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Abstract

Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast,
and resolution. Here we introduce a deep learning-based strategy for aberration compensation,
improving image quality without slowing image acquisition, applying additional dose, or introducing
more optics into the imaging path. Our method (i) introduces synthetic aberrations to images acquired
on the shallow side of image stacks, making them resemble those acquired deeper into the volume and
(i) trains neural networks to reverse the effect of these aberrations. We use simulations to show that
applying the trained ‘de-aberration’ networks outperforms alternative methods, and subsequently apply
the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution
microscopy. In all cases, the improved quality of the restored data facilitates qualitative image
inspection and improves downstream image quantitation, including orientational analysis of blood
vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos.
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Introduction

Fluorescence microscopes offer diffraction-limited imaging only when optical aberrations are
absent. Such aberrations can arise due to optical path length differences introduced anywhere in the
imaging path, including from instrument misalignment, optical imperfections, or differences in refractive
index between the heterogenous and refractile sample, immersion media, or objective immersion oil.
Sample-induced optical aberrations usually dominate and are often the reason that three-dimensional
(3D) fluorescence image volumes show obvious deterioration in image signal-to-noise ratio (SNR),
contrast, and resolution deeper into the image volume.

One method of compensating for these aberrations is via adaptive optics (AO*?), a broad class of
techniques that measure the aberrated wavefront and subsequently apply an equal and opposite
‘corrective’ wavefront, restoring diffraction-limited® or even super-resolution® imaging throughout the
image volume. Once the aberrated wavefront is determined, an adaptive element such as a deformable
mirror or spatial light modulator is used to apply the correction. Although these methods are effective,
the process of determining the wavefront typically slows acquisition and/or applies more illumination
dose than imaging without AO. From a practical perspective, implementing AO is nontrivial and adds
considerable expense to the underlying microscope. Thus, AO remains the province of relatively few
labs, and there is a need for new methods that can reverse the effects of optical aberrations without
sacrificing temporal resolution, imparting more dose to the sample, or adding additional hardware to
the microscope.

Deep learning approaches can computationally reverse image degradation, and have been used
successfully in denoising>®, deconvolution”?, and super-resolution applications®°. By incorporating
information about the underlying object, such methods can also learn to predict the wavefront
associated with aberrated images'3. With sufficient training data (matched pairs of diffraction-limited
and aberrated data), we reasoned that a neural network ought to be able to directly predict the
diffraction-limited image from the aberrated image. The challenge then becomes accumulating
appropriate training data, which would ideally be obtained without relying on AO.

Here we address this problem by (i) introducing synthetic aberrations to easily obtained near-
diffraction limited data so that they resemble aberrated data and (ii) training neural networks to reverse
the effect of these aberrations. We use simulations to show that application of our ‘content-aware’
approach outperforms other image restoration methods, including deconvolution with the known
aberrated point spread function (PSF). We then apply our techniques to diverse volumetric data
captured with confocal, light-sheet, multi-photon, and super-resolution microscopes, finding that in all
cases, resolution and contrast are substantially improved over the raw data. In addition to facilitating
biological inspection, the restored data also enhanced quantitative investigation, including orientational
analysis of blood vessels in mouse tissue and improved accuracy of membrane and nuclear
segmentation in C. elegans embryos.

Results
Compensating for aberrations with deep learning
First, we intentionally synthetically aberrate the images acquired by fluorescence microscopes

given knowledge of the physics of image formation'*** (Fig. 1, Methods, Supplementary Note 1).
Aberrations are chosen so that the aberrated images resemble those acquired deeper into the sample,
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85  where aberrations are more pronounced. The key insight of our approach is that the ‘shallow’ images on

86  the ‘nearside’ of the three-dimensional fluorescence volume are usually near-diffraction-limited and

87  thus provide ground truth data that can be used to train a network to reverse the effect of the

88  synthetically introduced aberrations. The trained neural network model (termed ‘DeAbe’) can then be

89  used to reverse depth-dependent blurring on data unseen by the network, effectively mitigating the

90 effect of aberrations without recourse to AO.

91 To benchmark our method, we began by simulating 3D phantoms consisting of randomly

92 oriented and positioned dots, lines, spheres, circles, and spherical shells. We then degraded these

93  structures by adding random aberrations and noise and evaluated the extent to which DeAbe could

94 reverse the degradation (Fig. 1b, Supplementary Figs. 1-5). Visual assessments in lateral (Fig. 1c, d,

95  Supplementary Video 1) and axial (Fig. 1e, Supplementary Video 2) views, as well as quantitative

96  comparisons (Fig. 1f) demonstrated that the DeAbe model outperformed blind deconvolution?®,

97 Richardson-Lucy deconvolution with an ideal point spread function (PSF), and even Richardson-Lucy

98  deconvolution with the aberrated PSF (known in these simulations, but unknown in general). We

99 attribute the superior performance of DeAbe to its ability to learn a sample-specific prior, thereby better
100  conditioning its solution relative to Richardson-Lucy deconvolution.
101 Importantly, simulations allowed us to further characterize DeAbe, offering insight into the
102 regimes in which the method excels and where performance suffers. First, we found optimal
103 performance when aberration magnitudes in the training data match the aberration magnitude in the
104  test data (Supplementary Fig. 1). Over the conditions we tested, the model improved images
105 contaminated with root mean square (RMS) wavefront distortion exceeding four radians (the highest
106  value we tested), although performance degrades as wavefront distortion increases. Second, although
107  we performed tests with training data containing up to the 7™ Zernike order, the improvement offered
108 past order four (the value used in this work) is negligible (Supplementary Fig. 2). Third, DeAbe trained
109  ona mixture of Zernike basis functions also provides notable improvement on images corrupted solely
110 by individual Zernike functions (Supplementary Fig. 3), although dedicated models trained to correct
111  specific Zernike modes are better if these modes are known in advance (Supplementary Fig. 4). Finally,
112  although DeAbe’s performance suffers in the presence of noise, it still offers noticeable visual and
113 guantitative improvements in image quality for SNR above ~5 (Supplementary Fig. 5).
114
115 Computational aberration compensation improves image quality on diverse volumetric data
116
117 We subsequently applied DeAbe to experimental data acquired with different microscope
118 modalities, in each case training models on images derived from the shallow side of image volumes (Fig.
119 2, Supplementary Fig. 6, Supplementary Table 1). First, we imaged live C. elegans embryos expressing a
120  pan-nuclear GFP-histone marker with inverted selective plane illumination microscopy (iSPIM)"28,
121  finding that the raw image data displayed progressive loss of contrast and resolution as a function of
122 increasing depth, making it difficult or impossible to discern subnuclear structure (or even individual
123 nuclei) at deeper imaging planes (Fig. 2a, i, Supplementary Video 3). By contrast, the DeAbe prediction
124 restored these structures, also improving axial views (Fig. 2a, iii). Richardson-Lucy deconvolution also
125 offered some improvement in image quality, albeit not to the extent of the DeAbe prediction, while also
126  undesirably amplifying noise (Fig. 2a, ii). Second, we used spinning-disk confocal microscopy to image
127  thicker adult C. elegans expressing the multicolor NeuroPAL transgene'®, used for resolving neuronal
128  identities. Depth-dependent image degradation produced raw images with dim or diffuse nuclear signal
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129  in each color channel. The DeAbe prediction improved SNR dramatically (Supplementary Fig. 7,

130  Supplementary Video 4), which we suspect may prove useful in improving the accuracy of neuronal

131 identification. Third, we applied DeAbe to images of NK-92 cells stained with Alexa Fluor 555 wheat

132 germ agglutinin and embedded in collagen matrices, acquired with instant SIM?°, a super-resolution
133 imaging technique (Fig. 2b-d, Supplementary Fig. 8, Supplementary Video 5). Post deconvolution, the
134  DeAbe prediction better resolved clusters of membrane-bound glycoproteins, intracellular vesicles, and
135 membranes (‘DeAbe+’, Fig. 2¢c, d) than the raw (or deconvolved raw, Supplementary Fig. 8) data,

136  especially near the limits of the 45 um thick imaging volume. Fourth, we used two-photon microscopy to
137 image live murine cardiac tissue expressing Tomm20-GFP, marking the outer mitochondrial membrane
138  (Fig. 2e). Although mitochondrial boundaries were evident in the raw data 20 um into the volume,

139  aberrations caused a progressive loss in resolution that hindered visualization of subcellular structure at
140 greater depths (Fig. 2e, f). The DeAbe prediction restored resolution throughout the 150 um thick

141  volume (Fig. 2f, Supplementary Fig. 9, Supplementary Video 6), unlike Richardson-Lucy deconvolution
142 (Fig. 2f) which amplified noise without restoring the mitochondria. The DeAbe prediction similarly

143 improved contrast and resolution when applied to volumes of fixed mouse liver stained with membrane
144  labeled tdTomato, imaged with two-photon microscopy (Supplementary Video 7).

145 Next, we applied DeAbe to samples ~10,000-fold larger in volumetric extent (Fig. 3a,

146  Supplementary Video 8). We fixed and CLARITY?*-cleared E11.5 mouse embryos immunostained for
147 neurons (Alexa Fluor Tul1) and blood vessels (Alexa Fluor 594) and imaged them with low magnification
148 confocal microscopy. Although tissue clearing nominally produces a sample with the same refractive
149  index everywhere, we still observed pronounced depth-dependent degradation from the ‘near’ to ‘far’
150 side of the embryo, including in intensity (likely due to photobleaching during the acquisition) and

151 resolution. We were able to largely reverse this deterioration by digitally compensating for

152 photobleaching® (Methods), applying DeAbe, and finally deconvolving the data (Fig. 3b, Supplementary
153  Fig. 10). While the improvement in image quality was particularly striking in axial views (Fig. 3b),

154  restorations also improved the appearance of fibrillar structures in lateral views, in both channels,

155  throughout the volume (e.g., the vicinity of the vagus nerve and its associated nerve roots, Fig. 3¢, d).
156 We further investigated this qualitative impression by using automated tools?*?* to

157  quantitatively assess the mean 3D orientation and directional variance (a measure of the spread in

158 angular orientation) at each voxel in the blood vessel channel (Fig. 3e-g, Supplementary Figs. 11, 12,
159  Supplementary Video 9). The DeAbe restoration resulted in cleaner separation between vessels, which
160 aided voxel-wise quantification of these metrics even in dense regions containing many crisscrossing
161  vessels (Fig. 3e, Supplementary Video 9). In deeper regions of the volume (Fig. 3f), the DeAbe results
162 produced narrower angular histogram distributions of vessels than the noisy raw data (Fig. 3f). The

163 improvement in quantification was also reflected in directional variance analysis. For example, when
164  visually inspecting different regions of interest (ROI) with differential vessel alignment (Fig. 3g,

165  comparing vicinity of aortic arches, (ROl 1), to diencephalon, (ROl 2)) we observed a greater difference
166  in mean directional variance when using the DeAbe reconstruction vs. the raw data (Supplementary Fig.
167  12).

168

169  Incorporating DeAbe in multi-step restoration further enhances resolution and contrast in 4D imaging
170 applications

171
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172 Given the performance of DeAbe thus far, we wondered if we could further boost image quality
173 by combining DeAbe with additional networks designed to enhance spatial resolution. To test this

174  possibility, we acquired dual-view light sheet microscopy (diSPIM?>2®) volumetric time-lapse (‘4D’)

175 recordings of C. elegans embryos expressing labels marking cell membranes and nuclei, and then passed
176  the raw single-view data through three networks designed to sequentially compensate for aberrations
177  (i.e., DeAbe), deconvolve the resulting predictions (‘DL Decon’), and improve resolution isotropy® (‘DL
178 Iso’, Fig. 4a-d, Supplementary Figs. 13-16). As expected, (Fig. 4a), the raw data showed increasing

179  depth-dependent degradation in resolution and contrast, which confounded our ability to discern

180  distinct nuclei or cell boundaries on the ‘far’ side of the volume. In comparison, the multi-step

181 procedure offered striking improvements in resolution and contrast in both nuclear and membrane

182  channels, largely alleviating the degradation (Fig. 4a, b, Supplementary Figs. 14, 15, Supplementary
183  Video 10). Ablation experiments in which one or more of the networks were removed produced inferior
184  results, further substantiating our hypothesis that the gains in image quality benefited from applying all
185  three networks (Supplementary Fig. 17). In the membrane channel, the multi-step restoration enabled
186 us to automatically segment cell boundaries more accurately than in the raw data and further refine the
187 segmentations manually up to 421 cells (Fig. 4c, Supplementary Fig. 16, Supplementary Video 11),

188  exceeding previous efforts limited to the 350-cell stage?’. The automatic segmentation additionally

189  provided a cell count closer to manual ground truth?® than either the raw data or a subset of the

190  networks (Fig. 4d).

191 Next, we explored replacing the final network (DL Iso) with a network designed to further

192  enhance resolution based on ground truth acquired with expansion microscopy®?° (‘DL Expan’,

193  Supplementary Fig. 13b). After verifying that DL Expan improved resolution more than 2-fold on data
194 unseen by the model (Supplementary Fig. 18), we applied the new multi-step restoration method to C.
195 elegans embryos expressing a GFP-membrane marker labeling head neurons and gut cells (Fig. 4e).

196  Compared to the raw data, the enhanced resolution offered by the deep learning prediction better

197 resolved closely spaced membranes within and between cells (Fig 4f-h, Supplementary Figs. 19, 20).
198  This capability proved especially useful when tracking the development of neurites projecting in the

199  nerve ring, a neuropil that constitutes the brain of the animal, and which is composed of hundreds of
200  tightly packed interwoven neurites. While the position of the neurites within the neuropil determines
201  circuit identity and connectivity, the sequence of events leading to its innervation has not been

202  described because of limits in resolving these structures. We focused our analyses on the closely

203 positioned neurons AlY and SMDD, which we identified based on morphology by comparison to labeled
204  images in ref.3® and ref.31. SMDD is a central pioneering neuron in the nematode brain3'33, while its

205  sister cell AIY® s a first layer interneuron3® involved in thermotaxis and locomotion®. Observing both
206  neurons over our 120-minute recording, we found that SMDD’s neurites grew out first, followed by AlY’s
207 neurite. AlY’s neurite entered the nerve ring after SMDD, consistent with the SMDD’s role as a pioneer
208  neuron (Fig 4i, Supplementary Video 12). Such developmental dynamics were difficult or impossible to
209 observe in the raw data (Supplementary Fig. 21), or joint deconvolutions of the dual-view data due to
210  artifacts resulting from motion between the two views (Supplementary Fig. 22). Finally, to illustrate that
211  these gains in image quality can be extended to a different label imaged in a different microscope, we
212 also restored images of nuclei labeled with a GFP histone marker and acquired with high NA diSPIM?8,
213  finding similarly dramatic improvements in contrast and resolution (Supplementary Fig. 23,

214  Supplementary Videos 13, 14).

215
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216 Discussion

217 As we show on diverse microscopes and samples, DeAbe can compensate for optical aberrations
218  without recourse to AO, improving SNR, contrast, and resolution in fluorescence microscopy volumes.
219  We suspect this capability will be useful for most labs, which lack access to sophisticated AO setups but
220 still wish to improve the quality of imaging volumes acquired using existing hardware. Besides improving
221  the qualitative appearance of images (Fig. 1-4), which facilitates inspection of biological features deep
222 within imaging volumes, DeAbe also quantitatively improves downstream image analysis. We highlight
223 this capability by refining vessel segmentation in large, cleared tissue samples (Fig. 3e-g) and in

224  enhancing the segmentation of densely packed nuclei and membranes in C. elegans embryos (Fig. 4).
225  The latter capability may prove particularly useful in the creation or extension of 4D morphological

226  atlases?, which depend on high quality image data.

227 Several caveats are worth noting in the context of current limitations and with an eye towards
228  future applications. First, the performance of DeAbe depends critically on the quality of the training
229  data, and specifically on the assumption that fluorescently labeled structures are similar throughout the
230  image volume. While this assumption was met for the samples in this work, we encourage caution when
231 applying DeAbe on highly heterogenous specimens. Second, although here we mainly trained on semi-
232 synthetic data (Fig. 2-4), it would also be worth investigating how well the training derived from fully
233 synthetic data’ (Fig. 1) generalizes to experimental data. Such an approach might prove useful in

234 ameliorating system aberrations introduced by microscope hardware. Third, we focused here on

235  correcting depth-dependent aberrations, in which the training data was corrupted by a constant

236  aberration in each image plane. A useful future direction would be to extend our approach to explicitly
237  account for laterally varying aberrations, as such aberrations are problematic particularly for large

238  specimens. Finally, although we used a mixture of random low-order aberrations to train our model,
239 enhanced performance is likely if aberrations specific to the sample (or instrument) can be inferred and
240  used in the training procedure (Supplementary Fig. 4).
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275

276 Methods

277

278  Deep learning-based de-aberration model

279 Building a de-aberration model (DeAbe) requires appropriate training data and the use of a

280  neural network. First, based on the physics of image formation, we derived forward imaging models that
281 allowed us to synthetically aberrate the data produced for multiple systems, including wide field, light
282 sheet, confocal, two photon, and super-resolution structured illumination microscopes (Supplementary
283 Note 1). Second, we extracted subvolumes from the shallow side of the experimentally acquired image
284  stacks, using these data as ground truth. Third, based on the forward imaging models, we synthetically
285  added aberrations to the ground truth images so that they resembled aberrated data present deeper
286  within the image stacks. Together, the paired ground truth data and associated synthetically degraded
287  data constitute training pairs. Fourth, we used these training pairs in conjunction with our 3D RCAN
288  network® to train a DeAbe model to reverse the effect of synthetic aberration. Finally, we applied the
289  trained network to reduce the effects of aberrations in experimentally acquired image volumes unseen
290 by the network.

291 We define the ‘shallow side’ of an image stack by the planes nearest to the detection objective,
292  which are typically contaminated with least aberration and thus offer the best image quality. We then
293  selected subvolumes on the shallow side (‘shallow subvolumes’) by visually inspecting image quality in
294 real and Fourier space (Supplementary Fig. 6, Supplementary Table 1). We extracted shallow

295  subvolumes from image stacks by manually cropping with Image) when image size and content differed
296 substantially across a given specimen type, or automatically with customized ImageJ) macros when

297  considering specimens with more stereotyped image size and content (e.g., as for time-lapse image
298  volumes). For the cleared mouse embryo images (Fig. 3), the shallow subvolumes were further divided
299 into smaller subvolumes (~80 MB/volume) due to their large volume size in raw data (Supplementary
300 Table1l).
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301 As described in Supplementary Note 1, we expressed the aberrated wavefront ¢(r, 8) at the
302 back focal plane of the objective using Zernike basis functions ¢,, (1, 8) and associated Zernike

303  coefficients ¢,
M

304 P(r,0) = Z Cm®m (1, 6), (1)

m=0

305 with M the maximum Zernike index chosen in our aberration.
306 We generated synthetic aberrations by using semi-randomly generated Zernike coefficients (Fig.
307 1a). We used the ANSI convention3 when indexing the Zernike coefficients, customizing aberrations by
308 using different Zernike coefficients for different datasets acquired from different microscopes. For all
309 experimental datasets, we added aberrations up to the 4™ Zernike order (i.e., M = 14), except for piston
310 andtilt components (Z=0, 1, 2). The amplitudes of the Zernike coefficients were randomly generated,
311 but subject to pre-defined bounds. We initially set an upper bound of 0.5 rad for all Zernike coefficients,
312  then added an additional 1 rad for defocus (Z = 4) and spherical (Z = 12) components to mimic the more
313 severe contamination caused by defocus and spherical aberrations commonly encountered in
314 experimental datasets, i.e:

c, =0, forZ =0,1,2

315 |c,| < 1.5, forZ =412 (2)
|c,| < 0.5, otherwise for Z < M,

316

317  with M =14 for all experimental datasets.

318 For each shallow side subvolume, 10 independent sets of aberrations were generated and used

319 for synthetic degradation, thereby augmenting the data 10-fold. Processing was performed with custom
320 MATLAB code (MathWorks, R2022b), with further details provided in the Code availability section.

321 We employed 3D RCAN (https://github.com/AiviaCommunity/3D-RCAN), appropriate for 3D

322 image volumes, for generating the DeAbe model based on the training data pairs. We trained individual
323 DeAbe models for each microscope and each sample type. For training, we set the number of epochs to
324  200; the number of steps per epoch to 400; the training patch size to 64 x 64 x 64; the number of

325 residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. The training
326  was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two
327  processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). More details on

328  datasets and training parameters are listed in Supplementary Table 1.

329
330  Multi-step image restoration with deep learning
331 The multi-step image restoration pipeline combines the DeAbe model with two additional

332 networks to progressively improve image resolution and contrast: (1) the DeAbe model to reverse

333 degradation from aberrations (“DL DeAbe”); (2) a deconvolution network designed to mimic the image
334  quality improvement afforded by multiview imaging (“DL Decon”, see the section Deep learning-based
335  deconvolution); (3) an axial resolution enhancement network to improve resolution isotropy (“DL Iso”,
336  see the section Deep learning-based axial resolution enhancement); or a network designed to predict
337 theimproved resolution provided by expanded samples (“DL Expan”, see the section Deep learning-
338  based expansion).

339

340 Deep learning-based deconvolution
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341 As for our previous attempts at deep-learning based multiview deconvolution®, we used a

342 single-view image volume as input, and attempted to restore image resolution and contrast that

343  approximated the result from multiview joint deconvolution. The training data were acquired by dual-
344  view light sheet microscopy?, either a ‘symmetric’ diSPIM equipped with 0.8/0.8 NA objectives? (Fig 4e-
345 i, Supplementary Figs. 17-22) or a higher NA ‘asymmetric’ diSPIM equipped with 1.1 / 0.67 NA

346  objectives®® (Fig 4a-d, Supplementary Figs. 14-16, 23). First, raw images were de-aberrated with the
347 DeAbe model. Then de-aberrated images from the two views were jointly deconvolved to achieve

348 reconstructions with near isotropic spatial resolution and good image quality throughout the

349 reconstruction. With training data consisting of the single-view de-aberrated images as input and the
350 jointly deconvolved images as ground truth, we then used another 3D RCAN for the deconvolution

351 model (DL Decon). For all datasets, the number of epochs for training was 200; the number of steps per
352 epoch was 400; the training patch size was 64 x 64 x 64; the number of residual blocks was 5; the

353 number of residual groups was 5; and the number of channels was 32. The training was performed

354 within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8168, two processors;
355 RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24 GB memory). We note that although training DL
356 Decon required dual-view image volumes, applying DL Decon needs only single-view image volumes
357  acquired from single-view light sheet microscopy (iSPIM).

358
359  Deep learning-based axial resolution enhancement
360 The images predicted by the DL Decon model were not perfectly isotropic, i.e., the axial

361 resolution (although improved over the raw input images) is worse than the lateral resolution. Thus, for
362 some experiments we used an additional network to enhance axial resolution (DL Iso, Fig. 4a, b,

363 Supplementary Figs. 14-17, Supplementary Videos 10, 11). CARE® software

364  (https://github.com/CSBDeep/CSBDeep) was employed to train the a ‘DL Iso’ model based on the

365 predictions derived from serially applying the DeAbe and Decon models to raw input images. We used
366 100 3D volumes, each spanning 360 x 480 x 310 voxels, for training data. Training was performed on the
367  xy planes (lateral views), using a 2D PSF (consisting of a point blurred with a 1D Gaussian function, sigma
368  =2.5 pixels along the y dimension) an axial downsampling factor of 6, and a patch size of 64 x 64 to

369  create training pairs. The training was performed within Python 3.7.0 on a Windows 10 workstation

370 (CPU: Intel Xeon, Platinum 8168, two processors; RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24
371  GB memory).

372
373  Deep learning-based expansion
374 As an alternative to DL Iso, we also trained a model to improve the resolution based on data

375  acquired with expansion microscopy (DL Expan). First, physically expanded samples (Supplementary Fig.
376 18) were imaged on the symmetric 0.8 NA diSPIM. Second, dual-view raw images were jointly

377  deconvolved and used as ground truth images. Third, the ground truth images were synthetically

378 degraded to resemble low-resolution conventional images acquired on the diSPIM, following our

379  previous procedure®. Last, the 3D RCAN network was employed to train the DL Expan model based on
380 the training data (i.e., synthetically degraded and ground truth pairs).

381 For the worm embryo data with DAPI labeled nuclei (Supplementary Fig. 23), dual-view raw
382 image volumes from 15 expanded worm embryos were acquired and jointly deconvolved to produce 15
383 high-resolution image volumes. These 15 volumes were then synthetically degraded to generate low-
384  resolution images. For the worm embryo data with TTX3B neurites labeled (Fig 4e-i, Supplementary
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385 Figs. 18-21), dual view image volumes from 71 expanded worm embryos were acquired and manually
386 cropped to select regions containing TTX3B neurites (this was necessary given the sparsely labeled

387  neurites present in the raw images). Cropped images were jointly deconvolved to produce 71 high-

388  resolution image volumes. These 71 volumes were then synthetically degraded to generate synthetic
389 low-resolution image data. For each dataset, the low-resolution and high-resolution paired volumes
390 were then used to train the 3D RCAN based DL Expan model. The number of epochs for training was set
391 to 300; the number of steps per epoch to 400; the training patch size to 64 x 64 x 64; the number of
392 residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. The training
393 was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two
394 processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory).

395

396  Simulations on phantom objects

397 To evaluate the quality and performance of our DeAbe model, we generated 3D phantom

398  objects consisting of five types of structures in MATLAB (Mathworks, R2022b, with the Image Processing
399 Toolbox): dots, lines, circles, spheres, and spherical shells?2. Phantoms were randomly oriented and

400 located in a volume of 256 x 256 x 256 voxels, with voxel size 0.13 x 0.13 x 0.13 um?3. We simulated the
401 blurring introduced by light sheet microscopy (Supplementary Note 1) by convolving the phantom with
402  anideal, noise-free PSF resembling that of our light sheet system (with 1.1 NA water dipping objective,
403 detection wavelength of 0.532 um and an illumination light sheet thickness of 2 um). Aberrated data
404  was generated by altering the ideal PSF according to the synthetic aberration procedure described

405  above.

406 To create synthetic aberrations, we adopted Equation (1) and generated Zernike coefficients
407  semi-randomly in MATLAB, with each Zernike coefficient c,,, subject to a pre-defined upper bound T;,:
408 lem| < Ty, form < M, 3)

409  with m the Zernike index following the ANSI convention and M the maximum Zernike index.
410  We omitted piston and tilt components (m =0, 1, 2) and weighted lower order Zernike components
411 (Defocus m =4, astigmatism m=3,5, and spherical m=12) more as these aberrations are commonly
412  observed in real samples:
0, form=20,1,2
413 T,, =1 1.5, form = 3,4,5,12 (4)
0.5, otherwise form < M,
414  with M defined based on the desired Zernike order:
( 9, for Zernike order of 3
14, for Zernike order of 4
415 M =< 20, for Zernike order of 5 (5)
27, for Zernike order of 6
35, for Zernike order of 7 .
416 For Supplementary Fig. 2, we varied M to explore the effect of different Zernike orders on de-aberration
417 performance by setting M = 9, 14, 20,27, and 35 corresponding to Zernike orders 3-7. For all other
418 simulations, we set M = 14.
419  The Root Mean Square (RMS) wavefront distortion of an aberration with Zernike coefficients ¢,,, (m =
420 3,4,5,..,M)is:
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421 (6)
422

423 (7)
424 To create training data, we synthetically aberrated phantoms with two types of aberrations:

425 1) a random mixture of aberrations containing different Zernike components, with the

426 amplitude of the aberrations subject to upper bounds. This type of aberrations was first generated with
427 a set of initial Zernike coefficients c,, based on Equations (3-5), and then rescaled to a maximum RMS of
428 Q) wavefront distortion (e.g., 2 = 1,2, or 4 rad) to obtain the final Zernike coefficients ¢p,_finqi:
QO

Cm—final = WST
430 These aberrated training data were used to train the general DeAbe models (i.e., all but the model
431  trained to counter the defocus mode specifically) used in all figures and videos showing simulated
432 phantoms.

429 Cm, form < M. (8)

433 2) a single aberration mode of defocus with amplitude subject to upper bounds, i.e., the upper

434  bounds of each Zernike coefficient were zeros except for the defocus mode (m =4):

435 T, = {1.5, form =4 9)
0, otherwise for m < M.

436 By replacing Equation (4) with Equation (9), we could generate the defocus aberration the same way as
437  for the first aberration type (1). These training data were only used to train the specific defocus DeAbe
438  model used in Supplementary Fig 4.

439 For each training session, we created 50 phantoms, each consisting of different random objects.
440 For each phantom, we generated 10 independent aberrated images with each image containing random
441 mixtures of aberrations (Fig 1, Supplementary Figs 1-5, Supplementary Videos 1-2) or only defocus

442  aberrations (Supplementary Fig 4), for a total of 500 training data pairs per session. We also added

443 Poisson noise to the aberrated images by defining the SNR as

444 SNR = /S, (10)
445  where S is the signal defined by the average of all pixels with intensity above a threshold (here set as 1%
446  of the maximum intensity of the blurred objects in the noise-free image).

447 We employed 3D RCAN to train the DeAbe model based on simulated training data. We set the
448 number of epochs to 200; the number of steps per epoch to 400; the training patch size to 64 x 64 x 64;
449 the number of residual blocks to 5; the number of residual groups to 5; and the number of channels to
450 32. Training was performed with Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum
451 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory).

452 To benchmark the performance of the DeAbe model, we created synthetic phantoms with three
453 types of aberrations:
454 1) a random mixture of aberrations containing different Zernike components, with the

455  amplitude of the aberrations subject to upper bounds. This type of aberration is the same used for
456  training the general DeAbe models and was generated following Equations (3-5) and (8). This aberration
457 mixture was used in Fig 1, Supplementary Fig 2, and Supplementary Videos 1-2.
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458 2) a random mixture of aberrations containing different Zernike components, with the

459 amplitude of the aberrations fixed at a certain RMS value. This aberration mixture was first generated
460  with a set of initial Zernike coefficients c, based on Equations (3-5), and then rescaled to a fixed

461 amplitude with RMS Y (e.g., Y = 1,2, or 4 rad) wavefront distortion to obtain the final Zernike

462  coefficients ¢y finar:

463 Cm, form < M. 11

Cm—final = WSC
464  This aberration mixture was used for Supplementary Figs 1,3,5.

465 3) single aberration modes with a fixed RMS value, i.e., Zernike coefficients were set to zero
466  except for the desired aberration mode. The single aberration modes tested in the paper include

467  defocus (m=4), astigmatism (m=3,5), coma (m=7,8), trefoil (m=6,9), and spherical (m=12). If the RMS
468 wavefront distortion is defined as Y (e.g., Y = 1,2, or 4 rad), each single aberration mode’s Zernike
469 coefficients are:

470 Defocus: ¢, =Y, otherwisec,, =0 form <M

471 Astigmatism: m =Y, otherwisec,, =0 form <M
472 Coma: \/m =Y, otherwisec,, =0form<M

473 Trefoil: \/m =Y, otherwisec,, =0 form<M

474 Spherical: ¢;, =Y, otherwisecy,, =0 form <M

475  These aberrations were used to test the DeAbe performance on single aberration modes

476  (Supplementary Figs. 3,4).

477

478 For quantitative analysis, we used structural similarity index (SSIM) and peak signal-to-noise
479  ratio (PSNR) to evaluate the restored images provided by deep learning as well as by traditional

480  deconvolution. The SSIM and PSNR were calculated based on image volumes with MATLAB (Mathworks,
481 R2022b). Their mean value and standard deviation were computed from 100 simulations, each with

482 random object structures and input aberrations.

483
484 Preprocessing, attenuation correction, traditional deconvolution, and multiview fusion
485 Raw images acquired with iSIM and light sheet imaging were preprocessed by subtracting a

486  uniform background with intensity equivalent to the average of 100 dark (no excitation light)

487  background images. When diSPIM was operated in stage scan mode, the images were also deskewed to
488  correct the distortion induced by stage-scan acquisition before further processing.

489 For the cleared mouse embryos imaged with confocal microscopy (Fig 3, Supplementary Fig. 10,
490  Supplementary Video 8), raw data was additionally preprocessed with intensity attenuation correction.
491  The attenuation correction was performed by multiplying the raw intensity values with an exponential
492 compensation factor:

493 1(z) = I4(z)e** an
494  with Iy(z) the raw intensity, z the depth and a the attenuation factor. Here we set a = 0.01.
495 For the comparison of DeAbe with traditional deconvolution, we implemented both Richardson-

496  Lucy (RL) deconvolution®”® (Fig. 1c-f, Fig. 2 and Supplementary Figs. 8-10) and blind deconvolution?®
497  (Fig. 1c-f) on the raw aberrated images. For blind deconvolution, we used the MATLAB function

498  deconvblind with default settings (https://www.mathworks.com/help/images/ref/deconvblind.html).
499 For RL deconvolution, we adopted our previously developed deconvolution package®

500  (https://github.com/eguom/regDeconProject). In one synthetic dataset (‘RL Decon 2’, Fig. 1c-f), we used
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501 an aberrated PSF that was generated as described in Supplementary Note 1 and matched the

502 aberrations in the synthetic dataset; otherwise, we used an aberration-free ideal PSF for all other

503  datasets (Fig. 1c-f, Fig. 2 and Supplementary Figs. 8-10). Additionally, we also performed RL

504  deconvolution on several datasets after DeAbe processing (Fig. 2b-d, Supplementary Fig. 8, 10), setting
505 the number of iterations to 20 unless specified otherwise. All deconvolution was performed in MATLAB
506 (MathWorks, R2022b) on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two processors;
507 RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory).

508 For data acquired by diSPIM, we performed multiview fusion on several datasets either for

509 generating DL training data (Fig. 4, Supplementary Figs. 14, 15, 19-21, 23) or for comparisons to the DL
510 Decon model (Supplementary Figs. 17, 22). The diSPIM data typically contain two view volumes,

511 referred to as View A and View B volumes. The multiview fusion process involves registration and joint
512  deconvolution to combine two views into a single volumetric image stack with improved resolution. The
513 registration first rotates View B by 90 degrees along the Y-axis to align View B’s orientation with View A
514  and then maximizes the cross-correlation function between View A and View B with affine

515 transformations. After registration, View A and registered View B were deconvolved jointly using a

516 modified Richardson—Lucy deconvolution algorithm as previously described?. Multiview fusion was

517  achieved using custom software (https://github.com/eguom/diSPIMFusion) on a Windows 10

518  workstation (CPU: Intel Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX
519 3090 with 24 GB memory).

520

521 Sample preparation and imaging

522  Live nematode embryos imaged with light sheet microscopy

523 Nematode strains were kept at 20°C, and grown on NGM media plates seeded with E. coli OP50.
524  Strains used in this paper included BV514 (ujIS113 [pie-1p::mCherry::H2B + unc-119(+); Pnhr-

525  82::mCherry::histone + unc-119(+)]), OD58 (ItIs38 [pielp::GFP::PH(PLC1deltal) + unc-119(+)]), DCR6268
526  (olaEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’ UTR + pelt-7::mCh::NLS::unc-54 3’ UTR]), and SLS164

527  (1tIS138[pie-1p::GFP::PH(PLC1deltal) + unc-119(+)]; ujlS113 [pie-1p::mCherry::H2B + unc-119(+); Pnhr-
528  82::mCherry::histone + unc-119(+)]). SLS164 was made by crossing together strains BV514 and OD58 and
529  may have unc-119(ed3) Ill in the background. Strains BV514 and OD58 were gifts from Dr. Zhirong Bao.
530 Nematode samples were prepared for diSPIM imaging as previously described'”-263%; gravid adult
531  hermaphrodites were picked into a watch glass with M9 buffer, adults were cut in half to liberate

532  embryos, and embryos were transferred onto a poly-L-lysine coated coverslip in a diSPIM imaging

533  chamber. For strain DCR6268 ((0laEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’ UTR + pelt-

534 7::mCh::NLS::unc-54 3’ UTR]), labeling neuron and gut cells), embryos were imaged once they reached
535 the bean stage of development using a fiber-coupled symmetric diSPIM (with 0.8NA/0.8NA

536 objectives)?®. Volumes were captured once per minute over two hours in light sheet scan mode. Each
537  volume comprised 50 slices, with a 1 um step size and a total acquisition time per volume of ~1 second.
538 For strain SLS164 (labeling cell membrane and nuclei), embryos were imaged from the 2- or 4-cell stage
539 using a fiber-coupled asymmetric diSPIM (with 1.1NA/0.67NA objectives)®. Volumes were captured

540 once every 3 minutes over 450-minute duration in stage scan mode. Each volume comprised 70 slices,
541 with a 1.1 um stage step size and a total acquisition time of ~1.4 s per volume. For strain BV514 (labeling
542  cell nuclei), embryos were imaged from the bean stage to hatching using the asymmetric diSPIM.

543 Volumes were captured every 5 minutes in stage scan mode. Each volume comprised 60 slices, with a
544 1.4 um stage step size and a total acquisition time per volume of ~1.2 seconds. For strain OD58 (labeling
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545  cell membranes), embryos were imaged from the 4- or 8-cell stage using a symmetric diSPIM. Volumes
546  were captured once every 3 minutes over a 450-minute period in light sheet scan mode. Each volume
547 comprised 45 slices, with a 1 um step size and a total acquisition time per volume of ~0.9 seconds. For
548 all imaging, images were acquired using 488 nm excitation (for GFP labels) or 561 nm excitation (for
549  mCherry labels).

550
551 Expanded nematode embryos
552 C. elegans embryos from strain DCR6268 (labeling neurites and gut cells) were immobilized on

553 Poly-L-Lysine (PLL) coated glass bottom dishes, bleached, digested by yatalase, fixed, and expanded. The
554  procedure takes approximately 2 days, and is adapted from our published method?2.

555 First, glass bottom dishes were coated with PLL. PLL (Sigma, Cat# P5899) powder was

556 reconstituted in distilled water to 1Img/mL, aliquoted, and stored at -20°C. Prior to experiments, 30-50
557 uL of PLL was placed on the glass bottom dish (MatTek, Cat# P35G-1.5-14-C) and air dried at room

558  temperature (RT). Coated coverslips were usually prepared up to 1 day before pre-treatment of C.

559  elegans for expansion microscopy.

560 Second, embryos were digested, fixed, and stained with DAPI. Gravid adult C. elegans worms
561  were deposited in a petri dish in PBS buffer and cut with a surgical blade to release eggs. Eggs were

562 immobilized on a PLL coated glass bottom dish in PBS and could be processed immediately or stored at
563 25°C in M9 buffer until the embryos developed to the desired stage. Embryos were treated with a

564  bleaching mixture containing 1% sodium hypochlorite (Sigma, Cat# 425044) in 0.1M NaOH/water for 2-3
565 minutes, rinsed 3 times in PBS, digested in 50 mg/mL Yatalase in PBS (Takara Bio, Cat# T017) for 40

566  minutes at RT and rinsed 3 times with PBS. It was important to treat eggs with bleach only after

567  immobilization on the PLL surface, otherwise embryos tended to detach from the glass at later steps.
568 Digested embryos were fixed in 4% paraformaldehyde/PBS (Electron Microscopy Sciences, Cat#

569 RT15710) for 1 hour, then rinsed 3 times with PBS to remove fixative. Fixed embryos were

570  permeabilized in 0.1% Triton X-100/PBS (Sigma, Cat# 93443) for 1 hour at RT with 1 uL/mL of DAPI

571 (Thermo Fisher Scientific, Cat# D1306).

572 Optionally, GFP signal can be boosted by immunolabeling. Yatalase digested embryos were

573 permeabilized with staining buffer (0.1% Triton X-100/PBS) for 1 hour before immunolabeling. Embryos
574  were stained by an anti-GFP primary antibody (Abcam, Cat# ab290) in the staining buffer at 4°C

575  overnight at 1 ug/mL. After primary antibody labeling, embryos were washed 3 times (30 min intervals
576  between washes) in the staining buffer and labeled using donkey-anti-rabbit-biotin secondary antibody
577  (Jackson ImmunoResearch, Cat# 711-067-003) in the staining buffer at 4°C overnight at 1 ug/mL. After
578  secondary antibody labeling, the embryos were washed 3 times in the staining buffer (30 mins intervals
579  between washes) and labeled with Alexa Fluor 488 Streptavidin in the staining buffer at 4°C overnight at
580 2 ug/mL (Jackson ImmunoResearch, Cat# 016-540-084). Labeled embryos were washed 3 times in the
581  staining buffer (30 minutes between washes) before being processed for expansion microscopy.

582 Immunolabeling was only performed on the data shown in Supplementary Fig 18a.

583 Finally, embryos were expanded. Embryos were treated with 1 mM MA-NHS (Sigma, Cat#

584  730300) in PBS for 1 hour at RT. Samples were rinsed 3 times in PBS, and treated with monomer

585  solution, which was made up of acrylamide (Sigma, Cat# A9099), sodium acrylate (Santa Cruz

586 Biotechnology, Cat# 7446-81-3), N, N’-methylenebis(acrylamide) (Sigma, Cat# 146072) and 4-Hydroxy-
587 TEMPO (Sigma, Cat# 176141), diluted with PBS, with a final concentration of 10%, 19%, 0.1%, and 0.01%,
588  respectively. After the treatment for 1 hour at RT, the monomer solution was replaced by gelation
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589  solution. The gelation solution shared the same reagents and concentrations as monomer solution, with
590 the addition of tetramethylethylenediamine (TEMED, Thermo Fisher Scientific, Cat#f 17919, reaching a
591 final concentration of 0.2%) and ammonium persulfate (APS, Thermo Fisher Scientific, Cat# 17874,

592 reaching a final concentration of 0.2%). APS was added at last, and the fresh gelation solution was

593 immediately applied to the embryos sandwiched between the glass bottom dish and another coverslip
594  surface for 2 hours at RT. It was important to control the gelation speed with 4-hydroxy-TEMPO as

595 premature gelation can distort embryos and result in poor expansion quality. The polymerized embryo-
596 hydrogel hybrid was cut out by a razor blade and digested with 0.2 mg/mL Proteinase K (Thermo Fisher
597  Scientific, Cat# AM2548) in digestion buffer (0.5 M sodium chloride (Quality Biological, Cat # 351-036-
598 101); 0.8 M guanidine hydrochloride (Sigma, Cat# G9284); and 0.5% Triton X-100) at 45°C overnight.
599 Digested embryos were expanded ~3.3-3.7 fold in distilled water, exchanging the water every 30 min
600 until expansion was complete. Expanded samples were flipped over so that embryos were ‘on top’

601 (suitable for diSPIM imaging), mounted on PLL coated #1.5 coverslips (VWR, Cat# 48393-241) and

602  secured in an imaging chamber filled with distilled water. Finally, samples were imaged using the

603 symmetric 0.8/0.8 NA diSPIM in stage scan mode. Depending on the orientation of embryos, ~200-300
604  planes were acquired for each embryo, with 1.414 um stage step size and 20 ms per-plane exposure
605 time.

606
607 Live nematode adults imaged with spinning disk confocal microscopy
608 C. elegans strain OH15500 (ot/s669[NeuroPAL]; otls672[panneuronal::GCaMP6s]) were raised at

609 20°C and grown on NGM media plates seeded with OP50 E. coli . Young adult worms (with 2 or less
610  visible eggs in their uterus) were picked and immobilized inside a microfluidic chip as previously

611  described®. Worms were imaged by a spinning disk confocal microscope (Nikon, Ti-e) equipped with a
612  60x/1.2 NA water objective (Nikon, CFl Plan Apochromat VC 60XC W1), a confocal scan unit (Yokagawa,
613  CSU-X1) and an electron multiplying CCD (EM-CCD, Andor, iXon Ultra 897). Four excitation lasers (405
614 nm, 488 nm, 561 nm, and 640 nm) were used for illumination, in conjunction with emission filters

615 spanning 420-470 nm, 500-545 nm, 570-650 nm, and 660-800 nm bandwidths, respectively. The pixel
616 size was 0.27 um in the XY dimension and each Z-stack volume comprised 21 slices for each color, with
617 1.5 um step size. Each multicolor Z-stack volume was captured at a rate of just over 1 minute.

618

619 Fixed WGA-labeled NK-92 samples

620 NK-92 cells (ATCC®, CRL-2407™) were rinsed with 1x PBS, and fixed with 1 ml of 4%

621 paraformaldehyde in 1x PBS for 30 min at room temperature, rinsed in 1 ml of 1x PBS, and

622 permeabilized in 0.1% Triton X-100 in 1x PBS for 15 min. Next, samples were rinsed with 1x PBS, and
623 blocked with buffer containing 1% BSA (Fisher, Cat# BP9700100) in 1x PBS for 1 hour. Blocking buffer
624  was removed, and the samples were stained with 500 ul of 1x PBS with a 1:100 dilution of Alexa Fluor
625 555 labelled WGA (Invitrogen, Cat# W32464), 10 U/mL phalloidin-ATTO 647N conjugate (Millipore-
626 Sigma, Cat #65906), and 1:1000 dilution of Hoechst solution (Tocris, Cat#5117) for 1 h. Cells were

627  washed in 1x PBS three times. We mounted samples using 90% Glycerol (Sigma, Cat# G5516) in 1x PBS.
628 In preparation for imaging, cells were cultured in collagen-I gels in the ImmunoCult-XF T Cell
629 Expansion Medium (STEMCELL Technologies, Cat# 10981) with the addition of Human Recombinant
630 Interleukin 2 (STEMCELL Technologies, Cat# 78036.3). To prepare 3 mg/ml collagen-I gel, we assembled
631 a gel premix on ice in a prechilled Eppendorf tube. Briefly, to 1 volume of CellAdhere™ type | bovine
632 (STEMCELL Technologies, Cat# 07001) we added 8/10 volume of DMEM, 1/10 volume of 10x PBS, 1/20
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633 volume of 1M HEPES, and 1/20 volume of 1M (in DMSO) Alexa Fluor 488 ester (Molecular Probes, Cat#
634  A20000). A drop of premixed gel (~50 uL) was spread immediately on a glass surface of a plasma-

635  treated glass-bottom 35 mm Petri dish (MatTek Corp., Cat# P35G-1.5-14-C) with a pipette tip. During
636  polymerization (room temperature, for overnight), gels were covered with 1 mL of mineral oil (Sigma-
637 Aldrich, Cat# M8410) to prevent evaporation of water. Before adding NK-92 cells, polymerized gels were
638  rinsed with PBS to remove the unpolymerized gel components.

639 Instant structured illumination microscopy (iSIM) was performed using the commercial instant
640 structured illumination microscope system (VisiTech Intl, Sunderland, UK) equipped with an Olympus
641 UPlanSAapo 60x/1.3NA Sil objective, two Flash-4 scientific CMOS cameras (Hamamatsu, Corp., Tokyo,
642  Japan), an iSIM scan head (VisiTech Intl, Sunderland, UK), and a Nano-Drive piezo Z stage (Mad City
643 Laboratories, Madison, WI). The iSIM scan head included the VT-Ingwaz optical destriping unit. The
644 exposure time was set to 250 ms per image frame. The voxel size was 64 x 64 x 250 nm, in x, y, and z,
645 respectively.

646
647 Two-photon microscopy on live and fixed mouse tissue
648 Fixed mouse liver samples and fresh ex-vivo mouse heart muscle strips were imaged with two-

649  photon microscopy using a Leica SP8 two photon DIVE upright microscope (Mannheim, Germany), a

650 pulsed dual beam Insight X3 Ti-Sapphire laser (MKS Spectra-Physics, Milpitas CA), a Leica 25x 1.0 NA (HC
651 PL IRAPO) water dipping lens, and emission bandwidth tunable Leica HyD detectors in the non-

652  descanned emission pathway. Liver samples were prepared from freshly excised liver from a 10 week-
653 old mouse expressing a membrane-targeted peptide fused with tdTomato®. After excision, the mouse
654 liver was washed in cold saline three times, fixed with 4% formaldehyde in PBS for 2 hours, and stored in
655 PBS. Tissue harvesting procedures were approved by the NCI (for mouse liver) and NHLBI (for mouse
656 heart) Animal Care User Committees (ACUC) respectively. Freshly excised heart muscle strips from

657 transgenic mice expressing mitochondrial TOMMZ20-mNeonGreen were prepared for imaging as

658  described*. tdTomato and mNeonGreen were excited using 1045 nm and 960 nm excitation with

659  emission bandwidths of 550-700 nm and 500-600 nm, respectively. Laser excitation (ramped as a

660  function of depth in some experiments and optimized by adjusting the objective motorized correction
661  collar) were in the range of 1% for tdTomato and less than 20% for mNeonGreen. HyD detector gains
662  were kept at 100% for tdTomato and 150% for mNeonGreen. Tiled images volumes of liver membrane
663  expressing tdTomato were collected with voxels sizes set to 400 nm in the XY dimension and 500 nm in
664  the z dimension. Z-stack volumes of mNeonGreen expressing heart strip were collected with voxels sizes
665  setto 120 nm in the XY dimension and 500 nm in the z dimension. All imaging was conducted at an

666  imaging speed of 600 Hz with a pinhole size of 1 A.U.

667 Cleared mouse embryos imaged with confocal microscopy

668 E11.5-day mouse embryos were collected in phosphate-buffered saline (PBS) and directly

669  immersed in 4% paraformaldehyde (PFA) in PBS (pH 7.4) at 4°C overnight. Following fixation, the

670  samples were washed with PBS and stored in PBS at 4°C for further analyses. Wholemount

671 immunofluorescence staining was performed at 4°C. The mouse embryos were permeabilized with 0.2%
672 Triton/PBS overnight and blocked with 10% normal goat serum and 1% BSA in 0.2% Triton/PBS

673  overnight. The embryos were then stained with monoclonal antibody against PECAM1 (CD31, clone

674 MEC 13.3, Cat# 553700, BD Pharmingen, 1:200 dilution) and monoclonal anti-B-tubulin [ll (TuJ1))

675  antibody (clone 2G10, Cat# T8578, Sigma-Aldrich, 1:500 dilution) in blocking buffer overnight. After

676  washing with 0.2% Triton/PBS, the embryos were stained with secondary antibodies with Alexa 488 goat
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677  anti-rat IgG and Alexa 594 goat-anti-mouse IgG (1:250, Invitrogen, Carlsbad, CA) in blocking buffer
678  overnight. The embryos were cleared with CLARITY and imaged using a Zeiss LSM 880 Confocal

679  microscope with a 10X, 0.5NA air objective. To compensate for focal shift effects due to the refractive
680 index difference between air and CLARITY we scaled the axial voxel size of images by 1.45 before

681 processing for DeAbe.

682

683 Calculation of vessel orientation and alignment

684 Orientations were estimated in 3D using a weighted vector summation algorithm?3, adapting it
685 for the volumetric images of fiber-like structures corresponding to the CD31 channel (i.e., blood vessel
686  images) in CLARITY-cleared mouse embryos (Fig. 3).

687 For a given voxel within the 3D image, an nxnxn voxel window was generated surrounding the
688  voxel under assessment. To segment the effective voxels, six-level Otsu intensity thresholding was applied
689  to the image, with five thresholds dividing the intensity into six levels. The lowest level was designated as
690 background noise, and regions assigned to the upper five levels defined the vessel signals. The window
691  size n was typically set as two to three times the vessel thickness. All vectors passing through the center
692 voxel were defined and weighted by their length and intensity variations, and the direction of the sum of
693  all the weighted vectors was designated as the orientation of the center voxel?, with associated azimuthal
694  angle 8 (ranging from 0° to 180°) and polar angle ¢ (ranging from 0° to 180°). However, since the
695 calculation of the polar angle ¢ was not straightforward, we defined two additional azimuthal angles, f
696 and y (Supplementary Fig. 11a), which were symmetrical to the azimuthal angle €. § was defined as the
697 angle between the projection of the vessel in the zx plane andthe x axis, and 7 was the angle between
698  the projectioninthe yz plane and the —y axis. These two angles were related to the polar angle ¢ via:

699 tan’p=1/tan® B+1/tan’y .
700 We also derived the 3D directional variance (DV) metric, quantifying the spread in orientations?**2,
701  The value of DV ranges from 0 to 1, with O corresponding to perfectly parallel alignment, and 1

702 corresponding to complete disorder (Supplementary Fig. 11b). The directional variance D,, was defined
703 as:

704 D,, =1-(C,,> +S,,2 +Z,,)"?,

705 where:

706 Cpy=(/0Y (f,I\1+ £ )cos(26)),
707 S, =(10Y (f/ |1+ f)sin(20),

708 Zy, =10, (SIT\1+ 1),

709  with fj:\/1/tan2(2ﬂ,)+1/taﬂ2(27j) , and SI=(—1)-(¢—90)/|¢—90| , where ¢ was acquired from the

710 determination of § and y as described above, k was the number of fiber voxels in the region, and ¢, f
711 and 7 were calculated azimuthal angles as described above.
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712 Membrane segmentation

713 For the images of live worm embryos dual-labeled with nuclear and membrane markers (Fig. 4c,
714  d, Supplementary Fig. 16), raw data was restored using our multiple-step deep learning pipeline (Steps 1-
715 3 in Supplementary Fig. 13a) prior to cell membrane segmentation. We performed automatic membrane
716  segmentation using segmented nuclei as seeds:

717 First we used the Keras and Tensorflow-based implementations of Mask RCNN*
718  (https://github.com/matterport/Mask_RCNN) to perform nuclear segmentation (Supplementary Fig.
719 16d). We then manually segmented 8 volumes (3 acquired with diSPIM, 3 with iSPIM, and 2 from
720  multiview confocal microscopy?? for a total of 1963 nuclei) for training. Of these 8 volumes, 6 volumes
721 with a total of 1688 nuclei were used for training a segmentation network and 2 volumes with a total of
722 275 nuclei were used for validation. We used a ResNet-50 model as the backbone for our network,
723 initialized the model using weights obtained from pretraining on the MS COCO dataset**, and proceeded
724  to train all layers in three stages. Training took ~10 hours and applying the model took ~ 3 minutes per
725  volume on a Windows workstation equipped with an Intel(R) Xeon(R) W-2145 CPU operating at 3.70 GHz,
726 an Nvidia Quadro P6000 GPU, and 128 GB of RAM. After Mask RCNN segmentation, we applied a marker-
727  controlled watershed operation (https://www.mathworks.com/help/images/marker-controlled-
728  watershed-segmentation.html) to the nuclear segmentations to separate touching nuclei.

729 Second, we applied the vascular structure enhancement filter®
730  (https://github.com/timjerman/JermanEnhancementFilter) to the membrane data to enhance
731 boundaries (Supplementary Fig. 16c). Scales were set to [2.0, 2.25, 2.5] and all other parameters were set
732 to the default.

733 Third, the centroids of segmented nuclei were used as seeds, and we used the seeded watershed
734 algorithm (https://github.com/danielsnider/Simple-Matlab-Watershed-Cell-Segmentation) for
735 membrane segmentation (Supplementary Fig. 16f).

736 This workflow was applied both to the raw image data and restored images after each step in our
737  multi-step pipeline to demonstrate the benefit of segmentation enhancement from DL processing.

738 For selected volumes (Fig. 4c, Supplementary Video 11), we also performed manual editing on

739  the automatic segmentations produced by the multi-step deep learning pipeline. Manual editing was
740  performed within the Imagel plugin Labkit (https://imagej.net/plugins/labkit/). After automatic
741  segmentations were imported to Labkit, segmentation labels were manually edited interactively in lateral
742  views (XY planes), and then were edited in axial views (YZ planes). Since the manual editing was conducted
743 in 2D views and initial editing in either view was not sufficient to ensure smoothness in 3D, we iterated
744  twice to further improve our results.

745

746  Code availability

747  Training and applying deep learning models were achieved using Python 3.7.0. Generation of synthetic
748  aberrated data and quantitative image analysis was performed in MATLAB (Mathworks, R2022b).

749  Customized code and software are available at https://github.com/eguomin/DeAbePlus/. RCAN and

750  CARE software were installed from https://github.com/AiviaCommunity/3D-RCAN and

751 https://github.com/CSBDeep/CSBDeep, and code for RL deconvolution and multiview fusion is available
752  at https://github.com/eguomin/diSPIMFusion/.

753 Data availability
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754  The data that support the findings of this study are included in Supplementary Figs. 1-23 and

755 Supplementary Videos 1-14. Some representative data from the figures (Supplementary Figs. 6, 17) are
756  publicly available at https://zenodo.org/record/8424246. Other datasets (training data and intermediate
757  data for deep learning) are available from the corresponding author upon reasonable request due to
758  their large file size.
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760 Fig. 1, Concept and simulations illustrating deep learning-based aberration compensation. a)

761 Schematic. Left: Fluorescence microscopy volumes are collected and near-diffraction-limited images
762  from the shallow side of each stack are synthetically degraded to resemble aberrated images deeper
763 into the stack. A neural network (e.g., a three-dimensional residual channel attention network, 3D

764  RCAN) is trained to reverse this degradation given the ground truth on the shallow side of the stack, and
765  the trained neural network (DeAbe model) subsequently applied to images throughout the stack,
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766  improving contrast and resolution. Right: More detailed view of synthetic degradation process. Zernike
767  basis functions and associated coefficients (coeffs) are used to add random aberrations by modifying the
768 ideal point spread function (iPSF) to generate an aberrated PSF (aPSF). Ground truth images (GT) are
769 Fourier transformed (FT) and multiplied by the ratio of the Fourier transformed aberrated and ideal PSFs
770 (essentially a modified optical transfer function, mOTF). Inverse Fourier transforming (IFT) the result and
771  adding noise generates the synthetically aberrated images. See Methods for further detail on this

772 procedure. OBJ: objective lens used to collect the stack. b) Simulated three-dimensional phantoms

773 consisting of randomly oriented and positioned dots, lines, spheres, spherical shells, and circles

774  comparing maximum intensity projections of aberrated input image (left, random aberration with root
775 mean square (RMS) wavefront distortion < 2 radians and Poisson noise added for an SNR of ~16,

776  corresponding PSF in inset), network prediction (DeAbe) given aberrated input (middle), and ground

777  truth (GT, right). Higher magnification views of dashed rectangular region are shown in ¢) (maximum
778 intensity projection) and d) (single plane), additionally showing restoration given blind deconvolution
779  (Blind Decon), Richardson-Lucy deconvolution with diffraction-limited PSF (RL Decon 1), Richardson-Lucy
780 deconvolution with aberrated PSF (RL Decon 2). Yellow arrows indicate a reference structure for visual
781 comparison. Twenty iterations were used for RL deconvolution and ten for blind deconvolution. e) As in
782 ¢, d) but showing axial plane along dashed blue line in b). f) Quantitative comparisons for the

783 restorations shown in b-e) using structural similarity index (SSIM, top) and peak signal-to-noise ratio
784  (PSNR, bottom) with ground truth reference. Means and standard deviations are shown for 100

785  simulations (10 independent phantom volumes, each aberrated with 10 randomly chosen aberrations).
786  Scale bars: 5 um b) and 2.5 um c-e). See also Supplementary Figs. 1-5.

787

21


https://doi.org/10.1101/2023.10.15.562439
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.15.562439; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

788

789 Figure 2, Computational aberration compensation on fluorescence microscopy image volumes. a) Live
790 C. elegans embryos expressing a pan-nuclear GFP histone marker were imaged with light sheet

791 microscopy (i, left column) and the raw data processed with Richardson-Lucy deconvolution (ii, 10

792 iterations, middle column) or with a trained DeAbe model (iii, right column). First two rows show single
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793 planes 20 and 28 um into the sample, third row shows axial view. Comparative line profiles through
794  dashed blue, yellow, and green lines are shown in insets, comparing ability to discriminate nuclei. Red
795  arrow highlights nuclei for visual comparison. See also Supplementary Video 3. b) NK-92 cells stained
796  with Alexa Fluor 555 wheat germ agglutinin and embedded in collagen matrices were fixed and imaged
797  with instant SIM, a super-resolution imaging technique. Left: raw data, right: after application of DeAbe
798 and deconvolution (DeAbe+, 20 iterations Richardson-Lucy). Lateral maximum intensity projections
799  (MIP, top) or single axial planes (bottom) are shown in b), and ¢, d show higher magnification views
800 corresponding to green c) or blue d) dashed rectangular regions in b). Colored arrows in ¢, d highlight
801 fine features obscured in the raw data and better revealed in the DeAbe+ reconstructions. See also
802  Supplementary Video 5, Supplementary Fig. 8. e) Live cardiac tissue containing cardiomyocytes

803  expressing Tomm20-GFP was imaged with two photon microscopy. Raw data (left) are compared with
804 DeAbe prediction (right) at indicated depths, with insets showing corresponding Fourier transform

805 magnitudes. Blue circles in Fourier insets in e) indicate 1/300 nm™ spatial frequency just beyond

806 resolution limit. See also Supplementary Video 6. f) Higher magnification views of white dashed

807  rectangular region in e), emphasizing recovery of mitochondrial boundaries by DeAbe model. See also
808  Supplementary Fig. 9, Supplementary Video 7. Scale bars: 10 um a, e); 5 um b, f); 2 um ¢, d); e)

809  diameter of Fourier circle: 300 nm™.

810
811

812
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815

816  Fig. 3, Computational aberration compensation on mm-scale cleared mouse embryo volumes. a) Fixed
817  and CLARITY-cleared E11.5-day mouse embryos were immunostained for neurons (Tul1, cyan) and

818  blood vessels (CD31, magenta), imaged with confocal microscopy and processed with a trained DeAbe
819 model. See also Supplementary Video 8. b) Axial view corresponding to dotted rectangular region in a),
820  comparing raw data and depth-compensated, de-aberrated, and deconvolved data (DeAbe+). See also
821 Supplementary Fig. 10. c) Higher magnification lateral view at axial depth of 1570 um indicated by the
822  orange double headed arrowheads in b). d) Higher magnification views of white dotted region in c),
823  comparing raw (left) and DeAbe+ processing (right) for neuronal (top) and blood vessel (bottom) stains.
824  e) Orientation (6, transverse angle) analysis on blood vessel channel of DeAbe+ data, here shown on
825 single lateral plane at indicated axial depth. See also Supplementary Fig. 11, Supplementary Video 9. f)
826 Higher magnification lateral view of white dotted region in e) (note that axial plane is different),

827  comparing intensity (left) and orientation (right) views between raw (top row) and DeAbe+ prediction
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(middle row). Righthand insets show higher magnification views of vessel and surrounding region
highlighted by dotted lines. Bottom row indicates histogram of all orientations in the vessel highlighted
with dotted ellipse, full-width-at-half maximum (FWHM) in peak region of histogram is also shown. g)
Directional variance of blood vessel stain within the indicated plane, with higher magnification region of
interest (ROI) views at right. Histogram of directional variance in both regions also shown. See also
Supplementary Fig. 12. Scale bars: 500 um a, b, c, e); 100 um d), 50 um inset; 300 um f), 50 um inset;
300 um g), 50 um inset.
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Fig. 4, Incorporating aberration compensation into multi-step restoration dramatically improves
image quality in volumetric time-lapse imaging. a) C. elegans embryos expressing GFP-labeled
membrane marker (green) and mCherry-labeled nuclear marker (magenta) were imaged with dual-view
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841 light-sheet microscopy (diSPIM) and the raw data (left) from single-view recordings processed through
842 neural networks that progressively de-aberrated, deconvolved, and isotropized spatial resolution (3-step
843 DL, right). Single planes from lateral (top) and axial (bottom) perspectives are shown, with arrow in

844  lower panel indicating direction of increasing depth. See also Supplementary Video 10, Supplementary
845  Figs. 14, 15. b) Higher magnification axial views of membranes (top) and nuclei (bottom) deep into

846  embryo, corresponding to dashed rectangle in a). c¢) Examples of automatic segmentation on raw (left,
847 319 cells), 3-step DL prediction (middle, 421 cells), and manually corrected segmentation based on DL
848 prediction (right, 421 cells). Single planes corresponding to the upper planes in a) are shown. Red and
849  blue dashed ellipses highlight regions for visual comparison. See also Supplementary Video 11. d)

850 Number of cells detected by automatic segmentation of membrane marker vs. time for raw data

851 (purple), and after successively applying each step in the multistep restoration (Steps 1-3, blue, green,
852 and red curves). Ground truth from manual expert (black curve) is also shown for comparison. Inset

853 (ellipse with dotted blue lines) highlights number count at early timepoints. €) Maximum intensity

854  projection (MIP) images of C. elegans embryos expressing membrane-localized GFP under control of the
855 ttx3-3b promoter, imaged with diSPIM, comparing raw single-view recordings (left) and multi-step

856 restoration that progressively de-aberrated, deconvolved, and super-resolved the data (right, 3-step DL).
857 Boundary of the embryo has been outlined in light blue for clarity. See also Supplementary Figs. 19, 20,
858  Supplementary Video 12. Higher magnification MIP (f) or single lateral (g) or axial (h) plane comparisons
859  corresponding to dashed lines or rectangle in e) are also shown. i) Time series based on 3-step DL MIP
860  predictions highlight developmental progression of AlY (blue) and SMDD (magenta) neurites as they

861 enter the nerve ring region. Top and bottom parts of each panel at each time point show MIP (neurites
862 highlighted as dotted lines) vs. model of the neurites, respectively. See also Supplementary Fig. 21.

863 Scale bars:5uma,c, e, f, h); 2 umb, d, g).

864
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