

1
2
3 **Regulatory Mimicry of Cyclin-Dependent Kinases**
4 **by Conserved Herpesvirus Protein Kinases**
5

6 **Naoto Koyanagi^{1,2,3}, Kowit Hengphasatporn⁴, Akihisa Kato^{1,2,3}, Moeka Nobe¹,**
7 **Kosuke Takeshima^{1,2}, Yuhei Maruzuru^{1,2,3}, Katsumi Maenaka^{5,6}, Yasuteru Shigeta⁴,**
8 **and Yasushi Kawaguchi^{1,2,3,7*}**

9
10
11 ¹Division of Molecular Virology, Department of Microbiology and
12 Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku,
13 Tokyo 108-8639, Japan

14 ²Department of Infectious Disease Control, International Research Center for
15 Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-
16 ku, Tokyo 108-8639, Japan

17 ³Research Center for Asian Infectious Diseases, the Institute of Medical
18 Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan

19 ⁴Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki
20 305-8577, Japan.

21 ⁵Center for Research and Education on Drug Discovery, Faculty of
22 Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812,
23 Japan

24 ⁶Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences,
25 Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.

26 ⁷ The University of Tokyo, Pandemic Preparedness, Infection and Advanced
27 Research 21 Center, Tokyo, Japan

28
29 **Running Head:** Regulatory mimicry by conserved viral kinases

30

31 ***Correspondence**

32 **Dr. Yasushi Kawaguchi**

33 **E-mail: ykawagu@ims.u-tokyo.ac.jp**

34

ABSTRACT

35 Herpesviruses encode conserved protein kinases (CHPKs) that target cellular cyclin-
36 dependent kinase (CDK) phosphorylation sites; thus, they are termed viral CDK-like
37 kinases. Tyrosine 15 in the GxGxxG motifs of CDK1 and CDK2, whose phosphorylation
38 down-regulates their catalytic activities, is conserved in the corresponding motifs of
39 CHPKs. We found that herpes simplex virus 2 (HSV-2) CHPK UL13 mimicked the
40 regulatory mechanism of CDKs. This regulatory mimicry was conserved in CHPKs
41 encoded by herpesviruses subclassified into subfamilies other than HSV-2, suggesting
42 CHPKs have regulatory and functional mimicry with CDKs. Phosphorylation of the
43 corresponding Tyr in HSV-2 UL13 was required for the down-regulation of viral
44 replication and pathogenicity, specifically in the central nervous system of mice, and for
45 efficient viral recurrence in guinea pigs. These data highlight the dual impact of the
46 regulatory mimicry of CDKs by CHPK on the fine-tuned regulation of lytic and latent
47 HSV-2 infections *in vivo*.
48

49

INTRODUCTION

50 Viruses require host cellular machinery for proliferation and have evolved multiple
51 strategies to control host cellular machinery to establish a cellular environment favorable
52 for replication and survival. One viral strategy is mimicking key regulatory factors of host
53 cells to control cellular machinery¹⁻³. Accumulating evidence suggests viruses encode
54 factors that mimic the functions of various cellular proteins¹⁻³. In contrast, regulatory
55 mechanisms of viral factors that mimic cellular factors are likely to be totally different
56 from those of the corresponding cellular proteins. This is because viral factors are
57 expressed from the viral genome and cellular environment are transformed by viral
58 infection where host protein synthesis is shut-off. Furthermore, many cellular pathways
59 in uninfected cells including cell cycle, proliferation, intracellular trafficking, and protein
60 degradation pathways are de-regulated.

61 Protein phosphorylation, a reversible modification in eukaryotic cells that
62 controls proteins involved in cellular machinery⁴⁻⁶, might be a key target for viral
63 hijacking of the host cellular machinery^{7,8}. Consistent with this, viral protein kinases
64 conserved in members of the family *Herpesviridae* (herpesviruses), designated conserved
65 herpesvirus protein kinases (CHPKs)^{7,9}, share some activities with cellular cyclin-
66 dependent kinases (CDKs); thus, they are also termed viral CDK-like kinases^{7,9-18}. CDKs

67 regulate various cellular processes including cell cycle, transcription, metabolism,
68 apoptosis, and proliferation in host cells¹⁹⁻²³. Like other kinases, each CDK consists of
69 two structurally and functionally distinct lobes (N- and C-lobes). The N-lobe contains a
70 highly conserved GxGxxG motif and phosphorylation of its serine/threonine and tyrosine
71 (Thr-14 and Tyr-15 in CDK1 and -2) inhibits catalytic activity²⁴. Of Note, Tyrs in the
72 GxGxxG motifs of CDKs are conserved in the corresponding motifs of CHPKs (S-Fig.
73 1).

74 Herpesviruses, double-stranded DNA viruses that are ubiquitous pathogens in
75 mammals, birds, and reptiles²⁵, are subdivided into three subfamilies: *Alphaherpesvirinae*,
76 *Betaherpesvirinae*, and *Gammaherpesvirinae*. Herpes simplex virus 2 (HSV-2) in the
77 subfamily *Alphaherpesvirinae*, causes human mucocutaneous and skin diseases (genital
78 herpes, herpetic whitlow), meningitis, and neonatal diseases (life-threatening
79 encephalitis), and is associated with increased risk for human immunodeficiency virus
80 infection²⁶. HSV-2 establishes life-long infection in humans with two distinct (lytic and
81 latent) phases of infection. After the initial HSV-2 infection, it becomes latent and
82 frequently reactivates to cause lesions²⁶. Here, we focused on HSV-2 CHPK UL13 and
83 investigated whether HSV-2 UL13 mimics the regulatory mechanism of CDKs mediated
84 by Tyr-phosphorylation in the GxGxxG motifs.

85

RESULTS

86 **Tyr phosphorylation in GxGxxG motif of HSV-2 UL13 in infected cells.** Tyr at
87 position 162 (Tyr-162) in the GxGxxG motif of HSV-2 UL13, which corresponds to Tyr-
88 15 of CDK1, was well conserved in CHPKs from all three subfamilies examined (S-Fig.
89 1a, b).

90 To examine whether UL13 Tyr-162 was phosphorylated in HSV-2-infected cells,
91 human osteosarcoma U2OS cells were infected with wild-type HSV-2 186, a UL13-null
92 mutant virus Δ UL13²⁷, UL13-Y162F in which UL13 Tyr-162 was replaced with
93 phenylalanine (Y162F), or its repaired virus UL13-Y162E/F-repair (S-Fig. 2), treated
94 with or without a phosphatase inhibitor, sodium orthovanadate (SOV) from 22 h after
95 infection for an additional 2 h, lysed, and subjected to immunoblotting with anti-UL13-
96 Y162^P polyclonal antibodies that specifically react with a peptide corresponding to UL13
97 residues 157-167 with phosphorylated Tyr-162 (Y162^P) (S-Fig. 3). In the presence of
98 SOV, anti-UL13-Y162^P antibodies reacted with UL13 in lysates of cells infected with
99 wild-type HSV-2 186 or UL13-Y162E/F-repair (Fig. 1a, b). In contrast, anti-UL13-Y162^P
100 antibodies barely reacted with UL13 in the lysates of cells mock-infected or infected with
101 Δ UL13 or UL13-Y162F in the presence of SOV. In the absence of SOV, UL13 levels
102 detected by anti-UL13-Y162^P antibodies in lysates of cells infected with wild-type HSV-

103 2 186 were very low and required long exposure for immunoblotting (Fig. 1a).

104 Phosphatase treatment of lysates of cells infected with wild-type HSV-2 186 abolished

105 UL13 detection by anti-UL13-Y162^P antibodies (Fig. 1c). These results indicated UL13

106 was phosphorylated at Tyr-162 (UL13-Y162^P) in HSV-2-infected cells; however, this

107 was unstable and was immediately de-phosphorylated by a phosphatase(s).

108 **Effects of HSV-2 UL13 Tyr-162 phosphorylation on UL13 substrates in**

109 **infected cells.** To examine the effects of UL13 phosphorylation at Tyr-162 on UL13

110 substrates in HSV-2-infected cells, U2OS cells were mock-infected or infected with wild-

111 type HSV-2 186, Δ UL13, Δ UL13-repair²⁷, recombinant virus UL13-K176M encoding an

112 enzymatically inactive mutant of UL13²⁷, its repaired virus UL13-K176M-repair²⁷,

113 UL13-Y162E carrying a phosphomimetic mutation at Tyr-162, UL13-Y162F or UL13-

114 Y162E/F-repair in which mutations in UL13-Y162F and UL13-Y162E were repaired (S-

115 Fig. 2), lysed and subjected to immunoblotting.

116 Elongation factor 1 δ (EF-1 δ) is a cellular substrate of CHPKs and CDK1 that

117 phosphorylate Ser-133 in this protein¹⁰. Infection of cells with wild-type HSV-2 186,

118 Δ UL13-repair, or UL13-K176M-repair increased EF-1 δ phosphorylation levels at Ser-

119 133 (EF-1 δ -S133^P) detected by anti-EF-1 δ -S133^P monoclonal antibody²⁷ and the hyper-

120 phosphorylated form of EF-1 δ , detected as a slower migrating band by immunoblotting

121 with anti-EF-1 δ polyclonal antibodies, compared to mock-infection, but not infection of
122 cells with Δ UL13 or UL13-K176M (Fig. 1d). The increase in the hyper-phosphorylated
123 form of EF-1 δ in HSV-2-infected cells resulted from EF-1 δ phosphorylation at Ser-133
124 by UL13¹⁰. EF-1 δ phosphorylation levels at Ser-133 in UL13-Y162E infected cells and
125 the hyper-phosphorylated form of EF-1 δ were lower than in cells infected with wild-type
126 HSV-2 186 or UL13-Y162E/F-repair but were similar to those in cells mock-infected or
127 infected with Δ UL13 or UL13-K176M. EF-1 δ phosphorylation levels at Ser-133 and the
128 hyper-phosphorylated form of EF-1 δ in cells infected with UL13-Y162F was similar to
129 that in cells infected with wild-type HSV-2 186 or UL13-Y162E/F-repair.

130 Auto-phosphorylated UL13, detected as a slow migrating band by
131 immunoblotting with anti-UL13 polyclonal antibodies²⁷, was barely detectable in cells
132 infected with UL13-Y162E, similar to cells infected with UL13-K176M (Fig. 1e). In
133 contrast, auto-phosphorylated UL13 was clearly detected in cells infected with wild-type
134 HSV-2 186, UL13-Y162F, or each repaired virus. Similarly, the phosphorylation status
135 of other UL13 substrates including ICP22 and VP22, detected as differently migrating
136 bands of substrates by immunoblotting^{28,29}, in cells infected with UL13-Y162E could not
137 be differentiated from that in cells infected with Δ UL13 or UL13-K176M, but was

138 different from that in cells infected with wild-type HSV-2 186, UL13-Y162F, or each
139 repaired virus (Fig. 1f, g).

140 Similar results observed in infected U2OS cells were obtained with infected
141 simian kidney epithelial Vero cells (S-Fig. 4). These results indicated the
142 phosphomimetic mutation at HSV-2 UL13 Tyr-162 reduced phosphorylation of all UL13
143 substrates tested in HSV-2-infected cells to levels comparable with the kinase-dead
144 UL13-K176M mutation, suggesting UL13 phosphorylation at Tyr-162 down-regulated
145 UL13 kinase activity in HSV-2-infected cells.

146 **Effects of Tyr-phosphorylation in GxGxxG motifs of CHPKs encoded by β -**
147 **and γ -herpesviruses on EF-1 δ phosphorylation.** U69 and BGLF4 are CHPKs encoded
148 by a β -herpesvirus (human herpesvirus 6 B [HHV6B]) and γ -herpesvirus (Epstein-Barr
149 virus [EBV]), respectively^{30,31}. To examine whether the down-regulation of HSV-2 UL13
150 by Tyr 162 phosphorylation was conserved in these CHPKs, simian kidney epithelial
151 COS-7 cells were transfected with a plasmid expressing Flag-tagged EF-1 δ fused to
152 enhanced green fluorescence protein (EGFP) [EGFP-EF-1 δ (F)]²⁷ in combination with
153 each of the plasmids expressing wild-type CHPKs and their mutants, and subjected to
154 immunoblotting with the anti-EF-1 δ -S133^P antibody. Phosphorylation levels of EGFP-
155 EF-1 δ (F) in the presence of wild-type HHV6B U69 or EBV BGLF4 increased compared

156 to those in the absence of viral kinases or in the presence of their kinase-dead mutants,
157 verifying these CHPKs phosphorylated EF-1 δ at Ser-133 (S-Fig. 5). Phosphorylation
158 levels of EGFP-EF-1 δ (F) in the presence of U69-Y207F or BGLF4-Y89F, in which each
159 conserved Tyr in the GxGxxG motifs of viral kinases was substituted with phenylalanine,
160 were comparable to those in the presence of wild-type U69 or BGLF4. In contrast,
161 phosphorylation levels of EGFP-EF-1 δ (F) in the presence of U69-Y207E or BGLF4-
162 Y89E, each carrying a phosphomimetic mutation at the conserved Tyr, were significantly
163 lower than those in the presence of wild-type U69 or BGLF4. These results suggested
164 that the down-regulation of CHPK by Tyr-phosphorylation in the GxGxxG motif was
165 conserved in all herpesvirus subfamilies.

166 **Effects of UL13 Tyr-162 phosphorylation on HSV-2 replication and cell-cell
167 spread.** To examine the effects of UL13 phosphorylation at Tyr-162 on HSV-2 replication
168 and cell-cell spread in cell cultures, we analyzed progeny virus yields and plaque sizes in
169 U2OS and Vero cells infected with wild-type HSV-2 186 or each UL13-mutant and
170 repaired virus. Progeny virus yields in U2OS cells infected with UL13-Y162E at a
171 multiplicity of infection (MOI) of 0.01 were significantly lower than in cells infected with
172 wild-type HSV-2 186 or UL13-Y162E/F-repair, but similar in cells infected with Δ UL13
173 or UL13-K176M (Fig. 2a). Progeny virus yields in U2OS cells infected with UL13-

174 Y162F were similar in cells infected with wild-type HSV-2 186 or UL13-Y162E/F-repair.

175 In contrast, progeny virus yields in U2OS cells infected with each virus at an MOI of 3

176 were similar (Fig. 2b). Progeny virus yields in Vero cells infected with each virus were

177 comparable at MOIs of 0.01 and 3 (S-Fig. 6). In agreement with the growth properties of

178 these viruses at an MOI of 0.01, UL13-Y162E produced smaller plaques than wild-type

179 HSV-2 186, UL13-Y162F, and UL13-Y162E/F-repair, similar size plaques to ΔUL13 and

180 UL13-K176M in U2OS cells (Fig. 2c), and all viruses produced similar size plaques on

181 Vero cells (S-Fig. 6). These results suggested constitutive phosphorylation at HSV-2

182 UL13 Tyr-162 reduced HSV-2 replication and cell-cell spread to levels comparable with

183 cells infected with ΔUL13 or UL13-K176M dependent on cell type and MOI.

184 Phenotypes of the Y162F mutation in HSV-2 UL13 suggesting the physiological

185 relevance of UL13 phosphorylation at Tyr-162 were not detected in all cell culture

186 experiments (Fig. 1d-g, Fig. 2, S-Figs. 4, 6), in agreement with the observation that

187 phosphorylation was unstable and UL13-Y162^P was immediately de-phosphorylated by

188 a phosphatase(s) in HSV-2-infected cells (Fig. 1a, b).

189 **Effects of UL13 Tyr-162 phosphorylation on HSV-2 replication and**

190 **pathogenicity in mice.** To examine the effects of UL13 phosphorylation at Tyr-162 on

191 HSV-2 replication and pathogenicity *in vivo*, mice were vaginally infected with UL13-

192 Y162E, UL13-Y162F, or UL13-Y162E/F-repair, and survival, acute genital lesions, and
193 virus titers in vaginal secretions were monitored (Fig. 3a-c). Alternatively, mice were
194 vaginally infected with UL13-Y162E or UL13-Y162E/F-repair, UL13-Y162F or UL13-
195 Y162E/F-repair, or UL13-K176M or UL13-K176M-repair (Fig. 3d-f). At 7 days post-
196 infection, mice were sacrificed, and virus titers in the vagina, spinal cords, and brains
197 were assayed. Survival of mice infected with UL13-Y162E was significantly greater
198 compared with mice infected with UL13-Y162E/F-repair (Fig. 3a). Virus titers in vaginal
199 secretions of mice infected with UL13-Y162E on days 2 and 4, and genital disease scores
200 on days 9 and 12 were significantly lower than in mice infected with UL13-Y162E/F-
201 repair (Fig. 3b, c). Similar survival curves, virus titers in vaginal secretions, and genital
202 disease scores were previously reported with UL13-K176M and UL13-K176M-repair
203 under identical conditions²⁷. Virus titers in vagina, spinal cords, and brains of mice
204 infected with UL13-Y162E or UL13-K176M were significantly lower than in mice
205 infected with UL13-Y162E/F-repair or UL13-K176M-repair, respectively (Fig. 3d, e).
206 These results suggested constitutive UL13 phosphorylation at Tyr-162 down-regulated
207 viral pathogenicity and replication in mice during the acute lytic phase of HSV-2 infection.

208 Whereas UL13-Y162F phenotypes in cell cultures could not be differentiated
209 from those of UL13-Y162E/F-repair (Figs. 1, 2, and S-Figs. 4, 6), the survival of mice

210 infected with UL13-Y162F was significantly lower than mice infected with UL13-
211 Y162E/F-repair (Fig. 3a) and virus titers in brains of mice infected with UL13-Y162F
212 were significantly higher than in mice infected with UL13-Y162E/F-repair (Fig. 3f). In
213 contrast, virus titers in the vagina and spinal cords of mice infected with UL13-Y162F
214 were similar to those in mice infected with UL13-Y162E/F-repair (Fig. 3f). Consistently,
215 acute genital disease scores and virus titers in the vaginal secretions of mice infected with
216 UL13-Y162F were similar to mice infected with UL13-Y162E/F-repair (Fig. 3b, c).
217 These results suggested UL13 phosphorylation at Tyr-162 was required for the down-
218 regulation of viral replication and pathogenicity specifically in the central nervous system
219 (CNS) of mice during the acute lytic phase of infection. In contrast, UL13
220 phosphorylation at Tyr-162 was not required for viral replication or pathogenic
221 manifestations in the vagina and spinal cords of mice.

222 **Effects of UL13 Tyr-162 phosphorylation on HSV-2 latency in guinea pigs.**
223 To examine the physiological effects of UL13 phosphorylation at Tyr-162 on HSV-2
224 latency and reactivation, guinea pigs were vaginally infected with UL13-Y162F or UL13-
225 Y162E/F-repair, and survival, acute genital lesions, and virus titers in vaginal secretions
226 were monitored. Survival, acute genital disease scores, and virus titers in vaginal
227 secretions in guinea pigs infected with UL13-Y162F were similar to those infected with

228 UL13-Y162E/F-repair, indicating UL13 phosphorylation at Tyr-162 was not required for
229 viral replication and pathogenic manifestations in the vagina and pathogenicity in guinea
230 pigs (S-Fig. 7). These results confirmed viral replication and pathogenic manifestations
231 in peripheral sites of mice infected with each virus (Fig. 3b-f), but not with the survival
232 of infected mice (Fig. 3a). This difference may be due to guinea pig experiments where
233 HSV-2 infection had lower viral pathogenicity in the CNS, as most (77%) guinea pigs
234 infected with UL13-Y162E/F-repair survived (S-Fig. 7a) unlike the mouse experiments
235 where most (79%) mice infected died (Fig. 3a).

236 Following recovery from acute infection, evaluable guinea pigs were monitored
237 daily between days 21-56 after infection for recurrent diseases. Guinea pigs infected with
238 UL13-Y162F during the latent phase of infection had significantly reduced mean
239 cumulative recurrence and number of recurrent lesion days compared with guinea pigs
240 infected with UL13-Y162E/F-repair (Fig. 4a, b). After guinea pigs vaginally infected with
241 UL13-Y162F or UL13-Y162E/F-repair recovered from acute infection, these evaluable
242 were sacrificed 21 days after infection and latent HSV-2 genomes in the dorsal root
243 ganglia (DRGs) were quantitated. HSV-2 DNA levels in DRGs during the latent phase of
244 infection in guinea pigs infected with UL13-Y162F were similar to those infected with
245 UL13-Y162E/F-repair (Fig. 4c). Thus, UL13 phosphorylation at Tyr-162 was required

246 for efficient reactivation from latency in guinea pigs although it had no effect on

247 establishing viral latency.

248

249

DISCUSSION

250 Tyr-15 in the GxGxxG motif of CDK1 and CDK2, whose phosphorylation down-

251 regulates their catalytic activities³²⁻³⁴, is well-conserved in most (85%) kinases in the

252 CDK family as observed in CHPKs (S-Fig. 1). Few kinases (11.7%) in other families

253 contain a corresponding Tyr in the GxGxxG motif (S-Fig. 8) and the functional effects of

254 its phosphorylation are unclear^{35,36}. The current study showed Tyr phosphorylation in

255 GxGxxG motifs of CHPKs down-regulated their kinase activities indicating CHPKs

256 specifically mimic the regulatory mechanism mediated by Tyr-15 phosphorylation in

257 CDK1 and CDK2. Thus, herpesviruses have evolved functional and regulatory mimicry

258 of CDKs by CHPKs. Interestingly, the corresponding Tyrs in the GxGxxG motif of CDKs

259 and CHPKs are also well conserved in F10L homologs, viral kinases encoded by

260 poxviruses, but not in other viral kinases including B1R homologs of poxviruses and Us3

261 homologs of alphaherpesviruses⁷ (S-Fig. 9), suggesting poxviruses might have also

262 evolved CDK regulatory mimicry by conserved F10L kinases.

263 We reported the phenotype of the phosphorylation-null mutation at Tyr-162 (the

264 Y162F mutation) in HSV-2 UL13, suggesting the physiological relevance of the

265 regulatory mimicry of CDKs by HSV-2 UL13, was evident specific occasions *in vivo*.

266 Whereas the phosphorylation-null mutation aberrantly augmented virulence and viral

267 replication in the CNS of mice, but not the vagina or spinal cord during the acute lytic
268 phase of infection, the mutation impaired the recurrence rate in guinea pig vaginas during
269 the latent phase of infection without affecting latent infection of the DRGs. Thus, the
270 regulatory mimicry of CDKs by HSV-2 UL13 seems to be critical not only for the down-
271 regulation of viral replication and pathogenicity specifically in the CNS during the acute
272 lytic phase of infection but also for efficient reactivation from latency. Consequently, the
273 regulatory mimicry of CDKs by HSV-2 UL13 might affect the fine-tuned regulation of
274 acute lytic and latent HSV-2 infections *in vivo*. Herpesviruses can successfully persist
275 over a lifetime and be transmitted to new hosts without causing significant damage,
276 suggesting they have evolved a sophisticated balance with their hosts during a long
277 history of coevloution^{37,38}. The negative regulation of HSV-2 UL13 by Tyr-162
278 phosphorylation might be a viral strategy to co-exist with a host by preventing high CNS
279 pathogenicity during the acute lytic phase of infection, which allows host survival and
280 viral persistence. During reactivation from latency, UL13 might counteract signaling
281 pathway(s) required for efficient reactivation; thus, the phosphorylation-dead mutation at
282 UL13 Tyr-162 that precludes the negative regulation of UL13 activity, might impair
283 reactivation from latency. UL13 homologs inhibit various cellular signaling pathways
284 including JAK/STAT, RIG-I-like receptor, and cGAS/STING³⁹⁻⁴². It would be of interest

285 to investigate these pathways regulate reactivation from latency. Alternatively, UL13
286 might promote signaling pathway(s) required for efficient reactivation as a UL13
287 homolog promoted escape from viral genome silencing in neurons and axonal
288 anterograde transport upon reactivation^{43,44}. Outcomes of signaling pathways can depend
289 on fine-tuned activities of kinases that modulate pathways and failure of proper kinase
290 regulation leads to different signaling pathway outcomes⁴⁵. UL13 dysregulation by the
291 phosphorylation-null mutation, which might preclude the fine-tuned down-regulation of
292 UL13 activity, might impair reactivation from latency.
293

294

METHODS

295 **Cells and viruses.** Simian kidney epithelial Vero and COS-7 cells, rabbit skin

296 cells and human osteosarcoma U2OS cells, and HSV-2 wild-type strain HSV-2 186 were

297 described previously^{10,46-49}. Recombinant virus HSV-2 ΔUL13 in which the UL13 gene

298 was disrupted by deleting UL13 codons 159-417, recombinant virus HSV-2 ΔUL13-

299 repair in which the UL13 null mutation was repaired, recombinant virus HSV-2 UL13-

300 K176M encoding an enzymatically inactive UL13 mutant in which lysine at UL13 residue

301 176 was replaced with methionine, and recombinant virus HSV-2 UL13-K176M-repair

302 in which the UL13 K176M mutation was repaired were described previously²⁷ (S-Fig. 2).

303 **Plasmids.** pGEX-ICP22-P1 was constructed by amplifying the domains of HSV-

304 2 ICP22 (encoded by ICP22 codons 1–165) from pYEbac861 by PCR using the primers

305 listed in S-Table 1, and cloning it into the *Eco*RI and *Sal*I sites of pGEX-4T-1(GE

306 Healthcare) in frame with glutathione S-transferase (GST) sequences. pME-BGLF4 and

307 pME-BGLF4-K102I were described previously⁵⁰. pME-BGLF4-Y89E or pME-BGLF4-

308 Y89F, in which Tyr-89 of BGLF4 was replaced with glutamic acid or phenylalanine,

309 respectively, were generated according to the manufacturer's instructions using the

310 QuikChange site-directed mutagenesis XL kit with complementary oligonucleotides

311 listed in S-Table 1, containing a specific nucleotide substitution (Stratagene) based on

312 pME-BGLF4. pcDNA-SE-U69 was constructed by amplifying the entire coding sequence
313 of HHV-6B U69 from HHV-6B strain HST DNA by PCR using the primers listed in S-
314 Table 1, and cloning it into the *Eco*RI and *Not*I sites of pcDNA-SE⁵¹ in frame with a
315 Strep-tag sequence. pcDNA-SE-U69-K219M, in which Lys-219 of U69 was replaced
316 with methionine, was generated according to the manufacturer's instructions using the
317 QuikChange site-directed mutagenesis XL kit with complementary oligonucleotides
318 listed in S-Table 1, containing the specific nucleotide substitution (Stratagene) based on
319 pcDNA-SE-U69. pcDNA-SE-U69-Y207E and pcDNA-SE-U69-Y207F, in which Tyr-
320 207 of U69 was replaced with glutamic acid or phenylalanine, respectively, were
321 generated according to the manufacturer's instructions using the QuikChange site-
322 directed mutagenesis XL kit with complementary oligonucleotides shown in S-Table 1,
323 containing the specific nucleotide substitution (Stratagene) based on pcDNA-SE-U69.
324 pEGFP-EF-1 δ (F), in which EF-1 δ was tagged with the Flag epitope and EGFP, and
325 pEGFP-EF-1 δ -S133A(F), in which EF-1 δ Ser-133 was replaced with alanine were
326 described previously²⁷.

327 **Construction of recombinant viruses.** Recombinant virus UL13-Y162E, in
328 which Tyr-162 of HSV-2 UL13 was substituted with glutamic acid (S-Fig. 2), was
329 generated by the two-step Red-mediated mutagenesis procedure using *Escherichia coli*

330 (*E. coli*) GS1783 strain containing pYEbac861²⁷ as described previously^{52,53}, except using
331 the primers listed in S-Table 2. Recombinant virus UL13-Y162F, in which Tyr-162 of
332 UL13 was substituted with phenylalanine (S-Fig. 2), was generated by the two-step Red-
333 mediated mutagenesis procedure using *E. coli* GS1783 strain containing the UL13-
334 Y162E genomes, except using the primers listed in S-Table 2. Recombinant virus UL13-
335 Y162E/F-repair, in which the Y162F mutation in UL13 was repaired (S-Fig. 2), was
336 generated by the two-step Red-mediated mutagenesis procedure, using *E. coli* GS1783
337 containing the UL13-Y162F genomes, and the primers listed in S-Table 2. UL13-
338 Y162E/F-repair is the repaired virus of UL13-Y162E and UL13-Y162F.

339 **Production and purification of GST fusion proteins.** GST-ICP22-P1 was
340 expressed in *E. coli* Rosetta (Novagen), transformed with pGEX-ICP22-P1, purified by
341 glutathione-sepharose beads (GE Healthcare Life Science), and eluted with GST elution-
342 buffer (50 mM Tris-HCl [pH 8.0], 10 mM reduced glutathione (Sigma)) as described
343 previously⁵¹.

344 **Antibodies.** Antibodies were as follows: commercial mouse monoclonal
345 antibodies to Flag-tag (M2; Sigma), Strep-tag (4F1; MBL), β -actin (AC15; Sigma), α -
346 tubulin (DM1A; Sigma), and rabbit polyclonal antibodies to UL37 (CAC-CT-HSV-
347 UL37; CosmoBio). Mouse monoclonal antibodies to UL13 and EF-1 δ with

348 phosphorylated Ser-133 and rabbit polyclonal antibodies to EF-1 δ , BGLF4, and VP22

349 were reported previously^{10,54-57}. Rabbit polyclonal antibodies that recognize UL13 with

350 phosphorylated Tyr-162 was generated by SCRUM Inc. (Tokyo, Japan). As the antigen,

351 the phosphopeptide GGSGG(pY)GEVQL, which corresponds to the UL13 residues 157-

352 167, was synthesized and conjugated at the amino terminus by an additional cysteine to

353 the keyhole limpet hemocyanine. Two rabbits were immunized four times with the

354 antigen mixed with the Freund's complete adjuvant. The serum from one of the rabbits

355 was subjected to affinity purification using a column conjugated with the UL13

356 phosphopeptide. The bound antibodies were eluted from the column and passed through

357 another column conjugated with UL13 unphosphorylated peptide Cys-GGSGGYGEVQL

358 to eliminate the antibodies that bound to the unphosphorylated peptide. To generate

359 mouse polyclonal antibodies to HSV-2 ICP22, BALB/c mice were immunized once with

360 purified MBP-ICP22-P1 and TiterMax Gold (TiterMax USA, Inc.). Sera from immunized

361 mice were used as sources of mouse polyclonal antibodies to ICP22.

362 **ELISA.** The specificity of anti-UL13-Y162^P polyclonal antibodies was analyzed

363 by enzyme-linked immunosorbent assay (ELISA). Nunc-Immuno plates (Thermo

364 Scientific) coated with the phosphorylated Tyr-162 peptide of UL13 (Cys-

365 GGSGG(pY)GEVQL) or the unphosphorylated Tyr-162 peptide of UL13 (Cys-

366 GGSGGYGEVQL) were blocked with 2% fetal calf serum (FCS) in phosphate-buffered
367 saline (PBS) and anti-UL13-Y162^P polyclonal antibodies diluted with 2% FCS in PBS
368 were added to the plates. Anti-rabbit IgG, HRP-linked F (ab')2 Fragment (GE Healthcare
369 Bio-Sciences) and 1-Step™ TMB ELISA Substrate Solutions (Thermo Scientific) were
370 added to the plates and detected by a Perkin Elmer EnSpire multimode plate reader.

371 **Immunoblotting.** Immunoblotting was performed as described previously⁵⁸. To
372 detect UL13 phosphorylation at Tyr-162, cell lysates in sodium dodecyl sulfate (SDS)
373 sample buffer B (62.5 mM Tris-HCl [pH 6.8], 2% SDS, 20% glycerol, 5% 2-
374 mercaptoethanol, containing protease and phosphatase inhibitor cocktails (Nacalai
375 Tesque)), were used. Brightness/contrast of raw blots were equally adjusted across the
376 entire image with Image lab software (BioRad) to generate representative images. Protein
377 (EGFP-EF-1 δ -S133^P(F)) levels present in immunoblot bands were quantified using the
378 ImageQuant LAS 4000 system with ImageQuant TL7.0 analysis software (GE Healthcare
379 Life Sciences) according to the manufacturer's instructions and normalized to that of
380 EGFP-EF-1 δ (F) proteins and then to the sum of the data across multiple experiments in
381 the same blot, as described previously⁵⁹.

382 **Inhibitor treatment.** U2OS cells infected with wild-type HSV-2 186 or each
383 recombinant virus were treated with or without 5 mM SOV (Wako) at 22 h post-infection
384 for further analyses.

385 **Phosphatase treatment.** Lysates of U2OS cells infected with wild-type HSV-2
386 186 at an MOI of 3 for 24 h were treated with calf intestinal alkaline phosphatase (CIP)
387 (New England BioLabs) as described previously⁶⁰.

388 **Determination of plaque size.** Vero and U2OS cells were infected with each
389 recombinant virus at an MOI of 0.0001, and plaque sizes were determined as described
390 previously⁶¹.

391 **Intravaginal infection of mice.** Female ICR mice were purchased from Charles
392 River. For intravaginal HSV-2 infection, 5-week-old ICR mice were injected
393 subcutaneously in the neck ruff with 1.67 mg medroxyprogesterone (Depo-Gestin; A.N.B
394 Laboratories) in 200 µl PBS 7 days prior to viral infection. Treated mice were then
395 infected intravaginally with 1×10^4 plaque forming unit (PFU) of each virus as described
396 previously⁶². Mice were monitored daily until 18 days post-infection for survival and the
397 severity of vaginal disease using a scoring system as described previously⁶². Virus titers
398 in vaginal secretions of mice were determined as described previously⁶². To determine
399 virus titers in vaginas, spinal cords, and brains of mice, the infected mice at 7 days post-

400 infection were sacrificed, and the tissues were removed, sonicated in 1 ml of medium 199
401 containing 1% FCS and antibiotics, and frozen at -80°C. Frozen samples were later
402 thawed, and virus titers in the supernatants obtained after centrifugation of the samples
403 were determined by standard plaque assays on Vero cells. All animal experiments were
404 performed in accordance with the Guidelines for Proper Conduct of Animal Experiments,
405 Science Council of Japan. The protocol was approved by the Institutional Animal Care
406 and Use Committee (IACUC) of the Institute of Medical Science, The University of
407 Tokyo (IACUC protocol approval PA11-81, PA16-69, A21-55).

408 **Intravaginal infection of guinea pigs.** Female Hartley strain guinea pigs were
409 purchased from Japan SLC, Inc. For intravaginal infection, 5-week-old female guinea
410 pigs were infected with 1×10^4 PFU UL13-Y162F or UL13-Y162E/F-repair per vagina.
411 Guinea pigs were monitored daily until 21 days post-infection for survival and the
412 severity of vaginal disease using a scoring system of 0 for no sign of disease, 1 for
413 redness/swelling, 2 for 1-2 lesions, 3 for 3-5 lesions, 4 for ≥ 6 lesions, the coalescence of
414 lesions, ulcerated lesions, or neurological symptoms, and 5 for death as described
415 previously⁶³. Guinea pigs were euthanized after showing signs of severe disease. Vaginal
416 washes of guinea pigs were collected by pipetting 300 μ l of medium 199 containing 1%
417 FCS and antibiotics in and out of the vagina 10 times, and diluted to a final volume of 1

418 ml in medium 199 containing 1% FCS and antibiotics. Virus titers were determined by
419 standard plaque assay. After recovery from acute genital HSV-2 infections, guinea pigs
420 were observed daily from 22-56 days post-infection for recurrent lesions and were
421 assigned a score of 1 point for each day that a lesion was present. Guinea pigs with no
422 infectious virus detected in vaginal washes 5 days post-infection, with no detectable
423 disease by 21 days post-infection, or with vaginal lesions that had not healed by 21 days
424 post-infection were removed from the analysis of HSV-2 recurrence. The protocol was
425 approved by the IACUC of the Institute of Medical Science, The University of Tokyo
426 (IACUC protocol approval PA15-15, A19-91).

427 **Detection of viral DNA by Droplet Digital PCR.** Five-week-old female guinea
428 pigs were intravaginally infected with 1×10^4 PFU UL13-Y162F or UL13-Y162E/F-repair
429 per vagina. Guinea pigs with no detectable disease or death by 21 days post-infection
430 were removed from the analysis. Total DNA was isolated from DRGs of guinea pigs
431 sacrificed at 21 days post-infection. Total DNA in DRGs was isolated by a GeneJET
432 Genomic DNA Purification Kit (Thermo Fisher Scientific) according to the
433 manufacturer's instructions. Droplet Digital PCR (ddPCR) was performed to measure
434 HSV-2 genomic DNA levels in DRGs using the QX100 droplet digital PCR system (Bio-
435 Rad Laboratories). HSV-2 genomic DNA was quantified using the following gD

436 primers/TaqMan probe set: 5'-GGTGAAGCGTGTACCA-3', 5'-
437 TACACAGTGATCGGGATGCT-3', and a fluorescein amidite (FAM) labeled Universal
438 Probe Library probe 65 (Roche). Cellular genomic DNA was quantified by a RPP30
439 hexachloro-fluorescein (HEX) assay (BioRad Assay ID: dCNS675240177). The ddPCR
440 reaction mixture consisted of 10 μ l ddPCR Supermix for Probe (no dUTP) (Bio-Rad),
441 0.18 μ l each 100 μ M HSV-2 gD primer, 0.5 μ l Universal Probe Library probe 65 (Roche),
442 1 μ l ddPCR Copy Number Assay for guinea pig RPP30, and 3 μ l template DNA in a final
443 volume of 20 μ l. Each reaction was mixed with 70 μ l Droplet Generation Oil for Probes
444 (Bio-Rad) and loaded into a DG8 cartridge (Bio-Rad). A QX200 Droplet Generator (Bio-
445 Rad) was used to make the droplets, which were transferred to a 96-well plate and the
446 following PCR reaction was run: 95°C for 10 minutes, 40 cycles of 94°C for 30 seconds,
447 and 54°C for 1 minute, followed by 98°C for 10 minutes, ending at 4°C. The ramp rate
448 was 2°C/sec for all steps. The QX200 Droplet Reader (Bio-Rad) was used to analyze
449 droplets for fluorescence measurement of the FAM and HEX probes. Data were analyzed
450 in QX Manager 1.1 Standard Edition (Bio-Rad). To determine the relative viral genomic
451 DNA levels, the number of HSV-2 gD-positive droplets was divided by the number of
452 RPP30-positive droplets in the same 20 μ l reaction.

453 **Statistical analysis.** Differences in viral replication and plaque size in cell
454 cultures, and relative amounts of phosphorylated EF-1 δ were analyzed statistically by
455 analysis of variance (ANOVA) followed by Tukey's post-hoc test. Differences in viral
456 replication in vaginas, spinal cords, and brains of mice, viral replication in vaginal washes,
457 disease scores, relative amount of latent HSV-2 genome, mean number of recurrences in
458 guinea pigs, and ELISA results were statistically analyzed by the Mann–Whitney *U*-test.
459 Differences in viral replication in vaginal washes and disease scores of mice were
460 analyzed statistically by Dunn's multiple comparisons test. Differences in the mortality
461 of infected guinea pigs were statistically analyzed by the log-rank test. A P value of <0.05
462 was considered statistically significant. Differences in the mortality of infected mice were
463 statistically analyzed by the log-rank test, and for the three comparison analyses, P values
464 of <0.0167 ($0.05/3$), <0.025 ($0.05/2$), or <0.05 ($0.05/1$) were sequentially considered
465 significant after Holm's sequentially rejective Bonferroni multiple-comparison
466 adjustment. All statistical analyses were performed with GraphPad Prism 8 (GraphPad
467 Software, San Diego, CA).
468

469

ACKNOWLEDGEMENTS

470

We thank Risa Abe, Tohru Ikegami, Yui Muto, Keiko Sato and Yoshie Asakura

471

for their excellent technical assistance. We are grateful to Yasuko Mori and Jun Arii for

472

providing valuable reagents, and Keizo Tomonaga and Junna Kawasaki for helpful

473

discussions. This study was supported by Grants for Scientific Research and Grant-in-

474

Aid for Scientific Research (S) (20H05692) from the Japan Society for the Promotion of

475

Science (JSPS), grants for Scientific Research on Innovative Areas (21H00338,

476

21H00417, 22H04803) and a grant for Transformative Research Areas (22H05584) from

477

the Ministry of Education, Culture, Science, Sports and Technology of Japan, a PRESTO

478

grant (JPMJPR22R5) from Japan Science and Technology Agency (JST), grants

479

(JP20wm0125002, JP22fk0108640, JP22gm1610008, JP223fa627001, JP23wm0225031,

480

JP23wm0225035) from the Japan Agency for Medical Research and Development

481

(AMED), grants from the International Joint Research Project of the Institute of Medical

482

Science, the University of Tokyo, grants from the Takeda Science Foundation, the

483

Mitsubishi Foundation, the Uehara Memorial Foundation, and the Waksman Foundation

484

of Japan, and the GSK Japan Research Grant 2019.

485

486

FIGURE LEGENDS

487 **Fig. 1. Phosphorylation of UL13 at Tyr-162 and effects of mutations in UL13 on**

488 **UL13 substrates in HSV-2 infected cells. a, b.** U2OS cells were mock-infected (a, b) or

489 infected with wild-type HSV-2 186 (a, b), Δ UL13 (a), UL13-Y162F (b), or UL13-

490 Y162E/F-repair (b) at an MOI of 3, incubated with or without 5 mM SOV at 22 h post-

491 infection, harvested at 24 h post-infection, and lysates were analyzed by immunoblotting

492 with antibodies to UL13 or UL13-Y162^P. **c.** U2OS cells were infected with wild-type

493 HSV-2 186 at an MOI of 3, incubated with or without 5 mM SOV at 22 h post-infection,

494 harvested at 24 h post-infection, lysed, cell lysates were mock-treated or treated with CIP,

495 and then analyzed as described in panel a. **d-g.** U2OS cells mock-infected or infected with

496 wild-type HSV-2 186, Δ UL13, Δ UL13-repair, UL13-K176M, UL13-K176M-repair,

497 UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair for 24 h at an MOI of 3 were

498 analyzed by immunoblotting with antibodies to EF-1 δ (d), EF-1 δ -S133^P (d), UL13 (e),

499 ICP22 (f), VP22 (g), UL37 (d-g), α -tubulin (d, g) or β -actin (e, f). Digital images are

500 representative of three independent experiments.

501

502 **Fig. 2. Effects of mutations in UL13 on viral replication and cell-cell spread. a, b.**

503 U2OS cells were infected with wild-type HSV-2 186, Δ UL13, Δ UL13-repair, UL13-

504 K176M, UL13-K176M-repair, UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair at
505 an MOI of 0.01 (a) or 3 (b). Total virus titers in cell culture supernatants and infected cells
506 were harvested at 24 h (a) or 12 h (b) post-infection and assayed. Each value is the mean
507 \pm standard error of the mean (SEM) of four experiments. Statistical significance was
508 analyzed by ANOVA with the Tukey's test. n.s., not significant. **c.** U2OS cells were
509 infected with wild-type HSV-2 186, Δ UL13, Δ UL13-repair, UL13-K176M, UL13-
510 K176M-repair, UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair at an MOI of
511 0.0001 under plaque assay conditions. Diameters of 20 single plaques for each virus were
512 measured at 48 h post-infection. Each data point is the mean \pm SEM of the measured
513 plaque sizes. Statistical significance was analyzed by ANOVA with Tukey's test. n.s., not
514 significant. Data are representative of three independent experiments.

515

516 **Fig. 3. Effects of mutations in UL13 on mortality and viral replication in infected**
517 **mice following intravaginal infection. a-c.** Fourteen 6-week-old female ICR mice were
518 pretreated with medroxyprogesterone and the vagina of each mouse was infected with
519 1×10^4 PFU UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair. (a) Survival of mice
520 was monitored for 18 d post-infection. Differences in the mortality of infected mice were
521 statistically analyzed by the log-rank test, and for three comparison analyses, P values of

522 <0.0167 (0.05/3), <0.025 (0.05/2), or <0.05 (0.05/1) were sequentially considered
523 significant after Holm's sequentially rejective Bonferroni multiple-comparison
524 adjustment. (b) Clinical scores of infected mice at 9- and 12-days post-infection were
525 monitored. Each data point is the clinical score for one mouse. Horizontal bars indicate
526 the means of each group. Statistical significance values were analyzed by Dunn's
527 multiple-comparison test. n.s., not significant. (c) Vaginal secretions of infected mice at
528 2- and 4-days post-infection were harvested, and virus titers were assayed. Each data point
529 is the virus titer in the vaginal secretion of one mouse. Horizontal bars indicate the means
530 of each group. Statistical significance was analyzed by Dunn's multiple-comparison test.
531 n.s., not significant. The results from three independent experiments were combined. **d-f.**
532 Sixteen (d, e) or 26 (f) 6-week-old female ICR mice were pretreated with
533 medroxyprogesterone and the vaginas of each mouse were infected with 1×10^4 PFU
534 UL13-Y162E (d) or UL13-Y162E/F-repair (d, f), UL13-K176M (e), UL13-K176M-
535 repair (e), or UL13-Y162F (f). Vaginas, spinal cords, and brains at 7 days post-infection
536 were harvested and virus titers were assayed. Results of three (d, e) or four (f) independent
537 experiments were combined for each virus. Dashed line indicates the limit of detection.
538 Each data point is the virus titer of one mouse. Horizontal bars indicate the mean of each
539 group. Statistical significance was analyzed by Mann-Whitney *U*-test. n.s., not significant.

540

541 **Fig. 4. Effects of mutations in UL13 Tyr-162 on HSV-2 latency and recurrence in**

542 **guinea pigs following intravaginal infection.** **a.** Eighteen 5-week-old female Hartley

543 guinea pigs were intravaginally infected with 1×10^4 PFU UL13-Y162F or UL13-

544 Y162E/F-repair. Guinea pigs with no infectious virus detected in vaginal washes at 1, 3,

545 and 5 days after infection, with no detectable disease by 21 days after infection, with

546 vaginal lesions that had not healed by 21 days after infection, or were dead by 21 days

547 after infection were removed from the analysis, resulting in 6 guinea pigs for each UL13-

548 Y162F and UL13-Y162E/F-repair. Mean number of cumulative recurrences per guinea

549 pig in each group from 22-56 days after infection. Results from two independent

550 experiments were combined. **b.** The number of days with a recurrent lesion is shown in

551 a. Each data point is a recurrent number of one guinea pig. Horizontal bars indicate the

552 mean of each group. Statistical significance was analyzed by Mann-Whitney *U*-test. **c.**

553 Twelve 5-week-old female Hartley guinea pigs were intravaginally infected with 1×10^4

554 PFU UL13-Y162F or UL13-Y162E/F-repair. Guinea pigs with no detectable disease or

555 death by 21 days after infection were removed from the analysis, resulting in 10 guinea

556 pigs in the UL13-Y162F and UL13-Y162E/F-repair groups. Twenty-one days after

557 infection, viral genomes from DRG of infected guinea pigs were quantified by ddPCR.

558 Results from two independent experiments were combined. Each data point is the relative
559 amount of each viral genome in the DRG of one guinea pig. Horizontal bars indicate the
560 mean of each group. Statistical significance was analyzed by the Mann-Whitney *U*-test.
561 n.s., not significant. n.d., number of animals with no viral genomes detected in the tissue.

562

563 **S-Fig. 1. Sequence alignment around the GxGxxG motif of CHPKs and human**
564 **CDKs. a.** CHPKs amino acids are labeled with their NCBI gene identification numbers
565 and virus names. HSV-1, herpes simplex virus 1; HSV-2, herpes simplex virus 2; VZV,
566 varicella-zoster virus; PRV, pseudorabies virus; MDV, Marek's disease virus; SaHV-1,
567 saimiriine herpesvirus 1; CaHV-1, canid herpesvirus 1; FeHV-1, feline herpesvirus 1;
568 BoHV-1, bovine herpesvirus 1; CpHV-1, caprine herpesvirus 1; EHV-1, equine
569 herpesvirus 1; EHV-4, equine herpesvirus 4; HCMV, human cytomegalovirus; HHV-6A,
570 human herpesvirus 6A; HHV-6B, human herpesvirus 6B; HHV-7, human herpesvirus 7;
571 MCMV, murine cytomegalovirus; RhCMV, rhesus cytomegalovirus; EBV, Epstein-Barr
572 virus; KSHV, Kaposi's sarcoma-associated herpesvirus; MHV-68, murine
573 gammaherpesvirus-68; EHV-2, equine herpesvirus 2; and OvHV-2, ovine herpesvirus 2.
574 HSV-1, HSV-2, VZV, PRV, MDV, SaHV-1, CaHV-1, FeHV-1, BoHV-1, CpHV-1, EHV-1
575 and EHV-4 belong to the subfamily *Alphaherpesvirinae*; HCMV, HHV-6A, HHV-6B,

576 HHV-7, MCMV and RhCMV belong to the *Betaherpesvirinae*; and EBV, KSHV, MHV-
577 68, EHV-2 and OvHV-2 belong to the *Gammaherpesvirinae*. Highly conserved glycine
578 residues in the GxGxxG motif and valine residue near the GxGxxG motif are in white.
579 Tyrosine residues corresponding to the CDK1 Tyr-15 position of the GxGxxG motif are
580 in pink. **b.** CDK amino acids are labeled with their NCBI gene identification numbers.
581 Highly conserved glycine residues in the GxGxxG motif and valine residue near the
582 GxGxxG motif are in white. Tyrosine residues corresponding to the CDK1 Tyr-15
583 position of the GxGxxG motif are in pink.

584

585 **S-Fig. 2. Schematic diagrams of the genomic structures of wild-type HSV-2 186 and**
586 **the relevant domains of recombinant viruses used in this study.** Line 1, wild-type
587 HSV-2 186 genome; Line 2, domain of the UL12 gene to the UL15 gene; Lines 3 to 10,
588 recombinant viruses with mutations in the UL13 gene.

589

590 **S-Fig. 3. Generation of rabbit polyclonal antibodies to UL13-Y162^P.** ELISA was
591 performed to assess the specificity of UL13-Y162^P polyclonal antibodies. Phosphorylated
592 Tyr-162 peptide of UL13 (Cys-GGS^G(pY)GEVQL) or non-phosphorylated Tyr-162
593 peptide of UL13 (Cys-GGS^GGYGEVQL) was used for ELISAs. Each value is the mean

594 \pm SEM of four experiments. Statistical significance was analyzed by Mann-Whitney *U*-
595 test.

596

597 **S-Fig. 4. Effects of mutations in UL13 on post-translational processing of UL13**

598 **substrates in Vero cells.** Vero cells mock-infected or infected with wild-type HSV-2 186,
599 Δ UL13, Δ UL13-repair, UL13-K176M, UL13-K176M-repair, UL13-Y162E, UL13-
600 Y162F, or UL13-Y162E/F-repair for 24 h at an MOI of 3 were analyzed by
601 immunoblotting with antibodies to EF-1 δ (a), EF-1 δ -S133 P (a), UL13 (b), ICP22 (c),
602 VP22 (d), UL37 (a-d), α -tubulin (a, b, d), or β -actin (c). Digital images are representative
603 of three independent experiments.

604

605 **S-Fig. 5. Effects of mutations in tyrosines of HHV-6B U69 and EBV BGLF4**

606 **corresponding to HSV-2 Tyr-162 on EF-1 δ in cell cultures.** (a) COS-7 cells were
607 transfected with a plasmid expressing EGFP-EF-1 δ (F) (lanes 1-5) or a plasmid expressing
608 EGFP-EF-1 δ -S133A(F) (lane 6) combined with a plasmid expressing empty (lane 1), SE-
609 U69 (lanes 2, 6), SE-U69-K219M (lane 3), SE-U69-Y207E (lane 4), or SE-U69-Y207F
610 (lane 5), and harvested 48 h post-transfection. Cell lysates were analyzed by
611 immunoblotting with antibodies to Flag-tag, EF-1 δ -S133 P , Strep-tag, or β -actin. Digital

612 images are representative of three independent experiments. (b) Amount of EGFP-EF-
613 δ (F)-S133^P protein detected with anti-EF-1 δ -S133^P monoclonal antibody (a, top panel)
614 relative to that of EGFP-EF-1 δ (F) protein detected with anti-Flag-tag antibody (a, second
615 panel) in transfected cells. Data were normalized by dividing the sum of the data on the
616 same blot⁵⁹. Each value is the mean \pm SEM of three experiments. Statistical significance
617 was analyzed by ANOVA with the Tukey's test. n.s., not significant. (c) COS-7 cells were
618 transfected with a plasmid expressing EGFP-EF-1 δ (F) (lanes 1-5) or a plasmid expressing
619 EGFP-EF-1 δ -S133A(F) (lane 6) and a plasmid expressing empty (lane 1), BGLF4 (lane
620 2, 6), BGLF4-K102I (lane 3), BGLF4-Y89E (lane 4), or BGLF4-Y89F (lane 5), and
621 harvested 48 h post-transfection. Cell lysates were analyzed by immunoblotting with
622 antibodies to Flag-tag, EF-1 δ -S133^P, BGLF4, or β -actin. Digital images are
623 representative of nine independent experiments. (d) Amount of EGFP-EF-1 δ (F)-S133^P
624 protein detected with anti-EF-1 δ -S133^P monoclonal antibody (a, top panel) relative to
625 that of EGFP-EF-1 δ (F) protein detected with anti-Flag-tag antibody (a, second panel) in
626 transfected cells. Data were normalized by dividing the sum of the data on the same blot.
627 Each value is the mean \pm SEM of nine experiments. Statistical significance was analyzed
628 by ANOVA with the Tukey's test. n.s., not significant.
629

630 **S-Fig. 6. Effect of mutations in UL13 on viral replication and cell-cell spread in Vero**

631 **cells. a, b.** Vero cells were infected with wild-type HSV-2 186, ΔUL13, ΔUL13-repair,

632 UL13-K176M, UL13-K176M-repair, UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-

633 repair at an MOI of 0.01 (a) or 3 (b). Total virus titers in cell culture supernatants and

634 infected cells were harvested at 24 h (a) or 12 h (b) post-infection and assayed. Each value

635 is the mean \pm SEM of four experiments. Statistical significance was analyzed by ANOVA

636 with Tukey's test. n.s., not significant. **c.** Vero cells were infected with wild-type HSV-2

637 186, ΔUL13, ΔUL13-repair, UL13-K176M, UL13-K176M-repair, UL13-Y162E, UL13-

638 Y162F, or UL13-Y162E/F-repair at an MOI of 0.0001 under plaque assay conditions.

639 Diameters of 20 single plaques for each virus were measured 48 h post-infection. Each

640 data point is the mean \pm SEM of the measured plaque sizes. Statistical significance was

641 analyzed by ANOVA with Tukey's test. n.s., not significant. Data are representative of

642 three independent experiments.

643

644 **S-Fig. 7. Effects of mutations in UL13 Tyr-162 on mortality, viral replication, and**

645 **pathogenic manifestation in vaginas of guinea pigs following intravaginal infection.**

646 **a-c.** Eighteen 5-week-old female Hartley guinea pigs used in Fig. 4a, b were

647 intravaginally infected with 1×10^4 PFU UL13-Y162F or UL13-Y162E/F-repair. **a.**

648 Survival of guinea pigs was monitored for 21 days post-infection. Statistical significance
649 was analyzed by log-rank test. n.s., not significant. **b.** Vaginal secretions of guinea pigs
650 at 3- and 5-days post-infection were harvested and virus titers were assayed. Dashed line
651 indicates the limit of detection. Each data point is the virus titer of one guinea pig.
652 Horizontal bars indicate the mean of each group. Statistical significance was analyzed by
653 Mann-Whitney *U*-test. n.s., not significant. **c.** Clinical scores of guinea pigs at 21 days
654 post-infection were monitored. Data are the mean of the observations. Statistical
655 significance was analyzed by Mann-Whitney *U*-test. n.s., not significant.

656

657 **S-Fig. 8. Sequence alignment around the GxGxxG motif of host cellular PKs.**
658 Sequence alignment around the GxGxxG motif of host cellular protein kinases. Amino
659 acids of host cellular protein kinases are labeled with their NCBI Reference Sequence
660 numbers. The 10 kinases of each major kinase group, excluding CDK, are shown. Highly
661 conserved glycine residues in the GxGxxG motif and valine residue near the GxGxxG
662 motif are in white. Tyrosine residues corresponding to CDK1 Tyr-15 are in pink.

663

664 **S-Fig. 9. Sequence alignment around the GxGxxG motif of other viral**
665 **serine/threonine PKs.** Sequence alignment around the GxGxxG motif of F10L kinase

666 homologs (a) and B1R kinase homologs (b) conserved in poxviruses, and that of Us3
667 kinase homologs conserved in the subfamily *Alphaherpesvirinae* (c). Tyrosines
668 corresponding to CDK1 Tyr-15 are in pink. Amino acids of viral kinases are labeled with
669 their NCBI gene identification numbers and virus names. Highly conserved glycine
670 residues in the GxGxxG motif and valine residue near the GxGxxG motif are in white.
671 VACV, vaccinia virus; MPV, monkeypox virus; VARV, variola virus; SwPV, swinepox
672 virus; LSDV, lumpy skin disease virus; DPV, deerpox virus; SQPV, squirrel poxvirus;
673 HSV-1, herpes simplex virus 1; HSV-2, herpes simplex virus 2; VZV, varicella-zoster
674 virus; PRV, pseudorabies virus; MDV, Marek's disease virus; SaHV-1, saimiriine
675 herpesvirus 1; CaHV-1, canid herpesvirus 1; FeHV-1, feline herpesvirus 1; BoHV-1,
676 bovine herpesvirus 1; CpHV-1, caprine herpesvirus 1; EHV-1, equine herpesvirus 1;
677 EHV-4, equine herpesvirus 4.

678

REFERENCES

679 1 Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. *Nat Rev Immunol* **3**, 36-50, doi:10.1038/nri980 (2003).

680

681 2 Elde, N. C. & Malik, H. S. The evolutionary conundrum of pathogen mimicry. *Nat Rev Microbiol* **7**, 787-797, doi:10.1038/nrmicro2222 (2009).

682

683 3 Tarakhovsky, A. & Prinjha, R. K. Drawing on disorder: How viruses use histone mimicry to their advantage. *J Exp Med* **215**, 1777-1787, doi:10.1084/jem.20180099 (2018).

684

685

686 4 Edelman, A. M., Blumenthal, D. K. & Krebs, E. G. Protein serine/threonine kinases. *Annu Rev Biochem* **56**, 567-613, doi:10.1146/annurev.bi.56.070187.003031 (1987).

687

688

689 5 Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. *Science* **298**, 1912-1934, doi:10.1126/science.1075762 (2002).

690

691

692 6 Manning, G., Plowman, G. D., Hunter, T. & Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. *Trends Biochem Sci* **27**, 514-520, doi:10.1016/s0968-0004(02)02179-5 (2002).

693

694

695 7 Jacob, T., Van den Broeke, C. & Favoreel, H. W. Viral serine/threonine protein kinases. *J Virol* **85**, 1158-1173, doi:10.1128/JVI.01369-10 (2011).

696

697 8 Chamontin, C., Bossis, G., Nisole, S., Arhel, N. J. & Maarifi, G. Regulation of Viral Restriction by Post-Translational Modifications. *Viruses* **13**, doi:10.3390/v13112197 (2021).

698

699

700 9 Kawaguchi, Y. & Kato, K. Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. *Rev Med Virol* **13**, 331-340, doi:10.1002/rmv.402 (2003).

701

702

703 10 Kawaguchi, Y. *et al.* Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. *J Virol* **77**, 2359-2368, doi:10.1128/jvi.77.4.2359-2368.2003 (2003).

704

705

706

707 11 Baek, M. C., Krosky, P. M., Pearson, A. & Coen, D. M. Phosphorylation of the RNA polymerase II carboxyl-terminal domain in human cytomegalovirus-infected cells and in vitro by the viral UL97 protein kinase. *Virology* **324**, 184-193, doi:10.1016/j.virol.2004.03.015 (2004).

708

709

710

711 12 Kudoh, A. *et al.* Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus

712

713 productive replication. *J Virol* **80**, 10064-10072, doi:10.1128/JVI.00678-06
714 (2006).

715 13 Hume, A. J. *et al.* Phosphorylation of retinoblastoma protein by viral protein with
716 cyclin-dependent kinase function. *Science* **320**, 797-799,
717 doi:10.1126/science.1152095 (2008).

718 14 Hamirally, S. *et al.* Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates
719 disruption of nuclear lamina during human cytomegalovirus nuclear egress. *PLoS*
720 *Pathog* **5**, e1000275, doi:10.1371/journal.ppat.1000275 (2009).

721 15 Li, R. *et al.* Conserved herpesvirus kinases target the DNA damage response
722 pathway and TIP60 histone acetyltransferase to promote virus replication. *Cell*
723 *Host Microbe* **10**, 390-400, doi:10.1016/j.chom.2011.08.013 (2011).

724 16 Iwahori, S., Umana, A. C., VanDeusen, H. R. & Kalejta, R. F. Human
725 cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97
726 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130
727 proteins. *J Biol Chem* **292**, 6583-6599, doi:10.1074/jbc.M116.773150 (2017).

728 17 Iwahori, S. & Kalejta, R. F. Phosphorylation of transcriptional regulators in the
729 retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase
730 encoded by human cytomegalovirus. *Virology* **512**, 95-103,
731 doi:10.1016/j.virol.2017.09.009 (2017).

732 18 Zhang, K., Lv, D. W. & Li, R. Conserved Herpesvirus Protein Kinases Target
733 SAMHD1 to Facilitate Virus Replication. *Cell Rep* **28**, 449-459 e445,
734 doi:10.1016/j.celrep.2019.04.020 (2019).

735 19 Hochegger, H., Takeda, S. & Hunt, T. Cyclin-dependent kinases and cell-cycle
736 transitions: does one fit all? *Nat Rev Mol Cell Biol* **9**, 910-916,
737 doi:10.1038/nrm2510 (2008).

738 20 Constantin, T. A., Greenland, K. K., Varela-Carver, A. & Bevan, C. L.
739 Transcription associated cyclin-dependent kinases as therapeutic targets for
740 prostate cancer. *Oncogene* **41**, 3303-3315, doi:10.1038/s41388-022-02347-1
741 (2022).

742 21 Solaki, M. & Ewald, J. C. Fueling the Cycle: CDKs in Carbon and Energy
743 Metabolism. *Front Cell Dev Biol* **6**, 93, doi:10.3389/fcell.2018.00093 (2018).

744 22 Besson, A., Dowdy, S. F. & Roberts, J. M. CDK inhibitors: cell cycle regulators
745 and beyond. *Dev Cell* **14**, 159-169, doi:10.1016/j.devcel.2008.01.013 (2008).

746 23 Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors.
747 *Annu Rev Cell Dev Biol* **13**, 261-291, doi:10.1146/annurev.cellbio.13.1.261
748 (1997).

749 24 Wood, D. J. & Endicott, J. A. Structural insights into the functional diversity of
750 the CDK-cyclin family. *Open Biol* **8**, doi:10.1098/rsob.180112 (2018).

751 25 Krug, L. T. & Pellett, P. E. in *Fields Virology 7th ed.* Vol. 7th ed. (eds Peter M.
752 Howley & David M. Knipe) Ch. 8, 212-234 (Lippincott Williams & Wilkins,
753 2022).

754 26 Whitley, R. J. & Johnston, C. in *Fields Virology 7th ed.* Vol. 7th ed. (eds Peter
755 M. Howley & David M. Knipe) Ch. 10, 297-323 (Lippincott Williams & Wilkins,
756 2022).

757 27 Koyanagi, N. *et al.* Regulation of Herpes Simplex Virus 2 Protein Kinase UL13
758 by Phosphorylation and Its Role in Viral Pathogenesis. *J Virol* **92**,
759 doi:10.1128/JVI.00807-18 (2018).

760 28 Purves, F. C. & Roizman, B. The UL13 gene of herpes simplex virus 1 encodes
761 the functions for posttranslational processing associated with phosphorylation of
762 the regulatory protein alpha 22. *Proc Natl Acad Sci U S A* **89**, 7310-7314,
763 doi:10.1073/pnas.89.16.7310 (1992).

764 29 Geiss, B. J., Tavis, J. E., Metzger, L. M., Leib, D. A. & Morrison, L. A. Temporal
765 regulation of herpes simplex virus type 2 VP22 expression and phosphorylation.
766 *J Virol* **75**, 10721-10729, doi:10.1128/JVI.75.22.10721-10729.2001 (2001).

767 30 Ansari, A. & Emery, V. C. The U69 gene of human herpesvirus 6 encodes a protein
768 kinase which can confer ganciclovir sensitivity to baculoviruses. *J Virol* **73**, 3284-
769 3291, doi:10.1128/JVI.73.4.3284-3291.1999 (1999).

770 31 Smith, R. F. & Smith, T. F. Identification of new protein kinase-related genes in
771 three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein-Barr
772 virus. *J Virol* **63**, 450-455, doi:10.1128/JVI.63.1.450-455.1989 (1989).

773 32 Gould, K. L. & Nurse, P. Tyrosine phosphorylation of the fission yeast cdc2+
774 protein kinase regulates entry into mitosis. *Nature* **342**, 39-45,
775 doi:10.1038/342039a0 (1989).

776 33 Norbury, C., Blow, J. & Nurse, P. Regulatory phosphorylation of the p34cdc2
777 protein kinase in vertebrates. *EMBO J* **10**, 3321-3329, doi:10.1002/j.1460-
778 2075.1991.tb04896.x (1991).

779 34 Krek, W. & Nigg, E. A. Mutations of p34cdc2 phosphorylation sites induce
780 premature mitotic events in HeLa cells: evidence for a double block to p34cdc2
781 kinase activation in vertebrates. *EMBO J* **10**, 3331-3341, doi:10.1002/j.1460-
782 2075.1991.tb04897.x (1991).

783 35 Hornbeck, P. V. *et al.* PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
784 *Nucleic Acids Res* **43**, D512-520, doi:10.1093/nar/gku1267 (2015).

785 36 Steinberg, S. F. Post-translational modifications at the ATP-positioning G-loop
786 that regulate protein kinase activity. *Pharmacol Res* **135**, 181-187,
787 doi:10.1016/j.phrs.2018.07.009 (2018).

788 37 Lovisolo, O., Hull, R. & Rosler, O. Coevolution of viruses with hosts and vectors
789 and possible paleontology. *Adv Virus Res* **62**, 325-379, doi:10.1016/s0065-
790 3527(03)62006-3 (2003).

791 38 Adler, B., Sattler, C. & Adler, H. Herpesviruses and Their Host Cells: A Successful
792 Liaison. *Trends Microbiol* **25**, 229-241, doi:10.1016/j.tim.2016.11.009 (2017).

793 39 Yokota, S. *et al.* Induction of suppressor of cytokine signaling-3 by herpes simplex
794 virus type 1 contributes to inhibition of the interferon signaling pathway. *J Virol*
795 **78**, 6282-6286, doi:10.1128/JVI.78.12.6282-6286.2004 (2004).

796 40 Zhao, N., Wang, F., Kong, Z. & Shang, Y. Pseudorabies Virus Tegument Protein
797 UL13 Suppresses RLR-Mediated Antiviral Innate Immunity through Regulating
798 Receptor Transcription. *Viruses* **14**, doi:10.3390/v14071465 (2022).

799 41 Bo, Z. *et al.* PRV UL13 inhibits cGAS-STING-mediated IFN-beta production by
800 phosphorylating IRF3. *Vet Res* **51**, 118, doi:10.1186/s13567-020-00843-4 (2020).

801 42 Kong, Z. *et al.* Pseudorabies virus tegument protein UL13 recruits RNF5 to inhibit
802 STING-mediated antiviral immunity. *PLoS Pathog* **18**, e1010544,
803 doi:10.1371/journal.ppat.1010544 (2022).

804 43 Van Cleemput, J., Koyuncu, O. O., Laval, K., Engel, E. A. & Enquist, L. W.
805 CRISPR/Cas9-Constructed Pseudorabies Virus Mutants Reveal the Importance of
806 UL13 in Alphaherpesvirus Escape from Genome Silencing. *J Virol* **95**,
807 doi:10.1128/JVI.02286-20 (2021).

808 44 Coller, K. E. & Smith, G. A. Two viral kinases are required for sustained long
809 distance axon transport of a neuroinvasive herpesvirus. *Traffic* **9**, 1458-1470,
810 doi:10.1111/j.1600-0854.2008.00782.x (2008).

811 45 Ecker, V. *et al.* Targeted PI3K/AKT-hyperactivation induces cell death in chronic
812 lymphocytic leukemia. *Nat Commun* **12**, 3526, doi:10.1038/s41467-021-23752-2
813 (2021).

814 46 Tanaka, M., Kagawa, H., Yamanashi, Y., Sata, T. & Kawaguchi, Y. Construction
815 of an excisable bacterial artificial chromosome containing a full-length infectious
816 clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit
817 wild-type properties in vitro and in vivo. *J Virol* **77**, 1382-1391,
818 doi:10.1128/jvi.77.2.1382-1391.2003 (2003).

819 47 Sugimoto, K. *et al.* Simultaneous tracking of capsid, tegument, and envelope
820 protein localization in living cells infected with triply fluorescent herpes simplex
821 virus 1. *J Virol* **82**, 5198-5211, doi:10.1128/JVI.02681-07 (2008).

822 48 Sato, Y. *et al.* Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex
823 Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and
824 Replication. *J Virol* **90**, 3173-3186, doi:10.1128/JVI.03043-15 (2016).

825 49 Asano, S. *et al.* US3 protein kinase of herpes simplex virus type 2 plays a role in
826 protecting corneal epithelial cells from apoptosis in infected mice. *J Gen Virol* **80**
(Pt 1), 51-56, doi:10.1099/0022-1317-80-1-51 (1999).

828 50 Kato, K. *et al.* Epstein-Barr virus-encoded protein kinase BGLF4 mediates
829 hyperphosphorylation of cellular elongation factor 1delta (EF-1delta): EF-1delta
830 is universally modified by conserved protein kinases of herpesviruses in
831 mammalian cells. *J Gen Virol* **82**, 1457-1463, doi:10.1099/0022-1317-82-6-1457
(2001).

833 51 Kato, A. *et al.* Identification of a herpes simplex virus 1 gene encoding
834 neurovirulence factor by chemical proteomics. *Nat Commun* **11**, 4894,
835 doi:10.1038/s41467-020-18718-9 (2020).

836 52 Kato, A. *et al.* Herpes simplex virus 1 protein kinase Us3 phosphorylates viral
837 dUTPase and regulates its catalytic activity in infected cells. *J Virol* **88**, 655-666,
838 doi:10.1128/JVI.02710-13 (2014).

839 53 Tischer, B. K., von Einem, J., Kaufer, B. & Osterrieder, N. Two-step red-mediated
840 recombination for versatile high-efficiency markerless DNA manipulation in
841 *Escherichia coli*. *Biotechniques* **40**, 191-197, doi:10.2144/000112096 (2006).

842 54 Fujii, H. *et al.* Role of the nuclease activities encoded by herpes simplex virus 1
843 UL12 in viral replication and neurovirulence. *J Virol* **88**, 2359-2364,
844 doi:10.1128/JVI.03621-13 (2014).

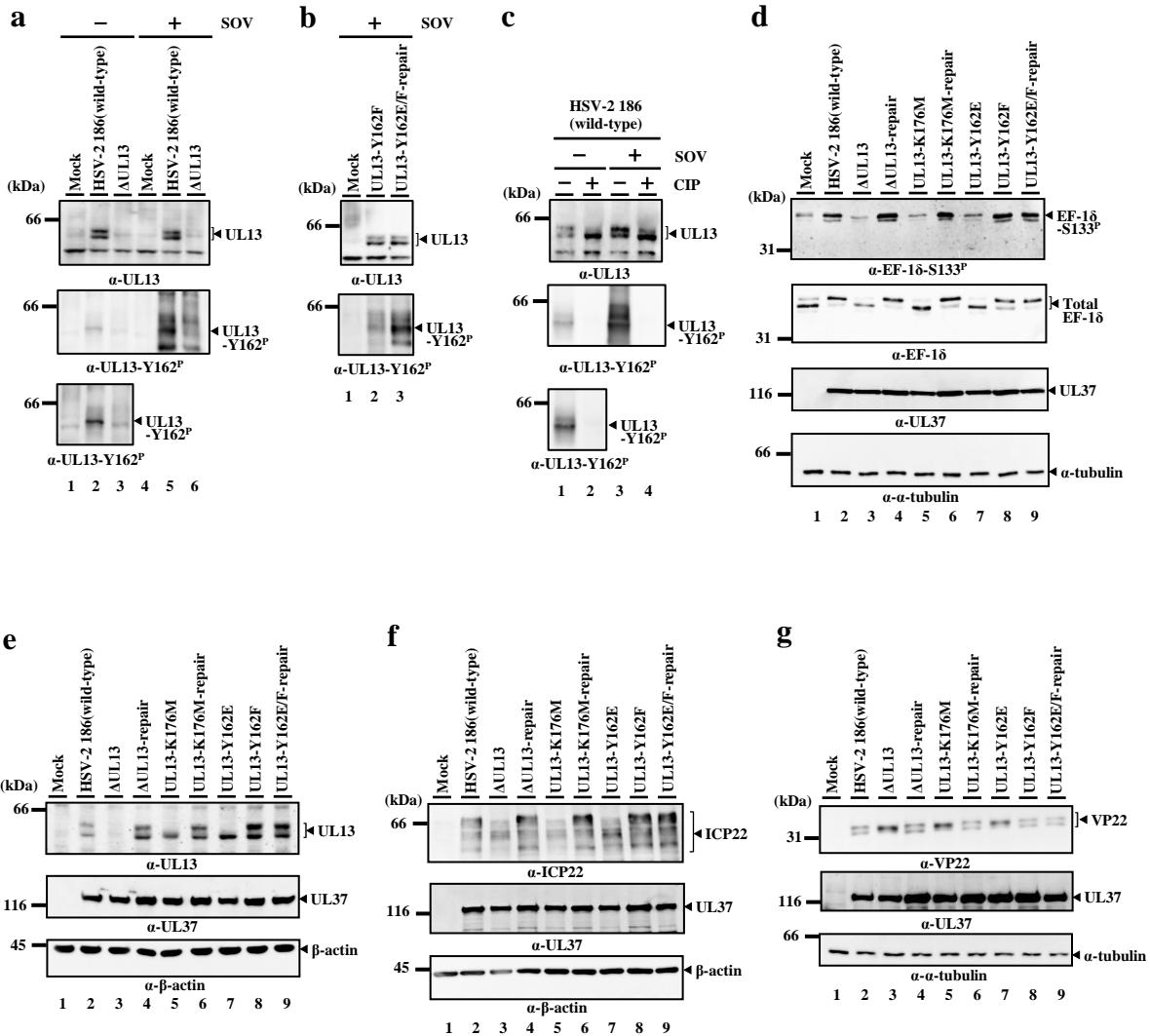
845 55 Kawaguchi, Y., Bruni, R. & Roizman, B. Interaction of herpes simplex virus 1
846 alpha regulatory protein ICP0 with elongation factor 1delta: ICP0 affects
847 translational machinery. *J Virol* **71**, 1019-1024, doi:10.1128/JVI.71.2.1019-
848 1024.1997 (1997).

849 56 Asai, R. *et al.* Epstein-Barr virus protein kinase BGLF4 is a virion tegument
850 protein that dissociates from virions in a phosphorylation-dependent process and
851 phosphorylates the viral immediate-early protein BZLF1. *J Virol* **80**, 5125-5134,
852 doi:10.1128/JVI.02674-05 (2006).

853 57 Tanaka, M. *et al.* Herpes simplex virus 1 VP22 regulates translocation of multiple
854 viral and cellular proteins and promotes neurovirulence. *J Virol* **86**, 5264-5277,
855 doi:10.1128/JVI.06913-11 (2012).

856 58 Kawaguchi, Y., Van Sant, C. & Roizman, B. Herpes simplex virus 1 alpha
857 regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin
858 D3. *J Virol* **71**, 7328-7336, doi:10.1128/JVI.71.10.7328-7336.1997 (1997).

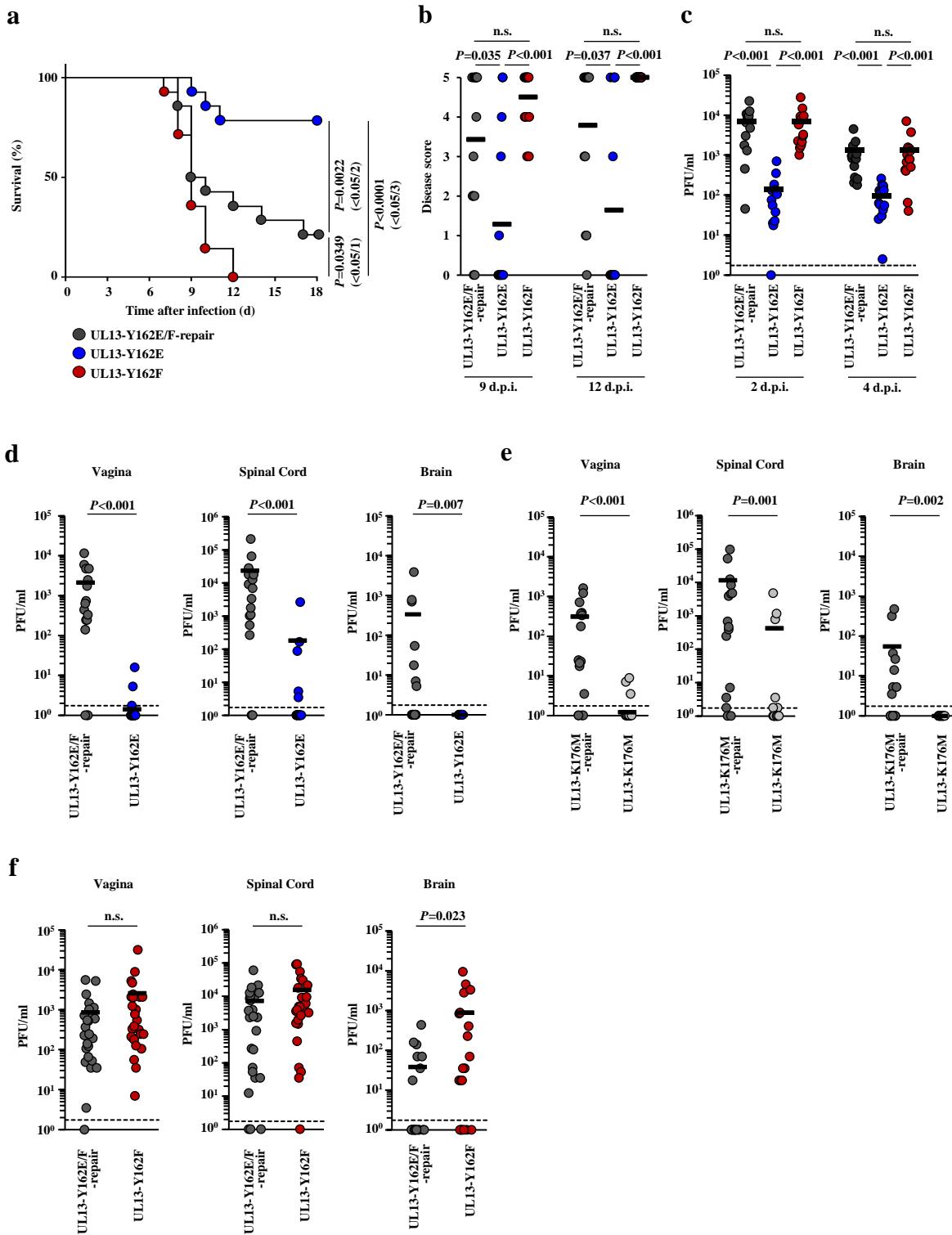
859 59 Degasperi, A. *et al.* Evaluating strategies to normalise biological replicates of
860 Western blot data. *PLoS One* **9**, e87293, doi:10.1371/journal.pone.0087293
861 (2014).


862 60 Kato, A. *et al.* Identification of proteins phosphorylated directly by the Us3
863 protein kinase encoded by herpes simplex virus 1. *J Virol* **79**, 9325-9331,
864 doi:10.1128/JVI.79.14.9325-9331.2005 (2005).

865 61 Tanaka, M., Nishiyama, Y., Sata, T. & Kawaguchi, Y. The role of protein kinase
866 activity expressed by the UL13 gene of herpes simplex virus 1: the activity is not
867 essential for optimal expression of UL41 and ICP0. *Virology* **341**, 301-312,
868 doi:10.1016/j.virol.2005.07.010 (2005).

869 62 Morrison, L. A., Da Costa, X. J. & Knipe, D. M. Influence of mucosal and
870 parenteral immunization with a replication-defective mutant of HSV-2 on immune
871 responses and protection from genital challenge. *Virology* **243**, 178-187,
872 doi:10.1006/viro.1998.9047 (1998).

873 63 Kawamura, Y., Bosch-Marce, M., Tang, S., Patel, A. & Krause, P. R. Herpes
874 Simplex Virus 2 Latency-Associated Transcript (LAT) Region Mutations Do Not
875 Identify a Role for LAT-Associated MicroRNAs in Viral Reactivation in Guinea
876 Pig Genital Models. *J Virol* **92**, doi:10.1128/JVI.00642-18 (2018).


877

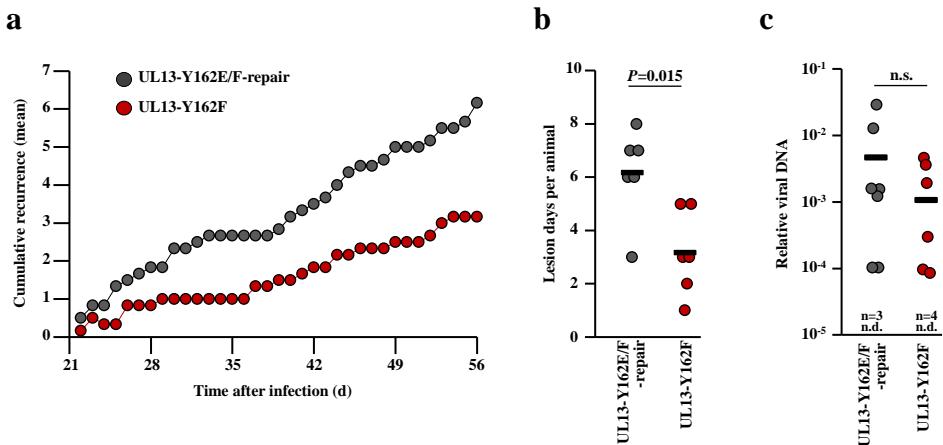

Fig. 1. Phosphorylation of UL13 at Tyr-162 and effects of mutations in UL13 on UL13 substrates in HSV-2 infected cells. **a, b.** U2OS cells were mock-infected (a, b) or infected with wild-type HSV-2 186 (a, b), ΔUL13 (a), UL13-Y162F (b), or UL13-Y162E/F-repair (b) at an MOI of 3, incubated with or without 5 mM SOV at 22 h post-infection, harvested at 24 h post-infection, and lysates were analyzed by immunoblotting with antibodies to UL13 or UL13-Y162^P. **c.** U2OS cells were infected with wild-type HSV-2 186 at an MOI of 3, incubated with or without 5 mM SOV at 22 h post-infection, harvested at 24 h post-infection, lysed, cell lysates were mock-treated or treated with CIP, and then analyzed as described in panel a. **d-g.** U2OS cells mock-infected or infected with wild-type HSV-2 186, ΔUL13, ΔUL13-repair, UL13-K176M, UL13-K176M-repair, UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair for 24 h at an MOI of 3 were analyzed by immunoblotting with antibodies to EF-1 δ (d), EF-1 δ -S133 P (d), UL13 (e), ICP22 (f), VP22 (g), UL37 (d-g), α -tubulin (d, g) or β -actin (e, f). Digital images are representative of three independent experiments.

Fig. 2. Effects of mutations in UL13 on viral replication and cell-cell spread. **a, b.** U2OS cells were infected with wild-type HSV-2 186, Δ UL13, Δ UL13-repair, UL13-K176M, UL13-K176M-repair, UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair at an MOI of 0.01 (a) or 3 (b). Total virus titers in cell culture supernatants and infected cells were harvested at 24 h (a) or 12 h (b) post-infection and assayed. Each value is the mean \pm standard error of the mean (SEM) of four experiments. Statistical significance was analyzed by ANOVA with the Tukey's test. n.s., not significant. **c.** U2OS cells were infected with wild-type HSV-2 186, Δ UL13, Δ UL13-repair, UL13-K176M, UL13-K176M-repair, UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair at an MOI of 0.0001 under plaque assay conditions. Diameters of 20 single plaques for each virus were measured at 48 h post-infection. Each data point is the mean \pm SEM of the measured plaque sizes. Statistical significance was analyzed by ANOVA with Tukey's test. n.s., not significant. Data are representative of three independent experiments.

Fig. 3. Effects of mutations in UL13 on mortality and viral replication in infected mice following intravaginal infection. a-c. Fourteen 6-week-old female ICR mice were pretreated with medroxyprogesterone and the vagina of each mouse was infected with 1×10^4 PFU UL13-Y162E, UL13-Y162F, or UL13-Y162E/F-repair. (a) Survival of mice was monitored for 18 d post-infection. Differences in the mortality of infected mice were statistically analyzed by the log-rank test, and for three comparison analyses, P values of <0.0167 (0.05/3), <0.025 (0.05/2), or <0.05 (0.05/1) were sequentially considered significant after Holm's sequentially rejective Bonferroni multiple-comparison adjustment. (b) Clinical scores of infected mice at 9- and 12-days post-infection were monitored. Each data point is the clinical score for one mouse. Horizontal bars indicate the means of each group. Statistical significance values were analyzed by Dunn's multiple-comparison test. n.s., not significant. (c) Vaginal secretions of infected mice at 2- and 4-days post-infection were harvested, and virus titers were assayed. Each data point is the virus titer in the vaginal secretion of one mouse. Horizontal bars indicate the means of each group. Statistical significance was analyzed by Dunn's multiple-comparison test. n.s., not significant. The results from three independent experiments were combined. **d-f.** Sixteen (d, e) or 26 (f) 6-week-old female ICR mice were pretreated with medroxyprogesterone and the vaginas of each mouse were infected with 1×10^4 PFU UL13-Y162E (d) or UL13-Y162E/F-repair (d, f), UL13-K176M (e), UL13-K176M-repair (e), or UL13-Y162F (f). Vaginas, spinal cords, and brains at 7 days post-infection were harvested and virus titers were assayed. Results of three (d, e) or four (f) independent experiments were combined for each virus. Dashed line indicates the limit of detection. Each data point is the virus titer of one mouse. Horizontal bars indicate the mean of each group. Statistical significance was analyzed by Mann-Whitney *U*-test. n.s., not significant.

Fig. 4. Effects of mutations in UL13 Tyr-162 on HSV-2 latency and recurrence in guinea pigs following intravaginal infection. **a.** Eighteen 5-week-old female Hartley guinea pigs were intravaginally infected with 1×10^4 PFU UL13-Y162F or UL13-Y162E/F-repair. Guinea pigs with no infectious virus detected in vaginal washes at 1, 3, and 5 days after infection, with no detectable disease by 21 days after infection, with vaginal lesions that had not healed by 21 days after infection, or were dead by 21 days after infection were removed from the analysis, resulting in 6 guinea pigs for each UL13-Y162F and UL13-Y162E/F-repair. Mean number of cumulative recurrences per guinea pig in each group from 22-56 days after infection. Results from two independent experiments were combined. **b.** The number of days with a recurrent lesion is shown in a. Each data point is a recurrent number of one guinea pig. Horizontal bars indicate the mean of each group. Statistical significance was analyzed by Mann-Whitney *U*-test. **c.** Twelve 5-week-old female Hartley guinea pigs were intravaginally infected with 1×10^4 PFU UL13-Y162F or UL13-Y162E/F-repair. Guinea pigs with no detectable disease or death by 21 days after infection were removed from the analysis, resulting in 10 guinea pigs in the UL13-Y162F and UL13-Y162E/F-repair groups. Twenty-one days after infection, viral genomes from DRG of infected guinea pigs were quantified by ddPCR. Results from two independent experiments were combined. Each data point is the relative amount of each viral genome in the DRG of one guinea pig. Horizontal bars indicate the mean of each group. Statistical significance was analyzed by the Mann-Whitney *U*-test. n.s., not significant. n.d., number of animals with no viral genomes detected in the tissue.