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Abstract

Cancerous  tumors  may  contain  billions  of  cells  including  distinct  malignant  clones  and

nonmalignant  cell  types.  Clarifying  the  evolutionary  histories,  prevalence,  and  defining

molecular features of these cells is essential for improving clinical outcomes, since intratumoral

heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a

statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic

and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-

mutant  astrocytomas  with  integrative  analysis  of  single-nucleotide  variants,  copy-number

variants,  and  gene  expression,  we  reconstruct  and  validate  the  phylogenies,  spatial

distributions, and transcriptional profiles of distinct malignant clones, which are not observed in

normal  human brain samples.  Importantly,  by genotyping nuclei  analyzed by single-nucleus

RNA-seq for truncal mutations identified from bulk tumor sections, we show that commonly used

algorithms  for  inferring  malignancy  from  single-cell  transcriptomes  may  be  inaccurate.

Furthermore,  we  demonstrate  how  correlating  gene  expression  with  tumor  purity  in  bulk

samples provides the same information as differential expression analysis of malignant versus

nonmalignant cells and use this approach to identify a core set of genes that is consistently

expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated

with poor outcomes in several types of  cancer.  In summary, MOMA provides a robust  and

flexible strategy for  precisely deconstructing intratumoral  heterogeneity in clinical  specimens

and clarifying the molecular profiles of distinct cellular populations in any kind of solid tumor.

Introduction

Cancerous  tumors  are  complex  ecosystems  containing  huge  numbers  of  malignant  and

nonmalignant cells.  Malignant cells evolve over time by acquiring mutations through diverse

mechanisms that promote genetic1 and epigenetic2 heterogeneity, which may occur in a neutral

fashion3 or  as  a  Darwinian  response  to  therapeutic  or  other  environmental  pressures4.

Nonmalignant cells  comprise diverse tumor microenvironments (TMEs)  that  vary within  and

among  tissues  and  individuals  and  may  be  influenced  by  malignant  cells  to  adopt  tumor-

suppressive5 or tumor-supportive6 behaviors. The genetic, epigenetic, and microenvironmental

diversity  of  individual  tumors  is  collectively  described  as  intratumoral  heterogeneity  (ITH)7.

Clarifying the extent of ITH is an important goal for precision medicine, since most mutations are

not  shared  between  malignant  clones  from  different  individuals8–12 and  ITH  provides  the

substrate for acquired resistance to targeted therapies7,13,14. To frame this goal more precisely:

Clarifying  ITH  requires  understanding  the  evolutionary  histories,  prevalence,  and  defining

molecular features of distinct malignant clones and nonmalignant cell types of the TME.

Investigators have typically studied ITH by applying multiomic assays to a small number

of bulk subsamples from the same tumor. Multi-region analyses of renal carcinoma15, breast

cancer16, colorectal cancer17, glioblastoma18, and others19 have all identified substantial spatial

variation in mutation frequencies and other molecular phenotypes, suggesting clonal diversity

and  variable  TMEs.  Although  these  studies  highlight  extensive  ITH,  their  design  is  high-

dimensional in omics feature space but low-dimensional in sample space, which can lead to

biased  inference  and  inflated  false-positive  error  rates  for  individual  molecular  features20.

Furthermore, the small number of analyzed bulk samples limits the conclusions that can be

drawn about distinct malignant clones and nonmalignant cell types. Recent efforts using single-
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cell methods have provided new perspectives on ITH21–23, but it remains non-trivial to isolate and

sequence DNA and RNA from the same cell at scale. As such, malignancy is often inferred for

single cells from the presence of copy-number variants (CNVs), which are themselves inferred

from single-cell  RNA-seq (scRNA-seq)  data.  However,  scRNA-seq data  are  confounded by

technical  factors  related  to  tissue  dissociation,  sampling  bias,  noise,  contamination,  and

sparsity24–28, which muddle the relationships between malignant cell genotypes and molecular

phenotypes, particularly for cancers that lack consistent CNVs.

We have shown that variation in the cellular composition of intact human brain samples

drives covariation of transcripts that are uniquely or predominantly expressed in specific kinds of

cells29,30. We have also shown that the correlation between a gene’s expression pattern and the

abundance of  a cell  type is  a proxy for  the extent  to which the same gene is differentially

expressed by that cell type29. These findings suggest that molecular profiles of malignant clones

can  be  determined  by  correlating  genome-wide  molecular  patterns  with  clonal  abundance,

which can be revealed through integrative analysis of variant allele frequencies (VAFs)31,32 over

a large number of bulk subsamples. In principle, such patterns should be highly robust since

they derive from millions or  even billions of  cells  and do not  suffer  from the technical  and

practical limitations imposed by studying single cells. Similar logic extends to nonmalignant cell

types of the TME29.

Here  we  describe  a  novel  strategy  for  deconstructing  ITH  through  multiomic  and

multiscale analysis (MOMA) of individual tumor specimens. By amplifying a pair of IDH-mutant

astrocytomas into standardized biological replicates through serial sectioning, we present what

may be the most exhaustive analysis of ITH to date, analyzing gene expression in 165 tumor

sections,  deeply  sequenced PCR amplicons spanning mutation  sites  in  156 sections,  DNA

methylation in 68 sections, whole exomes in seven sections, DNA from 8,169 nuclei derived

from three sections, and RNA and deeply sequenced PCR amplicons spanning mutation sites

from 809 nuclei derived from four sections. Through integrative analysis of single-nucleotide

variants  (SNVs)  and  CNVs,  we  precisely  define  the  evolutionary  histories  and  spatial

distributions of  malignant clones.  By comparing these distributions to gene expression data

derived  from the same tumor  sections,  we reveal  clone-specific  transcriptional  profiles  and

validate  them orthogonally  through  comparisons with  normal  human brain  and  analyses of

single nuclei. Our findings suggest that a core set of genes is consistently expressed by the

truncal  clone of  human astrocytomas,  offering  new therapeutic  targets  and a  generalizable

strategy for precisely deconstructing ITH and clarifying the molecular profiles of distinct cellular

populations in any kind of solid tumor.

Results

Overview of MOMA

Fig. 1a depicts a heterogeneous human brain tumor specimen consisting of distinct malignant

clones and nonmalignant cell types of the TME. By amplifying this specimen into a series of

standardized biological replicates through serial  sectioning, we introduce variation in cellular

composition across sections (Fig. 1b), which are analyzed using multiscale (bulk and single-

nucleus)  and  multiomic  assays  (Fig.  1c).  Correlative  analysis  of  mutation  frequencies  and

molecular  feature  activities  (e.g.,  levels  of  gene expression,  DNA methylation,  etc.)  in  bulk
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sections reveals the identities and defining molecular features of distinct malignant clones (Fig.

1d), which are validated by single-cell analysis of interpolated sections and histology (Fig. 1e).

MOMA therefore combines the power of bulk sampling with the precision of cellular resolution to

achieve the best of both worlds.

Case 1: analysis of clonal composition 

To put these ideas into practice, we obtained a resected specimen from a primary diffuse glioma

that was removed from the left cerebral hemisphere of a 40 y.o. female who presented with

language deficits (Fig. 2a-c). Molecular pathology revealed evidence for mutations in IDH1 and

TP53 (Fig. 2d-e), no evidence for chromosome 1p/19q codeletion (data not shown), and KI67

labeling of 6% (data not shown), consistent with a CNS WHO grade 2 astrocytoma, IDH-mutant.

We  cut  81  cryosections  along  the  tumor  specimen’s  longest  axis  (Fig.  2f),  followed  by

automated  DNA/RNA  extraction  from  each  section  (Table  S1).  To  identify  mutations  and

characterize  the clonal  landscape,  we performed whole-exome sequencing  (WES) on DNA

isolated from sections 14, 39, 69, and the patient's blood. Mutations detected in blood or in

genes with very low tumor expression levels were excluded. Of the remaining 33 mutations

(Table  S2),  including an  in-frame deletion  in  ATRX,  which  is  often  mutated  in  IDH-mutant

astrocytomas33,  18  were  validated  by  Sanger  sequencing,  five  were  validated  by  deep

sequencing of PCR amplicons spanning each mutation (amp-seq;  Table S3), and ten (mostly

indels) could not be validated (Table S2). Among the 23 validated mutations, 16 were detected

by WES in all three tumor sections and seven were detected in only one section, suggesting

clonal heterogeneity among malignant cells (Fig. S1a).

To determine the relative abundance and spatial distributions of cells carrying mutations

within the tumor specimen, we quantified VAFs for validated somatic mutations in each tumor

section.  We first  used droplet  digital  PCR (ddPCR) to quantify  VAFs for  IDH1 R132H and

observed  that  this  method  was  highly  reproducible  (Fig.  S1b).  However,  given  the  limited

amount of DNA from each tumor section (Table S1), it was not feasible to quantify all VAFs in

this fashion. We therefore tested whether amp-seq yielded VAFs for IDH1 R132H that were

comparable  to  those  obtained  by  ddPCR.  We  observed  high  concordance  between  these

methods (Fig. S1b) and subsequently used amp-seq to quantify VAFs for all validated somatic

mutations over all tumor sections, with theoretical VAF detection sensitivity of < 1%.

Amp-seq  was  performed  in  two  sequencing  runs:  an  initial  run  consisting  of  25

amplicons (mean coverage:  3.0x103 reads/mutation/section) and a second run consisting of

nine amplicons (mean coverage: 1.7x104 reads/mutation/section).  To analyze the stability of

amp-seq-derived VAFs, we downsampled reads spanning IDH1 R132H or TP53 L145P and

calculated the root-mean-square-error (RMSE) and Pearson correlation between VAFs from full

and  downsampled  read  depths.  This  analysis  revealed  monotonic  improvement  in  VAF

estimates  as  a  function  of  read depth  (Fig.  S1c-d).  Notably,  VAFs derived from 100-200x

coverage were far noisier than VAFs derived from full coverage, indicating that conventional

WES data are inadequate for precisely estimating VAFs and malignant cell abundance.

We performed unsupervised hierarchical clustering of amp-seq data to identify mutations

with  similar  VAF  patterns  within  the  tumor  sample  (Fig.  2g and  Table  S4).  This  analysis

revealed three distinct clusters. Cluster 1 included 15 mutations with VAFs that decreased in the

latter  sections of  the tumor  sample,  which were separated according to  sequencing run to
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display the effects of read depth (Fig. 2h,i). Cluster 2 included four mutations with VAFs that

increased in the latter sections of the tumor sample (Fig. 2j). Cluster 3 included three mutations

with VAFs that peaked in the middle sections of the tumor sample (Fig. 2k).

Focusing on the sequencing run with higher coverage, we observed that five mutations

in cluster 1 (including IDH1 R132H) had VAFs over all  tumor sections that were statistically

indistinguishable (Fig. 2h). Two other mutations (TP53 L145P and ACCS A197T) followed a

similar pattern but at different scales. For example, VAFs for TP53 L145P were two-fold higher

than VAFs for IDH1 R132H (Fig. 2h). We tested the hypothesis that CNVs might underlie these

patterns by performing qPCR for these genes in each tumor section and the patient's blood. We

observed approximately  diploid copy numbers for  both genes in all  analyzed sections (Fig.

S1e),  indicating  that  observed  VAFs for  these  mutations  are  unlikely  to  result  from CNVs.

Instead,  VAFs  for  TP53  L145P  appear  to  reflect  copy-neutral  loss  of  heterozygosity  for

chromosome 17p (chr17p LOH) that occurred early in the tumor's evolution (but after the L145P

point mutation).  Notably, the frequencies of  chr17p LOH (derived from B-allele frequencies)

were highly concordant between WES and amp-seq data (r=0.99,  Fig. S1f  [top]). In contrast,

the lower VAFs for ACCS A197T suggest that this mutation appeared after the other mutations

comprising cluster 1.

To determine the clonal composition and evolutionary history of the tumor specimen

more precisely, we analyzed genome-wide CNVs and their relationships to SNVs quantified by

amp-seq. CNVs were called from WES (n=3 sections) and DNA methylation (n=68 sections)

data using FACETS34 and ChAMPS35, respectively, yielding highly concordant frequencies for

copy number changes (r=0.92, Fig. S1f [bottom] and Table S5). Through combined analysis of

SNV and CNV frequencies over all tumor sections, we produced an integrated model of tumor

evolution. Specifically, we used PyClone31 to jointly analyze SNV and CNV frequencies, which

identified seven distinct clusters and their overall  prevalence. Subsequently, the evolutionary

history of the tumor specimen was reconstructed using CITUP32, which produced the most likely

phylogenetic tree (Fig. 2l) and frequencies of six malignant clones over all sections (Fig. 2m

and Table S6). These analyses confirmed the truncal nature of mutations in IDH1 and TP5333,

while revealing wide variation in the purity of individual tumor sections (range: 38.3 - 84.8%;

Table S6).

Case 1: analysis of gene expression

We next explored the relationships between clonal abundance and bulk gene expression data,

which were produced from the same tumor sections used to define clonal abundance (Fig. 2f).

We first performed genome-wide gene coexpression analysis to identify groups of genes with

similar expression patterns over all tumor sections, which may reflect variation in the abundance

of  distinct  cellular  populations.  We identified  38  modules  of  coexpressed  genes  (arbitrarily

labeled by colors), which were summarized by their eigengenes and hierarchically clustered

(Table  S7,  Fig.  3a-c).  As  we  have  shown  previously29,30 many  modules  were  significantly

enriched with markers of nonmalignant cell types (Fig. S2a-d). By comparing cumulative clonal

abundance (Fig. 2m) to module eigengenes over all  tumor sections, we identified five gene

coexpression modules whose expression patterns closely tracked the abundance of clone 1

(turquoise: r = 0.97, Fig. 3d), clone 3 (blue: r = 0.84, Fig. 3e), clone 4 (black: r = 0.83, Fig. 3f),

clone 5 (midnightblue: r = 0.71, Fig. 3g), and clone 6 (steelblue: r = 0.69, data not shown). We
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did not identify a module that was significantly correlated with clone 2, which represented only

0.001% of cells (Fig. 2l).

To  characterize  these  modules,  we  performed  enrichment  analysis  with  biologically

relevant gene sets (Fig. 3d-g). We first asked whether genes within clonal CNV boundaries

(Fig. 2l and Table S5) were significantly enriched (for gains) or depleted (for deletions) in the

bulk coexpression modules most strongly associated with each clone (Table S8). Notably, all

such gene sets were significantly enriched in the appropriate module and expected direction

(e.g., chr7 gain for clone 1 [Fig. 3d],  chr2p deletion for clone 3 [Fig. 3e], and chr10p gain for

clone 5 [Fig. 3g]). We next analyzed publicly available gene sets from diverse sources (Table

S9).  We found that  the largest  (turquoise) module, which closely tracked the abundance of

clone 1 (i.e., tumor purity), was significantly enriched with markers of oligodendrocyte progenitor

cells (OPCs) and radial glia, genes comprising the ‘classical’ subtype of glioblastoma proposed

by Verhaak et al.37 and numerous gene sets related to microglial infiltration and activation. The

second largest (blue) module, which tracked clone 3, was significantly enriched with neuronal

gene sets as well as genes that are down-regulated pursuant to  IDH1  mutations. The black

module, which tracked clone 4, was enriched with astrocyte markers as well as genes that are

differentially regulated during development and glioma. The midnightblue module, which tracked

clone  5,  was  enriched  with  markers  of  smooth  muscle  cells,  genes  comprising  the

‘mesenchymal’ subtype of glioblastoma37,38,  and gene sets related to epithelial-mesenchymal

transition and invasiveness. The steelblue module, which tracked clone 6, was enriched with

markers of non-resident immune cells (data not shown).

To further characterize the transcriptional  signatures associated with each clone,  we

used multiple linear regression to model genome-wide expression levels as a function of clonal

abundance. To account for collinearity and the dominant effect of clone 1, we used a group

lasso model with bootstrapped clonal abundance vectors (real or permuted) as predictors (Fig.

S2e-i). We restricted our focus to genes that were significantly and stably modeled by a single

clone (in addition to clone 1, per the group lasso model,  Table S10). Enrichment analysis of

these  genes  largely  recapitulated  enrichment  analysis  of  gene  coexpression  modules

associated with each clone, including the associations of different clones with different cell types

(Table S11 and Fig. S2i).

The associations of different clones with different cell types suggest two non-mutually

exclusive  possibilities.  First,  different  clones  may  preferentially  express  different  cell-type-

specific  transcriptional  programs.  Second,  different  clones may preferentially  associate  with

different nonmalignant cell types in the TME, leading to correlated gene expression patterns.

Although such possibilities are ideally studied at the level of individual cells, all sections from

this case were consumed during bulk data production. However, we reasoned that bona fide

transcriptional  signatures of  malignant  clones should be absent  from non-neoplastic  human

brains.  To test  this  hypothesis,  we profiled  gene  expression in  361  cryosections  from four

neurotypical adult human brain samples (Table S12) and performed genome-wide differential

coexpression analysis  by subtracting  normal  correlations  from tumor correlations,  such that

tumor-specific  gene coexpression relations  would  be retained (Fig.  S3a,  Table S13,  Table

S14).  This  analysis  revealed  tumor-specific  gene  coexpression  modules  that  tracked  the

abundance of distinct clones and largely recapitulated the transcriptional signatures described in

Fig. 3 and Fig. S2, including preserved enrichment of clone-specific CNV gene sets (Fig. S3b-
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e).  However,  enrichment  results  for  nonmalignant  cell-type-specific  gene sets  became less

significant,  with  the  exception  of  OPCs  and  radial  glia  for  clone  1,  which  became  more

significant  (Fig.  S3b-e).  These  results  suggest  that  derived  clones  may  occupy  distinct

microenvironments, while the truncal clone retains signatures of progenitor cells that may reflect

the cell of origin.

Case 2: analysis of clonal composition

To  test  our  strategy  on  a  more  complex  case,  we  obtained  a  resected  specimen  from  a

recurrent diffuse glioma that was removed from the right cerebral hemisphere of a 58 y.o. male

(Fig. 4a-c) approximately 28 years after the primary resection. Molecular pathology revealed

evidence for mutations in  IDH1 and  TP53 (Fig. 4d-e),  no evidence for chromosome 1p/19q

codeletion  (data  not  shown),  and KI67 labeling  of  4% (data  not  shown),  consistent  with  a

recurrent CNS WHO grade 2 astrocytoma, IDH-mutant. Building on our observations from case

1, we applied the same strategy to case 2, with five modifications. First, we increased power by

analyzing more sections (Table S15).  Second,  we rotated the sample  90°  halfway through

sectioning to capture ITH in orthogonal planes (Fig. 4f). Third, we inferred CNVs from RNA-seq

data instead of DNA methylation data. Fourth, we increased the average sequencing depth for

amp-seq  data.  And  fifth,  we  analyzed  single  nuclei  from  interpolated  sections  to  validate

predictions from bulk sections (Fig. 4f).

To identify somatic mutations, we performed WES on DNA from two sections in each

plane (22, 46, 85, 123; Table S16) and the patient's blood. 227 mutations were identified and 74

were selected for amp-seq by clustering WES VAFs to reveal candidate mutations most likely to

mark distinct clones (Table S17). Of these, 58 mutations were verified by amp-seq (Table S18).

As  with  case  1,  downsampling  reads  spanning  IDH1  R132H  or  TP53  G245V  revealed

monotonic  improvements  in  VAF  estimates  as  a  function  of  read  depth  (Fig.  S4a-b).  We

therefore restricted further analysis of amp-seq data to 27 mutations with high coverage over all

tumor sections or strong VAF correlations to other mutations (Fig. S4c). Hierarchical clustering

of these amp-seq data (Table S18) revealed five clusters of mutations with similar VAF patterns

within the tumor sample (Fig. 4g-l), suggesting multiple malignant clones.

Because  mutations  in  IDH1,  TP53,  and  ATRX are  considered  diagnostic  for

astrocytoma33, we expected these to be truncal and were therefore surprised that IDH1 R132H

fell  in  a  separate  cluster  from  mutations  in  TP53 and  ATRX (Fig.  4j-k).  To  explore  this

discrepancy, we analyzed VAFs for all three mutations after controlling for gene dosage. This

analysis revealed greater discordance between VAFs for IDH1 and TP53 /  ATRX mutations in

sectioning plane 1 vs. sectioning plane 2 (Fig. 4m). We also observed that all genes in mutation

cluster  4  (including  IDH1)  are  located  on  chr2q.  These  observations  suggested  that  the

discrepancy between IDH1 and TP53 / ATRX mutation VAFs might be explained by a subclonal

deletion in chr2q pursuant to the IDH1 R132H mutation, as has been previously reported39–41. To

test  this  hypothesis,  we  quantified  CNVs  from  WES  (n=4  sections)  and  RNA-seq  (n=90

sections)  data  using FACETS34 and CNVkit42,  respectively,  which yielded highly  concordant

frequencies for copy number changes (r=0.97,  Fig. S4d and  Table S19),  including a chr2q

deletion event. As expected, frequencies of the chr2q deletion event were substantially higher in

sectioning plane 1 vs. sectioning plane 2 (Fig. 4n)  and almost perfectly correlated with the

observed discordance between IDH1 and TP53 / ATRX mutation VAFs (r=0.98, Fig. S4e).
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Through combined analysis of SNV and CNV frequencies over all tumor sections, we

generated an integrated model of tumor evolution using the same approach described for case

1, including the most likely phylogenetic tree (Fig. 4o) and frequencies of five malignant clones

over all sections (Fig. 4p and  Table S20). Compared to case 1, there was substantially less

variation  in  the  purity  of  individual  tumor  sections  (range:  71.4  -  81.6%;  Table  S20).  We

confirmed the truncal nature of mutations in IDH1,  TP53, and ATRX, along with gains of chr7,

chr8,  and  chr9.  To  more  closely  examine  the  sequence  of  early  mutational  events,  we

performed single-nucleus DNA sequencing using MissionBio’s Tapestri microfluidics platform43.

We took advantage of an existing panel of cancer genes, which included primers flanking one

IDH1  and two  TP53 loci. We were also able to infer chr17 and chr2q copy-number changes

using mutations that fell  within the targeting panel.  We analyzed 4,433 nuclei  from plane 1

(section 29) and 3,736 nuclei from plane 2 (sections 113 and 115). Clustering nuclei from each

plane revealed clonal frequencies that broadly matched those obtained by bulk analysis (Fig.

S4f, Table S21). Interestingly, we observed a subpopulation of clone 1 (clone 1a: 4.1 - 6.6%)

with IDH1 R132H -/+ and TP53 G245V -/+/+ genotypes (Fig. S4f). These genotypes suggest

that  TP53 LOH occurred mechanistically in this case through duplication of the mutant allele

prior  to loss of the wild-type allele,  and may also explain the slightly lower VAFs for TP53

G245V compared to the mutation in ATRX (Fig. 4j).

Case 2: analysis of gene expression

We explored relationships between clonal abundance and bulk gene expression data using the

same strategies described for case one. Genome-wide gene coexpression analysis identified 68

modules of coexpressed genes, which were summarized by their eigengenes and hierarchically

clustered (Fig. 5a-c). As expected29,30, many modules were significantly enriched with markers

of nonmalignant cell types (Fig. S5a-d). By comparing clonal abundance (Fig. 4p, Table S20)

to module eigengenes over all tumor sections, we identified five gene coexpression modules

whose expression patterns closely tracked the abundance of clone 1 (red: r = 0.65,  Fig. 5d),

clone 2 (violet: r = 0.82, Fig. 5e), clone 3 (black: r = 0.8, Fig. 5f), clone 4 (ivory: r = 0.86, Fig.

5g), and clone 5 (lightcyan: r = 0.82, data not shown).

Enrichment analysis using gene sets defined by clonal CNV boundaries (Fig. 4o and

Table  S19)  confirmed expected  over-representation  (for  gains)  or  under-representation  (for

deletions) in the bulk coexpression modules most strongly associated with each clone (Fig. 5d-

g, Table S22, Table S23).  Further analysis using publicly available gene sets from diverse

sources (Table S9) revealed that the red module, which tracked the abundance of clone 1 (i.e.,

tumor purity), was significantly enriched with markers of radial glia and microglia, as well as

genes comprising the mesenchymal subtype of glioblastoma. The violet module, which closely

tracked  the  abundance  of  clone  2,  was  significantly  enriched  with  genes  from  reported

astrocytoma expression  programs,  as  well  as  TNFalpha  signaling  and  extracellular  matrix

components.  The  black  module,  which  closely  tracked  the  abundance  of  clone  3,  was

significantly enriched with markers of neurons and genes involved in chromatin remodeling. The

ivory module, which closely tracked the abundance of clone 4, was enriched with markers of

ependymal cells and myeloid cells. The lightcyan module, which closely tracked the abundance

of clone 5, was significantly enriched with genes involved in EGFR and NF-kB signaling, as well

as genes comprising the proneural subtype of glioblastoma (data not shown).
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To further characterize the transcriptional  signatures associated with each clone,  we

used multiple linear regression to model genome-wide expression levels as a function of clonal

abundance. To account for collinearity, we used a regular lasso model with bootstrapped clonal

abundance vectors (real or permuted) as predictors (Fig. S5e-i).  We restricted our focus to

genes that were significantly and stably modeled by a single clone (Table S24). Enrichment

analysis  of  these  genes  largely  recapitulated  enrichment  analysis  of  gene  coexpression

modules associated with each clone, including CNVs and the associations of different clones

with different cell types (Fig. S5i, Table S25).

To validate gene expression signatures of malignant clones and nonmalignant cell types

identified from bulk  tumor sections,  we performed single-nucleus RNA-seq (snRNA-seq)  on

tumor  sections  17,  53,  93,  and  117  (Fig.  4f,  Table  S26).  Using  a  protocol  adapted  from

TARGET-Seq44,45, we profiled gene expression in 288 flow-sorted nuclei per section. Following

data preprocessing and quality control, 809 nuclei (70.2%) with an average of >200K unique

reads/nucleus were retained for further analysis. Uniform manifold approximation and projection

(UMAP) analysis revealed that nuclei did not segregate by section ID (Fig. S6a, Table S27).

To  determine  whether  nuclei  segregated  by  cancerous  state,  we  analyzed  the

malignancy of  each nucleus.  Unlike some tumors,  astrocytomas are  not  defined by truncal

CNVs, which can drive gene expression changes that are used to infer malignancy in snRNA-

seq data23,33,46,47. We therefore genotyped all nuclei through single-nucleus amplicon sequencing

(snAmp-seq) of cDNA spanning mutations in the truncal clone (Fig. 4o). This analysis provided

sufficient information to call malignancy for 75% of nuclei. Projecting malignancy status onto the

UMAP plot revealed clear segregation of malignant and nonmalignant nuclei (Fig. S6b).

To further classify nuclei as specific malignant clones or nonmalignant cell  types, we

took a two-step approach. First, we hierarchically clustered all nuclei using a Bayesian distance

metric  calculated  by  Sanity25 that  downweights  genes  with  large  error  bars,  revealing  12

clusters. Second, we asked whether genes in the bulk coexpression modules most strongly

associated with each malignant clone or nonmalignant cell  type were upregulated in distinct

snRNA-seq clusters compared to all other genes (Fig. S7a-j). This analysis revealed specific

and significant upregulation of genes from the red (Fig. 5d), violet (Fig. 5e), black (Fig. 5f), and

lightcyan (data not shown) modules in snRNA-seq clusters 2, 1, 7, and 10 (Fig. 6a), suggesting

that these clusters correspond to malignant clones 1, 2, 3, and 5, respectively. Genes in the

ivory module (Fig. 5g) were significantly upregulated in snRNA-seq clusters 3 and 5, suggesting

that both of these clusters represent clone 4 (Fig. 6a).  Similarly,  we observed specific and

significant upregulation of genes from the purple (Fig. S5a), yellow (Fig. S5c), green (Fig. S5d),

and  orange  (data  not  shown)  modules  in  snRNA-seq  clusters  9,  4,  12,  and  6  (Fig.  6a),

suggesting that these clusters correspond to nonmalignant astrocytes, microglia, neurons, and

endothelial  cells,  respectively.  Genes  in  the  tan  module  (Fig.  S5b)  were  significantly

upregulated in snRNA-seq clusters 8 and 11, suggesting that both of these clusters represent

nonmalignant oligodendrocytes (Fig. 6a).

We performed several additional analyses to verify these findings. First, we projected

snRNA-seq  cluster  assignments  onto  the  UMAP  plot  (Fig.  6b)  and  observed  that  cluster

assignments  were  consistent  with  the  malignancy  map  produced  by  genotyping  nuclei  via

snAmp-seq (Fig. S6b). Second, we performed UMAP analysis for malignant cells only, followed

by  trajectory  analysis  with  Slingshot48 (Fig.  6c).  This  analysis  revealed  patterns  of  clonal
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evolution that recapitulated the phylogenetic tree inferred from integrative analysis of bulk tumor

sections (Fig. 4o). Third, we compared estimates of cellular abundance obtained from bulk and

single-nucleus  data  for  adjacent  tissue  sections.  This  analysis  revealed  highly  consistent

estimates for the relative abundance of malignant clones (r ≥ 0.94; Fig. S6c) and nonmalignant

cell types (r ≥ 0.90; Fig. S6d).

Supervised clustering with differentially expressed genes revealed clear separation of

snRNA-seq clusters (Fig. 7). Overall, malignant clones were more transcriptionally active than

nonmalignant cell types, with the exceptions of clone 4:1 and endothelial cells (Fig. 7, right).

Enrichment  analysis  of  genes  that  were  significantly  up-regulated  in  snRNA-seq  clusters

confirmed the identities of nonmalignant cell types (Fig. S8, Table S28). For malignant clones,

enrichment analysis of snRNA-seq clusters supported and refined inferences from bulk data

(Fig. 5d-g,  Fig. S5i,  Fig. S6,  Table S9). For clone 1, consistent enrichments for markers of

radial glia and genes comprising the mesenchymal subtype of glioblastoma were observed in

bulk and snRNA-seq data. In contrast, markers of microglia were less significantly enriched in

clone  1  nuclei  from  snRNA-seq  data  versus  bulk  data,  and  markers  of  oligodendrocyte

progenitor cells (OPCs) were more significantly enriched. For clone 2, markers of astrocytes

were more significantly enriched in snRNA-seq data versus bulk data. Clone 3 was consistently

enriched  with  genes  involved  in  chromatin  remodeling,  but  neuronal  markers  were  less

significantly enriched in snRNA-seq data. Clone 4 showed strong enrichment for markers of

ependymal cells in all analyses, while clone 5 was significantly enriched with genes comprising

the proneural subtype of glioblastoma in all analyses. Interestingly, genes involved in mitosis

were most highly expressed by clone 1, clone 4:2, and endothelial cells (Fig. 7, right).

Because clones in this case were characterized by disparate CNVs (Fig. 4o), we asked

how malignancy calls compared between algorithms that infer CNVs from snRNA-seq data and

malignant  genotypes  derived  from  snAmp-seq  data.  We  used  CopyKat46,  InferCNV23,  and

CaSpER47 to call CNVs from snRNA-seq data. These analyses revealed substantial variation in

malignancy calls for different algorithms (Fig. 7) as well as differences from bulk CNV calls

(e.g., no gains in chr7p, chr8p, and chr9q;  Fig. S6e).  Taking the snAmp-seq genotyping as

ground  truth,  CopyKat  and  InferCNV were  more  sensitive  but  less  specific  than  CaSpER,

leading to discrepant calls. For example, nonmalignant astrocytes and oligodendrocytes:2 were

mostly  called  malignant  by  CopyKat  and  InferCNV,  while  clone  4:2  was  mostly  called

nonmalignant by these two algorithms. CaSpER’s classification of nuclei from these populations

was mostly  correct,  but  it  failed to recognize most  malignant  nuclei  for  clones 3 and 5.  In

addition, clone 4:1 was mostly classified as nonmalignant by all three algorithms. Overall, none

of the algorithms for inferring malignancy from CNVs achieved accuracy > 61% (Fig. 7).

Integrative analysis of gene expression in malignant cells

Intuitively,  genes whose expression patterns correlate most  strongly  with the abundance of

malignant  cells  should  include  optimal  biomarkers.  This  intuition  can  also  be  proven

mathematically and empirically. Fig. 8a-c illustrates a hypothetical example in which the goal is

to  identify  optimal  transcriptional  markers  of  malignant  cells  in  a  human  brain  tumor.  A

conventional strategy would involve physically isolating individual cells, transcriptionally profiling

them by single-cell RNA-seq (scRNA-seq), inferring the malignancy of individual cells from the

scRNA-seq  data  based  on  the  presence  of  driver  mutations  (CNVs  and/or  SNVs),  and
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performing  differential  expression  analysis  for  each  gene  between  all  malignant  and

nonmalignant cells (for example, using a t-test; Fig. 8b). Fig. 8c shows an alternative analytical

path that leads to the same place: by correlating expression levels of the same hypothetical

gene from Fig. 8b with a dichotomous variable denoting malignant cell abundance (1=malignant

cells, 0=nonmalignant cells), the resulting statistical significance is identical to that obtained by

differential expression analysis.

Although  the  t-test  and  correlation  produce  identical  results  when  the  independent

variable is  dichotomous,  this  is  not  the  case when the independent  variable  is  continuous.

However, we have shown via pseudobulk analysis of scRNA-seq data from normal adult human

brain that:  i)  the correlation between the expression pattern of a gene and the [continuous]

abundance of a cell type accurately predicts differential expression of that gene in that cell type,

and ii) cell-type-specific gene coexpression relationships accurately predict cellular abundance

in pseudobulk samples29. To determine whether these findings extend to malignant cells, we

repeated this analysis using scRNA-seq data from 10 adult human astrocytomas22 (Fig. 8d).

Genome-wide  gene  coexpression  analysis  of  pseudobulk  samples  obtained  by  randomly

aggregating  scRNA-seq  data  revealed  a  malignant  cell  coexpression  module  whose

eigengene36 (i.e.,  first  principal  component,  which  summarizes  the  characteristic  expression

pattern  of  the  module  over  all  samples)  closely  tracked  the  actual  abundance  of  sampled

malignant cells (Fig. 8e-f). Furthermore, the genes that were most significantly up-regulated in

malignant cells per differential expression analysis of the underlying scRNA-seq data (Fig. 8d)

also had the highest correlations to malignant cell abundance (kME) in pseudobulk data (Fig.

8g). These results confirm that gene expression profiles of malignant cells can be revealed by

correlating genome-wide expression patterns with malignant cell abundance in heterogeneous

tumor  samples.  This  strategy  also  applies  to  individual  malignant  clones  (as  well  as

nonmalignant cell types of the TME), as shown for case 2 in Fig. S9.

We next sought to compare transcriptional profiles of malignant cells between case one

and case two through integrative analysis. However, despite the fact that both tumors were

diagnosed as grade 2 IDH-mutant astrocytomas, only one SNV was shared between the cases.

Furthermore, the shared SNV (IDH1 R132H) was absent in ~21% of malignant cells in case 2

following loss of chr2q (Fig. 4o). We therefore asked whether the truncal clones (i.e., clone 1),

which presumably included all  of  the mutations required to initiate these tumors along with

passenger mutations, had consistent transcriptional profiles in case 1 and case 2. For each

case,  we  analyzed  genome-wide  correlations  to  the  cumulative  abundance  of  clone  1

(equivalent to tumor purity).  Comparing these results between cases, we observed a highly

significant relationship (Fig. 9a, Table S29). Enrichment analysis of genes whose expression

patterns  were  most  positively  correlated  with  clone  1  in  both  cases  implicated  gene  sets

comprising the ‘classical’  subtype of  glioblastoma proposed by Verhaak et  al.37,  markers of

radial  glia,  infiltrating  monocytes,  and  extracellular  matrix  components  (Fig.  9a-b;  red).  In

contrast, genes whose expression patterns were most negatively correlated with clone 1 in both

cases largely implicated gene sets related to neurons and neuronal function (Fig. 9a-b; blue).

We  further  characterized  genes  whose  expression  patterns  were  most  positively

correlated with the truncal clone in both cases (Fig. 9a; red) by cross-referencing them with

human  protein-protein  interaction  (PPI)  data  from the STRING database49,50.  This  analysis

revealed eight distinct clusters of interacting proteins (Fig. 9c).  The largest of these (green)
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included several SOX transcription factors and was significantly enriched with genes involved in

WNT  and  MYC  signaling  (Fig.  9d).  The  second  largest  cluster  (yellow)  was  significantly

enriched  with  genes  involved  in  DNA  repair,  and  the  third  largest  cluster  (orange)  was

significantly enriched with genes involved in RNA splicing (Fig. 9d).  The remaining clusters

were significantly enriched with genes involved in mRNA transport (brown), DNA replication

(turquoise),  specific  cellular  compartments and protein complexes (pink,  gray),  and immune

response (purple) (Fig. 9d).

To  provide  further  validation  for  these  findings,  we  performed  immunostaining  for

AKR1C3. Out of 15,288 genes, AKR1C3 bulk expression correlations to tumor purity ranked fifth

in case one and first in case two (Fig. 9a [asterisk], Table S29). AKR1C3 was also significantly

upregulated in malignant vs. nonmalignant nuclei per snRNA-seq (Fig. 7, right). Immunostaining

confirmed substantial upregulation of AKR1C3 in tumor vs. normal human brain at the protein

level (Fig. 9e,  f). To provide cellular resolution, we co-stained for AKR1C3 and IDH1 R132H

using an antibody that recognizes the mutated IDH1 protein. As expected, this analysis revealed

broad overlap between cells expressing AKR1C3 and cells expressing IDH1 R132H (Fig. 9g-i).

Discussion

We have described a novel strategy called MOMA for deconstructing ITH through multiomic and

multiscale  analysis  of  serial  tumor  sections.  By  amplifying  each  tumor  specimen  into

standardized  biological  replicates  through serial  sectioning,  we obtained a  large number  of

representative subsamples of each tumor with variable cellular composition. Because section

size and number can be tailored to experimental needs, MOMA provides flexibility for a variety

of  concurrent  assays  while  preserving  spatial  information.  We  performed  WES  to  identify

mutations in a small number of distant sections, followed by deep sequencing of PCR amplicons

spanning mutation sites to quantify SNV frequencies with high confidence in a large number of

sections. Although clusters of SNVs with highly correlated VAFs suggested distinct clones, we

found  that  integrative  analysis  of  SNV  and  CNV  frequencies  (inferred  from  bulk  DNA

methylation data [case 1] or bulk RNA-seq data [case 2]) was required to accurately reconstruct

clonal phylogenies. Using this approach, we identified the six most prevalent clonal populations

of malignant cells in case 1 and five in case 2 and quantified their abundance in all  tumor

sections.

By comparing clonal  abundance to  genome-wide expression patterns over  all  tumor

sections, we identified transcriptional profiles of distinct malignant clones in each case. Clone

expression profiles were orthogonally validated through comparisons with normal human brain

(case  1)  and  snRNA-seq  using  nuclei  isolated  from  interpolated  tumor  sections  (case  2).

Enrichment  analysis  of  these profiles  revealed several  interesting  findings.  First,  gene sets

defined  by  clonal  CNV  boundaries  were  significantly  enriched  (for  gains)  or  depleted  (for

deletions) in  the expected clone expression profiles,  providing further confirmation of  clonal

identities.  Second,  gene  sets  representing  transcriptional  subtypes  of  glioblastoma37 were

significantly associated with distinct clones in each case, suggesting stereotyped patterns of

malignant cell differentiation that may reflect different microenvironments51. Third, in both cases,

markers of neural stem cells (radial glia) were most significantly enriched in the truncal clone.

And fourth, markers of ependymal cells were significantly and specifically enriched in clone 4
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from case 2. To our knowledge, malignant ependymal cells have not previously been described

in human astrocytomas. Because ependymal cells differentiate from neural stem cells during

normal brain development52,  the presence of malignant ependymal cells is consistent with a

neural stem cell as the cell of origin for case two.

Although both cases were diagnosed as IDH-mutant grade 2 astrocytomas, they shared

only one SNV (IDH1 R132H), which was truncal in both cases but lost from 21% of malignant

cells (clone 3) in case 2 due to chr2q deletion. The extent of clonal heterogeneity, even for the

same type of tumor, begs the question of how gene expression correlations to clonal abundance

should  be  compared  and  integrated  across  cases.  We  reasoned  that  aggregating  gene

expression correlations to the truncal clone (equivalent to tumor purity) would identify the most

specific and consistent transcriptional features of all malignant cells in both astrocytomas (as

illustrated  in  Fig.  8).  This  deceptively  simple  strategy  has  profound  implications  for  target

discovery in cancer biology, because correlations between molecular  abundance and tumor

purity  can  be  aggregated  from  huge  numbers  of  bulk  samples  from  similar  cases  that

collectively represent many billions of cells. In statistical and economic terms, this strategy likely

represents the shortest path to identifying the most robust molecular features of malignant cells,

including the  non-oncogene  dependencies  that  are  thought  to  vastly  outnumber  recurrently

mutated genes53, for any kind of solid tumor.

Here,  performing  this  analysis  for  only  two  cases,  we  observed  a  highly  significant

genome-wide correlation between gene expression profiles of the truncal clone, which suggests

that a core set of genes is consistently expressed by the founding population of malignant cells

in IDH-mutant astrocytomas. This result is particularly striking given the biological and technical

differences between case 1 (primary astrocytoma, microarray gene expression data) and case 2

(recurrent astrocytoma, RNA-seq gene expression data). Cross-referencing these genes with

human PPI data50 revealed distinct groups of interacting proteins that were significantly enriched

with cancer-related pathways and processes, including WNT and MYC signaling, RNA splicing,

and DNA repair. Furthermore, many of the genes whose expression patterns correlated most

strongly with malignant cell abundance in both cases (Table S29) have been implicated in other

types of cancer. For example,  AKR1C3, which encodes a prostaglandin synthase involved in

androgen  production54,  is  significantly  upregulated  and  associated  with  poor  outcomes  in

hepatocellular  carcinoma55,  prostate  cancer56,  and  pediatric  T-cell  acute  lymphoblastic

leukemia57.  These findings point  to  the exciting possibility  that  malignant cells  from diverse

cancers caused by distinct mutations may nevertheless share transcriptional dependencies that

can be exploited therapeutically.

It  is  also  important  to  note  that  transcriptional  phenotypes  of  malignancy,  including

upregulation of  AKR1C3, persisted in clone 3 from case 2 despite loss of the driver mutation

IDH1 R132H following chr2q deletion. IDH1 R132H perturbs genome-wide expression patterns

by increasing production of the oncometabolite  D-2-hydroxyglutarate58,  which competes with

endogenous a-ketoglutarate  to  alter  the  activities of  enzymes that  are required to  maintain

normal DNA methylation59. Our findings support previous studies indicating that altered DNA

methylation  patterns  can  persist  and  perpetuate  malignant  phenotypes  despite  loss  of  the

mutated protein that  caused them39–41.  This  example  is  illustrative  because it  highlights  the

limitations of conventional gene panels for cancer diagnostics, which provide binary calls for the

presence or absence of common oncogenic mutations. In this case, such panels would indicate
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the presence of IDH1 R132H and recommend treatment that targets this mutation60. However,

with knowledge of this tumor’s clonal phylogeny, we can see that such treatment will be entirely

ineffective for one-fifth of malignant cells, since the mutated IDH1 protein is no longer there. In

this case, it is these cells that will likely form the basis for therapeutic resistance.

There are several  important  methodological implications and limitations of  our study.

First, each tumor specimen analyzed in this study represents a fraction of overall tumor volume;

future efforts will  analyze multiple, geographically distinct tumor subsamples to evaluate the

consistency of clonal architecture. Second, MOMA requires a large number of sections to detect

meaningful  correlations  (for  example:  25  sections  provide ~85% power  to  detect  moderate

correlations [|r| > 0.5, P < .05])61. Third, DNA and RNA must be co-isolated from each section

(i.e., from the same population of cells). Fourth, deep sequencing is required to establish high-

confidence VAFs for SNVs, which are in turn required to estimate clonal frequencies. Fifth,

limited variability in clonal frequencies may impact the ability to detect corresponding molecular

signatures.  Sixth,  some  types  of  mutations  are  not  yet  captured  by  our  approach  (e.g.,

noncoding  SNVs,  rearrangements,  chromothripsis,  etc.).  And  seventh,  collinearity  in  the

abundance of malignant and / or nonmalignant cell types may produce spurious correlations

(which can be mitigated by differential coexpression analysis with normal tissue, as done for

case one, or sectioning in multiple planes, as done for case two). For this reason, we also

recommend validating transcriptional profiles of malignant clones using one or more orthogonal

techniques. We found that multiscale integration of bulk sections and single nuclei allowed us to

leverage the complementary strengths of each sampling strategy.  Specifically,  bulk sections

facilitate multiomic integration while yielding robust molecular signatures driven by millions of

cells, while single nuclei enable precise validation of predictions made from bulk data. However,

the success of this approach depends on accurate classification of malignant nuclei.  In our

study, we found that popular  algorithms for identifying malignant nuclei based on inferred CNVs

from gene expression data23,46,47 were only ~60% accurate. Therefore, MOMA will benefit from

improved  algorithms  for  inferring  malignancy  and  /  or  scalable  methods  for  profiling  gene

expression and malignant cell genotypes in parallel.

In  summary,  MOMA is  a  novel  and flexible  strategy for  deconstructing  ITH through

multiomic and multiscale analysis of serial tumor sections. Importantly, MOMA is generalizable

to other molecular species and any kind of solid tumor. Ongoing efforts seek to incorporate

additional  cases,  multiomic assays,  and data modalities,  while  increasing efficiency through

automation. By shining a bright light on the most robust molecular properties of malignant cells,

we hope that these efforts will expand the therapeutic search space for human cancers.

Methods

Pseudobulk analysis of scRNA-seq data
Single-cell RNA-sequencing (scRNA-seq) data from Venteicher et al.22 comprising 6243 cells

from 10 IDH-mutant  adult  astrocytomas were  downloaded  from Gene Expression  Omnibus

(https://www.ncbi.nlm.nih.gov/geo/;  accession  ID  =  GSE89567).  To  generate  a  pseudobulk

gene  expression  matrix  from  these  data,  10%  of  all  cells  were  randomly  sampled  and

expression  levels  were  summed  for  each  gene  from  all  sampled  cells  (this  process  was

repeated 100x to  generate  a  matrix  with  100 pseudobulk  samples).  Using cell-class  labels

provided by the authors, the identities of all  cells comprising each pseudobulk sample were
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tracked. Genome-wide differential expression analysis was performed by comparing all sampled

malignant cells to all sampled nonmalignant cells using a two-sided t-test. In parallel, genome-

wide gene coexpression analysis was performed as described29. Briefly, genome-wide biweight

midcorrelations (bicor)  were calculated using the WGCNA R package62 and all  genes were

clustered using the flashClust63 implementation of hierarchical clustering with complete linkage

and 1 – bicor as a distance measure. The resulting dendrogram was cut at a static height of

0.277, corresponding to the top 1% of bicor values. All clusters consisting of at least 10 genes

were identified and summarized by their module eigengene36 (i.e., the first principal component

obtained by singular value decomposition) using the moduleEigengenes function of the WGCNA

R package62. Highly similar modules were merged if the Pearson correlation of their module

eigengenes was > 0.85. This procedure was performed iteratively such that the pair of modules

with  the  highest  correlation  >  0.85  was  merged,  followed  by  recalculation  of  all  module

eigengenes, followed by recalculation of all correlations, until no pairs of modules exceeded the

threshold. The pseudobulk gene coexpression module most strongly associated with malignant

cells was identified by maximizing the correlation between the module eigengene and the actual

fraction  of  sampled  malignant  cells  in  each  pseudobulk  sample.  Genome-wide  Pearson

correlations to this module eigengene (kME values)36 were then calculated and compared to the

results of single-cell differential expression analysis (t-values).

Sample acquisition

The tumor specimen from case one (WHO grade II  primary astrocytoma,  IDH-mutant)  was

obtained from a 40 y.o. female patient following surgical resection at the University of California,

San Francisco (UCSF), along with the patient's blood (UCSF case ID: SF9495). The tumor

specimen from case two (WHO grade II recurrent astrocytoma, IDH-mutant) was obtained from

a 58 y.o.  male patient  following surgical  resection  at  UCSF,  along with  the patient’s  blood

(UCSF case ID:  SF10711).  Four  postmortem control  human brain  samples  from two  brain

regions (anterior cingulate cortex [ACC] and entorhinal cortex [EC]) were also obtained from

routine autopsies of two individuals (41 and 75 y.o. females) at UCSF. Control samples were

examined  by a neuropathologist (E.J.H.) and found to exhibit no evidence of brain disease.

Tissue samples for nucleic acid isolation were immediately frozen on dry ice without fixation. For

tumor histology, a smaller subsample was formalin-fixed and paraffin-embedded (FFPE) using

standard procedures. All tumor samples were obtained with donor consent in accordance with

protocols approved on behalf of the UCSF Brain Tumor Center Tissue Core.

Serial sectioning

Tissue cryosectioning was performed on a Leica CM3050S cryostat at -20°C. Each sample was

oversectioned  to  account  for  the  possibility  of  low  RNA  quality  or  quantity  from  some

cryosections;  after  excluding  these  (see  below),  most,  but  not  all,  analyzed  sections  were

adjacent to one another. For the first case, 81 sections were cut and utilized as shown in Fig.

2f. For each of the four control samples, ~120 sections were cut and 94 were utilized for gene

expression profiling. For the second case, 140 sections were cut and utilized as shown in Fig.

4f.  In addition,  the plane of  sectioning for  the second case was rotated 90 degrees at  the

halfway  point  to  provide  additional  spatial  variation  (Fig.  4f).  These  sectioning  strategies

resulted in 73% power to detect weak correlations  (|r| > 0.3, P < .05) for case one and 83%

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.06.21.545365doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/


power  for  case  two61.  To  control  for  differences in  the  cross-sectional  area  of  each tissue

sample, section thickness was varied as needed to ensure sufficient and comparable amounts

of nucleic acids could be extracted from sections for multiomic analysis. Quality control and

usage information for all sections can be found in  Table S1 (case one),  Table S12 (control

samples),  and  Table S15 (case two). Frozen sections were collected in RNase-free 1.7 ml

tubes (Denville Scientific Inc, South Plainfield, NJ) and stored at -80°C.

Nucleic acid isolation and quality control

Tissue cryosections were thawed on ice and homogenized by pipette in QIAzol (Qiagen Inc.,

Valencia, CA). For control samples, RNA was extracted from each section with the miRNeasy

mini  kit  (Qiagen  Inc.,  Valencia,  CA).  For  tumor  samples,  DNA  and  RNA  were  isolated

simultaneously  from each  section  with  the  AllPrep  DNA /  RNA /  miRNA kit  (Qiagen  Inc.,

Valencia, CA). All nucleic acid isolation from tissue sections was performed using a QIAcube

automated sample  preparation system according to  the manufacturer's  instructions (Qiagen

Inc., Valencia, CA). Sections were processed in random batches of 12 on the QIAcube to avoid

confounding section number with potential technical sources of variation associated with nucleic

acid isolation.

Frozen blood was thawed and resuspended in red blood cell lysis solution (Qiagen Inc.,

Valencia,  CA).  White  blood cells  were removed by centrifugation  at  2000g for  5  mins and

repeated until white blood cells were depleted. Remaining red blood cells were resuspended in

extraction buffer (50 mM Tris [pH8.0], 1 mM EDTA [pH8.0], 0.5% SDS and 1 mg / ml Proteinase

K [Roche,  Nutley,  NJ])  and incubated overnight  at  55°C.  The extracted DNA was  RNAse

treated  (40  μg  /  ml)  (Roche,  Nutley,  NJ)  for  1  h  at  37°C  before  being  phenol  chloroform

extracted and ethanol precipitated. The resulting DNA was resuspended in TE buffer (10 mM

460 Tris, 1 mM EDTA [pH7.6]).

RNA and  DNA  were  analyzed  using  a  Nanodrop  1000  spectrophotometer  (Thermo

Scientific Inc., Waltham, MA) to quantify concentrations, OD 260 / 280 ratios, and OD 260 / 230

ratios. Further validation of RNA and DNA concentrations was performed using the Qubit RNA

HS kit and Qubit dsDNA HS kit on the Qubit 2.0 Fluorometer (Life Technologies Inc., Carlsbad,

CA).  RNA  integrity  (RIN)  was  assessed  using  an  Agilent  2100  Bioanalyzer  (Agilent

Technologies Inc., Santa Clara, CA). Sections for which RIN ≥ 5 (case one median = 7.6, case

two median = 8.3), OD 260 / 280 ratio ≥ 1.80 (case one median = 2.03, case two median =

1.94), and concentration by Nanodrop  ≥ 9 ng / μl (case one median = 25.4 ng / μl, case two

median = 9.25 ng / μl) were selected.

Whole exome sequencing (WES) and data preprocessing

WES was performed at the UCSF Institute for Human Genetics genomics core facility (San

Francisco, CA). Exome libraries were prepared from 1 μg of genomic DNA from each analyzed

section  using  the  Nimblegen  EZ  Exome  kit  V3  (Roche,  Nutley,  NJ).  Paired-end  100  bp

sequencing was performed on a HiSeq2500 sequencer (Illumina Inc.,  San Diego,  CA). The

analysis of WES data was performed as previously described64. Briefly, paired-end sequences

were aligned to the human genome (University of California, Santa Cruz build hg19) using the

Burrows-Wheeler Aligner (BWA)65. Uniquely aligned reads were further processed to achieve

deduplication,  base quality  recalibration,  and multiple  sequence-realignment  with  the Picard

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.06.21.545365doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/


suite66 and  Broad  Institute  Genome  Analysis  ToolKit  (GATK)67.  After  processing,  a  mean

coverage of 131-151x and 104-122x was achieved for case one and case two, respectively.

Single-nucleotide variant (SNV) and small insertion / deletion (indel) calling workflow

SNVs were  identified  using  MuTect68 and  indels  were  identified  with  Pindel69 using  default

settings. SNVs were further filtered to only retain variants with frequency > 0.10 in at least one

tumor section and < 6 variant reads in the patient's blood. Indels were filtered to only retain

variants with > 5 variant reads in a given tumor section and < 13 total reads in the patient's

blood. If multiple indels were detected at the same genomic location, only the indel with the

most supporting reads was retained. Identified mutations were annotated for their mutational

context using ANNOVAR70 and were also cross-referenced with dbSNP71 (Build ID: 132) and the

1000 Genomes72 (Phase 1). SNV and indel events were converted to hg38 coordinates and

assigned HGVS compliant names using Ensembl’s Variant Effect Predictor73.

Droplet Digital PCR (ddPCR) 

Variant allele frequencies (VAFs) of the IDH1 R132H mutation were determined in 69 tumor

sections from case one and the patient's blood using the PrimePCR IDH1 R132H mutant assay

and the QX100 Droplet Digital PCR system (Bio-Rad Inc., Hercules, CA). An initial serial dilution

of a positive control was performed to optimize the input concentration of genomic DNA from

each section and to assess the reliability of the assay. Duplicate reactions were performed to

quantify  the  reproducibility  of  the  assay (Fig.  S1b).  Data were analyzed and 95% Poisson

confidence intervals were calculated using QuantaSoft software (Bio-Rad Inc., Hercules, CA).

Amplicon sequencing (amp-seq) and data preprocessing

Groups of mutations with similar allele frequency distributions in WES data were identified by

hierarchical clustering. Biweight mid-correlations (bicor) were used to estimate the proximities of

somatic mutations and 1-bicor was used as a dissimilarity measure. A subset of representative

mutations from distinct clusters was validated by Sanger sequencing and deep sequencing of

PCR amplicons (amp-seq) derived from tumor sections and the patient's blood. Primers were

designed using Primer-BLAST74 to yield an amplicon of around 500 bp (case one) or 100 bp

(case two) with the mutation located within the center of the amplicon (Tables S3 and S17).

Amplicons were generated for 42 mutations in case one (n = 69 sections;  Table S3) and 75

mutations in case two (n = 85 sections;  Table S17).  For case one, the mutation-containing

region was amplified by PCR using the FastStart high-fidelity PCR system (Roche, Nutley, NJ)

or  the  GC-Rich  PCR system (Roche,  Nutley,  NJ)  as  instructed  by  the  manufacturer  using

specific annealing temperatures (Table S3).  The resulting amplicons were purified using the

NucleoSpin gel and PCR cleanup kit following the manufacturer's instructions (Macherey-Nagel

Inc.,  Bethlehem, PA) and submitted for  Sanger sequencing with the same primers used to

generate the amplicons. For case two, 50ng of gDNA was used as template per sample in each

reaction and 35 cycles of PCR amplification were performed with KAPA HiFi HotStart Ready

Mix (2x, KAPA Biosystems, Wilmington, MA). Multiplexed PCR reactions were purified using a

2X volume ratio of KAPA pure SPRI beads (KAPA Biosystems, Wilmington, MA). Purified PCR

reactions were quantified using the Qubit dsDNA HS kit and Qubit 2.0 fluorometer. For both

cases, the concentration of each amplicon was adjusted to 0.2 ng/μl.  Barcoded libraries for
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each section were generated using the Nextera XT DNA Kit (Illumina Inc., San Diego, CA). After

library preparation the barcoded libraries were pooled using bead-based normalization supplied

with the Nextera XT kit. The pooled libraries were sequenced with paired-end 250 bp reads in a

single flow cell on an Illumina MiSeq (Illumina Inc., San Diego, CA) in case one and an Illumina

HiSeq  4000  in  case  two.  In  case  one,  libraries  were  sequenced  in  two  runs,  whereas  all

amplicons were sequenced in the same run for case two. Sequence reads were demultiplexed

and basecalled using “bcl2fastq” (Illumina Inc., San Diego, CA). FASTQ files were aligned to a

custom genome (based on the amplicon sequences) using BWA-MEM75. The SAMtools suite76

was used to create and index BAM files and create pileup files based on reads with a base

quality score > 30. Read counts supporting the reference or variant within each amplicon were

determined using the read counts function from VarScan 277 and these counts were used to

calculate VAFs.

Downsampling analysis of amp-seq data

Amplicon reads originating from the reference or  alternative alleles for  IDH1 or  TP53 were

randomly  downsampled  to  various  coverage  levels  (n  =  1000  random  downsamples  per

coverage level) for each section to quantify the effect of reduced coverage on VAF estimates.

VAFs were recalculated for each downsampled coverage level and compared to full coverage

VAF estimates over all sections using Pearson’s correlation or root-mean-square error (RMSE),

as illustrated in Fig. S1c-d (case one) and Fig. S4a-b (case two).

Hierarchical clustering of variant allele frequencies (VAFs)

Groups of mutations with similar VAF patterns were identified by hierarchical clustering over all

tumor sections. VAFs were clustered with Ward’s D method and 1 – Pearson’s correlation as a

dissimilarity measure. The number of clusters was determined from the consensus of elbow78

and silhouette plot79 methods, using the cluster package in R80.

DNA methylation data production and preprocessing

The sample order of genomic DNA from serial sections of case one was randomized to avoid

confounding  section  number  with  potential  sources  of  technical  variation.  DNA  was

concentrated with Genomic DNA Clean & Concentrator 10TM columns (Zymo Research, Irvine,

CA)  in  batches  of  12  samples,  resulting  in  approximately  two-fold  concentration  (median

concentration  after  processing:  45ng  /  μl).  The  sample  order  was  randomized  again  and

concentrated DNA was shipped on dry ice to the University of California, Los Angeles (UCLA)

Neurogenomics Core facility (Los Angeles, CA) for analysis using Illumina 450K microarrays

(Illumina Inc., San Diego, CA). 

Raw idat files were processed using the ChAMP R package81. Initial probe filtering was

performed using the load.champ R function82–84. Probes with detection P-value > 0.01 (11,799

probes) or beadcount < 3 in at least 5% of samples were removed (n = 760), leaving 461,797

probes for analysis. The Illumina 450K microarrays contain two different assay types (Infinium I

and Infinium II). Each assay has different sensitivity and dynamic range, which means that joint

normalization leads to type II bias due to the lower sensitivity of the Infinium II assay85. We

therefore  performed  beta-mixture  quantile  normalization  (BMIQ)  using  the  “champ.norm”

function from ChAMP, which accounts for the different assay types86. 
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Additional  preprocessing  of  the  methylation  data  was  performed  with  the

SampleNetwork R function87,  which identifies outlying samples, performs data normalization,

and corrects for technical batch effects. The standardized sample network  connectivity (Z.K)

criterion was used to exclude one outlying sample (section #69, whose DNA concentration was

substantially lower than other sections), leaving 68 sections. No batch effects associated with

ArrayID or ArrayPosition were observed.

Gene expression data production and preprocessing

Total RNA from case one (n = 69 sections) was shipped on dry ice to the UCLA Neurogenomics

Core  facility  (Los  Angeles,  CA)  for  analysis  using  Illumina  HT-12  v4  human  microarrays

(Illumina Inc., San Diego, CA). The order of the sections was randomized prior to shipment to

avoid  confounding  potential  technical  artifacts  with  potential  biological  gradients  of  gene

expression.  Two  control  samples  from the  same  pool  of  total  human  brain  RNA (Ambion

FirstChoice human brain reference RNA Cat#AM6050, Life Technologies Inc., Carlsbad, CA)

were included with each of the five datasets. For each of the five datasets (case one and four

control samples), all microarray samples (n = 72 – 96 / dataset) were processed in the same

batch  for  amplification,  labeling,  and  hybridization.  Amplification  was  performed  using  the

Ambion TotalPrep RNA amplification kit (Life Technologies Inc., Carlsbad, CA). Raw bead-level

data were minimally processed by the UCLA Neurogenomics Core facility (no normalization or

background correction) using BeadStudio software (Illumina Inc., San Diego, CA).

For each dataset the minimally processed expression data were further preprocessed

using the SampleNetwork R function87.  Using the standardized sample network connectivity

(Z.K) criterion87, the following numbers of outliers were removed from each dataset: ACC1 (n =

2), ACC2 (n = 11), EC1 (n = 0), EC2 (n = 2), and case one (n = 1). Exclusion of outliers resulted

in the following numbers of remaining sections in each dataset: ACC1 (n = 92), ACC2 (n = 83),

EC1 (n = 94), EC2 (n = 92), and case one (n = 69). After removing outliers each dataset was

quantile normalized88 and technical batch effects were assessed87. Significant batch effects (P <

.05 after  Bonferroni  correction  for  univariate  ANOVA)  were  corrected  using  the  ComBat  R

function89 with no covariates as follows: ACC1 = ArrayID, ACC2 = ArrayID, EC1 = ArrayID and

ArrayPosition, EC2 = QCBatch and ArrayID. No batch effects were observed for case one.

Multiple technical batch effects were corrected sequentially. Analysis was restricted to 30,425

probes that were re-annotated90 as having either "perfect" (n = 29,272) or "good" (up to two

mismatches; n = 1,153) sequence alignment to their  target transcripts. Probes were further

collapsed to unique genes (n = 20,019) by retaining one probe per gene with the highest mean

expression over all sections.

For case two, RNA-sequencing was used to profile gene expression for all sections (n =

96). Full-length RNA was made into libraries using the KAPA stranded mRNA library prep kit

(Roche, Nutley, NJ) following the manufacturer’s instructions, with a mean insert size of 300 bp.

One ng of  library (composed of  library and ERCC spike-in controls, Life Technologies Inc.,

Carlsbad,  CA)  was  added  as  input,  and  all  libraries  were  normalized  according  to  the

manufacturer's instructions. During this process samples were randomized in both section order

and plane to avoid conflating biological and technical covariates. Sequencing was performed on

eight lanes of a HiSeq4000 at the Center for Advanced Technology (CAT) at UCSF with single-

end 50 bp sequencing using dual-index barcoding.
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Reads were assessed with FastQC to ensure the quality of sequencing data by verifying

high base quality scores, lack of GC bias, narrow distribution of sequencing lengths, and low

levels of sequence duplication or adapter sequences91. Next, reads were subjected to adapter

trimming using Cutadapt92 with minimum length = 20 and a quality cutoff of 20. Reads were

subsequently  aligned  using  default  settings  with  the  Bowtie2  program93 to  the  Genome

Reference Consortium Human Build 3794. Finally, an expression matrix was generated using the

FeatureCounts program with UCSC’s library of genomic features95 (n = 23,900 features). Genes

with zero variance were removed (n = 30). Data were normalized with the RUVg package,

regressing  out  10 factors  derived from principal  component  analysis  of  the  ERCC spike-in

control expression matrix96.  The number of factors was determined empirically by evaluating

relative  log-expression  (RLE)  plots  and  gene-gene  correlation  distributions.  Finally,  the

SampleNetwork R function87 was used to identify and remove six outlier sections based on the

standardized sample connectivity criterion (Z.K).

Copy number analysis by qPCR

The copy numbers for  TP53 and ACCS in case one were determined by SYBR Green-based

qPCR. Primers were designed using Primer-BLAST74 and positioned immediately adjacent to

but  not  including  the  SNV  (ACCS  F:  TCTCTATGGCAACATCCGGC,  R:

CAGCCATGCAGCAACAGAAG;  RPPH1  F:  CGGAGGGAAGCTCATCAGTG,  R:

CCGTTCTCTGGGAACTCACC,  TERT  F:  CTCGGATCATGCTGAGGACC,  R:

TTGTGCAATTCTGTGCCAGC,  TP53  F:  CAGTCACAGCACATGACGGA,  R:

GGGCCAGACCTAAGAGCAAT).  qPCR was performed on genomic  DNA from all  69  tumor

sections  and the patient's  blood using the LightCycler  480 SYBR Green I  master  mix and

LightCycler  480  qPCR machine  according  to  the  manufacturer's  recommendations  (Roche,

Nutley, NJ). Measurements were triplicated and data were analyzed using the standard curve

method.  Copy  numbers  were  determined  for  TP53 and  ACCS and  two  control  genes  on

different chromosomes: ribonuclease P RNA component H1 (RPPH1) and telomerase reverse

transcriptase (TERT) (data not shown). Relative copy number was determined by dividing the

mean copy number of  TP53 and  ACCS by the mean copy number of each reference gene

separately to get a ratio and multiplying the ratio by two to obtain the diploid chromosome

number. The relative copy number normalized to one of the reference genes (RPPH1) is shown

in Fig. S1e.

Copy number variation (CNV) calling (bulk data)

CNVs were quantified using multiple technologies and algorithms to generate reliable estimates.

Although WES remains the gold-standard method for calling CNVs, DNA methylation and RNA-

seq data provide cost-effective options that can be triangulated with sparse WES data to reduce

false positives. Unless otherwise noted, default parameters were used. For case one we used

the  champ.CNA function,  included  with  the  ChAMP R package35,  to  call  CNVs  from  DNA

methylation  data.  For  both  cases,  we called  CNVs from exome data  using FACETS34 with

critical values of 25 (case one) and 450 (case two). Finally, we used CNVkit with circular binary

segmentation to call CNVs from bulk RNA-seq data42,97,98.
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Generation of clonal trees with corresponding frequencies

CNVs were filtered to ensure that they were called in exome data and either DNA methylation

data (case one) or RNA-seq data (case two) and covered more than 10% of a chromosomal

arm. CNV coordinates were defined based on the intersection of ranges from both methods

(Tables  S5  and S19).  Using  the  frequencies  of  CNV  /  SNV  mutations  and  tumor  purity

estimated from the  TP53 locus as input to PyClone31, we determined cluster membership for

SNP and CNV events. We then used the PyClone output as the input to the CITUP algorithm32

to generate the most likely clonal tree (i.e.,  the tree with the minimum objective value) and

derive  clonal  frequencies.  In  cases where there was an approximate  tie  between objective

values, the tree was manually chosen based on biologically plausible principles. To visualize

results we used the data.tree99 and DiagrammeR100 packages in R.

Gene coexpression network analysis

Genome-wide biweight midcorrelations (bicor) were calculated using the WGCNA R package62

for case one (n = 20,019 genes) and case two (n = 23,870 genes).  All genes were clustered

using the flashClust63 implementation of hierarchical clustering with complete linkage and 1 –

bicor as a distance measure. Each resulting dendrogram was cut at a static height (0.875 for

case one and 0.562 for case two) corresponding to the top 30% and 20% of values of the

correlation matrix for case one and case two, respectively. All clusters consisting of at least 15

members for case one or five members for case two were identified and summarized by their

module  eigengene36 (i.e.  the  first  principal  component  obtained  by  singular  value

decomposition)  using  the  moduleEigengenes  function  of  the  WGCNA  R  package62.  Highly

similar modules were merged if the Pearson correlation of their module eigengenes was > 0.80.

This  procedure  was  performed  iteratively  such  that  the  pair  of  modules  with  the  highest

correlation > 0.80 was merged, followed by recalculation of all module eigengenes, followed by

recalculation of all correlations, until no pairs of modules exceeded the threshold (case one:

Table S7; case two: Table S22).

Module enrichment analysis

The WGCNA measure of module membership, kME, was calculated for all genes with respect to

each module.  kME is defined as the Pearson correlation between the expression pattern of a

gene and a module eigengene and therefore quantifies the extent to which a gene conforms to

the characteristic expression pattern of a module36 (case one: Table S8; case two: Table S23).

For enrichment analyses, module definitions were expanded to include all genes with significant

kME values,  with  significance  adjusted  for  multiple  comparisons  by  correcting  for  the  false-

discovery  rate101.  If  a  gene was significantly  correlated with  more than one module,  it  was

assigned  to  the  module  for  which  it  had  the  highest  kME value.  Enrichment  analysis  was

performed  for  all  modules  using  a  one-sided  Fisher's  exact  test  as  implemented  by  the

fisher.test R function.

Lasso modeling of gene expression

The machine learning variable-selection method lasso (least absolute shrinkage and selection

operator) and group lasso were performed using the R package Seagull102–104. Modeling was

performed for  each case with gene expression patterns as dependent  variables and clonal

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.06.21.545365doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/


frequency vectors as independent variables. For case one, clone 2 was excluded from modeling

due to its low frequency and clone 6 was excluded since it  was defined by a single CNV.

Because clone 1 corresponds to the tumor purity vector, which represents the major vector of

variation in this dataset, many genes experience inflated correlations to clone 1. To counteract

this effect group lasso was performed. The truncal clone (clone 1) was placed in its own group

and all  remaining clones to  be modeled were placed in  a  separate  group.  This  procedure

improved modeling performance for case one (Fig. S2f-g) but not case two (Fig. S5f-g), which

may reflect the greater variance in tumor purity for case one. As such, modeling results for case

two presented in the manuscript derive from the regular lasso model. For each gene, models

were  bootstrapped (n  =  100)  to  address  collinearity  among clonal  frequency vectors105 (as

shown in  Fig. S2h and  Fig. S5h).  We also generated empirical  null  distributions for model

performance by permuting each gene’s expression profile prior to bootstrapping (n = 100).

When performing group-lasso modeling, only models with one surviving clonal frequency

vector (not including the truncal clone) were considered. When performing lasso modeling, only

models with one surviving clonal frequency vector were considered. To quantify model stability,

we  calculated  the number  of  times  out  of  100 bootstraps  that  the  most  frequent  surviving

independent variable was the sole surviving variable. This stability metric was calculated for all

gene models, including the permuted models. From the resulting distributions of stability values,

a 5% FDR threshold was determined. For case one, the stability value of 73 represents the

point beyond which 5% or fewer of the models were permuted models. Similarly, for case two

the  5% FDR threshold  for  the  stability  metric  was  45.  Gene  set  enrichment  analysis  was

performed via a one-sided Fisher’s exact test for all genes with significant model stability for the

same clonal frequency vector (Tables S6  and S20  for case one and case two, respectively),

with genes separated by the sign of the coefficient for the independent variable (Tables S10

and S24 for case one and case two, respectively).

Differential gene coexpression analysis

Using  the  WGCNA  R  package62,  pairwise  biweight  midcorrelations  (bicor)  were  calculated

among all 30,425 high-quality probes over all sections (n = 69–94) in each of five datasets (case

one + four normal human brain samples), generating five identically proportioned correlation

matrices (30,425 X 30,425). These correlations were then scaled to lie between [0,1] using the

strategy of Mason et al.106.  To identify gene coexpression relationships that were present in

tumor but absent or weaker in normal human brain, each scaled bicor matrix produced from

normal human brain was subtracted107 from the scaled bicor matrix produced from case one,

resulting in four “subtraction matrices'', or SubMats. The consensus of the four SubMats was

formed by  taking  the  minimum value  at  each  point  in  the  four  matrices  using  the  parallel

minimum (pmin) R function, and the resulting “Consensus SubMat'' was used as input for gene

coexpression analysis (Fig. S3a). By definition, gene coexpression modules identified with this

strategy will consist of groups of genes with expression patterns that are highly correlated in the

astrocytoma but not in any of the normal human brain samples (Fig. S3a).

Probes in the Consensus SubMat were clustered using the flashClust63 implementation

of a hierarchical clustering procedure with complete linkage and 1 – Consensus SubMat as a

distance measure. The resulting dendrogram was cut at a static height of ~0.38, corresponding

to the top 2% of values in the Consensus SubMat. All clusters consisting of at least 10 members
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were  identified  and  summarized  by  their  module  eigengene36 using  the  moduleEigengenes

function  of  the  WGCNA R package62.  Highly  similar  modules  were  merged  if  the  Pearson

correlation of their module eigengenes was > 0.85. This procedure was performed iteratively

such that  the pair  of  modules with the highest  correlation > 0.85 was merged, followed by

recalculation of all module eigengenes, followed by recalculation of all correlations, until no pairs

of modules exceeded the threshold. The WGCNA62 measure of intramodular connectivity (kME)

was calculated for all  probes (n = 47,202) with respect to each module by correlating each

probe's expression pattern across all 69 tumor sections with each module eigengene.

Single-nucleus DNA-sequencing and analysis

Three sections from case two (sections 29 and 113 / 115, which were combined) were analyzed

by MissionBio, Inc. (MissionBio, San Francisco, CA) using their Tapestri microfluidics platform

for single-nucleus DNA amplicon sequencing43. Using an in-house protocol, 4,433 (section 29)

and  3,736  (sections  113  /  115)  nuclei  were  extracted  and  recovered  for  analysis  with  the

Mission  Bio  AML panel,  which  includes  primers  flanking  one  IDH1 and  two  TP53 loci.  In

addition, chr17 chromosomal copy number changes and  TP53  zygosity were inferred from a

germline heterozygous intronic mutation upstream of TP53 G245V that happened to fall within

the targeting panel (NC_000017.11:g.7674797T>A). Sequencing was performed on a MiSeq

(Illumina Inc., San Diego, CA), yielding an average of 6,801 (section 29) or 6,433 (sections 113 /

115)  reads per  nucleus,  with alignment  rates  of  ~90%. Hierarchical  clustering of  nuclei  for

mutations of interest was performed separately for section 29 and sections 113 /  115 using

complete linkage and Euclidean distance, with  k  = 4 chosen based on silhouette79 and elbow

plots78. Genotype calls for the clusters were manually annotated as described in  Fig. S4f and

Table S21.

Single-nucleus RNA-sequencing and analysis

Library prep and sequencing

Four sections (17, 53, 93, 117) from case two were used to generate single-nucleus RNA-seq

(snRNA-seq) data. Our approach was adapted from TARGET-Seq44, a protocol utilizing dual-

indexing of sample barcodes and unique molecular identifiers (UMIs) of captured transcripts.

Briefly, for each section, lysis was performed by dounce homogenization with staining of nuclei

by Hoescht3342 and subsequent flow-sorting into three 96-well plates per section. Each plate

was randomized and subsequently processed individually and in random order. We used the

SmartScribe kit  (Takara  Bio  USA,  San Diego,  CA)  for  RT-PCR, followed by  PCR with  the

SeqAmp PCR kit (Takara Bio USA, San Diego, CA). Unlike TARGET-Seq, the RT reaction was

performed using only polyA primers (Table S26). ERCC spike-in control RNA was added to the

wells according to manufacturer’s instructions to facilitate identification and correction of batch

effects.  Wells  for  each  plate  were  pooled  in  equivolume  proportions  and  an  Agilent  2100

Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA) was used to assess sample quality

and cDNA concentrations were quantified using a Qubit 2.0 Fluorometer with the dsDNA-High

Sensitivity  kit  (Life  Technologies  Inc.,  Carlsbad,  CA),  yielding mean cDNA concentration  of

1ng/ul. Concentrations were normalized prior to tagmentation (Nextera Kit, Illumina Inc., San

Diego, CA) and amplification of 3’ ends, as in TARGET-Seq44. Sequencing was performed using

the 150-cycle high-throughput kit on an Illumina NextSeq550 at SeqMatic (Fremont, CA) with
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dual-indexed sequencing and read parameters as in TARGET-seq.

Data preprocessing

snRNA-seq raw reads were demultiplexed and basecalled using “bcl2fastq” (Illumina Inc., San

Diego, CA). Barcodes were filtered using the “umi_tools” package108 whitelist function, with a

Hamming distance of 2 and the density knee method to determine the number of true barcodes.

809 / 1152 nuclei (70.2%) passed this initial quality control step. Reads were assessed with

FastQC to ensure the quality of sequencing data by verifying high base-quality scores, lack of

GC bias, narrow distribution of sequencing lengths, and low levels of sequence duplication or

adapter sequences91. Next, reads were subjected to adapter trimming using the Trimmomatic

algorithm109 with a minimum length of 30, a minimum quality of 4 with a 15 bp sliding window,

and otherwise default settings. A mean of 445,082 reads / nucleus was achieved at this stage.

Reads  were  subsequently  aligned  using  ENCODE  RNA-seq  settings  (except  for

outFilterScoreMinOverLread,  which was set to  0)  with the STAR program110 to the Genome

Reference Consortium Human Build 3894. Finally, an expression count matrix was generated

using the FeatureCounts program111 with Gencode’s library of  gene features (version 21)112,

subset using the “gene” attribute (n = 60,708 features). Deduplication of UMIs was performed

using a custom R script, resulting in a mean number of 206,638 unique reads / nucleus, a 46%

deduplication rate. Features with counts less than one in more than 90% of cells were removed

(n = 57,021 final features).  Data were normalized with the RUVg package, regressing out 10

factors derived from PCA of the ERCC spike-in control expression matrix96. Normalized counts

were  further  processed  using  the  Sanity  package25, with  1000  bins  and  a  minimum  and

maximum variance of 0.001 and 1000, respectively. Internuclear distance was determined using

the Sanity_distance function with a signal to noise parameter of 1 and inclusion of error bars.

snRNA-seq clustering and differential expression analysis

snRNA-seq data were hierarchically clustered using the hclust function in R with Ward’s method

and the distance metric derived by Sanity25. This distance metric uses a Bayesian approach by

giving less weight  to  gene expression estimates with large error  bars when calculating cell

distances. The optimal number of clusters (k = 12) was determined using elbow78 and silhouette

plots79 with the cluster package in R80. Differential expression analysis (t.test) was performed

between each cluster  and all  other  clusters using Sanity-adjusted expression values for  all

genes. The resulting distributions of t-values were then compared for genes comprising the bulk

coexpression modules most strongly associated with each malignant clone / nonmalignant cell

type and all other genes (white and black distributions, respectively, in Fig. S6a-j; significance

was evaluated with a one-sided Wilcoxon rank-sum test). Module genes were defined as those

that were significantly correlated with corresponding bulk coexpression module eigengenes as

determined by the FDR threshold101. If a gene was significantly correlated with more than one

module eigengene, it was assigned to the module for which it had the highest kME value.

CNV calling

The snRNA-seq  count  matrix  was  used  as  input  to  CopyKat46.  Nuclei  snRNA-seq  clusters

determined to be non-malignant by snAmp-seq were used as normal control cells. “KS.cut” was

set  to 2, “ngene.chr” was set  to 20,  and Ensembl gene names were used.  InferCNV23 was
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provided with a vector of nonmalignant cells (as previously determined) based on clustering and

snAmp-seq  in  “subclusters”  mode,  with  a  cutoff  parameter  of  1,  and  denoising  turned  on,

“ward.D” as clustering method, “qnorm” as subcluster partition method, and tumor subcluster p-

value of 0.05. The Hidden Markov model was not used. The program CaSpER47 was run with

the raw snRNA-seq count matrix as input and default settings, again using snRNA-seq clusters

of nuclei determined to be malignant by snAmp-seq as negative controls. For each of these

algorithms, the outputs were clustered based on Euclidean distance using Ward’s D method.

Clusters with no CNV signal were labeled nonmalignant while all other clusters were presumed

to represent malignant cells. 

Sensitivity and specificity were calculated using the snAmp-seq data as ground truth.

True positives  (TP)  were defined as  the intersection  of  malignant  calls  by the CNV calling

algorithm and the snAmp-seq data. True negatives (TN) were defined as the intersection of

nonmalignant calls by the CNV calling algorithm and the snAmp-seq data. False negatives (FN)

and false positives (FP) were similarly defined. Nuclei with insufficient data were excluded from

the analysis. Sensitivity was defined as: TP / (TP + FN), while specificity was defined as: TN /

(TN + FP). Accuracy was defined as (TP + TN) / (TP + FP + TN + FN).

UMAP and trajectory analysis

UMAP was performed for all nuclei (n = 809) with a starting seed of 15, 30 neighbors, a spread

of 3, a minimum distance of 2, and 1 – Pearson correlation as a distance metric using the “uwot”

R package113 after selecting the first 30 principal components of the Sanity-corrected expression

matrix including all genes. UMAP was also performed separately for all cells associated with

malignant  clusters  using the Sanity-corrected expression matrix.  After  selecting  the first  15

principal components, the “uwot” package was used with a seed of 15, 20 neighbors, a spread

of 3,  a minimum distance of  2, and 1-Pearson correlation as the similarity metric.  All  other

settings were left as defaults. Trajectory analysis was performed with the Slingshot R package48

on the UMAP plot. The “simple” distance method was used and all other parameters were left

as their default values.

Gene set enrichment analysis

Enrichment analysis (one-sided Fisher’s exact test) was performed for each snRNA-seq cluster

using genes that were differentially expressed in that cluster relative to all other clusters using a

one-sided  Wilcoxon  rank-sum  test.  Resultant  p-values  were  further  FDR-corrected  to  q-

values101. Gene sets used for enrichment analysis are listed in Table S9.

Amp-seq genotyping

Single-nucleus  amplicon-seq  (snAmp-seq)  was  adapted  from  the  TARGET-seq  protocol44.

Primers  flanking  the  following  mutations  (marking  the  truncal  clone)  were  designed  with

Primer3114: IDH1 R132H, TP53 G245V, and RUFY1 K218N (Table S26). To overcome lack of

heterogeneity in sequencing, random spacers were added to the beginning (5’ end) with 0 - 5

nucleotides from the sequence CGTAC. Finally, a common sequence was added to the 5’ end

of the primer for a second round of PCR (Table S26). We selected wells that passed QC for

snRNA-seq analysis and processed each plate separately and in random order. Amplification of

the first round of PCR was performed with the KAPA 2G Ready Mix (Roche Inc., Nutley, NJ)
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with the same PCR program as for TARGET-Seq44.  The program “Barcrawl”115 was used to

create custom dual-index barcodes for the amplification PCR. At this stage 10% of wells were

checked using an Agilent 2100 Bioanalyzer (Agilent Inc., Santa Clara, California) to determine

whether products of appropriate size were produced. All wells were quantified with a Qubit 2.0

Fluorometer using the dsDNA-High Sensitivity kit (Life Technologies Inc., Carlsbad, CA) and

normalized prior to the next step. The second round of PCR used custom sequencing primers

that were partially complementary to the previous sequences, with custom dual-index barcodes

generated from BarCrawl115 and Illumina P5 / P7 sequences. Sequencing was performed using

a 300 cycle Miseq v2 Nano kit on a MiSeq (Illumina Inc., San Diego, CA).

snAmp-seq data were demultiplexed and basecalled using “bcl2fastq” (Illumina Inc., San

HDiego, CA). Reads were assessed with FastQC to ensure the quality of sequencing data by

verifying high base quality scores, lack of GC bias, narrow distribution of sequencing lengths,

and low levels of sequence duplication or adapter sequences91. Next, reads were subjected to

adapter trimming using the Trimmomatic algorithm109 with a minimum length of 30, a minimum

quality  of  4  with  a  15  bp  sliding  window,  and  otherwise  default  settings109.  Reads  were

subsequently aligned with the STAR program to a custom version of the genome containing

only the amplicons of interest. Default parameters were altered such that no multiple alignments

or splicing events were allowed. The median number of reads per nucleus for each amplicon

was (IDH1 R132H: 177; TP53 G245V: 246; RUFY1 K218N: 209). Read counts supporting the

reference or variant allele within each amplicon were determined using the read counts function

from VarScan 277 and these counts were used to calculate variant frequencies. Nuclei were

sorted into three categories: called nuclei (calls by VarScan 2 of two or more mutant or two or

more  wild-type  [WT]  calls  of  the  three  loci  with  either  one  or  zero  indeterminate  calls),

discrepant nuclei (two WT and one mutant call), and insufficient data nuclei (two or more loci in

which VarScan 2 was unable to call a genotype). The breakdown for these categories is as

follows: 75% called nuclei, 1% discrepant nuclei, and 24% insufficient data nuclei (Table S27).

Inter-case analysis

Combined Pearson correlations to tumor purity for the 15,288 genes shared between case one

and case two were determined by calculating the weighted average of the z-scores produced by

Fisher’s transformation, dividing this value by the joint standard error, and applying the inverse

Fisher  transformation29.  To  define  significant  genes  for  enrichment  analysis  (Fig.  9a-b),  a

minimum absolute value for Pearson’s correlation of > 0.3 or < -0.3 was required in both cases

along  with  an  FDR-corrected  q-value  of  <  0.05.  Enrichment  analysis  was  performed  as

described above, with gene sets listed in Table S9. Significant positively correlated genes were

subjected to protein-protein interaction (PPI) analysis using the STRING database49. We used

the STRINGdb49,50, network116, intergraph117, and ggnetwork118 packages to visualize the results

of STRING PPI analysis. The “physical” network flavor and minimum score of 900 was utilized

to  guarantee  that  all  depicted  interactions  were  actual  PPIs  with  experimental  evidence.

Clusters  with  more  than  five  members  were  chosen  from  the  set  of  interaction  clusters

generated from all genes that had positive correlations and passed the correlation cutoffs listed

above. Enrichment analysis of PPI clusters was performed as described above, with gene sets

listed in Table S9.
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Histology and immunostaining

Tumor tissue was fixed in 10% neutral-buffered formalin, processed, and embedded in paraffin.

Tumor sections (5 μm) were prepared and stored at -20ºC prior to use. Hematoxylin and eosin

staining was performed using standard methods. As part of clinical evaluation, the proliferative

index and TP53 mutation status were estimated based on review of immunostained slides for

KI67 or TP53, respectively. Briefly, in regions with increased signal the percent of tumor cells

staining was estimated based on review of ten 200x fields.

Anti-AKR1C3 was selected based on statistical considerations pursuant to bioinformatic

analyses and after preliminary validation of efficacy in human tissue via The Human Protein

Atlas119 (http://www.proteinatlas.org). Primary antibodies and conditions were IDH1 R132H (DIA-

H09, Dianova, mouse clone H09, dilution 1:50); AKR1C3 (Catalog# AB84327, Abcam, rabbit

polyclonal,  dilution  1:600  for  single  immunohistochemistry  and  1:1200  for  dual

immunofluorescence); and TP53 (1:25, Novocastra, catalog # P53-D07-L-CE-H). Heat antigen

retrieval  was  performed  in  Tris-EDTA  at  pH8.  Following  antigen  retrieval,  sections  for

immunohistochemistry were treated with 3% methanol-hydrogen peroxide at 22°C for 16 min. 

All immunostaining and multiplex immunostainings were performed using a Discovery

XT autostainer or Benchmark XT (Ventana Medical Systems, Inc., USA). For signal detection,

the  Multimer  HRP  kit  (Ventana  Medical  Systems,  Inc.,  USA)  followed  by  either  DAB  or

fluorescent detection kits were used. Fluorophores with the least autofluorescence on FFPE

tissue  were  selected  to  minimize  false  positives:  Cyanine  5  (Cy5)  (DISCOVERY  CY5  Kit,

Cat#760238, Roche Diagnostics Corporation, Indianapolis, USA) and rhodamine (DISCOVERY

Rhodamine Kit, Cat#760233, Roche Diagnostics Corporation, Indianapolis, USA). Slides were

then counterstained with DAPI (Sigma Aldrich, USA) at 5 μg/ml in PBS (Sigma Aldrich, USA) for

15 minutes, mounted with prolong Gold antifade mounting media reagent (Invitrogen, USA) and

stored at -20ºC prior to imaging. Positive and negative controls were included for each marker.

Images  of  stained  slides  were  acquired  using  either  a  light  microscope  (Olympus  BX41

microscope  using  UC90  Cooled  CCD  9  Megapixel  camera)  or  Zeiss  Cell  Observer

epifluorescence microscope equipped with an AxioCam 506M camera and an Excellitas X-Cite

120Q  light  source  and  processed  with  Photoshop  CS6  (Adobe  systems,  San  Jose,  CA).

Nonmalignant  tissue  analyzed  in Fig.  9 was  obtained  from  a  patient  with  epilepsy  and

corresponds to normal tissue adjacent to epileptic foci.

Data analysis and figure production

Unless  otherwise  stated,  all  analyses  were  performed  in  the  R  computing  environment

(https://www.r-project.org). Figures were produced with the aid of the R packages ggplot2120,

data.table121, RColorBrewer122, gridExtra123, ComplexHeatmap124, Circlize125, and ggsignif126.

Data and code availability

All data are publicly available for download under NCBI Bioproject ID PRJNA953039. Code for

processing  data  and  producing  figures  featured  in  this  manuscript  is  available  on  GitHub:

https://github.com/oldham-lab/Deconstructing-Intratumoral-Heterogeneity-through-Multiomic-

and-Multiscale-Analysis.../tree/main
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Figure Legends

Figure 1 | Overview of MOMA. a) Schematic of a heterogeneous human brain tumor. b) Serial

sectioning introduces variation in cellular composition. c) Section usage can be flexibly tailored

for diverse multiscale and multiomic assays. d) Correlative analysis of mutation frequencies and

molecular  feature activities  derived from millions  of  cells  reveals  the identities and defining

molecular features of distinct malignant clones. e) Predictions from bulk analysis are validated

by single-cell analysis of interpolated sections and histology.
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Figure 2 | Multiomic analysis of serial tumor sections reveals the clonal composition of a

primary grade 2 IDH-mutant astrocytoma (case 1).

Axial  T2  (a)  and axial  FLAIR  (b) images demonstrate a round, well-defined T2 and FLAIR
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hyperintense intraaxial left temporoparietal mass that is non-enhancing and consistent with a

low-grade glial  neoplasm.  c) Image of  the frozen tumor sample prior  to  cryosectioning and

nucleic acid isolation.  d-e)  Immunostaining for IDH1 R132H (d) and TP53 (e). Images: 400x.

Scale bars: 50 μm. f) Schematic of serial sectioning strategy and section usage plan. Amp-seq

= deep sequencing of PCR amplicons spanning mutations identified by exome sequencing. g)

Hierarchical clustering of mutations, using 1 – Pearson correlation of amp-seq variant allele

frequencies  (VAFs)  over  all  tumor  sections (n =  69)  as  a  distance measure,  reveals  three

clusters. Amp-seq was performed in two sequencing runs (denoted by bold and regular fonts).

h-k) VAF patterns comprising cluster 1 (h,i), cluster 2 (j), and cluster 3 (k). Cluster 1 was split to

illustrate the effects of high (h) and low (i) coverage. l) Clone phylogeny (with arbitrary branch

lengths) derived from integrated analysis of SNVs (from amp-seq data) and CNVs (from DNA

methylation data). Percentages represent the average abundance of each cellular fraction over

all analyzed sections (n = 68). m) Estimated cellular fractions for all clones and nonmalignant

cells over all sections (n = 68).

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.06.21.545365doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/


42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.06.21.545365doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1 | Mutation validation (case 1).

a) Nonsynonymous mutations were identified by exome sequencing of tumor sections 14, 39,

69, and the patient’s blood. Green track: variant allele frequencies (VAF) for each mutation in

each section. Black tracks: mutation validation by Sanger sequencing and amp-seq, which is

more sensitive. Blue track: gene mutation frequencies in TCGA astrocytomas (n = 286). Red

track:  mean expression percentiles for  each gene over all  tumor sections.  b)  Amp-seq and

droplet-digital PCR (ddPCR) yielded consistent estimates of IDH1 R132H variant frequencies (n

= 69 tumor sections; rep. 1 and rep. 2 denote technical replicates using the same input DNA).

Shaded areas represent two standard errors.  c-d)  Downsampling of amp-seq reads for IDH1

R132H  (c)  and TP53 L145P  (d) was  performed in  each  tumor  section  to  achieve  desired

coverage  levels  (x-axis).  For  each  downsampling  (n  =  1,000),  the  root  mean  square-error

(RMSE; top) and Pearson’s correlation (bottom) was calculated with respect to the true VAF

(calculated using all reads) over all sections (n = 69). e) Relative copy number was determined

by SYBR Green qPCR for TP53 and ACCS loci using genomic DNA from 69 tumor sections and

blood. The mean of triplicate measurements, normalized to RNaseP (RPPH1) copy number, is

shown. Shaded areas represent two standard errors.  f) Top: Concordant estimates of chr17p

loss-of-heterozygosity (LOH) in the same tumor sections (n = 3) were obtained from exome data

by analyzing changes in B-allele frequencies and from amp-seq data by analyzing TP53 L145P

VAF, which is equivalent to chr17p LOH frequency since both events are truncal.   Bottom:

Concordant estimates of CNV frequencies in the same tumor sections (n = 3) were obtained

using FACETS34 and ChAMPS35 to analyze exome and DNA methylation data, respectively. 
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Figure 3 | Gene coexpression modules are highly correlated with clonal abundance (case

1).

a) Hierarchical clustering of gene coexpression modules over all tumor sections (n = 69).  b)

Module eigengenes (ME) illustrate the relative expression levels of genes in each module over

all tumor sections. c) The number of genes used to form each ME. d-g) Top left: MEs with the

strongest correlations to clonal abundance (defined cumulatively). Locally weighted smoothing

(LOESS) lines are shown; correlation is based on data points. Bottom left: the 12 genes with the

highest correlations to the ME (kME). Right: enrichment analysis of gene coexpression modules

using published gene sets. FDR-corrected p-values (q-values) from one-sided Fisher’s exact

tests  are  shown.  Positive  values  represent  enrichments  of  genes  that  were  significantly

positively correlated to the ME, while negative values represent enrichments of genes that were

significantly negatively correlated to the ME. Gene sets representing chromosomal gains or

losses include all genes within affected regions (as described in  Fig. 2l  and  Table S5). See

Table S9 for descriptions and sources of featured gene sets.
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Figure  S2  |  Linear  modeling  of  gene  expression  using  clonal  frequencies  reveals

concordant gene-set enrichments with coexpression modules (case 1).

a-d)  Left:  snapshots  of  additional  gene  coexpression  modules  enriched  for  markers  of

nonmalignant cell types (expression patterns for the top 12 genes ranked by  kME are shown).

Right: heatmaps of gene set enrichment results for each module. Modules included genes that

were  most  specifically  and  significantly  correlated  (after  FDR  correction)  to  the  module

eigengene (ME), and enrichment was assessed with a one-sided Fisher’s exact test (followed

by FDR correction; see panel i for legend). e) Correlation heatmap for the cumulative frequency

vectors of identified clones.  f-g) Lasso regression102 was used to model the expression of all

genes (n = 20,018) as a function of clonal frequencies over all tumor sections (n = 69). Violin

plots illustrate the distributions of t-values for all models where the indicated clone was the only

explanatory variable that survived lasso selection. Permutations were performed by randomly

scrambling clonal frequencies (n = 100) prior to lasso regression. Real and permuted clonal

frequency vectors were bootstrapped (n = 100) to address collinearity.  P-values denote the

significance of the Anderson-Darling test, which evaluates whether two distributions are likely to

be derived from the same distribution.  f) Results of a standard lasso model.  g) Results of a

group lasso model where the truncal clone (equivalent to tumor purity) was placed in a separate

group due to its strong effect on gene expression (Fig. 3c); note the general improvement in

Anderson-Darling  test  P-values.  h) Density  plot  showing  the  number  of  times  (out  of  100

bootstraps) that the same explanatory (clonal frequency vector) variable was retained by the

group lasso regression model, or ‘stability’. Only group lasso models where retained explanatory

variables included the truncal clone and up to one other clone were considered. The vertical line

demarcates the point to the right of which only 5% of values belong to the permuted distribution,

i.e. a 5% FDR rate.  i)  Enrichment analysis (one-sided Fisher’s exact test) of genes that were

significantly (FDR < .05) and stably (FDR < .05) associated with each clone. Gene sets are

described  in  Table  S9.  Heatmap  depicts  -log10  FDR-corrected  p-values  (q-values;  shared

legend for a-d) after comparing each gene set to all genes with stability > 73 for a given clone

(one-sided Fisher’s exact test). Positive values represent enrichments for genes with significant

positive  correlations  to  the  ME  (a-d)  or  significant  positive  modeling  coefficients  (i),  while

negative values represent enrichments for genes with significant negative correlations to the ME

(a-d) or significant negative modeling coefficients (i).
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Figure  S3  |  Differential  coexpression  analysis  of  glioma  and  normal  human  brain

preserves gene coexpression modules associated with malignant clones (case 1).

a) Genome-wide gene coexpression relationships were calculated for each of the five tissue

specimens (one astrocytoma and four normal brain controls) over all tissue sections, resulting in

five correlation matrices with the same dimensions. Unbiased differential coexpression analysis

was performed as illustrated. ACC = anterior cingulate cortex; EC = entorhinal cortex. b-e) Left:

differentially  coexpressed module eigengenes (ME) with the strongest  correlations to clonal

abundance  (defined  cumulatively).  Locally  weighted  smoothing  (LOESS)  lines  are  shown;

correlation is based on data points.  Right:  enrichment  analysis  of  differentially  coexpressed

module genes using published gene sets. FDR-corrected p-values (q-values) from one-sided

Fisher’s  exact  tests  are  shown.  Positive  values  represent  enrichments  of  genes  that  were

significantly  positively  correlated to the ME, while  negative values represent enrichments of

genes  that  were  significantly  negatively  correlated  to  the  ME.  Gene  sets  representing

chromosomal gains or losses include all genes within affected regions (as described in Fig. 2l

and Table S5). See Table S9 for descriptions and sources of featured gene sets.
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Figure 4 | Multiomic analysis of serial tumor sections reveals the clonal composition of a

recurrent grade 2 IDH-mutant astrocytoma (case 2).

Axial T2  (a)  and axial FLAIR  (b) images demonstrate a non-enhancing, expansile, infiltrating

glioma centered in the right insula and involving the basal ganglia, inferior frontal lobe, and

temporal lobe. Cystic degeneration was present in the tumor.  c) Image of the frozen tumor

specimen prior to cryosectioning and nucleic acid isolation.  d)  The tumor was determined to

harbor the IDH1 R132H mutation based on immunostaining with an antibody specific to the

mutant protein.  e) TP53 immunostaining demonstrated nuclear expression with an estimated

staining index of 20%. All histological images were captured at 400x. Scale bars denote 50 μm.

f)  Schematic of serial sectioning strategy and section usage plan. g) Hierarchical clustering of

mutations, using 1 – Pearson correlation of amp-seq VAFs over all tumor sections (n = 85) as a

distance measure, reveals five clusters. h-l) VAF patterns comprising cluster 1 (h), cluster 2 (i),

cluster 3 (j), cluster 4 (k), and cluster 5 (l). m) Controlling for gene dosage reveals discordance

of IDH1 R132H VAF with respect to truncal ATRX and TP53 mutations, which is explained by a

subclonal  deletion  of  chromosome  2q  (including  IDH1)  that  occurred  after  the  IDH1  point

mutation.  (n) Heatmap of  the  chromosome 2q deletion  event  frequency (as  determined by

FACETS34), with LOESS fit line (black) and smoothed 95% confidence interval (gray envelope).

o) Clone phylogeny (with arbitrary branch lengths) derived from integrated analysis of SNVs

(from amp-seq  data)  and  CNVs  (from RNA-seq  data).  Percentages  represent  the  average

abundance of each cellular fraction over all analyzed sections (n = 85).  p) Estimated cellular

fractions for  all  clones and nonmalignant cells  over all  sections.  Black vertical  line denotes

orthogonal sample rotation.
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Figure S4 | Mutation validation (case 2).

a-b) Downsampling of amp-seq reads for IDH1 R132H (a) and TP53 G245V (b) was performed

in each tumor section to achieve desired coverage levels (x-axis). For each downsampling (n =

1,000),  the  root  mean  square-error  (RMSE;  top)  and  Pearson’s  correlation  (bottom)  was

calculated with respect to the true VAF (calculated using all reads) over all sections (n = 85). c)

Nonsynonymous mutations were identified by exome sequencing of tumor sections 22, 46, 85,

123, and the patient’s blood. Green track: variant allele frequencies (VAF) for each mutation in

each  section.  Black  track:  mutations  validation  by  amp-seq.  Blue  track:  gene  mutation

frequencies  in  TCGA  astrocytomas  (n  =  286).  Red  track:  genome-wide  mean  expression

percentiles over all sections (n = 90). d) Concordant estimates of CNV frequencies in the same

tumor sections (n = 4) were obtained using FACETS34 and CNVkit42 to analyze exome and

RNA-seq data, respectively. e) Concordant estimates of chromosome 2q deletion frequencies in

the same tumor sections (n = 85) were obtained using amp-seq (Fig. 4m) and RNA-seq, which

was analyzed by CNVkit. f) Clone phylogeny (with arbitrary branch lengths) derived from single-

nucleus amp-seq (snAmp-seq) of mutations affecting the IDH1 and TP53 loci for section 29 (n =

4,433 nuclei) and sections 113/115 (n = 3,736 nuclei). Clone names are derived from Fig. 4o,

and the percentages of nuclei assigned to each clone are shown.
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Figure 5 | Gene coexpression modules are highly correlated with clonal abundance (case

2).

a) Hierarchical clustering of gene coexpression modules over all tumor sections (n = 90).  b)

Module eigengenes (ME) illustrate the relative expression levels of genes in each module over

all tumor sections. c) The number of genes that formed each ME. d-g) Top left: MEs with the

strongest correlations to clonal abundance (defined cumulatively). Locally weighted smoothing

(LOESS) lines are shown; correlation is based on data points. Bottom left: the 12 genes with the

highest correlations to the ME (kME). Right: enrichment analysis of gene coexpression modules

using published gene sets. FDR-corrected p-values (q-values) from one-sided Fisher’s exact

tests  are  shown.  Positive  values  represent  enrichments  of  genes  that  were  significantly

positively correlated to the ME, while negative values represent enrichments of genes that were

significantly negatively correlated to the ME. Gene sets representing chromosomal gains or

losses include all genes within affected regions (as described in Fig. 4o and Table S19). See

Table S9 for descriptions and sources of featured gene sets.
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Figure  S5  |  Linear  modeling  of  gene  expression  using  clonal  frequencies  reveals

concordant gene-set enrichments with coexpression modules (case 2).

a-d) Left:  snapshots  of  additional  gene  coexpression  modules  enriched  for  markers  of

nonmalignant cell types (expression patterns for the top 12 genes ranked by  kME are shown).

Right: heatmaps of gene set enrichment results for each module. Modules included genes that

were  most  specifically  and  significantly  correlated  (after  FDR  correction)  to  the  module

eigengene (ME), and enrichment was assessed with a one-sided Fisher’s exact test (followed

by FDR correction; see panel i for legend). e) Correlation heatmap for the cumulative frequency

vectors of identified clones.  f-g) Lasso regression102 was used to model the expression of all

genes (n = 20,246) as a function of clonal frequencies over all tumor sections (n = 85). Violin

plots illustrate the distributions of t-values for all models where the indicated clone was the only

explanatory variable that survived lasso selection. Permutations were performed by randomly

scrambling clonal frequencies (n = 100) prior to lasso regression. Real and permuted clonal

frequency vectors were bootstrapped (n = 100) to address collinearity.  P-values denote the

significance of the Anderson-Darling test, which evaluates whether two distributions are likely to

be derived from the same distribution.  f) Results of a standard lasso model.  g)  Results of a

group lasso model where the truncal clone (equivalent to tumor purity) was placed in a separate

group. Unlike case 1, the group lasso model did not outperform the standard lasso model.  h)

Density plot showing the number of times (out of 100 bootstraps) that the same explanatory

(clonal frequency vector) was retained by the standard lasso regression model, or ‘stability’. The

vertical line demarcates the point to the right of which only 5% of values belong to the permuted

distribution, i.e. a 5% FDR rate. i) Heatmap of FDR-corrected p-values (q-values; shared legend

for panels a-d) after comparing each gene set to all genes with stability > 45 for a given clone

(one-sided Fisher’s exact test). Positive values represent enrichments of genes with significant

positive  correlations  to  the  ME  (a-d)  or  significant  positive  modeling  coefficients  (i),  while

negative values represent enrichments of genes with significant negative correlations to the ME

(a-d) or significant negative modeling coefficients (i).
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Figure S6 | Single-nucleus RNA-seq analysis validates inferences from bulk data. 

a) UMAP plot of snRNA-seq data (n = 809 nuclei) with the tumor section IDs that served as the

source for  each nucleus superimposed.  b)  UMAP plot  of  snRNA-seq data with malignancy

superimposed. Malignancy was determined by genotyping all nuclei via single-nucleus amplicon

sequencing (snAmp-seq) of cDNA spanning mutations in the truncal clone.  c) Frequencies of

malignant clones in snRNA-seq data (n = 360 nuclei from four tumor sections) and bulk data (n

= 16 tumor sections), with correlations in legend.  d) Relative abundance of nonmalignant cell

types in snRNA-seq data (n = 449 nuclei from four tumor sections) and bulk data (n = 16 tumor

sections), with correlations in legend. Estimates were scaled and centered for comparability.

Bulk  estimates  for  (c-d)  are  derived from clonal  abundance and module  eigengene  values

featured in  Fig. 4p and  Fig. S5a-d, respectively, averaged across the four sections flanking

each section analyzed by snRNA-seq (snRNA-seq section 17: bulk sections 14, 16, 18, 19;

snRNA-seq section 53: bulk sections 50, 51, 54, 55; snRNA-seq section 93: bulk sections 91,

92, 94, 95; snRNA-seq section 117: bulk sections 114, 116, 118, 119). e) Log-ratio output of the

CopyKat CNV algorithm46.  Left:  snAmp-seq malignancy assignments and snRNA-seq cluster

assignments. Right: sum of the absolute value of CopyKat CNV calls (chromosomal arms in

gray could not be called due to inadequate gene coverage).
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Figure  S7  |  Bulk  coexpression  module  genes  map  definitively  onto  single-nucleus

clusters.

a-j) Modules of coexpressed genes from bulk tumor sections (n = 90) that were most strongly

associated with  specific  clones (Fig.  5d-g)  or  nonmalignant  cell  classes (Fig.  S5a-d)  were

evaluated for  differential  expression in  each snRNA-seq cluster  vs.  all  other clusters (white

distributions: t-test results for all  module genes). Genes that were not associated with each

module were evaluated in the same fashion (black distributions),  and a one-sided Wilcoxon

rank-sum test was used to determine whether module genes were significantly upregulated in a

given snRNA-seq cluster relative to all other genes (*** = P < 1e-10). 
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Figure 6 | Single-nucleus RNA-seq analysis validates inferences from bulk data.

a) Heatmap of P-values (one-sided Wilcoxon rank-sum test) comparing differential expression t-

values for genes comprising each bulk coexpression module (colors, x-axis) to all other genes in

each  SN  cluster  versus  all  other  clusters. b)  UMAP  plot  of  all  nuclei  (n  =  809)  with

characterizations of clusters from (a) superimposed. c) UMAP plot of malignant nuclei (n = 360),

with  results  of  Slingshot  trajectory  analysis48 superimposed.  Malignancy was determined by

genotyping all nuclei via single-nucleus amplicon sequencing (snAmp-seq) of cDNA spanning

mutations in the truncal clone.
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Figure 7 | Genotyping nuclei profiled by snRNA-seq reveals the limitations of single-cell

CNV-calling algorithms.

Heatmap of scaled log2 expression vectors for the five most upregulated genes in each snRNA-

seq cluster vs. all other clusters (one-sided Wilcoxon rank-sum test). Far left: malignancy vector

determined by snAmp-seq of cDNA spanning mutations in the truncal clone. Left: malignancy

vectors inferred from CNV analysis  of  snRNA-seq data using the CopyKat46,  InferCNV23,  or

CaSpER47 algorithms (blue = nonmalignant; all other colors = malignant). Right: bar plots depict

the total number of unique reads (UMIs) for each nucleus and the average number of UMIs for

genes  comprising  the  Gene  Ontology  category  ‘mitotic  chromosome  condensation’  (GO:

0030261). Red vertical  line: max expression of mitotic genes in neurons, which presumably

represents background noise.
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Figure S8 | Gene set enrichment analysis supports the functional distinctness of snRNA-

seq clusters.

Clustered heatmap of FDR-corrected p-values (q-values) from one-sided Fisher’s exact tests

comparing featured gene sets with genes that were significantly upregulated (FDR < .05) in

each snRNA-seq cluster vs. all other clusters by the one-sided Wilcoxon rank-sum test.
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Figure  8  |  Correlation  to  malignant  cell  abundance  predicts  single-cell  differential

expression analysis of malignant vs. nonmalignant cells.

a-d) Analysis  schematic.  An  adult  malignant  glioma  consisting  of  malignant  cells  (pink)

interspersed  with  nonmalignant  cells  (a).  b) Single-cell  RNA-seq  (scRNA-seq)  reveals  a

hypothetical gene (gene X) that is significantly up-regulated in malignant vs. nonmalignant cells.

c) Correlating the same gene’s expression pattern with a binary vector encoding malignant cell
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abundance (1 = malignant, 0 = nonmalignant) produces identical results.  d) Left: scRNA-seq

data from 10 adult human IDH-mutant astrocytomas22 were randomly sampled and aggregated

to create 100 pseudobulk samples. Right (top): Genome-wide differential expression (DE) was

analyzed for all sampled cells. Right (bottom): Genome-wide gene coexpression was analyzed

for all pseudobulk samples. Each pseudobulk module was summarized by its module eigengene

(PC1), which was compared to malignant cell  abundance, and the correlation between each

gene and each module eigengene (module conformity, or kME) was calculated. e) A pseudobulk

malignant cell  module featuring the top 15 genes ranked by  kME.  By correlating the module

eigengene to pseudobulk tumor purity  (f),  we see that  this module is driven by variation in

malignant cell abundance among pseudobulk samples. g) The extent of DE (t-value) identified

by  scRNA-seq  of  malignant  vs.  nonmalignant  cells  predicts  the  correlation  between  gene

expression and malignant cell abundance (pseudobulk kME).
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Figure S9 | Concordance of kME and differential expression t-values from bulk and single-

nucleus experiments.

a-j)  Differential  expression  (DE)  t-values  (calculated  by  t-test  for  all  genes  between  each

snRNA-seq cluster and all other clusters) largely predict the extent to which gene expression

patterns are correlated (kME values) to the bulk coexpression modules most strongly associated

with each clone or nonmalignant cell type.
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Figure  9  |  Integrating  correlations  to  malignant  cell  abundance  reveals  core

transcriptional features of astrocytomas.

a) Gene expression correlations (n = 15,288 genes) to malignant cell abundance in case 1 and

case 2.  Red and blue denote  significantly  correlated genes that  were  used  for  enrichment

analysis (b), and the star denotes AKR1C3.  b) -Log10 FDR-corrected p-values (q-values) from

one-sided Fisher’s exact tests analyzing gene set enrichment in red and blue genes from (a). c)

Validated protein-protein interactions (PPI) from STRINGdb50 for red genes from (a). The 201

proteins shown formed networks of five or more proteins, with the number of interactions equal

to the number of edges.  d)  -Log10 FDR-corrected p-values (q-values) from one-sided Fisher’s

exact tests analyzing gene set enrichment for each STRINGdb interaction cluster in  (c).  e-f)

AKR1C3 immunostaining in FFPE tissue adjacent to the sectioned region of case 1 (e) and non-

neoplastic human brain (f). Image: 200x; scale bar: 50 μm. g-i) Immunofluorescent co-staining

of IDH1 R132H (white), AKR1C3 (green), and nuclei (blue [DAPI]) in case one demonstrating

expression of AKR1C3 in malignant cells carrying the truncal IDH1 R132H mutation. Scale bar

denotes 50µm.
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Table S1: Section usage and quality control (case 1)

Table S2: Somatic mutations identified by exome sequencing (case 1)

Table S3: Primers for Amp-seq (case 1)
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