

1 **Bacterial surface lipoproteins mediate epithelial microinvasion by**
2 ***Streptococcus pneumoniae***

3
4 Jia Mun Chan^{a#}, Elisa Ramos-Sevillano^b, Modupeh Betts^{a*}, Holly U. Wilson^a,
5 Caroline M. Weight^{a**}, Ambrine Houhou-Ousalaha^a, Gabriele Pollara^a, Jeremy S.
6 Brown^b, Robert S. Heyderman^{a#}

7
8 ^a Research Department of Infection, Division of Infection and Immunity, University
9 College London, London, UK.

10 ^b Department of Respiratory Medicine, Centre for Inflammation and Tissue Repair,
11 University College London, London, United Kingdom

12
13
14
15
16 Running title: Pneumococcal lipoproteins in epithelial microinvasion

17
18
19
20
21 [#] Address correspondence to Jia Mun (Elizabeth) Chan,
22 elizabeth.jm.chan@ucl.ac.uk or Robert S. Heyderman, r.heyderman@ucl.ac.uk.

23
24 * Present address: Institute of Infection, Veterinary and Ecological Sciences,
25 University of Liverpool, Liverpool, UK.

26 ** Present address: Department of Biomedical and Life Sciences, Lancaster
27 University, Lancaster, UK.

28
29
30
31
32 **Keywords:** *Streptococcus pneumoniae*, host-microbe interactions, microinvasion,
33 bacterial lipoproteins, epithelium

34
35
36
37 Abstract word count: 236 words.

38 Importance word count: 150 words.

39 Manuscript word count: 4838 words.

40

41 **ABSTRACT**

42

43 *Streptococcus pneumoniae*, a common coloniser of the upper respiratory
44 tract, invades nasopharyngeal epithelial cells without causing disease in healthy
45 people. We hypothesised that surface expression of pneumococcal lipoproteins,
46 recognised by the innate immune receptor TLR2, mediate epithelial microinvasion.
47 Mutation of *lgt* in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal
48 strains abolishes the ability of the mutants to activate TLR2 signalling. Loss of *lgt*
49 also led to concomitant decrease in interferon signalling triggered by the bacterium.
50 However, only BHN418 *lgt::cm* but not TIGR4 *lgt::cm* was significantly attenuated in
51 epithelial adherence and microinvasion compared to their respective wild-type
52 strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and
53 BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a
54 motif-based genome analysis and identified an additional 525 a.a. lipoprotein
55 (pneumococcal accessory lipoprotein A; *paA*) encoded by BHN418 that is absent in
56 TIGR4. The gene encoding *paA* sits within a putative genetic island present in ~10%
57 of global pneumococcal isolates. While *paA* was enriched in carriage and otitis
58 media pneumococcal strains, neither mutation nor overexpression of the gene
59 encoding this lipoprotein significantly changed microinvasion patterns. In conclusion,
60 mutation of *lgt* attenuates epithelial inflammatory responses during pneumococcal-
61 epithelial interactions, with intraspecies variation in the effect on microinvasion.
62 Differential lipoprotein repertoires encoded by the different strains do not explain
63 these differences in microinvasion. Rather, we postulate that post-translational
64 modifications of lipoproteins may account for the differences in microinvasion.

65 **IMPORTANCE**

66

67 *Streptococcus pneumoniae* (pneumococcus) is an important mucosal
68 pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal
69 colonisation is considered a necessary prerequisite for disease, yet many people are
70 transiently and asymptotically colonised by pneumococci without becoming
71 unwell. It is therefore important to better understand how the colonisation process is
72 controlled at the epithelial surface.

73 Controlled human infection studies revealed the presence of pneumococci
74 within the epithelium of healthy volunteers (microinvasion). In this study, we focused
75 on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found
76 that pneumococcal lipoproteins induce epithelial inflammation but that differing
77 lipoprotein repertoires do not significantly impact the magnitude of microinvasion.
78 Our results highlight the potential importance of the post-translational modification of
79 lipoproteins in the mediation of epithelial invasion during pneumococcal colonisation.
80 Targeting mucosal innate immunity and epithelial microinvasion alongside the
81 induction of an adaptive immune response may be effective in preventing
82 pneumococcal colonisation and disease.

83

84 **INTRODUCTION**

85

86 *Streptococcus pneumoniae* (pneumococcus) is a versatile pathobiont capable
87 of asymptotically colonising the nasopharynx, causing localised infections of the
88 middle ear, respiratory tract and lungs, and causing disseminated invasive disease
89 (e.g. bacteraemic pneumonia and meningitis) with high mortality rates (1). *S.*
90 *pneumoniae* has long been considered an extracellular pathogen despite
91 demonstration of bacterial invasion *in vitro* using epithelial and endothelial cell lines
92 (1). However, controlled human infection with a serotype 6B strain revealed that the
93 pneumococcus invades the nasopharyngeal epithelium of healthy carriers,
94 stimulating epithelial inflammation without causing overt symptoms or disease (2–4).
95 We have termed this phenomenon microinvasion, which is distinct from the invasion
96 of deeper tissues or dissemination systemically which characterise disease (2).
97 Inflammation triggered by the epithelium-associated and intracellular bacteria, which
98 peaks 9 days post inoculation, may be important for clearance and onward
99 transmission (2).

100 In this study, we explored the hypothesis that surface expression of
101 pneumococcal lipoproteins mediate epithelial microinvasion. Pneumococcal
102 lipoproteins are post-translationally lipidated surface proteins, many of which function
103 as metabolite transporters (5, 6). *S. pneumoniae* lipoproteins have also been shown
104 to be major TLR2 ligands in macrophages, are required for a Th17 response and for
105 many of the dominant macrophage gene transcriptional responses, such as
106 induction of IRAK-4–dependent protective cytokines (7–9). *S. pneumoniae* encodes
107 over 30 lipoproteins, including the bifunctional adhesin/manganese transporter PsaA
108 and the peptidoglycan hydrolase DacB (5, 10–12). Blocking lipidation by mutating

109 the prolipoprotein diacylglycerol transferase encoding gene *lgt* de-anchors
110 lipoproteins from the cell surface, resulting in the release of immature
111 preprolipoproteins into the extracellular milieu and abolishing the ability of the
112 bacteria to activate TLR2 signalling (8, 9, 13). Mutating *lgt* also attenuates
113 pneumococcal virulence and shortens colonisation duration in murine models (8, 14).

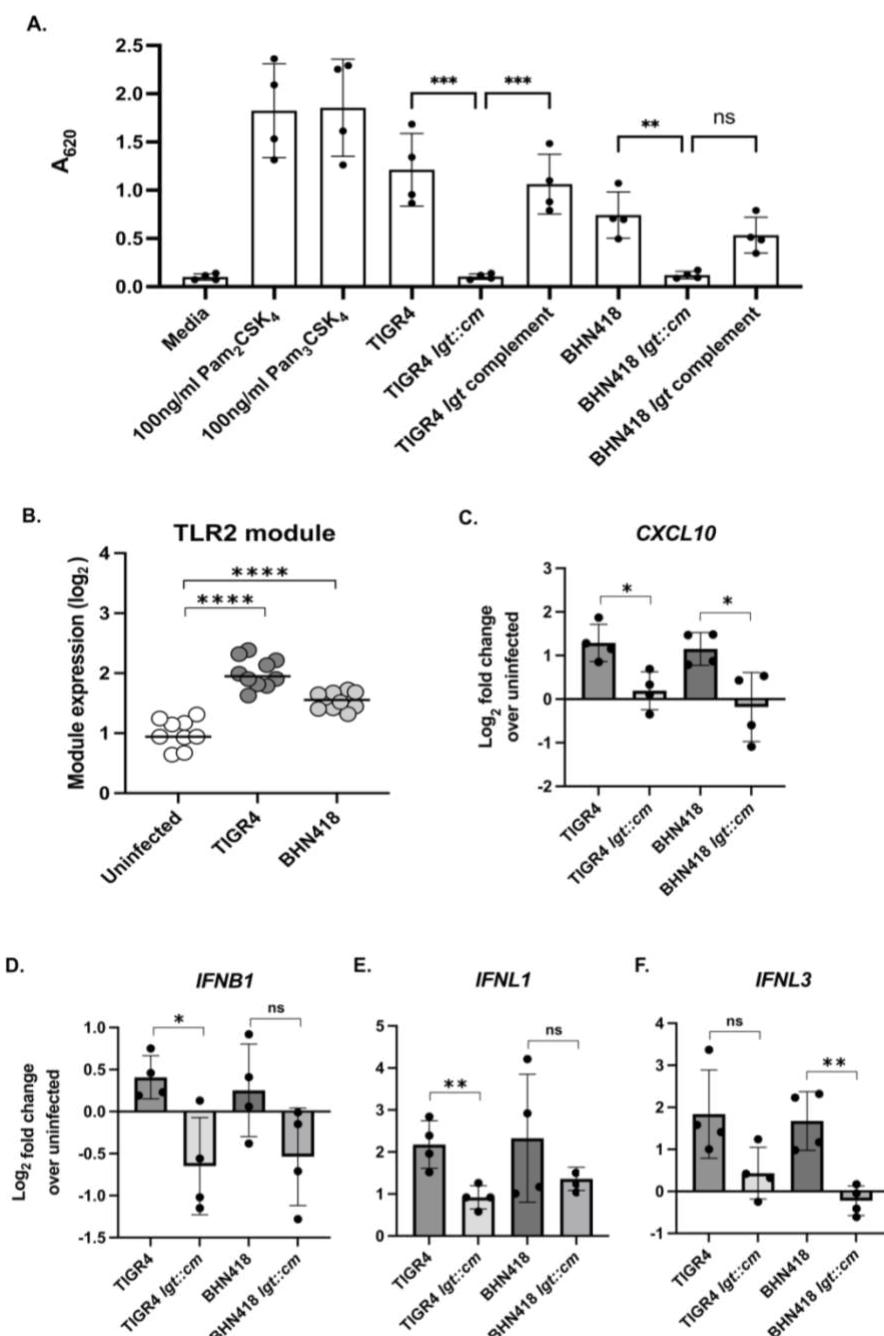
114 To explore whether heterogeneity in surface-expression of pneumococcal
115 lipoproteins also explains the differences in microinvasion seen between strains, we
116 blocked lipoprotein lipidation by inactivation of *lgt* in two strains: a highly invasive
117 strain (TIGR4, serotype 4) and a less invasive strain (BHN418, serotype 6B) which
118 was used in the controlled human challenge experiments (15, 16). It is important to
119 note that pneumococcal strains from both serotypes can asymptotically colonise
120 as well as cause invasive disease in susceptible hosts, albeit to different extents
121 (17). Our findings indicate that lipoproteins contributed to epithelial inflammation by
122 activating the TLR2 pathway and augmenting an interferon response. While
123 attenuation of inflammatory responses were seen with both serotype 6B and
124 serotype 4 *lgt* mutants, we observed intraspecies differences in the contribution of
125 lipoproteins to microinvasion, with greater effects of lipoproteins with the less
126 invasive 6B strain.

127 Genomic analysis revealed the presence of a previously uncharacterised
128 lipoprotein encoded within a genetic island found in BHN418 and approximately 10%
129 of pneumococcal strains, but not in TIGR4. We designate this protein pneumococcal
130 accessory lipoprotein A, or *palA*. We hypothesized that *palA* mediate the
131 intraspecies differences in microinvasion, however, cell culture and murine
132 colonisation experiments did not show an essential role for *palA* in microinvasion,
133 colonisation or disease. Our results suggest that the contribution of lipoproteins and

134 lipoprotein processing to microinvasion may be more complex and we propose may
135 occur through differential post-translational lipidation.

136 **RESULTS**

137

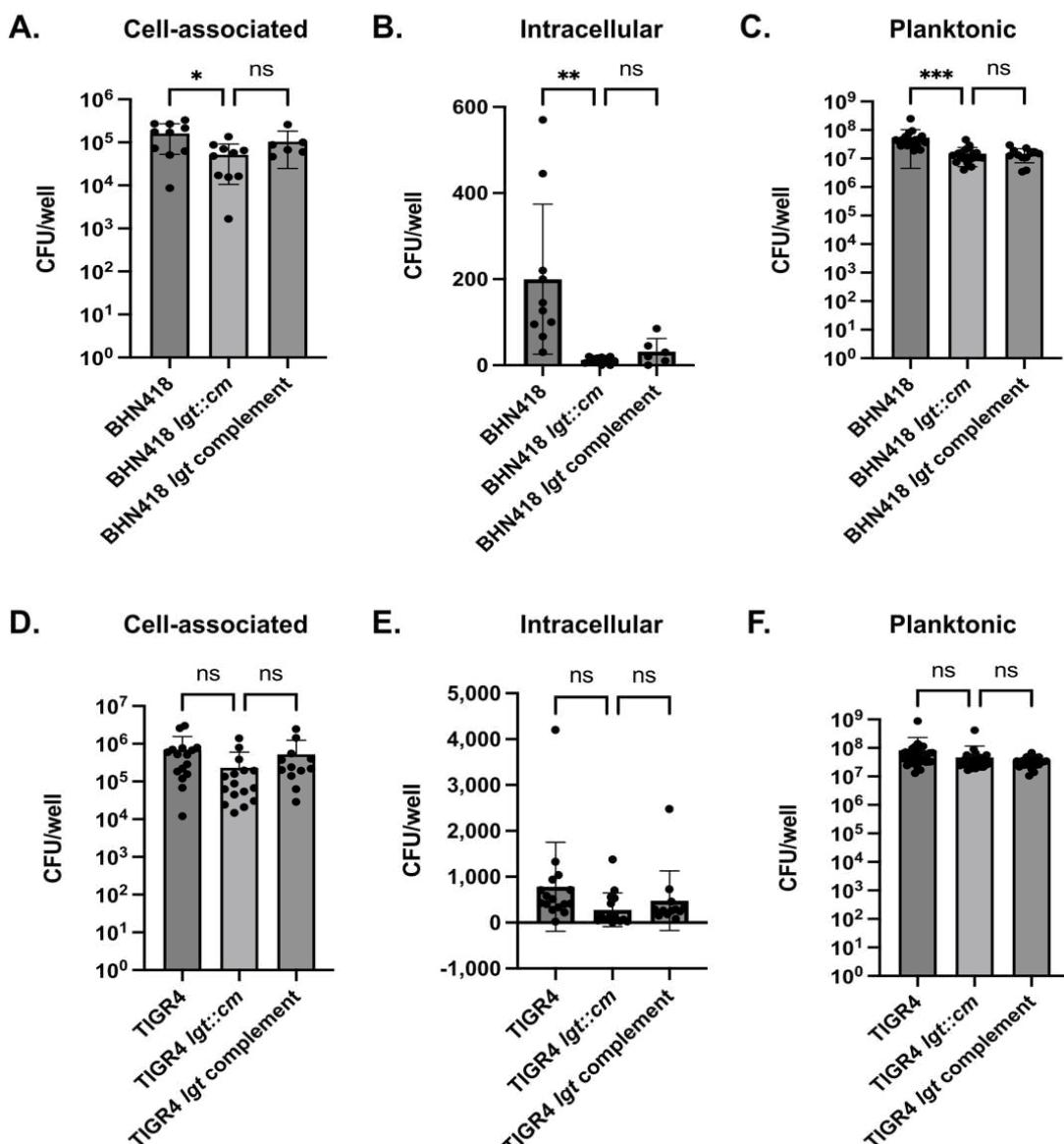

138 **Pneumococcal *lgt* mutants induce lower levels of TLR2 and interferon**
139 **signalling compared to than wild type strains.** In line with previous reports,
140 mutation of *lgt* in both TIGR4 and BHN418 completely abolished the ability of these
141 strains to trigger TLR2 signalling in HEK-BlueTM hTLR2 reporter cells, while genetic
142 complementation of *lgt* at a chromosomal ectopic site restored WT-like ability to
143 stimulate the TLR2 pathway (Figure 1A) (9). Although macrophages respond to
144 pneumococcal infections by activating TLR2 signalling pathways, it is unknown if
145 nasopharyngeal epithelial cells respond in the same way (8, 9, 18). Using a
146 transcriptional module reflective of TLR2 signalling and previously published
147 transcriptomic datasets (2, 19), we found evidence of elevated TLR2-mediated
148 transcriptional activity in nasopharyngeal epithelial cells infected with TIGR4 and
149 BHN418 (Figure 1B; Supplementary Figure 1).

150 TLR2 activation is necessary for full induction of TLR4 by the *S. pneumoniae*
151 virulence factor pneumolysin (20, 21). Transcriptomic analyses of human nasal
152 biopsy samples from controlled pneumococcal challenge experiments and
153 nasopharyngeal cell lines infected with *S. pneumoniae* also showed upregulation of
154 interferon signalling (6, 7). We therefore hypothesize that TLR2 activation potentiates
155 interferon signalling in epithelial cells triggered by *S. pneumoniae* infection. Using
156 qPCR, we observed that Detroit 562 cells infected with TIGR4 *lgt::cm* have reduced
157 expression of *CXCL10*, *IFNB1* and *IFNL1* compared to cells infected with WT TIGR4
158 (Figure 1C-E), while cells infected with BHN418 *lgt::cm* have reduced expression of
159 *CXCL10* and *IFNL3* compared to those infected with WT BHN418 (Figure 1C,1F).

160 Our results suggest that lipoprotein-mediated TLR2 activation augments the
161 epithelial interferon response during pneumococcal microinvasion.

162

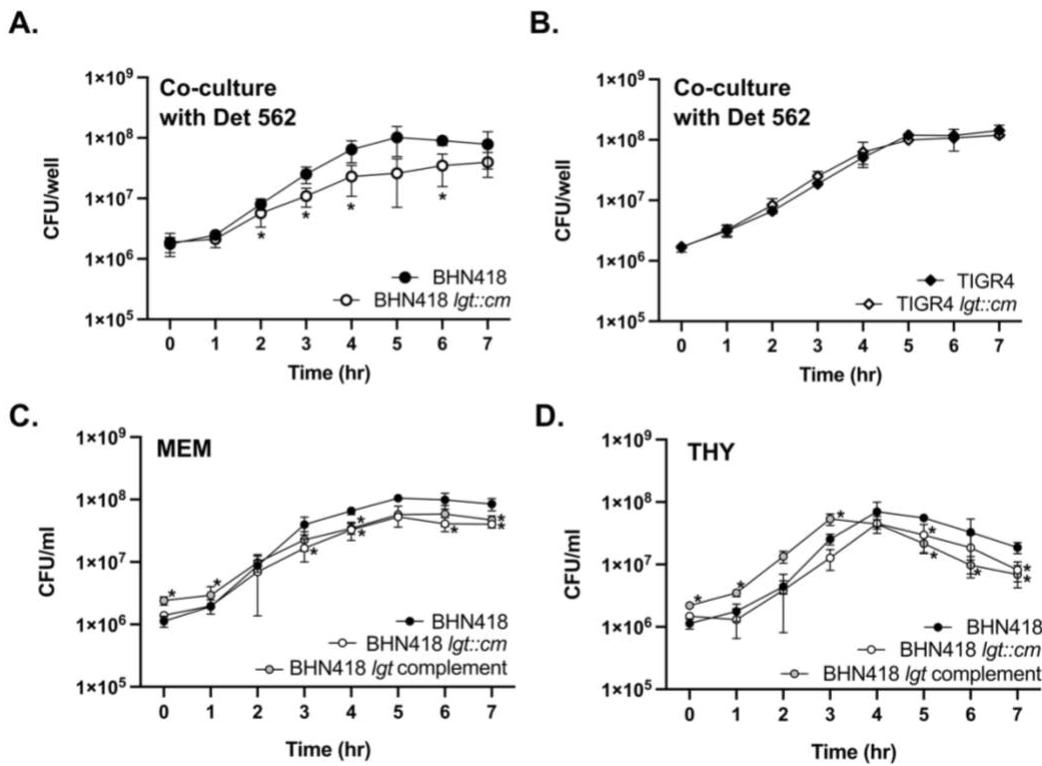
163


164

165 **Figure 1. Pneumococcal Igt mutants were less inflammatory compared to WT**
166 **strains.** (A) SEAP reporter readout from HEK-Blue™ hTLR2 reporter cells treated
167 with pneumococcal strains at MOI 10 for 16 hours. (B) Expression of a transcriptional
168 module reflective of TLR2-mediated activity in Detroit 562 cells infected with TIGR4
169 and BHN418 for 3 hours. (C-F) Transcript levels of (C) CXCL10, (D) IFNB1, (E)
170 IFNL1 and (F) IFNL3, quantified via qPCR using total RNA extracted from Detroit
171 562 cells after 6 hours of infection with pneumococcal strains. Statistical significance
172 was determined using multiple comparison test with Bonferroni's correction (A),
173 Mann-Whitney test (B), or Student's *t*-test assuming equal variance (C-F). * indicates
174 $p < 0.05$, ** indicates $p < 0.01$, *** indicates $p < 0.001$, *** indicates $p < 0.0001$.

175
176 **Mutation of *lgt* attenuates epithelial microinvasion by *S. pneumoniae* serotype**
177 **6B but not by serotype 4.** To determine if mutation of *lgt* and loss of TLR2
178 signalling impact on pneumococcal microinvasion, we infected confluent Detroit 562
179 nasopharyngeal cells (NPE) with the serotype 6B (BHN418) and 4 strains (TIGR4)
180 for 3 hours (3 hpi), measuring the number of cell associated, intracellular and
181 planktonic bacteria in the cell culture supernatant. Mutation of *lgt* significantly
182 attenuated the ability of BHN418 but not TIGR4 to associate with and be internalised
183 into Detroit 562 cells (Figure 2A-B, 2D-2E). In concordance with prior reports,
184 serotype 4 strains were more invasive compared to serotype 6B strains, with ~5
185 times more intracellular WT TIGR4 recovered compared to WT BHN418 (Figure 2B,
186 2D) (15, 17). The *lgt* mutation also significantly reduced the number of planktonic
187 BHN418 but not TIGR4 (Figure 2F). Genetic complementation of *lgt* in the BHN418
188 *lgt::cm* mutant did not fully restore microinvasion of NPE cells to WT-like levels,
189 despite complementation in the HEK-BlueTM hTLR2 reporter assay (Figure 1A,
190 Figure 2A-F).

191 Mutation of *lgt* has been associated with growth defects in cation-limiting
192 conditions, human blood and mouse bronchoalveolar lavage fluid (14). Fewer
193 planktonic BHN418 *lgt* mutant bacteria were also recovered from our NPE infection
194 experiments (Figure 2C). Time course sampling of planktonic pneumococci grown
195 with Detroit 562 cells revealed a minor growth defect for the BHN418 *lgt* mutant
196 starting at 3 hpi but not for the TIGR4 *lgt* mutant (Figure 3A-B). To determine if the
197 growth defect was dependent on the presence of NPE cells, time course sampling of
198 planktonic BHN418 and its *lgt* mutant grown in infection medium and rich THY
199 medium were performed. The growth defect was replicated in cell-free medium and
200 is therefore not dependent on the presence of NPE cells (Figure 3C-D).


201 Our results indicate that inactivation of Lgt and therefore the lipoprotein
202 processing pathway had greater consequences for BHN418 compared to TIGR4,
203 except in their ability to trigger epithelial inflammation. These observations suggest
204 that activation of the TLR2 pathway during pneumococcal-epithelial interactions is
205 not dependent on the number of cell-associated or intracellular pneumococci.
206 Additionally, within the timeframe of our assays, TLR2 signalling neither promotes
207 nor inhibits epithelial microinvasion by *S. pneumoniae*.
208

209

210 **Figure 2. Mutation of *lgt* impaired epithelial microinvasion by *Streptococcus***
211 ***pneumoniae*, with greater defects for BHN418.** (A-F) NPE microinvasion by WT
212 and *lgt* mutants. Graphs show CFU numbers for BHN418-derived (A-C) and TIGR4-
213 derived strains (D-F) associated with (A,D), internalised into (B,E), or growing in
214 proximity with Detroit 562 NPE cells 3 hours post infection. * indicates $p < 0.05$, **
215 indicates $p < 0.01$, *** indicates $p < 0.001$.

216

217

218 **Figure 3. Growth of BHN418 *lgt::cm* compared to WT.** (A-B) Growth of BHN418-
219 derived (A) and TIGR4-derived (B) strains in infection medium (MEM + 1% FBS) in
220 the presence of Detroit 562 NPE cells. (C-D) Growth of BHN418-derived strains in
221 infection medium (C) and in the rich growth medium THY (D) in the absence of cells.
222 * indicates $p < 0.05$ by Student's *t*-test.
223

224 **BHN418 encodes a novel lipoprotein absent in TIGR4.** One potential explanation
225 for the intraspecies differences in microinvasion upon *lgt* mutation is the presence of
226 one or more lipoproteins in BHN418 which are absent in TIGR4. This lipoprotein may
227 play a role as an adhesin and/or be important for nutrient transport and growth
228 during infections. To address this hypothesis, we used a motif-based sequence
229 toolkit, the MEME Suite, to compare the lipoprotein repertoires of BHN418 and
230 TIGR4 (22). We identified 43 open reading frames (ORFs) in TIGR4 and 44 ORFs in
231 BHN418 with gene products that fit the criteria for a lipoprotein (detailed in Materials
232 and Methods) (Table 1). Of these putative lipoprotein ORFs, only one is present in
233 BHN418 but not in TIGR4. There are no lipoprotein ORFs present in TIGR4 that are
234 not also present in BHN418.

235 The lipoprotein encoded by BHN418 but not TIGR4, encoded by the gene
236 with the locus tag RSS80_03595 and which we named pneumococcal accessory
237 lipoprotein A (*palA*), comprises of 525 amino acids with sequence and structural
238 homology to extracellular solute binding domain proteins that deliver substrates to
239 ABC family transporters (Figure 4A-B). ABC transporters are multi subunit proteins
240 comprising of two transmembrane permease domains and two cytoplasmic ATPase
241 domains (23). Two genes encoding ABC transporter permease domain proteins,
242 annotated as *yteP* and *araQ*, were found ~3.3kb and ~2.4kb upstream of *palA*. We
243 were unable to locate ORF(s) encoding for the ATPase domain proteins in the 10kb
244 region upstream or downstream of *palA*. Taken together, *PalA* likely binds to and
245 delivers substrate(s) to *YteP* and/or *AraQ*. It is uncertain if *YteP* and/or *AraQ* co-opt
246 the ATPase domains of ABC family transporters encoded elsewhere on the genome,
247 in a similar strategy as the raffinose utilisation system, or no longer function as
248 transporters (24, 25).

249 This genetic context suggests that *palA* is the fifth gene in an operon
250 encoding for carbohydrate import and utilisation genes, which includes *yteP* and
251 *araQ* (Figure 4A). The operon sits within an 11.5 kb region with ~30% GC content,
252 flanked by repetitive insertion sequences with homology to *IS630* elements. This
253 region was likely acquired via horizontal gene transfer as the overall mean GC
254 content of pneumococcal strains is around 40% (26). This putative genetic island is
255 directly downstream of *spxB*, which encodes an important pneumococcal virulence
256 factor involved in the production of H₂O₂ (27). Alignment of TIGR4 whole genome
257 sequencing reads to the BHN418 genome revealed the absence of the entire
258 putative island in the TIGR4 genome (Figure 4C) (26).

259

260
261

Table 1. Lipoproteins encoded by TIGR4 and BHN418, identified bioinformatically using MEME suite.

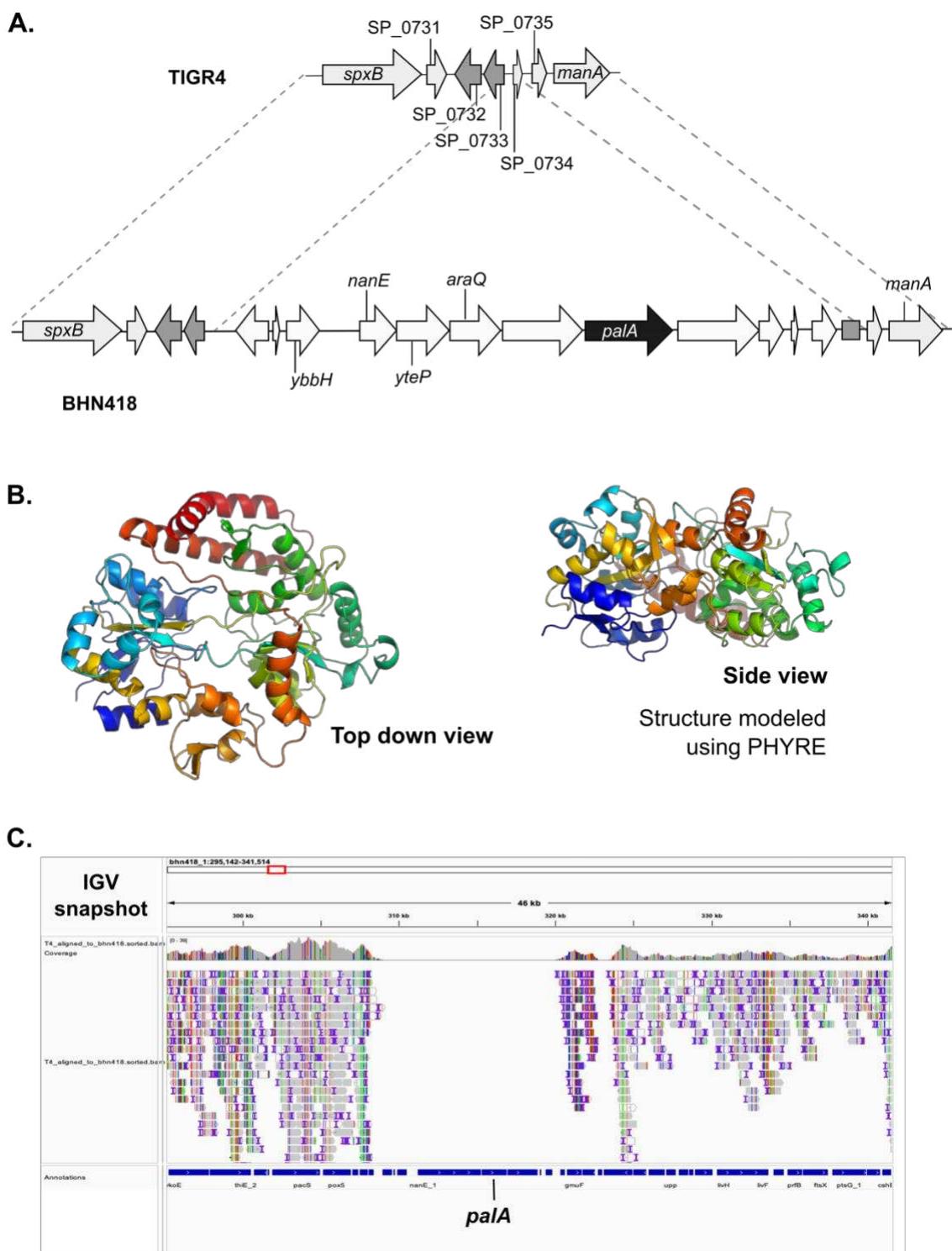
BHN418 locus tag	TIGR4 locus tag	Gene name	Description of gene product	Reference
RSS80_07140	SP_1500	<i>aatB</i>	Amino acid transporter	(28)
RSS80_10715	SP_2169	<i>adcA</i>	Adhesin competence protein A; zinc transporter	(29)
RSS80_04890	SP_1002	<i>adcAII</i>	Adhesin competence protein All; zinc transporter	(30)
RSS80_01875	SP_0366	<i>aliA</i>	AmiA-like protein A; oligopeptide transporter	(31)
RSS80_07270	SP_1527	<i>aliB</i>	AmiA-like protein B; oligopeptide transporter	(31)
RSS80_09070	SP_1891	<i>amiA</i>	Aminopterin resistance locus protein A; oligopeptide transporter	(32)
RSS80_03115	SP_0629	<i>dacB</i>	L,D-carboxypeptidase	(10)
RSS80_03240	SP_0659	<i>etrX1</i>	Extracellular thioredoxin-like protein 1; thiol-disulfide oxidoreductase	(33)
RSS80_04875	SP_1000	<i>etrX2</i>	Extracellular thioredoxin-like protein 2; thiol-disulfide oxidoreductase	(34)
RSS80_06715	SP_1394	<i>glnH</i>	GlnH glutamine/polar amino acid ABC transporter substrate-binding protein	(35)
RSS80_00785	SP_0148	<i>gshT</i>	Glutathione transporter	(36)
RSS80_03685	SP_0749	<i>livJ</i>	Branched chain amino-acid transporter	(37)
RSS80_10385	SP_2108	<i>malX</i>	Maltosaccharide transporter	(38)
RSS80_00790	SP_0149	<i>metQ</i>	Methionine-binding lipoprotein Q	(39)
RSS80_05810	SP_1175	<i>phtA</i>	Pneumococcal histidine triad protein A	(40)
RSS80_05040	SP_1032	<i>piaA</i>	Pneumococcal iron acquisition protein A	(41)
RSS80_01305	SP_0243	<i>pitA</i>	Pneumococcal iron transporter protein A	(42)
RSS80_08955	SP_1872	<i>piuA</i>	Pneumococcal iron uptake protein A	(41)
RSS80_04120	SP_0845	<i>pnrA</i>	Nucleoside transporter	(43, 44)
RSS80_04795	SP_0981	<i>ppmA</i>	Putative proteinase maturation protein A; peptidyl-prolyl cis-trans isomerase	(45)
RSS80_07850	SP_1650	<i>psaA</i>	Pneumococcal surface adhesin A; manganese and zinc transporter	(11, 12)
RSS80_10265	SP_2084	<i>pstS</i>	Phosphate transport substrate binding protein	(46)
RSS80_09095	SP_1897	<i>rafE</i>	Raffinose transporter	(24)
RSS80_03790	SP_0771	<i>slrA</i>	Streptococcal lipoprotein rotamase A;cyclophilin-type peptidyl-prolyl cis-trans isomerase	(47)
RSS80_04895 [§]	SP_1003	<i>phtB</i>	Pneumococcal histidine triad protein B	(40)
RSS80_04895 [§]	SP_1174	<i>phtD</i>	Pneumococcal histidine triad protein D	(40)
RSS80_06745	SP_1400	<i>pstS2</i>	phosphate binding protein	-
RSS80_10885	SP_2197	-	ABC transporter binding protein	-
RSS80_00530	SP_0112	-	Amino acid binding protein	-
RSS80_09960	SP_2041	-	Membrane protein insertase	-

RSS80_04185	SP_0857*	-	ABC transporter substrate binding protein	-
RSS80_03070	SP_0620	-	Amino acid ABC transporter binding protein	-
RSS80_09570	SP_1975	-	Membrane protein insertase	-
RSS80_03435*	SP_0708*	-	ABC transporter substrate binding protein (truncated)	-
RSS80_03595	Not present	-	Extracellular solute binding protein	-
RSS80_04430	SP_0899	-	Hypothetical protein	-
RSS80_05800*	Not assigned	-	ABC transporter substrate binding protein (truncated)	-
RSS80_08015	SP_1683	-	ABC transporter sugar binding protein	-
RSS80_08055	SP_1690	-	ABC transporter sugar binding protein	-
RSS80_08595	SP_1796	-	Extracellular solute binding protein	-
RSS80_08765	SP_1826	-	ABC transporter substrate binding protein	-
RSS80_00445	SP_0092	-	ABC transporter substrate binding protein	-
RSS80_01055	SP_0191	-	Hypothetical protein	-
RSS80_01080	SP_0198	-	ABC transporter substrate binding protein	-

262

[bold] ORF present in BHN418 but not TIGR4.

263 * Annotated as pseudogene, contained premature stop codon, or interrupted by insertion sequence


264 § RSS80_04895 was the best match BLAST result for more than one TIGR4 CDS

265 Not assigned: Homologous sequence present in genome but not annotated as ORF/CDS

266 Not present: Homologous sequence absent in genome.

267 TIGR locus tag and gene name are based on TIGR4 genome annotation (Genbank accession
268 number AE005672.3).

269

270

271 **Figure 4. PalA is a lipoprotein present in BHN418 but not in TIGR4.** (A) Genetic
272 context of the *paA* gene (black arrow), which is within a multi-gene operon that is
273 part of a putative genetic island. ORFs with homology to previously described genes
274 are labelled with the gene name. (B) Predicted structure of PalA, modelled using
275 PHYRE, which shows a barrel-like structure with a possible central ligand binding
276 pocket. (C) IGV snapshot demonstrating lack of TIGR4 sequencing reads mapping
277 to the putative *paA* genetic island.

278

279 To determine if *paA* is predominantly present in more carriage-type
280 serotypes, such as serotype 6B, we examined the presence of *paA* in a well-curated
281 dataset of 2806 carriage isolates from Malawi (48). 567 of these carriage isolates
282 (20.5%) carry *paA* in their chromosome. Mapping the analysis results onto a
283 hierachal clustering (Newick) tree showed that *paA* is present in specific lineages,
284 with no clear association to capsular serotypes or sequence types (genetic
285 relatedness, visualised as neighbouring branches on a Newick tree) (Supplementary
286 Figure 2) (48). However, presence of *paA* is enriched in certain serotypes,
287 particularly serotype 6A (39/93, 41.9%), 6B (12/31, 38.7%), 10A (29/34, 85%), 15B
288 (52.76, 68.4%), 16F (60/94, 63.8%), 23B (45/103, 43.7%), 35A (28/28, 100%) and
289 35B (60/114, 52.6%) (Supplementary Table 1). Additionally, the branching patterns
290 of the phylogenetic tree for the Malawi carriage isolates supports the inference that
291 *paA* and its associated genetic island were acquired via horizontal gene transfer and
292 expanded in specific lineages (Supplementary Figure 2).

293

294 **PalA presence is enriched in carriage and ear isolates.** Maintenance of this
295 11.5kb genetic island is potentially costly and suggests that the island confers some
296 form of advantage to isolates that carry it. *S. pneumoniae* is capable of colonising
297 and infecting multiple body sites including the nasopharynx, lungs, blood, CSF,
298 meninges, and middle ear. We therefore examined 51,379 genomes in the BIGSdb
299 database to determine if there is an association between the presence of *palA* and
300 the isolation site of the strain (“source”) (49).

301 The *palA* gene presence is enriched in carriage isolates and in strains isolated
302 from ear infections compared to strains isolated from IPD or lower respiratory tract
303 disease (Table 2). More than half of serotype 22F and 6A strains isolated from the
304 ear carried *palA* and approximately 28% of all serotype 22F and 6A genomes in the
305 database carry *palA*, in contrast to the overall *palA* prevalence rate of 9.97% (Table
306 2). In the BIGSdb database, the only serotype 4 strain isolated from the ear carried
307 *palA* in its genome. These observations suggest that *palA* and/or its putative genetic
308 island may facilitate spread to and cause infection of the ear, although *palA*’s
309 presence is not necessary for colonisation of the ear.

310

311 **Table 2. Presence of *paA* in whole genome sequences of pneumococcal
312 isolates on the BIGSdb database, stratified by site of isolation (“source”).**

Category	Source (BIGSdb label)	Proportion (%)
Carriage	"nasopharynx", "pharynx", "sputum"	14.57 (3114/21369)
Otitis	"ear swab", "middle ear fluid"	13.72 (129/940)
Pneumonia	"lung aspirate", "sinus aspirate", "bronchoalveolar lavage", "bronchi"	8.96 (25/279)
Invasive	"blood", "cerebrospinal fluid", "joint fluid", "pleural fluid"	6.54 (1837/28075)
Eye/pus/others	"eye swab", "pus", "other"	2.65 (19/716)
Overall		9.97 (5124/51379)

313

314 **Mutation of *paA* does not alter pneumococcal colonisation or microinvasion**

315 **of the epithelium.** To determine if PalA plays a role in epithelial microinvasion, we

316 generated *paA* deletion and complementation mutants for testing in our NPE model.

317 Although there is a small reduction in the number of planktonic bacteria, the numbers

318 of epithelial-associated and intracellular BHN418 *paA::kan* were not significantly

319 different to that of WT BHN418 (Figure 5A-C). Additionally, we did not observe a

320 growth defect when BHN418 *paA::kan* was grown in THY or MEM (Figure 5D-E).

321 Heterologous expression of *paA* in a serotype 23F strain naturally lacking the island

322 (P1121) did not increase the microinvasion potential of the resulting strains and

323 reduced the number of planktonic bacteria in the cell culture supernatant (Figure 6A-

324 C). Moreover, the BHN418 *paA* knockout strains and the P1121 *paA* knock-in

325 strains activated TLR2 signalling to similar levels as their respective wild-type strains

326 (Figure 6D). We therefore conclude that presence of *paA* is not solely responsible

327 for the observed strain-specific differences in Lgt-mediated epithelial microinvasion.

328 Moreover, PalA does not contribute significantly to pneumococci's ability to activate

329 TLR2.

330 Mutation of *paA* attenuates nasopharyngeal colonisation density and duration

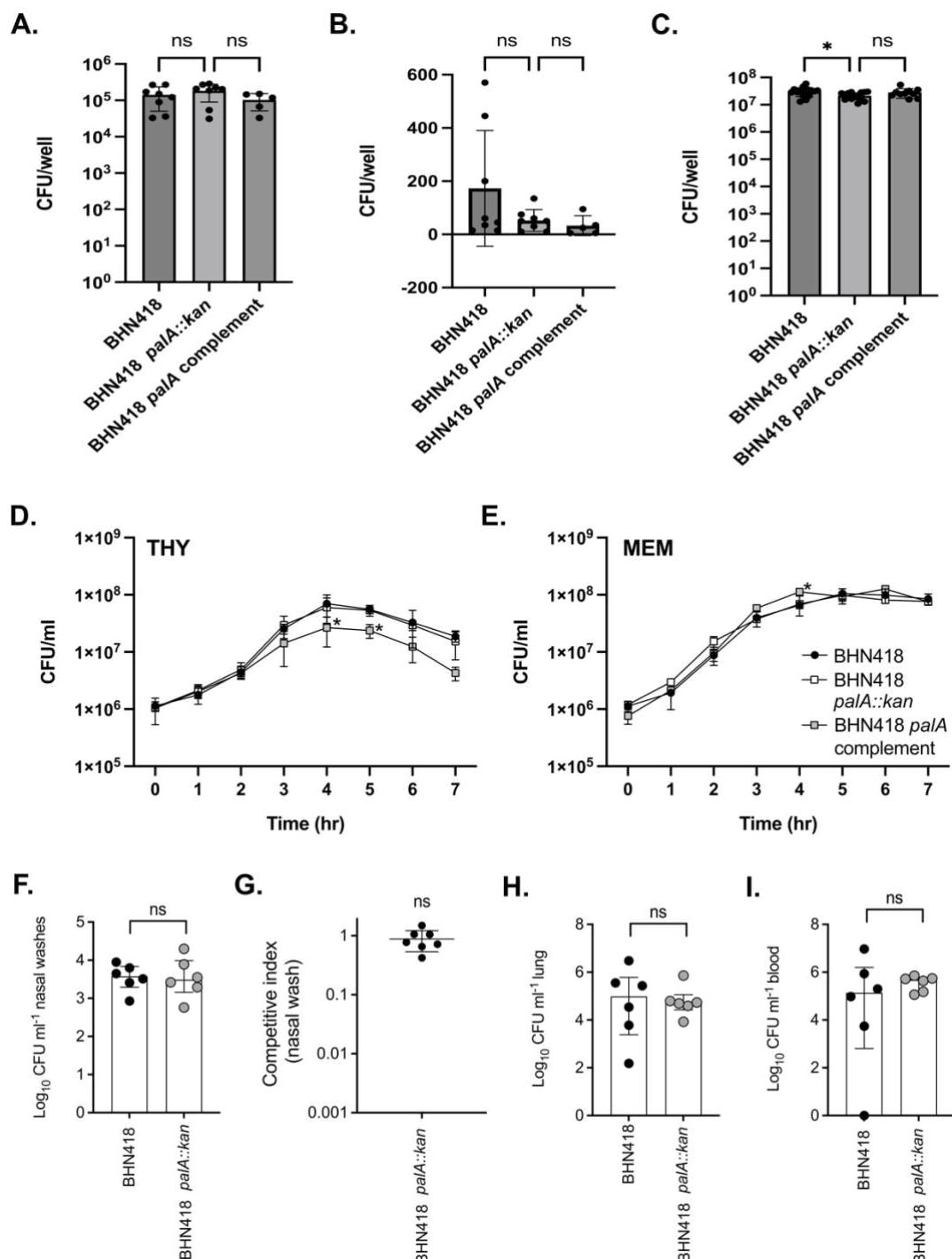
331 in mice (14). We next asked if presence of *paA* confer a survival advantage in a

332 more complex and immune-replete environment such as the murine nasopharynx.

333 Outbred CD-1 female mice were intranasally inoculated with wild-type BHN418 and

334 the *paA* mutant either singly or in a 1:1 competitive mix. After 7 days of colonisation,

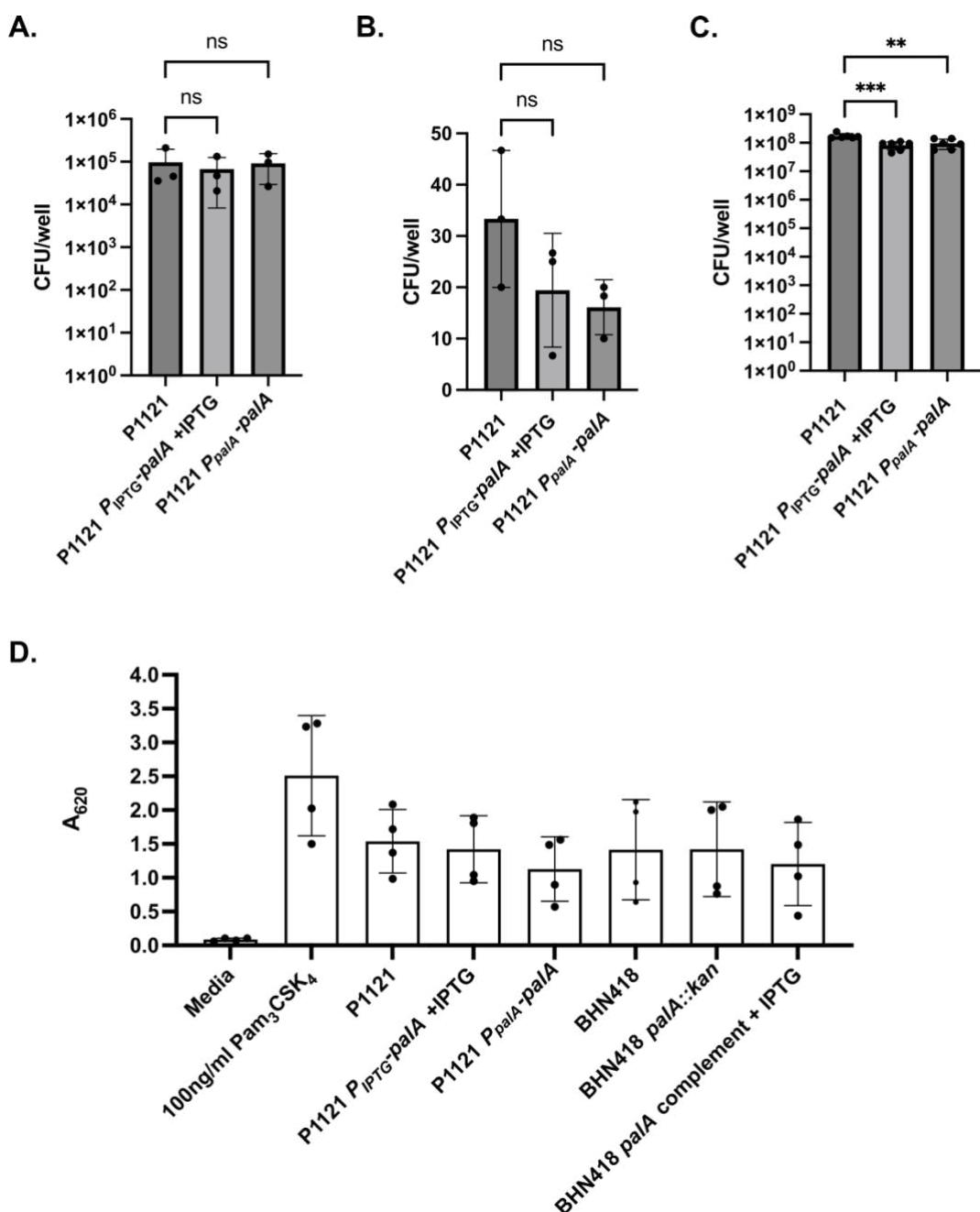
335 similar CFU numbers for WT BHN418 and the *paA::kan* were recovered from nasal


336 washes (Figure 5F-G). Similar CFU numbers for BHN418 and *paA::kan* were also

337 recovered in homogenised lungs and blood 24 hours post inoculation in a murine

338 pneumonia model (Figure 5H-I). We conclude that presence of *paA* does not confer

339 a colonisation advantage in the murine nasopharynx or in the progression to
340 bacteraemic pneumonia.


341

342

343 **Figure 5. PaLA was not essential for NPE microinvasion, murine colonisation**
 344 **and progression to disease.** (A-C) NPE microinvasion by WT BHN418 and *paLA*
 345 mutants, measured as NPE-associated bacteria (A), internalised bacteria (B) and
 346 planktonic bacteria growing in proximity with Detroit 562 NPE cells 3 hours post
 347 infection. (D-E) Growth of WT BHN418, the *paLA* knock out and complementation
 348 mutants in THY (D) and infection medium (E). (F-I) Recovery of pneumococci from
 349 mice intranasally inoculated with WT BHN418 and *paLA::kan* mutant, recovered from
 350 nasal washes when inoculated singly (F) or competitively in a 1:1 ratio (G), as well
 351 as from the lungs (H) and bloodstream (I) when tested on a pneumonia model. *
 352 indicates $p < 0.05$.

353

354

355 **Figure 6. Heterologous expression of *paA* in P1121 (serotype 23F) did not**
356 **increase epithelial microinvasion or TLR2 signalling.** (A-C) NPE microinvasion
357 by WT P1121 and *paA* expression mutants, measured as NPE-associated bacteria
358 (A), internalised bacteria (B) and planktonic bacteria growing in proximity with Detroit
359 562 NPE cells 3 hours post infection. (D) SEAP reporter readout from HEK-BlueTM
360 hTLR2 reporter cells treated with pneumococcal strains at MOI 10 for 16 hours.

361 **DISCUSSION**

362

363 In this study, we demonstrated that pneumococcal lipoproteins trigger
364 inflammation during epithelial colonisation at least partially via the TLR2-dependent
365 pathway. We have previously shown that epithelial microinvasion occurs in the
366 absence of disease and that there is heightened epithelial inflammation around the
367 time of pneumococcal clearance in controlled human infection (2). In murine models,
368 mutation of *lgt* reduces carriage duration and attenuates disease, associated with a
369 concomitant reduction in inflammatory and immune responses (8, 9, 50). However,
370 although we have shown that BHN418 *lgt::cm* but not TIGR4 *lgt::cm* was significantly
371 attenuated in epithelial adherence and microinvasion compared to their respective
372 wild-type strains, this does not appear to be TLR2-dependent or due to differential
373 lipoprotein repertoires encoded by the strains.

374 We additionally observed that presence of *lgt* and therefore TLR2 activation
375 heightens the epithelial interferon response elicited by pneumococcal microinvasion
376 in the absence of immune cells. Induction of the interferon pathway upon
377 pneumococcal challenge is thought to be dependent on sensing of intracellular
378 pneumococci, pneumococcal DNA or cellular DNA damage by the infected cells (51–
379 56). In infant mice co-infected with pneumococci and influenzae, interferon signalling
380 increases bacterial shedding while protecting against invasive disease, while TLR2
381 signalling limits bacterial shedding and transmission (18, 57, 58). Since TLR2
382 signalling augments the interferon response by human nasopharyngeal epithelial
383 cells during mono-pneumococcal infection, it is unclear how these two pathways
384 mediate the outcomes of pneumococcal microinvasion, colonisation or progression
385 to disease in people. Nonetheless, our results suggest that mucosal innate immunity

386 could be targeted alongside the induction of an adaptive immune response to
387 prevent pneumococcal colonisation, transmission and invasive disease.

388 We have implicated lipoprotein expression in intraspecies differences in NPE
389 cell microinvasion but our genetic and mutational analysis lead us to suggest that
390 this is not due to differences in lipoprotein repertoire, but rather due to differential
391 post-translational lipidation. The lipoprotein PsaA functions as a bacterial adhesin
392 which binds to host cell E-cadherin (59). In theory, we should have observed a
393 significant reduction in the number of epithelial-associated bacteria for both the
394 TIGR4 and BHN418 *lgt* mutants compared to wild-type due to the loss of PsaA
395 surface presentation; however, our data did not reflect this hypothesis. Similar subtle
396 effects have been seen for example when mutating the lipoprotein encoding gene
397 *dacB* but not *lgt* alters murein sacculus composition, and when mutating *lgt* results in
398 strain-dependent variable effects on growth in rich medium (5, 9, 14, 50, 60). The
399 observation that genetic complementation of *lgt* in BHN418 restores pneumococcal
400 ability to trigger epithelial inflammation but not WT levels of microinvasion further
401 suggests that regulation of lipoprotein processing may be more complex than
402 previously thought. The assumption that Lgt and other lipoprotein modification
403 proteins are constitutively expressed and active, and all 30+ lipoproteins are
404 processed at similar rates may not be entirely correct. Proteomics and
405 immunoblotting analyses showed that abundance of specific lipoproteins may
406 increase, decrease or show no change when lipoprotein processing is disrupted in *S.*
407 *pneumoniae*, although no clear patterns were apparent (5, 13). We therefore
408 speculate that unlike Gram-negative bacteria, for which lipoprotein processing is
409 essential, pneumococci and other Gram-positive bacteria compensate for the loss of

410 Lgt by differentially regulating expression of lipoprotein encoding genes, which in
411 turn is regulated by external stimuli in nasopharyngeal niche (61, 62).

412 While investigating the intraspecies variation in the role of *lgt* in microinvasion,
413 we discovered a previously uncharacterised lipoprotein encoding gene (*paA*) and its
414 associated genetic island. Although *paA* presence is enriched in carriage and otitis
415 media isolates, we have not been able to demonstrate a clear role for PalA in
416 epithelial microinvasion, or in a murine model, colonisation or disease. PalA is
417 predicted by sequence and structure homology to be involved in carbohydrate or
418 sugar transport, although we have yet to identify a substrate for PalA. Raffinose
419 metabolism has been shown to contribute to lung versus ear tropism in serotype 3
420 and serotype 14 strains (25). It is therefore possible that *paA* functions in promoting
421 niche specialisation by facilitating uptake and metabolism of uncommon sugars,
422 such as raffinose, found in the nasopharynx or middle ear.

423 In conclusion, we demonstrated a role for pneumococcal surface lipoproteins
424 in triggering epithelial inflammation and augmenting interferon signalling in response
425 to pneumococcal-epithelial interactions. We show that pneumococcal lipoproteins
426 mediate microinvasion in a strain-dependent manner, which may explain the
427 significant attenuation in carriage duration and disease with *lgt* mutants reported by
428 others (8, 14, 50). Additionally, we have characterised a novel accessory lipoprotein
429 likely acquired through horizontal gene transfer but rejected the hypothesis that this
430 lipoprotein contribute to strain differences in pneumococcal epithelial microinvasion.
431 Instead, we postulate that differential regulation of lipoprotein gene expression
432 responding to the nasopharyngeal niche regulate this microinvasion process.

433

434 **MATERIALS AND METHODS**

435

436 **Bacterial growth and maintenance.** *Streptococcus pneumoniae* strains were
437 grown on Columbia agar base with 5% defibrinated horse blood (CBA plates; EO
438 Labs, Oxoid) or statically in Todd-Hewitt broth supplemented with 0.5% yeast extract
439 (THY; Oxoid) at 37°C, 5% CO₂. Where appropriate, growth medium was
440 supplemented with antibiotics at the following concentrations: chloramphenicol (10
441 µg/ml), erythromycin (0.5 µg/ml), kanamycin (250 µg/ml). Working stocks for
442 infections were prepared by freezing THY cultures at OD₆₀₀ 0.3-0.4 with 10%
443 glycerol. NEB® Stable competent *Escherichia coli* derived strains were grown in LB
444 broth or LB agar (Difco) supplemented with ampicillin (200 µg/ml) where appropriate.
445 Bacterial strains used in this paper are listed in Table 3.

446

447 **Bacterial genetic manipulation.** *S. pneumoniae* were genetically manipulated
448 using a competence stimulating peptide (CSP)-mediated transformation assay (63).
449 Briefly, pneumococci were grown in THY pH 6.8 supplemented with 1 mM CaCl₂ and
450 0.02% BSA at 37°C, 5% CO₂ to OD₆₀₀ 0.01- 0.03, pelleted and resuspended in 1/12
451 volume THY pH 8.0 supplemented with 1 mM CaCl₂ and 0.2% BSA. A total of 400
452 ng CSP (Cambridge Biosciences; CSP-2 for TIGR4; 1:1 ratio of CSP-1:CSP-2 for
453 BHN418) was added to the bacterial suspension and incubated at RT for 5 mins.
454 The suspensions were then mixed with ~300 ng transforming DNA, incubated at
455 37°C, 5% CO₂ for two hours and plated on CBA plates supplemented with relevant
456 antibiotics. Antibiotic resistant transformants were screened using colony PCR and
457 confirmed by sequencing.

458

459 Transforming DNA for generating *lgt::cm* and *palA::kan* mutants were generated
460 using overlap-extension PCR. Complementation and expression constructs were
461 generated by inserting the target gene into the complementation plasmid pASR103
462 or pPEPY (64), which allows for integration of the construct at a chromosomal
463 ectopic site. Plasmids used are listed in Table 3, while primers are listed in
464 Supplementary Table 2.

465

466 **Cell culture.** Detroit 562 (ATCC® CCL-138™; human pharyngeal carcinoma
467 epithelial cells) were expanded and maintained in MEM α (Gibco™ 22561021)
468 supplemented with 10% heat-inactivated FBS (HI-FBS; LabTech FB-1001/500 or
469 Gibco 10438-026) at 37°C, 5% CO₂. HEK-Blue™ hTLR2 reporter cells (Invivogen,
470 hkb-htlr2) were expanded and maintained in DMEM (4.5 g/L glucose, 2mM
471 glutamine, sodium pyruvate) supplemented with 10% HI-FBS at 37°C, 5% CO₂. Per
472 manufacturer's instructions, DMEM growth medium was supplemented with 100
473 μ g/ml normocin™ and/or 1X HEK-Blue™ Selection (Invivogen) where appropriate.

474

475 **NPE infections.** Adherence-invasion infections of confluent Detroit 562 cells with *S.*
476 *pneumoniae* strains were performed at MOI 20 (P1121/23F derived strains) or MOI
477 10 (all others) for 3 hours. Working bacterial stocks were thawed, centrifuged to
478 remove freezing medium and resuspended in infection medium (MEM α with 1% HI-
479 FBS) to the appropriate CFU. 1 ml bacterial suspension were added to each well
480 containing confluent Detroit 562 cells. Plates were incubated statically at 37°C, 5%
481 CO₂ for 3 hours, after which 10 μ l of the supernatant were removed for CFU
482 enumeration. For adherence assays, cells were washed thrice with PBS, lysed with
483 cold 1% saponin (10 min incubation at 37°C, followed by vigorous pipetting), and 10

484 μ l cell lysate removed for CFU enumeration. For invasion assays, cells were washed
485 thrice with PBS, incubated with 0.5 ml infection medium supplemented with 200
486 μ g/ml gentamicin at 37°C, 5% CO₂ for 1 hour to kill extracellular bacteria, followed by
487 3x PBS wash, lysis with 1% saponin and CFU enumeration. Experiments were
488 performed at least thrice on different days (n \geq 3 biological replicates) with technical
489 duplicates. Statistical significance was determined using one-way ANOVA with
490 Bonferroni's multiple comparison test.

491
492 To harvest RNA for qPCR, confluent Detroit 562 cells were treated with synthetic
493 agonists or infected with *S. pneumoniae* strains at MOI 10 for 6 hours. Briefly,
494 working bacterial stocks were thawed, centrifuged to remove freezing medium and
495 resuspended in infection medium (MEM α with 1% HI-FBS) to the appropriate CFU.
496 Bacterial suspensions, infection medium (negative control), or infection medium
497 supplemented with synthetic agonists (20 μ g/ml Poly(I:C)) (TLR3 agonist, Bio-
498 Techne) were added to each flask. Flasks were incubated statically at 37°C, 5% CO₂
499 for 6 hours, after which 10 μ l were removed for CFU enumeration. Detroit 562 cells
500 were washed thrice with PBS and harvested by scraping into 300 μ l RNA later
501 (ThermoFisher). For each treatment condition, RNA harvesting was performed at
502 least thrice on different days (n \geq 3 biological replicates) without technical replicates.

503
504 For growth curve experiments, *S. pneumoniae* strains were seeded into 1 ml THY or
505 1 ml infection medium (MEM α with 1% HI-FBS, LabTech) with and without confluent
506 Detroit 562 cells in 12-well plates at a similar CFU number as used in infection
507 experiments. Plates were incubated at 37°C, 5% CO₂ for 7 hours, with aliquots taken
508 for CFU enumeration every hour. CFU growth curves were performed at least thrice

509 on different days ($n \geq 3$ biological replicates) without technical replicates. Statistical
510 significance was determined using Student's *t*-test assuming equal variance.

511

512 **qPCR.** RNA from epithelial cells stored in RNA/*later* were extracted using RNeasy
513 Mini kit (Qiagen) according to manufacturer instructions. Carryover DNA was
514 removed with TURBO DNA-free kit (Ambion), and cDNA generated using
515 LunaScript® RT Supermix kit (NEB). qPCR was performed using Luna® Universal
516 qPCR Master Mix (NEB) in technical triplicates with primers specific for *GAPDH*,
517 *CXCL10*, *IFNB1*, *IFNL1*, and *IFNL3* (Supplementary Table 2). Whenever possible
518 qPCR primers were designed to span exon-exon junctions. Cycling conditions are as
519 follows: 95°C for 5 mins, 40 cycles of 95°C for 15 secs and 60.5°C for 45 secs, with
520 a plate read at the end of each cycle. Data was analysed using the $2^{\Delta\Delta Ct}$ method,
521 with media only control and *GAPDH* levels for normalization. Statistical significance
522 was determined using Student's *t*-test assuming equal variance.

523

524 **HEK-Blue hTLR2 reporter assay.** HEK-Blue™ hTLR2 secreted alkaline
525 phosphatase (SEAP) reporter assays were performed according to manufacturer
526 instructions (Invivogen, hkb-htlr2). Briefly, HEK-Blue™ hTLR2 cells, *S. pneumoniae*
527 and control reagents were resuspended or diluted in pre-warmed HEK-Blue™
528 Detection medium (Invivogen). 5×10^4 HEK-Blue™ hTLR2 cells were mixed with $5 \times$
529 10^5 CFU *S. pneumoniae* (MOI 10) and incubated for 16 hours at 37°C, 5% CO₂.
530 SEAP activity was then measured spectrophotically at A₆₂₀. 100 ng/ml of Pam₂CSK₄
531 and Pam₃CSK₄ (TLR2 agonist, Bio-Techne) were used as positive controls, while
532 bacterial-free medium was used as negative control. Experiments were performed at
533 least thrice on different days ($n \geq 3$ biological replicates) with technical triplicates.

534 Statistical significance was determined using one-way ANOVA with Bonferroni's
535 multiple comparison test.

536

537 **Lipoprotein prediction using MEME suite.** Amino acid sequences of thirty-nine
538 published D39 lipoproteins were used with the motif discovery tool MEME to identify
539 pneumococcal lipoprotein motif(s) (5, 13, 22). The top two MEME results were
540 combined to obtain motif: L[LA][AS][AL]LXL[AV]AC[SG][NQS], a modified extension
541 of the minimal lipobox motif LAGC (5).

542

543 The obtained motif was used with the motif scanning tool FIMO to identify
544 lipoproteins in the genomes of *S. pneumoniae* TIGR4, BHN418 and D39, with the
545 latter used for quality control (65). Match *p*-value was set to 0.001. FIMO results
546 were further filtered with the following criteria: (i) presence of the lipidated cysteine
547 residue in the motif, (ii) presence of motif in the first 70 a.a. of the sequence, iii)
548 positive prediction as lipoprotein by SignalP-6.0 (66).

549

550 **Genomic analysis.** Presence of *palA* and its associated genetic island were
551 determined using Local-BLAST (BLASTN, TBLASTN) for the Malawian carriage
552 dataset (n=51,379) and serotype 23F strain P1121 (67). The built-in BLAST tool on
553 pubmlst.org was used for analysis of the BIGSdb dataset (49). BLASTN and
554 TBLASTN tools on the NCBI database were used to identify *palA* and PalA
555 homologues in non-pneumococcal species (67, 68). BLAST results were exported in
556 csv format and further analysed using R (v3.6.0) in RStudio
557 (<http://www.rstudio.com/>). Presence/absence of *palA* was annotated onto a Newick
558 tree showing phylogeny of the Malawian carriage strains by metabolic type and

559 visualized using iTOL (48, 69). Potential gene functions were inferred through the
560 results of BLASTP and NCBI Conserved Domain Database searches (67, 68, 70).

561

562 The BHN418 genome assembly was generated by combining long read sequencing
563 (PacBio) and short read sequencing (Illumina) methods which resulted in a single
564 contiguous chromosome of BHN418 of length 2,107,426 bp. *De novo* assembly was
565 performing using the Unicycler v0.4.8 pipeline in bold mode, quality assessed using
566 QUAST v5.1.0rc1 and annotated using Bakta v1.8.2 as described previously (71–
567 74). TIGR4 sequencing reads were aligned to the BHN418 genome using Samtools
568 v1.14 and visualised using IGV v2.16.1 (26, 68).

569

570 **TLR2 transcriptional module analysis.** TLR2-mediated transcriptional activity in
571 Detroit 562 cells infected with TIGR4 and BHN418 for 3 hours were determined
572 using published RNAseq data (2). We generated a transcriptional module reflective
573 of TLR2 activity derived from genes overexpressed in fibroblasts stimulated with
574 TLR2 agonists Pam₂CSK₄ and/or FSL-1 for 6 hours relative to unstimulated controls
575 (>1.5 fold; paired *t*-test with α of $p<0.05$ without multiple testing correction) (Gene
576 Expression Omnibus (GEO) dataset GSE92466) (Supplementary Table 1) (19).
577 Module expression was determined by calculating the geometric mean expression of
578 all constituent genes found in the analysed RNAseq dataset. Performance was
579 validated using data derived from Acute Myeloid Leukemia cells (GEO datasets
580 GSE92744) and CD14+ monocytes stimulated with Pam₃CSK₄ (GEO dataset
581 GSE78699) (Supplementary Figure 1) (75, 76).

582

583 **Murine experiments.** Outbred female CD1 mice (Charles River Laboratories) were
584 inoculated intranasally under anaesthetic (isoflurane) with 1×10^7 CFU bacteria (n=6
585 for single inoculation colonisation and pneumonia model, n=7 for competition
586 experiment). For colonisation experiments, nasal washes were performed 7 days
587 post infection using 1 ml PBS. For pneumonia model, mice were sacrificed 24 hpi
588 and bacteria recovered from the blood and homogenized lungs. CFU numbers were
589 enumerated using CBA supplemented with 4 µg/ml gentamicin, with additional 250
590 µg/ml kanamycin where appropriate. All animal procedures were approved by the
591 local ethical review process and conducted in accordance with the relevant UK
592 Home Office approved project license (PPL70/6510). Mice were housed for at least
593 one week under standard conditions before use. Randomisation or blinding was not
594 performed for these experiments. Statistical significance was determined using
595 Mann-Whitney test.

596

597 **Data availability.** BHN418 genome was deposited to NCBI with accession number
598 PRJNA1022026. TIGR4 sequencing reads were downloaded from NCBI Sequence
599 Reads Archive (accession SRX6259281), while P1121 reads were downloaded from
600 the EMBL-EBI database (accession ERS1072059) (77, 78). D39 and TIGR4 whole
601 genome assemblies were downloaded from NCBI GenBank database (accession
602 numbers CP000410.2 and AE005672.3, respectively) (79). All other genomic
603 sequences used were hosted on the PubMLST Pneumococcal Genome Library
604 (<https://pubmlst.org/organisms/streptococcus-pneumoniae/pgl>) (48, 49). RNAseq
605 data used in the TLR2 transcriptional module expression analysis were obtained
606 from the ArrayExpress database (accession E-MTAB-7841) (6).

607

608 **Table 3. Bacterial strains and plasmids used in this study.**

Designation	Genotype/ Description	Source
<u>Strains</u>		
TIGR4	WT Serotype 4 isolate	(26)
BHN418	WT Serotype 6B isolate	(16)
P1121	WT Serotype 23F isolate	(2)
ECSPN100	TIGR4 <i>lgt::cm</i>	This work
ECSPN106	TIGR4 <i>lgt::cm P_{IPTG}-lgt-erm</i> (TIGR4 <i>lgt</i> complementation)	This work
ECSPN200	BHN418 <i>lgt::cm</i>	This work
ECSPN210	BHN418] <i>lgt::cm P_{IPTG}-lgt-erm</i> (BHN418 <i>lgt</i> complementation)	This work
ECSPN211	BHN418 <i>palA::kan</i>	This work
ECSPN213	BHN418 <i>palA::kan P_{IPTG}-palA-erm</i> (BHN418 <i>palA</i> complementation)	This work
ECSPN400	P1121 <i>P_{IPTG}-palA-erm</i>	This work
ECSPN401	P1121 <i>P_{palA}-palA-kan</i>	This work
<u>Plasmids</u>		
pASR103	Complementation construct with an IPTG inducible promoter and <i>erm</i> selectable marker	(64)
pPEPY	Complementation construct with a <i>kan</i> selectable marker	(64)
pEMcat	Minitransposon plasmid; source of <i>cm^R</i> cassette	(80)
pABG5	Cloning plasmid; source of <i>kan^R</i> cassette	(81)
PEC210	TIGR4 <i>lgt</i> coding region cloned into pASR103	This work
PEC211	BHN418 <i>lgt</i> coding region cloned into pASR103	This work
PEC213	BHN418 <i>palA</i> coding region cloned into pASR103	This work
PEC213	BHN418 <i>palA</i> promoter and coding region cloned into pPEPY	This work

609

610 **ACKNOWLEDGEMENTS**

611 This study was funded by a Medical Research Council grant (MR/T016329/1)
612 awarded to RSH and JSB which supported JMC and CMW. JMC and MB were also
613 supported by funding from NIHR Global Health Research Unit on Mucosal
614 Pathogens at UCL, commissioned by the National Institute for Health Research
615 using Official Development Assistance (ODA) funding. GP is supported by funding
616 from the UCLH NIHR Biomedical Research Centre. RSH is a NIHR Senior
617 Investigator. The views expressed are those of the authors and not necessarily those
618 of the NIHR.

619

620 **REFERENCES**

621

- 622 1. Weiser JN, Ferreira DM, Paton JC. 2018. *Streptococcus pneumoniae*:
623 Transmission, colonization and invasion. *Nat Rev Microbiol* 16:355–367.
- 624 2. Weight CM, Venturini C, Pojar S, Jochems SP, Reiné J, Nikolaou E, Solórzano
625 C, Noursadeghi M, Brown JS, Ferreira DM, Heyderman RS. 2019.
626 Microinvasion by *Streptococcus pneumoniae* induces epithelial innate
627 immunity during colonisation at the human mucosal surface. *Nat Commun*
628 10:3060.
- 629 3. Jochems SP, de Ruiter K, Solórzano C, Voskamp A, Mitsi E, Nikolaou E,
630 Carniel BF, Pojar S, German EL, Reiné J, Soares-Schanoski A, Hill H,
631 Robinson R, Hyder-Wright AD, Weight CM, Durrenberger PF, Heyderman RS,
632 Gordon SB, Smits HH, Urban BC, Rylance J, Collins AM, Wilkie MD, Lazarova
633 L, Leong SC, Yazdanbakhsh M, Ferreira DM. 2019. Innate and adaptive nasal
634 mucosal immune responses following experimental human pneumococcal
635 colonization. *J Clin Invest* 129:4523–4538.
- 636 4. Trimble A, Connor V, Robinson RE, McLenaghan D, Hancock CA, Wang D,
637 Gordon SB, Ferreira DM, Wright AD, Collins AM. 2020. Pneumococcal
638 colonisation is an asymptomatic event in healthy adults using an experimental
639 human colonisation model. *PLoS One* 15:e0229558.
- 640 5. Kohler S, Voß F, Gómez Mejia A, Brown JS, Hammerschmidt S. 2016.
641 Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune
642 evasion. *FEBS Lett* 590:3820–3839.
- 643 6. Mitchell AM, Mitchell TJ. 2010. *Streptococcus pneumoniae*: Virulence factors
644 and variation. *Clin Microbiol Infect* 16:411–418.
- 645 7. Moffitt K, Howard A, Martin S, Cheung E, Herd M, Basset A, Malley R. 2015.
646 Th17-mediated protection against pneumococcal carriage by a whole-cell
647 vaccine is dependent on Toll-like receptor 2 and surface lipoproteins. *Clin*

648 Vaccine Immunol 22:909–916.

649 8. Jang A-Y, Ahn KB, Zhi Y, Ji H, Zhang J, Han SH, Guo H, Lim S, Song JY, Lim
650 JH, Seo HS. 2019. Serotype-independent protection against invasive
651 pneumococcal infections conferred by live vaccine with *lgt* deletion. Front
652 Immunol 10:1212.

653 9. Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E,
654 Stafford S, Periselneris J, Aldridge C, Vollmer W, Picard C, Casanova J-L,
655 Noursadeghi M, Brown J. 2020. TLR-mediated inflammatory responses to
656 *Streptococcus pneumoniae* are highly dependent on surface expression of
657 bacterial lipoproteins. J Immunol 193:3736–3745.

658 10. Barendt SM, Sham L, Winkler ME. 2011. Characterization of mutants deficient
659 in the L,D -Carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in
660 peptidoglycan maturation of *Streptococcus pneumoniae* serotype 2 strain D39.
661 J Bacteriol 193:2290–2300.

662 11. Russell H, Tharpe JA, Wells DE, White EH, Johnson JE. 1990. Monoclonal
663 antibody recognizing a species-specific protein from *Streptococcus*
664 *pneumoniae*. J Clin Microbiol 28:2191–2195.

665 12. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC. 1998.
666 The crystal structure of pneumococcal surface antigen PsaA reveals a metal-
667 binding site and a novel structure for a putative ABC-type binding protein. Curr
668 Biol 6:1553–1561.

669 13. Pribyl T, Moche M, Dreisbach A, Bijlsma JJE, Saleh M, Abdullah MR, Hecker
670 M, van Dijl JM, Becher D, Hammerschmidt S. 2014. Influence of impaired
671 lipoprotein biogenesis on surface and exoproteome of *Streptococcus*
672 *pneumoniae*. J Proteome Res 13:650–667.

673 14. Chimalapati S, Cohen JM, Camberlein E, MacDonald N, Durmort C, Vernet T,
674 Hermans PWM, Mitchell T, Brown JS. 2012. Effects of deletion of the
675 *Streptococcus pneumoniae* lipoprotein diacylglycerol transferase gene *lgt* on
676 ABC transporter function and on growth *in vivo*. PLoS One 7:e41393.

677 15. Aaberge IS, Eng J, Lemark G, Løvik M. 1995. Virulence of *Streptococcus*
678 *pneumoniae* in mice: a standardized method for preparation and frozen
679 storage of the experimental bacterial inoculum. Microb Pathog 18:141–152.

680 16. Browall S, Norman M, Tångrot J, Galanis I, Sjöström K, Dagerhamn J,
681 Hellberg C, Pathak A, Spadafina T, Sandgren A, Bättig P, Franzén O,
682 Andersson B, Örtqvist Å, Normark S, Henriques-Normark B. 2014. Intraclonal
683 variations among *Streptococcus pneumoniae* isolates influence the likelihood
684 of invasive disease in children. J Infect Dis 209:377–388.

685 17. Sleeman KL, Griffiths D, Shackley F, Diggle L, Gupta S, Maiden MC, Moxon
686 ER, Crook DW, Peto TEA. 2006. Capsular serotype-specific attack rates and
687 duration of carriage of *Streptococcus pneumoniae* in a population of children. J
688 Infect Dis 194:682–688.

689 18. Richard AL, Siegel SJ, Erikson J, Weiser JN. 2014. TLR2 signaling decreases
690 transmission of *Streptococcus pneumoniae* by limiting bacterial shedding in an
691 infant mouse Influenza A co-infection model. PLoS Pathog 10:e1004339.

692 19. Della Mina E, Borghesi A, Zhou H, Bougarn S, Boughorbel S, Israel L, Meloni
693 I, Chrabieh M, Ling Y, Itan Y, Renieri A, Mazzucchelli I, Basso S, Pavone P,
694 Falsaperla R, Ciccone R, Cerbo RM, Stronati M, Picard C, Zuffardi O, Abel L,
695 Chaussabel D, Marr N, Li X, Casanova J-L, Puel A. 2017. Inherited human
696 IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts. Proc Natl
697 Acad Sci 114:E514–E523.

698 20. Lee KS, Scanga CA, Bachelder EM, Chen Q, Snapper CM. 2007. TLR2
699 synergizes with both TLR4 and TLR9 for induction of the MyD88-dependent
700 splenic cytokine and chemokine response to *Streptococcus pneumoniae*. *Cell Immunol* 245:103–110.
701
702 21. Delsing MC, Hirst RA, de Vos AF, van der Poll T. 2009. Role of Toll-like
703 receptors 2 and 4 in pulmonary inflammation and injury induced by
704 pneumolysin in mice. *PLoS One* 4:e7993.
705
706 22. Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. *Nucleic
707 Acids Res* 43:W39–W49.
708
709 23. Wilkens S. 2015. Structure and mechanism of ABC transporters. *F1000Prime
710 Rep* 7:14.
711
712 24. Rosenow C, Maniar M, Trias J. 1999. Regulation of the alpha-galactosidase
713 activity in *Streptococcus pneumoniae*: Characterization of the raffinose
714 utilization system. *Genome Res* 9:1189–1197.
715
716 25. Minhas V, Harvey RM, McAllister LJ, Seemann T, Syme AE, Baines SL, Paton
717 JC, Trappetti C. 2019. Capacity to utilize raffinose dictates pneumococcal
718 disease phenotype. *MBio* 10:e02596-18.
719
720 26. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg
721 J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson
722 WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D,
723 Holtzapfel E, Khouri H, Wolf A le. M, Utterback TR, Hansen CL, McDonald LA,
724 Feldblyum T V., Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang
725 F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser
726 CM. 2001. Complete genome sequence of a virulent isolate of *Streptococcus
727 pneumoniae*. *Science* (80-) 293:498–506.
728
729 27. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idänpää-Heikkilä I,
730 Rosenow C, Masure HR. 1996. Pyruvate oxidase, as a determinant of
731 virulence in *Streptococcus pneumoniae*. *Mol Microbiol* 19:803–813.
732
733 28. Khandavilli S, Homer KA, Yuste J, Basavanna S, Mitchell T, Brown JS. 2008.
734 Maturation of *Streptococcus pneumoniae* lipoproteins by a type II signal
735 peptidase is required for ABC transporter function and full virulence. *Mol
736 Microbiol* 67:541–557.
737
738 29. Dintilhac A, Claverys J-P. 1997. The adc locus, which affects competence for
739 genetic transformation in *Streptococcus pneumoniae*, encodes an ABC
740 transporter with a putative lipoprotein homologous to a family of streptococcal
741 adhesins. *Res Microbiol* 148:119–131.
742
743 30. Loisel E, Jacquemet L, Serre L, Bauvois C, Ferrer JL, Vernet T, Di Guilmi AM,
744 Durmort C. 2008. AdcAll, a new pneumococcal Zn-binding protein homologous
745 with ABC transporters: biochemical and structural analysis. *J Mol Biol*
746 381:594–606.
747
748 31. Alloing G, de Philip P, Claverys J-P. 1994. Three highly homologous
749 membrane-bound lipoproteins participate in oligopeptide transport by the Ami
750 system of the Gram-positive *Streptococcus pneumoniae*. *J Mol Biol* 241:44–
751 58.
752
753 32. Alloing G, Trombe M, Claverys J-P. 1990. The ami locus of the Gram-positive
754 bacterium *Streptococcus pneumoniae* is similar to binding protein-dependent
755 transport operons of Gram-negative bacteria. *Mol Microbiol* 4:633–644.
756
757 33. Farshchi Andisi V, Hinojosa CA, de Jong A, Kuipers OP, Orihuela CJ, Bijlsma
758 JJE. 2011. Pneumococcal gene complex involved in resistance to extracellular
759 oxidative stress. *Infect Immun* 80:1037–1049.

748 34. Saleh M, Bartual SG, Abdullah MR, Jensch I, Asmat TM, Petruschka L, Pribyl
749 T, Gellert M, Lillig CH, Antelmann H, Hermoso JA, Hammerschmidt S. 2013.
750 Molecular architecture of *Streptococcus pneumoniae* surface thioredoxin-fold
751 lipoproteins crucial for extracellular oxidative stress resistance and
752 maintenance of virulence. *EMBO Mol Med* 5:1852–1870.

753 35. Härtel T, Klein M, Koedel U, Rohde M, Petruschka L, Hammerschmidt S.
754 2011. Impact of glutamine transporters on pneumococcal fitness under
755 infection-related conditions. *Infect Immun* 79:44–58.

756 36. Potter AJ, Trappetti C, Paton JC. 2012. *Streptococcus pneumoniae* uses
757 glutathione to defend against oxidative stress and metal ion toxicity. *J Bacteriol*
758 194:6248–6254.

759 37. Basavanna S, Khandavilli S, Yuste J, Cohen JM, Hosie AHF, Webb AJ,
760 Thomas GH, Brown JS. 2009. Screening of *Streptococcus pneumoniae* ABC
761 transporter mutants demonstrates that LivJHMGF, a branched-chain amino
762 acid ABC transporter, is necessary for disease pathogenesis. *Infect Immun*
763 77:3412–3423.

764 38. Weinrauch Y, Lacks SA. 1981. Nonsense mutations in the amylosemaltase gene
765 and other loci in *Streptococcus pneumoniae*. *Mol Gen Genet* 183:7–12.

766 39. Basavanna S, Chimalapati S, Maqbool A, Rubbo B, Yuste J, Wilson RJ, Hosie
767 A, Ogunniyi AD, Paton JC, Thomas G, Brown JS. 2013. The effects of
768 methionine acquisition and synthesis on *Streptococcus pneumoniae* growth
769 and virulence. *PLoS One* 8:e49638.

770 40. Adamou JE, Heinrichs JH, Erwin AL, Walsh W, Gayle T, Dormitzer M, Dagan
771 R, Brewah YA, Barren P, Lathigra R, Langermann S, Koenig S, Johnson S.
772 2001. Identification and characterization of a novel family of pneumococcal
773 proteins that are protective against sepsis. *Infect Immun* 69:949–958.

774 41. Brown JS, Gilliland SM, Holden DW. 2001. A *Streptococcus pneumoniae*
775 pathogenicity island encoding an ABC transporter involved in iron uptake and
776 virulence. *Mol Microbiol* 40:572–585.

777 42. Brown JS, Gilliland SM, Ruiz-Albert J, Holden DW. 2002. Characterization of
778 Pit, a *Streptococcus pneumoniae* iron uptake ABC transporter. *Infect Immun*
779 70:4389–4398.

780 43. Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti
781 C, Oggioni MR. 2012. A functional genomics approach to establish the
782 complement of carbohydrate transporters in *Streptococcus pneumoniae*. *PLoS*
783 One 7:e33320.

784 44. Saxena S, Khan N, Dehinwal R, Kumar A, Sehgal D. 2015. Conserved surface
785 accessible nucleoside ABC transporter component SP0845 is essential for
786 pneumococcal virulence and confers protection *in vivo*. *PLoS One*
787 10:e0118154.

788 45. Cron LE, Bootsma HJ, Noske N, Burghout P, Hammerschmidt S, Hermans
789 PWM. 2009. Surface-associated lipoprotein PpmA of *Streptococcus*
790 *pneumoniae* is involved in colonization in a strain-specific manner.
791 *Microbiology* 155:2401–2410.

792 46. Orihuela CJ, Mills J, Robb CW, Wilson CJ, Watson DA, Niesel DW. 2001.
793 *Streptococcus pneumoniae* PstS production is phosphate responsive and
794 enhanced during growth in the murine peritoneal cavity. *Infect Immun*
795 69:7565–7571.

796 47. Hermans PWM, Adrian P V, Albert C, Estevão S, Hoogenboezem T, Luijendijk
797 IHT, Kamphausen T, Hammerschmidt S. 2006. The Streptococcal Lipoprotein

798 Rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in
799 pneumococcal colonization. *J Biol Chem* 281:968–976.

800 48. Gori A, Obolski U, Swarthout TD, Lourenço J, Weight CM, Cornick J,
801 Kamng’ona A, Mwalukomo TS, Msefula J, Brown C, Maiden MC, French N,
802 Gupta S, Heyderman RS. 2021. The metabolic, virulence and antimicrobial
803 resistance profiles of colonizing *Streptococcus pneumoniae* shift
804 after pneumococcal vaccine introduction in urban Malawi. *medRxiv*
805 2021.07.21.21260914.

806 49. Jolley KA, Maiden MCJ. 2010. BIGSdb: Scalable analysis of bacterial genome
807 variation at the population level. *BMC Bioinformatics* 11:595.

808 50. Petit CM, Brown JR, Ingraham K, Bryant AP, Holmes DJ. 2001. Lipid
809 modification of prelipoproteins is dispensable for growth *in vitro* but essential
810 for virulence in *Streptococcus pneumoniae*. *FEMS Microbiol Lett* 200:229–233.

811 51. Joyce EA, Popper SJ, Falkow S. 2009. *Streptococcus pneumoniae*
812 nasopharyngeal colonization induces type I interferons and interferon-induced
813 gene expression. *BMC Genomics* 10:404.

814 52. Skovbjerg S, Nordén R, Martner A, Samuelsson E, Hynsö L, Wold AE. 2017.
815 Intact pneumococci trigger transcription of interferon-related genes in human
816 monocytes, while fragmented, autolyzed bacteria subvert this response. *Infect*
817 *Immun* 85:e00960-16.

818 53. Parker D, Martin FJ, Soong G, Harfenist BS, Aguilar JL, Ratner AJ, Fitzgerald
819 KA, Schindler C, Prince A. 2011. *Streptococcus pneumoniae* DNA initiates
820 type I interferon signaling in the respiratory tract. *MBio* 2:e00016-11.

821 54. D’Mello A, Riegler AN, Martínez E, Beno SM, Ricketts TD, Foxman EF,
822 Orihuela CJ, Tettelin H. 2020. An *in vivo* atlas of host–pathogen
823 transcriptomes during *Streptococcus pneumoniae* colonization and disease.
824 *Proc Natl Acad Sci U S A* 117:33507–33518.

825 55. Koppe U, Högner K, Doehn J-M, Müller HC, Witzenrath M, Gutbier B, Bauer S,
826 Pribyl T, Hammerschmidt S, Lohmeyer J, Suttorp N, Herold S, Opitz B. 2012.
827 *Streptococcus pneumoniae* stimulate a STING- and IFN regulatory factor 3-
828 dependent type I IFN production in macrophages, which regulates RANTES
829 production in macrophages, cocultured alveolar epithelial cells, and mouse
830 lungs. *J Immunol* 188:811–817.

831 56. Ruiz-Moreno JS, Hamann L, Jin L, Sander LE, Puzianowska-Kuznicka M,
832 Cambier J, Witzenrath M, Schumann RR, Suttorp N, Opitz B, Group CS. 2018.
833 The cGAS/STING pathway detects *Streptococcus pneumoniae* but appears
834 dispensable for antipneumococcal defense in mice and humans. *Infect Immun*
835 86:e00849-17.

836 57. LeMessurier KS, Häcker H, Chi L, Tuomanen E, Redecke V. 2013. Type I
837 interferon protects against pneumococcal invasive disease by inhibiting
838 bacterial transmigration across the lung. *PLoS Pathog* 9:e1003727.

839 58. Zangari T, Ortigoza MB, Lokken-Toyli KL, Weiser JN. 2021. Type I interferon
840 signaling is a common factor driving *Streptococcus pneumoniae* and Influenza
841 A virus shedding and transmission. *MBio* 12:e03589-20.

842 59. Anderton JM, Rajam G, Romero-Steiner S, Summer S, Kowalczyk AP,
843 Carbone GM, Sampson JS, Ades EW. 2007. E-cadherin is a receptor for the
844 common protein pneumococcal surface adhesin A (PsaA) of *Streptococcus*
845 *pneumoniae*. *Microb Pathog* 42:225–236.

846 60. Abdullah MR, Gutiérrez-Fernández J, Pribyl T, Gisch N, Saleh M, Rohde M,
847 Petruschka L, Burchhardt G, Schwudke D, Hermoso JA, Hammerschmidt S.

848 2014. Structure of the pneumococcal L,D-carboxypeptidase DacB and
849 pathophysiological effects of disabled cell wall hydrolases DacA and DacB.
850 Mol Microbiol 93:1183–1206.

851 61. Smithers L, Olatunji S, Caffrey M. 2021. Bacterial Lipoprotein Posttranslational
852 Modifications. New Insights and Opportunities for Antibiotic and Vaccine
853 Development. Front Microbiol 12:788445.

854 62. Nguyen MT, Matsuo M, Niemann S, Herrmann M, Götz F. 2020. Lipoproteins
855 in Gram-Positive Bacteria: Abundance, Function, Fitness. Front Microbiol
856 11:582582.

857 63. Zhu L, Lau GW. 2011. Inhibition of competence development, horizontal gene
858 transfer and virulence in *Streptococcus pneumoniae* by a modified
859 competence stimulating peptide. PLoS Pathog 7:e1002241.

860 64. Keller LE, Robinson DA, McDaniel LS. 2016. Nonencapsulated *Streptococcus*
861 *pneumoniae*: Emergence and pathogenesis. MBio 7:e01792-15.

862 65. Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a
863 given motif. Bioinformatics 27:1017–1018.

864 66. Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI,
865 Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H. 2022. SignalP 6.0
866 predicts all five types of signal peptides using protein language models. Nat
867 Biotechnol 40:1023–1025.

868 67. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
869 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
870 search programs. Nucleic Acids Res 25:3389–3402.

871 68. Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin. V,
872 Church DM, Dicuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg
873 W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V,
874 Mizrahi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway
875 M, Sirotnik K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko
876 E, Ye J. 2009. Database resources of the National Center for Biotechnology
877 Information. Nucleic Acids Res 37:5–15.

878 69. Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: An online tool for
879 phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296.

880 70. Machler-Bauer A, Bo Y, Han L, He J, Lanczycki C, Lu S, Chitsaz F, Derbyshire
881 M, Geer R, Gonzales N, Gwadz M, Hurwitz D, Lu F, Machler G, Song J,
882 Thanki N, Wang Z, Yamashita R, Zhang D, Zheng C, Geer L, Bryant S. 2017.
883 CDD/SPARCLE: functional classification of proteins via subfamily domain
884 architectures. Nucleic Acids Res 45:D200–D203.

885 71. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial
886 genome assemblies from short and long sequencing reads. PLOS Comput Biol
887 13:e1005595.

888 72. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality
889 assessment tool for genome assemblies. Bioinformatics 29:1072–1075.

890 73. Betts M, Jarvis S, Jeffries A, Gori A, Chaguza C, Msefula J, Weight CM,
891 Kwambana-Adams B, French N, Swarthout TD, Brown JS, Heyderman RS.
892 2021. Complete Genome Sequence of *Streptococcus pneumoniae* Strain
893 BVJ1JL, a Serotype 1 Carriage Isolate from Malawi. Microbiol Resour
894 Announc 10:10.1128/mra.00715-21.

895 74. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A.
896 2021. Bakta: Rapid and standardized annotation of bacterial genomes via
897 alignment-free sequence identification. Microb Genomics 7:000685.

898 75. Lachmandas E, Boutens L, Ratter JM, Hijmans A, Hooiveld GJ, Joosten LAB,
899 Rodenburg RJ, Fransen JAM, Houtkooper RH, van Crevel R, Netea MG,
900 Stienstra R. 2016. Microbial stimulation of different Toll-like receptor signalling
901 pathways induces diverse metabolic programmes in human monocytes. *Nat
902 Microbiol* 2:16246.

903 76. Eriksson M, Peña-Martínez P, Ramakrishnan R, Chapellier M, Höglberg C,
904 Glowacki G, Orsmark-Pietras C, Velasco-Hernández T, Lazarević VL,
905 Juliusson G, Cammenga J, Mulloy JC, Richter J, Fioretos T, Ebert BL, Järås
906 M. 2017. Agonistic targeting of TLR1/TLR2 induces p38 MAPK-dependent
907 apoptosis and NFκB-dependent differentiation of AML cells. *Blood Adv*
908 1:2046–2057.

909 77. Tettelin H, Masianni V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli
910 S V, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M,
911 Scarselli M, Ros IM y, Peterson JD, Hauser CR, Sundaram JP, Nelson WC,
912 Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC,
913 Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D,
914 Dimitrov G, Watkins K, O'Connor KJB, Smith S, Utterback TR, White O,
915 Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR,
916 Rappuoli R, Fraser CM. 2005. Genome analysis of multiple pathogenic
917 isolates of *Streptococcus agalactiae*: Implications for the microbial “pan-
918 genome.” *Proc Natl Acad Sci U S A* 102:13950–13955.

919 78. Pojar S, Basset A, Gritzfeld JF, Nikolaou E, Selm S van, Eleveld MJ,
920 Gladstone RA, Solórzano C, Dalia AB, German E, Mitsi E, Connor V, Hyder-
921 Wright AD, Hill H, Hales C, Chen T, Camilli A, Collins AM, Rylance J, Bentley
922 SD, Jochems SP, Jonge MI de, Weiser JN, Cleary DW, Clarke S, Malley R,
923 Gordon SB, Ferreira DM. 2020. Isolate differences in colonization efficiency
924 during experimental human pneumococcal challenge. *medRxiv*
925 2020.04.20.20066399.

926 79. Lanie JA, Ng W-L, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne
927 KJ, Hervé T, Glass JI, Winkler ME. 2007. Genome Sequence of Avery’s
928 Virulent Serotype 2 Strain D39 of *Streptococcus pneumoniae* and Comparison
929 with That of Unencapsulated Laboratory Strain R6. *J Bacteriol* 189:38–51.

930 80. Moscoso M, García E, López R. 2006. Biofilm formation by *Streptococcus*
931 *pneumoniae*: Role of choline, extracellular DNA, and capsular polysaccharide
932 in microbial accretion. *J Bacteriol* 188:7785–7795.

933 81. Granok AB, Parsonage D, Ross RP, Caparon MG. 2000. The RofA binding
934 site in *Streptococcus pyogenes* is utilized in multiple transcriptional pathways.
935 *J Bacteriol* 182:1529–1540.

936 82. Ramos I, Smith G, Ruf-Zamojski F, Martínez-Romero C, Fribourg M, Carbajal
937 EA, Hartmann BM, Nair VD, Marjanovic N, Monteagudo PL, DeJesus VA,
938 Mutetwa T, Zamojski M, Tan GS, Jayaprakash C, Zaslavsky E, Albrecht RA,
939 Sealfon SC, García-Sastre A, Fernandez-Sesma A. 2019. Innate Immune
940 Response to Influenza Virus at Single-Cell Resolution in Human Epithelial
941 Cells Revealed Paracrine Induction of Interferon Lambda 1. *J Virol*
942 93:10.1128/jvi.00559-19.

943