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Abstract 28 

Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, 29 

and resolution. Here we introduce a deep learning-based strategy for aberration compensation, 30 

improving image quality without slowing image acquisition, applying additional dose, or introducing 31 

more optics into the imaging path. Our method (i) introduces synthetic aberrations to images acquired 32 

on the shallow side of image stacks, making them resemble those acquired deeper into the volume and 33 

(ii) trains neural networks to reverse the effect of these aberrations. We use simulations to show that 34 

applying the trained 8de-aberration9 networks outperforms alternative methods, and subsequently apply 35 

the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution 36 

microscopy. In all cases, the improved quality of the restored data facilitates qualitative image 37 

inspection and improves downstream image quantitation, including orientational analysis of blood 38 

vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos. 39 

 40 
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Introduction 41 

Fluorescence microscopes offer diffraction-limited imaging only when optical aberrations are 42 

absent. Such aberrations can arise due to optical path length differences introduced anywhere in the 43 

imaging path, including from instrument misalignment, optical imperfections, or differences in refractive 44 

index between the heterogenous and refractile sample, immersion media, or objective immersion oil. 45 

Sample-induced optical aberrations usually dominate and are often the reason that three-dimensional 46 

(3D) fluorescence image volumes show obvious deterioration in image signal-to-noise ratio (SNR), 47 

contrast, and resolution deeper into the image volume.       48 

One method of compensating for these aberrations is via adaptive optics (AO1,2), a broad class of 49 

techniques that measure the aberrated wavefront and subsequently apply an equal and opposite 50 

8corrective9 wavefront, restoring diffraction-limited3 or even super-resolution4 imaging throughout the 51 

image volume. Once the aberrated wavefront is determined, an adaptive element such as a deformable 52 

mirror or spatial light modulator is used to apply the correction. Although these methods are effective, 53 

the process of determining the wavefront typically slows acquisition and/or applies more illumination 54 

dose than imaging without AO. From a practical perspective, implementing AO is nontrivial and adds 55 

considerable expense to the underlying microscope. Thus, AO remains the province of relatively few 56 

labs, and there is a need for new methods that can reverse the effects of optical aberrations without 57 

sacrificing temporal resolution, imparting more dose to the sample, or adding additional hardware to 58 

the microscope.          59 

Deep learning approaches can computationally reverse image degradation, and have been used 60 

successfully in denoising5,6, deconvolution7,8, and super-resolution applications9,10. By incorporating 61 

information about the underlying object, such methods can also learn to predict the wavefront 62 

associated with aberrated images11-13. With sufficient training data (matched pairs of diffraction-limited 63 

and aberrated data), we reasoned that a neural network ought to be able to directly predict the 64 

diffraction-limited image from the aberrated image. The challenge then becomes accumulating 65 

appropriate training data, which would ideally be obtained without relying on AO. 66 

Here we address this problem by (i) introducing synthetic aberrations to easily obtained near-67 

diffraction limited data so that they resemble aberrated data and (ii) training neural networks to reverse 68 

the effect of these aberrations. We use simulations to show that application of our 8content-aware9 69 

approach outperforms other image restoration methods, including deconvolution with the known 70 

aberrated point spread function (PSF). We then apply our techniques to diverse volumetric data 71 

captured with confocal, light-sheet, multi-photon, and super-resolution microscopes, finding that in all 72 

cases, resolution and contrast are substantially improved over the raw data. In addition to facilitating 73 

biological inspection, the restored data also enhanced quantitative investigation, including orientational 74 

analysis of blood vessels in mouse tissue and improved accuracy of membrane and nuclear 75 

segmentation in C. elegans embryos. 76 

 77 

Results 78 

 79 

Compensating for aberrations with deep learning 80 

  81 

First, we intentionally synthetically aberrate the images acquired by fluorescence microscopes 82 

given knowledge of the physics of image formation14,15 (Fig. 1, Methods, Supplementary Note 1). 83 

Aberrations are chosen so that the aberrated images resemble those acquired deeper into the sample, 84 
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where aberrations are more pronounced. The key insight of our approach is that the 8shallow9 images on 85 

the 8near side9 of the three-dimensional fluorescence volume are usually near-diffraction-limited and 86 

thus provide ground truth data that can be used to train a network to reverse the effect of the 87 

synthetically introduced aberrations. The trained neural network model (termed 8DeAbe9) can then be 88 

used to reverse depth-dependent blurring on data unseen by the network, effectively mitigating the 89 

effect of aberrations without recourse to AO.   90 

To benchmark our method, we began by simulating 3D phantoms consisting of randomly 91 

oriented and positioned dots, lines, spheres, circles, and spherical shells.  We then degraded these 92 

structures by adding random aberrations and noise and evaluated the extent to which DeAbe could 93 

reverse the degradation (Fig. 1b, Supplementary Figs. 1-5). Visual assessments in lateral (Fig. 1c, d, 94 

Supplementary Video 1) and axial (Fig. 1e, Supplementary Video 2) views, as well as quantitative 95 

comparisons (Fig. 1f) demonstrated that the DeAbe model outperformed blind deconvolution16, 96 

Richardson-Lucy deconvolution with an ideal point spread function (PSF), and even Richardson-Lucy 97 

deconvolution with the aberrated PSF (known in these simulations, but unknown in general). We 98 

attribute the superior performance of DeAbe to its ability to learn a sample-specific prior, thereby better 99 

conditioning its solution relative to Richardson-Lucy deconvolution.  100 

Importantly, simulations allowed us to further characterize DeAbe, offering insight into the 101 

regimes in which the method excels and where performance suffers. First, we found optimal 102 

performance when aberration magnitudes in the training data match the aberration magnitude in the 103 

test data (Supplementary Fig. 1). Over the conditions we tested, the model improved images 104 

contaminated with root mean square (RMS) wavefront distortion exceeding four radians (the highest 105 

value we tested), although performance degrades as wavefront distortion increases. Second, although 106 

we performed tests with training data containing up to the 7th Zernike order, the improvement offered 107 

past order four (the value used in this work) is negligible (Supplementary Fig. 2). Third, DeAbe trained 108 

on a mixture of Zernike basis functions also provides notable improvement on images corrupted solely 109 

by individual Zernike functions (Supplementary Fig. 3), although dedicated models trained to correct 110 

specific Zernike modes are better if these modes are known in advance (Supplementary Fig. 4). Finally, 111 

although DeAbe9s performance suffers in the presence of noise, it still offers noticeable visual and 112 

quantitative improvements in image quality for SNR above ~5 (Supplementary Fig. 5).   113 

 114 

Computational aberration compensation improves image quality on diverse volumetric data 115 

 116 

 We subsequently applied DeAbe to experimental data acquired with different microscope 117 

modalities, in each case training models on images derived from the shallow side of image volumes (Fig. 118 

2, Supplementary Fig. 6, Supplementary Table 1). First, we imaged live C. elegans embryos expressing a 119 

pan-nuclear GFP-histone marker with inverted selective plane illumination microscopy (iSPIM)17,18, 120 

finding that the raw image data displayed progressive loss of contrast and resolution as a function of 121 

increasing depth, making it difficult or impossible to discern subnuclear structure (or even individual 122 

nuclei) at deeper imaging planes (Fig. 2a, i, Supplementary Video 3). By contrast, the DeAbe prediction 123 

restored these structures, also improving axial views (Fig. 2a, iii). Richardson-Lucy deconvolution also 124 

offered some improvement in image quality, albeit not to the extent of the DeAbe prediction, while also 125 

undesirably amplifying noise (Fig. 2a, ii). Second, we used spinning-disk confocal microscopy to image 126 

thicker adult C. elegans expressing the multicolor NeuroPAL transgene19, used for resolving neuronal 127 

identities. Depth-dependent image degradation produced raw images with dim or diffuse nuclear signal 128 
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in each color channel. The DeAbe prediction improved SNR dramatically (Supplementary Fig. 7, 129 

Supplementary Video 4), which we suspect may prove useful in improving the accuracy of neuronal 130 

identification. Third, we applied DeAbe to images of NK-92 cells stained with Alexa Fluor 555 wheat 131 

germ agglutinin and embedded in collagen matrices, acquired with instant SIM20, a super-resolution 132 

imaging technique (Fig. 2b-d, Supplementary Fig. 8, Supplementary Video 5). Post deconvolution, the 133 

DeAbe prediction better resolved clusters of membrane-bound glycoproteins, intracellular vesicles, and 134 

membranes (8DeAbe+9, Fig. 2c, d) than the raw (or deconvolved raw, Supplementary Fig. 8) data, 135 

especially near the limits of the 45 m thick imaging volume. Fourth, we used two-photon microscopy to 136 

image live murine cardiac tissue expressing Tomm20-GFP, marking the outer mitochondrial membrane 137 

(Fig. 2e). Although mitochondrial boundaries were evident in the raw data 20 m into the volume, 138 

aberrations caused a progressive loss in resolution that hindered visualization of subcellular structure at 139 

greater depths (Fig. 2e, f). The DeAbe prediction restored resolution throughout the 150 m thick 140 

volume (Fig. 2f, Supplementary Fig. 9, Supplementary Video 6), unlike Richardson-Lucy deconvolution 141 

(Fig. 2f) which amplified noise without restoring the mitochondria. The DeAbe prediction similarly 142 

improved contrast and resolution when applied to volumes of fixed mouse liver stained with membrane 143 

labeled tdTomato, imaged with two-photon microscopy (Supplementary Video 7).  144 

 Next, we applied DeAbe to samples ~10,000-fold larger in volumetric extent (Fig. 3a, 145 

Supplementary Video 8).  We fixed and CLARITY21-cleared E11.5 mouse embryos immunostained for 146 

neurons (Alexa Fluor TuJ1) and blood vessels (Alexa Fluor 594) and imaged them with low magnification 147 

confocal microscopy. Although tissue clearing nominally produces a sample with the same refractive 148 

index everywhere, we still observed pronounced depth-dependent degradation from the 8near9 to 8far9 149 

side of the embryo, including in intensity (likely due to photobleaching during the acquisition) and 150 

resolution. We were able to largely reverse this deterioration by digitally compensating for 151 

photobleaching22 (Methods), applying DeAbe, and finally deconvolving the data (Fig. 3b, Supplementary 152 

Fig. 10). While the improvement in image quality was particularly striking in axial views (Fig. 3b), 153 

restorations also improved the appearance of fibrillar structures in lateral views, in both channels, 154 

throughout the volume (e.g., the vicinity of the vagus nerve and its associated nerve roots, Fig. 3c, d).  155 

 We further investigated this qualitative impression by using automated tools23,24 to 156 

quantitatively assess the mean 3D orientation and directional variance (a measure of the spread in 157 

angular orientation) at each voxel in the blood vessel channel (Fig. 3e-g, Supplementary Figs. 11, 12, 158 

Supplementary Video 9). The DeAbe restoration resulted in cleaner separation between vessels, which 159 

aided voxel-wise quantification of these metrics even in dense regions containing many crisscrossing 160 

vessels (Fig. 3e, Supplementary Video 9). In deeper regions of the volume (Fig. 3f), the DeAbe results 161 

produced narrower angular histogram distributions of vessels than the noisy raw data (Fig. 3f). The 162 

improvement in quantification was also reflected in directional variance analysis. For example, when 163 

visually inspecting different regions of interest (ROI) with differential vessel alignment (Fig. 3g, 164 

comparing vicinity of aortic arches, (ROI 1), to diencephalon, (ROI 2)) we observed a greater difference 165 

in mean directional variance when using the DeAbe reconstruction vs. the raw data (Supplementary Fig. 166 

12). 167 

 168 

Incorporating DeAbe in multi-step restoration further enhances resolution and contrast in 4D imaging 169 

applications 170 

 171 
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 Given the performance of DeAbe thus far, we wondered if we could further boost image quality 172 

by combining DeAbe with additional networks designed to enhance spatial resolution. To test this 173 

possibility, we acquired dual-view light sheet microscopy (diSPIM25,26) volumetric time-lapse (84D9) 174 

recordings of C. elegans embryos expressing labels marking cell membranes and nuclei, and then passed 175 

the raw single-view data through three networks designed to sequentially compensate for aberrations 176 

(i.e., DeAbe), deconvolve the resulting predictions (8DL Decon9), and improve resolution isotropy5 (8DL 177 

Iso9, Fig. 4a-d, Supplementary Figs. 13-16). As expected, (Fig. 4a), the raw data showed increasing 178 

depth-dependent degradation in resolution and contrast, which confounded our ability to discern 179 

distinct nuclei or cell boundaries on the 8far9 side of the volume. In comparison, the multi-step 180 

procedure offered striking improvements in resolution and contrast in both nuclear and membrane 181 

channels, largely alleviating the degradation (Fig. 4a, b, Supplementary Figs. 14, 15, Supplementary 182 

Video 10). Ablation experiments in which one or more of the networks were removed produced inferior 183 

results, further substantiating our hypothesis that the gains in image quality benefited from applying all 184 

three networks (Supplementary Fig. 17). In the membrane channel, the multi-step restoration enabled 185 

us to automatically segment cell boundaries more accurately than in the raw data and further refine the 186 

segmentations manually up to 421 cells (Fig. 4c, Supplementary Fig. 16, Supplementary Video 11), 187 

exceeding previous efforts limited to the 350-cell stage27. The automatic segmentation additionally 188 

provided a cell count closer to manual ground truth28 than either the raw data or a subset of the 189 

networks (Fig. 4d).  190 

Next, we explored replacing the final network (DL Iso) with a network designed to further 191 

enhance resolution based on ground truth acquired with expansion microscopy9,29 (8DL Expan9, 192 

Supplementary Fig. 13b). After verifying that DL Expan improved resolution more than 2-fold on data 193 

unseen by the model (Supplementary Fig. 18), we applied the new multi-step restoration method to C. 194 

elegans embryos expressing a GFP-membrane marker labeling head neurons and gut cells (Fig. 4e). 195 

Compared to the raw data, the enhanced resolution offered by the deep learning prediction better 196 

resolved closely spaced membranes within and between cells (Fig 4f-h, Supplementary Figs. 19, 20). 197 

This capability proved especially useful when tracking the development of neurites projecting in the 198 

nerve ring, a neuropil that constitutes the brain of the animal, and which is composed of hundreds of 199 

tightly packed interwoven neurites. While the position of the neurites within the neuropil determines 200 

circuit identity and connectivity, the sequence of events leading to its innervation has not been 201 

described because of limits in resolving these structures. We focused our analyses on the closely 202 

positioned neurons AIY and SMDD, which we identified based on morphology by comparison to labeled 203 

images in ref.30 and ref.31.  SMDD is a central pioneering neuron in the nematode brain31-33, while its 204 

sister cell AIY30 is a first layer interneuron34 involved in thermotaxis and locomotion35. Observing both 205 

neurons over our 120-minute recording, we found that SMDD9s neurites grew out first, followed by AIY9s 206 

neurite. AIY9s neurite entered the nerve ring after SMDD, consistent with the SMDD9s role as a pioneer 207 

neuron (Fig 4i, Supplementary Video 12). Such developmental dynamics were difficult or impossible to 208 

observe in the raw data (Supplementary Fig. 21), or joint deconvolutions of the dual-view data due to 209 

artifacts resulting from motion between the two views (Supplementary Fig. 22). Finally, to illustrate that 210 

these gains in image quality can be extended to a different label imaged in a different microscope, we 211 

also restored images of nuclei labeled with a GFP histone marker and acquired with high NA diSPIM18, 212 

finding similarly dramatic improvements in contrast and resolution (Supplementary Fig. 23, 213 

Supplementary Videos 13, 14).  214 

 215 
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Discussion 216 

As we show on diverse microscopes and samples, DeAbe can compensate for optical aberrations 217 

without recourse to AO, improving SNR, contrast, and resolution in fluorescence microscopy volumes. 218 

We suspect this capability will be useful for most labs, which lack access to sophisticated AO setups but 219 

still wish to improve the quality of imaging volumes acquired using existing hardware. Besides improving 220 

the qualitative appearance of images (Fig. 1-4), which facilitates inspection of biological features deep 221 

within imaging volumes, DeAbe also quantitatively improves downstream image analysis. We highlight 222 

this capability by refining vessel segmentation in large, cleared tissue samples (Fig. 3e-g) and in 223 

enhancing the segmentation of densely packed nuclei and membranes in C. elegans embryos (Fig. 4). 224 

The latter capability may prove particularly useful in the creation or extension of 4D morphological 225 

atlases27, which depend on high quality image data.  226 

Several caveats are worth noting in the context of current limitations and with an eye towards 227 

future applications. First, the performance of DeAbe depends critically on the quality of the training 228 

data, and specifically on the assumption that fluorescently labeled structures are similar throughout the 229 

image volume. While this assumption was met for the samples in this work, we encourage caution when 230 

applying DeAbe on highly heterogenous specimens. Second, although here we mainly trained on semi-231 

synthetic data (Fig. 2-4), it would also be worth investigating how well the training derived from fully 232 

synthetic data7 (Fig. 1) generalizes to experimental data. Such an approach might prove useful in 233 

ameliorating system aberrations introduced by microscope hardware. Third, we focused here on 234 

correcting depth-dependent aberrations, in which the training data was corrupted by a constant 235 

aberration in each image plane. A useful future direction would be to extend our approach to explicitly 236 

account for laterally varying aberrations, as such aberrations are problematic particularly for large 237 

specimens. Finally, although we used a mixture of random low-order aberrations to train our model, 238 

enhanced performance is likely if aberrations specific to the sample (or instrument) can be inferred and 239 

used in the training procedure (Supplementary Fig. 4).  240 
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 275 

Methods 276 

 277 

Deep learning-based de-aberration model 278 

Building a de-aberration model (DeAbe) requires appropriate training data and the use of a 279 

neural network. First, based on the physics of image formation, we derived forward imaging models that 280 

allowed us to synthetically aberrate the data produced for multiple systems, including wide field, light 281 

sheet, confocal, two photon, and super-resolution structured illumination microscopes (Supplementary 282 

Note 1). Second, we extracted subvolumes from the shallow side of the experimentally acquired image 283 

stacks, using these data as ground truth. Third, based on the forward imaging models, we synthetically 284 

added aberrations to the ground truth images so that they resembled aberrated data present deeper 285 

within the image stacks. Together, the paired ground truth data and associated synthetically degraded 286 

data constitute training pairs. Fourth, we used these training pairs in conjunction with our 3D RCAN 287 

network9 to train a DeAbe model to reverse the effect of synthetic aberration. Finally, we applied the 288 

trained network to reduce the effects of aberrations in experimentally acquired image volumes unseen 289 

by the network.  290 

We define the 8shallow side9 of an image stack by the planes nearest to the detection objective, 291 

which are typically contaminated with least aberration and thus offer the best image quality. We then 292 

selected subvolumes on the shallow side (8shallow subvolumes9) by visually inspecting image quality in 293 

real and Fourier space (Supplementary Fig. 6, Supplementary Table 1). We extracted shallow 294 

subvolumes from image stacks by manually cropping with ImageJ when image size and content differed 295 

substantially across a given specimen type, or automatically with customized ImageJ macros when 296 

considering specimens with more stereotyped image size and content (e.g., as for time-lapse image 297 

volumes). For the cleared mouse embryo images (Fig. 3), the shallow subvolumes were further divided 298 

into smaller subvolumes (~80 MB/volume) due to their large volume size in raw data (Supplementary 299 

Table 1). 300 
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 As described in Supplementary Note 1, we expressed the aberrated wavefront �(ÿ, �) at the 301 

back focal plane of the objective using Zernike basis functions �þ(ÿ, �) and associated Zernike 302 

coefficients ýþ   303 �(ÿ, �) = ∑ ýþ�þ(ÿ, �)�
þ=0 , (1) 304 

with ý the maximum Zernike index chosen in our aberration.  305 

We generated synthetic aberrations by using semi-randomly generated Zernike coefficients (Fig. 306 

1a). We used the ANSI convention36 when indexing the Zernike coefficients, customizing aberrations by 307 

using different Zernike coefficients for different datasets acquired from different microscopes. For all 308 

experimental datasets, we added aberrations up to the 4th Zernike order (i.e., M = 14), except for piston 309 

and tilt components (Z = 0, 1, 2). The amplitudes of the Zernike coefficients were randomly generated, 310 

but subject to pre-defined bounds. We initially set an upper bound of 0.5 rad for all Zernike coefficients, 311 

then added an additional 1 rad for defocus (Z = 4) and spherical (Z = 12) components to mimic the more 312 

severe contamination caused by defocus and spherical aberrations commonly encountered in 313 

experimental datasets, i.e:  314 { ý� = 0, Āāÿ � = 0, 1,2                            |ý�| ≤ 1.5, Āāÿ � = 4,12                          |ý�| ≤ 0.5, āā/ÿÿ�ÿĀÿ Āāÿ � ≤ ý,        (2) 315 

 316 

with ý = 14 for all experimental datasets. 317 

For each shallow side subvolume, 10 independent sets of aberrations were generated and used 318 

for synthetic degradation, thereby augmenting the data 10-fold.  Processing was performed with custom 319 

MATLAB code (MathWorks, R2022b), with further details provided in the Code availability section.  320 

 We employed 3D RCAN (https://github.com/AiviaCommunity/3D-RCAN), appropriate for 3D 321 

image volumes, for generating the DeAbe model based on the training data pairs. We trained individual 322 

DeAbe models for each microscope and each sample type.  For training, we set the number of epochs to 323 

200; the number of steps per epoch to 400; the training patch size to 64 × 64 × 64; the number of 324 

residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. The training 325 

was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two 326 

processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). More details on 327 

datasets and training parameters are listed in Supplementary Table 1. 328 

 329 

Multi-step image restoration with deep learning 330 

The multi-step image restoration pipeline combines the DeAbe model with two additional 331 

networks to progressively improve image resolution and contrast: (1) the DeAbe model to reverse 332 

degradation from aberrations (<DL DeAbe=); (2) a deconvolution network designed to mimic  the image 333 

quality improvement afforded by multiview imaging (<DL Decon=, see the section Deep learning-based 334 

deconvolution); (3) an axial resolution enhancement network to improve resolution isotropy (<DL Iso=, 335 

see the section Deep learning-based axial resolution enhancement); or a network designed to predict 336 

the improved resolution provided by expanded samples (<DL Expan=, see the section Deep learning-337 

based expansion).  338 

 339 

Deep learning-based deconvolution 340 
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As for our previous attempts at deep-learning based multiview deconvolution8, we used a 341 

single-view image volume as input, and attempted to restore image resolution and contrast that 342 

approximated the result from multiview joint deconvolution. The training data were acquired by dual-343 

view light sheet microscopy25, either a 8symmetric9 diSPIM equipped with 0.8/0.8 NA objectives26 (Fig 4e-344 

i, Supplementary Figs. 17-22) or a higher NA 8asymmetric9 diSPIM equipped with 1.1 / 0.67 NA 345 

objectives18 (Fig 4a-d, Supplementary Figs. 14-16, 23). First, raw images were de-aberrated with the 346 

DeAbe model. Then de-aberrated images from the two views were jointly deconvolved to achieve 347 

reconstructions with near isotropic spatial resolution and good image quality throughout the 348 

reconstruction. With training data consisting of the single-view de-aberrated images as input and the 349 

jointly deconvolved images as ground truth, we then used another 3D RCAN for the deconvolution 350 

model (DL Decon). For all datasets, the number of epochs for training was 200; the number of steps per 351 

epoch was 400; the training patch size was 64 × 64 × 64; the number of residual blocks was 5; the 352 

number of residual groups was 5; and the number of channels was 32. The training was performed 353 

within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8168, two processors; 354 

RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24 GB memory). We note that although training DL 355 

Decon required dual-view image volumes, applying DL Decon needs only single-view image volumes 356 

acquired from single-view light sheet microscopy (iSPIM). 357 

 358 

Deep learning-based axial resolution enhancement 359 

The images predicted by the DL Decon model were not perfectly isotropic, i.e., the axial 360 

resolution (although improved over the raw input images) is worse than the lateral resolution. Thus, for 361 

some experiments we used an additional network to enhance axial resolution (DL Iso, Fig. 4a, b, 362 

Supplementary Figs. 14-17, Supplementary Videos 10, 11). CARE5 software 363 

(https://github.com/CSBDeep/CSBDeep) was employed to train the a 8DL Iso9 model based on the 364 

predictions derived from serially applying the DeAbe and Decon models to raw input images. We used 365 

100 3D volumes, each spanning 360 × 480 × 310 voxels, for training data. Training was performed on the 366 

xy planes (lateral views), using a 2D PSF (consisting of a point blurred with a 1D Gaussian function, sigma 367 

= 2.5 pixels along the y dimension) an axial downsampling factor of 6, and a patch size of 64 × 64 to 368 

create training pairs. The training was performed within Python 3.7.0 on a Windows 10 workstation 369 

(CPU: Intel Xeon, Platinum 8168, two processors; RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24 370 

GB memory). 371 

 372 

Deep learning-based expansion 373 

As an alternative to DL Iso, we also trained a model to improve the resolution based on data 374 

acquired with expansion microscopy (DL Expan). First, physically expanded samples (Supplementary Fig. 375 

18) were imaged on the symmetric 0.8 NA diSPIM. Second, dual-view raw images were jointly 376 

deconvolved and used as ground truth images. Third, the ground truth images were synthetically 377 

degraded to resemble low-resolution conventional images acquired on the diSPIM, following our 378 

previous procedure9. Last, the 3D RCAN network was employed to train the DL Expan model based on 379 

the training data (i.e., synthetically degraded and ground truth pairs).  380 

For the worm embryo data with DAPI labeled nuclei (Supplementary Fig. 23), dual-view raw 381 

image volumes from 15 expanded worm embryos were acquired and jointly deconvolved to produce 15 382 

high-resolution image volumes. These 15 volumes were then synthetically degraded to generate low-383 

resolution images. For the worm embryo data with TTX3B neurites labeled (Fig 4e-i, Supplementary 384 
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Figs. 18-21), dual view image volumes from 71 expanded worm embryos were acquired and manually 385 

cropped to select regions containing TTX3B neurites (this was necessary given the sparsely labeled 386 

neurites present in the raw images). Cropped images were jointly deconvolved to produce 71 high-387 

resolution image volumes. These 71 volumes were then synthetically degraded to generate synthetic 388 

low-resolution image data. For each dataset, the low-resolution and high-resolution paired volumes 389 

were then used to train the 3D RCAN based DL Expan model. The number of epochs for training was set 390 

to 300; the number of steps per epoch to 400; the training patch size to 64 × 64 × 64; the number of 391 

residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. The training 392 

was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two 393 

processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). 394 

 395 

Simulations on phantom objects 396 

To evaluate the quality and performance of our DeAbe model, we generated 3D phantom 397 

objects consisting of five types of structures in MATLAB (Mathworks, R2022b, with the Image Processing 398 

Toolbox): dots, lines, circles, spheres, and spherical shells22. Phantoms were randomly oriented and 399 

located in a volume of 256 × 256 × 256 voxels, with voxel size 0.13 × 0.13 × 0.13 m3. We simulated the 400 

blurring introduced by light sheet microscopy (Supplementary Note 1) by convolving the phantom with 401 

an ideal, noise-free PSF resembling that of our light sheet system (with 1.1 NA water dipping objective, 402 

detection wavelength of 0.532 m and an illumination light sheet thickness of 2 m). Aberrated data 403 

was generated by altering the ideal PSF according to the synthetic aberration procedure described 404 

above.  405 

To create synthetic aberrations, we adopted Equation (1) and generated Zernike coefficients 406 

semi-randomly in MATLAB, with each Zernike coefficient ýþ subject to a pre-defined upper bound ÿþ: 407 |ýþ| ≤ ÿþ,   Āāÿ ÿ ≤ ý, (3) 408 

with ÿ the Zernike index following the ANSI convention and ý the maximum Zernike index.  409 

We omitted piston and tilt components (ÿ = 0, 1, 2) and weighted lower order Zernike components 410 

(Defocus ÿ =4, astigmatism ÿ=3,5, and spherical ÿ=12) more as these aberrations are commonly 411 

observed in real samples: 412 ÿþ = {0, Āāÿ ÿ = 0, 1,2                           1.5, Āāÿ ÿ = 3,4,5,12                   0.5, āā/ÿÿ�ÿĀÿ Āāÿ ÿ ≤ ý,        (4) 413 

with ý defined based on the desired Zernike order: 414 

ý = {  
     9, Āāÿ �ÿÿĀÿ�ÿ āÿþÿÿ āĀ 3     14, Āāÿ �ÿÿĀÿ�ÿ āÿþÿÿ āĀ 4     20, Āāÿ �ÿÿĀÿ�ÿ āÿþÿÿ āĀ 5    27, Āāÿ �ÿÿĀÿ�ÿ āÿþÿÿ āĀ 6    35, Āāÿ �ÿÿĀÿ�ÿ āÿþÿÿ āĀ 7    . (5) 415 

For Supplementary Fig. 2, we varied ý to explore the effect of different Zernike orders on de-aberration 416 

performance by setting ý = 9, 14, 20, 27, and 35 corresponding to Zernike orders 3-7. For all other 417 

simulations, we set ý = 14. 418 

The Root Mean Square (RMS) wavefront distortion of an aberration with Zernike coefficients ýþ (ÿ =419 3, 4,5,& ,ý) is: 420 
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ýýþ� = √∑ ýþ2�
þ=3 . (6) 421 

The RMS wavefront distortion for aberrations defined by upper bounds ÿþ (ÿ = 3, 4,5, & ,ý) is: 422 

ýýþ� = √∑ ÿþ2�
þ=3 . (7) 423 

To create training data, we synthetically aberrated phantoms with two types of aberrations:  424 

1) a random mixture of aberrations containing different Zernike components, with the 425 

amplitude of the aberrations subject to upper bounds. This type of aberrations was first generated with 426 

a set of initial Zernike coefficients ýþ based on Equations (3-5), and then rescaled to a maximum RMS of 427 Ω wavefront distortion (e.g., Ω = 1,2, or 4 rad) to obtain the final Zernike coefficients  ýþ2��ÿ�ý: 428 ýþ2��ÿ�ý = Ωýýþ� ýþ,   Āāÿ ÿ ≤ ý. (8) 429 

These aberrated training data were used to train the general DeAbe models (i.e., all but the model 430 

trained to counter the defocus mode specifically) used in all figures and videos showing simulated 431 

phantoms.  432 

2) a single aberration mode of defocus with amplitude subject to upper bounds, i.e., the upper 433 

bounds of each Zernike coefficient were zeros except for the defocus mode (ÿ =4):  434 ÿþ = {   1.5, Āāÿ ÿ = 4                           0, āā/ÿÿ�ÿĀÿ Āāÿ ÿ ≤ ý.        (9) 435 

By replacing Equation (4) with Equation (9), we could generate the defocus aberration the same way as 436 

for the first aberration type (1). These training data were only used to train the specific defocus DeAbe 437 

model used in Supplementary Fig 4. 438 

For each training session, we created 50 phantoms, each consisting of different random objects. 439 

For each phantom, we generated 10 independent aberrated images with each image containing random 440 

mixtures of aberrations (Fig 1, Supplementary Figs 1-5, Supplementary Videos 1-2) or only defocus 441 

aberrations (Supplementary Fig 4), for a total of 500 training data pairs per session. We also added 442 

Poisson noise to the aberrated images by defining the SNR as 443 þþý = √þ, (10) 444 

where S is the signal defined by the average of all pixels with intensity above a threshold (here set as 1% 445 

of the maximum intensity of the blurred objects in the noise-free image). 446 

 We employed 3D RCAN to train the DeAbe model based on simulated training data. We set the 447 

number of epochs to 200; the number of steps per epoch to 400; the training patch size to 64 × 64 × 64; 448 

the number of residual blocks to 5; the number of residual groups to 5; and the number of channels to 449 

32. Training was performed with Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 450 

8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). 451 

 To benchmark the performance of the DeAbe model, we created synthetic phantoms with three 452 

types of aberrations:  453 

1) a random mixture of aberrations containing different Zernike components, with the 454 

amplitude of the aberrations subject to upper bounds. This type of aberration is the same used for 455 

training the general DeAbe models and was generated following Equations (3-5) and (8). This aberration 456 

mixture was used in Fig 1, Supplementary Fig 2, and Supplementary Videos 1-2. 457 
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2) a random mixture of aberrations containing different Zernike components, with the 458 

amplitude of the aberrations fixed at a certain RMS value. This aberration mixture was first generated 459 

with a set of initial Zernike coefficients ý� based on Equations (3-5), and then rescaled to a fixed 460 

amplitude with RMS  Υ (e.g., Υ = 1,2, or 4 rad) wavefront distortion to obtain the final Zernike 461 

coefficients  ýþ2��ÿ�ý: 462 ýþ2��ÿ�ý = Υýýþ� ýþ,   Āāÿ ÿ ≤ ý. (11) 463 

This aberration mixture was used for Supplementary Figs 1,3,5. 464 

3) single aberration modes with a fixed RMS value, i.e., Zernike coefficients were set to zero 465 

except for the desired aberration mode. The single aberration modes tested in the paper include 466 

defocus (ÿ=4), astigmatism (ÿ=3,5), coma (ÿ=7,8), trefoil (ÿ=6,9), and spherical (ÿ=12). If the RMS 467 

wavefront distortion is defined as Υ (e.g., Υ = 1,2, or 4 rad), each single aberration mode9s Zernike 468 

coefficients are:  469 

Defocus: ý4 = Υ, āā/ÿÿ�ÿĀÿ ýþ = 0 Āāÿ ÿ ≤ ý 470 

Astigmatism: √ý32 + ý52 = Υ, āā/ÿÿ�ÿĀÿ ýþ = 0 Āāÿ ÿ ≤ ý 471 

Coma: √ý72 + ý82 = Υ, āā/ÿÿ�ÿĀÿ ýþ = 0 Āāÿ ÿ ≤ ý 472 

Trefoil: √ý62 + ý92 = Υ, āā/ÿÿ�ÿĀÿ ýþ = 0 Āāÿ ÿ ≤ ý 473 

Spherical: ý12 = Υ, āā/ÿÿ�ÿĀÿ ýþ = 0 Āāÿ ÿ ≤ ý 474 

These aberrations were used to test the DeAbe performance on single aberration modes 475 

(Supplementary Figs. 3,4). 476 

 477 

For quantitative analysis, we used structural similarity index (SSIM) and peak signal-to-noise 478 

ratio (PSNR) to evaluate the restored images provided by deep learning as well as by traditional 479 

deconvolution. The SSIM and PSNR were calculated based on image volumes with MATLAB (Mathworks, 480 

R2022b). Their mean value and standard deviation were computed from 100 simulations, each with 481 

random object structures and input aberrations. 482 

 483 

Preprocessing, attenuation correction, traditional deconvolution, and multiview fusion 484 

Raw images acquired with iSIM and light sheet imaging were preprocessed by subtracting a 485 

uniform background with intensity equivalent to the average of 100 dark (no excitation light) 486 

background images. When diSPIM was operated in stage scan mode, the images were also deskewed to 487 

correct the distortion induced by stage-scan acquisition before further processing.  488 

For the cleared mouse embryos imaged with confocal microscopy (Fig 3, Supplementary Fig. 10, 489 

Supplementary Video 8), raw data was additionally preprocessed with intensity attenuation correction. 490 

The attenuation correction was performed by multiplying the raw intensity values with an exponential 491 

compensation factor: 492 �(�) = �0(�)ÿ�� (11) 493 

with �0(�) the raw intensity, � the depth and � the attenuation factor. Here we set  � = 0.01. 494 

For the comparison of DeAbe with traditional deconvolution, we implemented both Richardson-495 

Lucy (RL) deconvolution37,38 (Fig. 1c-f, Fig. 2 and Supplementary Figs. 8-10) and blind deconvolution16 496 

(Fig. 1c-f) on the raw aberrated images. For blind deconvolution, we used the MATLAB function 497 

deconvblind with default settings (https://www.mathworks.com/help/images/ref/deconvblind.html). 498 

For RL deconvolution, we adopted our previously developed deconvolution package8 499 

(https://github.com/eguom/regDeconProject). In one synthetic dataset (8RL Decon 29, Fig. 1c-f), we used 500 
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an aberrated PSF that was generated as described in Supplementary Note 1 and matched the 501 

aberrations in the synthetic dataset; otherwise, we used an aberration-free ideal PSF for all other 502 

datasets (Fig. 1c-f, Fig. 2 and Supplementary Figs. 8-10). Additionally, we also performed RL 503 

deconvolution on several datasets after DeAbe processing (Fig. 2b-d, Supplementary Fig. 8, 10), setting 504 

the number of iterations to 20 unless specified otherwise. All deconvolution was performed in MATLAB 505 

(MathWorks, R2022b) on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two processors; 506 

RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). 507 

 For data acquired by diSPIM, we performed multiview fusion on several datasets either for 508 

generating DL training data (Fig. 4, Supplementary Figs. 14, 15, 19-21, 23) or for comparisons to the DL 509 

Decon model (Supplementary Figs. 17, 22). The diSPIM data typically contain two view volumes, 510 

referred to as View A and View B volumes. The multiview fusion process involves registration and joint 511 

deconvolution to combine two views into a single volumetric image stack with improved resolution. The 512 

registration first rotates View B by 90 degrees along the Y-axis to align View B9s orientation with View A 513 

and then maximizes the cross-correlation function between View A and View B with affine 514 

transformations. After registration, View A and registered View B were deconvolved jointly using a 515 

modified Richardson–Lucy deconvolution algorithm as previously described25. Multiview fusion was 516 

achieved using custom software (https://github.com/eguom/diSPIMFusion) on a Windows 10 517 

workstation (CPU: Intel Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 518 

3090 with 24 GB memory). 519 

 520 

Sample preparation and imaging 521 

Live nematode embryos imaged with light sheet microscopy 522 

Nematode strains were kept at 20°C, and grown on NGM media plates seeded with E. coli OP50. 523 

Strains used in this paper included BV514 (ujIS113 [pie-1p::mCherry::H2B + unc-119(+); Pnhr-524 

82::mCherry::histone + unc-119(+)]), OD58 (ltIs38 [pie1p::GFP::PH(PLC1delta1) + unc-119(+)]), DCR6268 525 

(olaEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’ UTR + pelt-7::mCh::NLS::unc-54 3’ UTR]), and SLS164 526 

( ltIS138[pie-1p::GFP::PH(PLC1delta1) + unc-119(+)]; ujIS113 [pie-1p::mCherry::H2B + unc-119(+); Pnhr-527 

82::mCherry::histone + unc-119(+)]). SLS164 was made by crossing together strains BV514 and OD58 and 528 

may have unc-119(ed3) III in the background. Strains BV514 and OD58 were gifts from Dr. Zhirong Bao.    529 

Nematode samples were prepared for diSPIM imaging as previously described17,26,39: gravid adult 530 

hermaphrodites were picked into a watch glass with M9 buffer, adults were cut in half to liberate 531 

embryos, and embryos were transferred onto a poly-L-lysine coated coverslip in a diSPIM imaging 532 

chamber. For strain DCR6268 ((olaEx3632 [pttx-3b::SL2::PHD::GFP:: unc-54 3’ UTR + pelt-533 

7::mCh::NLS::unc-54 3’ UTR]), labeling neuron and gut cells), embryos were imaged once they reached 534 

the bean stage of development using a fiber-coupled symmetric diSPIM (with 0.8NA/0.8NA 535 

objectives)26. Volumes were captured once per minute over two hours in light sheet scan mode.  Each 536 

volume comprised 50 slices, with a 1 m step size and a total acquisition time per volume of ~1 second. 537 

For strain SLS164 (labeling cell membrane and nuclei), embryos were imaged from the 2- or 4-cell stage 538 

using a fiber-coupled asymmetric diSPIM (with 1.1NA/0.67NA objectives)18. Volumes were captured 539 

once every 3 minutes over 450-minute duration in stage scan mode. Each volume comprised 70 slices, 540 

with a 1.1 m stage step size and a total acquisition time of ~1.4 s per volume. For strain BV514 (labeling 541 

cell nuclei), embryos were imaged from the bean stage to hatching using the asymmetric diSPIM. 542 

Volumes were captured every 5 minutes in stage scan mode. Each volume comprised 60 slices, with a 543 

1.4 m stage step size and a total acquisition time per volume of ~1.2 seconds. For strain OD58 (labeling 544 
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cell membranes), embryos were imaged from the 4- or 8-cell stage using a symmetric diSPIM. Volumes 545 

were captured once every 3 minutes over a 450-minute period in light sheet scan mode. Each volume 546 

comprised 45 slices, with a 1 m step size and a total acquisition time per volume of ~0.9 seconds. For 547 

all imaging, images were acquired using 488 nm excitation (for GFP labels) or 561 nm excitation (for 548 

mCherry labels).  549 

 550 

Expanded nematode embryos 551 

C. elegans embryos from strain DCR6268 (labeling neurites and gut cells) were immobilized on 552 

Poly-L-Lysine (PLL) coated glass bottom dishes, bleached, digested by yatalase, fixed, and expanded. The 553 

procedure takes approximately 2 days, and is adapted from our published method22. 554 

First, glass bottom dishes were coated with PLL. PLL (Sigma, Cat# P5899) powder was 555 

reconstituted in distilled water to 1mg/mL, aliquoted, and stored at -20°C. Prior to experiments, 30-50 556 

L of PLL was placed on the glass bottom dish (MatTek, Cat# P35G-1.5-14-C) and air dried at room 557 

temperature (RT). Coated coverslips were usually prepared up to 1 day before pre-treatment of C. 558 

elegans for expansion microscopy.  559 

Second, embryos were digested, fixed, and stained with DAPI. Gravid adult C. elegans worms 560 

were deposited in a petri dish in PBS buffer and cut with a surgical blade to release eggs. Eggs were 561 

immobilized on a PLL coated glass bottom dish in PBS and could be processed immediately or stored at 562 

25°C in M9 buffer until the embryos developed to the desired stage. Embryos were treated with a 563 

bleaching mixture containing 1% sodium hypochlorite (Sigma, Cat# 425044) in 0.1M NaOH/water for 2-3 564 

minutes, rinsed 3 times in PBS, digested in 50 mg/mL Yatalase in PBS (Takara Bio, Cat# T017) for 40 565 

minutes at RT and rinsed 3 times with PBS. It was important to treat eggs with bleach only after 566 

immobilization on the PLL surface, otherwise embryos tended to detach from the glass at later steps. 567 

Digested embryos were fixed in 4% paraformaldehyde/PBS (Electron Microscopy Sciences, Cat# 568 

RT15710) for 1 hour, then rinsed 3 times with PBS to remove fixative. Fixed embryos were 569 

permeabilized in 0.1% Triton X-100/PBS (Sigma, Cat# 93443) for 1 hour at RT with 1 L/mL of DAPI 570 

(Thermo Fisher Scientific, Cat# D1306). 571 

Optionally, GFP signal can be boosted by immunolabeling. Yatalase digested embryos were 572 

permeabilized with staining buffer (0.1% Triton X-100/PBS) for 1 hour before immunolabeling. Embryos 573 

were stained by an anti-GFP primary antibody (Abcam, Cat# ab290) in the staining buffer at 4°C 574 

overnight at 1 μg/mL. After primary antibody labeling, embryos were washed 3 times (30 min intervals 575 

between washes) in the staining buffer and labeled using donkey-anti-rabbit-biotin secondary antibody 576 

(Jackson ImmunoResearch, Cat# 711-067-003) in the staining buffer at 4°C overnight at 1 μg/mL. After 577 

secondary antibody labeling, the embryos were washed 3 times in the staining buffer (30 mins intervals 578 

between washes) and labeled with Alexa Fluor 488 Streptavidin in the staining buffer at 4°C overnight at 579 

2 μg/mL (Jackson ImmunoResearch, Cat# 016-540-084). Labeled embryos were washed 3 times in the 580 

staining buffer (30 minutes between washes) before being processed for expansion microscopy. 581 

Immunolabeling was only performed on the data shown in Supplementary Fig 18a. 582 

Finally, embryos were expanded. Embryos were treated with 1 mM MA-NHS (Sigma, Cat# 583 

730300) in PBS for 1 hour at RT. Samples were rinsed 3 times in PBS, and treated with monomer 584 

solution, which was made up of acrylamide (Sigma, Cat# A9099), sodium acrylate (Santa Cruz 585 

Biotechnology, Cat# 7446-81-3), N, N9-methylenebis(acrylamide) (Sigma, Cat# 146072) and 4-Hydroxy-586 

TEMPO (Sigma, Cat# 176141), diluted with PBS, with a final concentration of 10%, 19%, 0.1%, and 0.01%, 587 

respectively. After the treatment for 1 hour at RT, the monomer solution was replaced by gelation 588 
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solution. The gelation solution shared the same reagents and concentrations as monomer solution, with 589 

the addition of tetramethylethylenediamine (TEMED, Thermo Fisher Scientific, Cat# 17919, reaching a 590 

final concentration of 0.2%) and ammonium persulfate (APS, Thermo Fisher Scientific, Cat# 17874, 591 

reaching a final concentration of 0.2%). APS was added at last, and the fresh gelation solution was 592 

immediately applied to the embryos sandwiched between the glass bottom dish and another coverslip 593 

surface for 2 hours at RT. It was important to control the gelation speed with 4-hydroxy-TEMPO as 594 

premature gelation can distort embryos and result in poor expansion quality. The polymerized embryo-595 

hydrogel hybrid was cut out by a razor blade and digested with 0.2 mg/mL Proteinase K (Thermo Fisher 596 

Scientific, Cat# AM2548) in digestion buffer (0.5 M sodium chloride (Quality Biological, Cat # 351-036-597 

101); 0.8 M guanidine hydrochloride (Sigma, Cat# G9284); and 0.5% Triton X-100) at 45°C overnight. 598 

Digested embryos were expanded ~3.3-3.7 fold in distilled water, exchanging the water every 30 min 599 

until expansion was complete. Expanded samples were flipped over so that embryos were 8on top9 600 

(suitable for diSPIM imaging), mounted on PLL coated #1.5 coverslips (VWR, Cat# 48393-241) and 601 

secured in an imaging chamber filled with distilled water. Finally, samples were imaged using the 602 

symmetric 0.8/0.8 NA diSPIM in stage scan mode. Depending on the orientation of embryos, ~200-300 603 

planes were acquired for each embryo, with 1.414 m stage step size and 20 ms per-plane exposure 604 

time. 605 

 606 

Live nematode adults imaged with spinning disk confocal microscopy 607 

C. elegans strain OH15500 (otIs669[NeuroPAL]; otIs672[panneuronal::GCaMP6s]) were raised at 608 

20°C and grown on NGM media plates seeded with OP50 E. coli . Young adult worms (with 2 or less 609 

visible eggs in their uterus) were picked and immobilized inside a microfluidic chip as previously 610 

described19. Worms were imaged by a spinning disk confocal microscope (Nikon, Ti-e) equipped with a 611 

60×/1.2 NA water objective (Nikon, CFI Plan Apochromat VC 60XC WI), a confocal scan unit (Yokagawa, 612 

CSU-X1) and an electron multiplying CCD (EM-CCD, Andor, iXon Ultra 897). Four excitation lasers (405 613 

nm, 488 nm, 561 nm, and 640 nm) were used for illumination, in conjunction with emission filters 614 

spanning 420-470 nm, 500-545 nm, 570-650 nm, and 660-800 nm bandwidths, respectively. The pixel 615 

size was 0.27 m in the XY dimension and each Z-stack volume comprised 21 slices for each color, with 616 

1.5 m step size. Each multicolor Z-stack volume was captured at a rate of just over 1 minute. 617 

 618 

Fixed WGA-labeled NK-92 samples 619 

NK-92 cells (ATCC®, CRL-2407™) were rinsed with 1× PBS, and fixed with 1 ml of 4% 620 

paraformaldehyde in 1× PBS for 30 min at room temperature, rinsed in 1 ml of 1x PBS, and 621 

permeabilized in 0.1% Triton X-100 in 1× PBS for 15 min. Next, samples were rinsed with 1× PBS, and 622 

blocked with buffer containing 1% BSA (Fisher, Cat# BP9700100) in 1× PBS for 1 hour. Blocking buffer 623 

was removed, and the samples were stained with 500 μl of 1x PBS with a 1:100 dilution of Alexa Fluor 624 

555 labelled WGA (Invitrogen, Cat# W32464), 10 U/mL phalloidin-ATTO 647N conjugate (Millipore-625 

Sigma, Cat #65906), and 1:1000 dilution of Hoechst solution (Tocris, Cat#5117) for 1 h. Cells were 626 

washed in 1× PBS three times. We mounted samples using 90% Glycerol (Sigma, Cat# G5516) in 1x PBS. 627 

In preparation for imaging, cells were cultured in collagen-I gels in the ImmunoCult-XF T Cell 628 

Expansion Medium (STEMCELL Technologies, Cat# 10981) with the addition of Human Recombinant 629 

Interleukin 2 (STEMCELL Technologies, Cat# 78036.3). To prepare 3 mg/ml collagen-I gel, we assembled 630 

a gel premix on ice in a prechilled Eppendorf tube. Briefly, to 1 volume of CellAdhere™ type I bovine 631 

(STEMCELL Technologies, Cat# 07001) we added 8/10 volume of DMEM, 1/10 volume of 10x PBS, 1/20 632 
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volume of 1M HEPES, and 1/20 volume of 1M (in DMSO) Alexa Fluor 488 ester (Molecular Probes, Cat# 633 

A20000). A drop of premixed gel (∼50 µL) was spread immediately on a glass surface of a plasma-634 

treated glass-bottom 35 mm Petri dish (MatTek Corp., Cat# P35G-1.5-14-C) with a pipette tip. During 635 

polymerization (room temperature, for overnight), gels were covered with 1 mL of mineral oil (Sigma-636 

Aldrich, Cat# M8410) to prevent evaporation of water. Before adding NK-92 cells, polymerized gels were 637 

rinsed with PBS to remove the unpolymerized gel components. 638 

Instant structured illumination microscopy (iSIM) was performed using the commercial instant 639 

structured illumination microscope system (VisiTech Intl, Sunderland, UK) equipped with an Olympus 640 

UPlanSAapo 60×/1.3NA Sil objective, two Flash-4 scientific CMOS cameras (Hamamatsu, Corp., Tokyo, 641 

Japan), an iSIM scan head (VisiTech Intl, Sunderland, UK), and a Nano-Drive piezo Z stage (Mad City 642 

Laboratories, Madison, WI). The iSIM scan head included the VT-Ingwaz optical destriping unit. The 643 

exposure time was set to 250 ms per image frame. The voxel size was 64 x 64 x 250 nm, in x, y, and z, 644 

respectively. 645 

 646 

Two-photon microscopy on live and fixed mouse tissue 647 

Fixed mouse liver samples and fresh ex-vivo mouse heart muscle strips were imaged with two-648 

photon microscopy using a Leica SP8 two photon DIVE upright microscope (Mannheim, Germany), a 649 

pulsed dual beam Insight X3 Ti-Sapphire laser (MKS Spectra-Physics, Milpitas CA), a Leica 25x 1.0 NA (HC 650 

PL IRAPO) water dipping lens, and emission bandwidth tunable Leica HyD detectors in the non-651 

descanned emission pathway. Liver samples were prepared from freshly excised liver from a 10 week-652 

old mouse expressing a membrane-targeted peptide fused with tdTomato40. After excision, the mouse 653 

liver was washed in cold saline three times, fixed with 4% formaldehyde in PBS for 2 hours, and stored in 654 

PBS.  Tissue harvesting procedures were approved by the NCI (for mouse liver) and NHLBI (for mouse 655 

heart) Animal Care User Committees (ACUC) respectively. Freshly excised heart muscle strips from 656 

transgenic mice expressing mitochondrial TOMM20-mNeonGreen were prepared for imaging as 657 

described41.  tdTomato and mNeonGreen were excited using 1045 nm and 960 nm excitation with 658 

emission bandwidths of 550-700 nm and 500-600 nm, respectively. Laser excitation (ramped as a 659 

function of depth in some experiments and optimized by adjusting the objective motorized correction 660 

collar) were in the range of 1% for tdTomato and less than 20% for mNeonGreen. HyD detector gains 661 

were kept at 100% for tdTomato and 150% for mNeonGreen. Tiled images volumes of liver membrane 662 

expressing tdTomato were collected with voxels sizes set to 400 nm in the XY dimension and 500 nm in 663 

the z dimension. Z-stack volumes of mNeonGreen expressing heart strip were collected with voxels sizes 664 

set to 120 nm in the XY dimension and 500 nm in the z dimension. All imaging was conducted at an 665 

imaging speed of 600 Hz with a pinhole size of 1 A.U. 666 

Cleared mouse embryos imaged with confocal microscopy 667 

E11.5-day mouse embryos were collected in phosphate-buffered saline (PBS) and directly 668 

immersed in 4% paraformaldehyde (PFA) in PBS (pH 7.4) at 4°C overnight. Following fixation, the 669 

samples were washed with PBS and stored in PBS at 4°C for further analyses. Wholemount 670 

immunofluorescence staining was performed at 4oC. The mouse embryos were permeabilized with 0.2% 671 

Triton/PBS overnight and blocked with 10% normal goat serum and 1% BSA in 0.2% Triton/PBS 672 

overnight.  The embryos were then stained with monoclonal antibody against PECAM1 (CD31, clone 673 

MEC 13.3, Cat# 553700, BD Pharmingen, 1:200 dilution) and monoclonal anti--tubulin III (TuJ1)) 674 

antibody (clone 2G10, Cat# T8578, Sigma-Aldrich, 1:500 dilution) in blocking buffer overnight. After 675 

washing with 0.2% Triton/PBS, the embryos were stained with secondary antibodies with Alexa 488 goat 676 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.10.15.562439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562439
http://creativecommons.org/licenses/by/4.0/


` 

17 

 

anti-rat IgG and Alexa 594 goat-anti-mouse IgG (1:250, Invitrogen, Carlsbad, CA) in blocking buffer 677 

overnight. The embryos were cleared with CLARITY and imaged using a Zeiss LSM 880 Confocal 678 

microscope with a 10X, 0.5NA air objective. To compensate for focal shift effects due to the refractive 679 

index difference between air and CLARITY we scaled the axial voxel size of images by 1.45 before 680 

processing for DeAbe. 681 

 682 

Calculation of vessel orientation and alignment  683 

Orientations were estimated in 3D using a weighted vector summation algorithm23, adapting it 684 

for the volumetric images of fiber-like structures corresponding to the CD31 channel (i.e., blood vessel 685 

images) in CLARITY-cleared mouse embryos (Fig. 3).  686 

For a given voxel within the 3D image, an n n n   voxel window was generated surrounding the 687 

voxel under assessment. To segment the effective voxels, six-level Otsu intensity thresholding was applied 688 

to the image, with five thresholds dividing the intensity into six levels. The lowest level was designated as 689 

background noise, and regions assigned to the upper five levels defined the vessel signals. The window 690 

size n  was typically set as two to three times the vessel thickness. All vectors passing through the center 691 

voxel were defined and weighted by their length and intensity variations, and the direction of the sum of 692 

all the weighted vectors was designated as the orientation of the center voxel23, with associated azimuthal 693 

angle   (ranging from 0° to 180°) and polar angle   (ranging from 0° to 180°). However, since the 694 

calculation of the polar angle   was not straightforward, we defined two additional azimuthal angles,   695 

and   (Supplementary Fig. 11a), which were symmetrical to the azimuthal angle  .   was defined as the 696 

angle between the projection of the vessel in the zx  plane and the x  axis, and   was the angle between 697 

the projection in the  yz  plane and the y−  axis. These two angles were related to the polar angle   via:  698 

2 2 2
tan 1 / tan 1 / tan  = + . 699 

We also derived the 3D directional variance (DV) metric, quantifying the spread in orientations24,42. 700 

The value of DV ranges from 0 to 1, with 0 corresponding to perfectly parallel alignment, and 1 701 

corresponding to complete disorder (Supplementary Fig. 11b). The directional variance 
3DD  was defined 702 

as: 703 

2 2 2 1/2

3 3 3 3
1 ( )D D D DD C S Z= − + + , 704 

where: 705 

2

3 1
(1 / ) ( / 1 )cos(2 )

k

D j j jj
C k f f 

=
= + , 706 

2

3 1
(1 / ) ( / 1 )sin(2 )

k

D j j jj
S k f f 

=
= + , 707 

2

3 1
(1 / ) ( / 1 )

k

D jj
Z k SI f

=
= + , 708 

with 
2 2

1/ tan (2 ) 1 / tan (2 )j j jf  = + , and ( 1) ( 90) / 90SI  = −  − − , where   was acquired from the 709 

determination of   and   as described above, k  was the number of fiber voxels in the region, and  ,   710 

and   were calculated azimuthal angles as described above. 711 
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Membrane segmentation 712 

For the images of live worm embryos dual-labeled with nuclear and membrane markers (Fig. 4c, 713 

d, Supplementary Fig. 16), raw data was restored using our multiple-step deep learning pipeline (Steps 1-714 

3 in Supplementary Fig. 13a) prior to cell membrane segmentation. We performed automatic membrane 715 

segmentation using segmented nuclei as seeds:   716 

First we used the Keras and Tensorflow-based implementations of Mask RCNN43 717 

(https://github.com/matterport/Mask_RCNN) to perform nuclear segmentation (Supplementary Fig. 718 

16d). We then manually segmented 8 volumes (3 acquired with diSPIM, 3 with iSPIM, and 2 from 719 

multiview confocal microscopy22 for a total of 1963 nuclei) for training. Of these 8 volumes, 6 volumes 720 

with a total of 1688 nuclei were used for training a segmentation network and 2 volumes with a total of 721 

275 nuclei were used for validation. We used a ResNet-50 model as the backbone for our network, 722 

initialized the model using weights obtained from pretraining on the MS COCO dataset44, and proceeded 723 

to train all layers in three stages. Training took ~10 hours and applying the model took ~ 3 minutes per 724 

volume on a Windows workstation equipped with an Intel(R) Xeon(R) W-2145 CPU operating at 3.70 GHz, 725 

an Nvidia Quadro P6000 GPU, and 128 GB of RAM. After Mask RCNN segmentation, we applied a marker-726 

controlled watershed operation (https://www.mathworks.com/help/images/marker-controlled-727 

watershed-segmentation.html) to the nuclear segmentations to separate touching nuclei.  728 

Second, we applied the vascular structure enhancement filter45 729 

(https://github.com/timjerman/JermanEnhancementFilter) to the membrane data to enhance 730 

boundaries (Supplementary Fig. 16c). Scales were set to [2.0, 2.25, 2.5] and all other parameters were set 731 

to the default.  732 

Third, the centroids of segmented nuclei were used as seeds, and we used the seeded watershed 733 

algorithm (https://github.com/danielsnider/Simple-Matlab-Watershed-Cell-Segmentation) for 734 

membrane segmentation (Supplementary Fig. 16f).  735 

This workflow was applied both to the raw image data and restored images after each step in our 736 

multi-step pipeline to demonstrate the benefit of segmentation enhancement from DL processing.  737 

For selected volumes (Fig. 4c, Supplementary Video 11), we also performed manual editing on 738 

the automatic segmentations produced by the multi-step deep learning pipeline. Manual editing was 739 

performed within the ImageJ plugin Labkit (https://imagej.net/plugins/labkit/). After automatic 740 

segmentations were imported to Labkit, segmentation labels were manually edited interactively in lateral 741 

views (XY planes), and then were edited in axial views (YZ planes). Since the manual editing was conducted 742 

in 2D views and initial editing in either view was not sufficient to ensure smoothness in 3D, we iterated 743 

twice to further improve our results.   744 

 745 

Code availability 746 

Training and applying deep learning models were achieved using Python 3.7.0. Generation of synthetic 747 

aberrated data and quantitative image analysis was performed in MATLAB (Mathworks, R2022b). 748 

Customized code and software are available at https://github.com/eguomin/DeAbePlus/. RCAN and 749 

CARE software were installed from https://github.com/AiviaCommunity/3D-RCAN and 750 

https://github.com/CSBDeep/CSBDeep,  and code for RL deconvolution and multiview fusion is available 751 

at https://github.com/eguomin/diSPIMFusion/. 752 

Data availability 753 
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The data that support the findings of this study are included in Supplementary Figs. 1–23 and 754 

Supplementary Videos 1–14. Some representative data from the figures (Supplementary Figs. 6, 17) are 755 

publicly available at https://zenodo.org/record/8424246. Other datasets (training data and intermediate 756 

data for deep learning) are available from the corresponding author upon reasonable request due to 757 

their large file size.  758 
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 759 

Fig. 1, Concept and simulations illustrating deep learning-based aberration compensation. a) 760 

Schematic. Left: Fluorescence microscopy volumes are collected and near-diffraction-limited images 761 

from the shallow side of each stack are synthetically degraded to resemble aberrated images deeper 762 

into the stack. A neural network (e.g., a three-dimensional residual channel attention network, 3D 763 

RCAN) is trained to reverse this degradation given the ground truth on the shallow side of the stack, and 764 

the trained neural network (DeAbe model) subsequently applied to images throughout the stack, 765 
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improving contrast and resolution. Right: More detailed view of synthetic degradation process. Zernike 766 

basis functions and associated coefficients (coeffs) are used to add random aberrations by modifying the 767 

ideal point spread function (iPSF) to generate an aberrated PSF (aPSF). Ground truth images (GT) are 768 

Fourier transformed (FT) and multiplied by the ratio of the Fourier transformed aberrated and ideal PSFs 769 

(essentially a modified optical transfer function, mOTF). Inverse Fourier transforming (IFT) the result and 770 

adding noise generates the synthetically aberrated images. See Methods for further detail on this 771 

procedure. OBJ: objective lens used to collect the stack. b) Simulated three-dimensional phantoms 772 

consisting of randomly oriented and positioned dots, lines, spheres, spherical shells, and circles 773 

comparing maximum intensity projections of aberrated input image (left, random aberration with root 774 

mean square (RMS) wavefront distortion < 2 radians and Poisson noise added for an SNR of ~16, 775 

corresponding PSF in inset), network prediction (DeAbe) given aberrated input (middle), and ground 776 

truth (GT, right). Higher magnification views of dashed rectangular region are shown in c) (maximum 777 

intensity projection) and d) (single plane), additionally showing restoration given blind deconvolution 778 

(Blind Decon), Richardson-Lucy deconvolution with diffraction-limited PSF (RL Decon 1), Richardson-Lucy 779 

deconvolution with aberrated PSF (RL Decon 2). Yellow arrows indicate a reference structure for visual 780 

comparison. Twenty iterations were used for RL deconvolution and ten for blind deconvolution. e) As in 781 

c, d) but showing axial plane along dashed blue line in b). f) Quantitative comparisons for the 782 

restorations shown in b-e) using structural similarity index (SSIM, top) and peak signal-to-noise ratio 783 

(PSNR, bottom) with ground truth reference. Means and standard deviations are shown for 100 784 

simulations (10 independent phantom volumes, each aberrated with 10 randomly chosen aberrations). 785 

Scale bars: 5 m b) and 2.5 m c-e). See also Supplementary Figs. 1-5. 786 

  787 
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 788 

Figure 2, Computational aberration compensation on fluorescence microscopy image volumes. a) Live 789 

C. elegans embryos expressing a pan-nuclear GFP histone marker were imaged with light sheet 790 

microscopy (i, left column) and the raw data processed with Richardson-Lucy deconvolution (ii, 10 791 

iterations, middle column) or with a trained DeAbe model (iii, right column). First two rows show single 792 
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planes 20 and 28 m into the sample, third row shows axial view. Comparative line profiles through 793 

dashed blue, yellow, and green lines are shown in insets, comparing ability to discriminate nuclei. Red 794 

arrow highlights nuclei for visual comparison. See also Supplementary Video 3. b) NK-92 cells stained 795 

with Alexa Fluor 555 wheat germ agglutinin and embedded in collagen matrices were fixed and imaged 796 

with instant SIM, a super-resolution imaging technique. Left: raw data, right: after application of DeAbe 797 

and deconvolution (DeAbe+, 20 iterations Richardson-Lucy). Lateral maximum intensity projections 798 

(MIP, top) or single axial planes (bottom) are shown in b), and c, d show higher magnification views 799 

corresponding to green c) or blue d) dashed rectangular regions in b). Colored arrows in c, d highlight 800 

fine features obscured in the raw data and better revealed in the DeAbe+ reconstructions. See also 801 

Supplementary Video 5, Supplementary Fig. 8. e) Live cardiac tissue containing cardiomyocytes 802 

expressing Tomm20-GFP was imaged with two photon microscopy. Raw data (left) are compared with 803 

DeAbe prediction (right) at indicated depths, with insets showing corresponding Fourier transform 804 

magnitudes. Blue circles in Fourier insets in e) indicate 1/300 nm-1 spatial frequency just beyond 805 

resolution limit. See also Supplementary Video 6. f) Higher magnification views of white dashed 806 

rectangular region in e), emphasizing recovery of mitochondrial boundaries by DeAbe model. See also 807 

Supplementary Fig. 9, Supplementary Video 7. Scale bars: 10 m a, e); 5 m b, f); 2 m c, d); e) 808 

diameter of Fourier circle: 300 nm-1.    809 

 810 

 811 

  812 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.10.15.562439doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562439
http://creativecommons.org/licenses/by/4.0/


` 

24 

 

 813 

 814 

 815 

Fig. 3, Computational aberration compensation on mm-scale cleared mouse embryo volumes. a) Fixed 816 

and CLARITY-cleared E11.5-day mouse embryos were immunostained for neurons (TuJ1, cyan) and 817 

blood vessels (CD31, magenta), imaged with confocal microscopy and processed with a trained DeAbe 818 

model. See also Supplementary Video 8. b) Axial view corresponding to dotted rectangular region in a), 819 

comparing raw data and depth-compensated, de-aberrated, and deconvolved data (DeAbe+). See also 820 

Supplementary Fig. 10. c) Higher magnification lateral view at axial depth of 1570 m indicated by the 821 

orange double headed arrowheads in b). d) Higher magnification views of white dotted region in c), 822 

comparing raw (left) and DeAbe+ processing (right) for neuronal (top) and blood vessel (bottom) stains. 823 

e) Orientation (, transverse angle) analysis on blood vessel channel of DeAbe+ data, here shown on 824 

single lateral plane at indicated axial depth. See also Supplementary Fig. 11, Supplementary Video 9. f) 825 

Higher magnification lateral view of white dotted region in e) (note that axial plane is different), 826 

comparing intensity (left) and orientation (right) views between raw (top row) and DeAbe+ prediction 827 
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(middle row). Righthand insets show higher magnification views of vessel and surrounding region 828 

highlighted by dotted lines. Bottom row indicates histogram of all orientations in the vessel highlighted 829 

with dotted ellipse, full-width-at-half maximum (FWHM) in peak region of histogram is also shown. g) 830 

Directional variance of blood vessel stain within the indicated plane, with higher magnification region of 831 

interest (ROI) views at right. Histogram of directional variance in both regions also shown. See also 832 

Supplementary Fig. 12. Scale bars: 500 m a, b, c, e); 100 m d), 50 m inset; 300 m f), 50 m inset; 833 

300 m g), 50 m inset. 834 

 835 

  836 
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  837 

Fig. 4, Incorporating aberration compensation into multi-step restoration dramatically improves 838 

image quality in volumetric time-lapse imaging. a) C. elegans embryos expressing GFP-labeled 839 

membrane marker (green) and mCherry-labeled nuclear marker (magenta) were imaged with dual-view 840 
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light-sheet microscopy (diSPIM) and the raw data (left) from single-view recordings processed through 841 

neural networks that progressively de-aberrated, deconvolved, and isotropized spatial resolution (3-step 842 

DL, right). Single planes from lateral (top) and axial (bottom) perspectives are shown, with arrow in 843 

lower panel indicating direction of increasing depth. See also Supplementary Video 10, Supplementary 844 

Figs. 14, 15. b) Higher magnification axial views of membranes (top) and nuclei (bottom) deep into 845 

embryo, corresponding to dashed rectangle in a). c) Examples of automatic segmentation on raw (left, 846 

319 cells), 3-step DL prediction (middle, 421 cells), and manually corrected segmentation based on DL 847 

prediction (right, 421 cells). Single planes corresponding to the upper planes in a) are shown. Red and 848 

blue dashed ellipses highlight regions for visual comparison. See also Supplementary Video 11.  d) 849 

Number of cells detected by automatic segmentation of membrane marker vs. time for raw data 850 

(purple), and after successively applying each step in the multistep restoration (Steps 1-3, blue, green, 851 

and red curves). Ground truth from manual expert (black curve) is also shown for comparison. Inset 852 

(ellipse with dotted blue lines) highlights number count at early timepoints. e) Maximum intensity 853 

projection (MIP) images of C. elegans embryos expressing membrane-localized GFP under control of the 854 

ttx3-3b promoter, imaged with diSPIM, comparing raw single-view recordings (left) and multi-step 855 

restoration that progressively de-aberrated, deconvolved, and super-resolved the data (right, 3-step DL). 856 

Boundary of the embryo has been outlined in light blue for clarity. See also Supplementary Figs. 19, 20, 857 

Supplementary Video 12. Higher magnification MIP (f) or single lateral (g) or axial (h) plane comparisons 858 

corresponding to dashed lines or rectangle in e) are also shown. i) Time series based on 3-step DL MIP 859 

predictions highlight developmental progression of AIY (blue) and SMDD (magenta) neurites as they 860 

enter the nerve ring region. Top and bottom parts of each panel at each time point show MIP (neurites 861 

highlighted as dotted lines) vs. model of the neurites, respectively. See also Supplementary Fig. 21. 862 

Scale bars: 5 m a, c, e, f, h); 2 m b, d, g).  863 
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