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Abstract 

Our ability to navigate in a new environment depends on learning new locations. Mental 

representations of locations are quickly accessible during navigation and allow us to know where we 

are regardless of our current viewpoint. Recent fMRI research has shown that these location-based 

representations emerge in the retrosplenial cortex and parahippocampal gyrus, regions theorised to 

be critically involved in spatial navigation. However, little is currently known about the oscillatory 

dynamics that support the formation of location-based representations. We used MEG to investigate 

region-specific oscillatory activity related to forming location-based representations. Participants 

viewed videos showing that two perceptually distinct scenes (180° apart) belonged to the same 

location. This “overlap” video allowed participants to bind the two distinct scenes together into a more 

coherent location-based representation. Participants also viewed control “non-overlap” videos where 

two distinct scenes from two different locations were shown, where no location-based representation 

could be formed. In a post-video behavioural task, participants successfully matched the two 

viewpoints shown in the overlap videos, but not the non-overlap videos, indicating they successfully 

learned the locations in the overlap condition. Comparing oscillatory activity between the overlap and 

non-overlap videos, we found greater theta and alpha/beta power during the overlap relative to non-

overlap videos, specifically at time-points when we expected scene integration to occur. These 

oscillations localised to regions in the medial parietal cortex (precuneus and retrosplenial cortex) and 

the medial temporal lobe, including the hippocampus. Therefore, we find that theta and alpha/beta 

oscillations in the hippocampus and medial parietal cortex are involved in the formation of location-

based representations. 
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Our ability to navigate in a new environment relies on learning its spatial layout by forming location-

based representations. Location-based representations allow us to locate ourselves in space 

irrespective of the current heading direction and are thought to be formed by binding distinct 

viewpoints of a single location into a more coherent viewpoint-independent representation. Recent 

research using fMRI has found that specific regions within a spatial navigation network support 

location-based representations (Baumann & Mattingley, 2021; Marchette et al., 2014; Robertson et 

al., 2016; Vass & Epstein, 2013). In particular, these representations can emerge in medial temporal 

and medial parietal regions following a single learning session (Berens et al., 2021). Despite evidence 

for the emergence of location-based representations, we know less about their formation. Specifically, 

we do not know the oscillatory dynamics that support their formation. Despite the known role of theta 

and alpha/beta oscillations in memory and spatial navigation (Buzsáki & Moser, 2013; Hanslmayr et 

al., 2016; Nyhus & Curran, 2010; Parish et al., 2018), they have yet to be specifically related to the 

formation of location-based representations in humans. As such, we assessed the role of region-

specific oscillatory dynamics during the learning of location-based representations.  

 Spatial navigation is supported by a network of brain regions, including the medial temporal 

lobes (and hippocampus) and medial parietal regions (Baumann & Mattingley, 2021; Bicanski & 

Burgess, 2018; Epstein, 2008; Epstein & Baker, 2019). In the medial temporal lobes, a wide range of 

neurons have been found in rodents that respond to specific features of the spatial environment during 

navigation. The archetypal spatial neuron in the hippocampus is the place cell, a neuron that fires when 

the animal is in a specific location, irrespective of the heading direction of the animal (O’Keefe & 

Dostrovsky, 1971). Thus, place cells are an example of a location-based viewpoint-independent 

representation in the hippocampus. Other neurons that respond to the animal’s heading direction 

(Taube et al., 1990), proximity to spatial boundaries (boundary vector cells; (Lever et al., 2009; O’Keefe 

& Burgess, 1996; Solstad et al., 2008), and to multiple locations in a regular hexagonal pattern (grid 

cells; Hafting et al., 2005), as well as other spatially-tuned neurons, have also been shown (see e.g., 

Hartley et al., 2014 for a review). This range of spatially tuned neurons in the medial temporal lobes is 

thought to support a ‘cognitive map’ of the environment, allowing the organism to effectively navigate 

in a flexible manner (O’Keefe & Nadel, 1978). Computational models propose that the allocentric 

representations in the medial temporal lobe are translated into more egocentric navigationally-

relevant representations in the parietal lobes, and precuneus in particular, with the retrosplenial cortex 

acting as a key region in this translation process (Alexander et al., 2023; Bicanski & Burgess, 2018). 

Thus, the learning of location-based representations is likely to involve both parietal and medial 

temporal regions, translating more egocentric ‘viewpoints’ into more coherent location-based 

representations.  

Location-based representations have also been observed in the wider spatial navigation 

network. Using fMRI representational similarity analysis (RSA), representations for known real-world 

locations have been shown in the parahippocampal gyrus and retrosplenial cortex (Marchette et al., 

2014; Steel et al., 2023; Vass & Epstein, 2013). Two recent studies used a novel paradigm to study the 

formation of these location-based representations using panoramic 2D images of real-world locations 

(Berens et al., 2021; Robertson et al., 2016). The panorama was cropped to derive scenes that were 

180° apart, resulting in two viewpoints of the same location that were perceptually distinct, such that 

a naïve viewer would not be able to determine if they were from the same location or from two 

different locations. Participants watched videos panning across the whole panorama, providing an 

opportunity for the participants to sample shared information between the viewpoints (overlap 
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videos) and integrate them to form a coherent location-based representation of that panorama. In 

Berens et al. (2021) participants also watched videos that panned between two viewpoints from 

different locations (non-overlap videos), where they were not able to form a location-based 

representation. Participants were able to behaviourally match endpoints in the overlap condition, 

importantly only after watching the videos, but they were unable to match endpoints in the non-

overlap condition. Using this manipulation, they found neural evidence of location-learning in the 

parahippocampal and retrosplenial cortex. Multivariate patterns of BOLD activity related to viewing 

two viewpoints from the same location were more similar after, relative to before, watching the 

overlap videos (no increase in similarity was seen for viewpoints presented in non-overlap videos).  

Berens et al. (2021) also assessed univariate BOLD differences between the overlap and non-

overlap conditions during the video watching period. This revealed a significantly greater BOLD 

response to the overlap relative to the non-overlap condition in medial prefrontal regions, and reduced 

activity in the overlap relative to the non-overlap condition in parahippocampal and retrosplenial 

cortex (https://neurovault.org/images/115016/). These results are somewhat difficult to interpret, 

and do not provide satisfactory insight into the neural processes involved in the formation of location-

based representations. In particular, given the key role that oscillatory dynamics play in both memory 

and spatial navigation (Buzsáki, 2002; Buzsáki & Moser, 2013), they do not provide any information 

about the region-specific oscillations that support the formation of location-based representations.  

Both theta (4-8Hz) and alpha/beta (8-20Hz) oscillations have been broadly implicated in spatial 

navigation and memory (Buzsáki & Moser, 2013). Theta oscillations are theorised to facilitate long-

range communication between the hippocampus and neocortex via the striatum and septal nuclei 

(Arnulfo et al., 2015; Bzymek & Kloosterman, 2023; Gloveli et al., 2005; Hangya et al., 2009; Nyhus & 

Curran, 2010) in the service of navigation and memory. Neurons in the rodent hippocampus fire in 

theta frequencies during translational movement (Vanderwolf, 1969) and hippocampal place cells fire 

at different phases of the theta oscillation, known as theta phase precession (Skaggs et al., 1996). 

Hippocampal theta phase is also considered important for encoding and retrieval states of episodic 

memory (Hasselmo et al., 2002). Disrupting the theta rhythm in the rodent hippocampus was found 

to cause poor performance in spatial memory tasks, while reviving hippocampal theta improved 

performance (McNaughton et al., 2006). Therefore, there is causal evidence that rodent hippocampal 

theta oscillations are critical for spatial navigation and memory.  

In humans, both invasive (iEEG/ECoG) and non-invasive (EEG/MEG) measurements of 

electrophysiological activity have implicated the theta rhythm in episodic memory and spatial 

navigation (Herweg et al., 2020; Nyhus & Curran, 2010). Specifically, changes in theta oscillatory power 

have been observed on the scalp during learning of specific items (words/pictures/scenes; Fellner et 

al., 2013, 2019; Guderian et al., 2009; Hanslmayr et al., 2009, 2011; Khader et al., 2010; Osipova et al., 

2006), lists of items (Fellner et al., 2016; Griffiths et al., 2016; Meeuwissen et al., 2011; Sederberg et 

al., 2006), and during associative learning (Backus et al., 2016; Caplan & Glaholt, 2007; Crespo-García 

et al., 2016; Griffiths et al., 2016; Joensen et al., 2023; Staudigl & Hanslmayr, 2013; Summerfield & 

Mangels, 2005). Theta power changes have also been found when participants learn spatial layouts as 

they combine sensory input in new environments compared to when they freely explore a new spatial 

layout in the absence of an overt task (Chrastil et al., 2022; Du et al., 2023; Kaplan et al., 2012; Pu et 

al., 2017). Therefore, a large body of evidence indicates that theta power changes observed on the 

scalp are important for both non-spatial (episodic) and spatial memory formation. 
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Theta power changes during memory encoding often localise to the medial temporal lobes 

(among other structures), including the hippocampus and parahippocampal regions (Backus et al., 

2016; Crespo-García et al., 2016; Fellner et al., 2016, 2019; Griffiths et al., 2016; Hanslmayr et al., 2011; 

Staudigl & Hanslmayr, 2013). Note, this theta effect is likely distinct from frontal mid-line theta, found 

during cognitive control and working memory tasks, which typically localises to medial prefrontal 

regions (Chrastil et al., 2022; Du et al., 2023; Summerfield & Mangels, 2005; Zuure et al., 2020). Thus, 

a large body of evidence exists for the role of theta in forming associations between information in 

both spatial and non-spatial contexts. We therefore predicted that theta rhythms would be implicated 

in the formation of location-based representations that involves associating different viewpoints from 

the same location.  

Oscillations at alpha and low beta frequencies (~8-20Hz) are also implicated in memory 

formation and are found in posterior sites that localise to parieto-occipital regions when 

scenes/objects are encoded (Jensen & Mazaheri, 2010). Changes in alpha/beta oscillatory power are 

often thought to reflect functional inhibition, where increases in alpha power are observed in task-

irrelevant brain regions, and are thought to reflect inhibition of these regions, and decreases in alpha 

power are found in task-relevant regions, and are thought to reflect release from inhibition. The 

oscillatory sync/de-sync model of memory formation (Hanslmayr et al., 2016; Parish et al., 2018) 

argues that stimulus-specific information is represented by reductions in alpha/beta power in the 

neocortex, such as visual information represented in parieto-occipital regions (Griffiths et al., 2019; 

Jensen & Mazaheri, 2010; Klimesch, 2012). This stimulus information then travels to the hippocampus, 

where hippocampal theta power increases allow for mnemonic information to be integrated into a 

coherent memory trace via long-term potentiation. More recently, alpha oscillations have also been 

associated with micro-saccades and gaze towards to-be-encoded stimuli indicating that changes in 

alpha/beta power, especially in the visual cortex, could also be involved in memory formation (Popov 

& Staudigl, 2023; Staudigl et al., 2017). Therefore, there are theoretical and computational models 

backed by empirical evidence that indicate changes in theta and alpha/beta oscillations (~4-30Hz) are 

involved in associative memory formation.  

Despite the wealth of data implicating theta and alpha/beta in spatial navigation and memory, 

no study to date has focussed on these oscillations specifically during the formation of location-based 

representations. Further, no study has attempted to source-localise the oscillations supporting the 

formation of location-based representations. We therefore used MEG to measure electrophysiological 

activity related to the formation of location-based representations because it is temporally precise and 

provides a direct measure of changes in neural oscillations. Further, we aimed to estimate neural 

activity arising from the hippocampus and medial parietal structures, which are traditionally 

considered to be challenging to record from because of the depth of these regions relative to the scalp, 

and because the complex gyri folds in these regions could cancel out any signals before they emerge 

at the scalp (Pu et al., 2018). Although these problems do exist, mounting evidence indicates that 

hippocampal activity can be localised using advanced beamforming algorithms, especially with MEG 

data (Guitart-Masip et al., 2013; Korczyn et al., 2013; Pizzo et al., 2019; Pu et al., 2018; Ruzich et al., 

2019). Therefore, using beamformers on MEG data, we predicted changes in theta (4-8Hz) (and 

potentially higher frequency alpha/beta (8-30Hz)) oscillatory activity from the hippocampus and 

medial parietal structures during the formation of location-based representations.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.562859doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562859
http://creativecommons.org/licenses/by/4.0/


NEURAL OSCILLATIONS AND LOCATION-BASED REPRESENTATIONS 
  

6 
 

To test this, we adapted Berens et al.’s (2021) paradigm for MEG. Participants watched the 

overlap and non-overlap videos while we recorded neural activity. We tracked the formation of 

location-based representations behaviourally by assessing their ability to match viewpoints from the 

same location before and after watching the videos. We predicted that neural oscillatory power in the 

theta band would be greater when participants watched overlap videos, when location-based 

representations can be formed (Berens et al., 2021; Robertson et al., 2016), compared to non-overlap 

videos, when location-based representations cannot be formed. Given evidence for alpha/beta 

oscillations in memory (Hanslmayr et al., 2016; Parish et al., 2018), we also assessed power in 

frequency bands other than theta in a more exploratory manner. We also attempted to find evidence 

for the successful formation of location-based representations by comparing neural activity at 

encoding (watching overlap videos) based on whether they were subsequently remembered vs. 

forgotten (subsequent memory effect). This subsequent memory effect is often characterised by 

changes in hippocampal theta oscillations (Hanslmayr et al., 2016; Joensen et al., 2023; Parish et al., 

2018; Voss et al., 2017), although the specific direction (increase or decrease) of change is dependent 

on several factors (Herweg et al., 2020). Thus, we predicted hippocampal theta power changes while 

participants watched overlap videos that were subsequently remembered compared to forgotten.  

Methods 

Participants 

Thirty-eight University of York students aged 18 to 34 years (M = 23.33 years, SD = 4.24, 32 females) 

participated in this study in exchange for course credits or £20. All participants indicated that they 

were right-handed, had normal or corrected-to-normal vision, had no prior or existing neurological or 

psychological illnesses, and were not on any psycho-active drugs. A total of eight participants were 

excluded due to issues during MEG acquisition (3), and extremely noisy MEG recordings (5). The final 

sample size was 30. Ethics approval was granted by the York Neuroimaging Centre’s (YNiC) ethics 

committee. Informed consent was obtained from all individual participants included in the study. 

Participants consented for anonymised data to be available on online repositories and to be published 

in peer-reviewed journals. 

Stimuli and Design 

Our experimental paradigm was based on Berens et al., (2021). The stimuli were created from twelve 

panoramic images of locations in different UK cities. Each panorama spanned a 210° horizontal field-

of-view. The two endpoints of each panorama were extracted and displayed 30° of extreme ends of 

the panoramas.  As such, naïve participants would not be able to accurately match two endpoints from 

the same location (see Berens et al., 2021). These endpoints were used in the endpoint-matching tasks 

conducted both before and after a learning task. See Figure 1.A-B for an illustration of the stimuli used 

in the study.  

In the learning task, participants viewed videos panning from one endpoint to the midpoint of 

a panorama, then switching to another endpoint and panning to the midpoint. In the overlap 

condition, participants viewed camera pans of the same panoramic scene, whereas in the non-overlap 

condition, participants viewed camera pans from two different panoramas. For instance, in the overlap 

condition, the left-to-centre sweep would be from the left endpoint of a location panorama and the 

right-to-centre sweep would be from the right endpoint from the same panorama. Therefore, there 

was clear visual overlap between both sweeps and participants could infer that the two endpoints 

belonged to the same location. However, in the non-overlap condition, the left-to-centre sweep would 
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be from the left endpoint from one location and the right-to-centre sweep would be from a different 

location. Therefore, there was no visual overlap in non-overlap videos and participants could not infer 

which location the two endpoints belonged to - they could only infer that the two endpoints did not 

belong to the same location. The overlap condition was our key manipulation, where participants could 

form more coherent location-based representations. Non-overlap videos were the control condition, 

where participants could form associations between the two endpoints but critically were not able to 

form a more coherent location-based representation.  

 

Figure 1. Stimuli used in the experiment and results from the behavioural tasks. Panels A-C are adapted from 

Berens et al., (2021). (A) An example panorama of a location with the two endpoint images marked with 

dotted lines. The whole panorama was never shown to the participants, like previous experiments (Berens et 

al., 2021; Robertson et al., 2016). (B) Videos participants watched in the MEG scanner. Both overlap and non-

overlap videos panned from one endpoint to the centre, then switched to the other endpoint and panned to 

the centre. The central region is from the same panorama in overlap videos, but from different panoramas in 

non-overlap videos. Overlap videos therefore allowed for the formation of location-based representations. 

(C) Example trial in the endpoint-matching task. The target image was bordered in red and followed by 

presentation of 5 lures. Participants chose which lure belonged to the same location as the target. (D) 

Endpoint-matching accuracy compared between pre- and post-video endpoint-matching tasks grouped by 

video condition. Scatter dots reflect data from individual participants. Error bars represent 95% confidence 

intervals. Chance level for 5-AFC is 20%, represented by a dashed line.  
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Eight panoramic scenes (from a total of 12) were used in the videos: Four in the overlap and 

four in the non-overlap condition. Endpoints from the other four panoramas were unseen in the video 

task but were used as behavioural controls in the pre- and post-learning tasks. The assignment of 

endpoints to each condition was fully counterbalanced. The starting location of the video pan (left or 

right endpoint of the panorama) was counterbalanced both across and within participants using the 

following rules: The 12 panoramic images were divided into 4 factions (sets) that had 3 panoramas (A, 

B, C) and 6 sets of endpoints (A1, A2, B1, B2, C1, C2) in each faction. The 6 endpoints were matched in 

the video-watching task such that A1-A2 were in the overlap videos, and belonged to the same 

panorama, B1-C2 were in the non-overlap videos, and C1 and B2 were unseen in the video-watching 

task (for one of the counterbalancing sets). 

Both end-to-centre pans were repeated twice in each video to ensure that the visual overlap 

was easily detectable, in line with Berens et al., (2021). Each end-to-centre pan lasted for 5s: The 

endpoint was shown for 1s, the pan from the endpoint to the centre took 3s, and the midpoint was 

shown for 1s. Each video had four pans. Half followed this structure: The first pan was from left-to-

centre, the second was from right-to-centre, third was again from left-to-centre, and the final sweep 

from right-to-centre. The other half of the videos started with a right-to-centre pan.  

Procedure 

We adapted Berens et al.’s (2021) experimental paradigm for MEG data acquisition. Similar to Berens 

et al. (2021), participants first completed a behavioural task that assessed their ability to match 

endpoints from the same location (outside the MEG scanner). Then, participants entered the MEG 

scanner, where they were presented with each endpoint before and after the learning phase (oddball 

detection task). In the learning phase they watched the overlap and non-overlap videos (video-

watching learning task). Outside the MEG scanner, participants then completed the same endpoint 

matching task they completed before entering the scanner, to assess learning.  

Behavioural pre- and post-scanner tasks  

This task was conducted both pre- and post- video-watching to assess if participants were able to 

accurately match two endpoints from the same location after (but not before) watching the panoramic 

videos. On each trial, participants first viewed one endpoint for 3s that was surrounded by a red box. 

Then, five other endpoints were sequentially presented with a number alongside (i.e., 1-5; 2s per 

endpoint; 500ms ISI). Out of the five images, one image was from the same location as the cue (red 

bordered endpoint), and the other four endpoints were from different locations, but from the same 

counterbalancing set (faction). The presentation order of the five endpoints was random. Participants 

had to indicate the endpoint that belonged to the same location as the cue (red bordered endpoint) 

via button press. See Figure 1.C for an illustration of this task. 

A secondary endpoint-matching task was conducted after the post-scanning task described 

above. The trial structure was identical, but the instructions were different. Participants were asked to 

match endpoints that were shown in the same video, rather than match endpoints from the same 

location (as they did in the previous task). Unseen endpoints were not presented in this task as targets 

but were presented as foils. Only endpoints that belonged to overlap and non-overlap videos were 

presented as cues in this task. Note that this is different because participants could still match 

endpoints from non-overlap videos in this task as they appeared in the same video but would still not 

know which endpoints belong to those respective locations.  

Oddball detection task 
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Participants completed an oddball detection task where they viewed presentations of endpoints in the 

scanner both before and after the video-watching learning task. On one trial, a fixation cross appeared 

for a jittered duration centred on 2s (2.25s to 1.75s), followed by a scene that lasted for 3s. Eight blocks 

of 24 endpoints were presented and the order of endpoint-presentation was pseudo-randomised both 

within and across blocks. Therefore, each endpoint was presented 8 times. Three trials were randomly 

chosen in each block to be oddball trials. Participants pressed a button to indicate that they saw an 

oddball image. The oddball stimulus was an endpoint with three small red dots (3-pixel radius) 

superimposed in random locations on the image.   

This task was used to run multivariate pattern analyses to identify representations of individual 

endpoints. However, we were not able to identify patterns for individual scenes reliably, and as such 

were not able to perform analyses to assess changes in patterns as a function of learning (as in Berens 

et al., 2021). We report these analyses in the Supporting Information for completeness.  

Video-watching learning task 

The video-watching task was our main task of interest, as we were interested in the oscillations that 

underpinned learning of location-based representations. We collected MEG recordings as participants 

viewed the overlap and non-overlap videos. On one trial, a fixation cross first appeared for 2s (jittered 

between 1.75s to 2.25s), followed by a video that lasted 20s. After a 2s interval, participants were 

asked to indicate whether the videos were from the same location or from different locations to ensure 

that they were paying attention to the visual overlap across segments. Participants used the left/right 

keys on a response box to make these decisions and had 3s to respond. Then, a 2s inter-trial-interval 

was followed by the next trial. Importantly, participants were asked to only respond when the text 

appeared on the screen asking for a response, to avoid motor-related neural activity during video-

watching. Each video was repeated three times across the task. Each video was presented a single time 

within 3 blocks, with presentation order randomised in each block.  

MEG data acquisition and processing  

We measured neural activity with a 4D Neuroimaging Magnes 3600 whole-head 248-sensor 

magnetometer-based MEG. Four sensors were permanently offline, so we acquired data from 244 

sensors for all participants at a 1000Hz sampling rate. Participants’ head-shape for source-localisation 

was attained using a Polhemus Fastrak Digitisation System. MEG data were pre-processed and analysed 

using a combination of the FieldTrip toolbox (Oostenveld et al., 2011) and self-written MATLAB code. 

Raw MEG recordings were first band-pass filtered between 0.1Hz and 70Hz using two-pass 

butterworth filters. Notch filters were applied at 50Hz (UK mains frequency) and 60Hz (projector 

refresh rate). Further details of analyses and results of the oddball detection task are detailed in the 

Supporting Information. We focus on the video-watching task as we were primarily interested in neural 

oscillations during learning. Further, no reliable multivariate patterns were found in the oddball 

detection task. 

The filtered continuous data from the video-watching task were segmented into epochs of 24s, 

from -2s pre- to +20s post-stimulus onset. Trial-by-trial information about stimulus type and participant 

responses was then added to the FieldTrip data structure. Noisy epochs were rejected by visual 

inspection: As a first pass, experimenters looked for any specifically noisy trials including scanner 

drifts/jumps and extreme movements. Remaining epochs were concatenated and submitted to an 

Independent Component Analysis (ICA) using runica in FieldTrip with default parameters. Note that 

ICA was conducted by band-pass filtering the dataset between 1 to 40Hz and resampling to 200Hz, 

which is argued to improve ICA performance (Ferrante et al., 2022). Importantly, artefact-rejection 
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occurred on the original data set, which was filtered between 0.1 to 70Hz. Components reflecting eye-

movements and heartbeats were identified by visual inspection of component scalp topographies and 

time-courses. These components were discarded by back-projecting all but these components to the 

data space. Corrected data were low-pass filtered to 40Hz (two-way butterworth). Finally, any 

remaining noisy epochs were removed based on visual inspection and were baseline-corrected against 

the -200 to 0ms prestimulus period. The data were downsampled to 250Hz before further analysis. 

After pre-processing, an average of 11.30 trials (SD = 1.24, range 7 to 12) in the overlap 

condition and 11.06 trials in the non-overlap condition (SD = 1.17, range 8 to 12) remained and were 

used for further analyses.  

Source reconstruction of MEG activity  

Observed sensor-level data was reconstructed in source-space using Linear Constrained Minimum 

Variance (LCMV) beamformers. A standard MNI structural T1 image from the FieldTrip toolbox was 

aligned to each individual’s headshape obtained immediately before participants entered the MEG 

scanner. The template structural scan was first co-registered to the fiducials and transformed to fit the 

headshape automatically. The experimenter then visually verified fit and manually resized each co-

registered image to ensure good fit between the scan and the digitised headshape. The co-registered 

image was resliced to align voxel positions in 3D space to the individual’s headshape and segmented 

to isolate brain tissue from skull and skin. The segmented image was used to create positions of 3294 

grid points spaced 10mm inside the brain. The lead-field matrix (forward model) was then computed, 

which included information about the forward projections from each grid point to scalp sensors. The 

sensor level data, source model, and forward model were input into the beamforming algorithm, with 

fixed dipole orientations and 5% lambda regularisation. The beamformer output resulted in time-

series signals from -2s to +20s centred around video onset in each of the 3294 voxels. These signals 

were then decomposed into time and frequency dimensions to derive oscillatory power using 

aforementioned parameters. 

Time-frequency decomposition 

Single-trial epochs were convolved with complex Morlet wavelets to derive oscillatory power of the 

MEG signal across time and frequency, using MATLAB code adapted from Denis et al. (2021). Twenty-

seven wavelets with centre frequencies ranging between 4-30Hz were used. Both the wavelet width 

and frequency steps were logarithmically spaced in order to distribute power equally across all 

theoretically important frequency bands (Theta: 4-8Hz, Alpha: 8-12Hz, and Beta: 8-30Hz). Linear 

spacing of frequencies would have prioritised higher frequency bands (Beta; 13 steps) rather than 

lower frequency theta (4 steps) and alpha (4 steps) bands. To remove edge artefacts, epochs were 

truncated to -1.75 to 19.5s. A pre-stimulus baseline period of -1 to -0.5s was used to normalise the 

oscillatory power to decibels (dB), because using baselines close to stimulus-onset could lead to 

bleeding of stimulus-related activity into the baseline period. The decomposition parameters were 

identical for both sensor-space and source-space data. 

MEG data analysis 

Our primary analysis was a pairwise comparison of oscillatory activity between overlap and non-

overlap videos. Non-parametric cluster-based permutation tests (Nperms = 1000, two-tail correction = 

‘prob’ which multiples the uncorrected probability by a factor of two before setting the α = .05 

threshold) as implemented in FieldTrip were used to detect statistically significant differences between 

these two conditions in both sensor and source-space, across time and frequency. 
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Sensor-level analysis 

The cluster tests were first conducted in sensor-space (with a minimum of 3 neighbouring sensors 

required to form a cluster). We could not test for effects across all 20s of video watching in sensor-

space because of RAM limitations (but this is addressed later). Therefore, we divided the 20s epoch 

into 1.5s long segments (the maximum time-window we could test with 1000 permutations) of interest 

around endpoint and midpoint onsets. We expected that participants would most likely be able to 

distinguish the endpoints were from same or different locations at these points in the videos. Hence, 

we expected oscillatory power involved in learning to be maximal between the overlap and non-

overlap videos during the end- and mid-points of the videos.  

We specified 3 time-segments starting at endpoint-onset (5 to 6.5s, 10 to 11.5s and 15 to 

16.5s), and three segments around mid-point onset (8 to 9.5s, 13 to 14.5s, and 18 to 19.5s). The final 

500ms of mid-point presentation could not be analysed in any situation. In the first two mid-point 

segments, evoked activity from the next endpoint-onset bled into preceding timepoints of mid-point-

offset. The final 500ms included edge-artefacts arising from time-frequency decomposition. 

Finally, we attempted to detect clusters across the whole 20s of video watching that we may 

have missed. We chose sensors that had the maximal t-value within significant clusters from the focal 

time-window analysis. Then, we ran cluster-based tests to detect significant clusters from 0 to 19.5s 

and 4 to 30Hz in each sensor. Note, this analysis can only be used to reveal significant effects at 

timepoints outside of our initial time-windows of interest, given the sensors were selected based on 

analyses from these time-windows.  

Whole brain analyses  

We then assessed regions in the brain that contributed to any statistically significant sensor-space 

differences. Oscillatory power in each voxel in the brain was averaged over the time-frequency regions 

spanned by significant clusters found in sensor-space. We computed an averaged oscillatory power 

value for each voxel across the whole brain and used cluster-permutation pairwise tests to find 

differences in averaged oscillatory power between overlap and non-overlap videos across all voxels. 

The Brainnetome Atlas (Fan et al., 2016) was used to identify regions with statistically significant 

whole-brain clusters. This analysis therefore revealed the brain regions most likely to be producing the 

sensor-level power differences.  

ROI analysis 

We ran targeted ROI analyses with two goals in mind. First, we wanted to reliably test for any clusters 

at time-points other than the segments chosen for sensor-space analyses. Second, although the 

whole-brain analyses revealed the brain regions involved in sensor-level effects, the distribution of 

these effects across time and frequency within specific brain regions was relatively unknown. 

Therefore, we tested for the extent of differences in oscillatory power across time-frequency ranges in 

each ROI and time-segments where we found sensor-level effects.  

We chose regions of interest that were theorised to be critical for supporting location-based 

representations (see Alexander et al., 2023; Bicanski & Burgess, 2018; Byrne et al., 2007): the 

precuneus, retrosplenial cortex, and right and left hippocampi. The hippocampus is also critical for 

integrating episodic and spatial information (e.g., Backus et al., 2016; Buzsáki & Moser, 2013; Horner 

et al., 2015).  

LCMV beamformers are more likely to generate illusory effects in either the right or left 

hippocampus as the algorithm fails to separate correlated sources (O’Neill et al., 2021). Therefore, any 
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differences in power between conditions would likely be (falsely) lateralised in either the left or right 

hippocampus, and averaging over the two hippocampi could reduce our power to detect any true 

effects. Therefore, we ran our tests separately in the right and left hippocampus. Crucially, we did not 

make inferences about the lateralisation of any effects we found but were simply attempting to 

increase statistical power by running our analysis separately in the right/left hippocampus. Note that 

the precuneus and retrosplenial cortex were combined across left and right hemispheres as they were 

physically proximal and do not suffer from the illusory lateralisation found in the physically distant but 

functionally connected hippocampi.  

Voxels belonging to each ROI were identified by interpolating grid-points with the 

Brainnetome atlas (Fan et al., 2016) using FieldTrip functions. We averaged oscillatory power across all 

voxels from each ROI for each data-point from 0 to 19.5s and 4 to 30Hz. Cluster-based permutation 

tests were conducted to detect differences in oscillatory power across time and frequency in each ROI 

across (i) 0 to 19.5s and (ii) in time-segments of interest from the sensor-level analysis where we found 

significant clusters (10 to 11.5s and 18 to 19.5s).   

Subsequent memory effect 

In a complementary analysis, we tested for subsequent memory effects in each of the four ROIs. We 
split overlap videos based on whether participants were accurate or inaccurate in the subsequent 
behavioural scene-matching test. We then extracted average power from the subsequently accurate 
and inaccurate videos by defining time-frequency boundaries found in the overlap vs. non-overlap 
comparison in each ROI. Locations where participants could match only in one direction (endpoint B 
cued by endpoint A, or vice-versa) were considered to be subsequently remembered in order to 
increase trial numbers and statistical power (given the above chance but relatively poor performance 
post-learning in the overlap condition). A frequentist pairwise t-test was conducted between 
subsequently accurate and inaccurate videos from the video-watching task in each ROI that had 
significant overlap vs. non-overlap clusters. We had to exclude data from 6 participants from this 
analysis as they either remembered or forgot all the locations, and therefore did not have any trials in 
either one of the conditions. For the remaining 24 participants, 5.63 subsequently accurate 
(remembered) trials (SD = 2.32, range = 1 to 9) and 5.50 subsequently inaccurate (forgotten) trials (SD 
= 2.40, range = 1 to 9) remained on average, and were used for further analyses.  

Results 

Behavioural results 

We tested our behavioural hypothesis that endpoint-matching accuracy would be greater post- vs. pre-

video watching of overlap but not non-overlap videos or unseen endpoints (see Figure 1.D). 

Average endpoint-matching accuracy was submitted to a 2 (Session: pre-video, post-video) x 3 

(Condition: overlap, non-overlap, unseen) within-subjects ANOVA. The main effect of Condition was 

not significant (F(1,29) = 1.78), but there was a significant main effect of Session: F(1,29) = 11.69, p = 

.002, η2
p = .29), where endpoint-matching accuracy was greater post compared to pre-video watching. 

Importantly, a significant interaction between Condition and Session (F(1,29) = 5.91, p  = .005, η2
p = 

.17) was found. Follow up paired t-tests revealed that participants were able to match endpoints more 

successfully post- vs. pre-videos for overlap (t(29) = 4.15, p < .001, BF10 = 96.43, d = .75) but not for 

non-overlap (t(29) = 0.72, p = .47, BF10 = 0.25) and unseen endpoints (t(29) = 1.22, p = .23, BF10 = 0.38). 

Furthermore, participants performed at chance level (20%) when matching endpoints from non-

overlap videos (t(29) = 0.14, p = .89, BF10 = 0.196) and unseen endpoints (t(29) = 0.16, p = .88, BF10 = 

0.197) but they performed significantly better than chance at matching endpoints from the same 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.562859doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562859
http://creativecommons.org/licenses/by/4.0/


NEURAL OSCILLATIONS AND LOCATION-BASED REPRESENTATIONS 
  

13 
 

location post-videos (t(29) = 3.09, p = .003, BF10 = 9.08, d = .56). Therefore, participants learnt that two 

endpoints belonged to the same location after watching overlap compared to non-overlap videos and 

unseen locations, where they did not learn that two endpoints belonged to the same location. We also 

analysed the behavioural data using the same GLMMs as in Berens et al. (2021) and found a similar 

pattern of results (see Supporting Information). 

Participants were at chance when matching two scenes from the same video for both overlap 

and non-overlap videos (Moverlap = 21.7%, SD = .17, BF10 = 0.22, t(29) = .53, p = .59; Mnon-overlap = 21.7%, 

SD = .19, BF10 = 0.22, t(29) = .48, p = .63), and performance did not differ between both conditions 

(BF10 = 0.19, t(29) = 0.1, p = .99). Participants were hence unable to determine which endpoints were 

shown in the same video for both overlap and non-overlap videos. It is not clear why participants could 

not match endpoints for the overlap condition, given they were able to in the main task reported 

above. It is possible that they did not fully understand the task or were not motivated to perform given 

it occurred at the end of the experiment. Participants were above chance in the overlap condition in 

this task in Berens et al. (2021), suggesting that participants can do this task if sufficiently motivated.   

MEG results 

We next analysed MEG data collected during video-watching to determine the neural oscillations 

involved in forming location-based representations.  

Sensor-level results 

We first compared oscillatory power between overlap and non-overlap video-watching in sensor-space 

and estimated sources in the brain underlying the sensor-space effects (see Figure 2).  

We found significant clusters in the 10-11.5s and 18-19.5s time-windows. Oscillatory power 

was greater in theta, alpha, and low beta frequencies from 10.5-11.5s (4-20Hz, p = .023) and from 18-

19s (4-11Hz, p = .03) post-video onset for overlap compared to non-overlap videos. These effects were 

maximal in posterior sensors but were spread across the whole scalp. No significant clusters were seen 

during the other time windows of interest (5-6.5s, 8-9.5s, 13-14.5s, 15-16.5s). 

Then, we tested for differences in oscillatory power between overlap and non-overlap videos 

at time-points other than the a-priori chosen time-windows. To do this, we chose one sensor from the 

10-11.5s and 18-19.5s each that had the maximal t-value from the statistically significant cluster 

showing power changes for the overlap compared to non-overlap condition. Then, we ran a cluster-

based permutation test from 0 to 19.5s, which spans all time-points in the video-watching task, across 

4 to 30Hz, in each of these sensors. We did not find any clusters that were statistically significant (all 

ps > .34). Therefore, the differences in theta and alpha power seen between 10.5-11.5s and 18-19s in 

the theta and alpha band appear to be specific to those timepoints.  

We next estimated sources in the brain that generated the effects we found on the scalp. To 

estimate the sources underlying the effect found in the 10-11.5s time window (Fig 2.A), we averaged 

over 10.5-11.5s and 4-20Hz time-frequency data-points for each voxel in the brain. Similarly, we 

averaged over 18-19s and 4-11Hz for the second cluster (Fig 2.C) for each voxel in the brain. Then, we 

ran cluster-based permutation tests to determine the extent of the effect across all voxels in the brain 

and used the Brainnetome atlas (Fan et al., 2016) to identify regions that belonged to the cluster.  

Several brain regions, primarily belonging to the default-mode network and medial temporal 

lobe, contributed to the greater theta/alpha power for overlap compared to non-overlap videos 

observed on the scalp (cluster correction: 10.5-11.5s, p = .007; 18-19s, p = .002). Oscillatory power 

changes during 10.5-11.5s of video-watching were localised to bilateral superior, middle, and inferior 
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temporal gyri, superior and inferior parietal cortices, and medial and lateral occipital cortices (Fig 2.B). 

Notably, both the left and right hippocampus, retrosplenial cortices, preuneus, and vmPFC showed 

significant power differences between overlap and non-overlap videos. A subset of these same regions 

were involved in the theta/alpha changes found during 18 to 19s of overlap compared to non-overlap 

video-watching (Fig 2.B), including the Inferior parietal lobe, hippocampus, retrosplenial cortex, and 

precuneus. Although the effect appears to be isolated to the right hemisphere, we do not make 

inferences about the lateralisation because the beamformer algorithm can output illusory lateralised 

effects (O’Neill et al., 2021).    

ROI analyses 

 

Figure 2. Results from the cluster-based permutation tests in MEG sensor-space and estimated sources of the 

sensor-space effects. (A) Topographical plots of averaged power across timepoints from the significant cluster 

in the theta (top) and alpha (bottom) bands. Spectrograms from a posterior sensor (marked on the 

topographical plot) reflecting baseline-corrected oscillatory power (dB) from 10 to 11.5 seconds post-video 

onset. Time-frequency data-points that belonged to the cluster are bordered by black lines. (B) Estimated 

brain sources of the sensor-space effect found during 10 to 11.5s post-video onset between 4 and 20Hz. (C) 

Topographical plots of averaged power across timepoints from the significant cluster in the theta (top) and 

alpha (bottom) bands. Spectrograms from a posterior sensor (marked on the topographical plot) reflecting 

baseline-corrected oscillatory power (dB) from 18 to 19.5 seconds post-video onset. Time-frequency data-

points that belonged to the cluster are bordered by black lines. (D) Estimated brain sources of the sensor-

space effect found during 18 to 19.5s post-video onset between 4 and 11 Hz. 
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We then investigated oscillatory power changes specifically in the right and left hippocampus, 

retrosplenial cortex, and precuneus, as these structures are thought to be important for location-based 

representations (Bicanski & Burgess, 2018). Moreover, the hippocampus is particularly important for 

episodic and spatial memory formation (Burgess et al., 2002; Herweg et al., 2020). We determined the 

distribution of oscillatory power changes for overlap vs. non-overlap videos across time and frequency 

within our ROIs, within the time-windows of video-watching where we found sensor-level effects: 10 

to 11.5s and 18 to 19.5s (see Figure 3).  

In the 10 to 11.5s time window, the power increase for overlap vs. non-overlap videos was in 

the theta and alpha (4 to 11Hz) bands from 10.5 to 11.5s in the right hippocampus (p = .004) and in 

theta, alpha, and early beta bands (12 to 18Hz) in the left hippocampus (p = .02). However, alpha/beta 

(8 to 28Hz) frequencies dominated in the precuneus (p = .045). There were no significant clusters in 

the retrosplenial cortex during this time window (though we note a cluster in the theta and alpha 

bands (4 to 11Hz) that was close to the cluster-corrected threshold (p = .053). In the 18 to 19.5s time 

window, in the right hippocampus, the oscillatory power increase for overlap vs. non-overlap videos 

was in the theta band (4 to 8.6Hz). There were no significant clusters in the left hippocampus, 

retrosplenial cortex, or the precuneus in this later time window. 

We then tested for significant effects across all time-points during video-watching (0 to 19.5s).  

We focused on the theta (4 to 8Hz) and alpha (8 to 12Hz) bands across 0 to 19.5s (see Figure 4). There 

were no significant clusters in the alpha band. In the right hippocampus, we found two clusters in 

addition to the previously observed clusters in the theta band (4 to 8Hz) from 15.2 to 16.2s (p = .047) 

and 17.11 to 17.55s (p = .043). The 15.2 to 16.2s time-window is 200ms post-onset of the second 

endpoint in time, after the camera pans from the first endpoint at 10s and ends at the central 

overlapping scene at 14.99s. The 17.11 to 17.55s time-window occurs during the camera pan from 

second endpoint in time to the final presentation of the central overlapping scene (around 18s). We 

also ran this analysis across all frequency-points (4 to 30Hz) however this did not reveal any effects in 

any ROI. 

  

Figure 3. Results from region-of-interest analyses of oscillatory power. (A) Spectrograms depicting oscillatory 

power (dB) from 10 to 11.5s post-video onset in the right hippocampus (top), left hippocampus (middle), and 

precuneus (bottom). Time-frequency data-points that belonged to the cluster are bordered by black lines. (B) 

Spectrograms depicting baseline-corrected oscillatory power (dB) from 18 to 19.5s post-video onset in the 

right hippocampus (top), left hippocampus (middle), and precuneus (bottom). Time-frequency data-points 

that belonged to the cluster are bordered by black lines.  
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In sum, we found that oscillatory power in theta and alpha/beta bands was greater when 

participants watched overlap videos compared to non-overlap videos, especially during the second 

repetition of the video (10-20s). These effects were localised to the hippocampus, precuneus, and 

retrosplenial cortices among other default mode network regions.  

Subsequent memory effect 

Finally, we ran paired-samples t-tests to detect potential differences in oscillatory power between 

subsequently remembered vs. forgotten locations, as measured in the endpoint-matching task. 

Oscillatory power was averaged over time-frequency points that belonged to the overlap vs. non-

overlap clusters for each ROI (reported above) and compared between subsequently remembered and 

forgotten locations. We included trials where participants could successfully match both endpoints 

(A/B) when cued by the other, and trials where they remembered either endpoint B cued by endpoint 

A or vice versa but were incorrect on the other test (endpoint A cued by endpoint B). Note, we only 

performed these analyses in the ROIs where significant overlap vs non-overlap differences were seen.  

In the 10 to 11.5s time-window, there was a significant effect in the left hippocampus, with 

subsequently remembered videos showing lower oscillatory power than subsequently forgotten 

videos (Mremembered = -0.94, SD = 1.09; Mforgotten = -.11, SD = 1.39; t(23) = -2.07, p = 0.049, d = .43). No 

significant differences in oscillatory power between subsequently remembered and forgotten 

locations were seen in the right hippocampus (Mremembered = -.32, SD = .78; Mforgotten = -.35, SD = 1.46; 

 

Figure 4. Oscillatory power averaged across theta (top) and alpha/beta (bottom) bands and plotted from 

video-onset to video-offset (0 to 19.5s) in the right hippocampus (A), left hippocampus (B), precuneus (C) and 

retrosplenial cortex (D). Grey shaded regions depict 10-11.5s and 18-19.5s post-video onset, where sensor-

level effects were found. 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.562859doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.18.562859
http://creativecommons.org/licenses/by/4.0/


NEURAL OSCILLATIONS AND LOCATION-BASED REPRESENTATIONS 
  

17 
 

t(23) = .08, p = .96) or precuneus (Mremembered = -1.05, SD = 1.33; Mforgotten = -1.21, SD = 1.62; t(23) = .47, 

p = .63). There was no significant effect in the right hippocampus in the 18 to 19.5s window (Mremembered 

= -1.06, SD = 1.49; Mforgotten = -.43, SD = 1.21; t(23) = 1.47, p = .16). Therefore, we found that oscillatory 

power from the theta and alpha bands in the left hippocampus was lower for subsequently 

remembered compared to subsequently forgotten videos (though we note the smaller sample size of 

24 and marginal p-value). The left hippocampus was the only ROI to show a significant subsequent 

memory effect.  

Discussion 

We used a scene-integration paradigm to determine the region-specific neural oscillations involved in 

forming location-based representations that are critical for navigating new environments. We 

replicated previous behavioural findings that participants were able to form location-based 

representations following exposure to panoramic videos depicting the spatial relationship between 

two perceptually distinct viewpoints of the same location. We found changes in neural oscillatory 

power in the theta (4-8Hz) and alpha and low beta (8-20Hz) frequencies in the overlap condition, 

where participants were able to integrate two spatial viewpoints into a coherent representation, 

relative to the non-overlap condition, where participants were not able to form a more coherent 

representation. These oscillatory power changes were localised to the hippocampus and to other 

scene-selective regions including the retrosplenial cortex and precuneus. Therefore, we have identified 

the region-specific oscillatory dynamics involved in the formation of location-based representations.  

MEG data collected when participants watched videos revealed greater theta power for 

overlap than non-overlap videos. Theta increases were maximal in parietal sensors and were estimated 

to arise from several regions in the brain including the hippocampus. Therefore, we find evidence that 

hippocampal theta increases were found when participants viewed videos that allowed them to 

integrate two perceptually distinct scenes into a coherent location-based representation based on 

spatial context. Our findings are in line with a previous study that found hippocampal theta increases 

using MEG when participants learned a hidden location in a virtual Morris water maze compared to 

when they randomly moved around in the maze, when no location memories were formed (Pu et al., 

2017). Theta increases were also found when participants formed associations in a spatial context 

compared to a baseline, pre-stimulus period, during fixation cross presentation (Crespo-García et al., 

2016). We extend these findings by showing that theta power increases were involved when 

participants were attempting to integrate two scenes into one coherent location-based representation, 

in the absence of any overt navigation task. This evidence therefore adds to the literature implicating 

the hippocampal theta rhythm in memory formation and spatial navigation (Backus et al., 2016; Caplan 

& Glaholt, 2007; Crespo-García et al., 2016; Griffiths et al., 2016; Joensen et al., 2023; Staudigl & 

Hanslmayr, 2013; Summerfield & Mangels, 2005). 

Critically, this theta power difference occurred during the second repetition of the panoramic 

video within a trial. Theta power increased around 500ms following the start of the camera pan from 

the endpoint, and increased as the camera pan approached the central overlapping scene between 

the two endpoints. The timing of this theta power increase is likely important. First, its presence in the 

second repetition of the panoramic video suggests that a theta-mediated process is occurring only 

after participants have been presented with information that allows them to infer the two endpoints 

are from the same location (in the first repetition of the panorama). This perhaps suggests the theta 

power differences relate to the formation of a coherent location-based representation as opposed to 

the simple awareness of a potential relationship. An online assessment of this awareness, tracking 
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when participants become fully aware that the video is depicting a coherent location, would allow us 

to assess the timing of theta power increases relative to this awareness in future research.  

Second, theta power changes occurred when participants saw the endpoints of the panorama. 

One possibility is that the viewpoint not currently presented is being actively retrieved and 

associated/integrated with the currently presented viewpoint and theta is tracking that retrieval and 

integration process. This would fit with evidence that theta is associated with not just associative 

memory (i.e., encoding A-B pairs presented at the same time; Caplan & Glaholt, 2007; Hanslmayr & 

Staudigl, 2014; Staudigl & Hanslmayr, 2013; Summerfield & Mangels, 2005) but also associative 

inference where participants integrate separately encoded A-B and A-C pairs (Backus et al., 2016). This 

integration process is thought to be underpinned by the retrieval of non-presented but associated 

information (i.e., retrieving B when learning A-C), resulting in the integration of the presented and 

retrieved information (Molitor et al., 2021; Morton et al., 2023). A similar process could be occurring 

when participants view each endpoint, but only once they realise the endpoints are from the same 

location. Using pattern classification to assess the reactivation of endpoints during video presentation 

could assess this possibility. We were unable to distinguish between scene endpoints in the present 

study, preventing us from running this analysis. Future research would likely need fewer scenes with 

more repetitions per scene and more repetitions per video to allow for this type of analysis.  

The vMPFC is also considered to interact with the hippocampus during this inferential 

integration process (Morton et al., 2023; Preston & Eichenbaum, 2013), possibly via the theta rhythm 

(Backus et al., 2016). We did find that increases in theta power for overlap videos compared to non-

overlap videos were localised to the vMPFC, but the vMPFC – Hippocampus connectivity analyses 

proved inconclusive, possibly due to low statistical power (see Supporting Information for details 

regarding the connectivity analyses). Theta power increases that we found in the vMPFC and the 

hippocampus could thus reflect similar inferential learning between the two endpoints to form 

location-based representations.  

Another possibility is that both endpoints A and B are integrated into a more abstract, 

allocentric representation of the location (A*) that is reactivated during the memory test and leads to 

successful matching of endpoints A and B (Berens et al., 2021). Previous theories and computational 

models predict that such spatial learning occurs via communication between medial parietal and 

temporal regions in the scene-selective network (Baumann & Mattingley, 2021; Bicanski & Burgess, 

2018; Byrne et al., 2007; Marchette et al., 2014). In line with these theories, we find that changes in 

oscillatory power during the formation of location-based representations were localised to the 

hippocampus, retrosplenial cortex, precuneus, lateral parietal cortices (IPL and SPL) and early visual 

cortex. Previous studies using similar paradigms have used fMRI and have found that the retrosplenial 

and parahippocampal cortices are responsible for representing location-based information (Berens et 

al., 2021; Robertson et al., 2016). However, these studies were not able to conclude that these regions 

were involved in the formation of these representations. It is not clear whether participants formed a 

more abstract allocentric representation (i.e., A*), or whether they formed a simpler associative 

memory (i.e., A-B), or whether the integrative mechanisms discussed above are the mechanistic basis 

for forming either of these possible representations. However, our results point clearly to a role for 

hippocampal and medial parietal theta in forming a more location-based representation that can 

support behaviour in the scene-matching task.  

We also investigated the neural oscillations involved in the successful formation of location-

based representations by contrasting activity from overlap videos that were subsequently 

remembered vs. forgotten (Subsequent Memory Effect, SME). We found hippocampal theta decreases 

for remembered compared to forgotten locations, hence we found a negative SME. This effect was just 
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below the significance threshold (α = .05), possibly due to low trial and participant numbers leading to 

a low signal-to-noise ratio and thus low statistical power to detect effects. As such, compared to our 

main analyses that are powered appropriately, we draw caution in relation to this result (i.e., this result 

could simply be a false positive).  

Several studies have reported increases in theta power for subsequently remembered 

compared to subsequently forgotten stimuli, for both item (Fellner et al., 2013; Guderian et al., 2009; 

Hanslmayr et al., 2009, 2011; Khader et al., 2010; Meeuwissen et al., 2011; Osipova et al., 2006; 

Sederberg et al., 2006) and associative memory (Backus et al., 2016; Caplan & Glaholt, 2007; Crespo-

García et al., 2016; Griffiths et al., 2016; Joensen et al., 2023; Staudigl & Hanslmayr, 2013; Summerfield 

& Mangels, 2005). However, studies that have investigated associative learning in a spatial context 

have observed decreases in theta power for subsequently remembered vs. forgotten items. For 

example, Fellner et al., (2013) conducted a study where participants memorised a list of items using 

the method of loci, which involves associating items together in a spatial context, vs. the pegword 

method, which involves associating items together in a non-spatial context of a rhyme. They found a 

negative subsequent memory effect for items associated together in a spatial context compared to a 

non-spatial context. Two other studies on theta changes during associative learning in a spatial context 

also found theta decreases (Crespo-García et al., 2016; Griffiths et al., 2016). They studied item and 

location binding as participants navigated around a specified path and found theta decreases for 

subsequently remembered locations, cued by the items, compared to subsequently forgotten 

locations. Therefore, it is possible that negative subsequent memory effects arise when encoding of 

information occurs in a spatial context.  

If a greater decrease in theta does reflect better encoding (and therefore subsequent 

memory), it is unclear why we also saw even greater decreases in theta in the non-overlap condition, 

where no learning appeared to be occurring (i.e., participants couldn’t match the scenes presented in 

the non-overlap condition following video watching). Although speculative, one possibility is that the 

decrease in theta we observe reflects a form of ‘encoding effort’. In the overlap condition, more ‘effort’ 

results in better subsequent memory as a location-based representation can be formed. However, in 

the non-overlap condition, increased ‘effort’ does not result in the formation of a location-based 

representation (as the scenes are from different locations) resulting in poor behavioural performance.  

As well as seeing theta differences between the overlap and non-overlap condition (and a 

theta SME), we also found that alpha and low beta power (12 to 20Hz) was greater during the overlap 

than non-overlap condition. A recent study found that alpha/beta power increased during active 

environmental encoding compared to guided encoding and attributed this increase to increased 

attention during active vs. passive exploration (Chrastil et al., 2022). Therefore, it is possible that 

participants paid more attention while watching overlap than non-overlap videos. However, the 

dominant finding in the literature is that stimulus-onset induces a decrease in alpha/beta power that 

is considered to reflect increased attention (Klimesch, 2012) and representing stimulus-information 

necessary for the formation of episodic memories (Griffiths et al., 2021, 2019; Hanslmayr et al., 2016; 

Parish et al., 2018). Thus, increased alpha/beta in the overlap condition is unlikely to be driven by 

simple attentional differences, unless participants were paying greater attention to the non-overlap 

condition (perhaps because it is more difficult to associate two scenes from different locations). These 

alpha/beta changes source-localised to the same hippocampal and medial parietal regions that were 

revealed in the theta analyses, although the precuneus perhaps was driven more by alpha/beta than 

theta changes suggesting a potential dissociation. Although we did not see clear regional differences 

in relation to oscillatory frequency bands, future research might want to focus on hippocampal theta 

vs. medial parietal alpha/beta in relation to how these regions communicate within these frequency 
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bands during the learning of novel spatial environments (see Hanslmayr et al., 2016; Parish et al., 2018 

for theories).  

In conclusion, participants were able to match perceptually distinct viewpoints from the same 

location after viewing videos that showed the spatial relationship between these endpoints, 

potentially driven by the formation of a coherent representation of that location. Using MEG, we found 

that hippocampal and medial parietal theta and alpha/beta power increased when participants 

watched these videos compared to videos that did now allow for location-based representations to be 

formed. This finding adds to the literature implicating the hippocampal theta rhythm in episodic 

memory formation and spatial navigation (Buzsáki & Moser, 2013; Nyhus & Curran, 2010) by showing 

that it is implicated in combining egocentric, viewpoint-dependent scene information into a potentially 

allocentric, viewpoint-independent representation. Thus, we provide evidence in favour of models that 

predict the involvement of hippocampal and medial parietal regions in the formation of location-based 

representations (Bicanski & Burgess, 2018; Byrne et al., 2007), and implicate theta and alpha/beta 

oscillations in the formation of such representations.  
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