliferation, partial selective sweeps, and spatial
segregation within the tumor mass collectively orchestrate lineage plasticity and metastasis'. In
collaboration with non-malignant cell types in the tumor stroma, malignant cells with distinct genetic and
phenotypic properties create complex and dynamic ecosystems, rendering the tumors recalcitrant to
therapies’. Thus, the phenotypic characterization of malignant cell subpopulations is critical for
understanding the underlying mechanisms of resistive behavior. The widespread adoption of single-cell
RNA-sequencing (scRNA-seq) has enabled the profiling of individual cells, thereby obtaining a high-
resolution snapshot of their unique molecular landscapes®™*. A precise understanding of cell-to-cell
functional variability captured by scRNA-seq profiles is crucial in this context. These molecular profiles
assist robust deconvolution of the oncogenic processes instigated by various selection pressures exerted by
anticancer agents and cross-talks between malignant and non-malignant cell types within the tumor
microenvironment®. To effectively analyze tumor scRNA-seq data, various specialized techniques have
been developed to assist in proactive investigation of complex and elusive cell populations®’, regulatory
gene interactions®, neoplastic cell lineage trajectories’, and expression-based inference of copy number
variations'®. While these computational techniques have been successful in gaining novel biological
insights; however, their adoption in clinical setups is still elusive.

Over the past years, leading consortia such as The Cancer Genome Atlas (TCGA)'' and other large-scale
independent studies have established reproducible molecular subtypes of cancers with divergent prognoses.
For instance, metastatic prostate cancer has typically been categorized based on the androgen receptor (AR)
or neuroendocrine (NE) signatures: the less aggressive AR+/NE— (AR prostate cancer, ARPC) and the
highly aggressive AR—/NE+ (NE prostate cancer, NEPC)'?. More recent studies have identified additional
phenotypes, such as the AR—/NE— (double-negative prostate cancer, DNPC) and AR+/NE+ (amphicrine
prostate cancer, AMPC)"*!*, These findings underscore the importance of considering tumor heterogeneity
while dictating the differential treatment regimes to improve patient outcomes'. These studies are
predominantly based on bulk omics assays, which precludes the detectability of fine-grained molecular
subtypes of clinical relevance. To address this, there is an urgent need for the development of novel
analytical approaches that are capable of exploiting single-cell omics profiles for risk attribution to
malignant cell subtypes.

Language modeling approaches are gaining popularity for their ability to deduce powerful latent
representations of words by unsupervised ingestion of voluminous textual data. A growing number of
natural language processing (NLP) based methods have recently been applied to scRNA-seq data analyses
and achieved superior performance. For example, Exceiver'® and scBERT!" use attention-based
transformers for clustering and cell type annotation, respectively. However, transformer-based gene
encoding models are often susceptible to overfitting, particularly if the training datasets are small'®.
Additionally, transformers are designed for ordered sequences, whereas genes do not have any inherent
ordering in a cell. Although the genes have regulatory dependencies, analytical methods are often not
prejudiced on the same. Recent studies have shown that NLP-based tools can be used to predict patients’
survival based on their health records'*’. However, this is limited to the processing of electronic health
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records. We demonstrate how bag-of-words-based language models can be utilized to decipher molecular
heterogeneity of cancers and infer survival risks associated with individual malignant subclones.

In this work, we propose SCellBOW, an unsupervised transfer learning-based embedding technique for
single-cell clustering, visualization, survival prediction, and risk stratification. SCellBOW uses a bag-of-
words model under the hood, which is independent of any strict ordering of genes®'. Moreover, the shallow
neural network used in SCellBOW is less prone to overfitting on small datasets and enables faster
convergence during training®. SCellBOW learned neuronal weights are transferable. This is particularly
useful when a limited amount of labeled data is available for the second task. The model can use the
knowledge acquired from the first dataset to warm start the learning process on the second dataset. In line
with word algebra supported by language models, which allows exploration of word analogies (i.e.,
algebraic operations on word vectors, e.g., word vector associated with royal when added with man, brings
it closer to king), cellular embeddings show biologically intuitive outcomes under algebraic operations. We
exploited this feature to introduce phenotype algebra and applied the same in attributing prognostic value
to cancer cell subpopulations identified from scRNA-seq studies. SCellBOW representations, aka
embeddings, allow algebraic operations such as '+' and '—'. To this end, we applied SCellBOW for pseudo-
grading of cancer subclones. Here ‘pseudo’ indicates that the risk assessment is computational (i.e. in
silico). Further, the term ‘grading’ should not be misunderstood as the pathological grading of tumors.
Rather, it’s the relative risk stratification of malignant cell types within a tumor. With the help of phenotype
algebra, it is possible to simulate the exclusion of the phenotype associated with a specific malignant cell
subpopulation and relate the same to the disease outcome. Traditional survival estimation based on bulk
omics readouts cannot provide such insights. This information might ultimately therapeutic decision-
making and improve patient outcomes. SCellBOW-enabled clustering can help identify rare cell
populations with important biological or clinical relevance. We demonstrate the utility of bag-of-words-
like modeling in clustering of single-cell expression data by evaluating the method on multiple scRNA-seq
datasets ranging from normal prostate to pancreas and PBMCs. As an extended validation, we apply
SCellBOW to an in-house scRNA-seq dataset comprising human PBMC and matched splenocytes. We use
the phenotype algebra component of SCellBOW for pseudo-grading malignant cell subtypes in
glioblastoma, breast cancer, and metastatic prostate cancer. With the help of this, we identify a hitherto
unknown prostate cancer cell type that is nearly ubiquitous across numerous metastatic prostate cancer
samples.

Results

Overview of SCellBOW

Correlating genomic readouts of tumors with clinical parameters has helped us associate molecular
signatures with disease prognosis. Given the prominence of phenotypic heterogeneity in tumors, it is
important to understand the connection between molecular signatures of clonal populations and disease
aggressiveness. Existing methods map tumor samples to a handful of well-characterized molecular
subtypes, with known survival patterns. However, bulk RNA-seq measures the average level of gene
expression distributed across millions of cells in a tissue sample, thereby obscuring the intra-tumoral
heterogeneity”. Tumor scRNA-seq studies have successfully revealed the extent of gene expression
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variance across individual malignant cells, contributing to an in-depth understanding of the mechanisms
driving cancer progression®*. To date, most studies use marker genes identified from past bulk RNA-seq
studies to annotate malignant cell clusters identified from scRNA-seq data. This is inadequate since every
tumor is unique when looked through the lenses of single-cell expression profiles®. The proposed approach,
SCellIBOW, is an adoption of the popular natural language model, Doc2vec?!, in single-cell representation
learning. SCellBOW enables the detection and risk-assessment (aka. pseudo-grading) of malignant cell
subtypes in tumors (Fig 1). Below we highlight key constructions and benefits of this new approach.

SCellBOW generates low-dimensional numeric embeddings associated with individual cells based on their
gene expression patterns. SCellBOW represents cells as documents and gene names as words. It learns
embeddings from documents, where each document is considered a bag-of-words. The gene expression
levels are encoded by word frequencies. This encoding is intuitive and produces meaningful and robust
embeddings of cells. SCellBOW uses a neural net language model to preserve the cellular similarities
observed in the gene expression space. Although Doc2vec is not meant for transfer learning, our
experiments involving the repurposing of a pre-trained, modified Doc2vec model establish promising
transfer learning use cases (Supplementary Note 1). SCellBOW involves learning in two phases, i.e., the
pre-training and the fine-tuning. The pre-training phase involves training a shallow source network that
extracts the gene expression patterns from a relatively large sScRNA-seq dataset (herein referred to as the
source data). The neuronal weights estimated at training are repurposed during the fine-tuning phase based
on the relatively small scRNA-seq dataset (herein referred to as the target data), which might represent a
rather specialized task. Our results allude to a visible improvement in sScRNA-seq analysis outcomes, even
with small sample sizes and multiple covariates.

The vocabulary of SCellBOW is composed of words (genes), which are processed to preserve linear
semantic relationships. We empirically show the retention of such relationships in the context of cellular
phenotypes of cancer cells. SCellBOW uses algebraic operations to compare and analyze cellular
phenotypes in a way that is not possible with traditional methods. For example, the ' operation can be used
to predict the likelihood of survival by eliminating the impact of a specific cellular aggressive phenotype
from the whole tumor. This could potentially identify the contribution of that phenotype to patient survival.
Phenotype algebra can be performed either on the pre-defined cancer subtypes or SCellBOW clusters. To
explore phenotype algebra, three independent datasets are required. Out of the three datasets, two are
scRNA-seq datasets used for transfer learning (source and target data), and one bulk RNA-seq dataset with
patient-survival information, which is used to train the survival prediction model. Notably, embeddings of
transcriptomes from scRNA-seq target data and bulk RNA-seq survival data have been determined
concurrently by recalibrating the pre-trained model. The survival model has been trained on the embeddings
of the survival data and then tested on the embeddings of the target data to make predictions about the
degree of aggressiveness exhibited by the tumor variants.

SCellBOW robustly dissects tissue heterogeneity

Malignant cells are far more heterogeneous as compared to associated normal cells. Clustering is often the
first step toward recognizing subclonal lineages in a tumor sample. Clustering single-cells based on their
molecular profiles can potentially identify rare cell populations with distinct phenotypes and clinical
outcomes. To evaluate the strength of the clustering ability of SCellBOW, we benchmarked our method
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against five existing scRNA-seq clustering tools on four non-cancerous datasets’*~° (Supplementary
Table 3). Among these packages, Seurat?® and Scanpy?’ are the most popular, and both employ graph-based
clustering techniques. DESC? is a deep neural network-based scRNA-seq clustering package, whereas
ItClust®® and scETM?" are transfer learning methods. All the packages are resolution dependent except for
ItClust. ItClust automatically selects the resolution with the highest silhouette score. For the objective
evaluation of performance, we used an adjusted Rand index (ARI) and normalized mutual information
(NMI) for comparing clusters with known cell annotations. For all methods, except for ItClust, we
computed overall ARI and NMI for different values of resolution ranging between 0.2 to 2.0. To measure
the signal-to-noise ratio of low-dimensional single-cell embeddings, we computed the cell type silhouette
index (SI) based on known annotations. We used a number of scRNA-seq datasets to evaluate the tools
cited above.

We constructed three use cases leveraging publicly available scRNA-seq datasets. Each instance constitutes
a pair of single-cell expression datasets, of which the source data is used for self-supervised model training
and the target data for model fine-tuning and analysis of the clustering outcomes. The target data, in all
cases, has associated cell type annotations derived from fluorescence-activated cell sorting (FACS)
enriched pure cell subpopulations. The first use case consists of non-cancerous cells from prostate cancer
patients (120,300 cells)®' as the source data and cells from healthy prostate tissues (28,606 cells)** as the
target data. This use case was designed to assess the resiliency of SCellBOW to the presence of disease
covariates in a large scRNA-seq dataset. The second use case comprises a large PBMC dataset®® (68,579
cells) as the source data, whereas the target data was sourced from a relatively small FACS-annotated
PBMC dataset (2,700 cells) from the same study. The third use case, as source data, comprises pancreatic
cells from three independent studies processed with different single-cell profiling technologies (inDrop™,
CEL-Seq2*, SMARTer*®). The target data used in this case was from an independent study processed with
a different technology Smart-Seq2*’ (Fig. 2, Supplementary Fig. 2). For the normal prostate, PBMC, and
pancreas datasets, SCellBOW produced the highest ARI scores across most notches of the resolution
spectrum (0.2 to 2.0) (Fig. 2g-i). We observed a similar trend in the case of NMI (Fig. 2j). SCellBOW
exhibited superior NMI compared to other tools for the normal prostate, PBMC, and pancreas datasets. For
further deterministic evaluation of the different methods across the datasets, we set 1.0 as the default
resolution for calculating cell type SI (Fig 2k). In the PBMC and pancreas datasets, SCellBOW yielded the
highest cell type SI for both datasets. SCellBOW and Seurat were comparable in performance for the
pancreas dataset, outperforming other tools. We observed poor performance by DESC and ItClust across
all the datasets in terms of celltype SI. In terms of cell type SI, Seurat and scETM showed improved results
in the normal prostate dataset. However, SCellBOW outperformed both Seurat and scETM in terms of
overall ARI and NMI for the same dataset, indicating higher clustering accuracy. To further evaluate the
cluster quality in the normal prostate dataset, we compared the known cell types to the predicted clusters.
Known cell types such as basal epithelial, luminal epithelial, and smooth muscle cells were grouped into
homogeneous clusters by SCellBOW (Supplementary Fig. 3). We observed that the majority of fibroblasts
and endothelial cells were mapped by SCellBOW to single clusters, unlike Seurat and scETM. SCellBOW
retained hillock cells in close proximity to both basal epithelial and club cells, in contrast to Seurat, which
only includes basal epithelial cells.

Our analyses on the public datasets confirm the robustness of SCellBOW as compared to the prominent
single-cell analysis tools, including the prominent transfer learning methods. To this end, we applied
SCellBOW to investigate a more challenging task of analyzing an in-house scRNA-seq data comprising
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splenocytes and matched PBMCs from two healthy and two brain dead donors. Given multiple covariates,
such as the origin of the cells, and the physiological states of the donors, analysis of this sScRNA-seq data
presents a challenging use case for single-cell analysis. We used the established high-throughput scRNA-
seq platform CITE-seq®® to pool the eight samples into a single experiment. After post-sequencing quality
control, we were left with a total of 4,819 cells. We annotated the cells using Azimuth®, with occasional
manual interventions (Supplementary Note 3). SCellBOW yielded clusters largely coherent with the
independently done cell type annotation using Azimuth (Fig 3). Further, most clusters harbor cells from all
the donors indicating that the sample pooling strategy was effective in reducing batch effects. B cells, T
cells, and NK cells map to SCellBOW clusters where the respective cell types are the majority. The majority
of CD4+ T cells map to CLO and CL9 (here CL is used as an abbreviation for cluster) (Fig 3e). CLO is
shared between CD8+ T cells, CD4+ T cells, and Treg cells, which originate from the same lineage. CL4
majorly consists of NK cells with a small fraction of CD8+ T cells, which is not unduly deviant from the
PBMC lineage tree. As a control, we performed similar analyses of the Scanpy clusters (Fig 3f). While
Scanpy performed reasonably well, a few misalignments could be spotted. For example, CD4+ and CD8+
T cells were split across many clusters with mixed cell type mappings. SCellBOW maps CD14 monocytes
to a single cluster, whereas Scanpy distributes CD14 monocytes across two clusters (CL1 and CLS),
wherein CLS8 is equally shared with conventional Dendritic Cells (cDC). 'Eryth' annotated cells are
indignantly mapped to different clusters by both SCellBOW and Scanpy. This could be due to the Azimuth's
reliance on high mitochondrial gene expression levels for annotating erythroid cells®* (Supplementary
Note 3). However, SCellBOW CL6 is dominated by Erythroid cells with marginal interference from other
cell types. In the case of Scanpy, no such cluster could be detected. Further, we quantitatively evaluated
SCellBOW and the rest of the benchmarking methods by measuring ARI, NMI, and cell type SI (Fig. 3g).
While most methods did reasonably well, SCellBOW offered an edge. We observed best results in
SCellBOW in terms of ARI, NMI, and cell type SI as compared to other tools. Discerning phenotypic
heterogeneity from the expression profiles of seemingly similar cells is a challenging task. The performance
of SCellBOW, with near-ground-truth cell type annotation, in such a scenario confirmed its ability to
adequately decipher the underlying cellular heterogeneity and provide robust cell type clustering.

SCellBOW facilitates subclonal survival-risk attribution of tumors

Every cancer features unique genotypic as well as phenotypic diversity, impeding the personalized
management of the disease. Patient survival is arguably the most important clinical parameter to assess the
utility of clinical interventions. The widespread adoption of genomics in cancer care has allowed correlating
molecular portraits of tumors with patient survival in all major cancers. This, in turn, has broadened our
understanding of the aggressiveness and impact of diverse molecular subtypes associated with a particular
cancer type. Single-cell expression profiling of cancers allows the detection and characterization of tumor-
specific malignant cell subtypes. This presents an opportunity to gauge the aggressiveness of each cancer
cell subtype in a tumor. A few studies suggested that there is an association between tumorigenicity of
stromal cells in tumor microenvironments and patient survival*’. This has sparked debate about the utility
of gene expression in the profiling of single tumor cells. Currently, there is no method to estimate the
relative aggressiveness of different malignant cell subtypes using survival information as a surrogate.
SCellBOW helps achieve this by enabling algebraic operations (subtraction or addition between two
expression vectors or phenotypes) in the embedding space. We refer to this as phenotype algebra. The
ability to perform algebraic operations in cellular embedding vector space is imparted by the use of word
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embedding methods as the backbone of SCellBOW. Below is an example from materials science
literature®'.

antiferromagnetic — IrMn + NiFe = ferromagnetic,

Here, by subtracting the antiferromagnetic contribution of /rMn and adding the ferromagnetic contribution
of NiFe, the resulting magnetic coupling can approximate a ferromagnetic behavior. We utilized this ability
to find an association between the embedding vectors, representing total tumor — a specific malignant cell
cluster with tumor aggressiveness. This immediately opens up a way to infer the level of aggressiveness of
a specific cluster of cancer cells obtained through single-cell clustering. Subtracting an aggressive
phenotype from the whole tumor (average of SCellBOW embeddings across all malignant cells in a tumor)
would better the odds of survival relative to dropping a subtype under negative selection pressure.

As proof of concept, we first validated our approach on glioblastoma multiforme (GBM), which has been
studied widely employing single-cell technologies. GBM has three well-characterized malignant subtypes:
proneural (PRO), classical (CLA), and mesenchymal (MES)****. We obtained known markers of PRO,
CLA, and MES to annotate 4,508 malignant GBM cells obtained from a single patient reported by Couturier
and colleagues* and used it as our target data (Fig. 4b, Supplementary Methods 2.1). As the source data,
we used the GBM scRNA-seq data from Neftel et al.*’. The survival data consisted of 613 bulk GBM
samples with paired survival information from the TCGA consortium. We constructed the following query
vectors for the survival prediction task: total tumor i.e., average of embeddings of all malignant cells, total
tumor — (MES+CLA), fotal tumor — MES/CLA/PRO (individually). We conjectured that for the most
aggressive malignant cell subtype, fotal tumor — subtype specific pseudo-bulk, would yield the biggest drop
in survival risk relative to the fotal tumor. Survival risk predictions associated with fotal tumor —
MES/CLA/PRO thus obtained reaffirmed the clinically known aggressiveness order, i.e., CLA > MES >
PRO, where CLA succeeds the rest of the subtypes in aggressiveness*® (Fig. 4¢, d). More complex queries
can be formulated, such as fotal tumor — (MES+CLA), which would indicate that the tumor does not
comprise the two most aggressive phenotypes, CLA and MES, and instead consists only of PRO cells. This,
hypothetically, represents the most favorable scenario, as testified by the phenotype algebra®* .

We performed a similar benchmarking on well-established PAMS50-based*® breast cancer (BRCA)
subtypes: luminal A (LUMA), luminal B (LUMB), HER2-enriched (HER2), basal-like (BASAL), and
normal-like (NORMAL) (Fig. 4a). We used 24,271 cancer cells from Wu et al.*’ as the source data, 545
single-cell samples from Zhou et al.”**! as the target data. We used 1,079 bulk BRCA samples with paired
survival information from TCGA as the survival data. SCellBOW-predicted survival risks for the different
subtypes were generally in agreement with the clinical grading of the PAMS50 subtypes®>>*. Exclusion of
LUMA from total tumor yielded highest risk score indicating that LUMA has the best prognosis, followed
by HER2, and LUMB; whereas BASAL and NORMAL were assigned worse prognosis®*° (Fig. 4e, f).
We observed an interesting misalignment from the general perception about the relative aggressiveness of
NORMAL subtype- removal of this subtype from total tumor indicated the highest improvement in
prognosis. The NORMAL subtype is a poorly characterized and rather heterogeneous category. Recent
evidence suggests that these tumors potentially represent an aggressive molecular subtype and are often
associated with highly aggressive claudin-low tumors®>>’. These benchmarking studies on the well-
characterized cancer subtypes of GBM and BRCA affirm SCellBOW's capability to preserve the desirable
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characteristics in the resulting phenotypes obtained as outputs of algebraic expressions involving other
independent phenotypes and operators such as +/—.

Phenotype algebra enables subclonal pseudo-grading of metastatic
prostate cancer cells

In prostate cancer, the processes of transdifferentiation and dedifferentiation are vital in metastasis and
treatment resistance® (Fig. 5). Prostate cancer originates from secretory prostate epithelial cells, where AR,
a transcription factor regulated by androgen, plays a key role in driving the differentiation®”*’. Androgen-
targeted therapies (ATTs) constitute the primary treatment options for metastatic prostate cancer, and they
are most effective in well-differentiated prostate cancer cells with high AR activity®'. After prolonged
treatment with ATTs, the cancers eventually progress towards metastatic castration-resistant prostate cancer
(mCRPC), which is highly recalcitrant to therapy®. In response to more potent ATTs, the prostate cancer
cells adapt to escape reliance on AR with low AR activity®. The loss of differentiation pressure results in
altered states of lineage plasticity in prostate tumors®*®>. The most well-defined form of treatment-induced
plasticity is neuroendocrine transformation. NEPC is highly aggressive that often manifests with visceral
metastases, and currently lacks effective therapeutic options®*®. Recent studies have pointed toward the
existence of additional prostate cancer phenotypes that emerge through lineage plasticity and metastasis of
malignant cells'. This includes malignant phenotypes such as low AR signaling and DNPC, which is
lacking AR activity and NE features. These additional phenotypes, resulting from the mechanisms of
resistance to AR inhibition, can likewise be characterized by distinct gene expression patterns. Presumably,
these phenotypes represent an intermediate or transitory state of the progression trajectory from high AR
activity to neuroendocrine transdifferentiation®’.

Here, we performed a pooled analysis of scRNA-seq target data consisting of 836 malignant cells derived
from tumors collected from 11 tumors (mMCRPC)®. We initially classified cells into three categories - AR
activity high (ARAH), AR activity low (ARAL), and neuroendocrine (NE). The classification was
performed based on the known molecular signatures associated with ARPC and NEPC genes®’ (Fig. 5b,
Supplementary Methods 2.2).We used the pre-trained model built on Karthaus et al. dataset for transfer
learning®’. We used 81 advanced metastatic prostate cancer patient samples with paired survival
information from Abida et al.’ as the survival data. We subsequently assessed the relative aggressiveness
of these high-level categories using phenotype algebra (Fig. Se, f). We observed that subtracting the latent
signature associated with NE subtype from the tumor led to the largest drop in the predicted risk score,
aligning with the anticipated order of survival”. In contrast, removing the ARAH subtype from the total
tumor had a minimal impact on the predicted risk score. Furthermore, subtracting the ARAL subtype
resulted in a predicted risk score between ARAH and NE, which supports the hypothesis that ARAL
represents an intermediate state between ARAH and NE®’. Upon further examination of the tumor prognosis
by removing the subtypes in a combined state (ARAH+ARAL+NE), the fotal tumor had the highest positive
improvement. The survival probability graph also followed the same order.

Grouping prostate cancer cells into three high-level categories is an oversimplified view of the actual
heterogeneity of advanced prostate cancer biology. Herein, SCellBOW clusters could be utilized for the
discovery of novel subpopulations based on the single-cell expression profiles, that results as a consequence
of therapy-induced lineage plasticity. Subsequently, phenotype algebra can be used to assign a relative rank
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to these clusters under a negative selection pressure based on their aggressiveness. We utilized this concept
to cluster the malignant cells from He et al. using SCellBOW, resulting into eight clusters and then predicted
the relative risk for each cluster (Fig. 6a, b). This approach enables a novel and more refined understanding
of lineage plasticity states and characteristics that determine aggressiveness during prostate cancer
progression. This goes beyond the conventional categorization into ARAH, ARAL, and NE.

To further elucidate these altered cellular programs, we performed a gene set variation analysis (GSVA)”!
based on the AR- and NE- activity (Fig. 6e, Supplementary Table 2). Our result showed that CL4 is
characterized by the highest expression of NE-associated genes and absence of AR-regulated genes,
indicating the conventional NEPC subtype. Despite CL4 having the strongest NEPC signatures, the
elimination of CL2 from the tumor conferred an even higher aggressiveness level. Overall, we observed
that unlike other clusters, CL2 is composed of cells from the majority of drug-treated patients and multiple
metastatic sites (Fig. 6d). This highlights that the clustering is not confounded by the individuals or the
tissue origin, as often observed during integrative analysis of tumor scRNA-seq data. CL2 rather features a
unique gene expression profile common to these cells. Moreover, CL2 has a mixed signature entailing
ARAH, ARAL, and NE, indicating the emergence of a more transdifferentiated subtype as a consequence
of therapy-induced lineage plasticity (Fig. 6¢). Even though CL2 shows NE signature, it is distinguished
by the gene expression signature induced by the inactivation of the androgen signaling pathway due to
ATTs. As a consequence, cells manifesting this novel signature are grouped into a single cluster. Among
all clusters, CL1 and CL3 resemble the traditional ARAH subtype. According to our phenotype algebra
model, the exclusion of CL6 and CL7 from the total tumor yielded the highest risk score. Brady et al.”’
have broadly partitioned metastatic prostate cancer into six phenotypic categories using digital spatial
profiling (DSP) transcript and protein abundance data in spatially defined metastasis regions. To categorize
the SCellBOW clusters into these broad phenotypes, we performed Pearson’s correlation test between
averaged DSP expression measurements of the six phenotypes and averaged scRNA-seq expression of the
SCellBOW clusters (Fig. 6f). The results revealed that CL2 has the highest correlation with the phenotype
defined by lack of expression of AR signature genes and low or heterogeneous expression of NE-associated
genes (AR—/NEw). Similarly, CL4 showed the highest correlation with the NEPC phenotype defined by
positive expression NE-associated genes without AR activity (AR—/NE+) as expected. While CL6 exhibits
a closer resemblance to a DNPC phenotype (AR—/NE-).

To gain a deeper understanding of these modified cellular processes in CL2 as compared to other clusters,
we conducted cluster-wise functional GSVA based on the hallmarks of cancer (Fig 6g). We observed that
CL2 exhibited the least prostate cancer signature, indicating that this cluster has deviated from prototypical
prostate cancer behavior. It has rather dedifferentiated into a more aggressive phenotype as a consequence
of therapy-induced lineage plasticity’>. CL2 exhibited the highest enrichment of genes related to cancer
stemness compared to other clusters. CL2 showed pronounced repression of epithelial genes that are
downregulated during the epithelial-to-mesenchymal transition (EMT). Furthermore, there is a lack of
expression of genes that are upregulated during the reversion of mesenchymal to epithelial phenotype
(MET). Thus, the cells in CL2 are undergoing a process of dedifferentiation from being epithelial cells and
activating the mesenchymal gene networks. Existing studies have reported that adaptive resistance is
positively correlated with the acquisition of mesenchymal traits in cancer’>’*. CL2 was enriched with
signatures associated with metastasis and drug resistance. Specifically, CL2 showed downregulation of the
genes involved in drug metabolism and cellular response while upregulation of the genes associated with
drug resistance. In cancer cells, the acquisition of stemness-like as well as cell dedifferentiation
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(mesenchymal) traits can facilitate the formation of metastases and lead to the development of drug
resistance”. Further analysis of the metastatic potential of CL2 indicated that the cluster is enriched with
genes associated with vasculature and angiogenesis. Tumors induce angiogenesis in the veins and
capillaries of the host tissue to become vascularized, which is crucial for their growth and metastasis’®.
Thus, based on our findings, we anticipate that CL2 corresponds to a highly aggressive and dedifferentiated
subclone of mCRPC within the lineage plasticity continuum, correlating to poor patient survival and
positive metastatic status. Our cluster-wise phenotype algebra results imply that the traits of the androgen
and neuroendocrine signaling axes are not the exclusive defining features of the predicted risk ranking and
that other yet under-explored biological programs play additional important roles.

Discussion

In this work, we introduce SCellBOW, a distributed bag-of-words-based transfer learning model for single-
cell data analysis and phenotype algebra to estimate the relative aggressiveness of the cancer cell subtypes.
SCellBOW treats a cell as a document, a specific mRNA as a word, and its expression as the word
frequency. Traditionally, language models are trained with supervised learning and require a large amount
of pre-annotated data to achieve good performance. However, using source data annotations as a reference
limits the identification of new cell types in the target data. It is important to realize that exploratory studies
involving single-cell expression profiling require unsupervised analysis of the data. SCellBOW allows self-
supervised pre-training on gene expression datasets by learning the general syntax and semantic patterns in
the unlabeled scRNA-seq dataset. With the SCellBOW transfer learning module, we observe considerable
improvement in the quality of clusters obtained from scRNA-seq target datasets’”’®. The entire SCellBOW
framework is independent of any supervision, i.e., the availability of cell type annotations for any of the
source and target datasets is not required. Beyond robust identification of cell type clusters, SCellBOW is
the first of its kind scRNA-seq based subclonal tumor aggressiveness assessment tool. SCellBOW uses
algebraic operations to analyze the cellular phenotypes that could potentially identify their contribution to
patient survival outcomes. We have leveraged the power of word algebra to perform pseudo-grading of
cancer subtypes based on their aggressiveness. This involves comparing the likelihood of a subtype being
eliminated from the entire tumor under negative selection pressure. In addition to overall survival
probability, SCelBOW assigns a risk score to discern the differences between equally aggressive subclones
that may be hard to decipher from their survivability profiles. The phenotype algebra module exhibits
resilience in describing the risk associated with malignant cell subpopulations arising from various types
of cancer, which otherwise cannot be accomplished using gene expression data (Supplementary Fig. 6h-

D

We compared the clustering capability of SCellBOW to popular single-cell analysis techniques as well as
some recently proposed transfer learning approaches. An array of scRNA-seq datasets was used for the
same, representing different sizes, cell types, batches, and diseases. As evident from the comparative
analyses, SCellBOW exhibits robustness and consistency across all data and metrics. We also reported
tangible benefits of transfer learning from apt source data. For example, transfer learning with a large
number of tumor-adjacent normal cells from the prostate as the source and healthy prostate cells as the
target adequately portrayed the cell type diversity therein. SCellBOW reliably clustered pancreatic islet-
specific cells that were processed using varied single-cell technologies. The prevalence of single-cell
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expression profiling and the heterogeneity of PBMCs makes it one of the best-studied tissue systems in
humans”. We isolated matched PBMCs and splenocytes from two healthy donors and two brain-dead
donors (the cause of death is subarachnoid hemorrhage on aneurysm rupture). The utilization of this data
presents a more intricate problem, where the cells originate from diverse biological and technical replicates,
conditions, individuals, and organs. SCellBOW-based analysis of PBMCs, with near-ground-truth cell type
annotation, confirmed its ability to decipher the underlying cellular heterogeneity adequately. Notably,
SCellBOW, unlike ItClust and scETM, does not limit model training to genes intersecting between the
source and the target datasets and is independent of the source data cell type annotation. Given the shallow
architecture of the neural network, SCellBOW is faster than other studied transfer learning methods
(Supplementary Table 6).

As discussed earlier, SCellBOW-based vector representation of cellular transcriptomes preserves their
phenotypic relationships in a vector space. This feature can be exploited in innovative ways. We
demonstrated a potential use case in estimating subclonal survival risk in three cancer types: GBM, BRCA,
and mCRPC. Several examples were shown where simple algebraic operators such as '+' and ' could derive
clinically intuitive outcomes. For example, subtracting the CLA phenotype from the whole tumor resulted
in an improvement in the survival risk in a GBM patient compared to MES and PRO subtypes. Upon further
probing of the tumor prognosis by removal of the subtypes in combinations from the tumor, specifically
CLA and MES subtypes, which are known to be the most aggressive, we observed the highest improvement.
To summarize, SCellBOW allows simulations involving multiple phenotypes. Our subsequent investigation
focused on a BRCA dataset that harbors a more complex subtype structure. We observed a deviance in our
results from the general perception about the relative aggressiveness of the NORMAL subtype in breast
cancer. Notably, the removal of the NORMAL subtype from the fotal tumor was associated with the highest
improvement in prognosis. Despite indications that these tumors often do not respond to neoadjuvant
chemotherapy™, the clinical significance of the NORMAL subtype remains uncertain due to a limited
number of studies. The NORMAL breast cancer cells are poorly characterized and heterogeneous in nature.
As per the recent classification of the breast cancer subtypes, the NORMAL subtype has been identified to
be a potentially aggressive molecular subtype, referred to as claudin-low tumors®’. This contradicts the
common assumption that a NORMAL subtype is an artifact resulting from a high proportion of normal cells
in the tumor specimen®. These evidence suggest that the NORMAL subtype of breast cancer is potentially
an aggressive molecular subtype, which is consistent with the prediction made by SCellBOW.

In advanced metastatic prostate cancer, molecular subtypes are still poorly defined, and characterizing novel
or more fine-grained subtypes with clinical implications on patient prognosis is an active field of research.
As a proof-of-concept, we executed SCellBOW on the three mCRPC subtypes namely ARAH, ARAH, NE.
Eliminating the subtypes individually and in combinations (ARAH+ARAL+NE) exhibited clinically
intuitive change in prognosis. To date, mCPRC classification has largely been confined to the gradients of
AR and NE activities. There is a considerable scope of embracing more fine-grained subtypes to better
explain clonal selection and epithelial plasticity in drug resistance in wider use cases. Convinced by the
overall performance of SCellBOW, we applied phenotype algebra on the mCRPC clusters obtained from
He et al. dataset®®. We observed a misalignment from the general perception that the neuroendocrine
subtype features the worst prognosis. Our results pointed towards the existence of a more aggressive and
dedifferentiated subclone in the lineage plasticity continuum. This novel subclone shares gene expression
signatures with both androgen-repressed and neuroendocrine-activated genes. GSVA analysis of this
hitherto unknown phenotype offered insights into its putative functional characteristics, which can be


https://doi.org/10.1101/2022.12.28.522060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.28.522060; this version posted May 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

broadly defined by stemness, EMT, MET, and drug resistance. To summarize, SCellBOW clustering
combined with phenotype algebra can provide novel insights into factettes of prostate cancer biology that
can be used to delineate features of lineage plasticity and aid in better classification of molecular phenotypes
with clinical significance. Further, such a tool can empower medical oncologists and oncology researchers
to develop more personalized and systemic treatment regimes for cancer patients.

Materials and Methods

Description of datasets

To evaluate the performance of SCellBOW, we used fifteen publicly available scRNA-seq datasets and an
in-house scRNA-seq dataset spanning different cell types, sizes, and diseases. To benchmark the efficiency
of clustering, four use cases were constructed, each involving a pair of single-cell expression datasets. In
the first use case, we used ~120,300 non-cancerous prostate cells from Karthaus et al.’’ and ~28,600 healthy
prostate cells from Henry et al.*>. The second use case consisted of two PBMC datasets from Zheng et al.”
containing approximately 68,000 cells and 2,700 cells. For the third use case, we combined three
independent batches of pancreatic islet cells from Baron et al.*, Muraro et al.”’, and Wang et al.’’, with a
total of 11,181 cells as the source data and 2,068 cells from Segerstolpe et al.’” as the target data. In the
fourth use case, we used an in-house CITE-seq dataset isolated from matched spleen and PBMC samples
from multiple patients.

To validate the accuracy of phenotype algebra, we constructed three use cases from publicly available
tumor datasets comprising malignant cells from GBM, BRCA, and mCRPC patient tumors. Each instance
involved a pair of single-cell expression datasets and a bulk RNAseq dataset paired with clinical
information. For ease of reference, we stick to the following nomenclature — a) the source data comprises
the scRNA-seq dataset used for model pre-training, b) The target data comprises malignant cells under
investigation, ¢) The survival data comprises tumor bulk RNA-seq samples. In the case of GBM, we used
two scRNA-seq datasets comprising approximately 12,074 cells and 4,508 cells obtained from Neftel et
al.® and Couturier et al.**, respectively. In the case of BRCA, we retrieved triple-negative breast cancer
scRNA-seq datasets from Wu ez al.* and Zhou et al.>' with approximately 24,271 cells and 545 malignant
cells, respectively. In both the wuse cases, the bulk RNAseq was obtained from TCGA
(https://portal.gdc.cancer.gov). In the third use case, we obtained author-annotated malignant cells from He
et al.®®. A total of 836 malignant cells were derived from 11 patients and three metastasis sites: bone, lymph
node, and liver. We retrieved 81 mCRPC bulk RNA-seq samples with paired survival from Abida et al.”.
We obtained the gene expression of 141 regions of interest determined by digital spatial gene expression
profiling of mCRPC from Brady et al.">. We used this data to correlate the He er al. scRNA-seq gene
expression with the DSP gene expression of the six phenotypic categories based on the AR- and NE-
activity: AR+/NE—, ARjow/NE—, AR—/NE—, AR—/NEjow, AR+/NE+, and AR—/NE+. Details of the datasets
are described in Supplementary Methods.



https://doi.org/10.1101/2022.12.28.522060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.28.522060; this version posted May 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Data preprocessing and quality control

SCellBOW follow the same preprocessing procedure for both the source and target data. SCellBOW first
filters the cells with less than 200 genes expressed and genes that are expressed in less than 20 cells. The
thresholds may vary depending on the dimension of the dataset (Supplementary Table 4). After
eliminating low-quality cells and genes, SCellBOW log-normalizes the gene expression data matrix. In the
first step, CPM normalization is performed where the expression of each gene in each cell is divided by the
total gene expression of the cell, multiplied by 10,000. In the second step, the normalized expression matrix
is natural-log transformed after addition of 1 as a pseudo count. Highly variable genes are selected using
the highly variable genes() function from the Scanpy package. SCellBOW performs a z-score scaling on
the log-normalized expression matrix with the selected highly variable genes. SCellBOW can handle data
in different formats, including UMI count, FPKM, and TPM. The UMI count data follow the same
preprocessing procedure as above. SCellBOW skips the normalization step for both TPM and FPKM, since
they have been length normalized.

Creating a corpus from source and target data

The gene expression data matrix is analogous to the term-frequency matrix, which represents the frequency
of different words in a set of documents. In the context of genomic data, a similar concept can be used to
represent the expression level of a gene (words) in a set of cells (documents). Let E € R%*C be the gene
expression matrix obtained from a scRNA-seq experiment, where each value E . of the matrix indicates
the expression value of a gene g € G in a cell ¢ € C obtained after Scanpy preprocessing. SCellBOW
generates embeddings by taking two input datasets- a source data matrix and a target data matrix. The
source data set the initial weights of the neural network model, while the target data contains the cells that
require clustering or malignancy potential ranking. Before generating the embeddings, SCellBOW
performs feature scaling on the data matrix, rescaling each feature to a range of [0, 10] as follows.

where scaling is applied to each entry with max =10 and min = 0. This establishes the equivalence between
term-frequency and gene expression matrix. Here we consider that a specific gene is a word, and the
expression of the gene in a cell corresponds to the number of copies of the word in a document. To scale
the data matrix, we have used the MinMaxScaler() function from the scikit-learn package®'. SCellBOW
takes only the integer part of the scaled value. This scaling helps control the number of gene names copied
in the document. To create the corpus, SCellBOW duplicates the name of the expressed gene in a cell as
many times as the gene is expressed. For each cell, SCellBOW shuffles the genes to ensure a uniform
distribution of genes across the cell. The resulting gene names are treated as the words in the document. To
build the vocabulary from a sequence of cells, a tag number is associated with each cell using the
TaggedDocument() function in the Gensim package™. For each gene in the documents, a token is assigned
using a module called tokenize with a word_tokenize() function in NLTK package® that splits a gene names
into tokens.
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The training architecture of the neural network

The scRNA-seq data matrices are high-dimensional. For more effective clustering and algebraic operations,
SCellBOW produces a low-dimensional fixed-length embedding of the single-cell transcriptome using
transfer learning. The data matrix is transformed from E'€ Z¢*C feature space to E"” € R%*C latent
feature space of d dimensions, with d < G. To generate the embeddings, SCellBOW train a Doc2vec
distributed memory model of paragraph vectors (PV-DM) language model. The PV-DM model is similar
to bag-of-words models in Word2vec®. The training corpus in Doc2vec contains a set of documents, each
containing a sequence of words W = {w;, w,,.., wr} that forms a vocabulary V. The words within each
document are treated as shared among all documents. The training objective of the model is to maximize
the probability of predicting the target word wy, given the context words that occur within a fixed-size
window of size n around w; in the whole corpus as follows.

maximize(% Yi_ilog Pr(we | We_p, .o, Wein))- )

The probability can be modeled using the hierarchical softmax function as follows.

_ eYwWe
Pr(we | We_p, .o, Weyn) = S (3)

where each of y; computes the log probability of the word w; normalized by the sum of the log probabilities
of all words in V. This is achieved by adjusting the weights of the hidden layer of a neural network. To
build the Doc2vec language model, we used the doc2vec() function in the Gensim library. The initial
learning rate was set to 0.025, and the window size to 5. We chose the PV-DM training algorithm and set
the embedding vector size to 300 as the default parameter. The choice of embedding vector size may be
adjusted according to the size and dimensionality of the dataset.

Fine-tuning using transfer learning with SCellBOW

At first, SCellBOW is pre-trained with a source data matrix E's.. € ZCrcXCsre with G, genes and
Csyc cells. The source data matrix sets the initial weights of the neural network model. During transfer
learning, SCellBOW fine-tunes the weights learned by the pre-trained model from E’,.. using a target
dataset E'trg € Z Gerg*Crg with Girg genes and Cyyg cells. This facilitates faster convergence of the neural
network as compared to starting from randomly initialized weights. The output layer of the network is a
fixed-length low-dimension embedding (a vector representation) for each cell ¢ € Cyy4 . To infer the latent
structure of Ey;4 single-cell corpus, we used the infer_vector() function in the Gensim package to produce
the dimension-reduced vectors for each cell in Ct,4. This step ensures that the network can map the target
data into a low dimensional embedding space R%; i.e., E'— E"where E" € R%*C. The resulting
embeddings can be used for various downstream analyses of the single-cell data, such as clustering,
visualization of cell types, and phenotype algebra.
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Data preparation for phenotype algebra

To perform phenotype algebra, SCellBOW preprocesses the source data matrix using the standard
preprocessing steps. SCellBOW uses an additional bulk RNA-seq gene expression matrix (referred to as
survival data). The samples are paired with survival information (e.g., vital status, days to follow-up, days
to death). In the survival data, samples without follow-up time or survival status and samples with clinical
information but no corresponding RNA-seq data were excluded. SCellBOW accounts for unequal cell
distribution across different classes in the target data matrix. SCellBOW upsamples the imbalanced target
dataset by generating synthetic samples from the minority class. The value of the synthetic minority class
sample is determined by interpolating between its neighboring cells from the same class. We used SMOTE®
from the imblearn python library®. This confirms that the output of phenotype algebra is not confounded
by the cell type proportions.

Generating vectors for phenotype algebra

SCellBOW constructs different phenotype vectors from the target dataset. The vectors are constructed
either based on the user-defined subtypes or SCellBOW clusters. These vectors are created by calculating
the mean gene expression of cells belonging to each phenotype. SCellBOW first constructs a reference
vector by taking the average of all malignant cells (referred to as fotal tumor). This accounts for the tumor
in its entirety and acts as the reference for the relative ranking of the different groups. Similarly, for each
group in the dataset, SCellBOW then constructs a query vector by taking the average of the gene expression
of the cells in that individual group. SCellBOW can also perform addition or subtraction operations on the
query vectors of two or more cellular phenotypes to evaluate their risk in a combined state such as T —
(a + b), where T is the embedding for fotal tumor, a and b are the embeddings for query vectors of two
distinct cellular phenotypes. Following this, SCeIBOW concatenates the bulk RNA-seq data matrix and the
reference and query vectors based on common genes. We used the concatenate() function in the AnnData
python package®”. The resulting combined dataset is then passed to the pre-trained model, which maps it to
a lower-dimensional embedding space.

Phenotype algebra in subclonal survival risk attribution

SCellBOW infers the survival probability and predicted risk score for the user-defined tumor subtypes and
SCellBOW clusters. The survival risk of the different groups is predicted by fitting a random survival forest
(RSF)® machine learning model with SCellBOW embeddings. At first, the RSF is trained with the survival
information combined with bulk RNA-seq embeddings obtained from transfer learning. SCellBOW
subtracts each query vector from the reference vector and fits the difference of these vectors as input to the
RSF model to infer the survival probability S(t). The survival probability computes the probability of
occurrence of an event beyond a given time point t as follows.

PriT <t] = ['_f(x)dx, (4)

S(t)=1—- Pr[T <t]= Pr[T >t], ®)]
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where T denotes the waiting time until the event occurs and f(x) is the probability density function for the
occurrence of an event. SCellBOW computes the survival probability using the predict_survival function()
from the scikit-survival RandomSurvivalForest python package®” with n_estimators = 1000.

In addition to survival probability, SCellBOW can estimate the relative aggressiveness of different
malignant phenotypes by assigning a risk score for distinct groups. To infer the predicted risk score,
SCellBOW first trains 50 bootstrapped RSF models using 80% of the training set for each iteration. The
training data is sub-sampled using different seeds for every iteration. We used the predict() function from
the scikit-survival package to compute the risk score of each of the input vectors. SCellBOW derives the
median of the predicted risk score for each group from the 50 bootstrapped models. The phenotype algebra
model assigns groups with shorter survival times a lower rank by considering all possible pairs of groups
in the data. The groups with a lower predicted risk score after removal from the reference pseudo-bulk are
considered more aggressive, as they are associated with shorter survival times.

Data visualization of SCellBOW clusters

SCellBOW maps the cells to low-dimensional vectors in such a way that two cells with similar gene
expression patterns will have the least cosine distance between their inferred vectors.

similarity(a,b) = ||a||tl>;l)||b||' (6)
After generating low-dimensional embeddings for the cells, SCellBOW identifies the groups of cells with
similar gene expression patterns. To identify the clusters, SCellBOW uses the Leiden algorithm® on the
embedding matrix of the target dataset. We used the leiden() function in the Scanpy package with a default
resolution of 1.0. The resolution might vary in the reported results depending on the dimension of the target
dataset. To visualize the clusters within a two-dimensional space, SCellBOW uses the umap() function
from Scanpy library.

Sample collection

In this study, we isolated PBMC and splenocyte from four patients (two healthy donors, HD1 18 years old
male and HD2 61 years old female; two brain-dead donors, BD1 57 years old female and BD2 58 years old
female). PBMCs were isolated from blood after Ficoll gradient selection. Spleen tissue was mechanically
dissociated, then digested with Collagenase and DNAse. Splenocytes were finally isolated after Ficoll
gradient selection. Splenocytes and PBMCs were stored in DMSO with 10% FBS in liquid nitrogen at the
Biological Resource Centre for Biobanking (CHU Nantes, Hotel Dieu, Centre de Ressources Biologiques).
This biocollection was authorized in May 2013 by the French Agence de la biomedecine (PFS13-009).

Library preparation and sequencing

For the in-house dataset, we performed CITE-seq using Hashtag Oligos (HTO) to pool samples into a single
10X Genomics channel for scRNA-seq”’. HTO binding was carried out according to the manufacturer's
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guidance (BioLegend, Total-seq B). After thawing and cell washing, 1M cells were centrifuged and
resuspended in 100uL PSE buffer (PBS/FBS/EDTA). Cells were incubated with 10ul human FcR blocking
reagent for 10 min at 4°C. 1 uL of a Hashtag oligonucleotide (HTO) antibody (Biolegend) was then added
to each sample and incubated at 4°C for 30 min. Cells were then washed in ImL PSE, centrifuged at 500g
for 5 min, and resuspended in 200ulL PSE. Cells were stained with 2ul. DAPI, 60uM filtered, and viable
cells were sorted (ARIA). Cells were checked for counting and viability, then pooled and counted again.
Cell viability was set to < 95%. Cells of HD1 spleen were lost during the washing step and thus not used
during further downstream processing. Cells were then loaded on one channel of Chromium Next Controller
with a 3' single-cell Next v3 kit (10X Genomics Inc. Pleasanton, CA). We then followed the supplier's
protocol CG000185, Rev C, until library generation. For the HTO library, we followed the protocol of the
10X genomics 3' feature barcode kit (PN-1000079) to generate HTO libraries. 310pM of pooled libraries
were sequenced on a NOVAseq6000 instrument with an S1 (v1) flow-cell (Illumina Inc. San Diego, CA)
at the genomic platform core facility on the basis of a placement agreement (Nantes, IRS-Un, France). The
program was run as follows: Readl 29 cycles / 8 cycles (i7) /0 (i5)/Read2 93 cycles (Standard module,
paired-end, two lanes). The FASTQ files were demultiplexed with CellRanger v3.0.1 (10X Genomics) and
aligned on the GRCh38 human reference genome. We recovered a total of 6,296 cells with CellRanger, and
their gene expression matrices were loaded on R.

Post-sequencing quality control and data preprocessing

We performed the downstream analysis of the in-house CITE-seq dataset in R using Seurat 4.0. For RNA
and HTO quantification, we selected cell barcodes detected by both RNA and HTO. We demultiplexed the
cells based on their HTO enrichment using the HTODemux function in the Seurat R package with default
parameters’*®2. We subsequently eliminated doublet HTOs (maximum HTO count > 1) and negative HTOs.
Singlets were used for further analysis leaving 4,819 cells and 33,538 genes. We annotated each of the cell
barcodes using HTO classification as PBMC and Spleen based on the origin of cells and HD1, HD2, BDI1,
and BD2 based on the patients. In the preprocessing step, we eliminated cells with gene counts < 200 and
genes if the number of cells expressing this gene is <3 (Supplementary Note 2). Post gene and cell filtering,
the gene expression levels for each cell were normalized and log transformed by Scanpy preprocessing
methods. The top 3,000 HVGs were used directly for the pipeline of SCellBOW.

We performed automatic cell annotation based on RNA data, using the Seurat-based Azimuth using human
PBMC as the reference atlas®”. We defined six major cell populations: B cells, CD4 T cells, CD8 T cells,
natural killer (NK) cells, monocytes, and dendritic cells. We then manually verified the annotation based
on the RNA expression of known marker genes (Supplementary Fig. 5d and Supplementary Table 7).

Data availability

The in-house CITE-seq scRNA-seq expression data generated in this study is available in the GEO with
accession number GSE221007. Details of the public datasets analyzed in this paper are described in
Supplementary Table 4.

All source codes are available at GitHub https://github.com/cellsemantics/SCellBOW.
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Fig. 1. SCellBOW workflow. a, Schematic overview of SCellBOW workflow for identifying
subclones and assessing subclonal tumor aggressiveness. For SCellBOW clustering, firstly a corpus
was created from the gene expression matrix, where cells were analogous to documents and genes to
words. Next, the pre-trained model was retrained with the vocabulary of the target dataset. Then,
clustering was performed on embeddings generated from the neural network. For SCellBOW
phenotype algebra, vectors were created for reference (fotal tumor) and queries. Then the query
vector was subtracted from the reference vector to calculate the predicted risk score using
bootstrapped random survival forest. Finally, survival probability was evaluated, and phenotypes
were stratified by the median predicted risk score.
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Fig. 2. Evaluation of single-cell representations using SCellBOW.

a-c, UMAP plots for the normal prostate (a), PBMC (b), and pancreas (c) datasets. The coordinates
are colored by cell types.

d-f, UMAP plots for normal prostate (d), PBMC (e), and pancreas (f) datasets, where the coordinates
are colored by SCellBOW clusters. CL is used as an abbreviation for cluster.

g-i, Radial plot for the percentage of contribution of different methods towards ARI for various
resolutions ranging from 0.2 to 2.0. ItClust is a resolution-independent method; thus the ARI is kept
constant across all the resolutions.

j» Box plot for the NMI of different methods across different resolutions ranging from 0.2 to 2.0 in
steps of 0.2.

k, Bar plot for the cell type silhouette index (SI) for different methods. The default resolution was
set to 1.0.
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Figure 3. Evaluation of in-house splenocytes and matched PBMCs.

a, An experiment schematic diagram highlighting the sites of the organs for tissue collection and
sample processing. In this CITE-seq experiment, PBMCs and splenocytes were collected, followed
by high-throughput sequencing and downstream analyses.

b, The UMAP plots for the embedding of SCellBOW compared to different benchmarking methods.
The coordinates of all the plots are colored by cell type annotation results using Azimuth.

c-d, UMAP plots for SCellBOW embedding colored by donors (¢) and cell types (d).

e-f, Alluvial plots for Azimuth cell types mapped to SCellBOW clusters (¢) and Scanpy clusters (f).
The resolution of SCelBOW was set to 1.0. CL is used as an abbreviation for cluster.

g, Bar plot for ARI, NMI, celltype SI at resolution 1.0.
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Fig. 4. Subclonal survival risk inference.

a, UMAP plot for the embedding of BRCA target dataset colored by PAMS0 molecular subtype.

b, Heatmap for GSVA score for three molecular subtypes of GBM: CLA, MES, and PRO, grouped
by SCellBOW clusters at resolution 1.0.

¢, Survival plot for BRCA molecular subtypes based on phenotype algebra. The total tumor is
denoted by T.

d, Violin plot for predicted risk scores for BRCA molecular subtypes.

e, Survival plot for GBM molecular subtypes based on phenotype algebra.

f, Violin plot for predicted risk scores for GBM molecular subtypes.
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Fig. 5. Phenotype algebra of metastatic prostate cancer data based on AR- and NE-activity.

a, Schematic of the transdifferentiation states underlying lineage plasticity that occurs during mCRPC
progression from an ARPC to NEPC.

b, Scatter plot of GSVA scores of ARPC and NEPC gene sets, K-means clustering was used to
allocate cells into the three high-level ARAH, ARAL, and NEPC categories.

¢, UMAP plot for projection of SCellBOW embedding colored by ARAH, ARAL, and NEPC.

d, Heatmap showing the top differentially expressed genes (y-axis) between each high-level category
(x-axis) and all other cells, tested with a Wilcoxon rank-sum test.

e, Survival plot for mCRPC phenotypes based on phenotype algebra. The total tumor is denoted by
T.

f, Violin plot for predicted risk scores for mCRPC phenotypes - ARAH, ARAL, and NEPC.


https://doi.org/10.1101/2022.12.28.522060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.28.522060; this version posted May 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b
p=156-08
Q'S}' clusters pasets
p=061
® CLO o
104 ® Cu1
e CL2 2
P e cL3 2 "
% e CL4 Sl
54 ® CL5 g g
e CL6 @ o
. ar =
0+ 20 \/
T = T-CL2 T-Cl4 T-CLO T-CLs T-Cli T-CL3 T-CL7 T-CL6
UMAP1 (n=50) (n=50) (N=50) (n=50) (n=50) (n=50) (n=50) (n=>50)
c
d 0 20 40 60 80 100
L L L . L 4 W donor_1
co I ® donor 2
cui | (M = donor 3
c> I Ny = coror 4
cus [ ™ oo
m donor_6
cus I . o
cs I & oo s
ce NN N = donor 9
c7 e = doror 10
m donor_11
liver Iymph
H CLO B CL2 B CL4 B CL6
ClUSIETS & i1 m CLs m CL5 W oL7
e g
O P AN .v.A.©
0‘3' o o\' c}' c}' o" o" o" PP PP
: : BEIER-GLIOMA-STEM-CELL-DN
H O‘ O QO‘QQ F ARPC-UP Stemness BEIER-GLIOMA-STEM-CELL-UP
8 GALIE-TUMOR-STEMNESS-GENES
o
o [ ] [ ] | | EPITHELIAL-MESENCHYMAL-CELL-SIGNAL
: @0 Q@@ O O | weon
W W gsva [ GOTZMANN-EMT-DN
i | i | ' i 0 0 score, EMT | SARRIO-EMT-DN
& - NEPC-UP ! | | SARRIO-EMT-UP
8 Q’ Q Q..QQQ ! || cotzmAnn-EmMT-UP
= I S S T R o
@ MESENCHYMAL-TO-EPITHELIAL-TRANSITION
¢ Q’Q QQOQQ [FNERG-N I =1 MET Eﬂ MESENCHYMAL-EPITHELIAL-CELL-SIGNAL
-2
et TOMLINS-METASTASIS-DN
Metastatsis TOMLINS-METASTASIS-UP
VICENT-METASTASIS-UP
f KPP ORI SN DRI
UG-METABOLIC-PROCESS
N oY oV o & o o
S) 0 o 0 0 o 0 O Drug | CELLULAR-RESPONSE-TO-DRUG

O - ARIOW/NE-
(O)-AR-INElow
@ -AR-mE-
(O)-AR-ME+
(O)-ARemE-
@R

~ || HU-ANGIOGENESIS-DN
| | HU-ANGIOGENESIS-UP
GALIE-TUMOR-ANGIOGENESIS

1 | | |LU-TUMOR-ANGIOGENESIS-UP

Vasculatur LU-TUMOR-VASCULATURE-UP
asculalure LU-TUMOR-VASCULATURE-DN
Prostate - .

CTEN-PROSTATE
cancer KEGG-PROSTATE-CANCER

pearson
correlation i

2

N
[

l»i
-2

0 0e000
000000
0|00 © 0@
0C0|© 000
O|0|@ 0|0|0;
@@ 0 000

Fig. 6


https://doi.org/10.1101/2022.12.28.522060
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.28.522060; this version posted May 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fig. 5. Phenotype algebra of metastatic prostate cancer data based on SCellBOW clusters.

a, UMAP plot for projection of embeddings with coloring based on the SCellBOW clusters at
resolution 0.8. CL is used as an abbreviation for cluster.

b, Violin plot of phenotype algebra-based cluster-wise risk scores for SCellBOW clusters based on
phenotype algebra-based predictions.

¢, [llustration of distribution of cells from the three high-level groups- ARAH, ARAL, and NEPC
across the SCellBOW clusters.

d, Patient and organ site distribution across the SCellBOW clusters.

e, Bubble plot of row-scaled GSVA scores for custom curated gene sets containing activated and
repressed AR- and NE- signatures

f, Correlation plot of six phenotypic categories based on DSP gene expression correlated with the
SCellBOW clusters based on scRNA-seq gene expression. The six phenotypic categories are defined
by defined by Brady et al. based on the activity of AR and NE programs.

g, Top gene sets correlated with SCellBOW clusters. Signatures collected from the C2 “‘curated,””
C5 “*Gene Ontology,”” and H “‘hallmark’’ gene sets from mSigDB®’. Ranking by row-scaled GSVA
scores of one cluster against all others.
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