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Highlights 
 

• Male mice treated with testosterone at birth displayed reduced social approach behavior 
as juveniles and demonstrated impairments in contextual fear conditioning as adults, 
compared to mice treated with vehicle oil.  

• Testosterone treatment on postnatal day 18 did not affect social approach or fear memory. 
• This single dose of testosterone on PN0 did not induce anxiety-like behavior in 

testosterone-treated mice compared to vehicle-treated control mice.  
• Neonatal testosterone administration did not result in a weight change compared to veh-

treated mice.  
 
 
Abstract 
 
Neurodevelopmental disorders (ND) disproportionately affect males compared to females, and 
Autism Spectrum Disorder (ASD) in particular exhibits a 4:1 male bias. The biological 
mechanisms of this female protection or male susceptibility have not been identified. There is 
some evidence to suggest that fetal/neonatal gonadal hormones, which play pivotal roles in 
many aspects of development, may contribute. Here, we investigate the role of testosterone 
administration during a critical period of development, and its effects on social approach and 
fear learning in C57BL/6J wildtype mice. Male, but not female mice treated with testosterone on 
the day of birth (PN0) exhibited deficits in both social behavior and contextual fear conditioning, 
whereas mice treated with the same dose of testosterone on postnatal day 18 (PN18) did not 
display such impairments. Testosterone administration did not induce anxiogenic effects or lead 
to changes in weight compared to the testosterone-treated group. These impairments are 
relevant to ND and may help identify novel treatment targets. 
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1. Introduction 
 
A number of neurodevelopmental and neuropsychiatric disorders affect males and females 
divergently. In terms of prevalence, Autism Spectrum Disorder (ASD), Attention Deficit 
Hyperactivity Disorder (ADHD), and psychopathy affect males at a ~4, 2, and 2.7 to 1 ratio, 
respectively (Maenner et al., 2023; Sanz-García et al., 2021; Yang et al., 2022). Other factors 
such as age of onset, severity, and response to treatment can also look different across the 
sexes. For example, males tend to be diagnosed with schizophrenia at a younger age, 
experience more negative symptoms, exhibit higher levels of social isolation and substance use 
disorders, greater brain abnormalities, and show reduced responsiveness to antipsychotics 
compared to females (Ferrer-Quintero et al., 2021; Gogos et al., 2019; Li et al., 2016). Women 
are more than twice as likely to develop post-traumatic stress disorder (PTSD) following trauma 
and tend to be more responsive to treatment than men (Gogos et al., 2019). Behavioral 
symptoms and neurobiological profiles also differ between males and females diagnosed with 
ASD and ADHD (Davies, 2014; Santos et al., 2022). These neurodevelopmental and mental 
health conditions are increasing in prevalence, are difficult to treat, and can be emotionally, 
physically, and financially taxing not only to affected individuals, but also to their families and 
society (Homberg et al., 2016; Zablotsky et al., 2019). Therefore, it is crucial to determine the 
developmental processes impacting resilience and vulnerability to, and disease trajectories of, 
neurodevelopmental and neuropsychiatric disorders. 
 
The mechanisms underlying the sex differences in neuropsychiatric conditions are not fully 
understood, and they are likely complex and multifactorial. However, one of the earliest 
developmental processes that may be involved is gonadal hormone exposure during the 
prenatal and neonatal periods. Human males experience a surge of testosterone in mid-
gestation and shortly after birth, while male rodents have highest levels several days before and 
after birth. Females of those species are exposed to exponentially lower levels of gonadal 
hormones during early development (Gillies and McArthur, 2010; Konkle and McCarthy, 2011; 
McCarthy, 2011). In rats, many important and irreversible sex hormone-mediated effects on 
brain development will be complete by postnatal day 10 (Davis et al., 1996; McCarthy et al., 
2017). After this period, sex hormones have less profound, more transient effects in the brain.  
 
Studying the role of fetal and neonatal gonadal hormones in the development of 
neuropsychiatric disorders has proven challenging. Obvious ethical constraints prohibit well-
controlled manipulations in humans and obtaining samples at the critical early timepoints is rare 
and problematic. The data we do have is valuable but often confusing due to heterogeneity in 
human subjects and samples, lack of information (e.g. quantification of hormone levels in utero, 
measures of comorbidities, maternal stress, diet, etc.), and small sample size. For example, 
there has been conflicting evidence that androgens early in development contribute to the 
pronounced male sex bias in ASD. Using either direct measures in amniotic fluid and cord 
blood, or indirect measures, such as digit ratio (2D:4D) as an approximation for fetal 
testosterone exposure, some studies have found increased levels in children later diagnosed 
with ASD compared to typically developing children, while some have not (Al-Zaid et al., 2015; 
Baron-Cohen et al., 2015, 2005; Barona et al., 2015; Eriksson et al., 2016; Falter et al., 2008; 
Ferri et al., 2018; Guyatt et al., 2015; Whitehouse et al., 2010). Other studies have shown that 
increased levels of prenatal testosterone correlate with increased autism trait scores in children 
without a diagnosis, but again, not all are in agreement (Auyeung et al., 2010, 2009; Chapman 
et al., 2006; Knickmeyer et al., 2006; Kung et al., 2016; Lutchmaya et al., 2002). 
 
Low 2D:4D ratio, indicating exposure to higher levels of testosterone prenatally, has also been 
associated with psychopathic characteristics (Blanchard et al., 2016; Perez et al., 2022). 
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Studies investigating digit ratios in children with ADHD and anxiety disorders have yielded 
similar results, with many, but not all, finding evidence for increased prenatal testosterone 
relating to increased ADHD traits or symptom severity (Davies, 2014; De Bruin et al., 2006; 
Lemiere et al., 2010). Conversely, schizophrenia research has indicated that lower prenatal 
testosterone is a risk factor and sex steroids may play an important role in symptom 
manifestation (Collinson et al., 2010; Markham, 2012). Therefore, while interpretation of these 
findings is complex, it seems clear that the role of developmental exposure to steroid hormones 
in later diagnosis warrants further research. For this purpose, rodents are a valuable 
experimental model in which hormone manipulation during a critical period of development is 
well-controlled in timing, consistent and causal, and allows clearer interpretation of behavioral 
and functional results. Indeed, early postnatal testosterone administration to male rats with 
behavioral deficits relevant to ADHD resulted in exacerbation of impairments and changes in 
tyrosine hydroxylase expression (King et al., 2000; Li and Huang, 2006). Here we used 
testosterone administration in mice on the day of birth to study behaviors that are disrupted in 
neurodevelopmental and neuropsychiatric disorders. 
 
Many sexually divergent neuropsychiatric conditions present with changes in emotional 
response and involve impairments in approach and avoidance behaviors, including sociability 
and fear. One of the core symptoms of ASD is social impairments, but social behavior is also 
disrupted in ADHD, schizophrenia, PTSD, psychopathy, and many others (Frye, 2018; Homberg 
et al., 2016; Kennedy and Adolphs, 2012; Nijmeijer et al., 2008; Porcelli et al., 2019; Scoglio et 
al., 2022). Acquisition of conditioned fear and fear extinction is impaired in several disorders as 
well, including psychopathy, PTSD, and anxiety disorders (VanElzakker et al., 2014; Veit et al., 
2013). The ability to interpret both social and fear cues are critically important for physical and 
psychological well-being across many species. In the present study we sought to determine the 
effects of steroid hormone dysregulation on social approach, anxiety-like, and fear memory 
behaviors, which are relevant to neurodevelopmental and neuropsychiatric disorders. A single 
administration of testosterone during a critical period of brain development resulted in male-
specific deficits in social approach and contextual fear conditioning. 
 
2. Materials and Methods 
 
2.1 Animals 
Experiments were conducted in accordance with the University of Iowa Institutional Animal Care 
and Use Committee (IACUC) policies and mice were maintained consistent with the Guide for 
the Care and Use of Laboratory Animals. Mice were housed in groups of two to five per cage, 
unless otherwise specified, in a temperature and humidity controlled environment (22 °C and 
55 ± 5%, respectively). All animals were housed on a 12-hour light/dark cycle. Food and water 
were available ad libitum. C57BL/6J (B6) mice were obtained from The Jackson Laboratories 
(#000664) to establish breeding cages which contained one dam and one sire. Litters were 
randomly divided into two cohorts: a neonatal treated group, receiving treatment on the day of 
birth (PN0), and a group treated on postnatal day 18 (PN18). Mice were further subdivided into 
two experimental conditions: a testosterone (T)-administered cohort or a vehicle (veh)-
administered cohort. On postnatal day 21 mice were weaned, with 2-5 same-sex littermates per 
cage. Gonadectomized A/J mice (#000646) were obtained from The Jackson Laboratories and 
were used as a social stimulus in the social behavioral assay. A total of 205 mice were used for 
behavioral testing. Of the 205 mice, 21 were excluded due to inactivity during the testing period, 
excessive climbing on cylinders, or statistical outliers (>2SD from the mean). Of mice treated 
neonatally, one cohort was used in weight studies, another to test anxiety-like behavior, and 
another in the social approach test, with a subset undergoing contextual fear conditioning, 
further outlined below. Mice treated on PN18 completed social approach and fear memory tests. 
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2.2 Testosterone Treatment 
Testosterone propionate (Sigma; 100ug in 20 µl sesame oil, a dose previously shown to induce 
brain masculinization or vehicle (20 µl sesame oil) was administered subcutaneously at one of 
two time points: to pups on the day of birth (PN0) or on postnatal day 18 (PN18) (Hisasue et al., 
2010; Seney et al., 2012). Following treatment, pups were reunited with their parents and 
returned to their original housing until the time of weaning. 
 
2.3 Weight Measurement 
In an independent cohort of animals, to avoid repeated handling prior to behavioral assays, 
weights were measured every two days, beginning on day 2 after birth (PN2), until day 12. 
Then, weights were recorded on day 21, 30, and 60 to monitor treatment effects. 
 
2.4 Social Approach Test 
The Social Approach Test was conducted in mice aged 28-32 days, under dark conditions, 
using a black Plexiglass arena that had three chambers devoid of top and bottom, which was 
placed on a clear Plexiglass table over a clean absorbent pad. Identical bottomless and topless 
clear cylinders were placed at the center of both outer arena chambers. Each clear cylinder 
featured one end with small breathing holes which facilitated air circulation and enabled visual 
and olfactory exploration. Flat lids were placed on top of the cylinders and secured with small 
paperweights. The testing room was dimly lit, and the chamber was illuminated from below 
using infrared light. Testing sessions were recorded from an overheard-positioned camera 
(Basler Ace GIGE). The behavioral assay consisted of two ten-minute phases: a <Habituation= 
phase followed by a <Choice= phase. During the habituation phase, the test mouse could freely 
explore the chamber and empty cylinders. Following the completion of the habituation phase, a 
novel-object (Duplo block) was introduced into one cylinder, while a novel social stimulus, a 
same-sex gonadectomized A/J mouse, was placed in the opposite cylinder. Again, the mouse 
was able to freely explore for 10 minutes during the choice phase. Distance traveled and 
duration of sniffing of each cylinder were quantified using Noldus EthoVision XT video tracking 
software. A preference index (PI) was calculated for each phase: (time spent sniffing social 
cylinder (empty in habituation or containing novel mouse during choice phase) – time spent 
sniffing nonsocial cylinder (empty or novel object)) / (total sniffing time).  
 
2.5 Contextual Fear Conditioning 
Approximately 30 days after the social behavioral assay, a subset of mice underwent contextual 
fear conditioning testing (53-64 d). Mice were singly housed 4-7 days prior to conditioning and 
handled 2-3 min each for 3 consecutive days prior to the assay. On the day of training, each 
mouse was placed inside a chamber with electrified metal grid flooring (CleverSys) inside a 
sound-attenuating box (Med Associates) for a duration of 3 min. During the initial 2min and 28s, 
the mice were allowed to freely explore the chamber, which served as a <baseline= period. After 
this time, a 1.5mA footshock was delivered to the mice for 2s. The mice were removed 30s 
following the shock. The test session was conducted 24hr later, during which the mice were 
placed in the same chamber for a period of 5min. The Cleversys Freezescan software was 
utilized to record the freezing behavior of the mice. 
 
2.6 Elevated Zero Maze 
Cohorts of naïve adult male and female mice (62-96) were utilized to assess anxiety-like 
behavior in PN0 testosterone- and vehicle- treated mice using an elevated zero maze (EZM). 
The elevated zero maze is an elevated ring-shaped runway with two open arms and two 
opposing closed arms. The open arms are devoid of walls resulting in an exposed environment, 
while the closed arms are enclosed with walls. The elevated zero maze was positioned beneath 
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a camera (Basler Ace GIGE) in 250lux lighting conditions. MediaRecorder software was used to 
record the trials. Mice were placed on a boundary between an open and closed area facing the 
closed area. Each mouse was given a 5-min trial, during which they were allowed to freely roam 
the maze. The experimenter positioned themselves behind a white curtain throughout the trial. 
The maze was cleaned with paper towels and 70% ethanol between each trial. Noldus 
Ethovision XT video tracking software was used to analyze time spent in the open versus closed 
areas and total distance traveled within the arena. 
  
2.7 Statistical Analysis 
Statistical analysis was performed in GraphPad Prism 9. Analyses used a repeated measures 
three-way ANOVA to determine main effects of time or phase of test, sex, treatment, and 
interactions, except for EZM distance traveled and % time in the open, in which a two-way 
ANOVA was performed with sex and treatment as main effects. Tukey post hoc test was used 
when appropriate. Significance was set to p<0.05. Bar graphs and error bars represent mean ± 
SEM and individual data points are shown. Eta squared values were used for effect size 
estimations. 
 
3. Results 
 
3.1 Neonatal testosterone does not significantly affect body weight 
Mice that underwent treatment with neonatal testosterone had similar body weight to those 
treated with veh on the day of birth (Fig. 1 and 2A). A RM three-way ANOVA revealed main 
effects of age (F(2,60)=2525, p<0.0001, ƞ2=0.886), sex (F(1,29)=12.69, p=0.001, ƞ2=0.004), and 
treatment (veh vs T; F(1,29)=7.345, p=0.011, ƞ2=0.002), and the following significant interactions: 
age x sex (F(8,232)=41.04, p<0.0001, ƞ2=0.014), age x treatment (F(8,232)=4.967, p<0.0001, 
ƞ2=0.002), and age x sex x treatment (F(8,232)=2.556, p<0.011, ƞ2=0.0008), but no sex x 
treatment interaction (F(1,29)=0.027, p=0.871, ƞ2=7.9e-6). A Tukey post hoc test indicated that at 
age PN30, males treated with vehicle weighed significantly more than females treated with 
testosterone (p=0.021), and at PN 60, Males + Veh weighed significantly more than both 
Females + Veh and Females + T (p<0.0001 for both). In summary, most significant differences 
in weight were due to sex as expected, but there were no significant differences driven by 
testosterone within sexes at any age. 
 
3.2 Excess neonatal testosterone does not induce anxiety-like behavior 
Naïve adult mice treated on the day of birth with testosterone did not show any differences in 
distance traveled or percent time spent in open arms in the elevated zero maze compared to 
those treated with vehicle on the day of birth (Fig 2B and 2C). A two-way ANOVA of total 
distance traveled over the 5-min test revealed no main effect of sex (F(1,34)=0.023, p=0.881, 
ƞ2=0.0006) or treatment (F(1,34)=0.044, p=0.835, ƞ2=0.001) and no interaction between the two 
(F(1,34)=0.805, p=0.376, ƞ2=0.023). A two-way ANOVA of percent time spent in the open arms 
also revealed no differences, with no main effect of sex (F(1,34)=3.117, p=0.087, ƞ2=0.08) or 
treatment (F(1,34)=0.551, p=0.463, ƞ2=0.01) and no interaction between the two (F(1,34)=2.090, 
p=0.158, ƞ2=0.054). 
 
3.3 A single testosterone treatment on the day of birth results in male-specific social approach 
deficits in juveniles 
Neonatal testosterone treatment had no effects on distance traveled during the social approach 
test. In juvenile male mice (28-32 d) treated with testosterone at PN0, a RM three-way ANOVA 
revealed a main effect of phase (habituation vs choice; F(1,65)=386.5, p<0.0001, ƞ2=0.525), but 
no main effect of sex (F(1,65)=0.701, p=0.406, ƞ2=0.003) or treatment (F(1,65)=1.807, p=0.184, 
ƞ2=0.009), and no significant interactions (phase x sex, F(1,65)=0.004, p=0.945, ƞ2=5.9e-6; phase 
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x treatment, F(1,65)=1.151, p=0.287, ƞ2=0.002; sex x treatment, F(1,65)=2.121, p=0.150, ƞ2=0.010; 
phase x sex x treatment, F(1,65)=1.971, p=0.165, ƞ2=0.003). Overall, mice traveled more during 
the habituation phase than the choice phase. A Tukey post hoc test indicated no differences in 
distance traveled within each phase (Fig 3A). A RM three-way ANOVA of the social preference 
index (PI) shows a significant main effect of phase (habituation vs choice F(1,65)=219.6, 
p<0.0001, ƞ2=0.622), no main effect of sex (F(1,65)=1.061, p=0.307, ƞ2=0.002), and a main effect 
of treatment (F(1,65)=8.633, p=0.005, ƞ2=0.018). A sex x treatment interaction was also significant 
(F(1,65)=9.534, p=0.003, ƞ2=0.020), while the following interactions were not statistically 
significant: phase x sex (F(1,65)=1.018, p=0.317, ƞ2=0.003), phase x treatment (F(1,65)=2.182, 
p=0.145, ƞ2=0.006), and phase x sex x treatment (F(1,65)=0.191, p=0.664, ƞ2=0.0005). A Tukey 
post hoc test uncovered no group differences in the habituation phase, but in the choice phase, 
Males + T had a significantly lower social preference index than Males + Veh and Females + 
Veh, and there was a statistical trend compared to Females + T (p=0.004, 0.040, and 0.058, 
respectively; Fig 3B). 
 
In contrast, animals treated with the same dose of testosterone on PN18 did not show any 
treatment-related effects on distance traveled or preference index when tested in the social 
approach test as juveniles (28-32 days old) (Fig 3C and 3D). For distance traveled, a RM three-
way ANOVA revealed a main effect of phase (habituation vs choice; F(1,39)=219.6, p<0.0001, 
ƞ2=0.611), no main effect of sex (F(1,39)=0.992, p=0.325, ƞ2=0.006) or treatment (F(1,39)=0.005, 
p=0.941, ƞ2=3.14e-5), and a significant phase x sex interaction (F(1,39)=5.146, p=0.029, 
ƞ2=0.014). There were no significant interactions between phase and treatment (F(1,39)=0.277, 
p=0.602, ƞ2=0.0008), sex and treatment (F(1,39)=0.037, p=0.849, ƞ2=0.0002), and phase, sex, 
and treatment (F(1,39)=0.939, p=0.339, ƞ2=0.003). A Tukey post hoc test did not reveal any 
differences between groups in either the habituation or choice phase. Overall, mice traveled 
more during the habituation phase than the choice phase. Similarly, a RM three-way ANOVA of 
preference index data demonstrated a main effect of phase (habituation vs choice; F(1,39)=117.3, 
p<0.0001, ƞ2=0.603), no main effect of sex (F(1,39)=1.156, p=0.289, ƞ2=0.005) or treatment 
(F(1,39)=0.392, p=0.535, ƞ2=0.002), and no significant phase x sex (F(1,39)=0.232, p=0.633, 
ƞ2=0.001), phase x treatment (F(1,39)=0.367, p=0.548, ƞ2=0.002), sex x treatment (F(1,39)=0.063, 
p=0.804, ƞ2=0.0002), or phase x sex x treatment (F(1,39)=0.589, p=0.448, ƞ2=0.003) interactions. 
A Tukey post hoc test indicated that all experimental groups exhibited similar social preference 
index values in both the habituation and choice phases. 
 
3.4 A single testosterone treatment on the day of birth results in male-specific contextual fear 
conditioning deficits in adults 
Adult mice (53-64 d) that underwent contextual fear conditioning exhibited male-specific deficits 
if they were administered testosterone on PN0 (Fig 4A) but not PN18 (Fig 4B). In PN0-treated 
mice trained with one 1.5 mA shock and tested in the same context, a RM three-way ANOVA 
revealed a main effect of session (baseline vs 24 hr test; F(1,40)=182.7, p<0.0001, ƞ2=0.624), no 
main effect of sex (F(1,40)=2.589, p=0.116, ƞ2=0.009) or treatment (F(1,40)=1.800, p=0.187, 
ƞ2=0.006), and no significant session x sex (F(1,40)=2.213, p=0.145, ƞ2=0.007), session x 
treatment (F(1,40)=3.435, p=0.071, ƞ2=0.012), or session x sex x treatment (F(1,40)=3.176, 
p=0.082, ƞ2=0.011) interactions. There was a significant sex x treatment interaction 
(F(1,40)=4.577, p=0.039, ƞ2=0.016). A Tukey post hoc test showed no differences in baseline 
freezing. However, during the 24 hr test, Males + T spent a significantly lower percentage of 
time freezing than Males + Veh, and Females + T (p=0.015, 0.025, respectively), and trended 
towards significance compared to Females + Veh (p=0.066). In mice treated with vehicle or 
testosterone on PN18 in the same conditions, a RM three-way ANOVA similarly showed main 
effects of session (baseline vs 24 hr test; F(1,47)=280.1, p<0.0001, ƞ2=0.690) and sex 
(F(1,47)=4.108, p=0.048, ƞ2=0.011), but not treatment (F(1,47)=0.258, p=0.614, ƞ2=0.0006). There 
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were no significant interactions (session x sex, F(1,47)=1.033, p=0.315, ƞ2=0.003; session x 
treatment, F(1,47)=0.996, p=0.323, ƞ2=0.002; sex x treatment, F(1,47)=1.123, p=0.295, ƞ2=0.003; 
session x sex x treatment, F(1,47)=1.540, p=0.221, ƞ2=0.004). Tukey multiple comparisons 
indicate that all groups spent a similar percentage of time freezing within the baseline period of 
training and within the 24 h test. 
 
4. Discussion 
 
Our data show that a single testosterone treatment on the day of birth results in both social 
deficits in juvenile, and fear memory deficits in adult, male wild-type (C57/BL6) mice but has no 
effect on females. Importantly, the same single s.c. injection of testosterone propionate (100 µg) 
(Hisasue et al., 2010; Seney et al., 2012) administered on postnatal day 18 has no effect on 
social or fear memory behavior at 30 or 60 d, respectively. These results confirm that 
testosterone administration is not universally damaging but can disrupt sex-specific neural 
circuits during an important organizational developmental period. Additionally, these findings 
indicate that both social approach behavior and fear memory exhibit sex differences in 
vulnerability in early development, which has important implications for neurodevelopmental and 
neuropsychiatric disorders that affect males and females differently in terms of prevalence or 
progression. Importantly, the observed deficits were not due to changes in body weight or motor 
activity. The deficits were also not the result of increased anxiety-like behavior, which can co-
occur with social deficits (Allsop et al., 2014; Felix-Ortiz et al., 2016). 
  
An important next step is to determine the mechanisms by which excess testosterone on the 
day of birth induces male-specific social and fear deficits. Both social behavior and fear 
conditioning rely heavily on both the medial prefrontal cortex (mPFC) and amygdala. Lesion and 
imaging studies have demonstrated the importance of the mPFC in social behaviors and fear 
conditioning in humans and rodents (Anderson et al., 1999; Barrash et al., 2010; Berthoz et al., 
2002; Bicks et al., 2015; Eslinger et al., 2004; Forbes and Grafman, 2010; Frost et al., 2021; 
Kietzman and Gourley, 2023; Kim and Jung, 2006; Maren, 2001). Additionally, manipulation of 
various cell types and projection neurons in the mPFC can modulate social behaviors (Bicks et 
al., 2020; Cao et al., 2018; Ferenczi et al., 2016; Liu et al., 2020; Qin et al., 2019; Yizhar et al., 
2011) and fear (Gilmartin et al., 2014; H. S. Kim et al., 2016; Luchkina and Bolshakov, 2019). 
Similarly, the amygdala has been labeled both a social hub and a major locus of fear 
conditioning. It is highly interconnected with many other brain areas important for these 
behaviors (Bickart et al., 2014; Kim and Jung, 2006). Humans and animals with amygdala 
damage exhibit impaired social behavior or fear conditioning (Adolphs, 2010; Amaral et al., 
2003; Bliss-Moreau et al., 2013; Daenen et al., 2003; Kim and Jung, 2006; Machado and 
Bachevalier, 2006; Maren, 2001). fMRI studies in humans and electrophysiological studies in 
rodents also clearly demonstrate the involvement of various amygdalar nuclei in both behaviors 
(Adolphs, 2010; Bickart et al., 2011; Bucan et al., 2009; Davis et al., 2010; Hadjikhani et al., 
2007; Katayama et al., 2009; Kim and Jung, 2006; Kleinhans et al., 2016; Kuga et al., 2022; 
Sato et al., 2020; Von der Heide et al., 2014). Likewise, immediate early gene expression, 
calcium imaging, and optogenetics and chemogenetics have solidified these findings (Felix-Ortiz 
et al., 2016; Felix-Ortiz and Tye, 2014; Ferri et al., 2016; Folkes et al., 2020; Jasnow et al., 
2013; C. K. Kim et al., 2016; Kuga et al., 2022; LaLumiere, 2014; Luchkina and Bolshakov, 
2019; Rogers et al., 2017; Sengupta et al., 2018; Siuda et al., 2016; Sych et al., 2018; Wei et 
al., 2023; Zaki et al., 2022). The hippocampus is also important for both behaviors, with the 
dorsal area more involved in fear learning (Anagnostaras et al., 2001; Kim and Jung, 2006; 
Maren, 2001; Marschner et al., 2008; Zaki et al., 2022), and the ventral with social behavior 
(Bannerman et al., 2002; Deng et al., 2019; Sams-Dodd et al., 1997; Sun et al., 2020). The 
ventral tegmental area (VTA), nucleus accumbens (NAc), and cerebellum have also been 
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implicated in the regulation of social behavior (Carta et al., 2019; Gunaydin et al., 2014; 
Musardo et al., 2022; Porcelli et al., 2019; Solié et al., 2022). Many of these brain areas are 
sexually dimorphic in terms of volume, cell number, size, or morphology, and most express 
androgen and estrogen receptors as well (Premachandran et al., 2020). Early testosterone-
mediated effects may be acting in some of these brain areas to produce behavioral deficits.  
 
Another important mechanistic question is what receptors may be mediating the sex-specific 
impairments in behaviors related to approach and avoidance. Early in development, genes on 
the Y chromosome orchestrate the production of testosterone by the testis in males. 
Testosterone can then be metabolized into dihydrotestosterone, which binds to androgen 
receptors, or it can be aromatized to estradiol and bind to estrogen receptors. Both processes 
are important for distinct components of brain masculinization (Gillies and McArthur, 2010; 
McCarthy, 2011). It will be important to determine if either or both pathway(s) are disrupted to 
cause sex-specific social and fear deficits.  
 
Fetal/neonatal testosterone during the critical organizational period of brain development has 
important effects on a number of downstream processes. Neurotransmitter levels, receptor 
expression, neuropeptide signaling, neurogenesis, synaptic programming, and cell 
differentiation, migration, and death, are influenced by gonadal hormones during development 
and may be involved in the social and fear memory deficits (Baron-Cohen et al., 2011, 2005; 
Ferri et al., 2018; Schaafsma et al., 2017). Investigating these potential mechanisms will provide 
insight into developmental processes involved in impairments associated with 
neurodevelopmental and other disorders. 
 
A final, significant point of clarification is whether excess testosterone in individuals is directly 
responsible for social and fear memory deficits and the neurodevelopmental and 
neuropsychiatric conditions that cause them. There are several circumstances in which a fetus 
may be exposed to excess testosterone, whether the source is the fetus, mother, or placenta 
(Baron-Cohen et al., 2015; Van De Beek et al., 2004). Congenital adrenal hyperplasia (CAH), 
Polycystic Ovarian Syndrome (PCOS), pre-eclampsia, and increased maternal psychological 
stress are conditions associated with increased androgen levels and have been associated with 
increased offspring risk for neurodevelopmental disorders (Davies, 2014; Gumusoglu et al., 
2020; Knickmeyer and Baron-Cohen, 2006; Kumar et al., 2018; Lai et al., 2011; Li et al., 2023). 
Therefore, hormone dysregulation alone may be enough to induce related impairments in some, 
likely small, percentage of individuals. More likely however, is an interaction of genes, 
environment, and experiences that interact with sex-specific developmental pathways or one or 
more of these factors acts in combination with hormone dysregulation to contribute to the 
development of these disorders (Schaafsma and Pfaff, 2014). 
 
5. Conclusions 
 
Excess testosterone during a critical period of development induces lasting effects on social and 
fear memory behaviors in male mice. Importantly, we do not propose this manipulation as a 
model of any disorder; here we used neonatal hormone dysregulation to induce 
neurodevelopmentally significant deficits as a first step towards investigation of sex-specific 
pathways that may confer vulnerability to disorders that exhibit sex bias. 
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Figure 1 

 
 
Figure 1. Experimental overview. Pups were injected subcutaneously on the day of birth 
(postnatal day 0) with testosterone or oil vehicle then remained with their mother and father until 
weaning at PN 21, after which they were subjected to a weight study (not shown here, PN 2-60), 
social approach test at PN 28-32 and contextual fear conditioning at PN 53-64, or elevated zero 
maze at PN 62-96. Another group of mice was administered the same dose of testosterone or 
vehicle on PN 18, weaned at PN 21, and underwent social approach test at PN 28-32 and 
contextual fear conditioning at PN 53-64.  
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Figure 2 
 

 
 
Figure 2. Testosterone administration on the day of birth does not affect body weight or anxiety-
like behavior. (A) Mice treated at PN0 with testosterone or veh were weighed on PN 2, 4, 6, 8, 
10, 12, 21, 30, and 60. Most differences in weight were driven by sex. Specifically, at PN30, 
males treated with vehicle weighed significantly more than females treated with testosterone 
(*p=0.021), and at PN 60, Males treated neonatally with vehicle weighed significantly more than 
females treated either with vehicle or testosterone on the day of birth (****p<0.0001 for both). 
(B) Naïve adult males and females treated neonatally with testosterone traveled similar 
distances in the elevated zero maze as those treated with veh. (C) Testosterone treatment on 
the day of birth had no effect on percent time spent in open arms of the EZM. 
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Figure 3 
 

 
 
Figure 3. Testosterone administration on the day of birth but not on PN 18 induces social 
approach deficits in adolescent males. (A) During a 10 min habituation period of the social 
approach test, all experimental groups traveled similar distances. There were no group 
differences in distance traveled during the choice phase, in which a novel object and novel 
social partner mouse were present. (B) Males treated neonatally with testosterone had a 
significantly lower social preference index than males or females treated with vehicle, and 
neared significance compared to females treated with testosterone (p=0.058). (C) Male and 
female adolescent mice exhibited no significant differences in distance traveled regardless of 
treatment with veh or T on PN 18. (D) Treatment with T on PN 18 did not affect social 
preference index in males or females compared to veh controls. *p<0.05, **p<0.01, #p<0.10. 
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Figure 4 
 

 
 
Figure 4. Testosterone administration on the day of birth but not on PN 18 induces contextual 
fear conditioning deficits in adult males. (A) Adult males treated on the day of birth exhibited 
significantly less freezing during a 24 hr test than those treated with veh or females treated with  
T, and trended toward significance compared to females treated with vehicle (p=0.066). (B) 
Treatment with T on PN 18 did not affect percent of time spent freezing in a 24 hr test in males 
or female adults compared to those treated neonatally with veh. *p<0.05, **p<0.01, #p<0.10. 
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