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High-dimensional profiling demonstrates complexity, tissue imprinting, and lineage-specific

precursors within the mononuclear phagocyte compartment of the human intestine

One sentence summary: Fenton and Wulff ef al. use single-cell methods to explore the complexity
of the mononuclear phagocyte compartment of the human intestinal lamina propria, identifying
distinct dendritic cell and macrophage subsets, site-specific transcriptional signatures, and lineage-

specific precursors.
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Abstract

Mononuclear phagocytes (MNP), including macrophages and classical dendritic cells (¢cDC), are
highly heterogeneous cells with distinct functions. Understanding MNP complexity in the intestinal
lamina propria (LP), particularly in humans, has proved difficult due to the expression of
overlapping phenotypic markers and the inability to isolate these cells without contamination from
gut-associated lymphoid tissues (GALT). Here, we exploited our novel method for isolation of
human GALT-free LP to carry out single-cell (sc)RNA-seq, CITE-seq and flow cytometry analysis
of human ileal and colonic LP MNPs. As well as classical monocytes, non-classical monocytes,
mature macrophage subsets, cDCls, and ¢cDC2s, we identified a CD1c" ¢cDC subset with features
of both ¢cDC2 and monocytes, which were transcriptionally similar to the recently described cDC3.
While similar MNP subsets were present in both ileal and colonic LP, the proportions and
transcriptional profiles of these populations differed between these sites and in diseased states,
indicating local specialization and environmental imprinting. Using computational trajectory tools,
we identified putative early committed pre-cDC subsets and developmental intermediates of
mature cDC1, ¢cDC2 and cDC3, as well as monocyte—to-macrophage trajectories. Collectively, our
results provide novel insights into the heterogeneity and development of intestinal LP MNP and an
important framework for studying the role of these populations in intestinal homeostasis and

disease.
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Introduction

The mononuclear phagocyte (MNP) family consists of conventional dendritic cells (cDC), classical
monocytes, non-classical monocytes and macrophages, each of which play specific roles in
immune responses, tissue homeostasis and inflammation!. Whereas ¢cDC are the main cells
involved in the induction and shaping of adaptive immune responses*, tissue-resident macrophages
are primarily involved in maintaining local tissue homeostasis, defense against infection and tissue
repair>. Recent studies have highlighted considerable heterogeneity amongst MNP’!° and it is
now evident that these cells develop unique functions depending on the tissue context and niches
in which they reside'"!?. Despite this, our understanding of MNP diversity within human tissues
remains limited. A better understanding of MNP diversity is essential not only for understanding
tissue specific immune processes, but also for the possibility of therapeutically targeting MNP
subsets.

The intestine is continually exposed to food and microbial products that are essential for
our health!>!*. The intestinal immune system must respond appropriately to these products to
maintain tissue homeostasis and at the same time retain the ability to mount effective immunity to
intestinal pathogens. Furthermore, the intestine is not just a homogenous tube but consists of
several anatomically and functionally distinct segments. For example, the small intestine, whose
surface is characterized by finger-like projections termed villi, is the major site of food digestion
and absorption. Conversely, the colonic surface consists of flattened crypts and it is home to the
largest number and variety of microbes'>. As a result, the concentration of dietary and microbial

products and metabolites, many of which have direct impacts on local immune cell development
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and function, varies greatly along the length of the intestine. How such variations in intestinal
anatomy, function, and luminal contents impact local MNP diversity in humans remains unclear.

Given its continual exposure to foreign material, it is unsurprising that the intestine contains
the largest and most diverse immune compartments in the body. MNP are found in multiple niches
throughout the intestine, including the intestinal lamina propria (LP), the muscularis mucosa and
the gut-associated lymphoid tissues (GALT), including the multi-follicular Peyer’s Patches (PP) of
the ileum and the mucosal- and submucosal- isolated lymphoid follicles (ILFs) that are distributed
along the length of the intestine!S. Much of our understanding of the roles of intestinal MNP
diversity and function comes from studies in mice. These studies have not only highlighted the
different roles that MNP subsets play in intestinal homeostasis, but also show that MNP
composition and function is highly dependent on the intestinal niche in which they reside!-1%17-18,
Consistent with this, recent single-cell transcriptomic analysis suggests considerable heterogeneity
within the macrophage compartment of the human colonic mucosa and muscularis mucosa'®. While
these findings highlight the importance of assessing MNP diversity in different intestinal niches,
this has not been possible in the human LP due to a lack of protocols to isolate LP tissue free from
contaminating submucosa and GALT.

Here we used our recently developed techniques to isolate intestinal LP free from

contaminating GALT and submucosa®®?!

to assess the phenotypic, transcriptional and
developmental diversity of MNP populations in the human ileum and colon LP. Our results provide
novel insights into LP MNP diversity as well as site-specific adaptations within these populations,

and provide an important framework for designing target approaches for modulating intestinal

immune responsces.
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Results

MNP populations of the human ileum and colon LP are highly diverse
To assess MNP diversity within the intestinal LP, surgical samples of uninvolved ileum and colon
from colorectal cancer patients (>10 cm from the tumour) were processed to remove contaminating
GALT and submucosa (SM), as we described recently’>!. Following LP digestion, single-cell
RNA sequencing (scRNA-seq) was performed on flow cytometry-sorted CD45°CD3 CD19
HLADR™* cells from LP cell suspensions, using the 10x Chromium system (Fig. 1A). Sequences
were obtained from six colonic LP and four paired ileal LP samples (Table S1). Distinct clusters
of CD3E" T cells, CD794" B cells, VWF" endothelial cells, MS442" mast cells, COL3A41" stromal
cells, and NRXNI" glia were identified and excluded from further analysis (Fig. S1A). The MHCII
genes were expressed by one ‘supercluster’ and two peripheral clusters (Fig. S1B), which were
computationally isolated and re-clustered. These 28,758 MHCII" cells comprised distinct clusters
of IL3RA" plasmacytoid DC (pDC), CLEC9A4" ¢cDC1, and FCGR3A" non-classical monocytes (Fig.
1B), together with a supercluster that contained cells expressing either the cDC2-associated marker
CD1C, the monocyte/macrophage (Mono/Mac)-associated marker CD/14, or both CDIC and CD14
(Fig. 1C). Flow cytometry analysis of colon LP CD45" HLA-DR" lineage™ cells confirmed the
presence of CD1c and CD14 single positive cells, as well as cells expressing variable levels of both
CDlc and CD14 (Fig. 1D).

To further characterize subsets within this MNP supercluster, we re-clustered these cells at
high resolution (Fig. 1E). These clusters were present in all four ileal samples and six colonic LP

samples, albeit in slightly different proportions (Fig S1C). To explore the identity of these clusters
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we used a supervised approach to assess individual clusters for their expression of known
monocyte-, macrophage-, and cDC2-associated genes’??> >, Based on this analysis, clusters were
broadly separated into three main groups. The first clearly defined group (clusters 1-3) expressed
the classical monocyte transcription factor ZBTB16°°, while the second group (clusters 15-20)
expressed high levels of macrophage-associated genes SEPP1, MERTK and MAF, as well as other
TFs involved in tissue-resident macrophage development such as ID3*’ (Fig. 1E). Clusters 4-14
expressed intermediate levels of these monocyte and macrophage signature genes. Thus, clusters
1-20 appeared to represent monocytes, macrophages and transitional intermediates between these
cell types. Within the third group (clusters 21-39), clusters 21-35 expressed lower levels of
monocyte and macrophage associated genes and high levels of the cDC2-associated genes AP1S3,
FLT3, SEPT6 and IRF*2® (Fig. 1E), while clusters 36-39 expressed both cDC2-associated genes,
including FLT3 and IRF4, as well as monocyte and macrophage-associated genes, including CD14
and C54R1 (CD88) (Fig. 1E). As a novel population of ¢cDC3 has been reported to co-express
¢DC2 and monocyte markers”?>2428-30 (reviewed in’!), we designated this third group as consisting
of mixed cDC2 and cDC3-like cells-

To independently assess the accuracy of this grouping, we performed pseudo-bulk PCA
analysis of the clusters using gene signatures taken from published cDC2, classical monocyte, and
in vitro monocyte-derived macrophage data sets*?. This analysis separated the clusters in a similar
manner to our supervised approach, as PC1 drove separation of ¢cDC2/DC3-like clusters from
monocytes and macrophages and PC2 drove separation of monocyte from macrophage clusters

(Fig. 1F). In summary, our analysis suggests that MHCII" clusters within the human ileal and


https://doi.org/10.1101/2021.03.28.437379
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.28.437379; this version posted October 19, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

colonic LP consist of classical and non-classical monocytes, pDC, cDCI1, macrophages, and

cDC2/DC3-like cells.

Identification of cDC1, ¢cDC2 and ¢cDC3-like subsets in the human intestine

To further explore cDC diversity within the intestinal LP, we computationally isolated and
recombined the cDC1 and cDC2/DC3-like cells identified in Figure 1. Cells were clustered at high
resolution to allow more accurate cluster designation, tSpace was used to perform trajectory-based
clustering identification®* and the data was visualised by 2-dimensional representation of a 3-
dimensional tSpace UMAP (Flat tUMAP). All sub-clusters were present in both ileal and colonic
LP datasets (Fig. S2A). Seven clusters, located together at the top of the tUMAP, were enriched in
cells expressing high levels of mitotic G2ZM/S genes (Fig. S2B) and relatively low levels of MHCII
genes (Fig. S2C), both of which are characteristics of cDC precursors and will be considered later.
To assess the identity of the remaining clusters, we first analysed expression of canonical cDC1
signature genes CLEC9A4, CADM1, XCR1, BATF3, and IRF8 and identified 7 clusters with a clear
cDCI1 signature score (Fig. S2D). We then ranked the remaining clusters based on their average
module expression of cDC2- or cDC3-associated signature genes published by Bourdeley et al*°
and generated with the AddModuleScore from Seurat (Fig. S2E). This allowed us to tentatively
identify ¢cDC2-like and cDC3-like clusters, as well as clusters that exhibited no particular bias in
their ¢cDC2/DC3 signature score, which we termed ambiguous clusters (Fig. S2E). We also
identified a population of LAMP3" ¢DC, which expressed high levels of the maturation markers
CCR7 and CD40 (Fig. S2F), suggested to represent mature cDC with a migratory capacity towards

lymph nodes**% .
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cDCl1, ¢cDC2-like and cDC3-like clusters grouped together into 3 super-clusters located in
largely distinct areas of the tUMAP projection, with the ambiguous clusters positioned between
the ¢cDC2- and cDC3-like cells (Fig. 2A). Analysis of genes differentially expressed (DEG)
between these subsets further supported their designation as cDC1, ¢cDC2 and cDC3-like cells (Fig.
2B and Table S2). Specifically, the top DEG for the cDC1 cluster included CLECY94, CADM1 and
ID2, the cDC2 cluster expressed high levels of IRF4, PLACS and CCL22, the cDC3-like cluster
expressed high levels of C10A4, S10049 and CD163, while the ambiguous cluster expressed genes
associated with both ¢cDC2 and cDC3-like cells (Fig. 2B). CDIC, CLEC10A and FCERIA were
expressed at comparable levels by the ambiguous as well as the cDC2 and ¢DC3-like clusters in
both ileal and colonic LP, as observed previously in blood cDC2 and ¢DC3%**° (Fig. 2B). Gene
Ontology (GO) terms differentially expressed between the cDC subsets included ‘Antigen
processing and presentation of peptide antigen via MHC class I’ for cDC1, ‘positive regulation of
T-helper cell differentiation’ for cDC2 and cDC3-like cells, and ‘cellular response to molecule of
bacterial origin’ and ‘inflammatory response’ for cDC3-like cells (Figure S2G).

To gain further insights into potential functional differences between cDC subsets, we
manually curated a list of DEG between cDC subsets based on GO terms associated with
transcription factors and cytokines/chemokines®® (Fig. 2C and D). In addition to classical cDC]1-
associated TFs such as IRF8, ID2 and BATF3, ileal and colonic cDC1 specifically expressed other
TFs such as ZEBI (Fig. 2C), which was recently implicated in cDC1-mediated Th1 responses®’. A
number of TFs associated with development, including ARID3A, FOXCI, HES4, and MSX1, were
enriched in cDC2-like cells, as well as NR4A43, which has been implicated in DC activation’®. As

expected, cDC3-like cells expressed the highest levels of macrophage-associated genes including
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MAF, MAFB, MAF and ZBTB16, as well as the inhibitory TFs NFKBIA and NFKBIZ, while cells
within the ambiguous cluster expressed high levels of several TFs associated with activation,
including ATF3 and JUNB (Fig. 2C). The cDC also expressed various cytokines and chemokines
in subset-specific patterns. Thus, both ileal and colonic LP ¢cDC1 expressed high levels of the TNF
family members TNF and TNFSF11 (RANK-L), cDC2-like cells expressed high levels of CCL19,
CCL22 and EBI3 and c¢DC3-like cells expressed a wide range of cytokines and chemokines,
including /L1710, ILIB and IL6 and the interferon-inducible chemokines CXCL9, CXCL10, and
CXCLI11 (Fig 2D); the latter, primarily expressed by a subset of cDC3-like cells (Fig S2F).

To assess potential transcriptional differences between ileal and colonic LP ¢DC, we
performed DEG analysis between these sites for each of the cDC1, ¢cDC2 and cDC3-like subsets.
The transcriptional profile of each ¢cDC subset differed between the ileum and colon LP (Fig. 2E,
Table S3). While many DEG were cDC subset-specific, 64 genes were upregulated by all three
cDC subsets in the colonic compared with the ileal LP and 12 genes were upregulated by all three
cDC subsets in the ileal compared with the colonic LP (Fig 2F). To broadly assess differences
between ileal and colon cDC subsets we performed GO analysis using enrichR (GO biological
processes 2021). Pathways upregulated in all colonic ¢cDC subsets included ‘regulation of cellular
response to stress’ and ‘positive regulation of cytokine production’ (Fig S2H). Ileal cDC showed
more subset-specific responses, with upregulation of genes involved in ‘protein targeting to ER’
(cDC1 and ¢DC2), "intestinal cholesterol absorption” (¢cDC2 and cDC3-like cells), and ‘regulation
of complement activation’ (¢cDC1 and cDC3-like cells) (Fig. S2H).

To assess potential differences in TF and signalling pathway activity between ileal and

colonic LP cDC subsets, we used the Discriminant Regulon Expression Analysis package

10
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(DoRothEA), which infers transcription factor activity from expression of downstream target
genes® (Fig. 2G), and the Pathway RespOnsive GENes package (PROGENy), which infers
pathway activity in cells based on expression levels of pathway response genes*® (Fig. 2H).
DoRothEA analysis suggested selective SOX2, FLI1, LEF1, and FOXA1 activity in cDC1 (Fig
2G), while the cDC3-like cells showed enhanced activity of a broad range of TF associated with
cell activation including JUN, JUND, NFKBI1, REL, RELA, STAT1 and STAT3 (Fig. 2G),
consistent with their TF and cytokine/chemokine gene expression profiles (Fig 2C and D).
DoRothEA analysis also suggested tissue-specific differences in cDC TF activity. For example, all
ileal LP cDC subsets showed increased SREBF1 and SREBF2 activity, both of which are involved
in sterol/cholesterol metabolism), as well as HNFA1 and CDX2 activity, both of which have been
implicated in driving intestine-specific cell fate transcriptional programs*'*? (Fig 2G). Conversely,
colonic ¢cDC subsets showed highly specific activity of FOXA1 (Fig 2G), which has been
implicated in intestinal epithelial cell fate decisions*’. PROGENYy analysis suggested that the PI3K
pathway was particularly active in cDC1, while cDC3-like cells displayed a broad activation of the
Estrogen, Androgen, WNT, TRAIL, VEGF, p53, JAK-STAT, hypoxia, NFkB, and TNFa pathways
relative to the other cDC subsets (Fig 2H), consistent with gene expression and DoRothEA analysis
(Fig. 2C, D and G). Again, differences were found between ileum and colon LP ¢DC, with, for
example, TGFB, EGFR and MAPK signalling appearing more active in colonic cDC compared
with ileal cDC and TRAIL signalling appearing more active in ileal compared with colonic LP
cDC1 and DC3-like cells (Fig 2H). Collectively, these results highlight the distinct transcriptional
activities of human intestinal cDC subsets and the importance of the environment in regulating the

transcriptional profile of these cells.
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Intestinal cDC subset composition differs along the length of the intestine and changes during
inflammation.

CITE-seq analysis demonstrated that cDC2-like, cDC3-like and ambiguous ¢cDC populations could
be distinguished from monocytes and macrophages based on their high expression of CD1¢ and
low expression of CD14 (Fig. 3A). We next used LEGENDScreen™ to identify surface markers
that could subdivide intestinal CD1¢"CD14" MNP and thus potentially distinguish intestinal cDC2
from c¢cDC3-like cells by flow cytometry. We observed that CD11a and CD207 separated both
colonic and ileal LP CD1¢"CD14” MNP into 4 populations (Fig. 3B, for pre-gating see Fig. S3A).
To determine the usefulness of these markers in enriching for cDC2 and cDC3-like cells, we stained
colonic LP MNP with CITE-seq antibodies to CD11a and CD207, again identifying cells within
the ¢DC super cluster that were CD207CDI11a’, CD207'CD11a’, CD207°CD11a” or CD207
CDI11a" (Fig. 3C). While the ambiguous ¢cDC population distributed evenly between all 4
quadrants (Fig. 3D), cDC2-like cells were enriched in the CD207" CD11a (Q1) gate, while the
cDC3-like cells were enriched in the CD207°CD11a" (Q4) gate (Fig. 3C and D). CITE-seq analysis
of paired ileal and colonic LP samples from one patient showed similar enrichment of ¢cDC2-like
cells amongst Q1 cells and ¢cDC3-like cells amongst Q4 cells in the ileum (Fig. S3B and C).

To assess whether ileal and colon LP contained different proportions of these populations,
flow cytometry analysis was performed on CD1¢"CD14” MNP from paired ileal and colonic
resection samples (Fig. 3E). Ileal LP CDIc¢'CDI14° MNP were significantly enriched in
CD207'CDl1la” (Q1) ¢DC2-like cells compared with the colonic LP, while colonic LP

CD11¢"CDI4 MNP were enriched in CD207°CDI11a" (Q4) c¢DC3-like cells (Fig. 3E). To
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investigate whether the proportions of these populations may change during intestinal
inflammation, we analysed biopsies from treatment-naive patients undergoing endoscopic
screening for inflammatory bowel disease (IBD) diagnosis who were subsequently diagnosed with
Crohn’s disease (CD). This analysis suggested a trend towards reduced proportions of
CD207°CDl11a (Q1) cDC2-like cells and enhanced proportions of CD207 CD11a” (Q4) ¢DC3-

like cells in areas of active inflammation, although the differences were not significant (Fig. 3F).

The human intestinal LP contains putative ¢cDC1, ¢cDC2 and cDC3 precursors
Recent studies have identified putative committed precursors of cDC1 (pre-cDC1), ¢cDC2 (pre-
c¢DC2), and more recently, cDC3 (pre-cDC3), as well as uncommitted pre-cDC precursors, in

25.2629.30.4445 T explore whether cDC precursors might also

human bone marrow, blood and tonsils
be present in human intestine, we focused on the HLA-DR!®" ¢DC (Fig. S2C), which, using high-
resolution tSpace based clustering, consisted of 8 clusters (Fig. 4A). These cells were highly
proliferative compared with the mature cDC (Fig. 4B) and expressed low levels of ITGAX

46,47 and

(encoding CD11c) (Fig. 4C); features consistent with previous studies of pre-cDCs in mice
in humans®>*. Given that these proliferating clusters formed three distinct branches that aligned
with cDC1, ¢cDC2 and ¢DC3-like cells, we hypothesized that each branch potentially represented
cDC subset-specific precursors.

To assess this possibility, we generated signatures composed of the top 50 DEGs which
distinguished the mature cDC subsets from each other and examined how these were expressed by

the various clusters of HLAY ¢DC. This analysis showed that cluster 4 and 5 shared a gene

expression profile with cDC1, while cluster 7 expressed cDC2-like DEGs and cluster 3 and 8 had
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a similar gene expression pattern to DC3-like cells (Fig. 4D), suggesting the possibility that these
clusters represented distinct cDC lineage specific precursors. RNA velocity analysis of mRNA
splicing patterns*® further supported this idea, with cluster 4 appearing to be at the beginning of a
trajectory with directionality into cluster 5, and thereafter into the mature cDC1 clusters (Fig. 4E).
Similarly, cluster 7 showed a trajectory into the mature cDC2 clusters, while cluster 3 showed a
trajectory towards cluster 8 and then into mature cDC3 (Fig 4E); similar patterns were observed in
the ileum and colon LP (Fig. S4A). Collectively, these gene expression and splicing patterns
suggest that clusters 4 and 5 represent pre-cDC1, while cluster 7 represents pre-cDC2 and clusters
3 and 8 represent pre-cDC3.

Three adjacent clusters (clusters 1, 2, and 6) did not express DEG specific to the mature
cDC subsets (Fig. 4D) and we hypothesized that they may be earlier, less-committed precursors.
To determine whether clusters 1, 2, and 6 showed evidence of commitment to any of the cDC
lineages, we used the top 50 DEGs from each of the committed precursor clusters 5 (putative pre-
cDC1), 7 (putative pre-cDC2), and 8 (putative pre-cDC3) as input for a PCA of all the HLA"¥
clusters. Of these total 150 DEGs between putative precursor clusters, 79 were also DEGs in the
mature cDC populations. Committed precursor clusters 4, 5, 7 and 8 split into 3 distinct areas in
PC1-2 (Fig. 4F). Using this approach, cluster 6 aligned clearly with pre-cDC2, while most of
cluster 3 aligned, as expected, with pre-cDC3 (3B) and there were a few cells in the pre-cDC1 area
(3A); one subset of cluster 2 (2A) aligned with pre-cDC1 and another subset of cluster 2 (2B)
aligned with pre-cDC3 (2B) (Fig. 4G and Fig. S4B)). In contrast, cluster 1 did not overlap clearly

with any of the pre-cDC groups (Fig. 4G).
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To investigate the identity of the cells in cluster 1, we compared their gene expression
profile with that of a recently published human bone marrow hematopoietic single-cell dataset®.
Cluster 1 showed greatest correlation with hematopoietic stem cells (HSC), multipotent progenitors
(MPP), lympho-myeloid precursors and early promyelocytes, together with some overlap with
mature BM ¢DC. However they showed no overlap with late promyelocytes, myelocytes and
classical monocytes (Fig. S4C). Thus cluster 1 appears to represent early lympho-myeloid
progenitors with a potential bias towards the cDC lineage.

To further assess the relationship between mature cDC and their putative precursors we
aligned clusters along the three putative cDC1, ¢cDC2 and ¢cDC3 developmental trajectories (Fig.
4H), and examined the expression of DC precursor and cDC subset associated genes across these
trajectories (Fig. 4I). Compared with other clusters, cluster 1 expressed the highest levels of KIT,
similar levels of ITGAX and the lowest levels of MHCII gene (Fig. 4I), consistent with the
suggestion that cells within this cluster represent early progenitors?>-%2*# In agreement with the
proposed trajectories, pre-cDCI clusters progressively increased their expression of cDC1 related
genes BATF3, IRFS, CLEC9A4 and CADM!1 as they transitioned through clusters 2A, 3A, 4 and 5
to mature cDC1. XCR]I expression increased during the final transition from cluster 5 to mature
cDC1 (Fig. 4]), consistent with recent studies in mice suggesting this is a late pre-cDC1 marker°.
Expression of these genes remained low along the putative ¢cDC2 and cDC3 trajectories.
Conversely, expression of the cDC2 associated genes IRF4 and LTB remained high across the
cDC2 trajectory but was down-regulated along the cDC1 and cDC3 trajectories (Fig. 41). CD207
expression selectively increased along the cDC2 trajectory while CDIC expression increased along

both ¢cDC2 and ¢DC3 trajectories and decreased along the cDC1 trajectory (Fig. 41). Finally, the
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putative pre-cDC3 clusters displayed a progressive increase in expression of the ¢cDC3 associated
genes CD163, CD14, S10049, C10A and MERTK as they transitioned through clusters 2B, 3B and

8 to mature cDC3-like cells (Fig 41).

Diversity of intestinal LP monocytes and macrophages

Studies of tissue macrophages in both humans and mice have highlighted significant niche-specific
phenotypic, functional and ontogenic diversity!!!%?7-352 Whether the human ileum and colon LP
contains transcriptionally similar or distinct populations of intestinal macrophages remains unclear.
Further, while most murine intestinal LP macrophages derive from monocytes along a ‘waterfall’

of phenotypic intermediates®®>°

, whether a similar monocyte ‘waterfall’ exists in the human
intestine LP and the characteristics of such intermediates remains to be determined. To address
these questions, ileal and colonic LP clusters that were identified as monocytes and macrophages
(Fig. 1E and F) were analysed in isolation. tSpace principal components were used for trajectory-
based clustering and UMAP embedding, resulting in the identification of 11 clusters (M1-M11)
(Fig. SA). DEG analysis of these trajectory-based clusters demonstrated that cluster M1 expressed
high levels of the monocyte-associated genes, S10049, FCNI and VCAN*>*’; clusters M2 and M3
expressed intermediate levels of S10049, VCAN, and ITGAX and low levels of C/1QC; clusters M4-
6 lacked expression of S10049 and FCNI and expressed intermediate levels of /TGAX and CI1QC;
and clusters M7 and M8 expressed high levels of CD209 and CIQC, consistent with mature
macrophages®’® (Fig. 5B and C). The minor clusters M9 and M10 shared some features with

mature macrophages, including high expression of MHCII and CIQ genes, but expressed low

levels of CD209 and CD163 (Fig. 5B and C). Finally, the smallest cluster, M11, expressed high
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levels of cell-cycle associated genes including MKI167 and KIAA0101 (Fig. 5B), indicating that
these represented a population of proliferating cells. Given the transcriptional identification of
cluster M1 as monocytes, we used M1 as the starting point for pseudo-time analysis. Consistent
with the transcriptional data (Fig. SB and C), pseudo-time analysis suggested that clusters M2-M3
represented early, and clusters M4-M6, late transitional states, moving towards clusters M7-M10
(Fig. SD). Using PROGENYy analysis, the mature macrophage clusters M7-M9 showed evidence
of responding to TGFp (Fig. S5A), consistent with previous work in mice. They also showed
activation of the p53 pathway involved in multiple aspects of cell function, including cell-cycle
arrest (Fig. S5A). Thus, we defined M2-M3 clusters and M4-M6 clusters as early and late
intermediates, respectively, and clusters M7-M10 as mature macrophages (Fig. 5B). Analysis of
single-cell data from paired ileal and colonic LP samples from four CRC patients showed that all
clusters were present in both sites (Fig. SE). There was also a trend towards increased proportions
of intermediate clusters in the colon compared with the ileum LP, and increased proportions of
more mature M7 and M8 macrophages in the ileal compared to the colonic LP (Fig. SE).
Analysis of clusters in both the ileal and colonic LP demonstrated that the early intermediate
cluster M3, the late intermediate cluster M5 and the mature macrophage cluster M7 shared features
of activation, including expression of the proinflammatory genes IL/B, CXCL8, CCL3, CCL4, and
NFKBIA (Fig. 5F). Consistent with this, PROGENYy analysis indicated enhanced TNFa and NF«xB
signalling (Fig. S5A), while DoRothEA analysis suggested enhanced canonical NFxB activation
(NFKB1, RELA, REL, SP1 signalling), in particular in cluster M3, but extending to clusters M5
and M7, compared with other clusters (Fig. SSB). These clusters also showed evidence of enhanced

EGFR and MAPK signalling (Fig. SSA), with M5 and M7 additionally showing activity of ELKI,
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a stimulus response transcription factor>’, and activating transcription factor (ATF) 2 and ATF4%
(Fig. S5B). In contrast, clusters M2, M4 and M6 shared few common DEG distinct from clusters
M3, M5 and M7, but these clusters did show evidence of enhanced WNT and JAK-STAT
signalling (Fig. S5A), and activity of the transcriptional repressor RE1-Silencing Transcription
factor (REST), and the MHCII promoter-associated regulatory factor X5 (RFXS5) (Fig. SSB).
Collectively, these results suggest that monocytes undergo a functional dichotomy in the intestine
as they mature into tissue resident macrophages.

To gain further insights into the identity of the mature macrophage clusters M7-M10 we
isolated these subsets and performed DEG analysis between them (Fig. 5G, Table S4). The major
mature macrophage cluster M7 expressed high levels of proinflammatory genes (Fig. 5F and G,
Table S4), and genes associated with inhibition of NF-kB and PRR signaling including NR4A2°%!,
EGRI1%, and KLF2/KLF4% (Fig. 5G). Consistent with their inflammatory profile, GO analysis
demonstrated that M7 macrophages were enriched in several inflammatory pathways compared
with other mature macrophage clusters, including ‘cellular response to molecule of bacterial
origin’, ‘cellular response to cytokine stimulus’ and ‘regulation of inflammatory response’ (Fig.
S5C). Amongst the mature macrophage clusters, M7 also expressed the highest levels of LYVE],
SIGLECI (CD169), FOLR2, and MAF (Fig. S5D), markers previously associated with perivascular
macrophages®*%. While these genes have been associated with self-renewing embryonically
derived MHCII'® macrophages in other tissues®®, the M7 cluster expressed high levels of MHCII,
but not high levels of ADAMDECI or C2 (Fig. 5C) that have previously been associated with
intestinal self-renewing macrophages®’. Furthermore, while high levels of LYVE1 have been

associated with intestinal submucosal macrophages'*%, the submucosa was removed during our
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LP isolation protocol, and cluster M7 did not express the submucosal macrophage associated genes
COLECI12" or MARCO®® (Fig. S5D). Thus, cluster M7 likely represents the recently identified
FOLR?2 expressing macrophages present in the middle and base of intestinal crypts®®.

The second major macrophage cluster M8, and the minor macrophage cluster M10, both
expressed high levels of the metallothionein genes MT1G, MT1X, and MT2A (Fig. 5G), which have
been implicated in metal sequestration in GM-CSF-dependent anti-microbial responses®. These
clusters also expressed high levels of LIPA, PLD3, LGALS3 and CD68 (Fig. 5G and Fig. SSD), all
of which have been associated with lipid metabolism and phagocytosis, and are signatures of lipid-
associated macrophages’®’!. Cluster M10 additionally expressed high levels of APOE, PLA2G?7,
and FUCAI (Fig. 5G), involved in lipid transport/metabolism, as well F7L involved in iron
transport (Fig. 5G), both of which represent important functions of adipose tissue macrophages
(ATMs)’>73, Consistent with this, cluster M10 showed evidence of TRAIL pathway activity (Fig.
S5A), that has been associated with ATMs’*, as well as activity of NR5A1, a transcription factor
involved in steroidogenesis and lipid metabolism’® (Fig. S5B). Both clusters M8 and M10 were
enriched in GO terms associated with responses to metal ions and ‘chylomicron remnant
clearance’. Thus, macrophage clusters M8 and M10 showed transcriptional signatures indicative
of lipid signaling, and cluster M10 in particular shared a transcriptional profile previously
associated with ATMs.

Cells within the minor macrophage cluster M9 expressed high levels of the anti-
inflammatory genes ATOX1 and ILIRN, as well IL22RA2, the gene encoding IL22 binding protein
(Fig. 5G). They also expressed high levels of the metalloproteases MMP9 and MMP12 and the

pro-angiogenic genes ENPP2 and PTGDS, (Fig. 5G), all of which have been implicated in vascular
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homeostasis, and they showed the highest vascular endothelial growth factor (VEGF) pathway
activity (Fig SS5A), collectively indicating potential interactions with endothelium. M9 also
expressed the highest levels of CD4, C2, and ADAMDEC] (Fig. S5D), genes associated with self-
renewing macrophages in the mouse intestine®” and of /L4/1 (Fig. S5D), recently identified as a marker
of LP macrophages located at the top of colonic crypts and small intestinal villi®®.

To determine whether the transcriptional profile of macrophage clusters M7-M10 differed
between intestinal sites, we performed DEG analysis between the ileum and colon for each of these
subsets. The major macrophage clusters M7 and M8 showed many DEG between the ileum and
colon, while M10 and, even more so, M9, showed fewer differences (Fig. SH, Table S5). GO
analysis demonstrated that the M7 cluster within the ileum was enriched in genes associated with
‘antigen processing and presentation of exogenous peptide antigen’, ‘positive regulation of
immune response’, ‘regulation of tumor necrosis factor production’, ‘positive regulation of reactive
oxygen species metabolic process’, and ‘interferon-gamma-mediated signaling pathway’ compared
with the colonic M7 cluster, and these pathways were similarly enriched in the ileal M8 compared
to colonic M8 cluster (Fig. SSE). In contrast, the M7 cluster within the colon was enriched for
genes associated with ‘receptor-mediated endocytosis’, ‘protein targeting to the ER’, ‘response to
unfolded protein’, ‘regulation of cellular response to stress’, and ‘Fc-gamma receptor signaling
pathway involved in phagocytosis’ and these pathways were also enriched in the colonic M8
compared with ileal M8 cluster (Fig. SSE). Collectively, these data suggest that the transcriptional
profiles and functions of mature LP macrophages are influenced by the intestinal site in which they

reside in a highly subset-specific manner.
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Flow cytometry-based identification of intestinal monocytes, intermediates and mature
macrophage subsets.

To identify surface antigens that may help identify the stages of intestinal monocyte development
by flow cytometry, LEGENDScreen™ was used to screen for surface marker expression on colonic
CD14"CDIc!® MNP (Fig. S6A and B). CDI11c, CD11a, CD206, and CD55 showed heterogenous
expression levels on CD14"CD1c' cells (Fig. S6B) and we thus used antibodies recognising these
surface markers, together with CD14 and CDlc, in CITE-seq analysis of MNP from three colonic
LP (Fig. 6A) and one ileal LP (Fig. S6C). CD55 was expressed at high levels by the monocyte
cluster M1, at intermediate levels by the early intermediate clusters M2 and M3, but not by more
mature clusters (Fig. 6A). CD11a was highly expressed by M1, M2 and M3 clusters, and at
intermediate levels by the late intermediate clusters M4 and M5, but not by other clusters (Fig.
6A). CD206 was expressed by late intermediate clusters and by mature clusters M7 and M8, but
not by the small M9 and M10 clusters. CD11c was expressed at high levels by cluster M1, all
intermediate clusters and cluster M9, while mature M7 and M8 clusters showed heterogenous
levels of expression and M10 little expression (Fig. 6A). CD14 was expressed at highest levels by
cluster M1 and the early intermediate clusters M2 and M3 (Fig. 6A), while CDIc was poorly
expressed by monocytes and macrophages, but a proportion of each of the intermediate clusters
(M2-M6) expressed some CDIc (Fig. 6A). This analysis further suggested that the mature
macrophage clusters could be broadly distinguished from monocytes and intermediates by their
lack of expression of CD55 and CD11a and subsequently distinguished from one another based on

their expression of CD14, CD206 and CD11c, with cluster M7 being CD14"CD206", cluster M8
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CD14°CD206™, cluster M9 CD14°CD206 CD11c" and cluster M10 CD14°CD206"CD11c” (Fig.
6A). The smallest M11 cluster contained too few cells for accurate CITE-seq analysis.

Based on these results and the transcriptional analysis depicted in Fig. SC, we designed an
antibody panel for putative identification of M1 and early intermediates, late intermediates, and
mature macrophages by flow cytometry (Fig. 6B). Gating on mature macrophages, we identified
three populations based on differential expression of CD14 and CD206 (Fig. 6C). These included
CD14MCD206"M cells, which based on our CITE-seq analysis are likely enriched in M7
macrophages, while the CD14°CD206™ cells are likely enriched in M8 macrophages, and the
minor population of CD14°CD206" cells is likely enriched in M9-M10 macrophages (Fig. 6C).
To assess whether the proportions of these populations differed between the ileum and colon LP,
we performed flow cytometry analysis on CD1¢'CD14"MNP from 10 matched ileal and colonic
resection samples (Fig. 6D). The proportion of intermediate cells among total mono/mac appeared
higher in the colon compared with the ileal LP (Fig. 6D) and the colonic LP contained a higher
proportion of CD14" CD206" macrophages and lower proportion of CD14'°CD206'° macrophages
compared within the ileal LP (Fig. 6D and E). To assess whether the proportions of these
populations changed during inflammation, we performed similar analysis of colonic biopsies from
healthy, CD and ulcerative colitis patients (Fig. 6F). This revealed a clear correlation between the
presence of inflammation and increased proportions of early and late intermediates and decreased
proportions of both mature CD14"CD206" and CD14'°CD206'° macrophage populations (Fig. 6F).
Thus, multiple stages of monocyte-macrophage differentiation can be identified in the human
intestine by flow cytometry, and these differ between the between the ileum and colon as well as

in the setting of IBD.
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Discussion

MNPs play critical roles in tolerance, immunity and inflammation, but MNP are functionally
heterogeneous and their subsets acquire distinct functions depending on the niche in which they
reside. Characterizing MNP diversity in distinct human tissues is thus essential for our
understanding of their various roles in tissue homeostasis and disease. Here, we used scRNA-seq,
CITE-seq and flow cytometry analysis to characterize MNP diversity within the human intestinal
mucosa, the largest barrier surface of the body. We provide evidence that the human ileum and
colon contain numerous mature, transcriptionally distinct MNP subsets, as well as putative lineage-
specific precursors. We further show that the proportion and transcriptional profile of MNP subsets
changes along the length of the intestine and in the setting of intestinal inflammation. Our results
provide an important roadmap of the human intestinal MNP compartment and a framework for
future studies aimed at modulating this compartment therapeutically.

76,77

Consistent with previous findings’®"’, pDC and non-classical monocytes represented only a minor

fraction of cells within our intestinal LP MNP scRNA-seq datasets. As non-classical monocytes

patrol the vasculature’®”

, it may be that these represent contamination from the bloodstream,
although there is also evidence that murine non-classical monocytes may migrate into tissues in
response to tissue damage’®, potentially including into the gut wall®’. Consistent with previous
immunohistochemical and flow cytometric analysis®!, cDC1 were clearly identified as a distinct

population in our LP MNP scRNA-seq datasets, but high-resolution clustering and a mixture of

supervised and unsupervised approaches were required to distinguish the remaining MNP subsets
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from one another. This led to the identification of monocytes, monocyte-macrophage
intermediates, mature macrophages and cDC2 subsets. In addition, there was a population of MNP
that expressed both cDC2 and monocyte-associated genes, that were transcriptionally similar to the
recently described population of ¢cDC3 identified in several human tissues’**2%3°, Compared with
cDC2 and c¢DCl, these cDC3-like cells expressed a broad range of TFs associated with cell
activation, together with a unique range of cytokines and chemokines, suggesting they play distinct

roles in intestinal immune homeostasis.

Interestingly, our trajectory analysis suggested a degree of transcriptional convergence between
c¢DC2 and cDC3-like cells within the intestinal LP, and we were unable to distinguish some of
these cells at the transcriptional level. Consistent with this, we were also unsuccessful in identifying
surface markers that could distinguish ¢cDC2 from cDC3-like cells definitively. However, our
CITE-seq analysis demonstrated that CD207 'CD11aCDI1c" cells were highly enriched in ¢DC2,
while CD207'CD11a"CDlc" cells were enriched in cDC3-like cells. Using these markers, we found
that cDC3-like cells were present in higher proportions in the colon compared with the ileal LP,
while cDC2 showed the opposite pattern. Furthermore, and consistent with previous studies in
mice®> ¥, related cDC subsets displayed distinct transcriptional profiles and evidence of different

signalling pathways when originating from the ileal or colonic LP. Thus, local environmental

signals along the length of the human intestine may fine-tune cDC function.

Lineage-restricted ¢cDC precursors have been identified in human blood, bone marrow and

25,29,44,45,85,

lymphoid tissues % but it has been unclear whether such precursors exist in human non-
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lymphoid peripheral tissues, such as the intestine. Here, our combined bioinformatic analyses
provide evidence that both the human ileal and colonic LP contain ¢cDC precursors that appear
committed to either the cDC1, cDC2 or ¢cDC3 lineage. Thus, we found that each mature cDC subset
was directly connected in trajectory space to a distinct population of proliferating HLA' Y ITGAX"
cells. Secondly, these distinct proliferating populations displayed a unidirectional velocity-based
developmental trajectory into either mature cDC1, cDC2 or cDC3-like cells. Finally, these putative
lineage-restricted precursors displayed a progressive acquisition or loss of ¢cDC lineage-associated
marker genes and TFs as they transitioned towards each mature ¢cDC subset. As expected, the
number of these putative lineage-restricted cDC precursors was low and our ability to capture such
cells was only made possible by our sorting strategy and use of surgical resections as opposed to
biopsies. Our evidence of lineage-restricted cDC precursors in the human intestinal LP is consistent
with recent studies indicating the presence of cDC1 and c¢cDC2 restricted ¢cDC precursors in the
murine small intestine*, and that human ¢cDC3 derive from distinct precursors to those of ¢cDC1

and ¢cDC2%63,

In addition to putative lineage-restricted cDC precursors, we also identified a minor population of
proliferating ITGAX expressing HLA™ cells that did not show transcriptional bias towards any
particular cDC lineage. The transcriptional profile of these cells instead correlated best with early
bone marrow precursors, indicating that these cells may lie upstream of lineage-committed cDC
precursors. While such findings are consistent with the observation that haematopoietic stem cells
and/or downstream myeloid precursors are present in the human intestine®’, the lineage potential

and role these cells play in maintaining the intestinal MNP compartment awaits further study.
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Prior scRNA-seq analyses of human intestinal macrophages have focused primarily on the colon
and demonstrated macrophage diversity within both the mucosa and underlying mucosa
muscularis!®®. Here, we confirm and extend these findings by demonstrating that, although the
ileal and colonic LP contain similar mature macrophage populations, these are present in different
proportions in the two tissues. Furthermore, similar to recent findings in mice®®, we found that the
transcriptional profile of the two major mature LP macrophage subsets, M7 and M8, differed
between the ileal and colonic LP. Specifically, both populations in the ileum were enriched in
pathways associated with immune activation and antigen presentation, while those in the colon
were enriched in genes associated with response to unfolded protein and stress. Thus, similar to
our observations with cDC subsets, the function of analogous macrophage subsets appears to be

fine-tuned depending on their location along the length of the intestine.

Our trajectory-based bioinformatics analysis suggested that both major macrophage subsets, M7
and M8, derived from infiltrating monocytes, via transitional intermediates, a process reminiscent
of the ‘monocyte waterfall’ described in mouse intestine>>>*°%%  Interestingly, a transcriptional
dichotomy was observed within these transitional intermediates, whereby some clusters of early
and late intermediates expressed high levels of pro-inflammatory cytokine and chemokine genes,
as well as inferred activity of NFkB/TNFa/EGFR signalling pathways and NFxB/ATF/AP-1
transcription factors; these were characteristics also of mature M7 macrophages. In contrast, other
early and late intermediate clusters showed inferred activity of JAK-STAT and WNT pathways,

and of the transcriptional repressor REST, which were also characteristics of mature MS
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macrophages. Collectively, these results suggest that monocytes transition along two
transcriptionally distinct trajectories after their entry into the intestinal LP, resulting in the
generation of the two major mature M7 and M8 macrophage subsets. Given the distinct location of
mature macrophage subsets within the LP® we speculate that these trajectories are driven by

distinct signals transitioning cells receive within their local environmental niche.

We established a flow cytometry panel capable of identifying intestinal seeding monocytes, early
and late intermediates as well as mature LP macrophage populations and found that the colon LP
was enriched in late intermediate cells and CD206MCD14™ macrophages (M7 cluster), while the
ileum LP was enriched in CD206°CD14" macrophages (M8 cluster). Thus, in addition to
exhibiting site-specific transcriptional profiles, the proportions of mature macrophages and
monocyte intermediates differs between the ileum and colon LP. While the mechanisms driving
these site-specific differences remain unclear, we speculate that the presence of high proportions
of intermediate monocytes in the colon LP may reflect higher turnover of this compartment under
steady-state conditions. Our flow cytometry analysis also confirmed and extended prior
studies’®**"!, by showing that the proportions of both early and late intermediate cells increased in
active IBD colon, while the proportions of both major mature macrophage populations decreased.
Furthermore, these alterations correlated with disease severity. Whether intermediate cells
accumulating in IBD are transcriptionally similar to those present in the healthy intestine, or
acquire a distinct transcriptional profile as a result of local inflammatory cues, as recently suggested

in mice’®, requires further study.
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In summary, our single-cell data highlight marked heterogeneity in the MNP compartment of the
human intestinal LP, varying along the length of the human intestine and in the setting of disease.
Additionally, by identifying novel transcriptomic and phenotypic markers, our work provides a
road map for the study of MNP subsets, and their contribution to intestinal immune responses in

health and disease.
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Materials and Methods

Study Design

The main objectives of this study were to determine (a) MNP heterogeneity within the human
intestinal lamina propria, (b) whether precursors to mature MNP subsets were present in the
intestine and, (c) whether the proportions and transcriptional profiles of mature MNP subsets
differed between human ileum and colon. Our hypothesis was that multi-modal single-cell methods
(scRNA-seq, CITE-seq, flow cytometry) combined with bioinformatic analysis would allow for
the unambiguous identification of MNP subsets within the intestine. Patient material included (a)
surgical material from colorectal cancer patients (>10 cm from tumour site) and (b) biopsies from
treatment-naive patients undergoing endoscopy for suspected IBD. Patients below 18 and above
85 years of age were excluded from the study. Surgical samples were only used when it was
possible to readily dissect mucosa from submucosa. Each experiment was replicated in at least
three patients unless otherwise specified. No sampling replication was performed within an

individual patient due to limited tissue availability.

Methods

HUMAN SUBJECTS

Resection samples were obtained from patients undergoing surgery for colorectal cancer after
informed consent with ethical approval from the Videnskabsetiske Komité for Region
Hovedstaden, Denmark (H-3-2013-118). Biopsy samples were obtained from adult patients

attending routine colonoscopy for initial IBD disease surveillance (both CD and UC) or for ongoing
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disease assessment (see Table S6 for anonymized patient information) at the Western General
Hospital, Edinburgh, UK, after informed consent under existing approvals (REC:19/ES/0087). All
patients were part of the Lothian IBD registry”> and a diagnosis of IBD was made using the
Lennard-Jones criteria®>. Endoscopic assessment of disease severity at the biopsy site was made at
the time of endoscopy and biopsy sites were classified as quiescent, mild, moderate or severe.

Three to five biopsies were taken per site and pooled for analysis.

METHOD DETAILS

Tissue processing

Surgical samples were processed as described previously?!. Briefly, resection samples were taken
at least 10 cm distant from the tumor site. Muscularis externa was removed using curved surgical
scissors and the remaining tissue was incubated in RPMI-5 (RPMI/5% FCS/1% penicillin and
streptomycin) containing 4 mM DTT for 2 x 10 min at 37°C on a shaking incubator (370 rpm) to
remove mucus. Macroscopically visible submucosa (SM) was trimmed away using scissors and
mucosa separated from SM under a stereo microscope using forceps. Epithelial cells were removed
by incubating the mucosa in Ca2" and Mg2" - free HBSS containing 1% penicillin and streptomycin
and 5 mM EDTA at 37°C for 10 min in a shaking incubator, and this procedure repeated four times.
Isolated lymphoid follicles were dissected from the mucosa using a scalpel under a stereo
microscope with a transmitted light source, and remaining GALT-free LP was cut into 2-4 mm?
pieces in preparation for digestion. LP was incubated in RPMI-5 containing DNase (30 pg/ml) and

collagenase D (5 mg/ml or Liberase TM (2.5 mg/ml) for 45 min at 37°C under gentle shaking (370
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rpm). The resulting LP cell suspension was passed through a 100 um filter and washed twice in

fresh RPMI for downstream analysis. Biopsy samples were processed using the same protocol.

Flow cytometry, MNP enrichment and cell sorting

Cell suspensions were stained with indicated antibodies in Brilliant stain buffer (BD Biosciences)
containing 4% normal mouse serum, according to standard procedures, with dead cells identified
by 7-AAD staining and excluded from analysis. Samples were analyzed on an LSR Fortessa 2 (BD
Biosciences) using Flowjo software (Treestar). The Legendscreen assay (Biolegend) was
performed as per the manufacturer’s instructions. For scRNA-seq experiments, LP cell suspensions
were enriched for HLA-DR" cells using anti-HLA-DR microbeads (Miltenyi Biotec) and LS
MACS columns according to manufacturer’s instructions. Resulting cells were stained with the
indicated antibodies (Table S7) and 7-AAD was added before sorting to exclude dead cells. Cells
were sorted on a FACSMelody (BD) into MACS buffer and re-suspended in PBS containing BSA
(0.4%) for subsequent 10x analysis. For some samples, cells were first stained with barcode-

labelled antibodies prior to sorting for CITE-seq analysis (Table S7).

10x Chromium and sequencing

Sorted single cells were subjected to droplet-based massively parallel scRNA-seq using the
Chromium Single Cell 3' Reagent Kit v3.1 with Feature Barcoding technology for Cell Surface
Protein (10x Genomics) following the manufacturer’s instructions. In short, the 10x Chromium
Controller generated nanoliter-scale Gel Bead-In Emulsions (GEMs) droplets, where each cell was

labeled with a specific barcode and each transcript labeled with a unique molecular identifier
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(UMI). After reverse transcription, GEMs were broken down and the barcoded cDNA purified with
Dynabeads MyOne Silane beads (Thermofisher). cDNA was amplified by PCR using the supplied
10x genomics primers and protocols (12 amplification cycles). Products were size separated with
SPRIselect beads (Beckman Coulter) to obtain larger purified transcribed mRNA products for gene
expression libraries as well as smaller cell surface protein products for CITE-seq library generation.
To prepare gene expression libraries for sequencing, purified large size cDNA products were
processed and ligated to an index for sample pooling before the sequencing process following the
manufacturer’s instructions. For CITE-seq analysis, 5 ul of the purified smaller cDNA product was
used as template for antibody-derived tag (ADT) sequencing and ADT sequencing libraries were
constructed and indexed following the manufacturer’s instructions. Quality and quantity of the final
libraries were measured using the Agilent 2100 Bioanalyzer equipped with High Sensitivity DNA
chip (Agilent). Illumina sequencing was carried out at the Genomics Core Unit, Center of
Excellence for Fluorescent Bioanalytics (University of Regensburg, Germany) or at the SNP&SEQ
Technology Platform, Sweden. Libraries were sequenced using HiSeq, NextSeq and NovaSeq
systems (300 cycles), aiming for a minimum of 30,000 read pairs/cell for sc-RNA and 3000 read

pairs/cell for ADTs.

Bioinformatic analysis
Data processing
Sequencing data was pre-processed and aligned with CellRanger (version 2.2.0 for the first patient

samples and version 3.1.0 for all other samples)®**>. Sequencing data from the samples stained
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with TotalSeq antibodies was processed with CITE-seq count®®

. Each sample was read into a Seurat
(version 3.1.5)°7 object in R (versions 3.5.1/4.0.1)°® and processed by removing cells with
exceptionally low or high UMI, gene counts (< 500-1000 and > 3000-6000 genes/cell) and
mitochondrial gene content (>10%) according to current best practice’” and likely representing
debris and doublets. To normalize CITE-seq data by denoising and scaling protein levels against
background (DSB-normalization), the debris removed from each sample was used as empty droplet
information (free floating CITE-seq antibody), while isotype controls were used to normalize for
non-specific binding'®. The normalized protein data were incorporated with the RNA data for the
individual samples by adding to it to the corresponding Seurat objects.

After log-normalization of RNA levels for individual samples, cell cycle gene modules
were calculated using the Seurat CellCycleScoring function and a gene module representing cell
cycle genes from the tool ccRemover by summing the raw counts of these genes/cell divided by
the total number of reads per cell'®!. Then the top 3000 most variable genes were identified per
sample with the selection method vst.

After initial data processing, all the samples were integrated with Seurat anchor integration and
gene expression was scaled while regressing out the effect of cell cycle, UMI counts, and
mitochondrial gene content based on their scoring on the individual samples. The merged data were
dimensionality reduced with PCA and the 15 first PCs were chosen for downstream analysis. A
shared nearest neighbor graph was constructed and used to cluster the data with Louvain clustering.
The PCs were also used to dimensionally reduce the data further with UMAP for visualization

purposes.
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Differential gene expression and gene ontology
Differential gene expression was calculated with Seurat FindMarkers for comparisons between
specific groups or FindAllMarkers for DEGs for all clusters, both using the standard non-
parametric Wilcoxon rank sum test and base=exp(1).

Gene ontology analysis was performed based DEG lists of above and run on EnrichR’s web
interface. The output tables based on GO Biological Processes 2021 were downloaded and plotted

in R using the package ggradar.

Pseudo-bulk analysis and comparison with populations in public databases

Pseudo-bulk analysis for heatmaps and PCA was performed with the Seurat AverageExpression
function. Module scores were calculated with Seurat’s AddModuleScore function on indicated
selected gene sets or gene sets from literature. DoRothEA was run using confidence levels A+B
and referring to the human DoRothEA transcription factor interaction database®. Progeny was run
using organism = human and top = 500 genes*.

[*. was downloaded and subsetted on the

The processed Seurat object from Triana et a
clusters labelled "HSCs & MPPs", "Lymphomyeloid prog", "Early promyelocytes", "Conventional
dendritic cell 1", "Conventional dendritic cell 2", "Late promyelocytes", "Myelocytes", "Classical

Monocytes". The gene expression data was averaged, and Pearson correlations calculated based on

variable genes from our data also present in the bone marrow data set.

Trajectory inference
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Trajectory inference was performed with tSPACE on PC spaces of indicated populations®®. The
outputs were dimensionality reduced with UMAP!*>1% from tPCs 1-15 (for both ¢DCs and
macrophages), to 2 and 3 dimensional tUMAPs with distance metric set to Pearson. 3D tUMAP
for the cDC trajectory was angled and embedded into 2D using the Dufy package!'®*. Clustering
was performed with Louvain clustering for Seurat on the tPCs as input. Pseudotime (arbitrary time
scale unit) was calculated by taking all trajectories from the tSPACE output from M1 and averaging
these per cell. Splicing patterns were first determined on individual samples with the advanced run

setting for velocyto*® with a repeated annotation file!%

. Genes were filtered by 0.2 for spliced data
and 0.05 for unspliced data. RNA velocity estimates were then calculated for T=1 and only
included genes with splicing information also present in the variable genes and only on cells of

interest (e.g. precursors). The information was embedded on top of 2D tUMAP using n=400,

scale=sqrt, grid.n=50 and arrow.scale=2.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical analysis of flow cytometry data was performed using Prism software (GraphPad).
Statistical analysis of sequencing data was performed in R. Statistical tests used for experimental

data are outlined in the figure legends.

DATA AND CODE AVAILABILITY
scRNA-seq count data is available through CczZ

CELLxGENE: https://cellxgene.cziscience.com/e/bcdec5fa-a7fa-4806-92bc-0cd02140242f.cxg/ .

Code is available: https://github.com/LineWulff/FentonWulff LP_ MNP
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Figures

Fig. 1. Using high-resolution clustering to disentangle MNP subsets of the human ileal and
colonic LP

(A) Experimental pipeline for the generation of single-cell transcriptional data of intestinal LP
MNP. (B) UMAP clustering of pooled ileal (n=4) and colonic LP (n=6) MNPs (28,758 cells),
showing normalized gene expression of signature genes for pDC1 (IL3RA), cDC1 (CLEC9A4) and
non-classical monocytes (FCGR3A) signature gene. (C) UMAP of CDIC and CDI4 gene
expression by intestinal LP MNP. Dashed line encompasses MNP which are not identified as pDC,
cDCI1, or non-classical monocytes. (D) Flow cytometry gating strategy showing CD1c and CD14
expression on colonic LP CD123°CD123" MNP, representative of 10 non-IBD resection patients.
(E) Curated pseudo-bulk heatmap (using averaged gene expression per cluster) of clusters within
the dashed line of the UMAP in (C), showing expression of known monocyte, macrophage and
cDC2/3 signature genes for clusters 1-39. ISG= interferon-stimulated genes, CCG= cell cycle
genes. (F) Pseudo-bulk principal component analysis of clusters from E using signature gene lists
from blood-derived cDC2, classical monocytes, and in-vitro generated monocyte-derived

macrophages'% .

Fig. 2. Transcriptional characterization of cDC subsets from ileal and colonic LP. (A)
Flattened 3D tspace UMAP (tUMAP) plot of ileal and colonic LP cDC clusters grouped into
indicated populations based on high-definition clustering and analysis in Fig. S2. (B) Pseudo-bulk

heatmap of top 25 DEG expressed by mature cDC1, cDC2-like, cDC3-like and ambiguous ¢cDC
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subsets of ileal (red) and colonic (blue) LP. (C and D) Manually curated pseudo-bulk heatmaps of
differentially expressed (C) transcription factors and (D) cytokines and chemokines, between
indicated cDC subsets. (E) Volcano plots of DEGs of indicated cDC subsets between pooled ileum
and colon LP samples. Dashed lines indicate significance cut-offs. Adjusted P-values < 0.05 and
lavg. logFC| > 0.2. (F) Venn diagrams depicting number of genes upregulated in indicated cDC
subset in the ileum (upper) and colon (lower) LP, as well as genes commonly upregulated within
these subsets. (G) DoRothEA based inferred transcription factor activity and (H) PROGENy based

inferred signaling pathway activity in indicated cDC subsets and tissue.

Fig. 3. ¢cDC2- and cDC3-like cells are found in different proportions in the ileal and colonic
LP. (A) Violin plots of CD14 and CD1c¢ surface expression by colonic MNP subsets after denoising
and scaling to background (DSB)-normalization of CITE-seq. Results are pooled from three
colonic and one ileal LP samples. (B) CD207 and CD11a surface expression on CD1¢"CD14 MNP
from indicated tissues using flow cytometry. Results are representative of 10 ileal and colonic LP
samples. (C and D) Pooled colonic LP samples from three CRC resection patients showing (C)
CD207 and CD11a expression on colonic cDC2-like, cDC3-like and ambiguous ¢DC clusters using
DSB-normalized CITE-seq, and (D) Proportion of each cDC cluster within each of the 4 quadrants
(Q1-4) depicted in (C). (E and F) Proportion of CD207°CDI11a” (Q1), CD207°CDI11a" (Q2),
CD207'CD11a" (Q3) and CD207 CD11a* (Q4) cells amongst CD1¢*CD14” MNP. Samples from
(E) paired ileal and colonic LP from CRC resection patients (n=10), and (F) paired colonic biopsies
taken from areas of quiescent or active inflammation from CD patients (n=4) as assessed by flow

cytometry. Three to five biopsies were taken per site, and the inflammatory activity of each site
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was scored as quiescent or active by the endoscopist at time of removal. Statistical significance

was determined using 2-way ANOVA with Sidak’s multiple comparisons, *p<0.05, **p<0.01.

Fig. 4. Identification of cDC committed precursors in the human intestine. (A-C) tUMAP as
in Fig. 2A of ileum and colonic LP ¢DC clusters. (A) HLA-DR'®¥ ¢DC clusters (cluster 1-8)
overlaid onto cDC tUMAP, (B) proliferation score of indicated cell-cycle-associated genes and (C)
ITGAX expression levels overlaid onto cDC tUMAP. (D) Heat map of top 20 DEG (calculated
using p.adj. < 0.05) between cDC1, cDC2 and ¢cDC3-like cells, showing expression levels in HLA-
DR ¢DC clusters. (E) RNA velocities (arrows) of HLA-DR!Y ¢DC clusters 3-5 and 7-8
calculated with Velocyto package embedded on (A). (F) PCA plot of cell from clusters identified
by shared DEG (from D) as either pre-cDC1 (clusters 4 and 5), pre-cDC2 (cluster 7) or pre-cDC3
(cluster 8) and (G) location of clusters not identifiable in (D) (clusters 1-3 and 6) overlaid on the
PCA plot in (F). (H) Model of precursor cluster trajectories towards mature cDC subsets based on
tSPACE, velocity and transcriptional analysis. (I) Expression of indicated genes across proposed

cDCl1-, cDC2-, and cDC3- trajectories.

Fig. 5. Characterization of intestinal LP macrophage populations. (A) tSpace UMAP (tUMAP)
and Louvain clustering of ileal and colonic LP MNP identified as belonging to the monocyte-
macrophage lineage. (B) Pseudo-bulk heatmap of scaled gene expression of top 10 DEG (ordered
by avg. logFC) between M1-M11 clusters. (C) Violin plots of normalized gene expression of

indicated maturation-associated genes in M1-M11 clusters. (D) Pseudotime of cells calculated by
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averaging all tSpace trajectories starting from M1. (E) Proportions of indicated clusters in paired
ileal and colonic LP samples. (F) Pseudo-bulk heatmap of scaled gene expression of selected
proinflammatory genes for clusters M1-M10 in the ileal and colonic LP. (G) Pseudo-bulk heatmap
of scaled gene expression of top 13 DEG (ordered by avg. logFC) between mature macrophage
clusters M7-M10 in ileal and colonic LP. (H) Volcano plots demonstrating DEGs between ileal
and colonic LP in mature macrophage clusters M7-M10. Dashed lines indicating significance cut-
offs. Adjusted P-values < 0.05 and [avg. logFC| > 0.2. (I) Venn diagrams showing overlap of ileum-

and colon-specific DEGs for mature macrophage subsets M7, M8, and M10.

Fig. 6. Flow cytometry analysis of mono/mac subsets. (A) DSB-normalized CITE-seq
expression of indicated surface markers on pooled colonic LP macrophage clusters after exclusion
of the minor proliferating M11 cluster, as well as total cDC2/3 clusters as control. Data are
integrated from 3 independent colon samples. (B-E) Flow cytometry analysis of LP CD14"
mono/mac subsets obtained from digested CRC patient resection samples. (B) Colonic LP CD14"
MNP, showing gating strategy to identify putative mono/mac subsets, and surface expression of
CDI11a, HLA-DR and CDlc on each identified subset. CD14" MNP were pre-gated as viable CD3"
CDI19 CD38 CDI123" HLADR" CD14" singlets and data are representative of 10 patients. (C)
Surface expression of CD14 vs. CD206 on ileal and colonic LP CD147CD55°CD11a™!°" mature
macrophages, showing 10 patients concatenated together. (D) Proportion of each mono/mac subset
in paired ileal and colonic LP. Each symbol represents a paired ileal/colonic sample. Statistical
significance was determined using 2-way ANOVA with Sidak’s multiple comparisons, *p<0.05,

##p<(0.01, ***p<0.001 (E) Ratio of CD14"CD206" to CD14'°CD206'° mature macrophage subsets
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within the ileal and colonic LP. Each symbol represents a paired ileal or colonic sample. Statistical
significance was determined using Wilcoxon matched-pairs signed rank test, **p<0.01. (F)
Proportion of monocyte/macrophage subsets based on flow cytometry analysis of digested colonic
biopsies. Extent of IBD inflammation was scored at the time of biopsy by the clinician as quiescent,
mild, or moderate. Each symbol represents a CD (filled circle) or UC (open circle) sample.
Statistical significance was determined using 2-way ANOV A with Dunnett’s multiple comparisons

comparing each IBD set to healthy controls, *p<0.05, **p<0.01, ***p<0.001
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Figure S2. Transcriptional characterization of intestinal LP cDC subsets.

Figure S3. Identification of surface markers that help differentiate intestinal cDC2 and cDC3-like

cells.

Figure S4. Identification and trajectories of ileum and colon cDC precursor clusters.

Figure S5. Bioinformatic analysis of intestinal LP macrophage populations.

Figure S6. Surface expression of monocyte/macrophage markers

Table S1. Characteristics of anonymized resection patient samples used for single-cell RNA-seq.

Table S2. Complete list of DEG comparing clusters defined as ¢cDC1, ¢cDC2, and ¢DC3 for

combined ileal and colonic LP.

Table S3. Complete list of DEG comparing ileal and colonic LP subsets for cDC1, ¢cDC2 and

cDC3.

Table S4. Complete list of DEG comparing mature macrophage clusters M7-M10, with data

combined from ileal and colonic LP for each.

Table SS. Complete list of DEG comparing ileal and colonic LP mature macrophages for clusters

M7-M10.
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Table S6. Characteristics of anonymized biopsy patient samples used for flow cytometry analysis.

Table S7. List of antibodies used for flow cytometry, FACS, and CITEseq analysis of mononuclear

phagocyte subsets.
Supplementary Materials

Figure S1. Identification of intestinal LP cell types. (A and B) UMAP depicting scRNA-seq data
of enriched ileal and colonic LP HLA-DR" cells (42,506 cells) isolated using the pipeline depicted
in Fig. 1A. (A) Examples of signature gene expression used to identify contaminating T cells, B
cells, endothelia, mast cells, stromal cells, and glial cells and (B) HLA score based on indicated
HLA genes. (C) Relative abundance of high resolution MNP clusters in ileal and colonic LP

samples. Related to Figure 1.

Figure S2. Transcriptional characterization of intestinal LP ¢DC subsets. (A) Flattened 3D
tSPACE UMAP (tUMAP) of bioinformatically isolated and re-clustered cDC with high resolution
Louvain  clustering (52  clusters) and split into ileum and colon LP.
(B) Cell cycle profile (C) HLA score based on indicated HLA genes. (B and C) Dashed line
represents clusters enriched in cells in G2M/S phase and with low HLA score. (D) ¢cDCI1 score
based on cDCI1 signature genes (CLECY9A4, CADM1, XCRI, BATF3, and IRF8) by pseudo-bulk
cDC clusters (44 clusters) after removal of the proliferating and HLA®" clusters in B and C. Dashed
line indicating cDCI identity, threshold ¢DC1 score > 0.4 for cDCI1 identity. (E) Ranked
expression of cDC2 and ¢cDC3 scores by remaining cDC clusters (37 clusters) using signature genes

130

identified by Bourdeley et al”. Dashed lines indicating ¢cDC2, ¢cDC3 and ambiguous identities.
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Clusters were classified as cDC2 when cDC2 score > 0.4 & cDC3 score < 0.3 and as cDC3 when
cDC3 score > 0.4. (F) tUMAP plots colored by expression of indicated genes (upper panel)
associated with cDC maturation and migration migratory marker and (lower panel) interferon
inducible genes. (G and H) Selected biologically relevant terms from GO analysis with EnrichR
(Biological Processes 2021). Y-axis = sqrt(-log(adjusted P-value)). Dashed line indicates
significance threshold of adjusted P-value = 0.05. (G) Based on DEGs from each ¢DC subset

(supplementary table 2) (H) Based on DEGs Fig. 2E (supplementary table 4). Related to Figure 2.

Figure S3. Identification of surface markers that help differentiate intestinal cDC2 and
cDC3-like cells. (A) Pre-gating strategy to identify colonic-LP CD1¢'CDI14 ¢DC2, ambiguous
and cDC3-like cells. (B) CD207 and CD11a expression as assessed by DSB-normalized CITE-seq,
Q, quadrant and (C) relative proportions of cDC2-like, cDC3-like and ambiguous cDCs within the
four CD207 and CD11a CITE-seq quadrants (B and C) in indicated tissue from a single CRC

resection patient. Related to Figure 3.

Figure S4. Identification and trajectories of ileum and colon ¢cDC precursor clusters. (A) RNA
velocities (arrows) of HLA-DR!®Y ¢DC clusters 3-5 and 7-8 split into ileum and colon derived cDC
clusters and calculated with Velocyto package and embedded on Fig. 4A. (B) Location of indicated
clusters not identifiable using DEG for mature cDC split into ileum and colon (Fig. 4D) on a PCA
plot of clusters identified by shared DEG as either pre-cDC1, pre-cDC2 or pre-cDC3 (see Fig. 4F).

(C) Heat map depicting Pearson correlation of each intestinal putative pre-cDC cluster and CD14"
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monocytes with indicated progenitor populations from BM described in Triana et al. *°. Related to

Figure 4.

Figure S5. Bioinformatic analysis of intestinal LP macrophage populations. (A) PROGENy

and (B) DoRothEA analysis of indicated clusters from the ileum and colon LP. (C) Selected

biologically relevant terms from GO analysis with EnrichR (Biological Processes 2021). Y -axis

sqrt(-log(adjusted P-value)). Dashed line indicates significance threshold of adjusted P-value =
0.05. Data are based on DEGs from each mature macrophage subset (supplementary Table 6). (D)
Violin plots of indicated genes for colonic and ileal LP mature macrophage clusters. (E)
Significance levels of selected biologically relevant terms from GO analysis with EnrichR
(Biological Processes 2021). Y -axis = sqrt(-log(adjusted P-value)). Dark grey dashed line indicates
significance threshold of adjusted P-value = 0.05. Data are based on DEGs in Fig. SH and

supplementary Table 8). Related to Figure 5.

Figure S6. (A) Representative flow cytometry analysis showing pre-gating for CD14" MNP. (B)
Flow cytometry-based expression of indicated markers on CD14* MNP using Legendscreen. Grey
fill, FMO. Red line, specific antibody stain. (C) DSB-normalized CITE-seq expression of indicated
surface markers on ileal LP macrophage clusters after exclusion of the minor proliferating M11

cluster based on n=1. Related to Figure 6.
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cluster gene avg_hogkOle ungerggIC-BY-NC-ND 4.0 International license.
cDC1 CLECSA 1.77121966 0
cDC1 IDO1 1.56615761 0
cDC1 CPNE3 1.56209083 0
cDC1 Clorf54 1.50447344 0
cDC1 CADM1 1.3783539 0
cDC1 SNX3 1.26838501 0
cDC1 ID2 1.09695472 0
cDC1 DNASE1L3 1.03392837 0
cDC1 CCND1 0.94740221 0
cDC1 CPVL 0.90499795 0
cDC1 TACSTD2 0.80353558 0
cDC1 SHTN1 0.77907453 0
cDC1 WDFY4 0.74904387 0
cDC1 RAB7B 0.72511212 0
cDC1 PNOC 0.72215078 0
cDC1 HLA-DOB 0.71467434 0
cDC1 XCR1 0.69279714 0
cDC1 KIAAO226L 0.69091174 0
cDC1 ENPP1 0.65754419 0
cDC1 LGALS2 0.62632423 0
cDC1 CAMK2D 0.6257283 0
cDC1 ACTG1 0.61125237 0
cDC1 CLNK 0.59404656 0
cDC1 VCAM1 0.5820313 0
cDC1 TMEM14A 0.57964012 0
cDC1 ASB2 0.5492599 0
cDC1 HLA-B 0.50697587 0
cDC1 Clorf21 0.46030411 0
cDC1 EGLN3 0.40194192 0
cDC1 PLCD1 0.39756319 0
cDC1 FKBP1B 0.39516461 0
cDC1 VAC14 0.37910938 0
cDC1 SLC24A4 0.36508782 0
cDC1 AlM2 0.3648107 0
cDC1 DBN1 0.36318526 0
cDC1 GCSAM 0.36291279 0
cDC1 PLPP1 0.35189124 0
cDC1 CCDC126 0.34981822 0
cDC1 PTK2 0.32055745 0
cDC1 BTLA 0.30137383 0
cDC1 CLCN4 0.2977957 0
cDC1 TSPAN2 0.28215222 0
cDC1 SNX22 0.26229043 0
cDC1 GPR31 0.24675418 0
cDC1 PPY 0.24539174 0
cDC1 PAWR 0.24133892 0
cDC1 FMNL2 0.24044337 0
cDC1 FUCA1 0.54275503 1.38E-303
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cDC1 RPLP1 0.33zg896 Under 8ZZ3FMNIEND 4.0 International license.
cDC1 PLPP3 0.22601948 3.21E-292
cDC1 RP11-798K3.3 0.26052021 3.49E-291
cDC1 LGALS1 0.5863341 1.79E-287
cDC1 CKS2 0.80060922 6.17E-281
cDC1 GSTP1 0.47253761 2.08E-280
cDC1 MYL6 0.40737482 3.07E-280
cDC1 MZT2A 0.65429858 2.71E-279
cDC1 FNBP1 0.57733157 1.98E-274
cDC1 PPT1 0.62104036 8.34E-271
cDC1 MIR4435-2HG 0.57962466 9.95E-269
cDC1 RGS10 0.48722647 7.79E-268
cDC1 TSPAN13 0.20046037 7.70E-263
cDC1 PSMB9 0.5263432 2.08E-260
cDC1 KIF16B 0.33738519 2.64E-251
cDC1 HLA-A 0.45186776 6.98E-251
cDC1 PDLIM7 0.27242953 8.08E-249
cDC1 CD59 0.47525804 2.44E-246
cDC1 LAG3 0.2050153 3.30E-239
cDC1 TXN 0.66660661 1.12E-230
cDC1 SLAMF7 0.54597363 8.02E-230
cDC1 UCP2 0.54413173 1.38E-223
cDC1 BATF3 0.50647767 2.54E-223
cDC1 ASAP1 0.47950691 4.99E-222
cDC1 SERPINF2 0.27523995 2.37E-219
cDC1 CKB 0.43878804 3.28E-219
cDC1 TSTD1 0.4640208 7.92E-219
cDC1 TMSB4X 0.46172588 1.87E-218
cDC1 CSRP1 0.37933958 6.28E-216
cDC1 IRF8 0.60483066 6.93E-211
cDC1 GYPC 0.49414723 1.40E-210
cDC1 SUSD3 0.37872262 2.63E-210
cDC1 G3BP2 0.5613288 1.24E-205
cDC1 KLF6 0.83837008 2.67E-205
cDC1 CYB5R3 0.4496696 3.42E-205
cDC1 DEF8 0.268095 6.83E-203
cDC1 RPL8 0.23648854 3.25E-202
cDC1 LIMA1 0.32777794 9.73E-201
cDC1 DCTPP1 0.39900402 3.05E-200
cDC1 FRMD4A 0.21688664 1.21E-197
cDC1 MAP2K6 0.2024215 2.21E-197
cDC1 EHD4 0.38459836 6.98E-193
cDC1 QPRT 0.25656835 8.61E-193
cDC1 RPS21 0.37456119 1.77E-187
cDC1 CDC42EP3 0.55880021 6.15E-187
cDC1 LRRCC1 0.27832569 1.02E-186
cDC1 NAP1L1 0.44868842 3.41E-186
cDC1 APOL3 0.28200373 3.78E-185
cDC1 ADAM19 0.36898673 4.33E-184
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cDC1 TIP2 0.2454882 Gnder 8288F-NBOND 4.0 International license.
cDC1 ATP6V1H 0.41384757 4.12E-180
cDC1 LSM6 0.41507209 1.57E-177
cDC1 ATPSE 0.28379635 6.05E-176
cDC1 TSPAN33 0.44033906 1.19E-175
cDC1 CD74 0.29916942 1.24E-174
cDC1 SELPLG 0.28961628 2.42E-171
cDC1 LINCO0152 0.50092451 2.93E-165
cDC1 ATP1A1 0.47006058 3.22E-165
cDC1 ZFP36L1 0.56328269 8.69E-165
cDC1 CNFN 0.22139585 6.45E-164
cDC1 RAMP1 0.33821978 2.39E-163
cDC1 RAB30 0.20029923 1.70E-162
cDC1 HN1 0.45071853 2.92E-161
cDC1 CDK2AP2 0.4235387 3.84E-161
cDC1 TLR10 0.26603175 1.54E-160
cDC1 EEF1B2 0.36309248 3.62E-160
cDC1 LPP 0.4322844 5.37E-160
cDC1 SLC46A3 0.25954279 1.68E-159
cDC1 Cb40 0.38171278 3.06E-159
cDC1 NAAA 0.42348889 1.45E-158
cDC1 RAB11FIP1 0.56873895 4.36E-158
cDC1 DUSP4 0.59123503 2.02E-156
cDC1 RAB29 0.25807406 3.98E-156
cDC1 UPF2 0.43704297 4.05E-156
cDC1 CD226 0.20400354 6.59E-156
cDC1 ANPEP 0.26584799 2.77E-149
cDC1 ZEB1 0.20876783 3.55E-149
cDC1 NDUFC2 0.35392579 1.29E-147
cDC1 NCOA7 0.30109121 2.67E-147
cDC1 TAP1 0.41008254 8.55E-147
cDC1 DAPK2 0.20525188 1.28E-146
cDC1 Sep-11 0.27769303 8.28E-146
cDC1 ENSA 0.36587381 4.64E-144
cDC1 SLCO9A9 0.20471264 1.05E-143
cDC1 DSTN 0.37965852 1.46E-143
cDC1 CCSER1 0.21081249 9.16E-143
cDC1 ICAM3 0.32677678 7.53E-141
cDC1 MPEG1 0.42071785 2.78E-139
cDC1 S100B 0.82820931 1.85E-137
cDC1 TAP2 0.31614312 1.49E-135
cDC1 RPS23 0.2448476 8.13E-134
cDC1 PRDX1 0.39729998 1.54E-132
cDC1 REPIN1 0.25688176 4.01E-132
cDC1 LIMD2 0.38065416 5.97E-130
cDC1 BASP1 0.46898747 9.81E-130
cDC1 BCL2L11 0.43903699 2.48E-129
cDC1 PIKFYVE 0.29782276 2.84E-129
cDC1 SFT2D2 0.32548547 1.59E-128
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cDC1 LDLRAD4 0.3982a36 dnder ZCY3IFNL/ND 4.0 International license.
cDC1 SERTAD3 0.23822772 2.22E-124
cDC1 HLA-C 0.35328038 3.62E-121
cDC1 GSTM4 0.23410816 1.83E-120
cDC1 ICOSLG 0.25772427 1.11E-119
cDC1 TMEMS50B 0.29226297 7.04E-119
cDC1 CEP164 0.22927139 8.31E-119
cDC1 HLA-DPB1 0.22996263 2.76E-118
cDC1 SRSF7 0.52160343 9.56E-118
cDC1 RPS8 0.21979588 3.06E-116
cDC1 FNIP2 0.39841213 1.55E-114
cDC1 DLGAP4 0.21777474 1.41E-113
cDC1 SLC5A3 0.35623243 3.76E-113
cDC1 CCDC186 0.25718456 8.10E-112
cDC1 SRI 0.33010018 1.12E-111
cDC1 NME4 0.24950706 1.94E-111
cDC1 GNG7 0.25713732 2.37E-111
cDC1 OXSR1 0.35637344 3.19E-111
cDC1 CCDC6 0.34956065 3.20E-110
cDC1 TNNI2 0.24226329 1.78E-109
cDC1 LYRM4 0.2513569 2.00E-109
cDC1 RPS20 0.38051544 2.33E-109
cDC1 RGCC 0.51490876 3.26E-109
cDC1 ZYX 0.29677598 1.99E-108
cDC1 PTMS 0.42537366 2.50E-108
cDC1 RNASEH2C 0.40352848 5.92E-108
cDC1 RAB32 0.47719838 1.27E-107
cDC1 CBL 0.21650085 3.46E-107
cDC1 CCR6 0.25228106 6.47E-107
cDC1 AGPAT1 0.22025355 3.86E-106
cDC1 EIF6 0.29393194 2.50E-105
cDC1 HMOX1 0.29108668 6.47E-104
cDC1 TMED3 0.27715482 1.09E-103
cDC1 ACTN1 0.28226377 1.70E-103
cDC1 LY9 0.31495331 3.23E-103
cDC1 ACTB 0.2605768 8.89E-103
cDC1 PTPN22 0.21467183 1.51E-101
cDC1 VMO1 0.42045516 4.73E-101
cDC1 DAPP1 0.32350871 1.65E-100
cDC1 CFL1 0.22276996 7.51E-100
cDC1 OAZ2 0.28000747 4.78E-99
cDC1 COX7C 0.24642598 1.04E-98
cDC1 MRPS6 0.30340051 1.05E-97
cDC1 ROGDI 0.26795459 1.22E-97
cDC1 CKLF 0.3826577 1.50E-97
cDC1 RPL23A 0.24927497 3.58E-97
cDC1 ANXAG6 0.27537732 5.21E-97
cDC1 RAB8B 0.31377491 1.20E-96
cDC1 DST 0.29161035 1.49E-96
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cDC1 SRP14 0.22035809 1.31E-91
cDC1 SMCO4 0.27279047 8.01E-91
cDC1 DUSP10 0.25624431 9.94E-91
cDC1 HSPAS8 0.38032024 2.05E-90
cDC1 IFT20 0.27792092 4.09E-90
cDC1 NET1 0.27305308 2.18E-89
cDC1 MZT2B 0.37996252 6.17E-89
cDC1 ELOVLS 0.25059261 1.06E-88
cDC1 FAM129A 0.24968821 8.41E-88
cDC1 MCUR1 0.24839729 1.51E-87
cDC1 HLA-DQB1 0.22073791 6.85E-87
cDC1 SOX4 0.49816704 1.34E-85
cDC1 LSP1 0.26344392 2.68E-85
cDC1 CCPG1 0.20071545 4.63E-85
cDC1 HLA-DPA1 0.22197204 8.44E-85
cDC1 CLIC2 0.24056369 3.21E-83
cDC1 BRD2 0.3131404 5.50E-83
cDC1 CD83 0.3426897 6.29E-83
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cDC3 AHR 0.2274985 6.87E-58
cDC3 CFLAR 0.23535754 8.64E-58
cDC3 PNP 0.22337222 1.27E-56
cDC3 EMILIN2 0.20020323 4.34E-55
cDC3 IL10RA 0.21744301 7.48E-55
cDC3 RASGEF1B 0.24798688 1.60E-54

cDC3

SNX10

0.22274739

2.96E-54
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cDC3 IFNGR2
cDC3 PTX3
cDC3 CCL4
cDC3 EHD1
cDC3 UBE2D1
cDC3 CHCHD10
cDC3 SELK
cDC3 TNFAIP8
cDC3 AKIRIN2
cDC3 AP1S2
cDC3 GBP1
cDC3 SEPP1
cDC3 CRIP1
cDC3 CCL4L2
cDC3 CCL3L3
cDC3 RPS4Y1
cDC3 PLEK
cDC2 CD207
cDC2 PLAC8
cDC2 DUSP5
cDC2 RAPGEF4
cDC2 SLC38A1
cDC2 DSG2
cDC2 IRF4
cDC2 PKIB
cDC2 CiB1
cDC2 CDH17
cDC2 CD1E
cDC2 PPP1R14A
cDC2 PPA1
cDC2 SPINT2
cDC2 FCER1A
cDC2 AREG
cDC2 JAML
cDC2 ENTPD1
cDC2 GPR65
cDC2 HIC1
cDC2 FAM110A
cDC2 YPELS
cDC2 PSTPIP2
cDC2 GABARAPL2
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0.20584351
0.20408133
0.77495055
0.24501902
0.26997908
0.23870119
0.22322018
0.20573582
0.20760801
0.75878264
0.22842187
0.21408751
0.20553503
0.23326334
0.29894019
0.21087117
0.22544011
0.42235617
0.82808831
0.20819451
0.65821651
0.52061879
0.24271423
0.26258008
1.27717977
0.79175964
0.69273492
0.34925069
0.5102326
0.33943918
0.52340209
0.65370217
0.39710403
0.41374966
0.624732
0.43723635
0.39748691
0.35440307
0.46751296
0.44537034
0.31834441
0.44605343
0.44588198
0.34911905
0.37455031
0.34216031
0.31996326
0.32465666
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2.35E-48
3.99E-48
5.31E-46
6.14E-46
8.92E-46
8.20E-44
2.58E-42
4.17E-41
8.63E-41
3.79E-40
4.52E-40
1.84E-39
2.12E-37
3.19E-32
3.53E-32
6.70E-32
1.23E-30
4.92E-29
4.07E-25
9.04E-25
3.81E-17
3.67E-11
0

0
3.99E-306
3.82E-285
9.58E-284
1.91E-273
1.11E-241
2.35E-241
1.05E-209
1.25E-205
5.95E-200
2.85E-193
6.79E-169
2.69E-156
7.31E-148
5.58E-140
5.30E-137
1.24E-135
3.06E-134
8.80E-133
4.11E-130
3.17E-129
4.60E-129
1.38E-124
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cDC2 LST1 0.272549 dnder ALEIF-NIOND 4.0 International license.
cDC2 PAK1 0.30603398 2.43E-118
cDC2 CD86 0.34099891 5.09E-117
cDC2 TRABD2A 0.230542 7.36E-117
cDC2 FCMR 0.20902725 5.98E-115
cDC2 LYST 0.23143435 1.26E-109
cDC2 PLD4 0.29066901 4.43E-107
cDC2 CLN8 0.32695244 1.08E-104
cDC2 ITM2C 0.26521043 3.23E-104
cDC2 SPATS2L 0.29930048 1.72E-102
cDC2 PALLD 0.29401507 2.39E-102
cDC2 LTB 0.40620171 4.36E-102
cDC2 MBOAT7?7 0.25639765 3.56E-99
cDC2 GNB5 0.22487041 1.52E-98
cDC2 PLSCR1 0.26524643 3.05E-98
cDC2 BCL7A 0.22897764 2.30E-97
cDC2 TMEM14C 0.25211339 1.43E-94
cDC2 CST7 0.31619377 2.37E-94
cDC2 GPRIN3 0.32163645 1.22E-92
cDC2 STK4 0.31178243 4.58E-92
cDC2 CDh1C 0.35830073 2.34E-91
cDC2 TBC1D9 0.26851467 3.41E-88
cDC2 TSHZ1 0.23764232 3.03E-87
cDC2 SPIB 0.25351696 6.19E-87
cDC2 SMAP2 0.25974074 1.05E-86
cDC2 LITAF 0.28864811 1.58E-86
cDC2 PRELID1 0.26510617 1.84E-86
cDC2 RALA 0.33160139 7.83E-86
cDC2 IL2RG 0.24982056 8.12E-86
cDC2 PRMT9 0.31413146 2.95E-84
cDC2 PAPDS5S 0.28779636 3.90E-84
cDC2 CFP 0.27812856 1.20E-83
cDC2 CLEC4A 0.24951961 1.24E-82
cDC2 IL18 0.26535541 1.71E-82
cDC2 INSIG1 0.38835362 2.27E-82
cDC2 HIF1A 0.27039292 1.29E-81
cDC2 SNAP29 0.22292142 5.64E-81
cDC2 GDI2 0.21349968 1.17E-80
cDC2 EXOC3 0.22130283 2.61E-80
cDC2 LSP1 0.2276415 3.66E-78
cDC2 SMCO4 0.26117397 2.92E-76
cDC2 ACAAl 0.25839753 8.91E-75
cDC2 ARF6 0.27035025 5.83E-74
cDC2 RP5-1171110.! 0.28142676 1.47E-73
cDC2 Cllorf31 0.23334282 6.17E-73
cDC2 ADAMS8 0.22070881 1.22E-72
cDC2 STK17B 0.2843323 3.12E-71
cDC2 RGS2 0.25835739 3.61E-70
cDC2 MALT1 0.30469855 4.21E-70
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cDC2 PRR13 0.23@311386 gnder aQCIDENEZND 4.0 International license.
cDC2 PIP4AK2A 0.20602249 2.11E-66
cDC2 HMGN1 0.21643266 8.58E-66
cDC2 MAP3K8 0.27556434 1.24E-65
cDC2 NR4A3 0.27104997 5.01E-65
cDC2 HLA-DQB2 0.22858617 1.44E-63
cDC2 FAM118A 0.25663414 1.93E-62
cDC2 ARL4C 0.28898812 3.16E-61
cDC2 RGS1 0.20685547 1.23E-59
cDC2 SNAI1 0.22009815 7.29E-59
cDC2 CCL22 0.39321354 1.35E-58
cDC2 ZC3HAV1 0.31595585 1.82E-58
cDC2 FDFT1 0.22975436 2.02E-57
cDC2 FAM89B 0.21752455 9.45E-57
cDC2 SEC14L1 0.24160557 9.60E-57
cDC2 PDE4A 0.24268772 1.03E-56
cDC2 ELMO1 0.21541197 2.94E-55
cDC2 LAMP3 0.21951974 3.65E-54
cDC2 HECTD1 0.28113365 6.03E-54
cDC2 COTL1 0.21981231 6.90E-54
cDC2 GAPT 0.20560825 2.19E-53
cDC2 CD52 0.20180684 2.42E-53
cDC2 RASSF5 0.21081694 1.35E-52
cDC2 RP11-347P5.1 0.23182069 3.29E-52
cDC2 CTSH 0.20242656 6.51E-52
cDC2 ARHGAPS 0.25682721 3.10E-50
cDC2 MMP12 0.42838296 3.72E-50
cDC2 RNASE6 0.2449045 9.54E-47
cDC2 DDX24 0.20273262 8.02E-46
cDC2 SYTL3 0.20520468 8.03E-46
cDC2 CELF2 0.20169857 1.03E-39
cDC2 CEBPB 0.20129299 1.08E-39
cDC2 CEBPZ 0.22338235 4.97E-39
cDC2 AIM1 0.20658266 8.09E-37
cDC2 IFI30 0.22592078 5.57E-36
cDC2 YWHAH 0.24977315 2.28E-35
cDC2 NRARP 0.20417074 3.86E-35
cDC2 IDI1 0.21107334 2.41E-34
cDC2 FAM107B 0.21083836 6.32E-31
cDC2 TUBA1A 0.20785013 2.89E-30
cDC2 RUNX3 0.23102859 9.98E-29
cDC2 RANBP2 0.21458378 1.72E-27
cDC2 GADDA45A 0.30502937 1.28E-25
cDC2 KCNK6 0.21212561 2.04E-23
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lleum DEGs  avg_logFC adj. p-value Colon DEGs avg_logFC adj. p-value

RNASE6 0.699953 6.24E-51 HSPA1A -2.4656001 5.27E-107
RPS17 0.572912 3.76E-26 HSPA1B -1.6855916  8.02E-79
RPS20 0.435677 6.22E-27 HSPD1 -1.5425108 2.44E-65
XIST 0.423595 6.01E-24 HSP90AB1  -0.9575958 2.26E-59
MT-ND1 0.417815 1.35E-29 HSPE1 -1.1487947 2.15E-57
RPL13A 0.405945 1.68E-24 HSP90AA1  -1.3307031 6.56E-56
RPL31 0.402658 2.59E-26 MARCKSL1 -0.6543432 2.22E-52
LINC00152 0.396268 2.13E-26 DNAJB1 -1.3675298 2.47E-51
XCR1 0.363549 1.24E-24 BAG3 -1.1250307 3.50E-43
MT-ND2 0.361882 6.14E-22 HSPH1 -1.0301936 1.20E-41
Clorf54 0.354598 1.78E-36 RPL13 -0.4597356 1.10E-38
AIF1 0.345476  9.93E-42 DNAJA1L -0.6866342 7.55E-35
AC090498.1 0.345331 0.0001965 PPP1R15A  -0.6107766  8.01E-33
HIPK2 0.332219  8.40E-24 CACYBP -0.591286 2.33E-31
RPL27A 0.328222 3.63E-20 CDC42EP3  -0.5457458  8.79E-29
PNOC 0.310208 2.47E-05 RPS4Y1 -0.3680037 6.68E-28
CKLF 0.302118  4.37E-17 S100A10 -0.4361229 1.43E-26
NAP1L1 0.297364  5.31E-25 TSPO -0.2735462 3.25E-26
C1QA 0.286141 1.53E-10 HSPA6 -1.7547927 5.12E-26
RPL38 0.283794 1.26E-30 EIF4A3 -0.5694685 5.14E-26
CDH17 0.280609 2.29E-17 SH3BGRL3  -0.2865177 2.31E-25
RPL37A 0.269093 1.04E-29 HSPAS8 -0.4253183 3.21E-25
FDFT1 0.268906 1.56E-11 ZFAND2A -0.9370867 3.74E-25
TYROBP 0.267425  4.98E-07 CHORDC1  -0.4598921 6.43E-25
RPS27 0.26431 3.42E-32 TCP1 -0.3500559 9.68E-25
CCR6 0.260848 5.23E-16 IGHA1 -0.5775122 2.07E-24
RPL23A 0.253122  8.96E-24 PFN1 -0.3342327 1.88E-23
CSF2RA 0.250238 1.04E-11 JUND -0.493049 3.58E-23
RPLP2 0.249823 1.14E-14 GADD45B -0.708583 1.54E-22
FCER1G 0.247191 1.35E-08 RPS2 -0.365461 1.94E-22
RPS11 0.244391 3.67E-17 DDX3Y -0.2867972 3.51E-22
MPEG1 0.244345 1.31E-15 RAB32 -0.361217  4.03E-22
RPL23 0.243677 2.49E-15 LMNA -0.5176417 5.17E-22
MIR4435-2HG 0.239422 3.06E-11 LYZ -0.3039646 2.54E-21
ARHGDIB 0.236891 3.28E-16 FKBP4 -0.3743937 5.56E-21
NPC2 0.234786 3.09E-16 DNAJA4 -0.4099558 1.29E-20
VMO1 0.234742 1.28E-09 ATP5D -0.3045288 2.51E-20
MS4A6A 0.23359 0.0032821 DNAJB6 -0.4840682 3.31E-20
CXCR4 0.229935 7.62E-07 TNFAIP8 -0.4323021 2.23E-19
NBEAL1 0.224716 2.25E-09 PTGES3 -0.3704377 8.93E-19
CLNK 0.223456 4.91E-05 GNA15 -0.3606215 4.01E-18
RPS29 0.217545 1.71E-33 NFKBIA -0.4962741 1.05E-17
RPL27 0.217085 5.33E-16 YBX1 -0.2724152 1.91E-17
C10orf54 0.216339  4.35E-05 CTSZ -0.3117685 3.13E-17
RGS1 0.216325 1.58E-11 COX5A -0.2744236 6.99E-17
RP11-1143G9.: 0.214844 1.40E-07 SQSTM1 -0.4571231 1.95E-16
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CDvVv3 -0.2435802 2.11E-09
INPPSF -0.2024106 2.47E-09
DUSP2 -0.4024741 3.17E-09
SERPINH1 -0.2055484 3.60E-09
MIF -0.2099325 4.00E-09
PTMS -0.2439178 4.08E-09
S100B -0.5922955 7.96E-09
JUN -0.884917 8.04E-09
RGCC -0.3181228 9.14E-09
FLNA -0.2225739 1.31E-08
RAB21 -0.2297175 1.61E-08
GNAS -0.2465077 1.70E-08
IRF8 -0.2296429 2.40E-08
CD83 -0.2666498 4.88E-08
SLC3A2 -0.2395973 5.30E-08
SOCS3 -0.2269454 7.21E-08
ZNF267 -0.2240714 8.63E-08
BCL2A1 -0.2783706 1.13E-07
LGALS3 -0.3397468 1.17E-07
FTH1 -0.2802996 1.65E-07
TOP1 -0.2363575 2.57E-07
RP1-313l6.1. -0.2193347 3.22E-07
CSRNP1 -0.2065657 1.10E-06
PPIF -0.3681435 1.34E-06
NINJ1 -0.2890793 1.42E-06
VIM -0.2483026 1.50E-06
STMN1 -0.2273416 1.79E-06
JUNB -0.285428 2.55E-06
ERN1 -0.2539568 5.38E-06
IER2 -0.4336007 5.64E-06
EGR1 -0.2531833 6.67E-06
MBP -0.2193632 7.56E-06
IGHA2 -0.2006997 1.03E-05
IER3 -0.3743481 1.06E-05
PHLDA1 -0.2384406 1.10E-05
PIM3 -0.2312074 1.42E-05
CXCL9 -0.4273522 2.90E-05
ARL5B -0.2574697 4.65E-05
HMOX1 -0.2607332 8.46E-05
JCHAIN -0.4655107 0.0001459
LAP3 -0.2206524 0.0001499
IGLC2 -1.1033641  0.000152
MAFF -0.2204495 0.0001959
PHLDA2 -0.3253814  0.000228
KLF6 -0.2657549 0.0002977
H1FX -0.2343952 0.0003148
BTG1 -0.2625637 0.0005258
CYBA -0.2154659 0.0005815
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TSPYL2 -0.25755 0.0012981
TANK -0.2032896 0.0022215
UBB -0.2276287 0.0022375
ATF3 -0.3947232 0.0023623
CDh44 -0.2037996  0.002757
S100A4 -0.221257 0.0151517
EIFAE -0.2253224 0.0162119
BAZ1A -0.2006952 0.0167013
GADD45A  -0.2511612 0.0189875
NABP1 -0.2260553 0.0311235

TWISTNB -0.3571673 0.0495264
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lleum DEGs
AC090498.1
CD207
FCER1A
RNASE6
STK17B
GAPT
PALLD
INSIG1

RP11-347P5.1

ENTPD1
NET1
CDH17
LAIR1
HERPUD1
IRF4
AREG
FDFT1
IDI1
RAPGEF4
CD1E
CEBPB
SEPP1
RGS1
MS4ABA
KCNK6
ARF6
XIST
CELF2
HIPK2
RIPK2
CPVL
PLACS8
PKIB
JAML
RPL31
ANAPC16
SMCO4
EVI2B
IFNGR1
NBEAL1
RPS17
LDLR
ARL5A
LEPROTL1
NPC2
RGS2

available under aCC-BP@IZ-ND 4.0 International license.

avg_logFC

0.68955172
0.64768246
0.54435185
0.48008775
0.46312264
0.45434909
0.43869737
0.43514759
0.42681847
0.41856433
0.41054738
0.40707246
0.39650622
0.39573715
0.39500409
0.39106455
0.38597634
0.38472679
0.38325661
0.38061085
0.37143038
0.36317903
0.35310833
0.35032549
0.34877806
0.34561874

0.3397252
0.33962009
0.33905887
0.33607196
0.33232734
0.33054071
0.32800135
0.32688685
0.32636198
0.32571241
0.32306207
0.31863512
0.31469719
0.30891124
0.29917506
0.29795014
0.28535397
0.28478784
0.28026385
0.27181807

adj. p-value

2.42E-58 HSPA1A
9.82E-113 HSP90AA1
4.39E-76 HSPA1B
1.20E-89 DNAJB1
1.67E-104 HSPA6
1.34E-89 HLA-DQA2
1.19E-83 HSPD1
4.16E-59 IL1B
6.61E-83 HSPH1
3.26E-59 G0S2
5.32E-57 S100A4
4.06E-73 HSP90AB1
3.03E-79 HSPB1
2.39E-76 CXCL8
9.05E-44 HSPE1
3.07E-62 NFKBIA
1.73E-72 IER3
7.67E-56 EMP3
1.24E-99 LYZ
2.22E-30 GADDA458B
1.11E-51 LMNA
8.57E-52 LGALS3
3.75E-64 C150rf48
1.71E-53 S100A10
2.48E-38 CD83
9.05E-56 SOD2
1.34E-35 BAG3
2.03E-55 DNAJA1
9.81E-64 TIMP1
6.36E-41 TXN
5.52E-63 ID2
6.99E-36 SQSTM1
6.98E-31 ANXA2
8.54E-72 TNFAIP2
3.71E-54 PPIF
3.04E-61 MARCKSL1
4.14E-54 PHLDA2
1.11E-50 TSPO
5.75E-52 CCR7
5.82E-19 PPP1R15A
4.38E-31 AHNAK
3.29E-69 PRDX1
8.35E-33 KLF2
5.09E-44 JUN
8.17E-35 EIF4A3
2.16E-31 RPS4Y1

-2.626801
-1.413662
-1.374895
-1.285
-1.269233
-1.253211
-1.064861
-1.04615
-0.997992
-0.970776
-0.954051
-0.916208
-0.906212
-0.885966
-0.875042
-0.871095
-0.830732
-0.809518
-0.762924
-0.747366
-0.715887
-0.704976
-0.694436
-0.693323
-0.687136
-0.683403
-0.681595
-0.662581
-0.63586
-0.632033
-0.609452
-0.584015
-0.557275
-0.551379
-0.549459
0.524542
-0.524158
-0.52313
-0.521533
-0.521322
-0.511879
-0.501987
-0.49859
-0.492534
-0.47828
-0.471849
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Colon DEGs avg_logFC adj. p-value

3.49E-294
1.13E-193
1.10E-193
3.90E-130
1.62E-62
6.49E-90
1.20E-122
2.21E-63
2.11E-103
8.33E-50
1.09E-153
9.81E-193
7.02E-31
3.39E-20
8.20E-110
1.29E-82
2.01E-89
1.18E-130
2.36E-71
2.54E-98
1.05E-85
2.87E-92
3.72E-34
7.46E-112
4.93E-98
1.86E-76
1.18E-78
1.00E-105
1.13E-67
2.32E-24
4.45E-38
2.44E-78
2.57E-86
7.32E-42
1.39E-56
2.28E-92
3.53E-59
8.86E-115
7.35E-79
2.56E-69
5.21E-55
3.37E-79
2.75E-28
6.72E-11
1.20E-34
5.56E-44
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MRC1
CCR6
LST1
ADAM28
PLD4
RPS27
MAP3K8
CPM
HLA-DRB1
ZFP36L2
PRR13
CYSLTR1
CD36
CLEC11A
TMEM97
CYTIP
RNF7
COMMD5
AKNA
ATPIF1
RPL13A
SAMSN1
GLIPR1
POR
ucP2
HMGN2
SRGAP2B
GPRIN3
CLEC4A
ARHGAPS
TMEM14C
RPS29
SMAP2
PTMS
GCLC
ERP29
ARHGDIB
RPL7
C10orf54
PELI1
NAP1L1
RNF149
VAMP2
GPSM3
TMSB4X
CXCR4
RPL23A
SARAF
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0.26655712
0.26449276
0.26427844
0.25949887
0.25670094
0.25554108
0.25400161
0.25374653
0.25242183
0.25017003
0.24987407
0.24950368

0.2491835
0.24789557
0.24663482
0.24486886
0.24475273
0.24420288
0.24193475
0.24178737

0.2414642
0.24072348
0.23929222
0.23902934
0.23800785
0.23783855
0.23745735
0.23721667
0.23688353
0.23685434
0.23683996
0.23593301
0.23538615
0.23397951
0.23189296
0.23165803
0.23115149

0.2305682
0.22978457
0.22966346
0.22917969
0.22903054
0.22753919
0.22361717
0.22337996
0.22290248
0.22225476
0.22026868

4.94E-20 MARCKS
3.89E-34 11411
4.64E-66 TWISTNB
5.01E-30 PLEK
2.03E-25 BIRC3
2.15E-92 CD44
8.92E-25 PIM3
2.50E-29 IGHA1
1.01E-45 S100A6
4.62E-24 ZFAND2A

2.56E-36 RAB11FIP1

3.88E-46 NINJ1
7.35E-37 YBX3
2.51E-33 CXCL2
1.03E-36 ATF5
1.75E-32 VIM
2.57E-35 IER5
5.03E-28 RGCC
3.67E-24 ALOX5AP
2.54E-34 PNRC1
3.44E-37 MNDA
2.56E-25 GNA15
4.69E-33 GPR157
2.60E-31 CAPG
9.72E-20 TNFAIP8
1.18E-29 ICAM1
3.51E-27 CRIP1
2.93E-17 MAP2K3
1.48E-31 CFLAR
1.47E-20 IRF1
2.24E-38 ARLS5B

3.73E-100 KLF6

4.09E-32 CST3
8.01E-20 HSPAS8
9.94E-38 FLNA
3.00E-37 IRF8
2.05E-35 GSN
2.39E-44 NFKB1
1.29E-29 ALDH2
6.20E-17 TUBB4B
1.07E-45 ARL4C

7.28E-21 MIR155HG

1.39E-27 CTSZ
9.28E-29 SERPINB1
3.26E-40 ARL4A
3.33E-28 MS4A7
3.37E-75 SLAMF7
8.99E-29 ZNF267

-0.463916
-0.454227
-0.451397
-0.444248
-0.440649
-0.440196
-0.439975
-0.437217
-0.433864
-0.422804
-0.421883
-0.420595
-0.419877
-0.418477
-0.410433
-0.394065
-0.391182
-0.38457
-0.38053
0.380147
0.379685
-0.377826
0.372832
0.367966
-0.36372
0.360857
-0.359241
-0.359012
-0.35823
0.357892
-0.35587
-0.354255
-0.350406
-0.350111
-0.346355
-0.345594
-0.342364
-0.331852
-0.330291
-0.328283
-0.327747
-0.324814
-0.314813
-0.314564
-0.312812
-0.306814
-0.304068
-0.303033

1.79E-72
2.78E-29
5.35E-73
6.00E-32
9.27E-34
9.89E-38
2.54E-47
2.69E-46
2.07E-24
1.68E-40
2.57E-12
8.20E-52
9.61E-45
1.36E-34
7.53E-07
7.95E-37
1.37E-40
1.04E-14
6.99E-12
1.45E-17
5.07E-36
5.00E-42
3.86E-58
1.28E-38
2.79E-52
2.90E-25
3.07E-20
6.44E-33
4.70E-53
1.01E-39
2.40E-38
7.80E-33
5.56E-10
2.22E-44
9.04E-41
2.71E-52
1.32E-28
1.10E-34
3.02E-29
1.14E-34
9.44E-40
4.01E-31
5.58E-35
6.63E-42
3.05E-23
4.91E-27
5.28E-27
3.07E-21
4.50E-33
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PPP1R14A 0.21853697 2.41E-20 CD9 -0.301795  2.69E-27
RP5-1171110.! 0.21665937 3.59E-21 GPX4 -0.299143 1.04E-43
SLC2A3 0.21521237 3.52E-22 CCND2 -0.296471 4.89E-22
TBXAS1 0.21395601 7.65E-26 REL -0.295937 2.02E-19
THBS1 0.21307647 2.15E-18 MAFF -0.294466 4.38E-23
CD1D 0.21190095 1.01E-23 SERPINA1 -0.293432  4.95E-57
RPL27A 0.2115128 5.78E-37 THAP2 -0.292785  2.34E-27
SPINT2 0.21082794 3.33E-25 JUND -0.288705 1.46E-27
DYNLT1 0.21022782 5.75E-27 MRPL18 -0.287927 5.61E-19
TMA7 0.20994728 4.67E-39 CDKN1A -0.287127 3.38E-24
GSTM4 0.20839157 3.13E-38 IL1RN -0.285883 2.98E-33
Clorf56 0.20832168 0.00144353 LGALS1 -0.283932  2.57E-38
LAMP5 0.20677546 3.84E-55 ZFP36L1 -0.27873 1.74E-12
RNF144B 0.20616101 5.09E-21 ICAM3 -0.27832 5.10E-42
TCTN3 0.20444181 6.60E-07 PHACTR1 -0.274957  2.65E-15
GNB5 0.20387439 1.29E-27 LACTB -0.271919 3.08E-34
DSG2 0.20369748 1.36E-35 CD99 -0.271016  1.23E-27
TSC22D3 0.20166519 5.83E-29 ZC3H12A -0.270197 4.04E-42
CD69 0.20108731 2.83E-24 SPAGY -0.26972 8.70E-22
BHLHE40 -0.267462  7.52E-26
TYMP -0.265832  6.32E-27
S100A11 -0.265475 8.89E-35
HCST -0.265332  2.40E-23
IL10RA -0.264984  1.03E-27
DNAJA4 -0.264514  7.89E-36
DENND4A -0.264477 2.72E-14
CD40 -0.263152 3.30E-13
TUBA1C -0.261587 1.74E-21
RUNX3 -0.261222 4.34E-17
H2AFZ -0.260898 4.24E-19
TNFRSF1B -0.258939  2.24E-20
FSCN1 -0.258097 1.34E-22
IL1R2 -0.255557 0.000536
TANK -0.255463 4.37E-19
TRAF1 -0.255425 6.76E-43
DNAJB6 -0.25393 6.77E-15
CTSH -0.253247 4.18E-27
ANXA1 -0.252478 0.000181
NFAT5 -0.252091 1.27E-23
ATP5D -0.251518 8.68E-32
RPL13 -0.251116 7.63E-76
PTGES3 -0.250855 1.76E-21
PNP -0.249298 1.75E-32
DUSP2 -0.246107 1.14E-07
MXD1 -0.244656 8.84E-15
RRAD -0.244261 9.75E-15
HES4 -0.238985 1.50E-11

GBP1 -0.238584 0.018081
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GPR35 -0.236011 4.21E-44
TNFSF13B -0.235777 2.43E-19
CREB5 -0.23558 2.72E-29
NEAT1 -0.233329 2.94E-26
ISG20 -0.232155 4.03E-12
MGAT1 -0.231699 2.45E-21
FTH1 -0.23131 6.11E-27
PPP1R15B -0.230045 2.44E-11
CCRL2 -0.229906 5.64E-32
KLF10 -0.228613 8.31E-25
ARFGAP3 -0.22767 3.33E-22
TUBB -0.226092 2.70E-11
PLAUR -0.223684 9.05E-05
HLA-B -0.221992 8.62E-28
CDC42EP3 -0.220025 2.58E-31
HMOX1 -0.218954 1.49E-27
AES -0.218236 6.65E-18
ARLS8B -0.216331 1.71E-16
RABYA -0.215056 4.50E-14
FCGR2A -0.214914 6.93E-09
GABARAP -0.21327 1.93E-23
CACYBP -0.21258 1.56E-06
TPRA1 -0.212548 5.38E-21
KDM6B -0.211967 1.06E-12
KCNQ10T1 -0.211551 1.11E-07
APOE -0.210716 7.02E-18
PLK3 -0.209247 1.67E-18
AHSA1 -0.20764 3.70E-18
AHR -0.207312 8.58E-09
BAZ1A -0.206929 1.52E-15
RALA -0.205805 5.98E-05
MAP4K4 -0.205778 1.24E-20
USP12 -0.205689 7.27E-22
SEMA6B -0.204733 5.59E-17
CALR -0.203834 1.93E-11
ANKRD37 -0.202612 2.50E-07
VAMPS5 -0.202096 1.07E-14
CSTB -0.201971 4.21E-10
DNTTIP2 -0.201745 2.20E-15
CAST -0.201502 1.42E-17
CST7 -0.200943 0.000193
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lleum DEGs
SEPP1
c1QcC
C1QA
THBS1
VSIG4
TFRC
AC090498.1
TMEM176B
NPC2
C1QB
CTSC
C5AR1
SLC40A1
AREG
CTSS

RGS1
CD163
HERPUD1
CFD

SDS

ACP5

CPM
SMIM3
IFNGR1
XIST

JAML
SAMSN1
LAIR1
AKR1B1
CD36
TMEM176A
ZFP36L2
PALLD
FAM105A
RGS2

HN1
MT-ND2
DNASE1L3
FTL

CXCR4
ZFAND5
SGK1
TSC22D1
CD81

AXL
C3AR1
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avg_logFC

0.869608825
0.816656542
0.803818228
0.711103901
0.585361752
0.577898206
0.532021322
0.5133235
0.503775426
0.500756046
0.490385487
0.46104254
0.455029919
0.422149791
0.416617641
0.412625862
0.390681833
0.388333638
0.385524488
0.366809829
0.361081127
0.353408434
0.35245098
0.344148488
0.337134724
0.330221064
0.327589651
0.326931253
0.325836663
0.324647136
0.324277752
0.323948787
0.321127642
0.313097319
0.312433143
0.311450022
0.306296925
0.303405946
0.303256475
0.30275466
0.299722357
0.29570434
0.289998271
0.287932173
0.283683293
0.283171324

adj. p-value

2.78E-46 HSPA1A
3.66E-74 HSP90AA1
8.09E-81 HSPA1B

Colon DEG: avg_logFC adj. p-value
-2.66262 4.15E-233
-1.29789 1.52E-162
-1.23126 5.46E-139

2.75E-60 HLA-DQA2 -1.12548 7.11E-38
2.04E-93 HSPD1 -1.07415 2.74E-90
2.36E-53 DNAJB1 -1.07331 3.86E-90
3.30E-25 IL1RN -0.93429 3.12E-53
2.24E-87 IL1B -0.90288 2.48E-32
3.01E-133 HSPH1 -0.89126 2.89E-66
3.93E-43 G0S2 -0.88112 3.14E-50
2.56E-62 HSPA6 -0.88054 7.91E-34
1.47E-36 CCR7 -0.85452 9.74E-78
5.83E-52 HSPE1 -0.84353 8.89E-82
5.95E-45 HSP90AB1 -0.77394 1.43E-132
2.59E-98 HSPB1 -0.75706 1.50E-05
7.06E-70 S100A9 -0.73807 1.91E-39
7.16E-49 S100A10  -0.72688 2.86E-127
4.08E-51 IGKC -0.68942 6.78E-09
1.04E-08 DNAJA1L -0.68486 9.41E-102
1.18E-27 CXCL8 -0.67889 2.58E-19
4.04E-36 VIM -0.61654 1.60E-92
6.82E-47 IER3 -0.61535 1.64E-46
4.30E-37 LMNA -0.6043 1.23E-82
4.16E-44 EMP3 -0.59319 2.64E-107
1.01E-34 NFKBIA -0.58704 5.42E-27
1.60E-65 MIR155HG -0.58407 2.91E-39
2.80E-41 BAG3 -0.58086 7.51E-53
5.76E-50 BCL2A1 -0.57642 3.09E-31
9.35E-40 PLEK -0.56936 8.59E-49
3.50E-36 JUN -0.56929 3.03E-26
1.64E-60 TSPO -0.56547 1.93E-86
6.52E-39 Cl50rf48 -0.56295 5.67E-33
1.79E-54 PPP1R15A -0.56147 5.41E-55
1.35E-36 FCN1 -0.56058 5.58E-31
2.39E-37 S100A4 -0.55945 1.08E-90
5.39E-36 IL411 -0.52714 4.44E-60
1.55E-54 IL1R2 -0.52541 2.76E-49
5.05E-21 S100A6 -0.52519 5.98E-74
3.83E-62 KLF2 -0.51273 3.28E-14
1.00E-36 PHLDA2 -0.50766 7.04E-45
7.21E-24 DDX3Y -0.50163 9.46E-58
1.57E-36 CD83 -0.49766 3.91E-59
1.86E-14 SOD2 -0.48685 7.24E-52
6.07E-13 RPS4Y1 -0.48374 1.20E-35
4.55E-25 TNFAIP8 -0.48336 8.31E-36
5.08E-29 ARLAC -0.47157 1.38E-67
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0.281456607
0.278409381
0.274294563

0.27246477
0.271894663
0.271787673
0.267599229
0.267234037
0.266700776
0.264750333
0.264644798
0.261770975
0.261195907
0.258987978
0.253039966
0.252015298
0.251624386
0.251295613
0.250461286
0.249529957
0.249474724
0.247797535
0.247266112
0.247232631
0.245065586
0.244140371
0.243141024
0.241750088

0.24083124
0.240319306
0.239228427
0.239101373
0.238843947
0.237319587
0.236515297
0.235603465
0.234768554
0.232036811

0.23199437
0.230942966
0.230683343
0.230488471
0.230329925
0.226669878
0.223336683

0.22237089
0.221318541
0.220617384

1.83E-14 MARCKSL1
8.08E-27 PPIF
1.62E-14 JUND
1.03E-42 CD52
5.49E-46 GADDA45B
1.94E-16 ZFAND2A
4.58E-27 TIMP1
7.77E-12 IGLC2
2.54E-45 TNFAIP2
1.15E-15 TWISTNB
3.00E-23 ATF5
4.01E-08 CD55
4.25E-13 SH3BGRL3
5.84E-53 SQSTM1
2.47E-26 EIFAA3
6.94E-07 RHOF
1.26E-24 PNP
1.16E-19 CFLAR
9.12E-28 CD99
6.71E-27 RAB11FIP1
4.09E-17 ANXA2
7.81E-43 MARCKS
7.04E-19 HSPAS
1.68E-25 EZR
6.73E-21 FCGR2B
2.41E-28 CD44
4.98E-20 LRRFIP1
7.49E-32 RUNX3
1.95E-19 PHACTR1
7.63E-68 LGALS3
8.00E-17 NFKB1
3.52E-24 CRIP1
1.90E-26 DNAJB6
2.02E-23 TRAF1
8.07E-28 SERPINA1
6.20E-11 CD1C
1.71E-29 SERPINB1
1.15E-65 CAPG
2.84E-19 LINCO0936
1.86E-29 PIM3
5.74E-24 GNA1S5
4.77E-23 NEAT1
6.20E-22 CCND2
2.49E-20 REV3L
5.44E-16 FTH1
1.83E-20 EHD1
2.96E-26 RPL13
3.42E-16 LGALS1

-0.45058
-0.44853
-0.44333
-0.44211
-0.43541
-0.42924

-0.4288
-0.42718
-0.42483
-0.42245
-0.42188
-0.41356

-0.4123
-0.40677
-0.39261
-0.38527

-0.3807
-0.37999
-0.37262
-0.37033
-0.36859
-0.35829
-0.35706
-0.35656

-0.3439
-0.34012
-0.33629
-0.33563
-0.33422
-0.33228

-0.3261
-0.32419
-0.32355
-0.32212
-0.32033
-0.31928
-0.31523
-0.31513
-0.31504
-0.31421

-0.3086
-0.30212

-0.3017

-0.3003
-0.29845
-0.29803
-0.29631
-0.29409

Eﬂige[g’qupﬁgsted Octqygg,gy@ﬁﬁ_@ Eopyright holder for this preprint
as granted bioRxiv a licénse to displal

ay the preprint in perpetuity. It is made

3.77E-54
5.06E-47
5.45E-51
7.17E-60
3.70E-31
2.13E-34
3.45E-05
2.68E-22
3.96E-06
7.71E-21
1.37E-11
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1.83E-44
2.43E-89
7.68E-38
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2.07E-48
5.29E-52
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8.53E-38
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3.01E-36
1.58E-41
3.35E-28
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3.66E-28
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ATP1B3
LGALS3BP
CTSD
VAMPS8
MPEG1
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PPT1
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FUCA1
PLACS8
CSF1R
CH25H
SLC7A7
ITM2C
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FCGRT
JUNB
HIPK2

0.21960171
0.218646986
0.217515721
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0.212420826
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8.94E-41 MRPL18
1.24E-06 1D2
6.83E-35 CD40
3.69E-14 ANXA1
1.79E-17 GSN
2.59E-23 PNRC1
2.13E-18 NINJ1
6.63E-15 GAPDH
4.74E-49 FCGR2A
3.58E-15 CFP
4.55E-25 TNFRSF1B
5.45E-21 NFATS

0.005701633 METRNL

3.01E-12 PLAUR
1.32E-11 MAFF
1.92E-20 CAPN2
1.10E-18 AP1S2
1.48E-23 SPAGY
7.51E-32 VASP
1.88E-28 ATP1B1
2.17E-10 CDKN1A
6.30E-26 MALT1
CDC42EP3
CCRL2
MAP4K4
ARL5B
USP12
CSTB
FLNA
BAZ1A
BLVRB
CD300E
IRF1
RAPGEF1
PRDX1
JCHAIN
PLAU
RALA
ICAM3
AES
TPRA1
DENND4A
GPR157
MYO1G
CD37
DNTTIP2
CACYBP
S100A8

-0.28765
-0.28686
-0.28552
-0.28546
-0.28319
-0.28278
-0.28163
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-0.24832
-0.24672
-0.24527

-0.2439
-0.24277
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-0.22512
-0.22491

3.10E-20
5.50E-09
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3.88E-30
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7.95E-16
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3.15E-20
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1.35E-15
6.27E-39
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3.19E-23
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2.87E-14
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CALM1 -0.22163 4.51E-17
ILIORA -0.22013 5.81E-15
KDM6B -0.22007 1.32E-15

PPP1R14B -0.21807 1.48E-18

LACTB -0.21789 2.58E-16
DUSP2 -0.21716 4.92E-07
EFHD2 -0.21419 5.24E-18
ARL8B -0.21247 6.34E-13
STIP1 -0.21213 4.80E-21
CTSz -0.21142 7.96E-15
CAST -0.21121 1.77E-16
ICAM1 -0.21029 0.03484
PLK3 -0.21004 4.13E-12
CD9 -0.20856 0.004541

PNPLAS8 -0.20804 3.73E-14
PPP1R15B -0.20788 3.05E-05
CHORDC1 -0.20753 6.10E-18
ZFY -0.20737 6.35E-33
Clorfl62  -0.20713 1.05E-22
ZC3H12A  -0.20684 2.82E-15

MBP -0.20476 5.41E-14
CITED4 -0.20347 5.39E-13
MNDA -0.20274 4.13E-15
ACTG1 -0.20257 2.54E-25
CD48 -0.2013 2.66E-11

RPL18 -0.20096 1.30E-44
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M7 FOSB 1.009063 4.23E-276
M7 TNFAIP3  0.971054 5.07E-259
M7 MRC1 0.85316 1.41E-232
M7 KLF4 0.845135 3.19E-213
M7 NR4A2 0.852964 1.50E-207
M7 DUSP1 0.747596 2.21E-193
M7 FOS 0.93288 2.97E-172
M7 CD83 0.620904 3.84E-170
M7 FOLR2 0.888235 9.32E-169
M7 KLF6 0.715811 2.92E-156
M7 CcD163 0.612903 2.92E-148
M7 PNRC1 0.508571 2.85E-144
M7 ZFP36 0.522818 6.07E-132
M7 NEAT1 0.681366 9.53E-132
M7 SLC40A1  0.505537 1.53E-131
M7 ZFAND5  0.596218 2.78E-131
M7 EGR1 1.06785 1.02E-130
M7 F13A1 1.099542 7.28E-129
M7 TSC22D3  0.535036 5.21E-125
M7 CCL3 0.902018 2.06E-123
M7 JUNB 0.517427 2.25E-122
M7 KLF2 0.80861 2.63E-121
M7 MAF 0.540628 3.15E-118
M7 NFKBIZ 0.581204 7.87E-112
M7 CCNL1 0.526068 1.80E-111
M7 HES1 0.698375 4.54E-111
M7 JUND 0.510955 1.06E-110
M7 JUN 0.816444 1.31E-110
M7 ICAM1 0.588734 2.77E-110
M7 MAFF 0.590731 6.69E-108
M7 KDM6B 0.566587 2.33E-103
M7 IER3 0.712718 2.96E-103
M7 STAB1 0.622278 1.38E-99
M7 IER2 0.674185 5.07E-99
M7 LYVE1 0.692658 1.53E-97
M7 ATF3 0.667888 2.40E-97
M7 CCL4 0.856588 4.37E-96
M7 HSPAS 0.518535 1.78E-94
M7 CXCL2 0.780531 3.09E-94
M7 LTC4S 0.589625 7.54E-94
M7 ELL2 0.553941 1.25E-84
M7 CXCL8 0.590623 3.14E-81
M7 PDK4 0.657982 2.34E-79
M7 BTG2 0.579485 1.26E-78
M7 CCL4L2 0.755012 4.10E-76
M7 CXCR4 0.538895 2.11E-75
M7 IL1B 0.599742 2.99E-72

M7 PTGS2 0.634458 6.29E-72
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M7 TR 0.546561
M7 NR4A1l 0.506879
M7 NLRP3 0.538157
M7 DUSP6 0.518986
M7 CCL3L3 0.813307
M7 HSPA1B  0.533624
M7 CXCL3 0.578672
M7 PRDM1 0.501032
M7 RNASE1  0.611347
M7 THBS1 0.553799
M7 IGLC3 0.523912
M8 ACP5 0.790933
M8 LGALS3 1.005682
M8 CD9 0.692784
M8 SDS 0.704316
M8 LYZ 0.593559
M8 FABP5 0.638491
M8 GPNMB  0.580736
M8 MMP12 0.51479
M8 TIMP1 0.500267
M8 APOC1 0.508046
M8 MT2A 0.566905
M8 MT1G 0.523668
M8 MT1X 0.608234
M9 IL22RA2  1.170857
M9 NRG1 0.70072
M9 PLA2G2D 0.841636
M9 IL2RG 0.839857
M9 MMP12  2.122317
M9 TNFRSF9  0.567362
M9 IL7R 0.801193
M9 MMP9 1.932434
M9 ENPP2 1.191284
M9 LGALS2 1.323239
M9 IL411 0.830911
M9 PTGDS 2.020959
M9 HLA-DQB2 0.734882
M9 ATOX1 1.152716
M9 CST17 0.74162
M9 TMEM176 0.851909
M9 CTSH 0.895847
M9 TMEM176. 0.780614
M9 LYz 1.106362
M9 ILIRN 0.893798
M9 GSTP1 0.694707
M9 S100B 1.054142
M9 SERPINA1 0.655293
M9 ADAMDEC 0.783831
M9 ARHGDIB 0.662509
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2.39E-64
2.68E-59
4.77E-57
4.25E-52
1.97E-50
8.07E-49
1.10E-46
6.06E-40
7.57E-31
0.000629
1.36E-174
1.08E-170
4.52E-132
2.94E-130
4.88E-125
9.66E-85
1.62E-82
1.69E-78
3.27E-74
1.47E-33
2.70E-25
1.14E-23
7.40E-20
9.76E-226
3.41E-167
3.28E-120
5.79E-91
6.28E-88
1.63E-77
1.60E-67
1.50E-62
1.12E-60
1.59E-58
4.47E-55
2.84E-54
7.48E-50
1.54E-49
4.94E-47
2.78E-46
5.36E-44
7.90E-44
2.33E-43
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2.41E-42
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5.70E-41
7.92E-39
1.07E-38
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M9 ENO1 0.634591 1.61E-35
M9 CAPG 1.020336 2.83E-35
M9 GSN 0.745927 5.91E-34
M9 PLA2G7 0.651554 8.98E-33
M9 PRELID1 0.69906 1.45E-30
M9 PPA1 0.790676 1.92E-30
M9 ALOX5AP 1.278542 4.85E-29
M9 ITGB2 0.53707 1.37E-25
M9 CSTA 0.585328 2.20E-25
M9 SERPINF1 0.659014 2.55E-25
M9 SYNGR2  0.573878 5.68E-25
M9 PRDX1 0.509078 7.01E-23
M9 RALA 0.506197 2.22E-22
M9 EFHD2 0.544071 5.66E-22
M9 C150rf48 0.66877 1.98E-20
M9 TYMP 0.552502 2.85E-20
M9 CoTL1 0.512371 9.51E-20
M9 MYDGF 0.528733 3.76E-19
M9 PFN1 0.555179 2.85E-18
M9 CXCLS 1.167317 7.34E-14
M9 FUCA1 0.566332 2.17E-12
M9 IL18 0.542143 7.13E-12
M9 G0S2 0.528025 3.84E-08
M10 FTL 0.717363 2.45E-92
M10 OAZ1 0.509002 1.12E-66
M10 GAPDH 0.679266 2.96E-63
M10 RPL7A 0.543585 1.31E-62
M10 YBX1 0.583305 6.37E-53
M10 S100A11 0.619082 3.37E-45
M10 GNAS 0.570088 4.66E-41
M10 GSTP1 0.557185 5.09E-41
M10 BRI3 0.569526 2.18E-33
M10 APOE 1.210938 2.01E-27
M10 FUCA1 0.980098 2.51E-26
M10 LGALS3 0.695002 2.45E-21
M10 PRDX1 0.598175 1.85E-19
M10 NUPR1 0.720171 3.18E-19
M10 CSTB 0.734237 3.53E-19
M10 CTSD 0.665014 1.90E-16
M10 APOC1 0.843922 2.43E-14
M10 ATP6VOD2 0.595397 8.64E-10
M10 PLA2G7 0.675315 7.28E-09
M10 VEGFB 0.571188 3.68E-07
M10 MT1G 1.007437 7.43E-07
M10 CRYAB 0.776308 8.32E-07
M10 RAB42 0.538144 7.49E-06
M10 MT1X 0.744601 2.01E-05

M10 MT1E 0.557885 0.00012
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lleum DEGs avg_logFC adj. p-value Colon DEGs avg_logFC adj. p-value

ADAMDEC1 0.996761 1.45E-126 RNASE1 -1.93465 4.38E-142
DNASE1L3  0.901433 2.34E-146 HSPA1A -1.60061 1.38E-169
JAML 0.759474 1.38E-126 HSPA6 -1.47618 4.26E-25
CXCL1 0.720775 1.34E-40 HSPA1B -1.41809 6.45E-138
LGALS2 0.659704 4.64E-71 HSP90OAAl -1.25347 2.01E-147
Cllorf96 0.630179 1.24E-36 F13A1 -1.21704 4.18E-89
CCDC186 0.629328 4.07E-56 HLA-DQA2 -1.20187 5.48E-54
C5AR2 0.608943 6.00E-42 HSPH1 -1.19345 3.85E-86
GCLC 0.595748 2.86E-62 DNAJB1 -1.17886 1.07E-101
LIPA 0.577865 2.28E-18 S100A4 -1.17192  3.21E-117
ciQc 0.571755 9.43E-87 BAG3 -1.05034 4.83E-46
CCL18 0.562822 6.44E-18 HSPD1 -1.01277 7.50E-57
AC090498.1 0.558439 1.86E-26 HSPB1 -0.98473 4.41E-11
CDh74 0.536484 3.46E-124 HSP90AB1 -0.89437 4.39E-118
FAM21A 0.514193 2.76E-20 DNAJA1 -0.81016 1.09E-85
HLA-DQA1  0.502852 7.40E-61 DDX3Y -0.78398 1.10E-43
ITGB7 0.501784 6.77E-74 ALOX5AP -0.75779 2.71E-47
LGALS3BP 0.501581 1.53E-61 ZFAND2A -0.75132 7.44E-20
CTSC 0.499622 1.86E-74 IGHA1 -0.70837 2.41E-46
TMSB4X 0.498796 9.82E-78 APOE -0.69966 9.29E-15
B2M 0.48109 1.36E-73 HSPE1 -0.69765 1.37E-50
CLEC10A 0.479676 5.81E-68 S100A6 -0.69731 1.39E-36
CXCL12 0.47937 1.11E-55 FCGR3A -0.66533 5.15E-42
TXN 0.476254 6.95E-40 IGKC -0.65731 6.29E-50
Clorf54 0.470133 3.37E-38 S100A9 -0.63287 1.48E-34
ACP5 0.467697 9.30E-58 LTC4S -0.63136 2.72E-52
RNASET2 0.467211 2.26E-66 KLF2 -0.61363 7.34E-30
THBS1 0.467069 4.26E-24 RHOB -0.61359 2.00E-17
NET1 0.452648 4.67E-55 DNAJA4 -0.61243 4.77€-37
HLA-DRB1  0.450787 8.03E-92 EGR1 -0.59126 1.90E-23
AKIRIN2 0.449223 3.21E-33 TSPO -0.57828 7.25E-72
SEPP1 0.448535 2.86E-84 Clorf162 -0.56849 8.49E-55
FABP6 0.434882 1.67E-57 STAB1 -0.54203 1.14E-30
CXCL3 0.43126 2.43E-27 IL1B -0.53819 3.66E-21
TSC22D1 0.425073 1.07E-22 FCGR2B -0.5367 8.71E-41
ITM2C 0.415703 4.99E-40 CD14 -0.53 3.12E-32
IL6 0.412459 1.30E-28 IGLC2 -0.52513 1.11E-17
LPARG 0.410369 2.99E-37 PNP -0.52028 3.67E-39
FAM105A 0.403027 5.44E-38 IER3 -0.50923 1.75E-25
CYTIP 0.388709 7.76E-35 GSN -0.49684 8.58E-39
LYz 0.388098 8.18E-48 GYPC -0.49588 2.63E-29
NPC2 0.385387 3.46E-45 HSPAS8 -0.49154 1.00E-32
VSIG4 0.381495 8.02E-35 FOSB -0.4867 5.70E-42
CRIP1 0.381179 4.80E-25 C5AR1 -0.47528 5.16E-27
EPB41L2 0.377263 2.40E-31 EMP3 -0.46846 2.66E-26
PLBD1 0.374731 1.92E-41 IERS -0.4564 2.74E-06

VIMP 0.37214 2.16E-29 EIF4A3 -0.45525 2.94E-10
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HLA-DRA
HLA-DMB
MS4A6A
IL2RA
TMEM176B
HLA-DMA
CYBA
CPVL
MPEG1
SULT1A1
VCAM1
GADD45A
DYNLT1
NBEAL1
HEXB
LAPTM4A
MGST2
DNAJB9
ADORA3
TMEMS59
SMIM3
METTL7A
CPM
SULF2
C10A
LAG3
CXCL2
CTSS
SIAH2
CLEC11A
PALLD
ClQB
HLA-E
TBXAS1
PPDPF
EPHX1
EPSTI1
AXL
GSTP1
N4BP2L1
CXCL16
SERPINF1
SFT2D1
LINCO0996
CD69
CLEC7A
CD1D
C3AR1
GRN

0.36253
0.353856
0.353354
0.351498
0.350029
0.345094
0.338707
0.333835
0.331011
0.330961
0.329567
0.328237
0.325289
0.321567
0.321385
0.320691

0.31491
0.314441
0.313034
0.309929
0.309011
0.304936
0.299788
0.298379
0.297475
0.296617
0.294812
0.293869

0.29359
0.291552
0.290639
0.288841
0.288002
0.287543
0.287154
0.286587
0.285867

0.28338

0.28269
0.280338
0.279765
0.278132
0.275704
0.275255
0.274252
0.274212
0.274149
0.273197
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NAAA 0.266719 8.91E-20 FXYD5 -0.286 4.53E-11
TNFSF9 0.26564 4.14E-12 AHNAK -0.28415 3.09E-09
CHPT1 0.265433 6.18E-14 NR4A1l -0.28343 7.30E-10
PTGER2 0.264681 4.49E-27 GAS6 -0.28302 4.55E-16
RABOA 0.263163 6.60E-23 NFKB1 -0.28285 5.76E-05
CD36 0.262334 6.81E-19 RPS7 -0.28201 3.29E-29
PPT1 0.260507 6.09E-10 THBD -0.27848 8.80E-08
TMBIM4 0.257373 2.63E-13 FOLR2 -0.27808 8.01E-06
GPR34 0.256107 1.19E-09 RPS4Y1 -0.2753 7.81E-09
TYROBP 0.25463 2.32E-44 SERTAD1 -0.27104 1.70E-06
GPR183 0.251087 4.69E-21 HIF1A -0.27088 2.46E-05
RPL7 0.250021 1.28E-17 SQSTM1 -0.26875 0.00267
CSF2RA 0.249276 1.87E-18 KLF10 -0.26823 0.0228293
HLA-DPB1 0.249073 1.25E-45 CALM1 -0.26803 1.80E-12
CHMP1B 0.248752 1.39E-18 RBMS1 -0.26663 7.75E-07
ZDHHC4 0.248574 1.71E-22 EGFL7 -0.26575 2.42E-18
HMGN3 0.246346 7.29E-12 ITGAX -0.26366 2.39E-10
SAMSN1 0.245696 1.17E-06 YBX3 -0.26182 5.42E-09
CTSz 0.243072 9.75E-11 SERPINA1 -0.26154 3.37E-21
IFNGR1 0.243004 8.14E-13 CD37 -0.25892 4.19E-10
DSTN 0.242837 2.99E-15 SLC5A3 -0.25624 8.21E-11
SNX2 0.242679 6.83E-15 BCAT1 -0.25494 9.30E-14
SLAMF7 0.24215 3.61E-16 NAMPT -0.25479 8.62E-13
CXCR4 0.242025 4.25E-17 RPL30 -0.25395 1.23E-21
PELI1 0.23993 5.23E-11 RPL13 -0.25339 1.36E-33
MYL12A 0.238664 3.95E-07 SRSF3 -0.25316 4.70E-12
ASAH1 0.238266 9.21E-17 C3 -0.25036 2.38E-13
FAM110A 0.238214 3.63E-18 FTH1 -0.24956 3.58E-18
IFNGR2 0.238028 4.98E-17 RPL24 -0.24955 8.93E-26
SERPING1 0.236098 4.34E-21 SFPQ -0.24948 8.77E-11
SASH1 0.234545 9.30E-13 RPL18 -0.24905 2.87E-31
LRPAP1 0.232396 1.90E-15 RPS24 -0.24898 3.69E-35
CAT 0.232326 1.79E-17 EEF1B2 -0.24864 4.87E-17
GUSB 0.23177 1.72E-17 SEMA4A -0.24765 0.0015357
LILRB5 0.229894 4.75E-16 TPT1 -0.24473 2.86E-24
FNBP1 0.228937 1.34E-11 RPL28 -0.24429 9.31E-35
DST 0.228668 1.33E-15 SNX6 -0.24401 6.08E-06
SH3PXD2B  0.227767 4.14E-22 BTG1 -0.2431 2.04E-05
OAZ2 0.2276 2.07E-18 SH3BGRL3 -0.24222 6.44E-08
RHOH 0.227392 8.50E-24 TNFRSF1B -0.23949 1.43E-06
SLC31A2 0.225736 4.89E-13 LMNA -0.23842 7.06E-05
XIST 0.225199 5.25E-09 CLTC -0.236  0.000748
CDKN1C 0.224702 5.11E-18 FSCN1 -0.23527 2.58E-13
P2RY13 0.22434 8.19E-13 PSTPIP2 -0.23476 7.26E-07
NDUFA12 0.223611 7.99E-11 VPS13C -0.23278 0.0020609
VAMP8 0.222942 1.50E-18 MAF -0.23242 2.92E-07
RDX 0.222668 1.58E-14 MAFF -0.23206 0.0282349

IGF1 0.221777 8.90E-12 CCL2 -0.23036 1.81E-05
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lleum DEGs avg_logFC adj. p-value Colon DEGs avg_logFC adj. p-value

SEPP1 0.804048 1.32E-63 HSPA1A -1.86305 1.38E-106
CXCL1 0.774727 9.01E-31 HSPA6 -1.6796 1.96E-32
ADAMDEC1 0.703654 6.38E-45 HLA-DQA2 -1.50396 2.96E-54
Cllorf96 0.668562 5.77E-16 HSPA1B -1.49631 1.13E-91
THBS1 0.661768 6.55E-33 S100A4 -1.45598 1.92E-158
JAML 0.653356 6.34E-73 APOE -1.42209 5.93E-34
GPR34 0.597441 6.32E-40 DNAJB1 -1.40084 1.28E-71
TSC22D1 0.559713 1.63E-22 RNASE1 -1.35544 6.57E-41
VSIG4 0.544301 5.31E-52 HSP90AA1 -1.30736 7.61E-93
CXCL3 0.531465 4.49E-19 IGKC -1.1164 1.85E-19
LGALS3BP 0.513535 1.64E-41 HSPD1 -1.1129 1.66E-64
CPM 0.512301 3.24E-47 HSPB1 -1.09222 2.07E-16
C5AR2 0.498139 3.93E-17 BAG3 -1.03949 1.70E-48
MS4A6A 0.497769 4.85E-59 S100A6 -0.98662 1.05E-95
RGS1 0.479312 8.68E-42 HSPH1 -0.96748 2.57E-41
ciQc 0.479277 1.63E-44 LGALS3 -0.90848 1.16E-61
AC090498.1 0.467606 1.39E-13 GOS2 -0.90666 2.53E-16
GCLC 0.464751 2.05E-30 HSP90AB1 -0.90117 4.92E-88
CTSC 0.454981 1.18E-47 HSPE1 -0.84965 7.21E-62
RNASET2 0.452785 1.48E-38 DNAJA1 -0.76185 1.98E-45
ITM2C 0.452392 8.76E-29 APOC1 -0.75239 8.78E-16
CD74 0.441354 8.35E-68 ZFAND2A -0.74468 2.06E-21
Cl1QA 0.427073 7.47E-60 S100A10 -0.74107 4.48E-79
CXCL12 0.423492 9.82E-31 ALOX5AP -0.73456 5.01E-41
FABP6 0.414357 4.09E-44 S100A9 -0.70092 3.44E-38
FAM105A 0.40691 8.10E-26 TSPO -0.68726 2.80E-97
CD209 0.402958 4.50E-33 IGHA1 -0.65492 2.77E-22
NPC2 0.397562 6.32E-50 FCGR2B -0.63652 1.33E-53
LIPA 0.396187 4.80E-06 CAPG -0.62762 4.30E-51
LILRB5 0.391527 4.56E-19 JUN -0.61238 0.0027475
ADORA3 0.390251 4.64E-23 LGALS1 -0.61161 3.36E-77
EVI2B 0.384595 9.18E-31 IER5 -0.58965 4.77E-09
LAG3 0.383745 1.39E-20 VIM -0.58934 1.43E-51
CXCL2 0.383154 6.82E-19 CD9 -0.56487 1.37E-50
CCDC186 0.37339 1.01E-17 EMP3 -0.53186 1.08E-40
SMAP2 0.366526 2.89E-28 CTSD -0.52757 1.26E-12
EPB41L2 0.364408 1.99E-18 BASP1 -0.52574 1.53E-24
TMSB4X 0.364143 1.70E-33 PRDX1 -0.51689 2.95E-41
HERPUD1 0.363789 3.58E-35 CTSH -0.51019 2.07E-39
TBXAS1 0.355325 5.44E-30 F13A1 -0.50496 1.97E-22
TMEMS59 0.354627 3.32E-19 HSPAS8 -0.47748 1.75E-34
CLEC11A 0.354454 6.33E-12 RHOB -0.4764 1.20E-06
IL2RA 0.350729 1.25E-18 CSTB -0.47605 1.26E-24
Clorf54 0.349097 7.66E-16 IL411 -0.47573 4.94E-26
FCGRT 0.348741 6.62E-33 SH3BGRL3 -0.47465 8.86E-49
TYROBP 0.346604 1.15E-63 IL1B -0.47414 0.0099606

AKIRIN2 0.34475 2.25E-09 TWISTNB -0.47149 4.97E-13


https://doi.org/10.1101/2021.03.28.437379
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv prepgrt [gpi: https://doi@_rgﬂ@?g%/ZOZH%ﬁ?@ﬁ]@)@qversion pos@_@epgq_r 19, ?@rﬁhzfopyright holder for this preprint
C ispla

(which was not certified by peer réview) isS the author/funder, who has granted bioRXiv a license to y thé preprint in perpetuity. It is made
GMFG 0.34028availabis, 9638 CBYrRT6ED 4.0 Inte@i58H Geense7 49E-37
SIAH2 0.339153 1.11E-21 DNAJA4 -0.45426 2.03E-21
LAPTM4A 0.334958 1.84E-21 C150rf48 -0.45218 2.38E-06
NET1 0.333808 2.04E-20 TXNIP -0.43776 3.86E-07
GSTM3 0.327709 3.58E-23 |IER3 -0.42588 2.18E-06
METTL7A 0.320768 1.83E-21 TYMP -0.4207 1.89E-31
CAT 0.312877 6.12E-18 EIF4A3 -0.42009 5.98E-09
LPAR6 0.309444 1.06E-15 LSP1 -0.41091 1.54E-22
INSIG1 0.309335 1.39E-05 FCGR3A -0.41024 2.74E-14
QPRT 0.309119 1.07E-20 GSN -0.41 1.60E-30
JUNB 0.308968 3.91E-20 GAPDH -0.38937 4.30E-35
CXCR4 0.307923 4.17E-11 PLA2G7 -0.38837 1.11E-08
NBEAL1 0.306507 7.29E-13 JCHAIN -0.386 0.0180776
DNAJB9 0.306042 1.83E-07 PNP -0.38325 1.28E-28
SARAF 0.305426 3.05E-26 HCST -0.37282 1.19E-28
PLBD1 0.305365 7.37E-19 CALM1 -0.37261 2.70E-30
RNASE6 0.303621 4.06E-20 HSPAS -0.36862 3.45E-11
MGST2 0.299303 5.18E-18 ANXA2 -0.35691 2.02E-28
TMEM176B 0.298733 7.17E-18 LDHA -0.35508 2.27E-10
RNF144B 0.29858 1.43E-13 PLEK -0.3479 1.89E-09
C10B 0.296088 3.17E-28 ACTG1 -0.3478 3.93E-34
C3AR1 0.294071 7.64E-17 CHORDC1 -0.3448 1.60E-17
MRC1 0.294001 2.67E-11 FLNA -0.34389 8.48E-28
PALLD 0.293774 9.97E-26 TUBB4B -0.33444 2.97E-15
PRDM1 0.291377 3.87E-06 MARCKSL1 -0.32608 5.96E-08
CXCL16 0.290857 2.59E-19 S100A11 -0.32597 4.04E-25
CcD163 0.290372 9.21E-20 HMOX1 -0.3252 9.89E-11
c2 0.290065 1.37E-13 UBE2S -0.32485 3.06E-12

SULT1A1 0.288549 1.93E-11 JUND
LINCO0996  0.285842 5.41E-19 PPP1R14B
MS4A4A 0.285395 3.50E-05 CALR

0.32338 6.64E-15
0.31994 2.87E-21
0.31826 3.98E-18

IL6 0.283577 6.56E-10 ANXA1 -0.31712 3.79E-09
CD302 0.281776 3.39E-18 PPIF -0.31595 4.66E-11
GPR183 0.281354 2.37E-21 RPL22L1 -0.31359 1.59E-11
RPL7 0.281194 8.96E-19 LAMP1 -0.31117 1.37E-17
LST1 0.281056 1.19E-21 CCND2 -0.3106 2.08E-33
PELI1 0.277413 1.23E-12 SQSTM1 -0.30571 7.36E-11
NAAA 0.277198 2.01E-13 CD44 -0.30443 6.20E-09
TMBIM4 0.276614 1.61E-11 PPP1R15A -0.30179 0.0002676
SLC31A2 0.276539 9.71E-15 IL1RN -0.3009 1.06E-08
CTSS 0.275942 4.45E-38 FCGR2A -0.29864 2.62E-10
RPL31 0.272464 6.69E-15 LMNA -0.29685 6.57E-07
SERPINF1 0.271478 1.83E-06 SERPINA1 -0.29614 8.10E-21
CSF1R 0.2712 2.83E-15 CFD -0.29548 4.10E-07
RBPJ 0.270485 6.88E-13 TUBA1C -0.29381 2.13E-13
ZFANDS5 0.267319 2.20E-14 CD40 -0.29285 7.58E-08
AXL 0.266535 1.85E-13 ATF5 -0.29145 4.39E-10
HLA-E 0.265426 4.31E-27 SOD2 -0.28983 1.00E-07

CLEC10A 0.263535 5.20E-14 NAGK -0.28942 2.69E-13
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8.36E-09 MNDA
1.29E-11 ZFAS1
5.24E-10 RPS4Y1
0.0122226 EFHD2
4.83E-13 SLC16A3
1.54E-07 CD55
0.000974 MRPL18
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7.44E-14 H2AFZ
6.20E-10 LRRFIP1
9.02E-14 ITGAX
9.80E-07 CDKN1A
9.28E-17 RPS7
3.78E-09 PMP22
2.40E-22 SERTAD1
7.99E-07 GBP1
1.72E-11 DNAJB4
2.94E-13 PSMA7
2.80E-11 RPS12
1.04E-10 CACYBP
0.0006781 METRNL
1.82E-09 ADM
1.27E-07 GNAI2
1.22E-11 IGLC2
5.59E-13 IER5L
1.18E-07 NME1
3.22E-11 RPL7A
5.26E-10 DNTTIP2
1.08E-12 SAMHD1
5.27E-09 SSR3
5.24E-11 DNAJB6
3.73E-22 EIF5A
4.14E-08 RPL18
1.16E-05 RPL28
4.31E-20 HSP90B1
4.01E-07 AHNAK
9.51E-11 FKBP4
2.95E-13 SEC61B
8.98E-10 TNFAIP8
4.53E-09 CHCHD2
1.09E-15 FXYD5
8.59E-05 RALA
1.99E-14 OGFRL1
2.21E-09 CD52
1.04E-22 CD99
2.13E-05 GNG5
4.72E-11 RPL24

-0.28675
-0.28616
-0.286
-0.284
-0.27757
-0.27745
-0.27638
-0.27604
-0.27464
-0.27431
-0.27424
-0.27279
-0.27249
-0.27225
-0.26766
-0.26549
-0.26458
-0.26424
-0.2615
-0.25571
-0.25462
-0.25218
-0.25174
-0.25099
-0.25072
-0.25061
-0.24867
-0.24803
-0.24784
-0.24694
-0.24625
-0.24559
-0.24503
-0.24338
-0.24328
-0.23994
-0.23924
-0.23874
-0.23758
-0.23737
-0.23708
-0.23667
-0.23139
-0.23073
-0.23054
-0.23005
-0.22987
-0.22914

3.57E-13
1.26E-14
1.10E-10
1.03E-14
6.08E-11
1.56E-08
1.42E-09
8.01E-06
5.19E-07
1.57E-05
8.86E-09
3.15E-14
1.02E-06
6.10E-26
7.92E-11
1.85E-09
0.012776
2.16E-05
7.82E-21
1.02E-21
2.45E-07
2.37E-06
0.0001737
8.47E-13
6.79E-06
0.0003219
1.88E-15
2.71E-18
4.43E-10
1.48E-07
1.00E-12
0.0029308
1.19E-10
1.82E-28
2.68E-29
0.0007864
3.32E-07
2.92E-06
5.47E-15
0.0024666
5.26E-17
1.12E-12
7.15E-05
2.65E-06
4.69E-09
2.06E-08
3.12E-10
1.46E-22
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RGS18
IDH1
SFT2D1
GATM
H1FX
HES1
FOXO3
MAT2B
CYTIP
EVL
TPP1
HLA-DQA1
GSTM4
PYCARD
TNFAIP3
FES
WLS
ALDH9A1
EPHX1
HCK
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0.219523
0.219283
0.219143
0.218938
0.218893
0.218867

0.21865
0.218174
0.217595
0.217372
0.216984

0.21675
0.216589
0.216341
0.216083
0.214157
0.214086
0.210647
0.210025
0.209097
0.208461
0.208347
0.207917
0.207224
0.206384
0.205717
0.205165
0.203833
0.202133
0.201442
0.200825
0.200603
0.200198

1.63E-08 CTSB
1.06E-05 RHOC
6.94E-07 CKLF
1.32E-09 ATOX1
3.17E-08 RPL13
1.70E-08 ACP5
0.0003609 TCEB1
8.87E-14 HNRNPAB
3.57E-10 CCT4
1.07E-10 TXN
5.15E-06 UBB
3.08E-09 NDUFC2
6.53E-07 GYPC
1.10E-09 PPIB
4.82E-07 COX411
2.16E-06 SNAI1
1.08E-05 RPL8
0.0030097 SOD1
3.34E-07 STIP1
1.85E-07 BLVRB
1.21E-06 SDSL
5.07E-06 TUBB
5.01E-08 TPM4
7.72E-10 MT-ND5
1.20E-05 CD37
6.03E-08 ATP5G3
2.21E-07 SLAMF7
0.0025986 HIF1A
4.77E-08 SLC25A3
9.57E-14 SFPQ
3.65E-09 GADDA45GIP1
2.22E-16 RAB11FIP1
1.77E-05 EEF1B2
ALDOA
GSTO1
CYB561A3
PSMB6
GNA15

-0.22787
-0.22756

-0.2271
-0.22492
-0.22459
-0.22444
-0.22395
-0.22219
-0.22207
-0.22191
-0.21808
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2.51E-05
9.62E-17
3.08E-05
0.0002248
1.42E-19
0.0046771
1.57E-09
3.17E-08
1.50E-11
0.0170626
0.0021119
6.79E-09
1.31E-08
1.28E-07
4.44E-17
0.0038082
3.18E-25
2.41E-06
7.23E-08
0.004762
2.03E-05
1.71E-05
2.76E-05
4.49E-08
3.59E-12
3.80E-10
0.0411307
0.0028359
3.26E-08
6.72E-06
2.09E-08
0.0027564
6.69E-09
0.000504
2.31E-06
0.0016909
6.81E-05
1.08E-06
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lleum DEGs avg_logFC adj. p-value Colon DEGs avg_logFC adj. p-value

VSIG4 0.912084 0.0021631 HSPA1A -1.8675 3.59E-06
MRC1 0.82344 0.0261213 DNAJB1 -1.25767 0.0027274
LILRB5 0.612959 0.0005295 HSPA1B -1.23605 0.0025651
CPM 0.526976 0.0005793 ALOX5AP -1.2062 0.0065258
TYROBP 0.335817 0.0251729 MMP9 -1.07254 0.0038624
HSPH1 -1.00004 0.0182016
CAPG -0.93086  0.000829
HSPD1 -0.90223 0.0132324
HSPE1 -0.78245 0.0125559
CTSH -0.62801 0.0124939
GSN -0.62619 0.0462378

PPM1N -0.60866 0.0283811
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lleum DEGs avg_logFC adj. p-value  Colon DEGs avg_logFC adj. p-value

CXCR4 1.364101 1.16E-12 APOE -1.91748 7.15E-24
CCLAL2 1.21756 1.01E-09 HLA-DQA2 -1.75881 1.57E-12
RGS1 1.082339 5.72E-11 S100A4 -1.57335 8.74E-30
AREG 1.082295 9.94E-05 RPS4Y1 -1.49608 4.66E-20
MALAT1 1.081388 0.000101462 LGALS3 -1.35654 7.47E-20
CCL3L3 1.075992 8.98E-07 APOC1 -1.32836 6.16E-13
ZFANDS5 1.073519 1.29E-08 S100A9 -1.23975 3.35E-09
ZFP36 1.058909 1.21E-07 S100A6 -1.1496 8.52E-12
FOS 0.960156 1.93E-07 MMP12 -1.082 0.0058456
GPR183 0.924235 1.06E-09 LGALS1 -1.07428 2.09E-24
JUNB 0.920226 4.65E-10 FUCA1L -1.02144 1.07E-08
HERPUD1 0.913016 4.43E-15 RNASE1 -0.98904 7.36E-08
KLF4 0.901195 1.79E-06 CTSD -0.94499 3.64E-08
THBS1 0.873745 1.50E-05 TSPO -0.93512 2.26E-11
SMAP2 0.842677 0.002752991 PRDX1 -0.91139 2.37E-13
TNFAIP3 0.837199 0.002772452 PLA2G7 -0.88408 1.84E-06
CEBPD 0.828651 1.01E-09 CSTB -0.85671 8.02E-07
TSC22D3 0.815955 1.04E-08 S100A10 -0.80776 1.70E-09
CXCL2 0.815281 0.000303029 CTSB -0.76922  0.000234
NFKBIA 0.780736 0.000106096 CD52 -0.75972 2.69E-06
FABP6 0.762313 4.87E-06 CD9 -0.7301 4.22E-05
STK17B 0.758021 0.019080236 CAPG -0.71357 1.06E-06
CEBPB 0.738453 1.69E-06 BAG3 -0.70693  0.001682
DUSP1 0.727604 0.000195931 LYZ -0.70416 1.43E-10
CXCL3 0.663772 0.00356095 ALOX5AP -0.6693 0.0020388
MRC1 0.65217 0.016183174 GPNMB -0.64969 0.0021004
MCL1 0.621611 0.001184653 PSAP -0.64087 1.59E-05
SRGN 0.611554 0.00018572 GSN -0.60462 0.0138756
SEPP1 0.597976 2.71E-11 LSP1 -0.60438 4.93E-05
CPM 0.581787 0.007883268 CTSH -0.60066 0.0021917
BTG1 0.566345 0.002973751 ATOX1 -0.58371 0.01346
CXCL12 0.537693 0.041732602 TYMP -0.58016 1.35E-05
VCAM1 0.511234 0.001800766 FABP5 -0.5786 0.0133932
MS4A6A 0.504789 3.83E-06 HSP90AA1 -0.56937 0.0151734
TAGLN2 0.481398 0.028723905 EMP3 -0.53202 0.0007805
UBC 0.470287 0.000422337 GAPDH -0.53129 5.04E-10
RNASET2 0.414562 0.009133782 FTL -0.50288 2.33E-11
RPS29 0.365477 1.64E-06 ANXA2 -0.49188 0.0017267
RPS4X 0.294923 0.001265063 ABRACL -0.4859 0.0054349
CST3 0.275784 0.000828014 DBI -0.47639 0.0188397

S100A11 -0.4705 4.54E-06

SH3BGRL3 -0.46494 0.0001013

FCGR2B -0.4649 0.0366712

RHOA -0.45469 0.0006678

coTLl -0.42974 0.0133686

PARK7 -0.42786 0.0360932

ACTB -0.402 3.03E-08
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VIM
MYL6
ACTG1
OAZ1
SERF2

-0.37058
-0.35176
-0.34998
-0.29553
-0.28703

0.0002355
0.0074443

6.72E-05
0.0023666
0.0069673
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Patient |Diagnosis [Site Sevebityinder [Afsdpi2amEh!
1|CD Colon Active- mild |YES
1|CD Colon Quiescent |YES
1|CD lleum Quiescent |YES
2|CD Colon Active- mod
2|CD Colon Quiescent
2|CD lleum Active- mild
3|CD Colon Active- mild
3(CD Colon Quiescent
4|CD Colon Active- mild
4|CD Colon Active- mild
4|CD Colon Active- mod
5(IBDU (CD) |Colon Active- mild
5/IBDU (CD) |Colon Quiescent
6[CD Colon Active-mod
7(1BDU (CD) |Colon Active- mild
7(1BDU (CD) |Colon Quiescent
8[ucC Colon Active- mod
8[ucC Colon Quiescent
9(ucC Colon Active- mod |YES
9(ucC Colon Quiescent |YES
9|ucC lleum Quiescent |YES

10|CD Colon Quiescent
10|CD lleum Active- mild
11{IBDU (UC) |Colon Quiescent
11{IBDU (UC) |lleum Quiescent
12]UC Colon Quiescent
13]UC Colon Active- mod
13]UC Colon Quiescent
14|Healthy |Colon Healthy
14|Healthy [lleum Healthy
15|Healthy |Colon Healthy
16|Healthy |Colon Healthy
16|Healthy [lleum Healthy
17|Healthy |Colon Healthy
17|Healthy [lleum Healthy
18]UC Colon Active- mild
18]UC lleum Active-mild
19|CD Colon Quiescent
20|CD Colon Active- mild
20|CD lleum Active- mod
21|UCpan |Colon Active- mod |YES
21|UC pan lleum Quiescent |YES
22|UCpan |Colon Quiescent
22|UCpan |lleum Quiescent
23|Healthy |Colon Healthy
23|Healthy |lleum Healthy
24|Healthy |Colon Healthy
25|CD lleum Quiescent
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ucC

Colon

Quiescent

YES

26

ucC

Rectum

Active- mild

YES
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Experiment Label Targrdebld ClopeaCC-E
Flow cytometry |BUV737 CD38 HB-7
BUV393 CD45 HI30
BV786 CD1c |F10/21A3
BV711 CD141 1A4
BV650 CD163
BV605 CD103 B-Ly7
BV480 CD1a
Bv421 CD14 MdP9
BB700 CD123 7G3
BB515 CYTOX |F10/21A3
PE/Cy7 CD55 JS11
PE/Cy5 CD206 15-2
PE/CF594 CD3 UCHT1
PE/CF594 CD19 HIB19
PE CD5 UCHT2
APCFire750 | CD1la TS2/4
AF700 HLADR G46-6
APC CD207 10E2
FACS BUV393 CD45 HI30
BV650 HLADR G46-6
7-AAD via via
PE/CF594 CD19 HIB19
AF647 CD3 UCHT1
CITEseq Totalseg-A |CD1c L161
Totalseq-A |CD14 M5E2
Totalseg-A |CD11la TS2/4
Totalseq-A |CD55 JS11
Totalseq-A |CD5 UCHT2
Totalseq-A |CD206 15-2
Totalseg-A |CD209 9E9A8
Totalseq-A |CD11c S-HCL-3
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