

1 Deep learning-based aberration compensation improves contrast and resolution in fluorescence
2 microscopy

3 Min Guo^{1,2,*}, Yicong Wu^{2,3,^}, Yijun Su^{2,3,%}, Shuhao Qian¹, Eric Krueger^{2,%}, Ryan Christensen^{2,%}, Grant
4 Kroeschell^{2,%}, Johnny Bui^{2,%}, Matthew Chaw^{2,%}, Lixia Zhang³, Jiamin Liu³, Xuekai Hou¹, Xiaofei Han²,
5 Xuefei Ma⁴, Alexander Zhovmer⁴, Christian Combs⁵, Mark Moyle⁶, Eviatar Yemini⁷, Huafeng Liu¹, Zhiyi
6 Liu¹, Patrick La Riviere^{8,9}, Daniel Colón-Ramos^{9,10}, Hari Shroff^{2,3,9,%}

7 1. Current address: State Key Laboratory of Modern Optical Instrumentation, College of Optical
8 Science and Engineering, Zhejiang University, Hangzhou, China

9 2. Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and
10 Bioengineering, National Institutes of Health, Bethesda, Maryland, USA

11 3. Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, Maryland,
12 USA

13 4. Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring,
14 MD, USA

15 5. NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, MD, USA

16 6. Department of Biology, Brigham Young University-Idaho, Rexburg, ID, USA

17 7. Department of Neurobiology, UMass Chan Medical School, Worcester, MA

18 8. Department of Radiology, University of Chicago, Chicago, IL, USA

19 9. MBL Fellows Program, Marine Biological Laboratory, Woods Hole, MA, USA

20 10. Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University
21 School of Medicine, New Haven, CT, USA

22 ^ Current address: Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of
23 Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville,
24 MD, USA

25 % Current address: Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn,
26 VA, USA

27 * Correspondence to guom@zju.edu.cn

28 **Abstract**

29 Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast,
30 and resolution. Here we introduce a deep learning-based strategy for aberration compensation,
31 improving image quality without slowing image acquisition, applying additional dose, or introducing
32 more optics into the imaging path. Our method (i) introduces synthetic aberrations to images acquired
33 on the shallow side of image stacks, making them resemble those acquired deeper into the volume and
34 (ii) trains neural networks to reverse the effect of these aberrations. We use simulations to show that
35 applying the trained ‘de-aberration’ networks outperforms alternative methods, and subsequently apply
36 the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution
37 microscopy. In all cases, the improved quality of the restored data facilitates qualitative image
38 inspection and improves downstream image quantitation, including orientational analysis of blood
39 vessels in mouse tissue and improved membrane and nuclear segmentation in *C. elegans* embryos.

41 **Introduction**

42 Fluorescence microscopes offer diffraction-limited imaging only when optical aberrations are
43 absent. Such aberrations can arise due to optical path length differences introduced anywhere in the
44 imaging path, including from instrument misalignment, optical imperfections, or differences in refractive
45 index between the heterogenous and refractile sample, immersion media, or objective immersion oil.
46 Sample-induced optical aberrations usually dominate and are often the reason that three-dimensional
47 (3D) fluorescence image volumes show obvious deterioration in image signal-to-noise ratio (SNR),
48 contrast, and resolution deeper into the image volume.

49 One method of compensating for these aberrations is via adaptive optics (AO^{1,2}), a broad class of
50 techniques that measure the aberrated wavefront and subsequently apply an equal and opposite
51 'corrective' wavefront, restoring diffraction-limited³ or even super-resolution⁴ imaging throughout the
52 image volume. Once the aberrated wavefront is determined, an adaptive element such as a deformable
53 mirror or spatial light modulator is used to apply the correction. Although these methods are effective,
54 the process of determining the wavefront typically slows acquisition and/or applies more illumination
55 dose than imaging without AO. From a practical perspective, implementing AO is nontrivial and adds
56 considerable expense to the underlying microscope. Thus, AO remains the province of relatively few
57 labs, and there is a need for new methods that can reverse the effects of optical aberrations without
58 sacrificing temporal resolution, imparting more dose to the sample, or adding additional hardware to
59 the microscope.

60 Deep learning approaches can computationally reverse image degradation, and have been used
61 successfully in denoising^{5,6}, deconvolution^{7,8}, and super-resolution applications^{9,10}. By incorporating
62 information about the underlying object, such methods can also learn to predict the wavefront
63 associated with aberrated images¹¹⁻¹³. With sufficient training data (matched pairs of diffraction-limited
64 and aberrated data), we reasoned that a neural network ought to be able to directly predict the
65 diffraction-limited image from the aberrated image. The challenge then becomes accumulating
66 appropriate training data, which would ideally be obtained without relying on AO.

67 Here we address this problem by (i) introducing synthetic aberrations to easily obtained near-
68 diffraction limited data so that they resemble aberrated data and (ii) training neural networks to reverse
69 the effect of these aberrations. We use simulations to show that application of our 'content-aware'
70 approach outperforms other image restoration methods, including deconvolution with the known
71 aberrated point spread function (PSF). We then apply our techniques to diverse volumetric data
72 captured with confocal, light-sheet, multi-photon, and super-resolution microscopes, finding that in all
73 cases, resolution and contrast are substantially improved over the raw data. In addition to facilitating
74 biological inspection, the restored data also enhanced quantitative investigation, including orientational
75 analysis of blood vessels in mouse tissue and improved accuracy of membrane and nuclear
76 segmentation in *C. elegans* embryos.

77

78 **Results**

79

80 *Compensating for aberrations with deep learning*

81

82 First, we intentionally synthetically aberrate the images acquired by fluorescence microscopes
83 given knowledge of the physics of image formation^{14,15} (**Fig. 1, Methods, Supplementary Note 1**).
84 Aberrations are chosen so that the aberrated images resemble those acquired deeper into the sample,

85 where aberrations are more pronounced. The key insight of our approach is that the ‘shallow’ images on
86 the ‘near side’ of the three-dimensional fluorescence volume are usually near-diffraction-limited and
87 thus provide ground truth data that can be used to train a network to reverse the effect of the
88 synthetically introduced aberrations. The trained neural network model (termed ‘DeAbe’) can then be
89 used to reverse depth-dependent blurring on data unseen by the network, effectively mitigating the
90 effect of aberrations without recourse to AO.

91 To benchmark our method, we began by simulating 3D phantoms consisting of randomly
92 oriented and positioned dots, lines, spheres, circles, and spherical shells. We then degraded these
93 structures by adding random aberrations and noise and evaluated the extent to which DeAbe could
94 reverse the degradation (**Fig. 1b, Supplementary Figs. 1-5**). Visual assessments in lateral (**Fig. 1c, d,**
95 **Supplementary Video 1**) and axial (**Fig. 1e, Supplementary Video 2**) views, as well as quantitative
96 comparisons (**Fig. 1f**) demonstrated that the DeAbe model outperformed blind deconvolution¹⁶,
97 Richardson-Lucy deconvolution with an ideal point spread function (PSF), and even Richardson-Lucy
98 deconvolution with the aberrated PSF (known in these simulations, but unknown in general). We
99 attribute the superior performance of DeAbe to its ability to learn a sample-specific prior, thereby better
100 conditioning its solution relative to Richardson-Lucy deconvolution.

101 Importantly, simulations allowed us to further characterize DeAbe, offering insight into the
102 regimes in which the method excels and where performance suffers. First, we found optimal
103 performance when aberration magnitudes in the training data match the aberration magnitude in the
104 test data (**Supplementary Fig. 1**). Over the conditions we tested, the model improved images
105 contaminated with root mean square (RMS) wavefront distortion exceeding four radians (the highest
106 value we tested), although performance degrades as wavefront distortion increases. Second, although
107 we performed tests with training data containing up to the 7th Zernike order, the improvement offered
108 past order four (the value used in this work) is negligible (**Supplementary Fig. 2**). Third, DeAbe trained
109 on a mixture of Zernike basis functions also provides notable improvement on images corrupted solely
110 by individual Zernike functions (**Supplementary Fig. 3**), although dedicated models trained to correct
111 specific Zernike modes are better if these modes are known in advance (**Supplementary Fig. 4**). Finally,
112 although DeAbe’s performance suffers in the presence of noise, it still offers noticeable visual and
113 quantitative improvements in image quality for SNR above ~5 (**Supplementary Fig. 5**).
114

115 *Computational aberration compensation improves image quality on diverse volumetric data*

116
117 We subsequently applied DeAbe to experimental data acquired with different microscope
118 modalities, in each case training models on images derived from the shallow side of image volumes (**Fig.**
119 **2, Supplementary Fig. 6, Supplementary Table 1**). First, we imaged live *C. elegans* embryos expressing a
120 pan-nuclear GFP-histone marker with inverted selective plane illumination microscopy (iSPIM)^{17,18},
121 finding that the raw image data displayed progressive loss of contrast and resolution as a function of
122 increasing depth, making it difficult or impossible to discern subnuclear structure (or even individual
123 nuclei) at deeper imaging planes (**Fig. 2a, i, Supplementary Video 3**). By contrast, the DeAbe prediction
124 restored these structures, also improving axial views (**Fig. 2a, iii**). Richardson-Lucy deconvolution also
125 offered some improvement in image quality, albeit not to the extent of the DeAbe prediction, while also
126 undesirably amplifying noise (**Fig. 2a, ii**). Second, we used spinning-disk confocal microscopy to image
127 thicker adult *C. elegans* expressing the multicolor NeuroPAL transgene¹⁹, used for resolving neuronal
128 identities. Depth-dependent image degradation produced raw images with dim or diffuse nuclear signal

129 in each color channel. The DeAbe prediction improved SNR dramatically (**Supplementary Fig. 7**,
130 **Supplementary Video 4**), which we suspect may prove useful in improving the accuracy of neuronal
131 identification. Third, we applied DeAbe to images of NK-92 cells stained with Alexa Fluor 555 wheat
132 germ agglutinin and embedded in collagen matrices, acquired with instant SIM²⁰, a super-resolution
133 imaging technique (**Fig. 2b-d, Supplementary Fig. 8, Supplementary Video 5**). Post deconvolution, the
134 DeAbe prediction better resolved clusters of membrane-bound glycoproteins, intracellular vesicles, and
135 membranes ('DeAbe+', **Fig. 2c, d**) than the raw (or deconvolved raw, **Supplementary Fig. 8**) data,
136 especially near the limits of the 45 μm thick imaging volume. Fourth, we used two-photon microscopy to
137 image live murine cardiac tissue expressing Tomm20-GFP, marking the outer mitochondrial membrane
138 (**Fig. 2e**). Although mitochondrial boundaries were evident in the raw data 20 μm into the volume,
139 aberrations caused a progressive loss in resolution that hindered visualization of subcellular structure at
140 greater depths (**Fig. 2e, f**). The DeAbe prediction restored resolution throughout the 150 μm thick
141 volume (**Fig. 2f, Supplementary Fig. 9, Supplementary Video 6**), unlike Richardson-Lucy deconvolution
142 (**Fig. 2f**) which amplified noise without restoring the mitochondria. The DeAbe prediction similarly
143 improved contrast and resolution when applied to volumes of fixed mouse liver stained with membrane
144 labeled tdTomato, imaged with two-photon microscopy (**Supplementary Video 7**).

145 Next, we applied DeAbe to samples ~10,000-fold larger in volumetric extent (**Fig. 3a**,
146 **Supplementary Video 8**). We fixed and CLARITY²¹-cleared E11.5 mouse embryos immunostained for
147 neurons (Alexa Fluor TuJ1) and blood vessels (Alexa Fluor 594) and imaged them with low magnification
148 confocal microscopy. Although tissue clearing nominally produces a sample with the same refractive
149 index everywhere, we still observed pronounced depth-dependent degradation from the 'near' to 'far'
150 side of the embryo, including in intensity (likely due to photobleaching during the acquisition) and
151 resolution. We were able to largely reverse this deterioration by digitally compensating for
152 photobleaching²² (**Methods**), applying DeAbe, and finally deconvolving the data (**Fig. 3b, Supplementary**
153 **Fig. 10**). While the improvement in image quality was particularly striking in axial views (**Fig. 3b**),
154 restorations also improved the appearance of fibrillar structures in lateral views, in both channels,
155 throughout the volume (e.g., the vicinity of the vagus nerve and its associated nerve roots, **Fig. 3c, d**).

156 We further investigated this qualitative impression by using automated tools^{23,24} to
157 quantitatively assess the mean 3D orientation and directional variance (a measure of the spread in
158 angular orientation) at each voxel in the blood vessel channel (**Fig. 3e-g, Supplementary Figs. 11, 12**,
159 **Supplementary Video 9**). The DeAbe restoration resulted in cleaner separation between vessels, which
160 aided voxel-wise quantification of these metrics even in dense regions containing many crisscrossing
161 vessels (**Fig. 3e, Supplementary Video 9**). In deeper regions of the volume (**Fig. 3f**), the DeAbe results
162 produced narrower angular histogram distributions of vessels than the noisy raw data (**Fig. 3f**). The
163 improvement in quantification was also reflected in directional variance analysis. For example, when
164 visually inspecting different regions of interest (ROI) with differential vessel alignment (**Fig. 3g**,
165 comparing vicinity of aortic arches, (ROI 1), to diencephalon, (ROI 2)) we observed a greater difference
166 in mean directional variance when using the DeAbe reconstruction vs. the raw data (**Supplementary Fig.**
167 **12**).

168
169 *Incorporating DeAbe in multi-step restoration further enhances resolution and contrast in 4D imaging*
170 *applications*

172 Given the performance of DeAbe thus far, we wondered if we could further boost image quality
173 by combining DeAbe with additional networks designed to enhance spatial resolution. To test this
174 possibility, we acquired dual-view light sheet microscopy (diSPIM^{25,26}) volumetric time-lapse ('4D')
175 recordings of *C. elegans* embryos expressing labels marking cell membranes and nuclei, and then passed
176 the raw single-view data through three networks designed to sequentially compensate for aberrations
177 (i.e., DeAbe), deconvolve the resulting predictions ('DL Decon'), and improve resolution isotropy⁵ ('DL
178 Iso', **Fig. 4a-d, Supplementary Figs. 13-16**). As expected, (**Fig. 4a**), the raw data showed increasing
179 depth-dependent degradation in resolution and contrast, which confounded our ability to discern
180 distinct nuclei or cell boundaries on the 'far' side of the volume. In comparison, the multi-step
181 procedure offered striking improvements in resolution and contrast in both nuclear and membrane
182 channels, largely alleviating the degradation (**Fig. 4a, b, Supplementary Figs. 14, 15, Supplementary**
183 **Video 10**). Ablation experiments in which one or more of the networks were removed produced inferior
184 results, further substantiating our hypothesis that the gains in image quality benefited from applying all
185 three networks (**Supplementary Fig. 17**). In the membrane channel, the multi-step restoration enabled
186 us to automatically segment cell boundaries more accurately than in the raw data and further refine the
187 segmentations manually up to 421 cells (**Fig. 4c, Supplementary Fig. 16, Supplementary Video 11**),
188 exceeding previous efforts limited to the 350-cell stage²⁷. The automatic segmentation additionally
189 provided a cell count closer to manual ground truth²⁸ than either the raw data or a subset of the
190 networks (**Fig. 4d**).

191 Next, we explored replacing the final network (DL Iso) with a network designed to further
192 enhance resolution based on ground truth acquired with expansion microscopy^{9,29} ('DL Expan',
193 **Supplementary Fig. 13b**). After verifying that DL Expan improved resolution more than 2-fold on data
194 unseen by the model (**Supplementary Fig. 18**), we applied the new multi-step restoration method to *C.*
195 *elegans* embryos expressing a GFP-membrane marker labeling head neurons and gut cells (**Fig. 4e**).
196 Compared to the raw data, the enhanced resolution offered by the deep learning prediction better
197 resolved closely spaced membranes within and between cells (**Fig 4f-h, Supplementary Figs. 19, 20**).
198 This capability proved especially useful when tracking the development of neurites projecting in the
199 nerve ring, a neuropil that constitutes the brain of the animal, and which is composed of hundreds of
200 tightly packed interwoven neurites. While the position of the neurites within the neuropil determines
201 circuit identity and connectivity, the sequence of events leading to its innervation has not been
202 described because of limits in resolving these structures. We focused our analyses on the closely
203 positioned neurons AIY and SMDD, which we identified based on morphology by comparison to labeled
204 images in ref.³⁰ and ref.³¹. SMDD is a central pioneering neuron in the nematode brain³¹⁻³³, while its
205 sister cell AIY³⁰ is a first layer interneuron³⁴ involved in thermotaxis and locomotion³⁵. Observing both
206 neurons over our 120-minute recording, we found that SMDD's neurites grew out first, followed by AIY's
207 neurite. AIY's neurite entered the nerve ring after SMDD, consistent with the SMDD's role as a pioneer
208 neuron (**Fig 4i, Supplementary Video 12**). Such developmental dynamics were difficult or impossible to
209 observe in the raw data (**Supplementary Fig. 21**), or joint deconvolutions of the dual-view data due to
210 artifacts resulting from motion between the two views (**Supplementary Fig. 22**). Finally, to illustrate that
211 these gains in image quality can be extended to a different label imaged in a different microscope, we
212 also restored images of nuclei labeled with a GFP histone marker and acquired with high NA diSPIM¹⁸,
213 finding similarly dramatic improvements in contrast and resolution (**Supplementary Fig. 23**,
214 **Supplementary Videos 13, 14**).

215

216 **Discussion**

217 As we show on diverse microscopes and samples, DeAbe can compensate for optical aberrations
218 without recourse to AO, improving SNR, contrast, and resolution in fluorescence microscopy volumes.
219 We suspect this capability will be useful for most labs, which lack access to sophisticated AO setups but
220 still wish to improve the quality of imaging volumes acquired using existing hardware. Besides improving
221 the qualitative appearance of images (**Fig. 1-4**), which facilitates inspection of biological features deep
222 within imaging volumes, DeAbe also quantitatively improves downstream image analysis. We highlight
223 this capability by refining vessel segmentation in large, cleared tissue samples (**Fig. 3e-g**) and in
224 enhancing the segmentation of densely packed nuclei and membranes in *C. elegans* embryos (**Fig. 4**).
225 The latter capability may prove particularly useful in the creation or extension of 4D morphological
226 atlases²⁷, which depend on high quality image data.

227 Several caveats are worth noting in the context of current limitations and with an eye towards
228 future applications. First, the performance of DeAbe depends critically on the quality of the training
229 data, and specifically on the assumption that fluorescently labeled structures are similar throughout the
230 image volume. While this assumption was met for the samples in this work, we encourage caution when
231 applying DeAbe on highly heterogenous specimens. Second, although here we mainly trained on semi-
232 synthetic data (**Fig. 2-4**), it would also be worth investigating how well the training derived from fully
233 synthetic data⁷ (**Fig. 1**) generalizes to experimental data. Such an approach might prove useful in
234 ameliorating system aberrations introduced by microscope hardware. Third, we focused here on
235 correcting depth-dependent aberrations, in which the training data was corrupted by a constant
236 aberration in each image plane. A useful future direction would be to extend our approach to explicitly
237 account for laterally varying aberrations, as such aberrations are problematic particularly for large
238 specimens. Finally, although we used a mixture of random low-order aberrations to train our model,
239 enhanced performance is likely if aberrations specific to the sample (or instrument) can be inferred and
240 used in the training procedure (**Supplementary Fig. 4**).

241

242 **Author Contributions**

243

244 Conceived project and directed research: H.S. Implemented DeAbe framework: M.G. Designed
245 simulations: M.G., Y.W., H.S. Wrote software: M.G., Y.W., J.L., X.Han, S.Q., Z.L. Designed experiments:
246 M.G., Y.S., R.C., X.M., A.Z., C.C., M.M., E.Y., D.C-R., H.S. Prepared samples: M.G., Y.S., E.K., R.C., G.K., J.B.,
247 M.C., L.Z., X.M., A.Z., C.C., M.M., E.Y. Performed experiments: M.G., Y.S., E.K., R.C., G.K., J.B., M.C.,
248 X.Han, X.M., A.Z., C.C., M.M., E.Y. Designed and performed segmentation analysis: M.G., Y.S., J.L., X.
249 Hou, S.Q., Z.L. All authors examined and analyzed data. Wrote manuscript: M.G. and H.S., with advice
250 from all authors. Provided biological insight and advice: R.C., X.M., A.Z., C.C., M.M., E.Y., D.C-R.
251 Supervised research: E.Y., H.L., Z.L., P.L-R., D.C-R., H.S.

252

253 **Acknowledgments**

254 We thank O.H. for supporting the NeuroPAL work in his lab and allowing us to use the data generated
255 therein for this paper, Robert Weigert (NCI) for the gift of the fixed mouse liver sample, Nikolaj Reiser
256 for helpful discussions, and Courtney Johnson and Xuesong Li for their comments on the manuscript.
257 This research was supported by the intramural research programs of the National Institute of Biomedical
258 Imaging and Bioengineering and the National Heart, Lung, and Blood Institute within the National

259 Institutes of Health (NIH). This work was supported by the Howard Hughes Medical Institute (HHMI).
260 This article is subject to HHMI's Open Access to Publications policy. HHMI laboratory heads have
261 previously granted a non-exclusive CC BY 4.0 license to the public and a sub-licensable license to HHMI
262 in their research articles. Pursuant to those licenses, the author-accepted manuscript of this article can
263 be made freely available under a CC BY 4.0 license immediately upon publication. This research is
264 funded in part by the Gordon and Betty Moore Foundation. We thank the Office of Data Science
265 Strategy, NIH, for providing a seed grant enabling us to test and validate the initial deep learning
266 frameworks using cloud-based computational resources. H.S., P.L.R. and D.C.-R. acknowledge the
267 Whitman and Fellows program at MBL for providing funding and space for discussions valuable to this
268 work. Z.L. acknowledges the funding support from Natural Science Foundation of Zhejiang Province
269 (LR20F050001). H.L. acknowledges the funding support from the National Key Research and
270 Development Program of China (2020AAA0109502), the National Natural Science Foundation of China
271 (U1809204) and the Talent Program of Zhejiang Province (2021R51004). E.Y. acknowledges support
272 from the Esther A. and Joseph Klingenstein Fund, the Simons Foundation, and the Hypothesis Fund. X.M.
273 and A.Z. were supported by Intramural FDA funding.

274

275

276 **Methods**

277

278 ***Deep learning-based de-aberration model***

279 Building a de-aberration model (DeAbe) requires appropriate training data and the use of a
280 neural network. First, based on the physics of image formation, we derived forward imaging models that
281 allowed us to synthetically aberrate the data produced for multiple systems, including wide field, light
282 sheet, confocal, two photon, and super-resolution structured illumination microscopes (**Supplementary**
283 **Note 1**). Second, we extracted subvolumes from the shallow side of the experimentally acquired image
284 stacks, using these data as ground truth. Third, based on the forward imaging models, we synthetically
285 added aberrations to the ground truth images so that they resembled aberrated data present deeper
286 within the image stacks. Together, the paired ground truth data and associated synthetically degraded
287 data constitute training pairs. Fourth, we used these training pairs in conjunction with our 3D RCAN
288 network⁹ to train a DeAbe model to reverse the effect of synthetic aberration. Finally, we applied the
289 trained network to reduce the effects of aberrations in experimentally acquired image volumes unseen
290 by the network.

291 We define the 'shallow side' of an image stack by the planes nearest to the detection objective,
292 which are typically contaminated with least aberration and thus offer the best image quality. We then
293 selected subvolumes on the shallow side ('shallow subvolumes') by visually inspecting image quality in
294 real and Fourier space (**Supplementary Fig. 6, Supplementary Table 1**). We extracted shallow
295 subvolumes from image stacks by manually cropping with ImageJ when image size and content differed
296 substantially across a given specimen type, or automatically with customized ImageJ macros when
297 considering specimens with more stereotyped image size and content (e.g., as for time-lapse image
298 volumes). For the cleared mouse embryo images (**Fig. 3**), the shallow subvolumes were further divided
299 into smaller subvolumes (~80 MB/volume) due to their large volume size in raw data (**Supplementary**
300 **Table 1**).

301 As described in **Supplementary Note 1**, we expressed the aberrated wavefront $\phi(r, \theta)$ at the
302 back focal plane of the objective using Zernike basis functions $\phi_m(r, \theta)$ and associated Zernike
303 coefficients c_m

304

$$\phi(r, \theta) = \sum_{m=0}^M c_m \phi_m(r, \theta), \quad (1)$$

305 with M the maximum Zernike index chosen in our aberration.

306 We generated synthetic aberrations by using semi-randomly generated Zernike coefficients (**Fig.**
307 **1a**). We used the ANSI convention³⁶ when indexing the Zernike coefficients, customizing aberrations by
308 using different Zernike coefficients for different datasets acquired from different microscopes. For all
309 experimental datasets, we added aberrations up to the 4th Zernike order (i.e., $M = 14$), except for piston
310 and tilt components ($Z = 0, 1, 2$). The amplitudes of the Zernike coefficients were randomly generated,
311 but subject to pre-defined bounds. We initially set an upper bound of 0.5 rad for all Zernike coefficients,
312 then added an additional 1 rad for defocus ($Z = 4$) and spherical ($Z = 12$) components to mimic the more
313 severe contamination caused by defocus and spherical aberrations commonly encountered in
314 experimental datasets, i.e:

315

$$\begin{cases} c_z = 0, & \text{for } Z = 0, 1, 2 \\ |c_z| \leq 1.5, & \text{for } Z = 4, 12 \\ |c_z| \leq 0.5, & \text{otherwise for } Z \leq M, \end{cases} \quad (2)$$

316
317 with $M = 14$ for all experimental datasets.

318 For each shallow side subvolume, 10 independent sets of aberrations were generated and used
319 for synthetic degradation, thereby augmenting the data 10-fold. Processing was performed with custom
320 MATLAB code (MathWorks, R2022b), with further details provided in the *Code availability* section.

321 We employed 3D RCAN (<https://github.com/AiviaCommunity/3D-RCAN>), appropriate for 3D
322 image volumes, for generating the DeAbe model based on the training data pairs. We trained individual
323 DeAbe models for each microscope and each sample type. For training, we set the number of epochs to
324 200; the number of steps per epoch to 400; the training patch size to $64 \times 64 \times 64$; the number of
325 residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. The training
326 was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two
327 processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory). More details on
328 datasets and training parameters are listed in **Supplementary Table 1**.

329
330 **Multi-step image restoration with deep learning**

331 The multi-step image restoration pipeline combines the DeAbe model with two additional
332 networks to progressively improve image resolution and contrast: (1) the DeAbe model to reverse
333 degradation from aberrations (“DL DeAbe”); (2) a deconvolution network designed to mimic the image
334 quality improvement afforded by multiview imaging (“DL Decon”, see the section *Deep learning-based*
335 *deconvolution*); (3) an axial resolution enhancement network to improve resolution isotropy (“DL Iso”,
336 see the section *Deep learning-based axial resolution enhancement*); or a network designed to predict
337 the improved resolution provided by expanded samples (“DL Expan”, see the section *Deep learning-*
338 *based expansion*).

339
340 **Deep learning-based deconvolution**

341 As for our previous attempts at deep-learning based multiview deconvolution⁸, we used a
342 single-view image volume as input, and attempted to restore image resolution and contrast that
343 approximated the result from multiview joint deconvolution. The training data were acquired by dual-
344 view light sheet microscopy²⁵, either a ‘symmetric’ diSPIM equipped with 0.8/0.8 NA objectives²⁶ (**Fig 4e**-
345 **i, Supplementary Figs. 17-22**) or a higher NA ‘asymmetric’ diSPIM equipped with 1.1 / 0.67 NA
346 objectives¹⁸ (**Fig 4a-d, Supplementary Figs. 14-16, 23**). First, raw images were de-aberrated with the
347 DeAbe model. Then de-aberrated images from the two views were jointly deconvolved to achieve
348 reconstructions with near isotropic spatial resolution and good image quality throughout the
349 reconstruction. With training data consisting of the single-view de-aberrated images as input and the
350 jointly deconvolved images as ground truth, we then used another 3D RCAN for the deconvolution
351 model (DL Decon). For all datasets, the number of epochs for training was 200; the number of steps per
352 epoch was 400; the training patch size was $64 \times 64 \times 64$; the number of residual blocks was 5; the
353 number of residual groups was 5; and the number of channels was 32. The training was performed
354 within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8168, two processors;
355 RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24 GB memory). We note that although training DL
356 Decon required dual-view image volumes, applying DL Decon needs only single-view image volumes
357 acquired from single-view light sheet microscopy (iSPIM).

358

359 **Deep learning-based axial resolution enhancement**

360 The images predicted by the DL Decon model were not perfectly isotropic, i.e., the axial
361 resolution (although improved over the raw input images) is worse than the lateral resolution. Thus, for
362 some experiments we used an additional network to enhance axial resolution (DL Iso, **Fig. 4a, b,**
363 **Supplementary Figs. 14-17, Supplementary Videos 10, 11**). CARE⁵ software
364 (<https://github.com/CSBDeep/CSBDeep>) was employed to train the a ‘DL Iso’ model based on the
365 predictions derived from serially applying the DeAbe and Decon models to raw input images. We used
366 100 3D volumes, each spanning $360 \times 480 \times 310$ voxels, for training data. Training was performed on the
367 xy planes (lateral views), using a 2D PSF (consisting of a point blurred with a 1D Gaussian function, sigma
368 = 2.5 pixels along the y dimension) an axial downsampling factor of 6, and a patch size of 64×64 to
369 create training pairs. The training was performed within Python 3.7.0 on a Windows 10 workstation
370 (CPU: Intel Xeon, Platinum 8168, two processors; RAM: 512 GB; GPU: Nvidia Quadro RTX6000 with 24
371 GB memory).

372

373 **Deep learning-based expansion**

374 As an alternative to DL Iso, we also trained a model to improve the resolution based on data
375 acquired with expansion microscopy (DL Expan). First, physically expanded samples (**Supplementary Fig.**
376 **18**) were imaged on the symmetric 0.8 NA diSPIM. Second, dual-view raw images were jointly
377 deconvolved and used as ground truth images. Third, the ground truth images were synthetically
378 degraded to resemble low-resolution conventional images acquired on the diSPIM, following our
379 previous procedure⁹. Last, the 3D RCAN network was employed to train the DL Expan model based on
380 the training data (i.e., synthetically degraded and ground truth pairs).

381 For the worm embryo data with DAPI labeled nuclei (**Supplementary Fig. 23**), dual-view raw
382 image volumes from 15 expanded worm embryos were acquired and jointly deconvolved to produce 15
383 high-resolution image volumes. These 15 volumes were then synthetically degraded to generate low-
384 resolution images. For the worm embryo data with TTX3B neurites labeled (**Fig 4e-i, Supplementary**

385 **Figs. 18-21**), dual view image volumes from 71 expanded worm embryos were acquired and manually
386 cropped to select regions containing TTX3B neurites (this was necessary given the sparsely labeled
387 neurites present in the raw images). Cropped images were jointly deconvolved to produce 71 high-
388 resolution image volumes. These 71 volumes were then synthetically degraded to generate synthetic
389 low-resolution image data. For each dataset, the low-resolution and high-resolution paired volumes
390 were then used to train the 3D RCAN based DL Expan model. The number of epochs for training was set
391 to 300; the number of steps per epoch to 400; the training patch size to $64 \times 64 \times 64$; the number of
392 residual blocks to 5; the number of residual groups to 5; and the number of channels to 32. The training
393 was performed within Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two
394 processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory).

395

396 **Simulations on phantom objects**

397 To evaluate the quality and performance of our DeAbe model, we generated 3D phantom
398 objects consisting of five types of structures in MATLAB (Mathworks, R2022b, with the Image Processing
399 Toolbox): dots, lines, circles, spheres, and spherical shells²². Phantoms were randomly oriented and
400 located in a volume of $256 \times 256 \times 256$ voxels, with voxel size $0.13 \times 0.13 \times 0.13 \mu\text{m}^3$. We simulated the
401 blurring introduced by light sheet microscopy (**Supplementary Note 1**) by convolving the phantom with
402 an ideal, noise-free PSF resembling that of our light sheet system (with 1.1 NA water dipping objective,
403 detection wavelength of $0.532 \mu\text{m}$ and an illumination light sheet thickness of $2 \mu\text{m}$). Aberrated data
404 was generated by altering the ideal PSF according to the synthetic aberration procedure described
405 above.

406 To create synthetic aberrations, we adopted Equation (1) and generated Zernike coefficients
407 semi-randomly in MATLAB, with each Zernike coefficient c_m subject to a pre-defined upper bound T_m :

$$408 \quad |c_m| \leq T_m, \quad \text{for } m \leq M, \quad (3)$$

409 with m the Zernike index following the ANSI convention and M the maximum Zernike index.

410 We omitted piston and tilt components ($m = 0, 1, 2$) and weighted lower order Zernike components
411 (Defocus $m = 4$, astigmatism $m = 3, 5$, and spherical $m = 12$) more as these aberrations are commonly
412 observed in real samples:

$$413 \quad T_m = \begin{cases} 0, & \text{for } m = 0, 1, 2 \\ 1.5, & \text{for } m = 3, 4, 5, 12 \\ 0.5, & \text{otherwise for } m \leq M, \end{cases} \quad (4)$$

414 with M defined based on the desired Zernike order:

$$415 \quad M = \begin{cases} 9, & \text{for Zernike order of 3} \\ 14, & \text{for Zernike order of 4} \\ 20, & \text{for Zernike order of 5} \\ 27, & \text{for Zernike order of 6} \\ 35, & \text{for Zernike order of 7} \end{cases} . \quad (5)$$

416 For **Supplementary Fig. 2**, we varied M to explore the effect of different Zernike orders on de-aberration
417 performance by setting $M = 9, 14, 20, 27$, and 35 corresponding to Zernike orders 3-7. For all other
418 simulations, we set $M = 14$.

419 The Root Mean Square (RMS) wavefront distortion of an aberration with Zernike coefficients c_m ($m =$
420 $3, 4, 5, \dots, M$) is:

421

$$RMS_c = \sqrt{\sum_{m=3}^M c_m^2}. \quad (6)$$

422 The RMS wavefront distortion for aberrations defined by upper bounds T_m ($m = 3, 4, 5, \dots, M$) is:

423

$$RMS_T = \sqrt{\sum_{m=3}^M T_m^2}. \quad (7)$$

424 To create training data, we synthetically aberrated phantoms with two types of aberrations:

425

426 1) a random mixture of aberrations containing different Zernike components, with the
427 amplitude of the aberrations subject to upper bounds. This type of aberrations was first generated with
428 a set of initial Zernike coefficients c_m based on Equations (3-5), and then rescaled to a maximum RMS of
429 Ω wavefront distortion (e.g., $\Omega = 1, 2$, or 4 rad) to obtain the final Zernike coefficients $c_{m-final}$:

429

$$c_{m-final} = \frac{\Omega}{RMS_T} c_m, \quad \text{for } m \leq M. \quad (8)$$

430

431 These aberrated training data were used to train the general DeAbe models (i.e., all but the model
432 trained to counter the defocus mode specifically) used in all figures and videos showing simulated
433 phantoms.

433

434 2) a single aberration mode of defocus with amplitude subject to upper bounds, i.e., the upper
435 bounds of each Zernike coefficient were zeros except for the defocus mode ($m = 4$):

435

$$T_m = \begin{cases} 1.5, & \text{for } m = 4 \\ 0, & \text{otherwise for } m \leq M. \end{cases} \quad (9)$$

436

437 By replacing Equation (4) with Equation (9), we could generate the defocus aberration the same way as
438 for the first aberration type (1). These training data were only used to train the specific defocus DeAbe
439 model used in **Supplementary Fig 4**.

440

441 For each training session, we created 50 phantoms, each consisting of different random objects.
442 For each phantom, we generated 10 independent aberrated images with each image containing random
443 mixtures of aberrations (**Fig 1**, **Supplementary Figs 1-5**, **Supplementary Videos 1-2**) or only defocus
444 aberrations (**Supplementary Fig 4**), for a total of 500 training data pairs per session. We also added
445 Poisson noise to the aberrated images by defining the SNR as

444

$$SNR = \sqrt{S}, \quad (10)$$

445

446 where S is the signal defined by the average of all pixels with intensity above a threshold (here set as 1%
447 of the maximum intensity of the blurred objects in the noise-free image).

447

448 We employed 3D RCAN to train the DeAbe model based on simulated training data. We set the
449 number of epochs to 200; the number of steps per epoch to 400; the training patch size to $64 \times 64 \times 64$;
450 the number of residual blocks to 5; the number of residual groups to 5; and the number of channels to
451 32. Training was performed with Python 3.7.0 on a Windows 10 workstation (CPU: Intel Xeon, Platinum
452 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory).

452

453 To benchmark the performance of the DeAbe model, we created synthetic phantoms with three
454 types of aberrations:

455

456 1) a random mixture of aberrations containing different Zernike components, with the
457 amplitude of the aberrations subject to upper bounds. This type of aberration is the same used for
458 training the general DeAbe models and was generated following Equations (3-5) and (8). This aberration
459 mixture was used in **Fig 1**, **Supplementary Fig 2**, and **Supplementary Videos 1-2**.

458 2) a random mixture of aberrations containing different Zernike components, with the
459 amplitude of the aberrations fixed at a certain RMS value. This aberration mixture was first generated
460 with a set of initial Zernike coefficients c_z based on Equations (3-5), and then rescaled to a fixed
461 amplitude with RMS Υ (e.g., $\Upsilon = 1, 2$, or 4 rad) wavefront distortion to obtain the final Zernike
462 coefficients $c_{m-final}$:

$$463 \quad c_{m-final} = \frac{\Upsilon}{RMS_c} c_m, \text{ for } m \leq M. \quad (11)$$

464 This aberration mixture was used for **Supplementary Figs 1,3,5**.

465 3) single aberration modes with a fixed RMS value, i.e., Zernike coefficients were set to zero
466 except for the desired aberration mode. The single aberration modes tested in the paper include
467 defocus ($m=4$), astigmatism ($m=3,5$), coma ($m=7,8$), trefoil ($m=6,9$), and spherical ($m=12$). If the RMS
468 wavefront distortion is defined as Υ (e.g., $\Upsilon = 1, 2$, or 4 rad), each single aberration mode's Zernike
469 coefficients are:

470 Defocus: $c_4 = \Upsilon$, otherwise $c_m = 0$ for $m \leq M$

471 Astigmatism: $\sqrt{c_3^2 + c_5^2} = \Upsilon$, otherwise $c_m = 0$ for $m \leq M$

472 Coma: $\sqrt{c_7^2 + c_8^2} = \Upsilon$, otherwise $c_m = 0$ for $m \leq M$

473 Trefoil: $\sqrt{c_6^2 + c_9^2} = \Upsilon$, otherwise $c_m = 0$ for $m \leq M$

474 Spherical: $c_{12} = \Upsilon$, otherwise $c_m = 0$ for $m \leq M$

475 These aberrations were used to test the DeAbe performance on single aberration modes
476 (**Supplementary Figs. 3,4**).

477

478 For quantitative analysis, we used structural similarity index (SSIM) and peak signal-to-noise
479 ratio (PSNR) to evaluate the restored images provided by deep learning as well as by traditional
480 deconvolution. The SSIM and PSNR were calculated based on image volumes with MATLAB (Mathworks,
481 R2022b). Their mean value and standard deviation were computed from 100 simulations, each with
482 random object structures and input aberrations.

483

484 **Preprocessing, attenuation correction, traditional deconvolution, and multiview fusion**

485 Raw images acquired with iSIM and light sheet imaging were preprocessed by subtracting a
486 uniform background with intensity equivalent to the average of 100 dark (no excitation light)
487 background images. When diSPIM was operated in stage scan mode, the images were also deskewed to
488 correct the distortion induced by stage-scan acquisition before further processing.

489 For the cleared mouse embryos imaged with confocal microscopy (**Fig 3, Supplementary Fig. 10**,
490 **Supplementary Video 8**), raw data was additionally preprocessed with intensity attenuation correction.
491 The attenuation correction was performed by multiplying the raw intensity values with an exponential
492 compensation factor:

$$493 \quad I(z) = I_0(z)e^{\alpha z} \quad (11)$$

494 with $I_0(z)$ the raw intensity, z the depth and α the attenuation factor. Here we set $\alpha = 0.01$.

495 For the comparison of DeAbe with traditional deconvolution, we implemented both Richardson-
496 Lucy (RL) deconvolution^{37,38} (**Fig. 1c-f, Fig. 2 and Supplementary Figs. 8-10**) and blind deconvolution¹⁶
497 (**Fig. 1c-f**) on the raw aberrated images. For blind deconvolution, we used the MATLAB function
498 *deconvblind* with default settings (<https://www.mathworks.com/help/images/ref/deconvblind.html>).
499 For RL deconvolution, we adopted our previously developed deconvolution package⁸
500 (<https://github.com/eguom/regDeconProject>). In one synthetic dataset ('RL Decon 2', **Fig. 1c-f**), we used

501 an aberrated PSF that was generated as described in **Supplementary Note 1** and matched the
502 aberrations in the synthetic dataset; otherwise, we used an aberration-free ideal PSF for all other
503 datasets (**Fig. 1c-f, Fig. 2 and Supplementary Figs. 8-10**). Additionally, we also performed RL
504 deconvolution on several datasets after DeAbe processing (**Fig. 2b-d, Supplementary Fig. 8, 10**), setting
505 the number of iterations to 20 unless specified otherwise. All deconvolution was performed in MATLAB
506 (MathWorks, R2022b) on a Windows 10 workstation (CPU: Intel Xeon, Platinum 8369B, two processors;
507 RAM: 256 GB; GPU: NVIDIA GeForce RTX 3090 with 24 GB memory).

508 For data acquired by diSPIM, we performed multiview fusion on several datasets either for
509 generating DL training data (**Fig. 4, Supplementary Figs. 14, 15, 19-21, 23**) or for comparisons to the DL
510 Decon model (**Supplementary Figs. 17, 22**). The diSPIM data typically contain two view volumes,
511 referred to as View A and View B volumes. The multiview fusion process involves registration and joint
512 deconvolution to combine two views into a single volumetric image stack with improved resolution. The
513 registration first rotates View B by 90 degrees along the Y-axis to align View B's orientation with View A
514 and then maximizes the cross-correlation function between View A and View B with affine
515 transformations. After registration, View A and registered View B were deconvolved jointly using a
516 modified Richardson–Lucy deconvolution algorithm as previously described²⁵. Multiview fusion was
517 achieved using custom software (<https://github.com/eguom/diSPIMFusion>) on a Windows 10
518 workstation (CPU: Intel Xeon, Platinum 8369B, two processors; RAM: 256 GB; GPU: NVIDIA GeForce RTX
519 3090 with 24 GB memory).

520

521 **Sample preparation and imaging**

522 *Live nematode embryos imaged with light sheet microscopy*

523 Nematode strains were kept at 20°C, and grown on NGM media plates seeded with *E. coli* OP50.
524 Strains used in this paper included BV514 (ujlS113 [*pie-1p::mCherry::H2B + unc-119(+); Pnhr-*
525 *82::mCherry::histone + unc-119(+)*]), OD58 (ltls38 [*pie1p::GFP::PH(PLC1delta1) + unc-119(+)*]), DCR6268
526 (olaEx3632 [*pttx-3b::SL2::PHD::GFP:: unc-54 3' UTR + pelt-7::mCh::NLS::unc-54 3' UTR*]), and SLS164
527 (ltls138 [*pie-1p::GFP::PH(PLC1delta1) + unc-119(+)*]; ujlS113 [*pie-1p::mCherry::H2B + unc-119(+); Pnhr-*
528 *82::mCherry::histone + unc-119(+)*]). SLS164 was made by crossing together strains BV514 and OD58 and
529 may have unc-119(ed3) III in the background. Strains BV514 and OD58 were gifts from Dr. Zhirong Bao.

530 Nematode samples were prepared for diSPIM imaging as previously described^{17,26,39}: gravid adult
531 hermaphrodites were picked into a watch glass with M9 buffer, adults were cut in half to liberate
532 embryos, and embryos were transferred onto a poly-L-lysine coated coverslip in a diSPIM imaging
533 chamber. For strain DCR6268 (olaEx3632 [*pttx-3b::SL2::PHD::GFP:: unc-54 3' UTR + pelt-*
534 *7::mCh::NLS::unc-54 3' UTR*]), labeling neuron and gut cells), embryos were imaged once they reached
535 the bean stage of development using a fiber-coupled symmetric diSPIM (with 0.8NA/0.8NA
536 objectives)²⁶. Volumes were captured once per minute over two hours in light sheet scan mode. Each
537 volume comprised 50 slices, with a 1 μm step size and a total acquisition time per volume of ~1 second.
538 For strain SLS164 (labeling cell membrane and nuclei), embryos were imaged from the 2- or 4-cell stage
539 using a fiber-coupled asymmetric diSPIM (with 1.1NA/0.67NA objectives)¹⁸. Volumes were captured
540 once every 3 minutes over 450-minute duration in stage scan mode. Each volume comprised 70 slices,
541 with a 1.1 μm stage step size and a total acquisition time of ~1.4 s per volume. For strain BV514 (labeling
542 cell nuclei), embryos were imaged from the bean stage to hatching using the asymmetric diSPIM.
543 Volumes were captured every 5 minutes in stage scan mode. Each volume comprised 60 slices, with a
544 1.4 μm stage step size and a total acquisition time per volume of ~1.2 seconds. For strain OD58 (labeling

545 cell membranes), embryos were imaged from the 4- or 8-cell stage using a symmetric diSPIM. Volumes
546 were captured once every 3 minutes over a 450-minute period in light sheet scan mode. Each volume
547 comprised 45 slices, with a 1 μ m step size and a total acquisition time per volume of ~0.9 seconds. For
548 all imaging, images were acquired using 488 nm excitation (for GFP labels) or 561 nm excitation (for
549 mCherry labels).

550

551 *Expanded nematode embryos*

552 *C. elegans* embryos from strain DCR6268 (labeling neurites and gut cells) were immobilized on
553 Poly-L-Lysine (PLL) coated glass bottom dishes, bleached, digested by yatalase, fixed, and expanded. The
554 procedure takes approximately 2 days, and is adapted from our published method²².

555 First, glass bottom dishes were coated with PLL. PLL (Sigma, Cat# P5899) powder was
556 reconstituted in distilled water to 1mg/mL, aliquoted, and stored at -20°C. Prior to experiments, 30-50
557 μ L of PLL was placed on the glass bottom dish (MatTek, Cat# P35G-1.5-14-C) and air dried at room
558 temperature (RT). Coated coverslips were usually prepared up to 1 day before pre-treatment of *C.*
559 *elegans* for expansion microscopy.

560 Second, embryos were digested, fixed, and stained with DAPI. Gravid adult *C. elegans* worms
561 were deposited in a petri dish in PBS buffer and cut with a surgical blade to release eggs. Eggs were
562 immobilized on a PLL coated glass bottom dish in PBS and could be processed immediately or stored at
563 25°C in M9 buffer until the embryos developed to the desired stage. Embryos were treated with a
564 bleaching mixture containing 1% sodium hypochlorite (Sigma, Cat# 425044) in 0.1M NaOH/water for 2-3
565 minutes, rinsed 3 times in PBS, digested in 50 mg/mL Yatalase in PBS (Takara Bio, Cat# T017) for 40
566 minutes at RT and rinsed 3 times with PBS. It was important to treat eggs with bleach only after
567 immobilization on the PLL surface, otherwise embryos tended to detach from the glass at later steps.
568 Digested embryos were fixed in 4% paraformaldehyde/PBS (Electron Microscopy Sciences, Cat#
569 RT15710) for 1 hour, then rinsed 3 times with PBS to remove fixative. Fixed embryos were
570 permeabilized in 0.1% Triton X-100/PBS (Sigma, Cat# 93443) for 1 hour at RT with 1 μ L/mL of DAPI
571 (Thermo Fisher Scientific, Cat# D1306).

572 Optionally, GFP signal can be boosted by immunolabeling. Yatalase digested embryos were
573 permeabilized with staining buffer (0.1% Triton X-100/PBS) for 1 hour before immunolabeling. Embryos
574 were stained by an anti-GFP primary antibody (Abcam, Cat# ab290) in the staining buffer at 4°C
575 overnight at 1 μ g/mL. After primary antibody labeling, embryos were washed 3 times (30 min intervals
576 between washes) in the staining buffer and labeled using donkey-anti-rabbit-biotin secondary antibody
577 (Jackson ImmunoResearch, Cat# 711-067-003) in the staining buffer at 4°C overnight at 1 μ g/mL. After
578 secondary antibody labeling, the embryos were washed 3 times in the staining buffer (30 mins intervals
579 between washes) and labeled with Alexa Fluor 488 Streptavidin in the staining buffer at 4°C overnight at
580 2 μ g/mL (Jackson ImmunoResearch, Cat# 016-540-084). Labeled embryos were washed 3 times in the
581 staining buffer (30 minutes between washes) before being processed for expansion microscopy.

582 Immunolabeling was only performed on the data shown in **Supplementary Fig 18a**.

583 Finally, embryos were expanded. Embryos were treated with 1 mM MA-NHS (Sigma, Cat#
584 730300) in PBS for 1 hour at RT. Samples were rinsed 3 times in PBS, and treated with monomer
585 solution, which was made up of acrylamide (Sigma, Cat# A9099), sodium acrylate (Santa Cruz
586 Biotechnology, Cat# 7446-81-3), N, N'-methylenebis(acrylamide) (Sigma, Cat# 146072) and 4-Hydroxy-
587 TEMPO (Sigma, Cat# 176141), diluted with PBS, with a final concentration of 10%, 19%, 0.1%, and 0.01%,
588 respectively. After the treatment for 1 hour at RT, the monomer solution was replaced by gelation

589 solution. The gelation solution shared the same reagents and concentrations as monomer solution, with
590 the addition of tetramethylethylenediamine (TEMED, Thermo Fisher Scientific, Cat# 17919, reaching a
591 final concentration of 0.2%) and ammonium persulfate (APS, Thermo Fisher Scientific, Cat# 17874,
592 reaching a final concentration of 0.2%). APS was added at last, and the fresh gelation solution was
593 immediately applied to the embryos sandwiched between the glass bottom dish and another coverslip
594 surface for 2 hours at RT. It was important to control the gelation speed with 4-hydroxy-TEMPO as
595 premature gelation can distort embryos and result in poor expansion quality. The polymerized embryo-
596 hydrogel hybrid was cut out by a razor blade and digested with 0.2 mg/mL Proteinase K (Thermo Fisher
597 Scientific, Cat# AM2548) in digestion buffer (0.5 M sodium chloride (Quality Biological, Cat # 351-036-
598 101); 0.8 M guanidine hydrochloride (Sigma, Cat# G9284); and 0.5% Triton X-100) at 45°C overnight.
599 Digested embryos were expanded ~3.3-3.7 fold in distilled water, exchanging the water every 30 min
600 until expansion was complete. Expanded samples were flipped over so that embryos were 'on top'
601 (suitable for diSPIM imaging), mounted on PLL coated #1.5 coverslips (VWR, Cat# 48393-241) and
602 secured in an imaging chamber filled with distilled water. Finally, samples were imaged using the
603 symmetric 0.8/0.8 NA diSPIM in stage scan mode. Depending on the orientation of embryos, ~200-300
604 planes were acquired for each embryo, with 1.414 μm stage step size and 20 ms per-plane exposure
605 time.

606

607 *Live nematode adults imaged with spinning disk confocal microscopy*

608 *C. elegans* strain OH15500 (*otls669[NeuroPAL]; otls672[panneuronal::GCaMP6s]*) were raised at
609 20°C and grown on NGM media plates seeded with OP50 *E. coli*. Young adult worms (with 2 or less
610 visible eggs in their uterus) were picked and immobilized inside a microfluidic chip as previously
611 described¹⁹. Worms were imaged by a spinning disk confocal microscope (Nikon, Ti-e) equipped with a
612 60 \times /1.2 NA water objective (Nikon, CFI Plan Apochromat VC 60XC WI), a confocal scan unit (Yokogawa,
613 CSU-X1) and an electron multiplying CCD (EM-CCD, Andor, iXon Ultra 897). Four excitation lasers (405
614 nm, 488 nm, 561 nm, and 640 nm) were used for illumination, in conjunction with emission filters
615 spanning 420-470 nm, 500-545 nm, 570-650 nm, and 660-800 nm bandwidths, respectively. The pixel
616 size was 0.27 μm in the XY dimension and each Z-stack volume comprised 21 slices for each color, with
617 1.5 μm step size. Each multicolor Z-stack volume was captured at a rate of just over 1 minute.

618

619 *Fixed WGA-labeled NK-92 samples*

620 NK-92 cells (ATCC®, CRL-2407™) were rinsed with 1 \times PBS, and fixed with 1 ml of 4%
621 paraformaldehyde in 1 \times PBS for 30 min at room temperature, rinsed in 1 ml of 1x PBS, and
622 permeabilized in 0.1% Triton X-100 in 1 \times PBS for 15 min. Next, samples were rinsed with 1 \times PBS, and
623 blocked with buffer containing 1% BSA (Fisher, Cat# BP9700100) in 1 \times PBS for 1 hour. Blocking buffer
624 was removed, and the samples were stained with 500 μl of 1x PBS with a 1:100 dilution of Alexa Fluor
625 555 labelled WGA (Invitrogen, Cat# W32464), 10 U/mL phalloidin-ATTO 647N conjugate (Millipore-
626 Sigma, Cat #65906), and 1:1000 dilution of Hoechst solution (Tocris, Cat#5117) for 1 h. Cells were
627 washed in 1 \times PBS three times. We mounted samples using 90% Glycerol (Sigma, Cat# G5516) in 1x PBS.

628 In preparation for imaging, cells were cultured in collagen-I gels in the ImmunoCult-XF T Cell
629 Expansion Medium (STEMCELL Technologies, Cat# 10981) with the addition of Human Recombinant
630 Interleukin 2 (STEMCELL Technologies, Cat# 78036.3). To prepare 3 mg/ml collagen-I gel, we assembled
631 a gel premix on ice in a prechilled Eppendorf tube. Briefly, to 1 volume of CellAdhere™ type I bovine
632 (STEMCELL Technologies, Cat# 07001) we added 8/10 volume of DMEM, 1/10 volume of 10x PBS, 1/20

633 volume of 1M HEPES, and 1/20 volume of 1M (in DMSO) Alexa Fluor 488 ester (Molecular Probes, Cat#
634 A20000). A drop of premixed gel (~50 μ L) was spread immediately on a glass surface of a plasma-
635 treated glass-bottom 35 mm Petri dish (MatTek Corp., Cat# P35G-1.5-14-C) with a pipette tip. During
636 polymerization (room temperature, for overnight), gels were covered with 1 mL of mineral oil (Sigma-
637 Aldrich, Cat# M8410) to prevent evaporation of water. Before adding NK-92 cells, polymerized gels were
638 rinsed with PBS to remove the unpolymerized gel components.

639 Instant structured illumination microscopy (iSIM) was performed using the commercial instant
640 structured illumination microscope system (VisiTech Intl, Sunderland, UK) equipped with an Olympus
641 UPlanSAapo 60 \times /1.3NA Sil objective, two Flash-4 scientific CMOS cameras (Hamamatsu, Corp., Tokyo,
642 Japan), an iSIM scan head (VisiTech Intl, Sunderland, UK), and a Nano-Drive piezo Z stage (Mad City
643 Laboratories, Madison, WI). The iSIM scan head included the VT-Ingwaz optical destriping unit. The
644 exposure time was set to 250 ms per image frame. The voxel size was 64 x 64 x 250 nm, in x, y, and z,
645 respectively.

646

647 *Two-photon microscopy on live and fixed mouse tissue*

648 Fixed mouse liver samples and fresh ex-vivo mouse heart muscle strips were imaged with two-
649 photon microscopy using a Leica SP8 two photon DIVE upright microscope (Mannheim, Germany), a
650 pulsed dual beam Insight X3 Ti-Sapphire laser (MKS Spectra-Physics, Milpitas CA), a Leica 25x 1.0 NA (HC
651 PL IRAPO) water dipping lens, and emission bandwidth tunable Leica HyD detectors in the non-
652 descanned emission pathway. Liver samples were prepared from freshly excised liver from a 10 week-
653 old mouse expressing a membrane-targeted peptide fused with tdTomato⁴⁰. After excision, the mouse
654 liver was washed in cold saline three times, fixed with 4% formaldehyde in PBS for 2 hours, and stored in
655 PBS. Tissue harvesting procedures were approved by the NCI (for mouse liver) and NHLBI (for mouse
656 heart) Animal Care User Committees (ACUC) respectively. Freshly excised heart muscle strips from
657 transgenic mice expressing mitochondrial TOMM20-mNeonGreen were prepared for imaging as
658 described⁴¹. tdTomato and mNeonGreen were excited using 1045 nm and 960 nm excitation with
659 emission bandwidths of 550-700 nm and 500-600 nm, respectively. Laser excitation (ramped as a
660 function of depth in some experiments and optimized by adjusting the objective motorized correction
661 collar) were in the range of 1% for tdTomato and less than 20% for mNeonGreen. HyD detector gains
662 were kept at 100% for tdTomato and 150% for mNeonGreen. Tiled images volumes of liver membrane
663 expressing tdTomato were collected with voxels sizes set to 400 nm in the XY dimension and 500 nm in
664 the z dimension. Z-stack volumes of mNeonGreen expressing heart strip were collected with voxels sizes
665 set to 120 nm in the XY dimension and 500 nm in the z dimension. All imaging was conducted at an
666 imaging speed of 600 Hz with a pinhole size of 1 A.U.

667 *Cleared mouse embryos imaged with confocal microscopy*

668 E11.5-day mouse embryos were collected in phosphate-buffered saline (PBS) and directly
669 immersed in 4% paraformaldehyde (PFA) in PBS (pH 7.4) at 4°C overnight. Following fixation, the
670 samples were washed with PBS and stored in PBS at 4°C for further analyses. Wholemount
671 immunofluorescence staining was performed at 4°C. The mouse embryos were permeabilized with 0.2%
672 Triton/PBS overnight and blocked with 10% normal goat serum and 1% BSA in 0.2% Triton/PBS
673 overnight. The embryos were then stained with monoclonal antibody against PECAM1 (CD31, clone
674 MEC 13.3, Cat# 553700, BD Pharmingen, 1:200 dilution) and monoclonal anti- β -tubulin III (TuJ1)
675 antibody (clone 2G10, Cat# T8578, Sigma-Aldrich, 1:500 dilution) in blocking buffer overnight. After
676 washing with 0.2% Triton/PBS, the embryos were stained with secondary antibodies with Alexa 488 goat

677 anti-rat IgG and Alexa 594 goat-anti-mouse IgG (1:250, Invitrogen, Carlsbad, CA) in blocking buffer
678 overnight. The embryos were cleared with CLARITY and imaged using a Zeiss LSM 880 Confocal
679 microscope with a 10X, 0.5NA air objective. To compensate for focal shift effects due to the refractive
680 index difference between air and CLARITY we scaled the axial voxel size of images by 1.45 before
681 processing for DeAbe.
682

683 *Calculation of vessel orientation and alignment*

684 Orientations were estimated in 3D using a weighted vector summation algorithm²³, adapting it
685 for the volumetric images of fiber-like structures corresponding to the CD31 channel (i.e., blood vessel
686 images) in CLARITY-cleared mouse embryos (**Fig. 3**).

687 For a given voxel within the 3D image, an $n \times n \times n$ voxel window was generated surrounding the
688 voxel under assessment. To segment the effective voxels, six-level Otsu intensity thresholding was applied
689 to the image, with five thresholds dividing the intensity into six levels. The lowest level was designated as
690 background noise, and regions assigned to the upper five levels defined the vessel signals. The window
691 size n was typically set as two to three times the vessel thickness. All vectors passing through the center
692 voxel were defined and weighted by their length and intensity variations, and the direction of the sum of
693 all the weighted vectors was designated as the orientation of the center voxel²³, with associated azimuthal
694 angle θ (ranging from 0° to 180°) and polar angle φ (ranging from 0° to 180°). However, since the
695 calculation of the polar angle φ was not straightforward, we defined two additional azimuthal angles, β
696 and γ (**Supplementary Fig. 11a**), which were symmetrical to the azimuthal angle θ . β was defined as the
697 angle between the projection of the vessel in the zx plane and the x axis, and γ was the angle between
698 the projection in the yz plane and the $-y$ axis. These two angles were related to the polar angle φ via:
699 $\tan^2 \varphi = 1 / \tan^2 \beta + 1 / \tan^2 \gamma$.

700 We also derived the 3D directional variance (DV) metric, quantifying the spread in orientations^{24,42}.
701 The value of DV ranges from 0 to 1, with 0 corresponding to perfectly parallel alignment, and 1
702 corresponding to complete disorder (**Supplementary Fig. 11b**). The directional variance \bar{D}_{3D} was defined
703 as:

704
$$\bar{D}_{3D} = 1 - (\bar{C}_{3D}^2 + \bar{S}_{3D}^2 + \bar{Z}_{3D}^2)^{1/2},$$

705 where:

706
$$\bar{C}_{3D} = (1/k) \sum_{j=1}^k (f_j / \sqrt{1+f_j^2}) \cos(2\theta_j),$$

707
$$\bar{S}_{3D} = (1/k) \sum_{j=1}^k (f_j / \sqrt{1+f_j^2}) \sin(2\theta_j),$$

708
$$\bar{Z}_{3D} = (1/k) \sum_{j=1}^k (SI / \sqrt{1+f_j^2}),$$

709 with $f_j = \sqrt{1/\tan^2(2\beta_j) + 1/\tan^2(2\gamma_j)}$, and $SI = (-1) \cdot (\varphi - 90) / |\varphi - 90|$, where φ was acquired from the
710 determination of β and γ as described above, k was the number of fiber voxels in the region, and θ , β
711 and γ were calculated azimuthal angles as described above.

712 *Membrane segmentation*

713 For the images of live worm embryos dual-labeled with nuclear and membrane markers (**Fig. 4c, d, Supplementary Fig. 16**), raw data was restored using our multiple-step deep learning pipeline (Steps 1-3 in **Supplementary Fig. 13a**) prior to cell membrane segmentation. We performed automatic membrane segmentation using segmented nuclei as seeds:

717 First we used the Keras and Tensorflow-based implementations of Mask RCNN⁴³ (https://github.com/matterport/Mask_RCNN) to perform nuclear segmentation (**Supplementary Fig. 16d**). We then manually segmented 8 volumes (3 acquired with diSPIM, 3 with iSPIM, and 2 from multiview confocal microscopy²² for a total of 1963 nuclei) for training. Of these 8 volumes, 6 volumes with a total of 1688 nuclei were used for training a segmentation network and 2 volumes with a total of 275 nuclei were used for validation. We used a ResNet-50 model as the backbone for our network, initialized the model using weights obtained from pretraining on the MS COCO dataset⁴⁴, and proceeded to train all layers in three stages. Training took ~10 hours and applying the model took ~ 3 minutes per volume on a Windows workstation equipped with an Intel(R) Xeon(R) W-2145 CPU operating at 3.70 GHz, an Nvidia Quadro P6000 GPU, and 128 GB of RAM. After Mask RCNN segmentation, we applied a marker-controlled watershed operation (<https://www.mathworks.com/help/images/marker-controlled-watershed-segmentation.html>) to the nuclear segmentations to separate touching nuclei.

729 Second, we applied the vascular structure enhancement filter⁴⁵ (<https://github.com/timjerman/JermanEnhancementFilter>) to the membrane data to enhance 730 boundaries (**Supplementary Fig. 16c**). Scales were set to [2.0, 2.25, 2.5] and all other parameters were set 731 to the default.

733 Third, the centroids of segmented nuclei were used as seeds, and we used the seeded watershed 734 algorithm (<https://github.com/danielsnider/Simple-Matlab-Watershed-Cell-Segmentation>) for 735 membrane segmentation (**Supplementary Fig. 16f**).

736 This workflow was applied both to the raw image data and restored images after each step in our 737 multi-step pipeline to demonstrate the benefit of segmentation enhancement from DL processing.

738 For selected volumes (**Fig. 4c, Supplementary Video 11**), we also performed manual editing on 739 the automatic segmentations produced by the multi-step deep learning pipeline. Manual editing was 740 performed within the ImageJ plugin Labkit (<https://imagej.net/plugins/labkit/>). After automatic 741 segmentations were imported to Labkit, segmentation labels were manually edited interactively in lateral 742 views (XY planes), and then were edited in axial views (YZ planes). Since the manual editing was conducted 743 in 2D views and initial editing in either view was not sufficient to ensure smoothness in 3D, we iterated 744 twice to further improve our results.

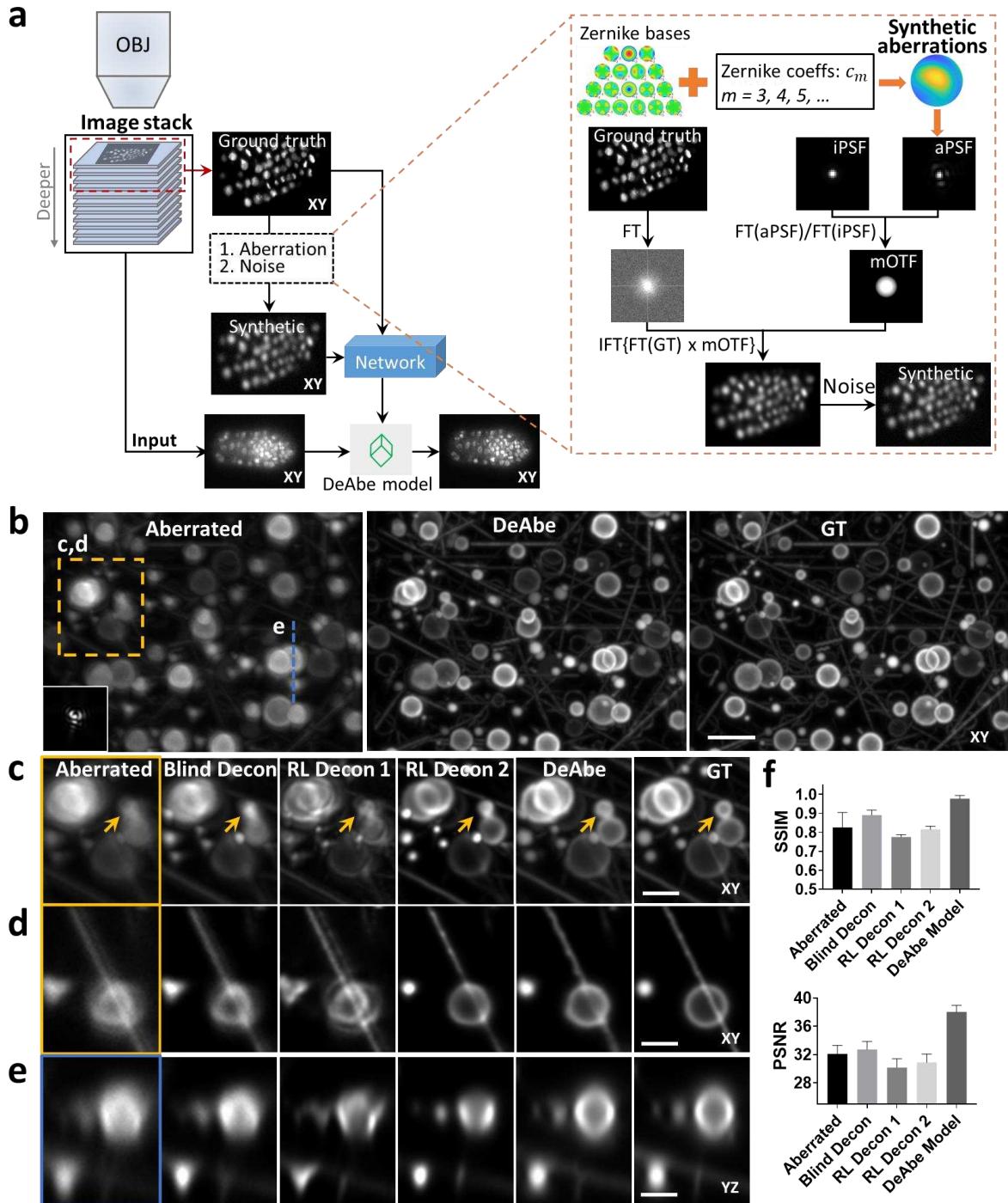
745

746 *Code availability*

747 Training and applying deep learning models were achieved using Python 3.7.0. Generation of synthetic 748 aberrated data and quantitative image analysis was performed in MATLAB (Mathworks, R2022b). 749 Customized code and software are available at <https://github.com/eguomin/DeAbePlus/>. RCAN and 750 CARE software were installed from <https://github.com/AiviaCommunity/3D-RCAN> and 751 <https://github.com/CSBDeep/CSBDeep>, and code for RL deconvolution and multiview fusion is available 752 at <https://github.com/eguomin/diSPIMFusion/>.

753 *Data availability*

754 The data that support the findings of this study are included in **Supplementary Figs. 1–23** and
755 **Supplementary Videos 1–14**. Some representative data from the figures (**Supplementary Figs. 6, 17**) are
756 publicly available at <https://zenodo.org/record/8424246>. Other datasets (training data and intermediate
757 data for deep learning) are available from the corresponding author upon reasonable request due to
758 their large file size.

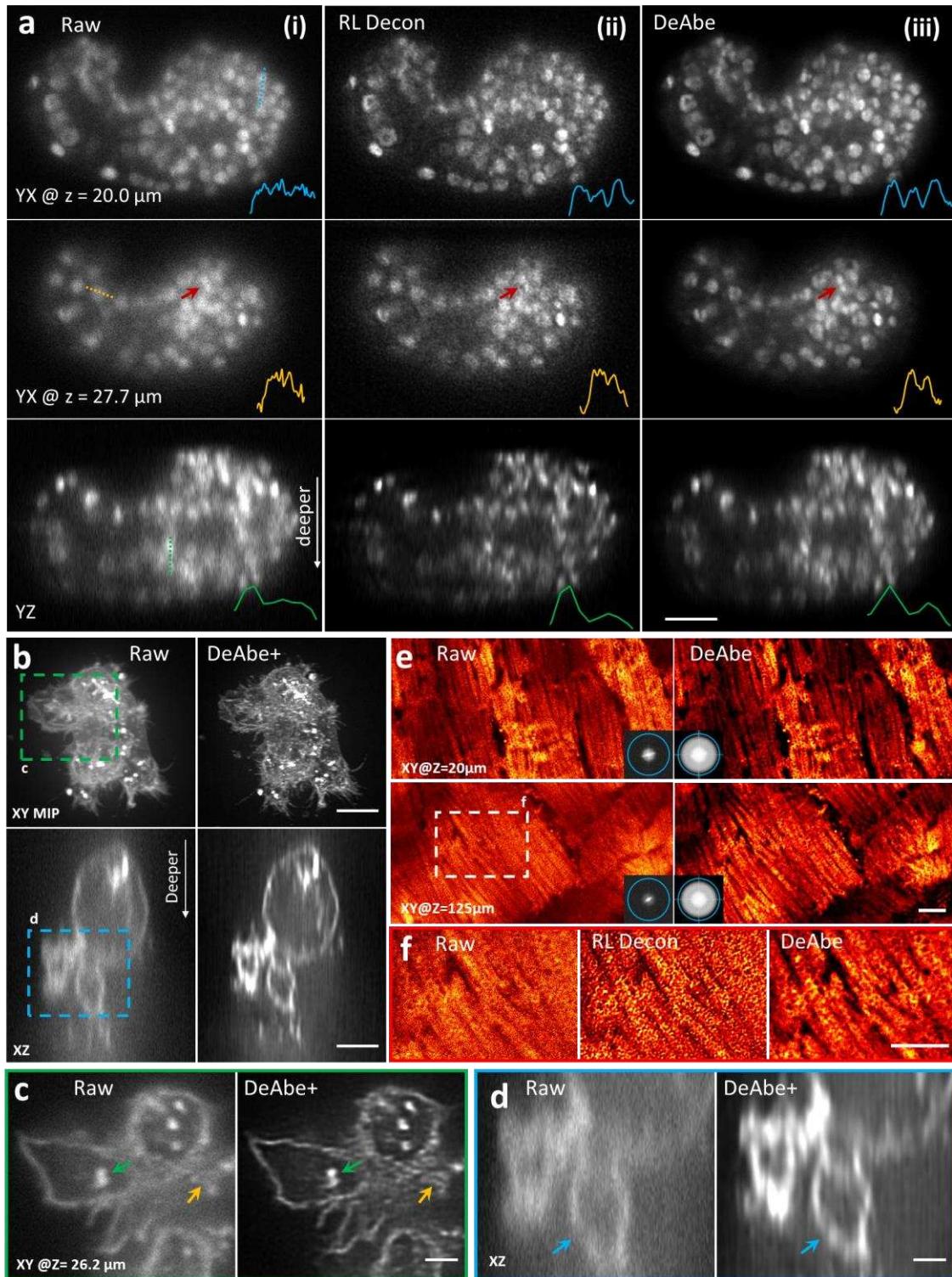


759

760 **Fig. 1, Concept and simulations illustrating deep learning-based aberration compensation. a)**
761 Schematic. *Left*: Fluorescence microscopy volumes are collected and near-diffraction-limited images
762 from the shallow side of each stack are synthetically degraded to resemble aberrated images deeper
763 into the stack. A neural network (e.g., a three-dimensional residual channel attention network, 3D
764 RCAN) is trained to reverse this degradation given the ground truth on the shallow side of the stack, and
765 the trained neural network (DeAbe model) subsequently applied to images throughout the stack,

766 improving contrast and resolution. *Right*: More detailed view of synthetic degradation process. Zernike
767 basis functions and associated coefficients (coeffs) are used to add random aberrations by modifying the
768 ideal point spread function (iPSF) to generate an aberrated PSF (aPSF). Ground truth images (GT) are
769 Fourier transformed (FT) and multiplied by the ratio of the Fourier transformed aberrated and ideal PSFs
770 (essentially a modified optical transfer function, mOTF). Inverse Fourier transforming (IFT) the result and
771 adding noise generates the synthetically aberrated images. See **Methods** for further detail on this
772 procedure. OBJ: objective lens used to collect the stack. **b)** Simulated three-dimensional phantoms
773 consisting of randomly oriented and positioned dots, lines, spheres, spherical shells, and circles
774 comparing maximum intensity projections of aberrated input image (left, random aberration with root
775 mean square (RMS) wavefront distortion < 2 radians and Poisson noise added for an SNR of ~16,
776 corresponding PSF in inset), network prediction (DeAbe) given aberrated input (middle), and ground
777 truth (GT, right). Higher magnification views of dashed rectangular region are shown in **c)** (maximum
778 intensity projection) and **d)** (single plane), additionally showing restoration given blind deconvolution
779 (Blind Decon), Richardson-Lucy deconvolution with diffraction-limited PSF (RL Decon 1), Richardson-Lucy
780 deconvolution with aberrated PSF (RL Decon 2). Yellow arrows indicate a reference structure for visual
781 comparison. Twenty iterations were used for RL deconvolution and ten for blind deconvolution. **e)** As in
782 **c, d)** but showing axial plane along dashed blue line in **b**). **f)** Quantitative comparisons for the
783 restorations shown in **b-e)** using structural similarity index (SSIM, top) and peak signal-to-noise ratio
784 (PSNR, bottom) with ground truth reference. Means and standard deviations are shown for 100
785 simulations (10 independent phantom volumes, each aberrated with 10 randomly chosen aberrations).
786 Scale bars: 5 μm **b)** and 2.5 μm **c-e)**. See also **Supplementary Figs. 1-5**.

787



789 **Figure 2, Computational aberration compensation on fluorescence microscopy image volumes. a)** Live
790 *C. elegans* embryos expressing a pan-nuclear GFP histone marker were imaged with light sheet
791 microscopy (i, left column) and the raw data processed with Richardson-Lucy deconvolution (ii, 10
792 iterations, middle column) or with a trained DeAbe model (iii, right column). First two rows show single

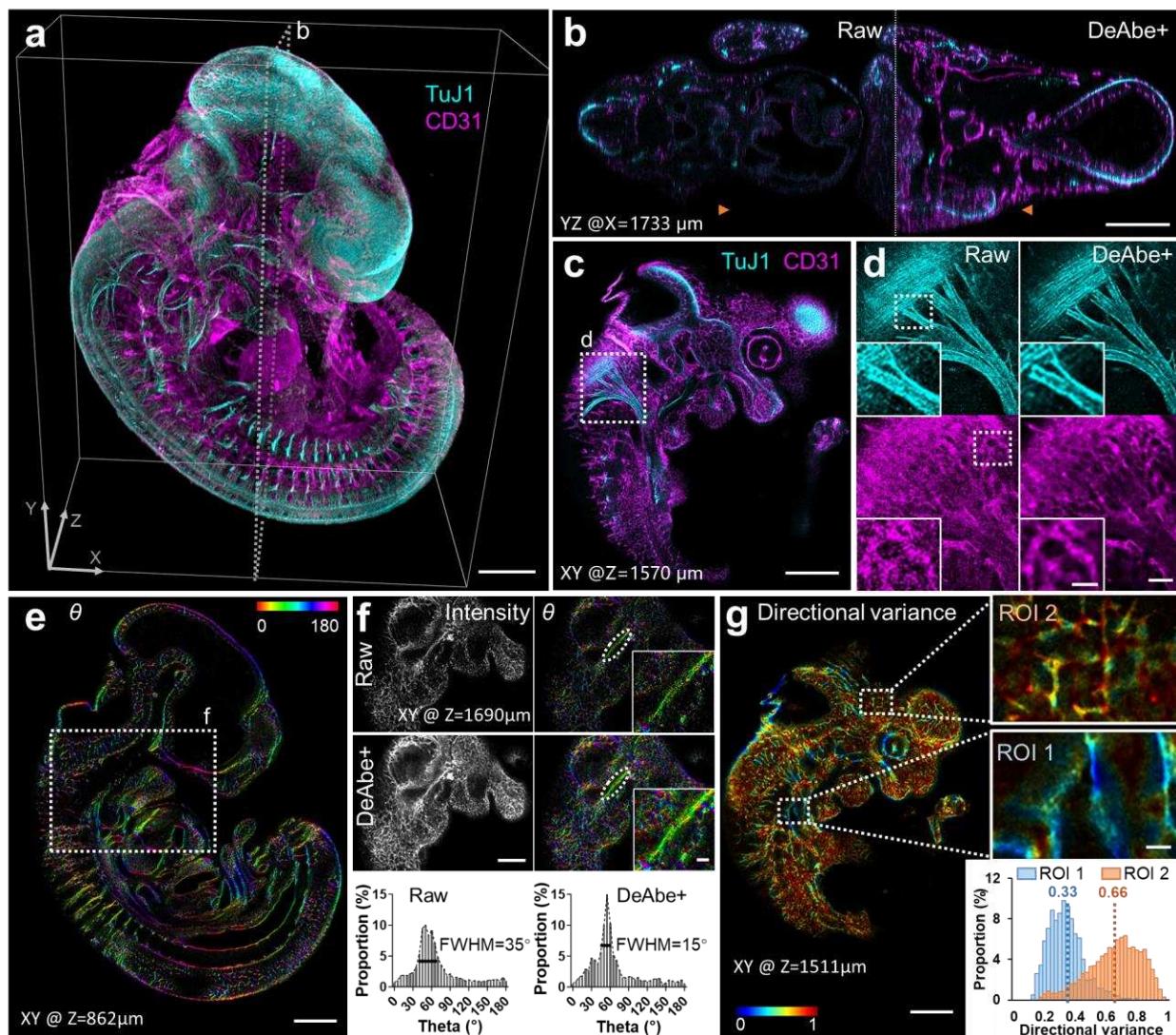
793 planes 20 and 28 μm into the sample, third row shows axial view. Comparative line profiles through
794 dashed blue, yellow, and green lines are shown in insets, comparing ability to discriminate nuclei. Red
795 arrow highlights nuclei for visual comparison. See also **Supplementary Video 3.** **b)** NK-92 cells stained
796 with Alexa Fluor 555 wheat germ agglutinin and embedded in collagen matrices were fixed and imaged
797 with instant SIM, a super-resolution imaging technique. Left: raw data, right: after application of DeAbe
798 and deconvolution (DeAbe+, 20 iterations Richardson-Lucy). Lateral maximum intensity projections
799 (MIP, top) or single axial planes (bottom) are shown in **b**), and **c, d** show higher magnification views
800 corresponding to green **c**) or blue **d**) dashed rectangular regions in **b**). Colored arrows in **c, d** highlight
801 fine features obscured in the raw data and better revealed in the DeAbe+ reconstructions. See also
802 **Supplementary Video 5, Supplementary Fig. 8.** **e)** Live cardiac tissue containing cardiomyocytes
803 expressing Tomm20-GFP was imaged with two photon microscopy. Raw data (left) are compared with
804 DeAbe prediction (right) at indicated depths, with insets showing corresponding Fourier transform
805 magnitudes. Blue circles in Fourier insets in **e**) indicate $1/300 \text{ nm}^{-1}$ spatial frequency just beyond
806 resolution limit. See also **Supplementary Video 6.** **f)** Higher magnification views of white dashed
807 rectangular region in **e**), emphasizing recovery of mitochondrial boundaries by DeAbe model. See also
808 **Supplementary Fig. 9, Supplementary Video 7.** Scale bars: 10 μm **a, e**); 5 μm **b, f**); 2 μm **c, d**); **e**)
809 diameter of Fourier circle: 300 nm^{-1} .

810

811

812

813



814

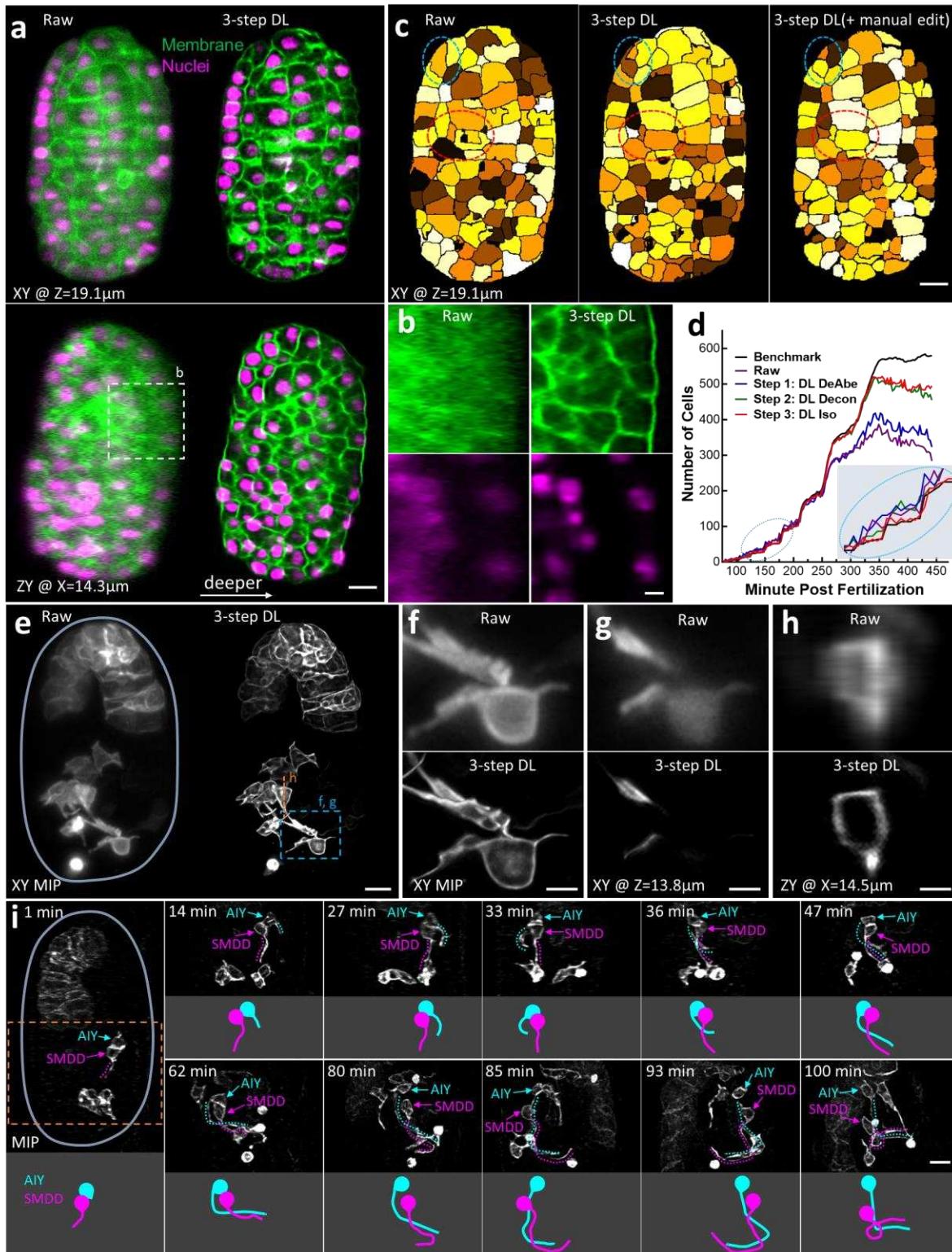
815

816 **Fig. 3, Computational aberration compensation on mm-scale cleared mouse embryo volumes.** a) Fixed
817 and CLARITY-cleared E11.5-day mouse embryos were immunostained for neurons (TuJ1, cyan) and
818 blood vessels (CD31, magenta), imaged with confocal microscopy and processed with a trained DeAbe
819 model. See also **Supplementary Video 8**. b) Axial view corresponding to dotted rectangular region in a),
820 comparing raw data and depth-compensated, de-aberrated, and deconvolved data (DeAbe+). See also
821 **Supplementary Fig. 10**. c) Higher magnification lateral view at axial depth of 1570 μm indicated by the
822 orange double headed arrowheads in b). d) Higher magnification views of white dotted region in c),
823 comparing raw (left) and DeAbe+ processing (right) for neuronal (top) and blood vessel (bottom) stains.
824 e) Orientation (θ , transverse angle) analysis on blood vessel channel of DeAbe+ data, here shown on
825 single lateral plane at indicated axial depth. See also **Supplementary Fig. 11, Supplementary Video 9**. f)
826 Higher magnification lateral view of white dotted region in e) (note that axial plane is different),
827 comparing intensity (left) and orientation (right) views between raw (top row) and DeAbe+ prediction

828 (middle row). Righthand insets show higher magnification views of vessel and surrounding region
829 highlighted by dotted lines. Bottom row indicates histogram of all orientations in the vessel highlighted
830 with dotted ellipse, full-width-at-half maximum (FWHM) in peak region of histogram is also shown. **g)**
831 Directional variance of blood vessel stain within the indicated plane, with higher magnification region of
832 interest (ROI) views at right. Histogram of directional variance in both regions also shown. See also
833 **Supplementary Fig. 12.** Scale bars: 500 μm **a, b, c, e**); 100 μm **d**), 50 μm inset; 300 μm **f**), 50 μm inset;
834 300 μm **g**), 50 μm inset.

835

836



837

838 **Fig. 4, Incorporating aberration compensation into multi-step restoration dramatically improves**
 839 **image quality in volumetric time-lapse imaging. a)** *C. elegans* embryos expressing GFP-labeled
 840 membranes marker (green) and mCherry-labeled nuclear marker (magenta) were imaged with dual-view

841 light-sheet microscopy (diSPIM) and the raw data (left) from single-view recordings processed through
842 neural networks that progressively de-aberrated, deconvolved, and isotropized spatial resolution (3-step
843 DL, right). Single planes from lateral (top) and axial (bottom) perspectives are shown, with arrow in
844 lower panel indicating direction of increasing depth. See also **Supplementary Video 10**, **Supplementary**
845 **Figs. 14, 15.** **b)** Higher magnification axial views of membranes (top) and nuclei (bottom) deep into
846 embryo, corresponding to dashed rectangle in **a**). **c)** Examples of automatic segmentation on raw (left,
847 319 cells), 3-step DL prediction (middle, 421 cells), and manually corrected segmentation based on DL
848 prediction (right, 421 cells). Single planes corresponding to the upper planes in **a**) are shown. Red and
849 blue dashed ellipses highlight regions for visual comparison. See also **Supplementary Video 11.** **d)**
850 Number of cells detected by automatic segmentation of membrane marker vs. time for raw data
851 (purple), and after successively applying each step in the multistep restoration (Steps 1-3, blue, green,
852 and red curves). Ground truth from manual expert (black curve) is also shown for comparison. Inset
853 (ellipse with dotted blue lines) highlights number count at early timepoints. **e)** Maximum intensity
854 projection (MIP) images of *C. elegans* embryos expressing membrane-localized GFP under control of the
855 *tx3-3b* promoter, imaged with diSPIM, comparing raw single-view recordings (left) and multi-step
856 restoration that progressively de-aberrated, deconvolved, and super-resolved the data (right, 3-step DL).
857 Boundary of the embryo has been outlined in light blue for clarity. See also **Supplementary Figs. 19, 20**,
858 **Supplementary Video 12.** Higher magnification MIP (**f**) or single lateral (**g**) or axial (**h**) plane comparisons
859 corresponding to dashed lines or rectangle in **e**) are also shown. **i)** Time series based on 3-step DL MIP
860 predictions highlight developmental progression of AIY (blue) and SMDD (magenta) neurites as they
861 enter the nerve ring region. Top and bottom parts of each panel at each time point show MIP (neurites
862 highlighted as dotted lines) vs. model of the neurites, respectively. See also **Supplementary Fig. 21.**
863 Scale bars: 5 μ m **a, c, e, f, h**); 2 μ m **b, d, g**).

864

865

866 1 Ji, N. Adaptive optical fluorescence microscopy. *Nature Methods* **14**, 374 (2017).
867 2 Hampson, K. M. *et al.* Adaptive optics for high-resolution imaging. *Nat Rev Methods Primers* **1**,
868 1-26 (2021).
869 3 Wang, K. *et al.* Rapid adaptive optical recovery of optimal resolution over large volumes. *Nat
870 Methods* **11**, 625-628 (2014).
871 4 Zheng, W. *et al.* Adaptive optics improves multiphoton super-resolution imaging. *Nat Methods*
872 **14**, 869-872 (2017).
873 5 Weigert, M. *et al.* Content-aware image restoration: pushing the limits of fluorescence
874 microscopy. *Nat Methods* **15**, 1090-1097 (2018).
875 6 Qiao, C. *et al.* Rationalized deep learning super-resolution microscopy for sustained live imaging
876 of rapid subcellular processes. *Nat Biotechnol.* (2022). <https://doi.org/doi>: 10.1038/s41587-022-
877 01471-3
878 7 Li, Y. *et al.* Incorporating the image formation into deep learning improves network
879 performance. *Nature Methods* (2022). <https://doi.org/doi>: 10.1038/s41592-022-01652-7
880 8 Guo, M. *et al.* Rapid image deconvolution and multiview fusion for optical microscopy. *Nature
881 Biotechnol.* **38**, 1337-1346 (2020). <https://doi.org/https://doi.org/10.1038/s41587-020-0560-x>
882 9 Chen, J. *et al.* Three-dimensional residual channel attention networks denoise and sharpen
883 fluorescence microscopy image volumes. *Nature Methods* **18**, 678-687 (2021).
<https://doi.org/https://doi.org/10.1101/2020.08.27.270439>
884 10 Wang, H. *et al.* Deep learning enables cross-modality super-resolution in fluorescence
885 microscopy. *Nat Methods* **16**, 103-110 (2019).
886 11 Tian, Q. *et al.* DNN-based aberration correction in a wavefront sensorless adaptive optics
887 system. *Optics Express* **27**, 10765-10776 (2019).
888 12 Saha, D. *et al.* Practical sensorless aberration estimation for 3D microscopy with deep learning.
889 *Opt Express* **28**, 29044-29053 (2020).
890 13 Vinogradova, K. & Myers, E. W. Estimation of Optical Aberrations in 3D Microscopic Bioimages.
891 *2022 7th International Conference on Frontiers of Signal Processing (ICFSP)*, 97-103 (2022).
<https://doi.org/doi>: 10.1109/ICFSP55781.2022.9924879
892 14 Hanser, B. M., Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. Phase retrieval for high-
893 numerical-aperture optical systems. *Optics Letters* **28**, 801-803 (2003).
894 15 Hanser, B. M., Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. Phase-retrieved pupil functions in
895 wide-field fluorescence microscopy. *J Microsc.* **216(Pt 1)**, 32-48 (2004).
896 16 Holmes, T. J. *et al.* in *Handbook of Biological Confocal Microscopy* (ed James B. Pawley) 389-
897 402 (Springer, 1995).
898 17 Wu, Y. *et al.* Inverted selective plane illumination microscopy (iSPIM) enables coupled cell
899 identity lineage and neurodevelopmental imaging in *Caenorhabditis elegans*. *Proc. Natl. Acad.
900 Sci. USA* **108**, 17708-17713 (2011).
901 18 Wu, Y. *et al.* Reflective imaging improves spatiotemporal resolution and collection efficiency in
902 light sheet microscopy. *Nat Commun.* **8**, 1452 (2017).
903 19 Yemini, E. *et al.* NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in *C.
904 elegans*. *Cell* **184**, 272-288 (2021).
905 20 York, A. G. *et al.* Instant super-resolution imaging in live cells and embryos via analog image
906 processing. *Nat Methods* **10**, 1122-1126 (2013).
907 21 Chung, K. *et al.* Structural and molecular interrogation of intact biological systems. *Nature* **497**,
908 332-337 (2013).
909 910

911 22 Wu, Y. *et al.* Multiview confocal super-resolution microscopy. *Nature* **600**, 279-284 (2021).
<https://doi.org:https://doi.org/10.1101/2021.05.21.445200>

913 23 Liu, Z. *et al.* Rapid three-dimensional quantification of voxel-wise collagen fiber orientation.
Biomedical Optics Express **6**, 2294-2310 (2015).

914 24 Liu, Z. *et al.* Automated quantification of three-dimensional organization of fiber-like structures
in biological tissues. *Biomaterials* **116**, 34-47 (2017).

915 25 Wu, Y. *et al.* Spatially isotropic four-dimensional imaging with dual-view plane illumination
microscopy. *Nat Biotechnol.* **31**, 1032-1038 (2013).

916 26 Kumar, A. *et al.* Dual-view plane illumination microscopy for rapid and spatially isotropic
imaging. *Nature Protocols* **9**, 2555-2573 (2014).

917 27 Cao, J. *et al.* Establishment of a morphological atlas of the *Caenorhabditis elegans* embryo using
deep-learning-based 4D segmentation. *Nature Communications* **11**, 6254 (2020).

918 28 Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the
nematode *Caenorhabditis elegans*. *Dev. Biol.* **100**, 64-119 (1983).

919 29 Chen, F., Tillberg, P. & Boyden, E. S. Expansion microscopy. *Science* **347**, 543-548 (2015).

920 30 Bertrand, V. & Hobert, O. Linking Asymmetric Cell Division to the Terminal Differentiation
Program of Postmitotic Neurons in *C. elegans*. *Developmental Cell* **16**, 563-575 (2009).

921 31 Rapti, G., Li, C., Shan, A., Lu, Y. & Shaham, S. Glia initiate brain assembly through noncanonical
Chimaerin-Furin axon guidance in *C. elegans*. *Nature Neuroscience* **20**, 1350-1360 (2017).

922 32 Moyle, M. W. *et al.* Structural and developmental principles of neuropil assembly in *C. elegans*.
Nature **591**, 99-104 (2021).

923 33 Brittin, C. A. *et al.* Multicellular rosettes organize neuropil formation. *bioRxiv* (2020).

924 34 White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The Structure of the Nervous System of
the Nematode *Caenorhabditis elegans*. *Phil. Trans. R. Soc. London Ser. B* **314**, 1-340 (1986).

925 35 Mori, I. & Ohshima, Y. Neural regulation of thermotaxis in *Caenorhabditis elegans*. *Nature* **376**,
344-348 (1995).

926 36 Thibos, L. N., Applegate, R. A., Schwiegerling, J. T., Webb, R. & Members, V. S. T. Standards for
Reporting the Optical Aberrations of Eyes. *OSA Technical Digest*, SuC1 (2000).

927 37 Richardson, W. H. Bayesian-Based Iterative Method of Image Restoration. *JOSA* **62**, 55-59
(1972).

928 38 Lucy, L. B. An iterative technique for the rectification of observed distributions. *Astronomical
Journal* **79**, 745-754 (1974).

929 39 Bao, Z. & Murray, J. I. in *Imaging in Developmental Biology: A Laboratory Manual* (eds James
Sharpe, Rachel Wong, & Raphael Yuste) (Cold Spring Harbor Laboratory Press, 2010).

930 40 Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre
reporter mouse. *Genesis* **45**, 593-605 (2007).

931 41 Kosmach, A. *et al.* Monitoring mitochondrial calcium and metabolism in the beating MCU-KO
heart. *Cell Reports* **37**, 109846 (2021).

932 42 Liu, Z. *et al.* Label-free, multi-parametric assessments of cell metabolism and matrix remodeling
within human and early-stage murine osteoarthritic articular cartilage. *Communications Biology*
6, 405 (2023).

933 43 He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. *2017 IEEE conference on Computer
Vision (ICCV)*, 2980-2988 (2017).

934 44 Lin, T.-Y. *et al.* in *ECCV 2014* Vol. 8693 (eds D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars)
(Springer, 2014).

935 45 Jerman, T., Pernuš, F., Likar, B. & Špiclin, Ž. Enhancement of Vascular Structures in 3D and 2D
Angiographic Images. *IEEE Trans Med Imaging* **35**, 2107-2118 (2016).