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ABSTRACT  24 

Tumor angiogenesis is a cancer hallmark, and its therapeutic inhibition has provided 25 

meaningful, albeit limited, clinical benefit. While anti-angiogenesis inhibitors deprive the tumor 26 

of oxygen and essential nutrients, cancer cells activate metabolic adaptations to diminish 27 

therapeutic response. Despite these adaptations, angiogenesis inhibition incurs extensive 28 

metabolic stress, prompting us to consider such metabolic stress as an induced vulnerability to 29 

therapies targeting cancer metabolism. Metabolomic profiling of angiogenesis-inhibited 30 

intracranial xenografts showed universal decrease in tricarboxylic acid cycle intermediates, 31 

corroborating a state of anaplerotic nutrient deficit or stress.  Accordingly, we show strong 32 

synergy between angiogenesis inhibitors (Avastin, Tivozanib) and inhibitors of glycolysis or 33 

oxidative phosphorylation through exacerbation of anaplerotic nutrient stress in intracranial 34 

orthotopic xenografted gliomas. Our findings were recapitulated in GBM xenografts that do not 35 

have genetically predisposed metabolic vulnerabilities at baseline. Thus, our findings cement the 36 

central importance of the tricarboxylic acid cycle as the nexus of metabolic vulnerabilities and 37 

suggest clinical path hypothesis combining angiogenesis inhibitors with pharmacological cancer 38 

interventions targeting tumor metabolism for GBM tumors. 39 

  40 
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INTRODUCTION 41 

Angiogenesis inhibitors, particularly Avastin, a humanized, anti-hVEGFA monoclonal 42 

antibody, have become a mainstay for the treatment of vascularized solid tumors as a first line or 43 

second line therapy1. Avastin significantly restricts blood flow to the tumor and given in 44 

combination with chemotherapy, can elicit a survival benefit in some cancers2,3. However, the 45 

tumor static effects of angiogenesis inhibition are often transient due to a multitude of cancer cell 46 

intrinsic and extrinsic adaptive mechanisms436. Despite this limitation, anti-angiogenic therapies 47 

such as Avastin still remain important in the treatment of many cancer types, including 48 

glioblastoma multiforme (GBM), which is a highly vascularized, infiltrative, and invariably fatal 49 

disease7. In GBM patients, Avastin alone or in combination with chemotherapy, alleviates cancer-50 

related symptoms, elicits a radiological response, and improves progression-free survival7,8. 51 

However, a transient response combined with the invasiveness of glioma cells and their co-option 52 

of existing vasculature has dampened the clinical utility of Avastin in GBM7. At the same time, 53 

angiogenesis inhibition can instigate significant tumor-intrinsic and -extrinsic metabolic 54 

adaptations to sustain tumor growth, prompting speculation of targetable induced 55 

vulnerabilities9,10.  56 

Preclinical studies have demonstrated that metabolic rewiring by the tumors is a proximal 57 

consequence of angiogenesis inhibition3,5,11. In support, clinical magnetic resonance imaging 58 

(MRI) studies show reduced tumor perfusion12314 and subsequent induction of intratumoral 59 

hypoxia in response to anti-angiogenic treatments2,13,15317. One prominent response to 60 

angiogenesis inhibition-induced oxygen deficiency is HIF-1³ stabilization, which can trigger a 61 

cascade of metabolic adaptations to facilitate tumor growth and metastasis in an oxygen- and 62 

nutrient-deficient microenvironment18,19.  The elucidation of such adaptive mechanisms could 63 

reveal cancer-specific vulnerabilities that may inform more effective combination therapies.  64 



 4 

Glucose and glutamine are among the most critical nutrients that tumors derive from 65 

blood20. Tumors consume glucose voraciously to generate biosynthetic precursors necessary for 66 

proliferation via glycolysis; this includes ribose (glucose-6-phosphate4pentose phosphate 67 

pathway), purines (3-phosphoglycerate4one carbon metabolism), and lipid head groups 68 

(dihyroxyacetone-phosphate4glycerol)20,21. While pyruvate, the end-product of glycolysis, is 69 

mostly secreted as lactate to enable NAD+ regeneration and maintain glycolytic flux, a significant 70 

portion of glucose-derived pyruvate also enters the tricarboxylic acid (TCA) cycle20,21. Glutamine 71 

also converges on the TCA cycle and serves as a carbon and nitrogen donor for nucleotide 72 

synthesis and transamination reactions and is essential for glutathione generation20,22. Continued 73 

proliferation of cancer cells is contingent upon continuous replenishment of TCA cycle carbon 74 

atoms (anaplerosis) that are drained for macromolecule biosynthesis (cataplerosis)23. Depletion 75 

of TCA cycle intermediates is characteristic of Avastin-treated tumors, which suggests that 76 

angiogenesis inhibition induces anaplerotic nutrient stress24. 77 

To better understand how angiogenesis inhibition influences tumor metabolism and might 78 

inform on effective combination therapies, we characterized the metabolomic and transcriptomic 79 

profile of intracranial orthotopic gliomas on Avastin treatment. Angiogenesis inhibition led to a 80 

marked reduction in TCA-cycle metabolites, indicative of anaplerotic nutrient stress. Indeed, we 81 

demonstrate robust anti-tumor synergy and profound nutrient stress with combined Avastin and 82 

glycolysis/OxPhos inhibitor treatment. Our findings indicate that disruptions to energy 83 

metabolism in tumors treated with angiogenesis inhibitors constitute an <induced vulnerability= 84 

that invite a systematic study of how such vulnerabilities might be exploited to potentiate the 85 

efficacy of angiogenesis inhibition. 86 

  87 
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RESULTS  88 

Angiogenesis inhibition enhances hypoxia and anaplerotic nutrient stress in 89 

intracranial tumors. We implanted intracranial ENO1-deleted GBM xenografts into Foxn1nu/nu 90 

nude mice and administered the anti-human VEGFA antibody Avastin 3 which neutralizes 91 

(human) glioma cell-secreted human VEGFA but does not neutralize endogenous mouse VEGFA 92 

(Supplementary Figure 1 a). After one week, we assessed the effect of the treatment on tumor 93 

growth with T1-weighted MRI with and without the non-permeable contrast enhancement agent 94 

gadobutrol (Gadavist ®) and T2-weighted MRI (Figure 1a). Untreated intracranial tumors 95 

exhibited edema, which was visible as a hyperintense region on T2-weighted MRI and on 96 

contrast-enhanced T1-weighted MRI (Figure 1a). In contrast, Avastin-treated tumors showed 97 

attenuated contrast enhancement, indicating restoration of mature tumor vasculature (normalized) 98 

and re-sealing of the BBB (Figure 1a) in a manner consistent with human tumor studies25330. 99 

Thus, our findings confirm that intracranial D423 ENO1-deleted tumor xenografts have a 100 

breached BBB that can be resealed with angiogenesis inhibitor treatment.  101 

While vascular normalization improves perfusion, multiple studies have documented 102 

elevated tumor hypoxia as a proximal consequence of angiogenesis inhibition25(Supplementary 103 

Figure 2a-b). Specifically, the hypoxia imaging PET tracer 18F-fluoromisonidazole (FMISO) 104 

shows increased retention following Avastin treatment31. Consistent with these clinical 105 

observations, post-mortem histopathological analyses of Avastin-treated gliomas revealed a 106 

substantial increase in hypoxic areas, as evidenced by elevated CA9 expression (Figure 1b-c) as 107 

well as impaired tumor growth but no regressions (Figure 1d-f). These observations prompted us 108 

to consider that angiogenesis inhibition may also reduce access to blood-borne nutrients needed 109 

to meet the anabolic demands of rapidly proliferating cancer cells (Supplementary Figure 1c-e). 110 

To directly test this notion, we conducted an unbiased metabolomics analysis of intracranial 111 

tumors treated with Avastin, which revealed a substantial reduction in the levels of TCA cycle 112 
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intermediates, including oxaloacetate, citrate, and fumarate (Figure 1g). Together, these results 113 

indicate that Avastin treatment spurs metabolic stress in intracranial tumors.  114 

Re-sealing of the blood-brain barrier does not abrogate glycolysis inhibition nor the 115 

anti-neoplastic effect of the phosphonate enolase inhibitor HEX. We previously reported the 116 

anti-neoplastic efficacy of a phosphonate inhibitor of enolase ("HEX") in an intracranial 117 

orthotopic murine model of GBM32. As resealing the BBB is a hallmark of tumors treated with 118 

angiogenesis inhibitors25330 and HEX shows poor BBB penetration33, we employed T2-weighted 119 

MRI to assess tumor growth of Avastin and HEX treatments, alone and in combination (Figure 120 

2a). Treatment with Avastin or HEX slowed the growth of ENO1-deleted gliomas and was not 121 

associated with frank tumor regression (Figure 2a-d); whereas combined treatment resulted in 122 

profound tumor regression (Figure 2a-d) and increased survival: 67 days for combined therapy 123 

compared with 42 days for HEX, 48 days for Avastin (median: 48 days), and 31 days for vehicle 124 

control (Figure 2e), without any adverse effects (Supplementary Figure 3a-d) . Consistent with 125 

therapeutic synergy, tumors showed markedly decreased proliferation (phosphor-histone H3) and 126 

increased apoptosis (cleaved caspase 3) relative to monotherapy and control tumors (Figure 2f-127 

h).  128 

To determine whether the accentuated anti-tumor activity of the combination of Avastin 129 

with HEX could be explained by enhanced glycolysis inhibition, we performed unbiased 130 

comprehensive metabolomic profiling of the single and combination treated intracranial tumors. 131 

Inhibition of glycolysis, evidenced by accumulation of glycolytic intermediates upstream of 132 

enolase reaction, was specifically observed only in tumors of mice treated with either HEX as a 133 

monotherapy or in combination with Avastin (Supplementary Figure 3a). The extent of 134 

disruption of glycolysis was comparable between tumors treated with either HEX as a 135 

monotherapy or in combination with Avastin (Supplementary Figure 3a).  136 
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Avastin only neutralizes human VEGFA secreted by human malignant xenografted cancer 137 

cells and does not bind to endogenous mouse Vegfa34. Murine stroma-secreted Vegfs could 138 

continue to promote neovascularization despite Avastin treatment, prompting us to pursue an 139 

orthogonal approach with Tivozanib, which is effective against both mouse and human 140 

VEGFR1/2/335, either as a single agent or in combination with HEX (Supplemental Figure 1b 141 

and 5a-e). Tivozanib monotherapy yielded modest stasis of tumor growth, while combination 142 

therapy with HEX yielded significant regression of intracranial tumors, including complete tumor 143 

eradication (Figure 2a-d and Supplemental Figure 5a-d) and prolonged survival (63 days) 144 

(Supplemental Figure 5e). Notably, the combination of Avastin or Tivozanib with HEX was 145 

well-tolerated, as evidenced by no significant changes in body weight change before and after 146 

treatment initiation (Supplemental Figure 3a,c,e,f).  147 

Disruption of TCA cycle anaplerosis, but not enhanced hypoxia, drives the synergy 148 

between Avastin and HEX. Hypoxia induction is one of the proximal consequences of 149 

angiogenesis inhibition in the intracranial tumors (Figure 1b-c). Limited oxygen is known to 150 

constrain the amount of ATP produced by oxidative phosphorylation (OxPhos), forcing cancer 151 

cells to become increasingly reliant on anaerobic glycolysis to generate ATP18,19. Therefore, we 152 

reasoned that such metabolic drift to glycolysis could further sensitize ENO1-deleted tumors to 153 

glycolysis inhibition. ENO1-deleted tumor spheres in vitro were dramatically more sensitive to 154 

POMHEX (a cell-permeable prodrug of HEX) under hypoxic conditions (1% O2), as evidenced 155 

by a dose-dependent decrease in the TMRE signal, compared to normoxic conditions (21% O2) 156 

(Supplementary Figure 6a-d). Notably, the potency of POMHEX under hypoxia was not limited 157 

to ENO1-deleted cells as even ENO1-intact cells, which are relatively resistant to POMHEX under 158 

normoxia, were significantly sensitized to POMHEX under hypoxic conditions (Supplementary 159 
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Figure 6a-d). These findings suggest that hypoxia dramatically enhances the anti-neoplastic 160 

efficacy of enolase inhibition by promoting reliance on glycolysis.  161 

Tumor hypoxia is a complex process determined by both demand (consumption) and 162 

supply (vascular perfusion) of oxygen to the cells (Figure 3a)36. Two accurate determinants of 163 

tumor hypoxia are: first, oxygen availability (perfusion hypoxia) and second, the rate at which the 164 

tumor consumes oxygen in the mitochondria (consumptive hypoxia)36. Perfusion hypoxia is 165 

dictated by blood perfusion to tumors. Consumptive hypoxia is determined by availability of 166 

respiratory substrates such as pyruvate (Figure 3a).  167 

Because HEX inhibits pyruvate production, we first examined the effect of enolase 168 

inhibition on hypoxia in vitro (Figure 3b). Treatment with HEX significantly decreases hypoxia 169 

in vitro under normoxia and hypoxia, as evidenced by a decrease in the expression of HIF1³ and 170 

carbonic anhydrase 9 (CA9) and a concomitant increase in mitochondrial OxPhos marker CPT1A 171 

(Figure 3c, Supplemental Figure 7a). One explanation could be that diminished production of 172 

glucose-derived pyruvate, a key substrate for mitochondrial oxidative phosphorylation, results in 173 

a decrease in consumptive hypoxia37 (Figure 3b). To further understand the mechanism of 174 

synergy of combined angiogenesis and glycolysis inhibition, we performed unbiased 175 

transcriptomic analysis on intracranial tumor xenografts treated with HEX and Avastin as mono- 176 

or combination therapies. We identified the top 40 genes from the TCGA GBM transcriptomic 177 

studies that positively correlated with CA9, a well-known hypoxia marker (Spearman 178 

coefficient >0.5; Figure 3d). Consistent with our in vitro findings, the hypoxia transcriptomic 179 

signature is significantly elevated in Avastin-treated intracranial tumors compared to other 180 

treatment groups (Figure 3d-g). Interestingly, the combination of Avastin and HEX did not 181 

significantly alter hypoxia signature (Figure 3d-g). This could be explained by a decrease in 182 

consumptive hypoxia (mitochondrial oxygen consumption) from enolase inhibition, which 183 
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negates Avastin-induced perfusion hypoxia (Figure 3a). Our in vitro observations were 184 

corroborated by transcriptomic analysis of hypoxia markers CA9 and VEGFA in intracranial 185 

tumor lysates (Figure 3h-j) and fixed brain tumor sections (Figure 3k-l). Immunoblots on tumor 186 

lysates showed an increased CA9 expression in Avastin-treated tumors, a near complete 187 

elimination of CA9 expression for HEX-treated tumors, and overall diminished CA9 expression 188 

on tumors treated with Avastin and HEX (Figure 3h-i).  Similarly, immunohistochemistry on 189 

fixed intracranial tumors from the Avastin treatment group showed an overall increase in CA9 190 

staining (Figure 3k-l). In contrast, tumors from either HEX monotherapy or Avastin + HEX 191 

combination therapy produced considerably diminished CA9 expression compared to control or 192 

Avastin monotherapy groups (Figure 3k-l). Our data reinforce the influence of 8consumptive9 193 

hypoxia on overall tumor hypoxia and show that 8perfusion9 hypoxia does not drive the synergy 194 

between Avastin and HEX in intracranial tumors in vivo.  195 

Another explanation for the synergy between Avastin and HEX could be the restriction of 196 

blood-borne nutrients to tumors caused by angiogenesis inhibition, thereby creating a nutrient-197 

deficient tumor microenvironment (Supplementary Figure 2c-e). We previously showed that 198 

lower levels of carbon precursors in the medium translate to markedly higher sensitivity to 199 

inhibition of glycolysis37.  Specifically, glycolysis inhibition by (POM)HEX together with low 200 

nutrient availability in culture medium, strongly abrogated anabolic reactions crucial for tumor 201 

growth37. Treatment with Avastin models a nutrient starved tumor microenvironment in vivo 202 

(Figure 1g). We reasoned that the combination of HEX and Avastin could exacerbate anaplerotic 203 

nutrient stress in tumors. As expected, whereas treatment with Avastin or HEX alone modestly 204 

depleted TCA cycle intermediates, combined treatment exacerbated this effect (Figure 5a). We 205 

also found that combined treatment yielded broadly diminished levels of amino acids, including 206 

those derived from transamination of TCA cycle intermediates (Figure 5b).  207 
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 Unbiased transcriptomic analysis of the tumors treated with monotherapy of Avastin or HEX, 208 

or combination of Avastin and HEX, revealed notable transcriptomic changes. Using DESeq2 209 

analysis, we observed minor changes in differentially up- or down-regulated genes in HEX or 210 

Avastin monotherapy groups. In contrast, the combination treatment produced significantly 211 

greater changes in differentially expressed genes (DEGs; up: log2Fc g ;  down: log2Fc f -1; padj 212 

f 0.05), indicative of a synergistic effect of the drugs on tumor transcriptome (Figure 4c-f). For 213 

the combination treatment group, genes that overlapped with monotherapy groups also displayed 214 

a greater fold change, which supports a synergistic effect of the combination treatment observable 215 

at the transcriptomic level (Figure 4c-f, Supplementary Figure 8a-c).  Gene set enrichment 216 

analysis (GSEA) further revealed multiple pathways that are enriched in different treatment 217 

groups (Figure 4g-m). Treatment with HEX monotherapy or combination of Avastin + HEX 218 

enriched pathways involved in cellular response to nutrient deficiency4an effect that was 219 

exacerbated in combination treatment compared to HEX alone (Figure 4i, m and 220 

Supplementary Figure 9a-b) which corroborates the metabolomic data (Figure 4a-b). GSEA 221 

showed statistically significant (q<0.05, NES<-2), negative enrichment of pathways unique to 222 

combined treatment, such as those relevant to mitosis, DNA replication, and DNA repair (Figure 223 

4m). These observations provide mechanistic support that combined treatment with Avastin and 224 

HEX exaggerate anaplerotic nutrient stress and abrogate the anabolic reactions critical for cancer 225 

cell proliferation and lead to activation of nutrient stress adaptation response (Figure 4 and 226 

Supplementary Figure 9).  227 

Angiogenesis inhibition generates broad metabolic vulnerabilities beyond glycolysis. 228 

Given the dramatic synergy between Avastin and HEX in ENO1-deleted intracranial tumors, we 229 

sought to determine whether other metabolism-targeting therapies would also display similar 230 

synergy. Similar to enolase inhibition, inhibition of mitochondrial OxPhos is also marked by 231 

depletion of TCA cycle metabolites and most prominently, the amino acid aspartate 38. We tested 232 
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the effects of IACS-010759, an inhibitor of mitochondrial complex 1, on ENO1-deleted cells38 233 

(Figure 5). Previous studies have shown that treatment with IACS-010759 significantly decreases 234 

TCA cycle intermediates38 (Figure 5a-f). Interestingly, toxicity of IACS-010759 in ENO1-235 

deleted cells depended on whether cells were cultured in nutrient-rich or nutrient-deplete 236 

conditions. Cells grown in nutrient-rich medium treated with IACS-010759 had minimally 237 

impacted survival and energy homeostasis, as evidenced by phosphocreatine levels comparable 238 

to controls (Supplemental Figure 10a-d). However, cells grown in medium with low anaplerotic 239 

content were significantly more sensitive to IACS-010759, as evidenced by a significant reduction 240 

in phosphocreatine levels4demonstrating exacerbated bioenergetic collapse (Supplemental 241 

Figure 10a-d). These in vitro observations suggested that in vivo tumors growing in a nutrient-242 

deficient environment induced by angiogenesis inhibition could also be predisposed to 243 

sensitization by IACS-010759. 244 

ENO1-deleted intracranial tumors were treated with either IACS-010759 or Avastin as 245 

monotherapies or in combination for 28 days. While treatment with IACS-010759 alone 246 

minimally impacted tumor growth in vivo, combined treatment with IACS-010759 and Avastin 247 

dramatically delayed tumor growth and produced frank regression of some tumors. (Figure 5g-248 

j). These data suggest that angiogenesis inhibition exacerbates metabolic stress and potentiates 249 

the anti-neoplastic effect of metabolic inhibitors such as IACS-010759. Additionally, our 250 

preliminary experiments also show that that the angiogenesis inhibitor Tivozanib also synergizes 251 

with IACS-010759 in xenografts of the NB1 (PGD-homozygously deleted) cell line with 252 

complete regression observed at doses of IACS-010759 that are ineffective as a monotherapy 253 

(Supplementary Figure 11A-B).  254 

Combined inhibition of angiogenesis and metabolism is synergistic against non-255 

glycolysis-compromised orthotopic tumors. We investigated whether inherent compromise of 256 

glycolysis was required for Avastin and metabolic inhibitors to exert a synergistic anti-neoplastic 257 
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effect. Accordingly, we compared the efficacy of Avastin and HEX as single agents or in 258 

combination in mice bearing ENO1-wildtype (U87) intracranial tumors with the same dosing 259 

regimen as we had applied for those with ENO1-deleted (D423) tumors (225 mpk BID) for two 260 

weeks (Figure 2). ENO1-deleted tumors showed moderate sensitivity to HEX or Avastin as single 261 

agents, and the combined treatment yielded synergistic regression of tumors even with two weeks 262 

of treatment (Figure 6a-d). However, in ENO1-wildtype tumors, with the same treatment regimen 263 

and duration, Avastin and HEX as single agents only minimally delayed growth, while combined 264 

treatment exerted an enhanced, and possibly additive anti-tumor activity (Figure 6e-i). The degree 265 

of growth inhibition achieved in ENO1-wildtype tumors was dependent on the dose of HEX 266 

(Supplemental Figure 12). In a separate dose escalation study where HEX was administered 200 267 

mpk three times a day for 8 days, we observed a modest improvement in the efficacy of HEX as 268 

a single agent against ENO1 WT tumors (Supplemental Figure 12a-c). Interestingly, the 269 

combination of high-dose HEX and Avastin significantly suppressed the growth of ENO1 WT 270 

intracranial tumors with 8 days of treatment (Supplemental Figure 12a-c). Histopathological 271 

analyses also showed modest decrease in phospho-histone H3 and increase in cleaved caspase-3 272 

signals (Supplemental Figure 12d-e).  273 

We also tested if the same rationale could be extended to the treatment of ENO1-wildtype 274 

U87 intracranial tumors with other metabolic inhibitors. Treatment with Avastin sensitized 275 

intracranial tumors to IACS-010759, resulting in a significant inhibition of tumor growth, but 276 

without frank tumor regression (Supplemental Figure 13). Together, these findings indicate that 277 

angiogenesis and metabolic inhibitors can work synergistically to inhibit the growth of both 278 

glycolysis-compromised tumors and non-glycolysis-compromised tumors, raising the possibility 279 

of broad clinical applicability. 280 

Sensitivity to Avastin is associated with low expression signatures of mitochondrial 281 

metabolism and the TCA cycle. Xenografted tumors from different cell lines differ significantly 282 
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in their response to Avastin and other angiogenesis inhibitors. In the context of this study, we 283 

sought to understand the broad molecular features underpinning response to angiogenesis 284 

inhibitors4specifically, whether anaplerotic nutrient stress or diminished mitochondrial 285 

metabolism is a determinant of sensitivity to Avastin in human tumors. To that end, we 286 

interrogated a set of PDX models from CrownBio that had corresponding transcriptomics and 287 

data on anti-tumor response to Avastin (Supplemental Figure 14); transcriptomic analyses were 288 

performed on tumors prior to Avastin treatment initiation. We searched for specific transcriptomic 289 

characteristics that correlated with anti-tumor responsiveness across a range of independent 290 

PDXs. Our analysis revealed a strong negative correlation between Avastin sensitivity and 291 

mitochondrial metabolic gene signature in tumors at baseline (Supplemental Figure 14-c). More 292 

specifically, tumors possessing elevated gene signature for mitochondrial metabolic processes, 293 

such as mitochondrial complex I biogenesis, ATP biosynthesis, TCA cycle and mitochondrial 294 

respiratory chain reactions, better tolerated Avastin treatment relative to PDXs with lower 295 

mitochondrial metabolic gene signature (Supplemental Figure 14b-c). We also found that 296 

tumors with enrichment in gene signatures that bolster response to nutrient deficiency at baseline, 297 

were less sensitive to Avastin reinforcing the notion that nutrient stress adaptation may predict 298 

Avastin sensitivity (Supplemental Figure 14b). These PDX findings complement our key 299 

observation that anaplerotic nutrient stress achieved by treatment with either glycolysis inhibitor 300 

HEX or mitochondrial OxPhos inhibitor IACS-010759 sensitizes tumors to angiogenesis 301 

inhibition.   302 

DISCUSSION 303 

Here, we sought to uncover potential angiogenesis-inhibition induced metabolic 304 

vulnerabilities. Comprehensive metabolomic and transcriptomic analysis of intracranial tumor 305 

xenografts revealed that anti-angiogenic therapy generates an anaplerotic nutrient deficit and 306 

sensitizes xenografted tumors to inhibitors of key energy metabolism pathways, such as glycolysis 307 
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and oxidative phosphorylation. Combined treatment of the angiogenesis inhibitor Avastin and the 308 

glycolysis inhibitor HEX yielded synergistic anti-tumor effects accompanied by dramatically 309 

exacerbating metabolomic and transcriptomic signatures of anaplerotic nutrient stress in 310 

intracranial tumors.   311 

The blood-brain-barrier is poorly permeable to small hydrophilic molecules such as HEX and 312 

an initial explanation for its efficacy as a monotherapy would have posited permeation through 313 

the tumor-associated leaky vasculature. The dramatic synergy between Avastin and HEX, despite 314 

Avastin9s effect on normalizing (sealing) the BBB, indicates that HEX must be reaching the 315 

malignant glioma cells through another mechanism. Low molecular weight phosphonate drugs 316 

are known to reach the brain through fenestrations in the blood-CSF barrier32,39. Unlike the BBB, 317 

capillaries in the blood-CSF barrier have fenestrations, which allow low molecular weight, 318 

hydrophilic drugs to permeate into the brain; one prominent example of such is the antibiotic 319 

fosfomycin, which is used clinically to target brain abscesses (Supplementary Figure 4b)39. 320 

Given the high physiochemical similarity 3 it is most likely that HEX reaches brain and brain 321 

tumor through permeation via the blood-CSF barrier and the Avastin-induced re-sealing of the 322 

BBB is inconsequential for HEX entry (Supplementary Figure 4b). Furthermore it is worth 323 

noting that the combination of HEX and angiogenesis inhibitors may yield superior results in 324 

humans given that HEX has a an unusually short half-life in mice; with the drug being 325 

undetectable in plasma in as little as 2 hours after injection33.  This is in contrast to rat, dog and 326 

non-human primate where the half-life of HEX is ~10-fold longer33. 327 

We also showed that Avastin treatment sensitizes ENO1 deleted tumors to inhibition of 328 

mitochondrial oxidative phosphorylation by IACS-010759. Previous studies reported that 329 

homozygous deletion of PGD causes even stronger OxPhos inhibitor vulnerability38,40. 330 

Accordingly, we showed that angiogenesis inhibitor Tivozanib also synergizes with IACS-331 
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010759 in xenografts of the NB1 (PGD-homozygously deleted) cell line with complete regression 332 

observed at doses of IACS-010759 that are ineffective as monotherapy. Importantly, studies have 333 

suggested a therapeutic benefit in combining Avastin with the mitochondrial complex I inhibitor, 334 

metformin for the treatment of recurrent type I endometrial cancer, ovarian cancer, and non-small 335 

cell lung cancer41343. Our findings are consistent with this line of reasoning and provide a 336 

mechanistic basis for the efficacy of the combination treatment modality. Finally, combined 337 

treatment with Avastin and HEX/IACS-010759 also showed therapeutic benefit against 338 

glycolysis intact wild-type tumors, raising the possibility of therapeutic relevance across a broad 339 

range of malignancies. With respect to clinical application, it is worth noting that we can achieve 340 

significant regression of tumors at doses of IACS-010759 which are far lower than those 341 

employed in published literature38. This is important since inhibition of mitochondrial OxPhos 342 

yielded grade 3 peripheral neuropathy in recent phase 1 trials: 11/23 patients in the solid tumor 343 

trial and 4/11 patients in the relapsed/refractory acute myeloid leukemia trial (NCT02882321, 344 

NCT03291938)44. A dose-reduction of IACS-010759 enabled by combination with angiogenesis 345 

inhibitors may allow resuscitation of this drug given its very sharp dose-limited toxicity44. 346 

To definitively correlate our pre-clinical findings with human clinical data, it would be 347 

highly desirable to perform a thorough metabolomic profiling of primary human tumors subjected 348 

to angiogenesis inhibitors. However, due to hemorrhagic complications and challenges associated 349 

with wound healing, anti-angiogenic therapies preclude surgical resection of tumors (treatment 350 

discontinuation required for at least 28 days before surgery)1, which restricts a systematic 351 

assessment of metabolic alterations caused by angiogenesis inhibition in human tumors. This may 352 

also explain why, despite the widespread use of angiogenesis inhibitors in the clinic, limited 353 

investigations have been performed to understand how these drugs affect the transcriptomic or 354 

metabolic landscape of human tumors. We circumvented this key limitation by employing human 355 

cell line-derived xenograft (CDX) as well as patient-derived xenografts (PDX). Using different -356 
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omic profiling approaches, we identified crucial, exploitable vulnerabilities associated with 357 

angiogenesis inhibition. Overall, our data strongly suggests that anaplerotic nutrient stress 358 

incurred by tumors due to angiogenesis inhibition enhances sensitivity to therapies targeting 359 

tumor metabolism. 360 

In conclusion, our findings reinforce clinical evidence showing that Avastin, despite 361 

significantly reducing blood flow to the tumors, only temporarily halts tumor growth. However, 362 

essential metabolic adaptations that arise in the context of angiogenesis inhibition can be 363 

leveraged to sensitize tumors to different metabolism-targeting therapies. Our preclinical data 364 

strongly invite a systematic investigation of combinations of angiogenesis inhibitors with 365 

therapies targeting cancer-specific metabolic vulnerabilities beyond HEX and IACS-010759. For 366 

instance, therapeutic agents that target pathways converging on anaplerosis, such as 367 

glutaminolysis inhibitors (glutaminase inhibitor CB-839, the ASCT2 inhibitor V-930245), or other 368 

anabolic and catabolic pathways involving the metabolism of asparagine, (L-arsparaginase46) 369 

methionine (MAT2A inhibitor AG-270, PRMT5 inhibitor GSK332659547 and arginine (ADI-370 

PEG2048,49) (Figure 7). An additional mechanism worth investigating may be interactions with 371 

metabolic therapies involving caloric restriction or specific macronutrient intake, such as 372 

ketogenic diets which restrict carbohydrates, which may further enhance the therapeutic efficacy 373 

of anti-angiogenic therapies. Our paper thus demonstrates the mechanistic basis for combining 374 

anti-metabolic and anti-angiogenesis therapies to potentiate anti-tumor efficacy and potentially 375 

improve overall patient survival. 376 

METHODS  377 

Cell Lines 378 

The H423/D423-MG (CVCL_1160, glioblastoma) cell line, which has a 1p36 379 

homozygous deletion spanning ENO1, was generously provided by D. Bigner50. D423 ENO1, an 380 

isogenic cell line with ectopic constitutive expression of ENO1, was generated by our lab as 381 
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described previously. The ENO1-WT cell lines LN319 and U87 (CVCL_0022) were obtained 382 

from the Department of Genomic Medicine/IACS Cell Bank at MD Anderson. 383 

All cells were used below passage 25 and maintained in DMEM (pH 7.4) supplemented 384 

with 4.5 g/L glucose, 110 mg/L pyruvate, and 584 mg/L glutamine (Cellgro/Corning #10-013-385 

CV) at 37°C in a 5% CO2 atmosphere unless indicated otherwise. DMEM was supplemented to 386 

achieve a composition of 10% fetal bovine serum (Gibco/Life Technologies #16140-071), 1% 387 

PenStrep (Gibco/Life Technologies #15140-122), and 0.1% amphotericin B (Gibco/Life 388 

Technologies #15290-018). Cell lines were regularly checked for mycoplasma contamination 389 

with the MycoAlert PLUS detection kit (Lonza) and authenticated by STR fingerprinting with the 390 

Promega PowerPlex 16 System. STR fingerprinting was conducted by personnel in MD 391 

Anderson9s Characterized Cell Line Core (CLCC). STR profiles were compared to both the 392 

CLCC database and external cell databases (DSMZ/ATCC/RIKEN/JCRB).  393 

Intracranial orthotopic tumor cell implantation 394 

All experiments involving mice were performed at MD Anderson under a protocol approved by 395 

MD Anderson9s Institutional Animal Care and Use Committee (IACUC).  396 

Intracranial glioma tumors were generated by injecting 200,000 cells into the brains of 4- to 6-397 

month-old immunocompromised female nude Foxn1nu/nu mice, which were bred at MD 398 

Anderson9s Experimental Radiation Oncology Breeding Core.  Prior to intracranial tumor cell 399 

injection, a bolt (a plastic screw with a hole in its center) was drilled into the skull of each animal. 400 

The animals were allowed to recover for 2 weeks, during which time they were monitored for 401 

signs of morbidity. Two weeks after bolt implantation, the cells were injected through the bolt 402 

using a Hamilton syringe. Animals exhibiting any severe neurological morbidities were after 403 

tumor implantations were euthanized. Intracranial bolting and injections were performed by 404 

personnel in MD Anderson9s Intracranial Injection Fee-for-Service Core51. All procedures were 405 

performed in accordance with the regulations of MD Anderson9s IACUC. 406 
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Tumor volume measurement in vivo 407 

Mice bearing intracranial tumors underwent T2-weighted MRI weekly on a 7T Biospec 408 

USR707/30 scanner (Bruker Biospin MRI, Billerica, MA) in MD Anderson9s Small Animal 409 

Imaging Facility. Prior to imaging, the animals were briefly anesthetized with isoflurane. 410 

Throughout the imaging procedure, the animals9 body temperatures were maintained with a 411 

heating blanket; their bodies and heads were restrained with a stereotactic holder; and their heart 412 

and breathing rates were monitored. 413 

For T2-weighted MRI, a low-resolution axial scan was first taken to calibrate the scanner 414 

position. Then, two high-resolution axial scans and one high-resolution coronal scan were taken. 415 

For the axial scans, the slice thickness was 0.500 mm, and the increment between each slice was 416 

1.000 mm. To obtain better tumor coverage, we offset the two axial scans by 0.500 mm, which 417 

was equal to the difference between the slice increment and slice thickness. The coronal scans 418 

had a slice thickness of 0.750 mm and a slice increment of 1.000 mm. The total number of slices 419 

for each scan was based on the size of the tumor. The MRI scans were analyzed with the open-420 

source image-processing software program 3D Slicer (v4.10, http://www.slicer.org)52. 421 

MRI series were independently reviewed, and tumor volumes determined in 3D Slicer, by 422 

three lab members. The draw tool in the editor module of 3D Slicer was used to manually delineate 423 

tumor tissues slice-by-slice. Enhanced contrast due to edema, as well as hollow areas of tumor 424 

caused by bolting, were excluded. The tumor volume of each scan was calculated automatically 425 

by using the Label Statistics module, which calculates the tumor volume for a scan by converting 426 

the selected pixel area on each slice to squared centimeters, multiplying that value by the slice 427 

increment, and then summing up the slice volumes. The tumor volume for each mouse was 428 

calculated as the average of the three scans (2 sets of axial scans and one set of coronal scans). 429 

Finally, all three independent measurements were averaged. 430 

  431 

http://www.slicer.org/
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Polar metabolite profiling  432 

The mice were euthanized following the standard IACUC protocol. The animals were then 433 

dissected to extract subcutaneous tumors. The weights of the tumors were recorded, and the 434 

tumors were cut into two pieces, one of which was snap-frozen in liquid nitrogen for metabolomic 435 

analysis. The tumor pieces snap-frozen in liquid nitrogen were cut into small pieces (~50 mg) and 436 

placed into pre-cooled microcentrifuge tubes (Fisher Scientific, cat. 02-681-291) containing steel 437 

beads (Qiagen). To these tubes, we added 1 mL of 80% methanol pre-cooled to -80 °C. Tumor 438 

tissue was bead-mill homogenized with the Qiagen TissueLyser by shaking tubes at 28 Hz for 439 

multiple rounds of 45 s each. To the tubes of the homogenized tumor lysates, we added 80% 440 

methanol to create a final weight-adjusted volume of 25 mg/ml. After incubation for 15 min on 441 

dry ice, tumor lysates were homogenized once more using a vortex mixer for 1 min. The samples 442 

were then centrifuged for 5 min at 14,000 x g at 4 °C. Cell debris and non-polar metabolites 443 

precipitated and were separated from the polar metabolites, which collected in the supernatant. 444 

The polar metabolites were transferred into chilled 1.5-ml Eppendorf tubes and dried in a 445 

SpeedVac (Thermo Fisher). The dried and concentrated polar metabolites were submitted to John 446 

Asara9s Polar Metabolite Profiling Platform at Beth Israel Deaconess Medical Center. There, the 447 

samples were subjected to tandem mass spectrometry via selected reaction monitoring with 448 

polarity switching for 300 total polar metabolite targets using a 5500 QTRAP hybrid triple 449 

quadrupole mass spectrometer (SCIEX). The mass spectrometer was coupled to a high-450 

performance liquid chromatography system (Shimadzu) with an amide hydrophilic interaction 451 

liquid chromatography column (Waters) run at pH=9.0 at 400 mL/min. Q3 peak areas were 452 

integrated using MultiQuant 2.1 software32. 453 

Immunohistochemistry  454 

Tumor-bearing mice were euthanized at the end of the experiment or earlier if they exhibited 455 

neurological symptoms, and their brains were harvested and then fixed in 10% paraformaldehyde. 456 
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Mouse brains were dissected and submitted to MD Anderson9s Veterinary Pathology Core for 457 

dehydration, paraffin embedding, and tissue sectioning. Tissue sections were dried overnight at 458 

60 °C and then deparaffinized in xylene. The deparaffinized sections were rehydrated by a series 459 

of washes in aqueous solutions of decreasing ethanol concentration. Antigens were retrieved by 460 

boiling the sections in citrate buffer (1:100 Vector Antigen Unmasking Solution [Citrate-Based] 461 

H-3300 250 mL) for 10 min and then cooling the sections for 30 min. Tissue sections were 462 

blocked with 2% goat serum (Vector S-1000 Normal Goat Serum; 20 mL) in PBS (Quality 463 

Biological PBS [10X], pH 7.4; 1000 mL) for 1 h. The sections were then incubated with 464 

monoclonal anti-cleaved caspase 3 rabbit (cleaved caspase-3 (Asp175) (5A1E) rabbit mAb; CST# 465 

9664T, Cell Signaling Technology) or anti-phospho S10 histone H3 (rabbit anti-phospho histone 466 

H3 [S10] IHC antibody, affinity purified; Bethyl Laboratories, IHC-00061 or rabbit anti-carbonic 467 

anhydrase 9 antibody (CST#5649)) diluted to 1:1000 with 2% goat serum in PBS overnight at 468 

4°C. The next day, the sections were washed three times with PBS in a shaker. After washing 469 

with PBS, the sections were incubated with 1X goat anti-rabbit IgG poly HRP secondary antibody 470 

(Invitrogen by Thermo Scientific) for 30 min and then washed in PBS and Tween 20 (Fisher 471 

BioReagents BP337-500). The sections were stained with either ImpactNOVAred (Vector Labs 472 

SK-4805) or EnzMettm (Nanoprobes #6001-30 mL) and then counterstained with hematoxylin or 473 

with hematoxylin and eosin, respectively. The stained sections were mounted using Denville Ultra 474 

Microscope Cover Glass (#M1100-02) and Thermo Scientific Cytoseal 60 and dried overnight at 475 

room temperature.  476 

RNA sequencing, and data analysis from treated xenografted tumors 477 

Tumors were extracted from frozen brain sections from mice treated with vehicle, Avastin, HEX 478 

or Avastin + HEX for 14 days. Briefly, whole brain was dissected out from the mice following 479 

euthanasia and immediately snap frozen in liquid nitrogen. Xenografted tumors from frozen 480 

whole brain was carefully cut out as 2 mm wide cross-sectional slices. Axial MRI scans were 481 
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used as guide to cut xenografted tumor from the whole brain. For RNA extraction from the 482 

tumors, approximately 1ml of Trizol reagent was added to 5 mg of frozen xenografted tumors 483 

and homogenized using a homogenizer (POLYTRON® PT 1200E, Kinematica #9112212) 200 484 

µl chloroform was added to the homogenized tumors in Trizol, and after a vigorous shaking of 485 

the tubes, phase separation was performed by centrifugation. Aqueous phase solution was 486 

precipitated with isopropanol, and RNA purification was performed using the Qiagen RNA 487 

extraction kit (steps 4-8). Approximately, 200 ng of RNA was submitted to BGI to perform 100 488 

bp paired end for 30 million transcript reads. The FASTQ files obtained from BGI were aligned 489 

with hg19 to generate sam files using the HISAT/StringTie/Ballgown modules53. Differential 490 

gene expression between the control and experimental groups were determined by using the 491 

edgeR package v3.34.0, To identify significant differentially expressed genes, we used the 492 

following criteria: log2 fold change (log2Fc) g 1 (for the Up-regulated gene) or log2Fc f -1 (for 493 

the down-regulated gene), and an adjusted p-value (padj) f 0.05. Reactome pathway enrichment 494 

was determined using the gene set enrichment analysis (GSEA)54 with default parameters and 495 

Reactome subset (c2.cp.reactome.v2022.1.Hs.symbols.gmt from Human MSigDB 496 

Collections)55.  Heatmaps were generated using the ggplots or pheatmap package in R v4.0.3. 497 

Patient-derived xenograft (PDX) models (Crown Bio datasets) 498 

PDX models were developed and established in immunodeficient mice at Crown Bioscience as 499 

previously described56. Briefly, cryopreserved or fresh tumor tissues were cut into small pieces 500 

(>2-3 mm in diameter), and subcutaneously transplanted in the right flank of NOD/SCID or 501 

BALB/c nude mice. Tumor growth was checked twice a week using a caliper. Pharmacological 502 

dosing started when tumor size reached 100-300 mm3. Tumor-bearing mice were euthanized 503 

when tumor size reached 3000 mm3. All procedures were performed in pathogen-free animal 504 

facility at Crown Bioscience under the approved protocols by the Institutional Animal Care and 505 

Use Committee.  506 
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RNA-seq 507 

Library construction for RNA-seq was performed using MGIEasy RNA Library Prep Set (MGI, 508 

catalog no. 1000006383) following the manufacturer9s instructions. Briefly, poly-A mRNA was 509 

captured from total RNA using Oligo-dT-attached magnetic beads (Agencourt, catalog no. 510 

A63987) and fragmented. cDNA was synthesized and purified, followed by A-tailing and 511 

ligation of adapters. DNA fragments with adapters were selected and amplified by PCR. The 512 

quality of the final library was checked by Qubit and Agilent 2100 Bioanalyzer. Paired-end 513 

sequencing with a read length of 150bp was performed following the manufacturer9s 514 

instructions (MGI, catalog no. 1000012555).  515 

Alignment and quantification of transcripts 516 

The quality of raw data was checked by FastQC (version 0.11.9). Adapter and low-quality 517 

sequences were trimmed by Trimmomatic software (version 0.40)57.  Sequencing reads were 518 

mapped to human (hg19) reference genomes using STAR (version 2.7.10a)58, based on which 519 

alignment yielded fewer mismatches, they were subsequently sorted into human or mouse 520 

groups, representing cancer or stromal transcriptomes, respectively. Ambiguous reads were 521 

discarded. Transcript-level read counts were quantified using kallisto (version v0.46.1)59; and 522 

subsequently summarized to gene-level count and abundance estimates. The count estimates 523 

were used as inputs in differential expression analysis (see Differential expression analysis on 524 

CDX dataset). The gene-level transcript abundance values (in transcripts per million, or TPM) 525 

were used as inputs in biomarker discovery (see Biomarker discovery in PDX dataset).  526 

Differential expression analysis on CDX dataset 527 

Differential expression analysis was performed using DESeq2 (version 1.34.0)60 cancer (human) 528 

and stroma (mouse) genes. The following generalized linear model was fit to explain the 529 

expression level of each gene with respect to treatment groups, accounting for possible 530 

interaction between Avastin and HEX treatments:  531 
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,  532 

where read count for gene i, sample j is assumed to follow a negative binomial distribution with 533 

fitted mean ¿ij and sample-specific size factor sj. Regression coefficients ³1 and ³2 measure the 534 

effects of Avastin and HEX treatments on gene expression, and ³3 measures how the effect of 535 

Avastin treatment changes when HEX treatment is also present.  536 

Biomarker discovery in PDX dataset 537 

The Crown Bioscience PDX dataset consist of tumor volume records in 21 PDX models under 538 

Avastin and negative control treatments, as well as the cancer transcriptomic profiles of these 539 

PDX models. The 21 PDX models used in this study comprise following cancer types: breast (n 540 

= 1), cervix (n = 4), cholangiocarcinoma (n = 2), colon (n = 7), kidney (n = 1), liver (n = 2), 541 

lung (n = 2), and ovary (n = 2). The following linear mixed model was used to explain tumor 542 

volume at day t for mouse i in PDX model j:  543 

 544 

where t, i, j indicates time point, mouse, and PDX, respectively. 8Gene9 is a covariate for gene-545 

level transcript abundance values in log scale. For a detailed description of the fixed and random 546 

effect terms, please refer to Guo et al56.  Using Benjamini-Hochberg adjusted p-value < 0.05 as 547 

cut-off, we obtained a list of genes whose expression levels significantly impact the efficacy of 548 

Avastin treatment (³4 b 0). This gene list was used as input in gene set enrichment analysis.  549 

Gene set enrichment analysis 550 

Gene set enrichment analysis (GSEA)54 performed using clusterProfiler (version 4.2.2)61.The 551 

input gene lists were ranked based on Q = sign(³);log(p), where ³ and p are the regression 552 

coefficient and its associated p-value obtained from the differential expression and biomarker 553 

analyses described in previous sections. Gene Ontology and REACTOME gene sets were 554 

retrieved using msigdbr (version 7.5.1).  555 

556 
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Western blots 557 

Cells 558 

Cells were grown in 6 well plates and treated with POMHEX for 48 hours in hypoxic (5% O2) 559 

and normoxic conditions (21%).  Whole cell lysates were harvested by washing the cells twice 560 

with ice cold phosphate-buffered saline (PBS). RIPA buffer (ice-cold) was supplemented with 561 

protease (cOmplete# mini, Roche#11836153001) and phosphatase inhibitors (PhosSTOP, 562 

Roche, #5892970001), added and the samples were then sonicated. 563 

Tumors 564 

Frozen intracranial tumors were cut into smaller pieces and approximately 20 mg of tumors was 565 

used to prepare lysates. RIPA buffer supplemented with protease and phosphatase inhibitors was 566 

added to the tumor samples and thoroughly homogenized. The tumor homogenates were further 567 

sonicated and centrifuged.  568 

The protein concentrations in cell/tumor lysates were determined using the BCA assay 569 

(ThermoFisher, #23227). After being separated by Nu-PAGE SDS-PAGE (4-12% gradient) 570 

(TransBlot turbo), proteins were deposited onto nitrocellulose membranes using the semi-dry 571 

technique. The successful transfer of proteins onto the membrane was confirmed with Ponceau S 572 

staining. To block the non-specific membrane sites, 5% non-fat dried milk in tris-buffered saline 573 

(TBS) with 0.1% Tween 20 (TBST) was used as the blocking agent. The membranes were treated 574 

with primary antibodies overnight at 40C with moderate rocking. The membranes were TBST-575 

washed three times for five minutes on the second day. After that, membranes were gently rocked 576 

for an hour while incubating in HRP-tagged secondary antibody (1:5000). The antibodies used in 577 

our investigations were: (HIF1-³ (CST #14179), ³-actin (CST#3806), CA9 (CST#5649), 578 

Vinculin (CST#13901), Atg5 (CST#9980), LC3B(CST#3868), pAkt (CST#9271), Akt 579 
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(CST#9272), CPT1A (CST#12252), anti-rabbit HRP linked antibody (CST#7074), anti-mouse 580 

HRP linked antibody (CST#70776)). 581 

Statistical analysis 582 

Statistical analyses reported in this study were performed using either Microsoft Excel or 583 

Graph Pad Prism 8. Unpaired Student9s test and 1- or 2-way ANOVA were used where 584 

appropriate. Tukey9s post hoc analysis was used to determine statistical significance following 585 

ANOVA. P<0.05 was used as a threshold to determine statistical significance.  586 
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Figure 1: Angiogenesis inhibition re-seals the breached blood brain barrier, impairs perfusion and nutrient 

import, and modestly inhibits tumor growth. a. Intracranial tumors were generated by implanting D423 ENO1 

homozygously deleted glioma cells in Foxn1nu/nu nude mice. Tumor growth was followed by T2-weighted MRI 

every two weeks. Animals in the Avastin group were treated with Avastin (5mpk, x2 per week). After one week 

of treatment, T1 MRI with and without contrast (Gadavist, IV) was performed on untreated and Avastin treated

mice. Untreated tumors exhibited consistent contrast enhancement (yellow arrows), indicative of a breached 

blood-brain-barrier(BBB) in these tumors. Avastin treated tumors showed a dramatic decrease in contrast 

enhancement, with a residual weak signal apparent at the tumor edges (pink arrows), suggesting an effective

resealing of the BBB by Avastin treatment. b-c. Avastin treatment causes significant elevation in hypoxia, 

determined by the carbonic anhydrase 9 (CA9, a hypoxia marker) staining in intracranial tumors (b). 

Quantification of hypoxic areas (brown) in tumors are plotted (c). d-e. T2-weighted MRI scans showing the size 

of the tumors on day zero (dotted yellow line) and  on day 21 (solid yellow line). Tumor volumes are indicated 

on the bottom left corner of each image. Pre- and post-treatment tumor volume comparisons (raw and relative) 

of control and Avastin treated mice after 21 days of treatment. f. Angiogenesis inhibition by Avastin significantly 

impairs import of major blood borne anaplerotic nutrients into the tumors, resulting in significant metabolic 

stress in tumors. Avastin treatment leads to a global decrease in TCA cycle intermediates, which are crucial for 

the generation of biosynthetic intermediates in cancer cells. Data are mean ± SD. Asterik(*) represents statistical 

significance (p<0.05) achieved by two-tailed t-test (g).
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Figure 2: Long-term combination of angiogenesis inhibitor Avastin and Enolase inhibitor HEX results in

regression of intracranial tumors at doses where either drug is only tumor-static as a monotherapy.

Intracranial tumors were generated in Foxn1 nu/nu nude mice by implanting D423 ENO1 homozygously deleted

glioma cells and tumor growth was monitored every week by T2-weighted MRI. Four weeks later, when tumors

reached approximately 20 mm3 in volume, mice were separated into four groups; control(vehicle), Avastin (5 mpk,

2X per week), Enolase inhibitor HEX (225 mpk, 12X per week) or Avastin plus HEX (Avastin, 5mpk 2X per week +

225 mpk SC 12X per week) were administered for 28 days. MRI scans were taken every two weeks to monitor

tumor growth in response to treatment, and tumor volume changes were calculated. a. T2-weighted MRI images

of animals before and after 28 days of treatment with tumor volumes indicated in mm3 in the lower left corner of

the image; initial tumor outlines are shown in dotted yellow lines, while tumors after 28 days are shown in solid

lines. b-d. Growth rates of tumors (b) and pre- and post-treatment tumor volume (c-d) in different treatment

groups. Treatment with Avastin or HEX as single agents substantially attenuated tumor growth but did not result

in actual tumor regression. However, the combination of Avastin with HEX resulted in tumor regression in all

treated animals, and a complete eradication of tumors in some animals. Animals were taken off the treatments

on day 28 and probability of survival after treatment discontinuation in each group was determined. Highlighted

data point indicates mouse that died of reasons unrelated to tumor burden. e. Avastin and HEX combination lead

to a significant extension of survival compared to HEX and Avastin alone. f-i. Histopathological analyses of brain

tumor sections extracted from the mice show a dramatic reduction in phospho-histone H3 (PH3) positive cells

(f,g) (an index of proliferation, blue arrows in the picture) in tumors treated with the combination of Avastin and

HEX, concomitant to a dramatic increase in dying cells cleaved caspase 3 (CC3) positive cells (f,h), (an index of

apoptosis, red arrows in picture), compared to the control, Avastin and HEX groups. Data are mean ± SD.

Asterik(*) represents statistical significance (p<0.05) achieved by ordinary one-way ANOVA and Tukey9s multiple

comparisons test (b,g,h).
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Figure 3: Combination of Avastin and HEX decreases hypoxia in intracranial tumors by limiting oxygen 
consumption. a. Illustrations depicting the roles of vascular perfusion and tumor intrinsic oxygen consuming 
reactions in overall oxygen tension in the tumors. Hypoxia is a dynamic process and can arise as a result of poor 
oxygen delivery from the vasculature (perfusion hypoxia) or due to enhanced oxygen consumption by the tumor 
cells (consumptive hypoxia), or possibly, due to an imbalance in the rates of these two processes. b. Schematic 
demonstrating that mitochondrial oxidative phosphorylation is substrate limited. Inhibition of glycolysis with the 
POMHEX, a prodrug of Enolase inhibitor HEX, constrains oxidative phosphorylation (oxygen consumption) by 
blocking formation of pyruvate and decreases consumptive hypoxia. c. Western blots showing the effect of 
glycolysis inhibition by POMHEX on hypoxia (CA9 as a hypoxia marker) in cells in vitro in normoxic and hypoxic 
conditions. d. Heatmap representing mRNA transcript levels for hypoxia responsive genes in tumors in each 
treatment groups. Heatmap shows top 40 hypoxia responsive genes selected from the mRNA profiling studies in the 
TCGA GBM dataset by correlating CA9 transcript levels (spearman coefficient>0.5) with the whole genome 
transcripts. e-g. Raw mRNA reads of three well-established hypoxia responsive genes, CA9 (e), VEGFA (f) and ENO2 
(g) are shown. h-j. Immunoblot of intracranial tumors from different treatment groups, showing hypoxia markers 
CA9 with vinculin as a loading control (h). Densitometry analyses of total CA9 signals on each treatment group 
expressed as total density of signal (i) and  density of signal relative to the loading control (j). k-l. Intracranial tumors 
from mice in control, HEX, Avastin, Avastin and HEX treatment groups, stained with the hypoxia marker CA9 (k). 
Quantification of hypoxic areas (brown) in tumors are plotted for different treatment groups (l). Avastin significantly 
elevates hypoxia in tumors by inhibiting tumor vascularization and impairing perfusion, but HEX treatment reduces 
hypoxia by inhibiting pyruvate production and suppressing consumptive hypoxia. Avastin and HEX impose a 
competitive effect on hypoxia, possibly as Avastin elevates perfusion hypoxia while HEX suppresses consumptive 
hypoxia, leading to a net decrease in intra-tumoral hypoxia. Immunoblot analyses corroborate the results of 
histopathological analyses, that Avastin and HEX combination significantly decreases hypoxia in intracranial tumors. 
Data are mean ± SD. Asterik(*) represents statistical significance (p<0.05) achieved by ordinary one-way ANOVA and 
Tukey9s multiple comparisons test (e,f,g,h,I,j,l).
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Figure 4: Tumors under combined angiogenesis and enolase inhibition show profound anaplerotic nutrient stress. a. 

TCA cycle map representing metabolites from metabolomic analysis of snap frozen micro-dissected intracranial 

xenografts of ENO1 homozygously deleted D423 cells from control, Avastin, HEX or Avastin+HEX groups. Red arrow 

indicates the degree of decrease in Avastin and HEX treatment relative to control. TCA cycle metabolite depletion 

achieved by Avastin treatment alone is significantly exaggerated by the addition of the Enolase inhibitor HEX. HEX 

inhibits anaplerotic pyruvate formation from glucose, and together with Avastin causes greater anaplerotic deficit on the 

tumors. b. Heatmap representing the changes in glycolytic and TCA cycle metabolites and amino acids in the intracranial 

tumors in control, Avastin, HEX, and Avastin+HEX groups.  c. Bar-graph showing differentially expressed genes (DEGs) 

that are statistically significant in different treatment groups (Up: log2Fc g 1 and padj f 0.05; Down: log2Fc f -1 and padj

f 0.05). d-e. Venn-diagram showing the number of DEGs that are common or unique to each treatment group relative to 

control. f. Heatmap showing statistically significant DEGs in each treatment group. Genes that are up- or down-regulated 

in each treatment relative to controls are shown.  g,h. Venn-diagrams representing the gene set enrichment analysis 

(GSEA) of DEGs relative to control. The number of GSEA reactome pathways that are unique to or overlapping between 

different treatment groups are shown. i,j. GSEA plots showing positive enrichment of genes in the cellular response to 

starvation pathway and negative enrichment of genes in the mitotic and pro-metaphase geneset.  k,l. Normalized 

enrichment score showing the GSEA reactome pathways that are positively enriched ( FDR(q)<0.05) in Avastin and 

Avastin+HEX, and HEX and Avastin+HEX groups. Highlighted in red are pathways that are relevant to cellular nutrient 

deficiency response. m. GSEA reactome pathways that are negatively enriched in Avastin and HEX treatment group 

relative to control. Highlighted in red are pathways that are relevant in proliferation. Data are mean ± SD. Asterik(*) 

represents statistical significance (p<0.05) achieved by ordinary one-way ANOVA and Tukey9s multiple comparisons test 
(a).
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Figure 5: Avastin and the Complex I inhibitor IACS-010759 synergize to abolish grow of ENO1-deleted intracranial tumors. 

a-f. Inhibition of oxidative phosphorylation induces anaplerotic stress in cancer cells. Data shown is analyzed from the 

metabolomic analysis from (Molina et al, Nature Medicine, 2016). Briefly, ENO1 deleted and ENO1 intact cancer cells were 

treated with DMSO or the complex-I inhibitor IACS-010759 and metabolomics was performed to identify different 

metabolites that are altered in response to mitochondrial complex I inhibition.  TCA cycle metabolites are universally 

diminished by IACS-010759 treatment compared to control in all cell lines irrespective of ENO1 deletion. g-j: Intracranial 

tumors were generated by implanting ENO1 deleted glioma cells in Foxn1 nu/nu nude mice. Tumor development was 

followed by T2-MRI. Treatment was begun when tumors reached ~20 mm3. g. T2-MRI images of animals before and after 28 

days of treatment with tumor volumes indicated in mm3 in the lower part of the image; initial tumor outlines are shown in 

dotted yellow lines, while tumors after 28 days are shown in solid lines. h: Summary of tumor volume changes after 24 days 

on treatment. Animals were treated continuously with Avastin 2X per week IP, IACS-010759 5 mpk once daily by oral 

gavage. i. Tumor volume plots comparing pre-treatment and 28 days post-treatment raw and relative tumor volumes. j. 

Growth rate of tumor volumes in each treatment group. The effect of IACS-010759 in ENO1 deleted gliomas is only 

marginal, but Avastin treatment led to a modest inhibition of tumor growth. Combination of IACS-010759 and Avastin 

resulted in significant suppression of tumor growth and a complete eradication of tumors in some cases. Data are mean ±

SD. Asterik(*) represents statistical significance (p<0.05) achieved by two-tailed unpaired t-test (a-f) and ordinary one-way 

ANOVA and Tukey9s multiple comparisons test (J). Note that tumor volume data for ENO1 deleted tumors in control and 

Avastin treatment group represented in Figure 5 and Figure 2 are from the same experiment. 
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Figure 6: Synergistic anti-tumor effect in ENO1-deleted tumors and additive effect in ENO1-WT tumors by 

combination of angiogenesis and enolase inhibitor Intracranial tumors were generated by implanting ENO1

deleted D423 and ENO1 intact U87 glioma cells in immunocompromised nude mice. Tumor development was 

followed by T2-MRI. T2-weighted MRI images of animal brains with ENO1 deleted (a) or ENO1 intact (e) before 

and after 14 days (ENO1 deleted) or 12 days (ENO1 intact) of treatment with tumor volumes indicated in mm3 in 

the lower left corner of the image; initial tumor outlines are shown in dotted yellow lines, while tumors after 14 

or 12 days are shown in solid lines. Animals were separated into four groups4Control (vehicle), Avastin (5 mpk, 

2X per week), Enolase inhibitor HEX (225 mpk, 12X per week) or Avastin plus HEX (Avastin, 5mpk 2X per week + 

225 mpk SC 12X per week) were administered. a-d: Summary of tumor volume changes and growth rates of ENO1

deleted tumors after 14 days of treatment. e-i: Summary of tumor volume changes, growth rates and tumor 

volume doubling time of ENO1 intact tumors after 12 days of treatment. HEX or Avastin as single agents suppress 

tumor growth in ENO1 deleted tumors; the combination of HEX and Avastin causes a synergistic regression of 

ENO1 deleted tumors at the doses administered. In ENO1 WT tumors, the effect of Avastin and HEX as single 

agents is marginal, but the combination of the drugs exert an additive effect on tumor growth inhibition. Data are 

mean ± SD. Asterik (*) represents statistical significance (p<0.05) achieved ordinary one-way ANOVA and Tukey9s 
multiple comparisons test (d, h, i). Note that Day 0 tumor volume data for ENO1 deleted tumors represented in 

Figure 2 and Figure 6(a-d) are from the same experiment. 





Figure 7: Potential of angiogenesis inhibitors as adjuvant/combination treatment with metabolic therapies in cancer. 

Illustration highlighting synergistic anti-tumor therapeutic potential of combining angiogenesis inhibitors with existing and 

emerging metabolic therapies that result in anaplerotic nutrient stress in cancer cells. Angiogenesis inhibitors such as 

Avastin impede the delivery of blood-borne nutrients such as glucose and amino acids to cancer, resulting in anaplerotic

deficit, and expose a multitude of metabolic vulnerabilities in cancer cells. Such metabolic liabilities may be exploited 

further through inhibition of glycolysis (POMHEX/HEX), as well as amino acids availability/breakdown (L-asparginase, 

Arginase, CB-839), impairment of metabolic stress adaptation (GCN2 inhibitors, AMPK inhibitors, autophagy inhibitors), and 

integration of dietary interventions such as methionine restricted diet, caloric restriction, and ketogenic diet. Together, the 

combination of angiogenesis inhibition and metabolic therapies may accentuate anaplerotic nutrient crisis and yield a 

synergistic inhibition of cancer cell growth and proliferation.   
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Supplementary Figure 1



Supplementary Figure 1. Angiogenesis inhibitors impair neo-vascularization by inhibition of the VEGFR signaling cascade.

a. Bevacizumab (Avastin) is a VEGF-A neutralizing humanized monoclonal antibody that neutralizes the VEGFA secreted by 

the tumor cells and impairs VEGFR signaling (Ferrara et al. 2004 Nat Rev Drug Discov.). Avastin is clinically approved as a 

frontline therapy for a broad range of malignancies that include glioblastoma multiforme, metastatic colorectal cancer, renal

cell carcinoma, ovarian adenocarcinoma among many others. b. Tivozanib (Fotivda) is a specific inhibitor of VEGFR 1, 2 and 

3 and it abrogates the VEGF signaling pathways through the inhibition of the tyrosine kinase activity of the VEGFRs 

(Nakamura et al. 2006 Cancer Res.). 
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Supplementary Figure 2. Angiogenesis inhibition impairs neovascularization in tumors, restricts tumor perfusion and 

delivery of oxygen and blood borne anaplerotic nutrients/Oxphos substrates.  (a-d) Schematic depicting the impact of 

tumor perfusion on oxygen and nutrient delivery to the tumors following angiogenesis inhibition. Angiogenesis ensures a 

continuous delivery of oxygen(a-b) and import of nutrients(c-d) to the tumor cells enabling metabolic processes that 

generate the biosynthetic and bioenergetic intermediates to support tumor survival and proliferation. Tumors employ 

multiple signaling pathways, most notably, HIF1³ pathway, once they sense a hypoxic environment. One of the direct 

consequence of HIF1³ activation is the secretion of vascular endothelial growth factors (VEGF) by the tumors. VEGFs act on 

the VEGF receptors (VEGFR) on endothelial cells, which orchestrates the angiogenesis cascade. Inhibition of angiogenesis 

has been an integral therapeutic approach in cancer. Multiple angiogenesis inhibitors have been developed and are 

currently in the clinic. e. Schematic depicting the consequence on the delivery of blood-borne nutrients to the tumors by 

angiogenesis inhibition. Apart from diminished oxygenation and elevation of hypoxia in the tumors, angiogenesis inhibition 

also restricts the import of blood-borne nutrients, that fuel the mitochondrial metabolic processes: the TCA cycle and 

oxidative phosphorylation. The TCA cycle is a bioenergetic engine and an anabolic hub in cancer cells. In addition to 

generating reducing equivalents for mitochondrial Oxphos reactions, TCA cycle also plays crucial role in anabolic reactions in 

cancer cells. The TCA cycle is constantly drained of carbon atoms in the form of CO2 and when the metabolic intermediates 

exit the cycle, to generate biosynthetic intermediates (shown in red) to support cancer cell proliferation. To ensure a 

continuous function of the TCA cycle, the carbon atoms must be replenished back into the TCA cycle by a process called 

anaplerosis. Cancer cells consume copious amounts of blood borne nutrients such as glucose, glutamine, fatty acids etc, to 

provide the surplus carbon atoms for the TCA cycle and ensure uncontrolled growth and proliferation. 
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Supplemental Figure 3: Inhibition of angiogenesis combined with anti-metabolic therapy is well-tolerated in-

vivo. a-e. Body weight is a useful proxy of disease burden in mice that is routinely monitored in toxicology 

experiments. Body weights of mice bearing ENO1-/- intracranial tumors subjected to Avastin, HEX, Tivozanib or 

IACS-10759 as monotherapy or to combination of HEX or IACS-10759 with Avastin or Tivozanib over 28 days. 

Combination therapy does not exhibit toxicity exaggeration in mice compared to the monotherapy and delayed 

the loss of body weight caused by brain tumor disease burden. The most significant decreases in body weights 

occurred in mice in the control group and it correlated with most aggressive intracranial tumor growth. Body 

weights of individual mice show a negative correlation with tumor burden with loss of body weights strongly 

associated with rapid tumor growth. 
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Supplemental Figure 4 : Avastin treatment does not modulate inhibition of glycolytic flux by the enolase 

inhibitor HEX. a. Inhibition of glycolysis by HEX is independent of Avastin mediated BBB resealing. HEX 

treatment, in HEX alone or Avastin + HEX treated tumors result in a comparable accumulation of glycolytic 

intermediates upstream of the enolase reaction. This indicates that despite the resealing of the blood brain 

barrier by Avastin treatment, HEX can still enter the brain and exert its effects. b. Small water-soluble 

phosphonate drug can reach the brain through the blood cerebrospinal fluid (CSF) barrier. Water-soluble 

phosphonate substrates such as HEX cannot cross the highly selective blood brain barrier (BBB). An alternative 

route for entry to the brain is through the blood CSF barrier. Unlike the BBB, the capillaries in the blood CSF 

barrier have fenestrations, which enable penetration of soluble drugs with small molecular weights, such as the 

antibiotic fosfomycin, which is clinically used to target brain abscesses. When Avastin treatment reseals the 

leaky tumor vasculature, HEX possibly enters the brain through the blood CSF barrier and exerts its anti-

neoplastic effect (Lin et al 2020 Nat Metab, and Khadka et al 2020 Cancer and Metab)
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Supplemental Figure 5: Combination of the enolase inhibitor HEX and VEGFR1/2/3 inhibitor Tivozanib all but 

eliminates intracranial tumor growth. Intracranial tumors were generated in Foxn1 nu/nu nude mice by 

implantation of D423 ENO1-homozygously deleted glioma cells and tumor growth was followed every week by 

T2-weighted MRI. When tumors were approximately 20 mm3 in volume, mice were separated into four groups: 

Control (n=6), Tivozanib (n=7), HEX (n=4), Tivozanib + HEX (n=8) and treatments with Tivozanib (2.5 mpk, 7X per 

week), Enolase inhibitor HEX (225 mpk, 14 doses per week) or Tivozanib plus HEX (Tivozanib, 2.5mpk 7X per 

week + 225 mpk SC 14X per week) were administered for 28 days. a. MRI images with tumor outlines before 

(dotted yellow) and after (solid yellow) 28 days of treatment. b-d. Treatment with Tivozanib as single agent, led 

to a modest inhibition of tumor growth in most mice, but in two mice, it completely eradicated the tumors. HEX 

as single agent attenuated tumor growth but did not result in an overall tumor regression. However, the 

combination of Tivozanib and HEX resulted in tumor regression in all treated animals. Animals were taken off 

the treatments on day 28 and survival in each group was calculated. Tivozanib as single agent as well as 

Tivozanib and HEX combination caused a significant extension of survival compared to control and HEX.
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Supplemental Figure 6: Potency of the Enolase inhibitor is dramatically enhanced under hypoxic conditions in 3D 
spheroids in vitro Tumor spheres of D423 ENO1-deleted (red), D423 ENO1-rescued (blue), as well as ENO1-intact, 
U373 (dark grey) and LN319 (grey) cells were treated with POMHEX at the concentrations indicated, for 2 days in 
either a hypoxic incubator (1% O2) or under 21% O2 hypoxia. Viable cells were imaged by Tetramethylrhodamine
(TMRE, red fluorescence) staining, which was quantified and expressed relative to the vehicle control. a. 
Representative images of ENO1-deleted (top panel) and ENO1-rescued tumor spheres (bottom panel) at normoxia
or 1% hypoxia after 2 days of treatment with POMHEX at the concentrations indicated. b-c. Quantification of cell 
viability by TMRE intensity as a function of POMHEX concentration after two days of treatment under normoxia (b) 
or 1% hypoxia (c) for ENO1-deleted, ENO1-rescued and ENO1-WT lines treated with POMHEX. The dotted vertical 
line is for IC50 comparison, and the arrow indicates the shift in IC50 between hypoxic and normoxic conditions. d. 
Table indicating the IC50 of each cell line under normoxic and 1% hypoxic conditions. The potency of the Enolase 
inhibitor POMHEX for killing D423 ENO1-deleted glioma cells is dramatically increased in 1% O2 as compared to in 
normoxia; hypoxia similarly increases potency of POMHEX against ENO1-rescued and ENO1-WT glioma cell lines.
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Supplemental Figure 7: Enolase inhibitor treatment decreases hypoxia by diminishing oxygen consumption. 
Enolase inhibitor POMHEX inhibits glycolysis and prevents pyruvate production, a key mitochondrial oxidative 
phosphorylation (oxygen consuming) substrate. Cells were treated different doses of POMHEX in normoxic and 
hypoxic conditions and different hypoxia responsive genes were assessed by western blot. a. Treatment with the 
Enolase inhibitor decreases carbonic anhydrase-9, a HIF1³ target in both normoxic and hypoxic conditions in a dose 
dependent manner but increases carnitine palmitoyl-transferase CPT1A levels. 
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Supplementary Figure 8



Supplemental Figure 8: Combination of Avastin and HEX causes synergistic changes in differential gene expression in 

intracranial tumors. (a-c) Volcano plots representing differentially up-regulated or down-regulated genes in monotherapy of 

Avastin or HEX, and combination treatment with Avastin and HEX compared to control. Statistically significant up- (red)or down-

(blue)regulated genes  (Up: log2Fc g 1 and padj f 0.05; Down: log2Fc f -1 and padj f 0.05) are shown in red and blue circles 
respectively, with gene names highlighted. 
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Supplemental Figure 9 : Combination of angiogenesis and glycolysis inhibition accentuate nutrient stress and adaptation 

response in tumors. a. Lysates from intracranial tumors from control, Avastin, HEX, and Avastin + HEX treatment groups were 

immunoblotted for proteins such as Atg5 and LC3B involved in autophagy mediated stress adaptation response, and Akt, a 

crucial protein at the intersection of many interconnected signaling pathways that control cell survival and growth, apoptosis, as 

well as cellular metabolism. Combination treatment of Avastin and HEX significantly accentuates autophagic response which is 

evidenced by increase in Atg5 as well as LC3B compared to monotherapy of HEX or Avastin, and also suppress Akt signaling, by 

reducing levels of Akt protein as well as its phosphorylation. b. GSEA plots showing positive enrichment of genes in the 

reactome cellular response to starvation gene set in Avastin + HEX group compared to control (Also shown in Figure 4i). c. The 

leading-edge genes for all four treatment groups are shown in the heatmap. 
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Supplemental Figure 10: Inhibition of oxidative phosphorylation induces anaplerotic stress, resulting in 
an exaggerated bioenergetic collapse in nutrient deficient conditions. a-b. ENO1 deleted D423 cells 
treated with IACS-10759 in nutrient replete (a) and nutrient depleted conditions (b) show that the 
toxicity of IACS-010759 is exaggerated in low nutrient conditions. c-e. Phospho-creatine level, an 
indicator of bioenergetic state of cells (c), reveal a profound disruption of bioenergetics by IACS-010759 
treatment in nutrient deficient conditions (e) compared to nutrient rich condition (d). 
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Supplemental Figure 11A and B: Angiogenesis inhibitor and IACS-010759 drive exceptionally rapid regression even 
in very large sub-cutaneous tumors. PGD-homozygously deleted NB1 cells were implanted sub-cutaneous in 
immunodeficient Foxn1 Nude mice. 12A a-c. When tumors reached large volumes (>400 mm3) mice were treated 
with either IACS-010759 alone (each dose indicated by a red arrow) alone or with IACS-010759 plus Tivozanib (each 
dose indicated by a purple arrow).  Tivozanib as a monotherapy decreased tumor growth while IACS-010759 
abolished tumor growth and as reported previously 3 drove tumor regression slowly over the course of weeks of 
continuous treatment. However 3 the co-administration of IACS-010759 with Tivozanib led to massive regression 
(>75% reduction in volume) in only 5 days. 12B a-b. Given the poor tolerability of IACS-010759 in the clinic; dose-
reduction attempts were made here: it was found that only two doses of IACS-010759 per week along with 5 doses of 
Tivozanib were sufficient to drive complete tumor regression with tumors remaining dormant for extended time after 
treatment discontinuation. Further experiments were discontinued due to COVID19 shut-downs. 
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Supplemental Figure 12: Angiogenesis inhibitor and enolase inhibitor display synergistic activity against non-

glycolysis-compromised tumors Intracranial tumors were generated by implanting U87 ENO1 intact glioma cells 

in NSG immunocompromised mice. Tumor development was followed by T2-MRI. Treatment was begun when 

tumors reached ~2 mm3. a. T2-weighted MRI images of animals before and after 8 days of treatment with 

tumor volumes indicated in mm3 in the lower part of the image; initial tumor outlines are shown in dotted 

yellow lines, while tumors after 8 days are shown in solid lines. b-c. Summary of tumor volume changes after 8 

days on treatment. Animals were treated continuously with a high dose of HEX, once daily for 8 days, while 

Avastin was administered at 200 mg/kg 3 X in 8 days. The effect of HEX in ENO1-WT gliomas is only marginal, 

but Avastin treatment led to a modest inhibition of tumor growth. Combination of HEX and Avastin result in a 

near-all suppression of tumor growth. d-e. Histopathological analyses brain sections extracted from mice 

showed a significant reduction in (phospho-histone H3 positive, an index of proliferation) in tumors treated with 

the combination of HEX, Avastin and Avastin and HEX, and an increase in dying cells (cleaved caspase 3 positive 

cells, an index of apoptotic cells), in Avastin and HEX treated tumors.
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Supplemental Figure 13: Angiogenesis inhibitor and IACS-010759 display synergistic activity against 
non-glycolysis-compromised tumors. ENO1 WT U87 cells were implanted intracranially in 
immunodeficient NSG mice. Tumor bearing mice were treated with Avastin alone or with combination of 
Avastin and IACS-010759. a-d. Tumor volumes pre-treatment are outlined with dotted yellow lines 
(Day0) and post-treatment are outlined with solid yellow lines (Day 27) (a-b) Avastin as a single agent 
moderately delays tumor growth, but Avastin strongly sensitizes ENO1 intact tumors to inhibition of 
mitochondrial oxidative phosphorylation, resulting in stasis of tumor growth. 
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Supplemental Figure 14: Low expression mitochondrial OxPhos gene is associated with favorable response to 
Avastin in a broad panel of PDXs. PDXs in the CrownBio collection differing in anti-tumor responsiveness to Avastin 
(For example: CV1664 highly responsive vs CV2320 minimally responsive) none of which is ENO1-homozygous 
deleted (ENO1 CNV = 0) a. Relative tumor volume versus time on treatment shown for individual mice treated with 
vehicle group (green) and Avastin(red) dosed at 10 mg/kg IP once per week. b-c. The tumors were profiled (pre-
treatment) by RNA seq and human transcript reads (genes expressed in malignant cancer cells) were analyzed for 
markers predicting response to Avastin. Tumor growth data was combined with RNAseq data to determine the 
effect of Avastin treatment on tumor growth as well as gene:avastin interaction for each gene. GSEA analyses and 
normalized enrichment scores for reactome (b) and gene ontology (c) datasets are shown. For GSEA, the significant 

human genes (p.adj < 0.05, n  = 5419) were ranked by sign(ï³4)*log10(p-val). A positive NES indicates that activation 
of the pathway synergizes with Avastin treatment, whereas a negative NES indicates an antagonistic effect.  Key 
findings indicate that those PDXs with lower expression of TCA-cycle and mitochondrial genes (red box) showed a 
better response to Avastin, while those with higher expression of these genes antagonized anti-tumor effect of 
Avastin. Similarly, low expression of the amino acid starvation response (orange boxes) was also associated with 
favorable response to Avastin. 
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