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Abstract

Cancerous tumors may contain billions of cells including distinct malignant clones and
nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining
molecular features of these cells is essential for improving clinical outcomes, since intratumoral
heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a
statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic
and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-
mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number
variants, and gene expression, we reconstruct and validate the phylogenies, spatial
distributions, and transcriptional profiles of distinct malignant clones, which are not observed in
normal human brain samples. Importantly, by genotyping nuclei analyzed by single-nucleus
RNA-seq for truncal mutations identified from bulk tumor sections, we show that commonly used
algorithms for inferring malignancy from single-cell transcriptomes may be inaccurate.
Furthermore, we demonstrate how correlating gene expression with tumor purity in bulk
samples provides the same information as differential expression analysis of malignant versus
nonmalignant cells and use this approach to identify a core set of genes that is consistently
expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated
with poor outcomes in several types of cancer. In summary, MOMA provides a robust and
flexible strategy for precisely deconstructing intratumoral heterogeneity in clinical specimens
and clarifying the molecular profiles of distinct cellular populations in any kind of solid tumor.

Introduction

Cancerous tumors are complex ecosystems containing huge numbers of malignant and
nonmalignhant cells. Malignant cells evolve over time by acquiring mutations through diverse
mechanisms that promote genetic* and epigenetic? heterogeneity, which may occur in a neutral
fashion® or as a Darwinian response to therapeutic or other environmental pressures®.
Nonmalignant cells comprise diverse tumor microenvironments (TMEs) that vary within and
among tissues and individuals and may be influenced by malignant cells to adopt tumor-
suppressive® or tumor-supportive® behaviors. The genetic, epigenetic, and microenvironmental
diversity of individual tumors is collectively described as intratumoral heterogeneity (ITH)’.
Clarifying the extent of ITH is an important goal for precision medicine, since most mutations are
not shared between malignant clones from different individuals®** and ITH provides the
substrate for acquired resistance to targeted therapies”**'*. To frame this goal more precisely:
Clarifying ITH requires understanding the evolutionary histories, prevalence, and defining
molecular features of distinct malignant clones and nonmalignant cell types of the TME.
Investigators have typically studied ITH by applying multiomic assays to a small number
of bulk subsamples from the same tumor. Multi-region analyses of renal carcinoma'®, breast
cancer’®, colorectal cancer'’, glioblastoma'®, and others'® have all identified substantial spatial
variation in mutation frequencies and other molecular phenotypes, suggesting clonal diversity
and variable TMEs. Although these studies highlight extensive ITH, their design is high-
dimensional in omics feature space but low-dimensional in sample space, which can lead to
biased inference and inflated false-positive error rates for individual molecular features®.
Furthermore, the small number of analyzed bulk samples limits the conclusions that can be
drawn about distinct malignant clones and nonmalignant cell types. Recent efforts using single-


https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545365; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cell methods have provided new perspectives on ITH*-%, but it remains non-trivial to isolate and
sequence DNA and RNA from the same cell at scale. As such, malignancy is often inferred for
single cells from the presence of copy-number variants (CNVs), which are themselves inferred
from single-cell RNA-seq (scRNA-seq) data. However, scRNA-seq data are confounded by
technical factors related to tissue dissociation, sampling bias, noise, contamination, and
sparsity??8, which muddle the relationships between malignant cell genotypes and molecular
phenotypes, particularly for cancers that lack consistent CNVs.

We have shown that variation in the cellular composition of intact human brain samples
drives covariation of transcripts that are uniquely or predominantly expressed in specific kinds of
cells®3*°. We have also shown that the correlation between a gene’s expression pattern and the
abundance of a cell type is a proxy for the extent to which the same gene is differentially
expressed by that cell type®. These findings suggest that molecular profiles of malignant clones
can be determined by correlating genome-wide molecular patterns with clonal abundance,
which can be revealed through integrative analysis of variant allele frequencies (VAFs)*"* over
a large number of bulk subsamples. In principle, such patterns should be highly robust since
they derive from millions or even billions of cells and do not suffer from the technical and
practical limitations imposed by studying single cells. Similar logic extends to honmalignant cell
types of the TME?®.

Here we describe a novel strategy for deconstructing ITH through multiomic and
multiscale analysis (MOMA) of individual tumor specimens. By amplifying a pair of IDH-mutant
astrocytomas into standardized biological replicates through serial sectioning, we present what
may be the most exhaustive analysis of ITH to date, analyzing gene expression in 165 tumor
sections, deeply sequenced PCR amplicons spanning mutation sites in 156 sections, DNA
methylation in 68 sections, whole exomes in seven sections, DNA from 8,169 nuclei derived
from three sections, and RNA and deeply sequenced PCR amplicons spanning mutation sites
from 809 nuclei derived from four sections. Through integrative analysis of single-nucleotide
variants (SNVs) and CNVs, we precisely define the evolutionary histories and spatial
distributions of malignant clones. By comparing these distributions to gene expression data
derived from the same tumor sections, we reveal clone-specific transcriptional profiles and
validate them orthogonally through comparisons with normal human brain and analyses of
single nuclei. Our findings suggest that a core set of genes is consistently expressed by the
truncal clone of human astrocytomas, offering new therapeutic targets and a generalizable
strategy for precisely deconstructing ITH and clarifying the molecular profiles of distinct cellular
populations in any kind of solid tumor.

Results

Overview of MOMA

Fig. 1a depicts a heterogeneous human brain tumor specimen consisting of distinct malignant
clones and nonmalignant cell types of the TME. By amplifying this specimen into a series of
standardized biological replicates through serial sectioning, we introduce variation in cellular
composition across sections (Fig. 1b), which are analyzed using multiscale (bulk and single-
nucleus) and multiomic assays (Fig. 1c). Correlative analysis of mutation frequencies and
molecular feature activities (e.g., levels of gene expression, DNA methylation, etc.) in bulk
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sections reveals the identities and defining molecular features of distinct malignant clones (Fig.
1d), which are validated by single-cell analysis of interpolated sections and histology (Fig. 1e).
MOMA therefore combines the power of bulk sampling with the precision of cellular resolution to
achieve the best of both worlds.

Case 1: analysis of clonal composition

To put these ideas into practice, we obtained a resected specimen from a primary diffuse glioma
that was removed from the left cerebral hemisphere of a 40 y.o. female who presented with
language deficits (Fig. 2a-c). Molecular pathology revealed evidence for mutations in IDH1 and
TP53 (Fig. 2d-e), no evidence for chromosome 1p/19q codeletion (data not shown), and KI67
labeling of 6% (data not shown), consistent with a CNS WHO grade 2 astrocytoma, IDH-mutant.
We cut 81 cryosections along the tumor specimen’s longest axis (Fig. 2f), followed by
automated DNA/RNA extraction from each section (Table S1). To identify mutations and
characterize the clonal landscape, we performed whole-exome sequencing (WES) on DNA
isolated from sections 14, 39, 69, and the patient's blood. Mutations detected in blood or in
genes with very low tumor expression levels were excluded. Of the remaining 33 mutations
(Table S2), including an in-frame deletion in ATRX, which is often mutated in IDH-mutant
astrocytomas®, 18 were validated by Sanger sequencing, five were validated by deep
sequencing of PCR amplicons spanning each mutation (amp-seq; Table S3), and ten (mostly
indels) could not be validated (Table S2). Among the 23 validated mutations, 16 were detected
by WES in all three tumor sections and seven were detected in only one section, suggesting
clonal heterogeneity among malignant cells (Fig. S1a).

To determine the relative abundance and spatial distributions of cells carrying mutations
within the tumor specimen, we quantified VAFs for validated somatic mutations in each tumor
section. We first used droplet digital PCR (ddPCR) to quantify VAFs for IDH1 R132H and
observed that this method was highly reproducible (Fig. S1b). However, given the limited
amount of DNA from each tumor section (Table S1), it was not feasible to quantify all VAFs in
this fashion. We therefore tested whether amp-seq yielded VAFs for IDH1 R132H that were
comparable to those obtained by ddPCR. We observed high concordance between these
methods (Fig. S1b) and subsequently used amp-seq to quantify VAFs for all validated somatic
mutations over all tumor sections, with theoretical VAF detection sensitivity of < 1%.

Amp-seq was performed in two sequencing runs: an initial run consisting of 25
amplicons (mean coverage: 3.0x10° reads/mutation/section) and a second run consisting of
nine amplicons (mean coverage: 1.7x10* reads/mutation/section). To analyze the stability of
amp-seqg-derived VAFs, we downsampled reads spanning IDH1 R132H or TP53 L145P and
calculated the root-mean-square-error (RMSE) and Pearson correlation between VAFs from full
and downsampled read depths. This analysis revealed monotonic improvement in VAF
estimates as a function of read depth (Fig. Slc-d). Notably, VAFs derived from 100-200x
coverage were far noisier than VAFs derived from full coverage, indicating that conventional
WES data are inadequate for precisely estimating VAFs and malignant cell abundance.

We performed unsupervised hierarchical clustering of amp-seq data to identify mutations
with similar VAF patterns within the tumor sample (Fig. 2g and Table S4). This analysis
revealed three distinct clusters. Cluster 1 included 15 mutations with VAFs that decreased in the
latter sections of the tumor sample, which were separated according to sequencing run to
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display the effects of read depth (Fig. 2h,i). Cluster 2 included four mutations with VAFs that
increased in the latter sections of the tumor sample (Fig. 2j). Cluster 3 included three mutations
with VAFs that peaked in the middle sections of the tumor sample (Fig. 2k).

Focusing on the sequencing run with higher coverage, we observed that five mutations
in cluster 1 (including IDH1 R132H) had VAFs over all tumor sections that were statistically
indistinguishable (Fig. 2h). Two other mutations (TP53 L145P and ACCS A197T) followed a
similar pattern but at different scales. For example, VAFs for TP53 L145P were two-fold higher
than VAFs for IDH1 R132H (Fig. 2h). We tested the hypothesis that CNVs might underlie these
patterns by performing qPCR for these genes in each tumor section and the patient's blood. We
observed approximately diploid copy numbers for both genes in all analyzed sections (Fig.
Sle), indicating that observed VAFs for these mutations are unlikely to result from CNVs.
Instead, VAFs for TP53 L145P appear to reflect copy-neutral loss of heterozygosity for
chromosome 17p (chrl7p LOH) that occurred early in the tumor's evolution (but after the L145P
point mutation). Notably, the frequencies of chrl7p LOH (derived from B-allele frequencies)
were highly concordant between WES and amp-seq data (r=0.99, Fig. S1f [top]). In contrast,
the lower VAFs for ACCS A197T suggest that this mutation appeared after the other mutations
comprising cluster 1.

To determine the clonal composition and evolutionary history of the tumor specimen
more precisely, we analyzed genome-wide CNVs and their relationships to SNVs quantified by
amp-seq. CNVs were called from WES (n=3 sections) and DNA methylation (n=68 sections)
data using FACETS* and ChAMPS®, respectively, yielding highly concordant frequencies for
copy number changes (r=0.92, Fig. S1f [bottom] and Table S5). Through combined analysis of
SNV and CNV frequencies over all tumor sections, we produced an integrated model of tumor
evolution. Specifically, we used PyClone*® to jointly analyze SNV and CNV frequencies, which
identified seven distinct clusters and their overall prevalence. Subsequently, the evolutionary
history of the tumor specimen was reconstructed using CITUP*, which produced the most likely
phylogenetic tree (Fig. 2I) and frequencies of six malignant clones over all sections (Fig. 2m
and Table S6). These analyses confirmed the truncal nature of mutations in IDH1 and TP53%,
while revealing wide variation in the purity of individual tumor sections (range: 38.3 - 84.8%;
Table S6).

Case 1: analysis of gene expression

We next explored the relationships between clonal abundance and bulk gene expression data,
which were produced from the same tumor sections used to define clonal abundance (Fig. 2f).
We first performed genome-wide gene coexpression analysis to identify groups of genes with
similar expression patterns over all tumor sections, which may reflect variation in the abundance
of distinct cellular populations. We identified 38 modules of coexpressed genes (arbitrarily
labeled by colors), which were summarized by their eigengenes and hierarchically clustered
(Table S7, Fig. 3a-c). As we have shown previously?**®* many modules were significantly
enriched with markers of nonmalignant cell types (Fig. S2a-d). By comparing cumulative clonal
abundance (Fig. 2m) to module eigengenes over all tumor sections, we identified five gene
coexpression modules whose expression patterns closely tracked the abundance of clone 1
(turquoise: r = 0.97, Fig. 3d), clone 3 (blue: r = 0.84, Fig. 3e), clone 4 (black: r = 0.83, Fig. 3f),
clone 5 (midnightblue: r = 0.71, Fig. 3g), and clone 6 (steelblue: r = 0.69, data not shown). We
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did not identify a module that was significantly correlated with clone 2, which represented only
0.001% of cells (Fig. 2I).

To characterize these modules, we performed enrichment analysis with biologically
relevant gene sets (Fig. 3d-g). We first asked whether genes within clonal CNV boundaries
(Fig. 21 and Table S5) were significantly enriched (for gains) or depleted (for deletions) in the
bulk coexpression modules most strongly associated with each clone (Table S8). Notably, all
such gene sets were significantly enriched in the appropriate module and expected direction
(e.g., chr7 gain for clone 1 [Fig. 3d], chr2p deletion for clone 3 [Fig. 3e], and chrl0p gain for
clone 5 [Fig. 3g]). We next analyzed publicly available gene sets from diverse sources (Table
S9). We found that the largest (turquoise) module, which closely tracked the abundance of
clone 1 (i.e., tumor purity), was significantly enriched with markers of oligodendrocyte progenitor
cells (OPCs) and radial glia, genes comprising the ‘classical’ subtype of glioblastoma proposed
by Verhaak et al.*” and numerous gene sets related to microglial infiltration and activation. The
second largest (blue) module, which tracked clone 3, was significantly enriched with neuronal
gene sets as well as genes that are down-regulated pursuant to IDH1 mutations. The black
module, which tracked clone 4, was enriched with astrocyte markers as well as genes that are
differentially regulated during development and glioma. The midnightblue module, which tracked
clone 5, was enriched with markers of smooth muscle cells, genes comprising the
‘mesenchymal’ subtype of glioblastoma®®, and gene sets related to epithelial-mesenchymal
transition and invasiveness. The steelblue module, which tracked clone 6, was enriched with
markers of non-resident immune cells (data not shown).

To further characterize the transcriptional signatures associated with each clone, we
used multiple linear regression to model genome-wide expression levels as a function of clonal
abundance. To account for collinearity and the dominant effect of clone 1, we used a group
lasso model with bootstrapped clonal abundance vectors (real or permuted) as predictors (Fig.
S2e-i). We restricted our focus to genes that were significantly and stably modeled by a single
clone (in addition to clone 1, per the group lasso model, Table S10). Enrichment analysis of
these genes largely recapitulated enrichment analysis of gene coexpression modules
associated with each clone, including the associations of different clones with different cell types
(Table S11 and Fig. S2i).

The associations of different clones with different cell types suggest two non-mutually
exclusive possibilities. First, different clones may preferentially express different cell-type-
specific transcriptional programs. Second, different clones may preferentially associate with
different nonmalignant cell types in the TME, leading to correlated gene expression patterns.
Although such possibilities are ideally studied at the level of individual cells, all sections from
this case were consumed during bulk data production. However, we reasoned that bona fide
transcriptional signatures of malignant clones should be absent from non-neoplastic human
brains. To test this hypothesis, we profiled gene expression in 361 cryosections from four
neurotypical adult human brain samples (Table S12) and performed genome-wide differential
coexpression analysis by subtracting normal correlations from tumor correlations, such that
tumor-specific gene coexpression relations would be retained (Fig. S3a, Table S13, Table
S14). This analysis revealed tumor-specific gene coexpression modules that tracked the
abundance of distinct clones and largely recapitulated the transcriptional signatures described in
Fig. 3 and Fig. S2, including preserved enrichment of clone-specific CNV gene sets (Fig. S3b-
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e). However, enrichment results for nonmalignant cell-type-specific gene sets became less
significant, with the exception of OPCs and radial glia for clone 1, which became more
significant (Fig. S3b-e). These results suggest that derived clones may occupy distinct
microenvironments, while the truncal clone retains signatures of progenitor cells that may reflect
the cell of origin.

Case 2: analysis of clonal composition

To test our strategy on a more complex case, we obtained a resected specimen from a
recurrent diffuse glioma that was removed from the right cerebral hemisphere of a 58 y.o. male
(Fig. 4a-c) approximately 28 years after the primary resection. Molecular pathology revealed
evidence for mutations in IDH1 and TP53 (Fig. 4d-e), no evidence for chromosome 1p/19q
codeletion (data not shown), and KI67 labeling of 4% (data not shown), consistent with a
recurrent CNS WHO grade 2 astrocytoma, IDH-mutant. Building on our observations from case
1, we applied the same strategy to case 2, with five modifications. First, we increased power by
analyzing more sections (Table S15). Second, we rotated the sample 90° halfway through
sectioning to capture ITH in orthogonal planes (Fig. 4f). Third, we inferred CNVs from RNA-seq
data instead of DNA methylation data. Fourth, we increased the average sequencing depth for
amp-seq data. And fifth, we analyzed single nuclei from interpolated sections to validate
predictions from bulk sections (Fig. 4f).

To identify somatic mutations, we performed WES on DNA from two sections in each
plane (22, 46, 85, 123; Table S16) and the patient's blood. 227 mutations were identified and 74
were selected for amp-seq by clustering WES VAFs to reveal candidate mutations most likely to
mark distinct clones (Table S17). Of these, 58 mutations were verified by amp-seq (Table S18).
As with case 1, downsampling reads spanning IDH1 R132H or TP53 G245V revealed
monotonic improvements in VAF estimates as a function of read depth (Fig. S4a-b). We
therefore restricted further analysis of amp-seq data to 27 mutations with high coverage over all
tumor sections or strong VAF correlations to other mutations (Fig. S4c). Hierarchical clustering
of these amp-seq data (Table S18) revealed five clusters of mutations with similar VAF patterns
within the tumor sample (Fig. 4g-l), suggesting multiple malignant clones.

Because mutations in IDH1, TP53, and ATRX are considered diagnostic for
astrocytoma®, we expected these to be truncal and were therefore surprised that IDH1 R132H
fell in a separate cluster from mutations in TP53 and ATRX (Fig. 4j-k). To explore this
discrepancy, we analyzed VAFs for all three mutations after controlling for gene dosage. This
analysis revealed greater discordance between VAFs for IDH1 and TP53 / ATRX mutations in
sectioning plane 1 vs. sectioning plane 2 (Fig. 4m). We also observed that all genes in mutation
cluster 4 (including IDH1) are located on chr2g. These observations suggested that the
discrepancy between IDH1 and TP53 / ATRX mutation VAFs might be explained by a subclonal
deletion in chr2qg pursuant to the IDH1 R132H mutation, as has been previously reported®*-*. To
test this hypothesis, we quantified CNVs from WES (n=4 sections) and RNA-seq (n=90
sections) data using FACETS* and CNVkit*, respectively, which yielded highly concordant
frequencies for copy number changes (r=0.97, Fig. S4d and Table S19), including a chr2q
deletion event. As expected, frequencies of the chr2q deletion event were substantially higher in
sectioning plane 1 vs. sectioning plane 2 (Fig. 4n) and almost perfectly correlated with the
observed discordance between IDH1 and TP53 / ATRX mutation VAFs (r=0.98, Fig. S4e).
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Through combined analysis of SNV and CNV frequencies over all tumor sections, we
generated an integrated model of tumor evolution using the same approach described for case
1, including the most likely phylogenetic tree (Fig. 40) and frequencies of five malignant clones
over all sections (Fig. 4p and Table S20). Compared to case 1, there was substantially less
variation in the purity of individual tumor sections (range: 71.4 - 81.6%; Table S20). We
confirmed the truncal nature of mutations in IDH1, TP53, and ATRX, along with gains of chr7,
chr8, and chr9. To more closely examine the sequence of early mutational events, we
performed single-nucleus DNA sequencing using MissionBio’s Tapestri microfluidics platform*®,
We took advantage of an existing panel of cancer genes, which included primers flanking one
IDH1 and two TP53 loci. We were also able to infer chrl7 and chr2q copy-number changes
using mutations that fell within the targeting panel. We analyzed 4,433 nuclei from plane 1
(section 29) and 3,736 nuclei from plane 2 (sections 113 and 115). Clustering nuclei from each
plane revealed clonal frequencies that broadly matched those obtained by bulk analysis (Fig.
S4f, Table S21). Interestingly, we observed a subpopulation of clone 1 (clone la: 4.1 - 6.6%)
with IDH1 R132H -/+ and TP53 G245V -/+/+ genotypes (Fig. S4f). These genotypes suggest
that TP53 LOH occurred mechanistically in this case through duplication of the mutant allele
prior to loss of the wild-type allele, and may also explain the slightly lower VAFs for TP53
G245V compared to the mutation in ATRX (Fig. 4j).

Case 2: analysis of gene expression
We explored relationships between clonal abundance and bulk gene expression data using the
same strategies described for case one. Genome-wide gene coexpression analysis identified 68
modules of coexpressed genes, which were summarized by their eigengenes and hierarchically
clustered (Fig. 5a-c). As expected®*°, many modules were significantly enriched with markers
of nonmalignant cell types (Fig. S5a-d). By comparing clonal abundance (Fig. 4p, Table S20)
to module eigengenes over all tumor sections, we identified five gene coexpression modules
whose expression patterns closely tracked the abundance of clone 1 (red: r = 0.65, Fig. 5d),
clone 2 (violet: r = 0.82, Fig. 5e), clone 3 (black: r = 0.8, Fig. 5f), clone 4 (ivory: r = 0.86, Fig.
5g), and clone 5 (lightcyan: r = 0.82, data not shown).

Enrichment analysis using gene sets defined by clonal CNV boundaries (Fig. 40 and
Table S19) confirmed expected over-representation (for gains) or under-representation (for
deletions) in the bulk coexpression modules most strongly associated with each clone (Fig. 5d-
g, Table S22, Table S23). Further analysis using publicly available gene sets from diverse
sources (Table S9) revealed that the red module, which tracked the abundance of clone 1 (i.e.,
tumor purity), was significantly enriched with markers of radial glia and microglia, as well as
genes comprising the mesenchymal subtype of glioblastoma. The violet module, which closely
tracked the abundance of clone 2, was significantly enriched with genes from reported
astrocytoma expression programs, as well as TNFalpha signaling and extracellular matrix
components. The black module, which closely tracked the abundance of clone 3, was
significantly enriched with markers of neurons and genes involved in chromatin remodeling. The
ivory module, which closely tracked the abundance of clone 4, was enriched with markers of
ependymal cells and myeloid cells. The lightcyan module, which closely tracked the abundance
of clone 5, was significantly enriched with genes involved in EGFR and NF-kB signaling, as well
as genes comprising the proneural subtype of glioblastoma (data not shown).


https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545365; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To further characterize the transcriptional signatures associated with each clone, we
used multiple linear regression to model genome-wide expression levels as a function of clonal
abundance. To account for collinearity, we used a regular lasso model with bootstrapped clonal
abundance vectors (real or permuted) as predictors (Fig. S5e-i). We restricted our focus to
genes that were significantly and stably modeled by a single clone (Table S24). Enrichment
analysis of these genes largely recapitulated enrichment analysis of gene coexpression
modules associated with each clone, including CNVs and the associations of different clones
with different cell types (Fig. S5i, Table S25).

To validate gene expression signatures of malignant clones and nonmalignant cell types
identified from bulk tumor sections, we performed single-nucleus RNA-seq (snRNA-seq) on
tumor sections 17, 53, 93, and 117 (Fig. 4f, Table S26). Using a protocol adapted from
TARGET-Seqg**, we profiled gene expression in 288 flow-sorted nuclei per section. Following
data preprocessing and quality control, 809 nuclei (70.2%) with an average of >200K unigque
reads/nucleus were retained for further analysis. Uniform manifold approximation and projection
(UMAP) analysis revealed that nuclei did not segregate by section ID (Fig. S6a, Table S27).

To determine whether nuclei segregated by cancerous state, we analyzed the
malignancy of each nucleus. Unlike some tumors, astrocytomas are not defined by truncal
CNVs, which can drive gene expression changes that are used to infer malignancy in ShnRNA-
seq data®34¢47 We therefore genotyped all nuclei through single-nucleus amplicon sequencing
(snAmp-seq) of cDNA spanning mutations in the truncal clone (Fig. 40). This analysis provided
sufficient information to call malignancy for 75% of nuclei. Projecting malignancy status onto the
UMAP plot revealed clear segregation of malignant and nonmalignant nuclei (Fig. S6b).

To further classify nuclei as specific malignant clones or nonmalignant cell types, we
took a two-step approach. First, we hierarchically clustered all nuclei using a Bayesian distance
metric calculated by Sanity?® that downweights genes with large error bars, revealing 12
clusters. Second, we asked whether genes in the bulk coexpression modules most strongly
associated with each malignant clone or nonmalignant cell type were upregulated in distinct
snRNA-seq clusters compared to all other genes (Fig. S7a-j). This analysis revealed specific
and significant upregulation of genes from the red (Fig. 5d), violet (Fig. 5e), black (Fig. 5f), and
lightcyan (data not shown) modules in snRNA-seq clusters 2, 1, 7, and 10 (Fig. 6a), suggesting
that these clusters correspond to malignant clones 1, 2, 3, and 5, respectively. Genes in the
ivory module (Fig. 5g) were significantly upregulated in snRNA-seq clusters 3 and 5, suggesting
that both of these clusters represent clone 4 (Fig. 6a). Similarly, we observed specific and
significant upregulation of genes from the purple (Fig. S5a), yellow (Fig. S5c¢), green (Fig. S5d),
and orange (data not shown) modules in snRNA-seq clusters 9, 4, 12, and 6 (Fig. 6a),
suggesting that these clusters correspond to nonmalighant astrocytes, microglia, neurons, and
endothelial cells, respectively. Genes in the tan module (Fig. S5b) were significantly
upregulated in snRNA-seq clusters 8 and 11, suggesting that both of these clusters represent
nonmalignant oligodendrocytes (Fig. 6a).

We performed several additional analyses to verify these findings. First, we projected
snRNA-seq cluster assignments onto the UMAP plot (Fig. 6b) and observed that cluster
assignments were consistent with the malignancy map produced by genotyping nuclei via
snAmp-seq (Fig. S6b). Second, we performed UMAP analysis for malignant cells only, followed
by trajectory analysis with Slingshot*® (Fig. 6c). This analysis revealed patterns of clonal
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evolution that recapitulated the phylogenetic tree inferred from integrative analysis of bulk tumor
sections (Fig. 40). Third, we compared estimates of cellular abundance obtained from bulk and
single-nucleus data for adjacent tissue sections. This analysis revealed highly consistent
estimates for the relative abundance of malignant clones (r =2 0.94; Fig. S6c) and nonmalignant
cell types (r = 0.90; Fig. S6d).

Supervised clustering with differentially expressed genes revealed clear separation of
snRNA-seq clusters (Fig. 7). Overall, malignant clones were more transcriptionally active than
nonmalignant cell types, with the exceptions of clone 4:1 and endothelial cells (Fig. 7, right).
Enrichment analysis of genes that were significantly up-regulated in snRNA-seq clusters
confirmed the identities of nonmalignant cell types (Fig. S8, Table S28). For malignant clones,
enrichment analysis of snRNA-seq clusters supported and refined inferences from bulk data
(Fig. 5d-g, Fig. S5i, Fig. S6, Table S9). For clone 1, consistent enrichments for markers of
radial glia and genes comprising the mesenchymal subtype of glioblastoma were observed in
bulk and snRNA-seq data. In contrast, markers of microglia were less significantly enriched in
clone 1 nuclei from snRNA-seq data versus bulk data, and markers of oligodendrocyte
progenitor cells (OPCs) were more significantly enriched. For clone 2, markers of astrocytes
were more significantly enriched in snRNA-seq data versus bulk data. Clone 3 was consistently
enriched with genes involved in chromatin remodeling, but neuronal markers were less
significantly enriched in snRNA-seq data. Clone 4 showed strong enrichment for markers of
ependymal cells in all analyses, while clone 5 was significantly enriched with genes comprising
the proneural subtype of glioblastoma in all analyses. Interestingly, genes involved in mitosis
were most highly expressed by clone 1, clone 4:2, and endothelial cells (Fig. 7, right).

Because clones in this case were characterized by disparate CNVs (Fig. 40), we asked
how malighancy calls compared between algorithms that infer CNVs from snRNA-seq data and
malignant genotypes derived from snAmp-seq data. We used CopyKat*, InferCNV?3, and
CaSpER* to call CNVs from snRNA-seq data. These analyses revealed substantial variation in
malignancy calls for different algorithms (Fig. 7) as well as differences from bulk CNV calls
(e.g., no gains in chr7p, chr8p, and chr9q; Fig. S6e). Taking the snAmp-seq genotyping as
ground truth, CopyKat and InferCNV were more sensitive but less specific than CaSpER,
leading to discrepant calls. For example, nonmalignant astrocytes and oligodendrocytes:2 were
mostly called malignant by CopyKat and InferCNV, while clone 4:2 was mostly called
nonmalignant by these two algorithms. CaSpER’s classification of nuclei from these populations
was mostly correct, but it failed to recognize most malignant nuclei for clones 3 and 5. In
addition, clone 4:1 was mostly classified as nonmalignant by all three algorithms. Overall, none
of the algorithms for inferring malignancy from CNVs achieved accuracy > 61% (Fig. 7).

Integrative analysis of gene expression in malignant cells

Intuitively, genes whose expression patterns correlate most strongly with the abundance of
malignant cells should include optimal biomarkers. This intuition can also be proven
mathematically and empirically. Fig. 8a-c illustrates a hypothetical example in which the goal is
to identify optimal transcriptional markers of malignant cells in a human brain tumor. A
conventional strategy would involve physically isolating individual cells, transcriptionally profiling
them by single-cell RNA-seq (scRNA-seq), inferring the malignancy of individual cells from the
scRNA-seq data based on the presence of driver mutations (CNVs and/or SNVs), and
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performing differential expression analysis for each gene between all malignant and
nonmalignant cells (for example, using a t-test; Fig. 8b). Fig. 8c shows an alternative analytical
path that leads to the same place: by correlating expression levels of the same hypothetical
gene from Fig. 8b with a dichotomous variable denoting malignant cell abundance (1=malignant
cells, 0=nonmalignant cells), the resulting statistical significance is identical to that obtained by
differential expression analysis.

Although the t-test and correlation produce identical results when the independent
variable is dichotomous, this is not the case when the independent variable is continuous.
However, we have shown via pseudobulk analysis of sScRNA-seq data from normal adult human
brain that: i) the correlation between the expression pattern of a gene and the [continuous]
abundance of a cell type accurately predicts differential expression of that gene in that cell type,
and ii) cell-type-specific gene coexpression relationships accurately predict cellular abundance
in pseudobulk samples®. To determine whether these findings extend to malignant cells, we
repeated this analysis using scRNA-seq data from 10 adult human astrocytomas® (Fig. 8d).
Genome-wide gene coexpression analysis of pseudobulk samples obtained by randomly
aggregating scRNA-seq data revealed a malignant cell coexpression module whose
eigengene® (i.e., first principal component, which summarizes the characteristic expression
pattern of the module over all samples) closely tracked the actual abundance of sampled
malignant cells (Fig. 8e-f). Furthermore, the genes that were most significantly up-regulated in
malignant cells per differential expression analysis of the underlying scRNA-seq data (Fig. 8d)
also had the highest correlations to malignant cell abundance (kwe) in pseudobulk data (Fig.
89g). These results confirm that gene expression profiles of malignant cells can be revealed by
correlating genome-wide expression patterns with malignant cell abundance in heterogeneous
tumor samples. This strategy also applies to individual malignant clones (as well as
nonmalignant cell types of the TME), as shown for case 2 in Fig. S9.

We next sought to compare transcriptional profiles of malignant cells between case one
and case two through integrative analysis. However, despite the fact that both tumors were
diagnosed as grade 2 IDH-mutant astrocytomas, only one SNV was shared between the cases.
Furthermore, the shared SNV (IDH1 R132H) was absent in ~21% of malignant cells in case 2
following loss of chr2q (Fig. 40). We therefore asked whether the truncal clones (i.e., clone 1),
which presumably included all of the mutations required to initiate these tumors along with
passenger mutations, had consistent transcriptional profiles in case 1 and case 2. For each
case, we analyzed genome-wide correlations to the cumulative abundance of clone 1
(equivalent to tumor purity). Comparing these results between cases, we observed a highly
significant relationship (Fig. 9a, Table S29). Enrichment analysis of genes whose expression
patterns were most positively correlated with clone 1 in both cases implicated gene sets
comprising the ‘classical’ subtype of glioblastoma proposed by Verhaak et al.*’, markers of
radial glia, infiltrating monocytes, and extracellular matrix components (Fig. 9a-b; red). In
contrast, genes whose expression patterns were most negatively correlated with clone 1 in both
cases largely implicated gene sets related to neurons and neuronal function (Fig. 9a-b; blue).

We further characterized genes whose expression patterns were most positively
correlated with the truncal clone in both cases (Fig. 9a; red) by cross-referencing them with
human protein-protein interaction (PPI) data from the STRING database**°. This analysis
revealed eight distinct clusters of interacting proteins (Fig. 9¢). The largest of these (green)
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included several SOX transcription factors and was significantly enriched with genes involved in
WNT and MYC signaling (Fig. 9d). The second largest cluster (yellow) was significantly
enriched with genes involved in DNA repair, and the third largest cluster (orange) was
significantly enriched with genes involved in RNA splicing (Fig. 9d). The remaining clusters
were significantly enriched with genes involved in mRNA transport (brown), DNA replication
(turquoise), specific cellular compartments and protein complexes (pink, gray), and immune
response (purple) (Fig. 9d).

To provide further validation for these findings, we performed immunostaining for
AKR1C3. Out of 15,288 genes, AKR1C3 bulk expression correlations to tumor purity ranked fifth
in case one and first in case two (Fig. 9a [asterisk], Table S29). AKR1C3 was also significantly
upregulated in malignant vs. nonmalignant nuclei per snRNA-seq (Fig. 7, right). Immunostaining
confirmed substantial upregulation of AKR1C3 in tumor vs. normal human brain at the protein
level (Fig. 9e, f). To provide cellular resolution, we co-stained for AKR1C3 and IDH1 R132H
using an antibody that recognizes the mutated IDH1 protein. As expected, this analysis revealed
broad overlap between cells expressing AKR1C3 and cells expressing IDH1 R132H (Fig. 9g-i).

Discussion

We have described a novel strategy called MOMA for deconstructing ITH through multiomic and
multiscale analysis of serial tumor sections. By amplifying each tumor specimen into
standardized biological replicates through serial sectioning, we obtained a large number of
representative subsamples of each tumor with variable cellular composition. Because section
size and number can be tailored to experimental needs, MOMA provides flexibility for a variety
of concurrent assays while preserving spatial information. We performed WES to identify
mutations in a small number of distant sections, followed by deep sequencing of PCR amplicons
spanning mutation sites to quantify SNV frequencies with high confidence in a large number of
sections. Although clusters of SNVs with highly correlated VAFs suggested distinct clones, we
found that integrative analysis of SNV and CNV frequencies (inferred from bulk DNA
methylation data [case 1] or bulk RNA-seq data [case 2]) was required to accurately reconstruct
clonal phylogenies. Using this approach, we identified the six most prevalent clonal populations
of malignant cells in case 1 and five in case 2 and quantified their abundance in all tumor
sections.

By comparing clonal abundance to genome-wide expression patterns over all tumor
sections, we identified transcriptional profiles of distinct malignant clones in each case. Clone
expression profiles were orthogonally validated through comparisons with normal human brain
(case 1) and snRNA-seq using nuclei isolated from interpolated tumor sections (case 2).
Enrichment analysis of these profiles revealed several interesting findings. First, gene sets
defined by clonal CNV boundaries were significantly enriched (for gains) or depleted (for
deletions) in the expected clone expression profiles, providing further confirmation of clonal
identities. Second, gene sets representing transcriptional subtypes of glioblastoma® were
significantly associated with distinct clones in each case, suggesting stereotyped patterns of
malignant cell differentiation that may reflect different microenvironments®. Third, in both cases,
markers of neural stem cells (radial glia) were most significantly enriched in the truncal clone.
And fourth, markers of ependymal cells were significantly and specifically enriched in clone 4
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from case 2. To our knowledge, malignant ependymal cells have not previously been described
in human astrocytomas. Because ependymal cells differentiate from neural stem cells during
normal brain development®, the presence of malignant ependymal cells is consistent with a
neural stem cell as the cell of origin for case two.

Although both cases were diagnosed as IDH-mutant grade 2 astrocytomas, they shared
only one SNV (IDH1 R132H), which was truncal in both cases but lost from 21% of malignant
cells (clone 3) in case 2 due to chr2q deletion. The extent of clonal heterogeneity, even for the
same type of tumor, begs the question of how gene expression correlations to clonal abundance
should be compared and integrated across cases. We reasoned that aggregating gene
expression correlations to the truncal clone (equivalent to tumor purity) would identify the most
specific and consistent transcriptional features of all malignant cells in both astrocytomas (as
illustrated in Fig. 8). This deceptively simple strategy has profound implications for target
discovery in cancer biology, because correlations between molecular abundance and tumor
purity can be aggregated from huge numbers of bulk samples from similar cases that
collectively represent many billions of cells. In statistical and economic terms, this strategy likely
represents the shortest path to identifying the most robust molecular features of malignant cells,
including the non-oncogene dependencies that are thought to vastly outnumber recurrently
mutated genes®?, for any kind of solid tumor.

Here, performing this analysis for only two cases, we observed a highly significant
genome-wide correlation between gene expression profiles of the truncal clone, which suggests
that a core set of genes is consistently expressed by the founding population of malignant cells
in IDH-mutant astrocytomas. This result is particularly striking given the biological and technical
differences between case 1 (primary astrocytoma, microarray gene expression data) and case 2
(recurrent astrocytoma, RNA-seq gene expression data). Cross-referencing these genes with
human PPI data® revealed distinct groups of interacting proteins that were significantly enriched
with cancer-related pathways and processes, including WNT and MYC signaling, RNA splicing,
and DNA repair. Furthermore, many of the genes whose expression patterns correlated most
strongly with malignant cell abundance in both cases (Table S29) have been implicated in other
types of cancer. For example, AKR1C3, which encodes a prostaglandin synthase involved in
androgen production®, is significantly upregulated and associated with poor outcomes in
hepatocellular carcinoma®, prostate cancer®, and pediatric T-cell acute lymphoblastic
leukemia®’. These findings point to the exciting possibility that malignant cells from diverse
cancers caused by distinct mutations may nevertheless share transcriptional dependencies that
can be exploited therapeutically.

It is also important to note that transcriptional phenotypes of malignancy, including
upregulation of AKR1C3, persisted in clone 3 from case 2 despite loss of the driver mutation
IDH1 R132H following chr2q deletion. IDH1 R132H perturbs genome-wide expression patterns
by increasing production of the oncometabolite D-2-hydroxyglutarate®®, which competes with
endogenous a-ketoglutarate to alter the activities of enzymes that are required to maintain
normal DNA methylation®. Our findings support previous studies indicating that altered DNA
methylation patterns can persist and perpetuate malignant phenotypes despite loss of the
mutated protein that caused them®-'. This example is illustrative because it highlights the
limitations of conventional gene panels for cancer diagnostics, which provide binary calls for the
presence or absence of common oncogenic mutations. In this case, such panels would indicate
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the presence of IDH1 R132H and recommend treatment that targets this mutation®. However,
with knowledge of this tumor’s clonal phylogeny, we can see that such treatment will be entirely
ineffective for one-fifth of malignant cells, since the mutated IDH1 protein is no longer there. In
this case, it is these cells that will likely form the basis for therapeutic resistance.

There are several important methodological implications and limitations of our study.
First, each tumor specimen analyzed in this study represents a fraction of overall tumor volume;
future efforts will analyze multiple, geographically distinct tumor subsamples to evaluate the
consistency of clonal architecture. Second, MOMA requires a large number of sections to detect
meaningful correlations (for example: 25 sections provide ~85% power to detect moderate
correlations [|r] > 0.5, P < .05])®%. Third, DNA and RNA must be co-isolated from each section
(i.e., from the same population of cells). Fourth, deep sequencing is required to establish high-
confidence VAFs for SNVs, which are in turn required to estimate clonal frequencies. Fifth,
limited variability in clonal frequencies may impact the ability to detect corresponding molecular
signatures. Sixth, some types of mutations are not yet captured by our approach (e.g.,
noncoding SNVs, rearrangements, chromothripsis, etc.). And seventh, collinearity in the
abundance of malignant and / or nonmalignant cell types may produce spurious correlations
(which can be mitigated by differential coexpression analysis with normal tissue, as done for
case one, or sectioning in multiple planes, as done for case two). For this reason, we also
recommend validating transcriptional profiles of malignant clones using one or more orthogonal
techniques. We found that multiscale integration of bulk sections and single nuclei allowed us to
leverage the complementary strengths of each sampling strategy. Specifically, bulk sections
facilitate multiomic integration while yielding robust molecular signatures driven by millions of
cells, while single nuclei enable precise validation of predictions made from bulk data. However,
the success of this approach depends on accurate classification of malignant nuclei. In our
study, we found that popular algorithms for identifying malignant nuclei based on inferred CNVs
from gene expression data?****’ were only ~60% accurate. Therefore, MOMA will benefit from
improved algorithms for inferring malignancy and / or scalable methods for profiling gene
expression and malignant cell genotypes in parallel.

In summary, MOMA is a novel and flexible strategy for deconstructing ITH through
multiomic and multiscale analysis of serial tumor sections. Importantly, MOMA is generalizable
to other molecular species and any kind of solid tumor. Ongoing efforts seek to incorporate
additional cases, multiomic assays, and data modalities, while increasing efficiency through
automation. By shining a bright light on the most robust molecular properties of malignant cells,
we hope that these efforts will expand the therapeutic search space for human cancers.

Methods

Pseudobulk analysis of scRNA-seq data
Single-cell RNA-sequencing (scRNA-seq) data from Venteicher et al.** comprising 6243 cells

from 10 IDH-mutant adult astrocytomas were downloaded from Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/; accession ID = GSE89567). To generate a pseudobulk
gene expression matrix from these data, 10% of all cells were randomly sampled and
expression levels were summed for each gene from all sampled cells (this process was
repeated 100x to generate a matrix with 100 pseudobulk samples). Using cell-class labels
provided by the authors, the identities of all cells comprising each pseudobulk sample were
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tracked. Genome-wide differential expression analysis was performed by comparing all sampled
malignant cells to all sampled nonmalignant cells using a two-sided t-test. In parallel, genome-
wide gene coexpression analysis was performed as described®. Briefly, genome-wide biweight
midcorrelations (bicor) were calculated using the WGCNA R package® and all genes were
clustered using the flashClust®® implementation of hierarchical clustering with complete linkage
and 1 — bicor as a distance measure. The resulting dendrogram was cut at a static height of
0.277, corresponding to the top 1% of bicor values. All clusters consisting of at least 10 genes
were identified and summarized by their module eigengene® (i.e., the first principal component
obtained by singular value decomposition) using the moduleEigengenes function of the WGCNA
R package®. Highly similar modules were merged if the Pearson correlation of their module
eigengenes was > 0.85. This procedure was performed iteratively such that the pair of modules
with the highest correlation > 0.85 was merged, followed by recalculation of all module
eigengenes, followed by recalculation of all correlations, until no pairs of modules exceeded the
threshold. The pseudobulk gene coexpression module most strongly associated with malignant
cells was identified by maximizing the correlation between the module eigengene and the actual
fraction of sampled malignant cells in each pseudobulk sample. Genome-wide Pearson
correlations to this module eigengene (kve values)®* were then calculated and compared to the
results of single-cell differential expression analysis (t-values).

Sample acquisition

The tumor specimen from case one (WHO grade Il primary astrocytoma, IDH-mutant) was
obtained from a 40 y.o. female patient following surgical resection at the University of California,
San Francisco (UCSF), along with the patient's blood (UCSF case ID: SF9495). The tumor
specimen from case two (WHO grade Il recurrent astrocytoma, IDH-mutant) was obtained from
a 58 y.o. male patient following surgical resection at UCSF, along with the patient’s blood
(UCSF case ID: SF10711). Four postmortem control human brain samples from two brain
regions (anterior cingulate cortex [ACC] and entorhinal cortex [EC]) were also obtained from
routine autopsies of two individuals (41 and 75 y.o. females) at UCSF. Control samples were
examined by a neuropathologist (E.J.H.) and found to exhibit no evidence of brain disease.
Tissue samples for nucleic acid isolation were immediately frozen on dry ice without fixation. For
tumor histology, a smaller subsample was formalin-fixed and paraffin-embedded (FFPE) using
standard procedures. All tumor samples were obtained with donor consent in accordance with
protocols approved on behalf of the UCSF Brain Tumor Center Tissue Core.

Serial sectioning

Tissue cryosectioning was performed on a Leica CM3050S cryostat at -20°C. Each sample was
oversectioned to account for the possibility of low RNA quality or quantity from some
cryosections; after excluding these (see below), most, but not all, analyzed sections were
adjacent to one another. For the first case, 81 sections were cut and utilized as shown in Fig.
2f. For each of the four control samples, ~120 sections were cut and 94 were utilized for gene
expression profiling. For the second case, 140 sections were cut and utilized as shown in Fig.
4f. In addition, the plane of sectioning for the second case was rotated 90 degrees at the
halfway point to provide additional spatial variation (Fig. 4f). These sectioning strategies
resulted in 73% power to detect weak correlations (|r] > 0.3, P < .05) for case one and 83%
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power for case two®. To control for differences in the cross-sectional area of each tissue
sample, section thickness was varied as needed to ensure sufficient and comparable amounts
of nucleic acids could be extracted from sections for multiomic analysis. Quality control and
usage information for all sections can be found in Table S1 (case one), Table S12 (control
samples), and Table S15 (case two). Frozen sections were collected in RNase-free 1.7 ml
tubes (Denville Scientific Inc, South Plainfield, NJ) and stored at -80°C.

Nucleic acid isolation and quality control

Tissue cryosections were thawed on ice and homogenized by pipette in QlAzol (Qiagen Inc.,
Valencia, CA). For control samples, RNA was extracted from each section with the miRNeasy
mini kit (Qiagen Inc., Valencia, CA). For tumor samples, DNA and RNA were isolated
simultaneously from each section with the AllPrep DNA / RNA / miRNA kit (Qiagen Inc.,
Valencia, CA). All nucleic acid isolation from tissue sections was performed using a QIAcube
automated sample preparation system according to the manufacturer's instructions (Qiagen
Inc., Valencia, CA). Sections were processed in random batches of 12 on the QIAcube to avoid
confounding section number with potential technical sources of variation associated with nucleic
acid isolation.

Frozen blood was thawed and resuspended in red blood cell lysis solution (Qiagen Inc.,
Valencia, CA). White blood cells were removed by centrifugation at 2000g for 5 mins and
repeated until white blood cells were depleted. Remaining red blood cells were resuspended in
extraction buffer (50 mM Tris [pH8.0], 1 mM EDTA [pH8.0], 0.5% SDS and 1 mg / ml Proteinase
K [Roche, Nutley, NJ]) and incubated overnight at 55°C. The extracted DNA was RNAse
treated (40 pg / ml) (Roche, Nutley, NJ) for 1 h at 37°C before being phenol chloroform
extracted and ethanol precipitated. The resulting DNA was resuspended in TE buffer (10 mM
460 Tris, 1 mM EDTA [pH7.6]).

RNA and DNA were analyzed using a Nanodrop 1000 spectrophotometer (Thermo
Scientific Inc., Waltham, MA) to quantify concentrations, OD 260 / 280 ratios, and OD 260 / 230
ratios. Further validation of RNA and DNA concentrations was performed using the Qubit RNA
HS kit and Qubit dsDNA HS kit on the Qubit 2.0 Fluorometer (Life Technologies Inc., Carlsbad,
CA). RNA integrity (RIN) was assessed using an Agilent 2100 Bioanalyzer (Agilent
Technologies Inc., Santa Clara, CA). Sections for which RIN = 5 (case one median = 7.6, case
two median = 8.3), OD 260 / 280 ratio = 1.80 (case one median = 2.03, case two median =
1.94), and concentration by Nanodrop = 9 ng / pl (case one median = 25.4 ng / pl, case two
median = 9.25 ng / pl) were selected.

Whole exome sequencing (WES) and data preprocessing

WES was performed at the UCSF Institute for Human Genetics genomics core facility (San
Francisco, CA). Exome libraries were prepared from 1 ug of genomic DNA from each analyzed
section using the Nimblegen EZ Exome kit V3 (Roche, Nutley, NJ). Paired-end 100 bp
sequencing was performed on a HiSeq2500 sequencer (lllumina Inc., San Diego, CA). The
analysis of WES data was performed as previously described®. Briefly, paired-end sequences
were aligned to the human genome (University of California, Santa Cruz build hg19) using the
Burrows-Wheeler Aligner (BWA)®. Uniquely aligned reads were further processed to achieve
deduplication, base quality recalibration, and multiple sequence-realignment with the Picard
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suite®® and Broad Institute Genome Analysis ToolKit (GATK)®". After processing, a mean
coverage of 131-151x and 104-122x was achieved for case one and case two, respectively.

Single-nucleotide variant (SNV) and small insertion / deletion (indel) calling workflow
SNVs were identified using MuTect®® and indels were identified with Pindel®® using default
settings. SNVs were further filtered to only retain variants with frequency > 0.10 in at least one
tumor section and < 6 variant reads in the patient's blood. Indels were filtered to only retain
variants with > 5 variant reads in a given tumor section and < 13 total reads in the patient's
blood. If multiple indels were detected at the same genomic location, only the indel with the
most supporting reads was retained. Identified mutations were annotated for their mutational
context using ANNOVAR™ and were also cross-referenced with dboSNP™ (Build ID: 132) and the
1000 Genomes™ (Phase 1). SNV and indel events were converted to hg38 coordinates and
assigned HGVS compliant names using Ensembl’s Variant Effect Predictor”.

Droplet Digital PCR (ddPCR)

Variant allele frequencies (VAFs) of the IDH1 R132H mutation were determined in 69 tumor
sections from case one and the patient's blood using the PrimePCR IDH1 R132H mutant assay
and the QX100 Droplet Digital PCR system (Bio-Rad Inc., Hercules, CA). An initial serial dilution
of a positive control was performed to optimize the input concentration of genomic DNA from
each section and to assess the reliability of the assay. Duplicate reactions were performed to
quantify the reproducibility of the assay (Fig. S1b). Data were analyzed and 95% Poisson
confidence intervals were calculated using QuantaSoft software (Bio-Rad Inc., Hercules, CA).

Amplicon sequencing (amp-seq) and data preprocessing

Groups of mutations with similar allele frequency distributions in WES data were identified by
hierarchical clustering. Biweight mid-correlations (bicor) were used to estimate the proximities of
somatic mutations and 1-bicor was used as a dissimilarity measure. A subset of representative
mutations from distinct clusters was validated by Sanger sequencing and deep sequencing of
PCR amplicons (amp-seq) derived from tumor sections and the patient's blood. Primers were
designed using Primer-BLAST™ to yield an amplicon of around 500 bp (case one) or 100 bp
(case two) with the mutation located within the center of the amplicon (Tables S3 and S17).
Amplicons were generated for 42 mutations in case one (n = 69 sections; Table S3) and 75
mutations in case two (n = 85 sections; Table S17). For case one, the mutation-containing
region was amplified by PCR using the FastStart high-fidelity PCR system (Roche, Nutley, NJ)
or the GC-Rich PCR system (Roche, Nutley, NJ) as instructed by the manufacturer using
specific annealing temperatures (Table S3). The resulting amplicons were purified using the
NucleoSpin gel and PCR cleanup kit following the manufacturer's instructions (Macherey-Nagel
Inc., Bethlehem, PA) and submitted for Sanger sequencing with the same primers used to
generate the amplicons. For case two, 50ng of gDNA was used as template per sample in each
reaction and 35 cycles of PCR amplification were performed with KAPA HiFi HotStart Ready
Mix (2x, KAPA Biosystems, Wilmington, MA). Multiplexed PCR reactions were purified using a
2X volume ratio of KAPA pure SPRI beads (KAPA Biosystems, Wilmington, MA). Purified PCR
reactions were quantified using the Qubit dsDNA HS kit and Qubit 2.0 fluorometer. For both
cases, the concentration of each amplicon was adjusted to 0.2 ng/ul. Barcoded libraries for
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each section were generated using the Nextera XT DNA Kit (lllumina Inc., San Diego, CA). After
library preparation the barcoded libraries were pooled using bead-based normalization supplied
with the Nextera XT kit. The pooled libraries were sequenced with paired-end 250 bp reads in a
single flow cell on an lllumina MiSeq (lllumina Inc., San Diego, CA) in case one and an Illlumina
HiSeqg 4000 in case two. In case one, libraries were sequenced in two runs, whereas all
amplicons were sequenced in the same run for case two. Sequence reads were demultiplexed
and basecalled using “bcl2fastq” (Illumina Inc., San Diego, CA). FASTQ files were aligned to a
custom genome (based on the amplicon sequences) using BWA-MEM?™. The SAMtools suite’
was used to create and index BAM files and create pileup files based on reads with a base
quality score > 30. Read counts supporting the reference or variant within each amplicon were
determined using the read counts function from VarScan 27" and these counts were used to
calculate VAFs.

Downsampling analysis of amp-seq data

Amplicon reads originating from the reference or alternative alleles for IDH1 or TP53 were
randomly downsampled to various coverage levels (n = 1000 random downsamples per
coverage level) for each section to quantify the effect of reduced coverage on VAF estimates.
VAFs were recalculated for each downsampled coverage level and compared to full coverage
VAF estimates over all sections using Pearson’s correlation or root-mean-square error (RMSE),
as illustrated in Fig. S1c-d (case one) and Fig. S4a-b (case two).

Hierarchical clustering of variant allele frequencies (VAFSs)
Groups of mutations with similar VAF patterns were identified by hierarchical clustering over all
tumor sections. VAFs were clustered with Ward’s D method and 1 — Pearson’s correlation as a
dissimilarity measure. The number of clusters was determined from the consensus of elbow™
and silhouette plot™ methods, using the cluster package in R¥.

DNA methylation data production and preprocessing

The sample order of genomic DNA from serial sections of case one was randomized to avoid
confounding section number with potential sources of technical variation. DNA was
concentrated with Genomic DNA Clean & Concentrator 10TM columns (Zymo Research, Irvine,
CA) in batches of 12 samples, resulting in approximately two-fold concentration (median
concentration after processing: 45ng / pl). The sample order was randomized again and
concentrated DNA was shipped on dry ice to the University of California, Los Angeles (UCLA)
Neurogenomics Core facility (Los Angeles, CA) for analysis using lllumina 450K microarrays
(lumina Inc., San Diego, CA).

Raw idat files were processed using the ChAMP R package®. Initial probe filtering was
performed using the load.champ R function®®. Probes with detection P-value > 0.01 (11,799
probes) or beadcount < 3 in at least 5% of samples were removed (n = 760), leaving 461,797
probes for analysis. The lllumina 450K microarrays contain two different assay types (Infinium |
and Infinium 11). Each assay has different sensitivity and dynamic range, which means that joint
normalization leads to type Il bias due to the lower sensitivity of the Infinium Il assay®. We
therefore performed beta-mixture quantile normalization (BMIQ) using the “champ.norm”
function from ChAMP, which accounts for the different assay types®.
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Additional preprocessing of the methylation data was performed with the
SampleNetwork R function®, which identifies outlying samples, performs data normalization,
and corrects for technical batch effects. The standardized sample network connectivity (Z.K)
criterion was used to exclude one outlying sample (section #69, whose DNA concentration was
substantially lower than other sections), leaving 68 sections. No batch effects associated with
ArraylID or ArrayPosition were observed.

Gene expression data production and preprocessing

Total RNA from case one (n = 69 sections) was shipped on dry ice to the UCLA Neurogenomics
Core facility (Los Angeles, CA) for analysis using lllumina HT-12 v4 human microarrays
(NMlumina Inc., San Diego, CA). The order of the sections was randomized prior to shipment to
avoid confounding potential technical artifacts with potential biological gradients of gene
expression. Two control samples from the same pool of total human brain RNA (Ambion
FirstChoice human brain reference RNA Cat#AM6050, Life Technologies Inc., Carlsbad, CA)
were included with each of the five datasets. For each of the five datasets (case one and four
control samples), all microarray samples (n = 72 — 96 / dataset) were processed in the same
batch for amplification, labeling, and hybridization. Amplification was performed using the
Ambion TotalPrep RNA amplification kit (Life Technologies Inc., Carlsbad, CA). Raw bead-level
data were minimally processed by the UCLA Neurogenomics Core facility (no normalization or
background correction) using BeadStudio software (lllumina Inc., San Diego, CA).

For each dataset the minimally processed expression data were further preprocessed
using the SampleNetwork R function®”. Using the standardized sample network connectivity
(Z.K) criterion®”, the following numbers of outliers were removed from each dataset: ACC1 (n =
2), ACC2 (n=11), EC1 (n=0), EC2 (n = 2), and case one (n = 1). Exclusion of outliers resulted
in the following numbers of remaining sections in each dataset: ACC1 (n = 92), ACC2 (n = 83),
EC1 (n = 94), EC2 (n = 92), and case one (n = 69). After removing outliers each dataset was
guantile normalized® and technical batch effects were assessed?. Significant batch effects (P <
.05 after Bonferroni correction for univariate ANOVA) were corrected using the ComBat R
function® with no covariates as follows: ACC1 = ArraylD, ACC2 = ArraylD, EC1 = ArraylD and
ArrayPosition, EC2 = QCBatch and ArraylD. No batch effects were observed for case one.
Multiple technical batch effects were corrected sequentially. Analysis was restricted to 30,425
probes that were re-annotated® as having either "perfect" (n = 29,272) or "good" (up to two
mismatches; n = 1,153) sequence alignment to their target transcripts. Probes were further
collapsed to unique genes (n = 20,019) by retaining one probe per gene with the highest mean
expression over all sections.

For case two, RNA-sequencing was used to profile gene expression for all sections (n =
96). Full-length RNA was made into libraries using the KAPA stranded mRNA library prep kit
(Roche, Nutley, NJ) following the manufacturer’s instructions, with a mean insert size of 300 bp.
One ng of library (composed of library and ERCC spike-in controls, Life Technologies Inc.,
Carlsbad, CA) was added as input, and all libraries were normalized according to the
manufacturer's instructions. During this process samples were randomized in both section order
and plane to avoid conflating biological and technical covariates. Sequencing was performed on
eight lanes of a HiSeq4000 at the Center for Advanced Technology (CAT) at UCSF with single-
end 50 bp sequencing using dual-index barcoding.
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Reads were assessed with FastQC to ensure the quality of sequencing data by verifying
high base quality scores, lack of GC bias, narrow distribution of sequencing lengths, and low
levels of sequence duplication or adapter sequences®. Next, reads were subjected to adapter
trimming using Cutadapt®* with minimum length = 20 and a quality cutoff of 20. Reads were
subsequently aligned using default settings with the Bowtie2 program® to the Genome
Reference Consortium Human Build 37%. Finally, an expression matrix was generated using the
FeatureCounts program with UCSC's library of genomic features® (n = 23,900 features). Genes
with zero variance were removed (n = 30). Data were normalized with the RUVg package,
regressing out 10 factors derived from principal component analysis of the ERCC spike-in
control expression matrix®. The number of factors was determined empirically by evaluating
relative log-expression (RLE) plots and gene-gene correlation distributions. Finally, the
SampleNetwork R function®” was used to identify and remove six outlier sections based on the
standardized sample connectivity criterion (Z.K).

Copy number analysis by gPCR

The copy numbers for TP53 and ACCS in case one were determined by SYBR Green-based
gPCR. Primers were designed using Primer-BLAST™ and positioned immediately adjacent to
but not including the SNV (ACCS F: TCTCTATGGCAACATCCGGC, R:
CAGCCATGCAGCAACAGAAG; RPPH1 F: CGGAGGGAAGCTCATCAGTG, R:
CCGTTCTCTGGGAACTCACC, TERT F: CTCGGATCATGCTGAGGACC, R:
TTGTGCAATTCTGTGCCAGC, TP53 F: CAGTCACAGCACATGACGGA, R:
GGGCCAGACCTAAGAGCAAT). gPCR was performed on genomic DNA from all 69 tumor
sections and the patient's blood using the LightCycler 480 SYBR Green | master mix and
LightCycler 480 gPCR machine according to the manufacturer's recommendations (Roche,
Nutley, NJ). Measurements were triplicated and data were analyzed using the standard curve
method. Copy numbers were determined for TP53 and ACCS and two control genes on
different chromosomes: ribonuclease P RNA component H1 (RPPH1) and telomerase reverse
transcriptase (TERT) (data not shown). Relative copy number was determined by dividing the
mean copy humber of TP53 and ACCS by the mean copy number of each reference gene
separately to get a ratio and multiplying the ratio by two to obtain the diploid chromosome
number. The relative copy number normalized to one of the reference genes (RPPH1) is shown
in Fig. Sle.

Copy number variation (CNV) calling (bulk data)

CNVs were quantified using multiple technologies and algorithms to generate reliable estimates.
Although WES remains the gold-standard method for calling CNVs, DNA methylation and RNA-
seq data provide cost-effective options that can be triangulated with sparse WES data to reduce
false positives. Unless otherwise noted, default parameters were used. For case one we used
the champ.CNA function, included with the ChAMP R package®, to call CNVs from DNA
methylation data. For both cases, we called CNVs from exome data using FACETS* with
critical values of 25 (case one) and 450 (case two). Finally, we used CNVKkit with circular binary
segmentation to call CNVs from bulk RNA-seq data*?°"%,
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Generation of clonal trees with corresponding frequencies

CNVs were filtered to ensure that they were called in exome data and either DNA methylation
data (case one) or RNA-seq data (case two) and covered more than 10% of a chromosomal
arm. CNV coordinates were defined based on the intersection of ranges from both methods
(Tables S5 and S19). Using the frequencies of CNV / SNV mutations and tumor purity
estimated from the TP53 locus as input to PyClone®, we determined cluster membership for
SNP and CNV events. We then used the PyClone output as the input to the CITUP algorithm??
to generate the most likely clonal tree (i.e., the tree with the minimum objective value) and
derive clonal frequencies. In cases where there was an approximate tie between objective
values, the tree was manually chosen based on biologically plausible principles. To visualize
results we used the data.tree® and DiagrammeR'® packages in R.

Gene coexpression network analysis

Genome-wide biweight midcorrelations (bicor) were calculated using the WGCNA R package®
for case one (n = 20,019 genes) and case two (n = 23,870 genes). All genes were clustered
using the flashClust®® implementation of hierarchical clustering with complete linkage and 1 —
bicor as a distance measure. Each resulting dendrogram was cut at a static height (0.875 for
case one and 0.562 for case two) corresponding to the top 30% and 20% of values of the
correlation matrix for case one and case two, respectively. All clusters consisting of at least 15
members for case one or five members for case two were identified and summarized by their
module eigengene®* (i.e. the first principal component obtained by singular value
decomposition) using the moduleEigengenes function of the WGCNA R package®. Highly
similar modules were merged if the Pearson correlation of their module eigengenes was > 0.80.
This procedure was performed iteratively such that the pair of modules with the highest
correlation > 0.80 was merged, followed by recalculation of all module eigengenes, followed by
recalculation of all correlations, until no pairs of modules exceeded the threshold (case one:
Table S7; case two: Table S22).

Module enrichment analysis

The WGCNA measure of module membership, kue, was calculated for all genes with respect to
each module. kve is defined as the Pearson correlation between the expression pattern of a
gene and a module eigengene and therefore quantifies the extent to which a gene conforms to
the characteristic expression pattern of a module*®® (case one: Table S8; case two: Table S23).
For enrichment analyses, module definitions were expanded to include all genes with significant
kwe values, with significance adjusted for multiple comparisons by correcting for the false-
discovery rate'®. If a gene was significantly correlated with more than one module, it was
assigned to the module for which it had the highest kve value. Enrichment analysis was
performed for all modules using a one-sided Fisher's exact test as implemented by the
fisher.test R function.

Lasso modeling of gene expression

The machine learning variable-selection method lasso (least absolute shrinkage and selection
operator) and group lasso were performed using the R package Seagull*®>**, Modeling was
performed for each case with gene expression patterns as dependent variables and clonal
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frequency vectors as independent variables. For case one, clone 2 was excluded from modeling
due to its low frequency and clone 6 was excluded since it was defined by a single CNV.
Because clone 1 corresponds to the tumor purity vector, which represents the major vector of
variation in this dataset, many genes experience inflated correlations to clone 1. To counteract
this effect group lasso was performed. The truncal clone (clone 1) was placed in its own group
and all remaining clones to be modeled were placed in a separate group. This procedure
improved modeling performance for case one (Fig. S2f-g) but not case two (Fig. S5f-g), which
may reflect the greater variance in tumor purity for case one. As such, modeling results for case
two presented in the manuscript derive from the regular lasso model. For each gene, models
were bootstrapped (n = 100) to address collinearity among clonal frequency vectors® (as
shown in Fig. S2h and Fig. S5h). We also generated empirical null distributions for model
performance by permuting each gene’s expression profile prior to bootstrapping (n = 100).

When performing group-lasso modeling, only models with one surviving clonal frequency
vector (not including the truncal clone) were considered. When performing lasso modeling, only
models with one surviving clonal frequency vector were considered. To quantify model stability,
we calculated the number of times out of 100 bootstraps that the most frequent surviving
independent variable was the sole surviving variable. This stability metric was calculated for all
gene models, including the permuted models. From the resulting distributions of stability values,
a 5% FDR threshold was determined. For case one, the stability value of 73 represents the
point beyond which 5% or fewer of the models were permuted models. Similarly, for case two
the 5% FDR threshold for the stability metric was 45. Gene set enrichment analysis was
performed via a one-sided Fisher’s exact test for all genes with significant model stability for the
same clonal frequency vector (Tables S6 and S20 for case one and case two, respectively),
with genes separated by the sign of the coefficient for the independent variable (Tables S10
and S24 for case one and case two, respectively).

Differential gene coexpression analysis
Using the WGCNA R package®, pairwise biweight midcorrelations (bicor) were calculated
among all 30,425 high-quality probes over all sections (n = 69—-94) in each of five datasets (case
one + four normal human brain samples), generating five identically proportioned correlation
matrices (30,425 X 30,425). These correlations were then scaled to lie between [0,1] using the
strategy of Mason et al.’®. To identify gene coexpression relationships that were present in
tumor but absent or weaker in normal human brain, each scaled bicor matrix produced from
normal human brain was subtracted®® from the scaled bicor matrix produced from case one,
resulting in four “subtraction matrices", or SubMats. The consensus of the four SubMats was
formed by taking the minimum value at each point in the four matrices using the parallel
minimum (pmin) R function, and the resulting “Consensus SubMat" was used as input for gene
coexpression analysis (Fig. S3a). By definition, gene coexpression modules identified with this
strategy will consist of groups of genes with expression patterns that are highly correlated in the
astrocytoma but not in any of the normal human brain samples (Fig. S3a).

Probes in the Consensus SubMat were clustered using the flashClust® implementation
of a hierarchical clustering procedure with complete linkage and 1 — Consensus SubMat as a
distance measure. The resulting dendrogram was cut at a static height of ~0.38, corresponding
to the top 2% of values in the Consensus SubMat. All clusters consisting of at least 10 members
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were identified and summarized by their module eigengene® using the moduleEigengenes
function of the WGCNA R package®. Highly similar modules were merged if the Pearson
correlation of their module eigengenes was > 0.85. This procedure was performed iteratively
such that the pair of modules with the highest correlation > 0.85 was merged, followed by
recalculation of all module eigengenes, followed by recalculation of all correlations, until no pairs
of modules exceeded the threshold. The WGCNA® measure of intramodular connectivity (kwve)
was calculated for all probes (n = 47,202) with respect to each module by correlating each
probe's expression pattern across all 69 tumor sections with each module eigengene.

Single-nucleus DNA-sequencing and analysis

Three sections from case two (sections 29 and 113 / 115, which were combined) were analyzed
by MissionBio, Inc. (MissionBio, San Francisco, CA) using their Tapestri microfluidics platform
for single-nucleus DNA amplicon sequencing*. Using an in-house protocol, 4,433 (section 29)
and 3,736 (sections 113 / 115) nuclei were extracted and recovered for analysis with the
Mission Bio AML panel, which includes primers flanking one IDH1 and two TP53 loci. In
addition, chrl7 chromosomal copy number changes and TP53 zygosity were inferred from a
germline heterozygous intronic mutation upstream of TP53 G245V that happened to fall within
the targeting panel (NC_000017.11:9.7674797T>A). Sequencing was performed on a MiSeq
(Numina Inc., San Diego, CA), yielding an average of 6,801 (section 29) or 6,433 (sections 113/
115) reads per nucleus, with alignment rates of ~90%. Hierarchical clustering of nuclei for
mutations of interest was performed separately for section 29 and sections 113 / 115 using
complete linkage and Euclidean distance, with kK = 4 chosen based on silhouette™ and elbow
plots™. Genotype calls for the clusters were manually annotated as described in Fig. S4f and
Table S21.

Single-nucleus RNA-sequencing and analysis

Library prep and sequencing

Four sections (17, 53, 93, 117) from case two were used to generate single-nucleus RNA-seq
(snRNA-seq) data. Our approach was adapted from TARGET-Seq*, a protocol utilizing dual-
indexing of sample barcodes and unique molecular identifiers (UMIs) of captured transcripts.
Briefly, for each section, lysis was performed by dounce homogenization with staining of nuclei
by Hoescht3342 and subsequent flow-sorting into three 96-well plates per section. Each plate
was randomized and subsequently processed individually and in random order. We used the
SmartScribe kit (Takara Bio USA, San Diego, CA) for RT-PCR, followed by PCR with the
SegAmp PCR kit (Takara Bio USA, San Diego, CA). Unlike TARGET-Seq, the RT reaction was
performed using only polyA primers (Table S26). ERCC spike-in control RNA was added to the
wells according to manufacturer’s instructions to facilitate identification and correction of batch
effects. Wells for each plate were pooled in equivolume proportions and an Agilent 2100
Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA) was used to assess sample quality
and cDNA concentrations were quantified using a Qubit 2.0 Fluorometer with the dsDNA-High
Sensitivity kit (Life Technologies Inc., Carlsbad, CA), yielding mean cDNA concentration of
1ng/ul. Concentrations were normalized prior to tagmentation (Nextera Kit, Illumina Inc., San
Diego, CA) and amplification of 3’ ends, as in TARGET-Seq*. Sequencing was performed using
the 150-cycle high-throughput kit on an Illlumina NextSeq550 at SegMatic (Fremont, CA) with
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dual-indexed sequencing and read parameters as in TARGET-seq.

Data preprocessing
snRNA-seq raw reads were demultiplexed and basecalled using “bcl2fastq” (lllumina Inc., San

Diego, CA). Barcodes were filtered using the “umi_tools” package'® whitelist function, with a
Hamming distance of 2 and the density knee method to determine the number of true barcodes.
809 / 1152 nuclei (70.2%) passed this initial quality control step. Reads were assessed with
FastQC to ensure the quality of sequencing data by verifying high base-quality scores, lack of
GC bias, narrow distribution of sequencing lengths, and low levels of sequence duplication or
adapter sequences®. Next, reads were subjected to adapter trimming using the Trimmomatic
algorithm'® with a minimum length of 30, a minimum quality of 4 with a 15 bp sliding window,
and otherwise default settings. A mean of 445,082 reads / nucleus was achieved at this stage.
Reads were subsequently aligned using ENCODE RNA-seq settings (except for
outFilterScoreMinOverLread, which was set to 0) with the STAR program® to the Genome
Reference Consortium Human Build 38%. Finally, an expression count matrix was generated
using the FeatureCounts program™! with Gencode’s library of gene features (version 21)*?,
subset using the “gene” attribute (n = 60,708 features). Deduplication of UMIs was performed
using a custom R script, resulting in a mean number of 206,638 unique reads / nucleus, a 46%
deduplication rate. Features with counts less than one in more than 90% of cells were removed
(n = 57,021 final features). Data were normalized with the RUVg package, regressing out 10
factors derived from PCA of the ERCC spike-in control expression matrix®. Normalized counts
were further processed using the Sanity package®, with 1000 bins and a minimum and
maximum variance of 0.001 and 1000, respectively. Internuclear distance was determined using
the Sanity_distance function with a signal to noise parameter of 1 and inclusion of error bars.

SnRNA-seq clustering and differential expression analysis

snRNA-seq data were hierarchically clustered using the hclust function in R with Ward’s method
and the distance metric derived by Sanity®. This distance metric uses a Bayesian approach by
giving less weight to gene expression estimates with large error bars when calculating cell
distances. The optimal number of clusters (k = 12) was determined using elbow and silhouette
plots™ with the cluster package in R®. Differential expression analysis (t.test) was performed
between each cluster and all other clusters using Sanity-adjusted expression values for all
genes. The resulting distributions of t-values were then compared for genes comprising the bulk
coexpression modules most strongly associated with each malignant clone / nonmalignant cell
type and all other genes (white and black distributions, respectively, in Fig. S6a-j; significance
was evaluated with a one-sided Wilcoxon rank-sum test). Module genes were defined as those
that were significantly correlated with corresponding bulk coexpression module eigengenes as
determined by the FDR threshold™. If a gene was significantly correlated with more than one
module eigengene, it was assigned to the module for which it had the highest kve value.

CNV calling
The snRNA-seq count matrix was used as input to CopyKat®. Nuclei snRNA-seq clusters

determined to be non-malignant by snAmp-seq were used as normal control cells. “KS.cut” was
set to 2, “ngene.chr” was set to 20, and Ensembl gene names were used. InferCNV?® was
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provided with a vector of nonmalignant cells (as previously determined) based on clustering and
snAmp-seq in “subclusters” mode, with a cutoff parameter of 1, and denoising turned on,
“ward.D” as clustering method, “gnorm” as subcluster partition method, and tumor subcluster p-
value of 0.05. The Hidden Markov model was not used. The program CaSpER* was run with
the raw snRNA-seq count matrix as input and default settings, again using snRNA-seq clusters
of nuclei determined to be malignant by snAmp-seq as negative controls. For each of these
algorithms, the outputs were clustered based on Euclidean distance using Ward’'s D method.
Clusters with no CNV signal were labeled nonmalignant while all other clusters were presumed
to represent malignant cells.

Sensitivity and specificity were calculated using the snAmp-seq data as ground truth.
True positives (TP) were defined as the intersection of malignant calls by the CNV calling
algorithm and the snAmp-seq data. True negatives (TN) were defined as the intersection of
nonmalignant calls by the CNV calling algorithm and the snAmp-seq data. False negatives (FN)
and false positives (FP) were similarly defined. Nuclei with insufficient data were excluded from
the analysis. Sensitivity was defined as: TP / (TP + FN), while specificity was defined as: TN /
(TN + FP). Accuracy was defined as (TP + TN) / (TP + FP + TN + FN).

UMAP and trajectory analysis
UMAP was performed for all nuclei (n = 809) with a starting seed of 15, 30 neighbors, a spread

of 3, a minimum distance of 2, and 1 — Pearson correlation as a distance metric using the “uwot”
R package'*® after selecting the first 30 principal components of the Sanity-corrected expression
matrix including all genes. UMAP was also performed separately for all cells associated with
malignant clusters using the Sanity-corrected expression matrix. After selecting the first 15
principal components, the “uwot” package was used with a seed of 15, 20 neighbors, a spread
of 3, a minimum distance of 2, and 1-Pearson correlation as the similarity metric. All other
settings were left as defaults. Trajectory analysis was performed with the Slingshot R package*®
on the UMAP plot. The “simple” distance method was used and all other parameters were left
as their default values.

Gene set enrichment analysis
Enrichment analysis (one-sided Fisher’s exact test) was performed for each snRNA-seq cluster

using genes that were differentially expressed in that cluster relative to all other clusters using a
one-sided Wilcoxon rank-sum test. Resultant p-values were further FDR-corrected to g-
values'®. Gene sets used for enrichment analysis are listed in Table S9.

Amp-seq genotyping

Single-nucleus amplicon-seq (snAmp-seq) was adapted from the TARGET-seq protocol*.
Primers flanking the following mutations (marking the truncal clone) were designed with
Primer3™*: IDH1 R132H, TP53 G245V, and RUFY1 K218N (Table S26). To overcome lack of
heterogeneity in sequencing, random spacers were added to the beginning (5’ end) with 0 - 5
nucleotides from the sequence CGTAC. Finally, a common sequence was added to the 5’ end
of the primer for a second round of PCR (Table S26). We selected wells that passed QC for
snRNA-seq analysis and processed each plate separately and in random order. Amplification of
the first round of PCR was performed with the KAPA 2G Ready Mix (Roche Inc., Nutley, NJ)
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with the same PCR program as for TARGET-Seq*. The program “Barcrawl™** was used to
create custom dual-index barcodes for the amplification PCR. At this stage 10% of wells were
checked using an Agilent 2100 Bioanalyzer (Agilent Inc., Santa Clara, California) to determine
whether products of appropriate size were produced. All wells were quantified with a Qubit 2.0
Fluorometer using the dsDNA-High Sensitivity kit (Life Technologies Inc., Carlsbad, CA) and
normalized prior to the next step. The second round of PCR used custom sequencing primers
that were partially complementary to the previous sequences, with custom dual-index barcodes
generated from BarCrawl*® and lllumina P5 / P7 sequences. Sequencing was performed using
a 300 cycle Miseq v2 Nano kit on a MiSeq (lllumina Inc., San Diego, CA).

snAmp-seq data were demultiplexed and basecalled using “bcl2fastq” (lllumina Inc., San
HDiego, CA). Reads were assessed with FastQC to ensure the quality of sequencing data by
verifying high base quality scores, lack of GC bias, narrow distribution of sequencing lengths,
and low levels of sequence duplication or adapter sequences®. Next, reads were subjected to
adapter trimming using the Trimmomatic algorithm*® with a minimum length of 30, a minimum
quality of 4 with a 15 bp sliding window, and otherwise default settings'®®. Reads were
subsequently aligned with the STAR program to a custom version of the genome containing
only the amplicons of interest. Default parameters were altered such that no multiple alignments
or splicing events were allowed. The median number of reads per nucleus for each amplicon
was (IDH1 R132H: 177; TP53 G245V: 246; RUFY1 K218N: 209). Read counts supporting the
reference or variant allele within each amplicon were determined using the read counts function
from VarScan 2" and these counts were used to calculate variant frequencies. Nuclei were
sorted into three categories: called nuclei (calls by VarScan 2 of two or more mutant or two or
more wild-type [WT] calls of the three loci with either one or zero indeterminate calls),
discrepant nuclei (two WT and one mutant call), and insufficient data nuclei (two or more loci in
which VarScan 2 was unable to call a genotype). The breakdown for these categories is as
follows: 75% called nuclei, 1% discrepant nuclei, and 24% insufficient data nuclei (Table S27).

Inter-case analysis

Combined Pearson correlations to tumor purity for the 15,288 genes shared between case one
and case two were determined by calculating the weighted average of the z-scores produced by
Fisher's transformation, dividing this value by the joint standard error, and applying the inverse
Fisher transformation®. To define significant genes for enrichment analysis (Fig. 9a-b), a
minimum absolute value for Pearson’s correlation of > 0.3 or < -0.3 was required in both cases
along with an FDR-corrected g-value of < 0.05. Enrichment analysis was performed as
described above, with gene sets listed in Table S9. Significant positively correlated genes were
subjected to protein-protein interaction (PPI) analysis using the STRING database*. We used
the STRINGdb***°, network*®, intergraph*’, and ggnetwork*® packages to visualize the results
of STRING PPI analysis. The “physical” network flavor and minimum score of 900 was utilized
to guarantee that all depicted interactions were actual PPls with experimental evidence.
Clusters with more than five members were chosen from the set of interaction clusters
generated from all genes that had positive correlations and passed the correlation cutoffs listed
above. Enrichment analysis of PPI clusters was performed as described above, with gene sets
listed in Table S9.
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Histology and immunostaining

Tumor tissue was fixed in 10% neutral-buffered formalin, processed, and embedded in paraffin.
Tumor sections (5 um) were prepared and stored at -20°C prior to use. Hematoxylin and eosin
staining was performed using standard methods. As part of clinical evaluation, the proliferative
index and TP53 mutation status were estimated based on review of immunostained slides for
KI67 or TP53, respectively. Briefly, in regions with increased signal the percent of tumor cells
staining was estimated based on review of ten 200x fields.

Anti-AKR1C3 was selected based on statistical considerations pursuant to bioinformatic
analyses and after preliminary validation of efficacy in human tissue via The Human Protein
Atlas™ (http://www.proteinatlas.org). Primary antibodies and conditions were IDH1 R132H (DIA-
HO09, Dianova, mouse clone HO09, dilution 1:50); AKR1C3 (Catalog# AB84327, Abcam, rabbit
polyclonal, dilution 1:600 for single immunohistochemistry and 1:1200 for dual
immunofluorescence); and TP53 (1:25, Novocastra, catalog # P53-D07-L-CE-H). Heat antigen
retrieval was performed in Tris-EDTA at pH8. Following antigen retrieval, sections for
immunohistochemistry were treated with 3% methanol-hydrogen peroxide at 22°C for 16 min.

All immunostaining and multiplex immunostainings were performed using a Discovery
XT autostainer or Benchmark XT (Ventana Medical Systems, Inc., USA). For signal detection,
the Multimer HRP kit (Ventana Medical Systems, Inc., USA) followed by either DAB or
fluorescent detection kits were used. Fluorophores with the least autofluorescence on FFPE
tissue were selected to minimize false positives: Cyanine 5 (Cy5) (DISCOVERY CY5 Kit,
Cat#760238, Roche Diagnostics Corporation, Indianapolis, USA) and rhodamine (DISCOVERY
Rhodamine Kit, Cat#760233, Roche Diagnostics Corporation, Indianapolis, USA). Slides were
then counterstained with DAPI (Sigma Aldrich, USA) at 5 ug/ml in PBS (Sigma Aldrich, USA) for
15 minutes, mounted with prolong Gold antifade mounting media reagent (Invitrogen, USA) and
stored at -20°C prior to imaging. Positive and negative controls were included for each marker.
Images of stained slides were acquired using either a light microscope (Olympus BX41
microscope using UC90 Cooled CCD 9 Megapixel camera) or Zeiss Cell Observer
epifluorescence microscope equipped with an AxioCam 506M camera and an Excellitas X-Cite
120Q light source and processed with Photoshop CS6 (Adobe systems, San Jose, CA).
Nonmalignant tissue analyzed in Fig. 9 was obtained from a patient with epilepsy and
corresponds to normal tissue adjacent to epileptic foci.

Data analysis and figure production

Unless otherwise stated, all analyses were performed in the R computing environment
(https://www.r-project.org). Figures were produced with the aid of the R packages ggplot2'®,
data.table'**, RColorBrewer*#, gridExtra'?®, ComplexHeatmap*?*, Circlize'®, and ggsignif*?°.

Data and code availability

All data are publicly available for download under NCBI Bioproject ID PRINA953039. Code for
processing data and producing figures featured in this manuscript is available on GitHub:
https://github.com/oldham-lab/Deconstructing-Intratumoral-Heterogeneity-through-Multiomic-

and-Multiscale-Analysis.../tree/main
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Figure Legends
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Figure 1 | Overview of MOMA. a) Schematic of a heterogeneous human brain tumor. b) Serial
sectioning introduces variation in cellular composition. ¢) Section usage can be flexibly tailored
for diverse multiscale and multiomic assays. d) Correlative analysis of mutation frequencies and
molecular feature activities derived from millions of cells reveals the identities and defining
molecular features of distinct malignant clones. e) Predictions from bulk analysis are validated
by single-cell analysis of interpolated sections and histology.
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Figure 2 | Multiomic analysis of serial tumor sections reveals the clonal composition of a
primary grade 2 IDH-mutant astrocytoma (case 1).
Axial T2 (a) and axial FLAIR (b) images demonstrate a round, well-defined T2 and FLAIR
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hyperintense intraaxial left temporoparietal mass that is non-enhancing and consistent with a
low-grade glial neoplasm. ¢) Image of the frozen tumor sample prior to cryosectioning and
nucleic acid isolation. d-e) Immunostaining for IDH1 R132H (d) and TP53 (e). Images: 400x.
Scale bars: 50 pm. f) Schematic of serial sectioning strategy and section usage plan. Amp-seq
= deep sequencing of PCR amplicons spanning mutations identified by exome sequencing. g)
Hierarchical clustering of mutations, using 1 — Pearson correlation of amp-seq variant allele
frequencies (VAFs) over all tumor sections (n = 69) as a distance measure, reveals three
clusters. Amp-seq was performed in two sequencing runs (denoted by bold and regular fonts).
h-k) VAF patterns comprising cluster 1 (h,i), cluster 2 (j), and cluster 3 (k). Cluster 1 was split to
illustrate the effects of high (h) and low (i) coverage. 1) Clone phylogeny (with arbitrary branch
lengths) derived from integrated analysis of SNVs (from amp-seq data) and CNVs (from DNA
methylation data). Percentages represent the average abundance of each cellular fraction over
all analyzed sections (n = 68). m) Estimated cellular fractions for all clones and nonmalignant
cells over all sections (n = 68).

41


https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545365; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

a

Mutations identified by exome sequencing

i G b

Sanger/ d VAF  Mean expr.

VAF verified TCGA astrocytomas percentile
ml M Yes 1 ' 100
[JNo
No data
1) o o o

Effect on IDH1 VAF between
full and downsampled coverage

1000 resamples per coverage
0.08 plesp g

RMSE

0.00

1.00

Correlation
_m_
-

0.25

Coverage

e
No CNV identified by qPCR
for ACCS and TP53
&= ACCS — TP53
3
3
el
£
=
=
21
o
o
0

Section ID 81

IDH1 R132H

— ddPCRrep.1 — ddPCRrep.2 — Amp-seq

VAF

Section ID

Effect on TP53 VAF between
full and downsampled coverage

i

1000 resamples per coverage
0.08 ples pi g

==

==
-'--‘--‘-—I—-j-_.__.__._

RMSE

0.00

—
o

T T T T T
$$

oF & S S S S S O S S ST
S O O N S R
Coverage

Correlation

0.7

Concordance of exome, DNA
methylation and amp-seq CNV calls
Chr17 LOH calls
N=3 sections, Pearson's r=0.99
[

o
~

@
£
]
X
w )
203 0 0.7
§ Mean frequency (Amp-seq) :
= N=3 sections, Pearson's r=0.92
= 1 ® Chr2pdel @ Chr2qdel ® Chrdp del
=
3 ® Chr7gain @ Chri0p gain ®
= ® ®
_ o
L")
20 O

Mean frequency (DNA Methylation)

42


https://doi.org/10.1101/2023.06.21.545365
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.21.545365; this version posted October 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S1 | Mutation validation (case 1).

a) Nonsynonymous mutations were identified by exome sequencing of tumor sections 14, 39,
69, and the patient’s blood. Green track: variant allele frequencies (VAF) for each mutation in
each section. Black tracks: mutation validation by Sanger sequencing and amp-seq, which is
more sensitive. Blue track: gene mutation frequencies in TCGA astrocytomas (n = 286). Red
track: mean expression percentiles for each gene over all tumor sections. b) Amp-seq and
droplet-digital PCR (ddPCR) yielded consistent estimates of IDH1 R132H variant frequencies (n
= 69 tumor sections; rep. 1 and rep. 2 denote technical replicates using the same input DNA).
Shaded areas represent two standard errors. c-d) Downsampling of amp-seq reads for IDH1
R132H (c) and TP53 L145P (d) was performed in each tumor section to achieve desired
coverage levels (x-axis). For each downsampling (n = 1,000), the root mean square-error
(RMSE; top) and Pearson’s correlation (bottom) was calculated with respect to the true VAF
(calculated using all reads) over all sections (n = 69). e) Relative copy number was determined
by SYBR Green gPCR for TP53 and ACCS loci using genomic DNA from 69 tumor sections and
blood. The mean of triplicate measurements, normalized to RNaseP (RPPH1) copy number, is
shown. Shaded areas represent two standard errors. f) Top: Concordant estimates of chrl7p
loss-of-heterozygosity (LOH) in the same tumor sections (n = 3) were obtained from exome data
by analyzing changes in B-allele frequencies and from amp-seq data by analyzing TP53 L145P
VAF, which is equivalent to chrl7p LOH frequency since both events are truncal. Bottom:
Concordant estimates of CNV frequencies in the same tumor sections (n = 3) were obtained
using FACETS* and ChAMPS* to analyze exome and DNA methylation data, respectively.
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Clustering of gene coexpression modules (case 1)
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Figure 3 | Gene coexpression modules are highly correlated with clonal abundance (case
1).

a) Hierarchical clustering of gene coexpression modules over all tumor sections (n = 69). b)
Module eigengenes (ME) illustrate the relative expression levels of genes in each module over
all tumor sections. ¢) The number of genes used to form each ME. d-g) Top left: MEs with the
strongest correlations to clonal abundance (defined cumulatively). Locally weighted smoothing
(LOESS) lines are shown; correlation is based on data points. Bottom left: the 12 genes with the
highest correlations to the ME (kve). Right: enrichment analysis of gene coexpression modules
using published gene sets. FDR-corrected p-values (g-values) from one-sided Fisher's exact
tests are shown. Positive values represent enrichments of genes that were significantly
positively correlated to the ME, while negative values represent enrichments of genes that were
significantly negatively correlated to the ME. Gene sets representing chromosomal gains or
losses include all genes within affected regions (as described in Fig. 21 and Table S5). See
Table S9 for descriptions and sources of featured gene sets.
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Figure S2 | Linear modeling of gene expression using clonal frequencies reveals
concordant gene-set enrichments with coexpression modules (case 1).

a-d) Left: snapshots of additional gene coexpression modules enriched for markers of
nonmalignant cell types (expression patterns for the top 12 genes ranked by kve are shown).
Right: heatmaps of gene set enrichment results for each module. Modules included genes that
were most specifically and significantly correlated (after FDR correction) to the module
eigengene (ME), and enrichment was assessed with a one-sided Fisher’'s exact test (followed
by FDR correction; see panel i for legend). e) Correlation heatmap for the cumulative frequency
vectors of identified clones. f-g) Lasso regression’® was used to model the expression of all
genes (n = 20,018) as a function of clonal frequencies over all tumor sections (n = 69). Violin
plots illustrate the distributions of t-values for all models where the indicated clone was the only
explanatory variable that survived lasso selection. Permutations were performed by randomly
scrambling clonal frequencies (n = 100) prior to lasso regression. Real and permuted clonal
frequency vectors were bootstrapped (n = 100) to address collinearity. P-values denote the
significance of the Anderson-Darling test, which evaluates whether two distributions are likely to
be derived from the same distribution. f) Results of a standard lasso model. g) Results of a
group lasso model where the truncal clone (equivalent to tumor purity) was placed in a separate
group due to its strong effect on gene expression (Fig. 3c); note the general improvement in
Anderson-Darling test P-values. h) Density plot showing the number of times (out of 100
bootstraps) that the same explanatory (clonal frequency vector) variable was retained by the
group lasso regression model, or ‘stability’. Only group lasso models where retained explanatory
variables included the truncal clone and up to one other clone were considered. The vertical line
demarcates the point to the right of which only 5% of values belong to the permuted distribution,
i.e. a 5% FDR rate. i) Enrichment analysis (one-sided Fisher’'s exact test) of genes that were
significantly (FDR < .05) and stably (FDR < .05) associated with each clone. Gene sets are
described in Table S9. Heatmap depicts -logl0 FDR-corrected p-values (g-values; shared
legend for a-d) after comparing each gene set to all genes with stability > 73 for a given clone
(one-sided Fisher’'s exact test). Positive values represent enrichments for genes with significant
positive correlations to the ME (a-d) or significant positive modeling coefficients (i), while
negative values represent enrichments for genes with significant negative correlations to the ME
(a-d) or significant negative modeling coefficients (i).
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Figure S3 | Differential coexpression analysis of glioma and normal human brain
preserves gene coexpression modules associated with malignant clones (case 1).

a) Genome-wide gene coexpression relationships were calculated for each of the five tissue
specimens (one astrocytoma and four normal brain controls) over all tissue sections, resulting in
five correlation matrices with the same dimensions. Unbiased differential coexpression analysis
was performed as illustrated. ACC = anterior cingulate cortex; EC = entorhinal cortex. b-e) Left:
differentially coexpressed module eigengenes (ME) with the strongest correlations to clonal
abundance (defined cumulatively). Locally weighted smoothing (LOESS) lines are shown;
correlation is based on data points. Right: enrichment analysis of differentially coexpressed
module genes using published gene sets. FDR-corrected p-values (g-values) from one-sided
Fisher's exact tests are shown. Positive values represent enrichments of genes that were
significantly positively correlated to the ME, while negative values represent enrichments of
genes that were significantly negatively correlated to the ME. Gene sets representing
chromosomal gains or losses include all genes within affected regions (as described in Fig. 2I
and Table S5). See Table S9 for descriptions and sources of featured gene sets.
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Figure 4 | Multiomic analysis of serial tumor sections reveals the clonal composition of a
recurrent grade 2 IDH-mutant astrocytoma (case 2).

Axial T2 (a) and axial FLAIR (b) images demonstrate a non-enhancing, expansile, infiltrating
glioma centered in the right insula and involving the basal ganglia, inferior frontal lobe, and
temporal lobe. Cystic degeneration was present in the tumor. ¢) Image of the frozen tumor
specimen prior to cryosectioning and nucleic acid isolation. d) The tumor was determined to
harbor the IDH1 R132H mutation based on immunostaining with an antibody specific to the
mutant protein. e€) TP53 immunostaining demonstrated nuclear expression with an estimated
staining index of 20%. All histological images were captured at 400x. Scale bars denote 50 um.
f) Schematic of serial sectioning strategy and section usage plan. g) Hierarchical clustering of
mutations, using 1 — Pearson correlation of amp-seq VAFs over all tumor sections (n = 85) as a
distance measure, reveals five clusters. h-l) VAF patterns comprising cluster 1 (h), cluster 2 (i),
cluster 3 (j), cluster 4 (k), and cluster 5 (I). m) Controlling for gene dosage reveals discordance
of IDH1 R132H VAF with respect to truncal ATRX and TP53 mutations, which is explained by a
subclonal deletion of chromosome 2qg (including IDH1) that occurred after the IDH1 point
mutation. (n) Heatmap of the chromosome 2q deletion event frequency (as determined by
FACETS?*), with LOESS fit line (black) and smoothed 95% confidence interval (gray envelope).
o) Clone phylogeny (with arbitrary branch lengths) derived from integrated analysis of SNVs
(from amp-seq data) and CNVs (from RNA-seq data). Percentages represent the average
abundance of each cellular fraction over all analyzed sections (n = 85). p) Estimated cellular
fractions for all clones and nonmalignant cells over all sections. Black vertical line denotes
orthogonal sample rotation.
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Figure S4 | Mutation validation (case 2).

a-b) Downsampling of amp-seq reads for IDH1 R132H (a) and TP53 G245V (b) was performed
in each tumor section to achieve desired coverage levels (x-axis). For each downsampling (n =
1,000), the root mean square-error (RMSE; top) and Pearson’s correlation (bottom) was
calculated with respect to the true VAF (calculated using all reads) over all sections (n = 85). ¢)
Nonsynonymous mutations were identified by exome sequencing of tumor sections 22, 46, 85,
123, and the patient’s blood. Green track: variant allele frequencies (VAF) for each mutation in
each section. Black track: mutations validation by amp-seq. Blue track: gene mutation
frequencies in TCGA astrocytomas (n = 286). Red track: genome-wide mean expression
percentiles over all sections (n = 90). d) Concordant estimates of CNV frequencies in the same
tumor sections (n = 4) were obtained using FACETS* and CNVkit* to analyze exome and
RNA-seq data, respectively. e) Concordant estimates of chromosome 2q deletion frequencies in
the same tumor sections (n = 85) were obtained using amp-seq (Fig. 4m) and RNA-seq, which
was analyzed by CNVKkit. f) Clone phylogeny (with arbitrary branch lengths) derived from single-
nucleus amp-seq (snAmp-seq) of mutations affecting the IDH1 and TP53 loci for section 29 (n =
4,433 nuclei) and sections 113/115 (n = 3,736 nuclei). Clone names are derived from Fig. 40,
and the percentages of nuclei assigned to each clone are shown.
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Figure 5 | Gene coexpression modules are highly correlated with clonal abundance (case
2).

a) Hierarchical clustering of gene coexpression modules over all tumor sections (n = 90). b)
Module eigengenes (ME) illustrate the relative expression levels of genes in each module over
all tumor sections. ¢) The number of genes that formed each ME. d-g) Top left: MEs with the
strongest correlations to clonal abundance (defined cumulatively). Locally weighted smoothing
(LOESS) lines are shown; correlation is based on data points. Bottom left: the 12 genes with the
highest correlations to the ME (kve). Right: enrichment analysis of gene coexpression modules
using published gene sets. FDR-corrected p-values (g-values) from one-sided Fisher's exact
tests are shown. Positive values represent enrichments of genes that were significantly
positively correlated to the ME, while negative values represent enrichments of genes that were
significantly negatively correlated to the ME. Gene sets representing chromosomal gains or
losses include all genes within affected regions (as described in Fig. 40 and Table S19). See
Table S9 for descriptions and sources of featured gene sets.
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Figure S5 | Linear modeling of gene expression using clonal frequencies reveals
concordant gene-set enrichments with coexpression modules (case 2).

a-d) Left: snapshots of additional gene coexpression modules enriched for markers of
nonmalignant cell types (expression patterns for the top 12 genes ranked by kve are shown).
Right: heatmaps of gene set enrichment results for each module. Modules included genes that
were most specifically and significantly correlated (after FDR correction) to the module
eigengene (ME), and enrichment was assessed with a one-sided Fisher’'s exact test (followed
by FDR correction; see panel i for legend). e) Correlation heatmap for the cumulative frequency
vectors of identified clones. f-g) Lasso regression’®? was used to model the expression of all
genes (n = 20,246) as a function of clonal frequencies over all tumor sections (n = 85). Violin
plots illustrate the distributions of t-values for all models where the indicated clone was the only
explanatory variable that survived lasso selection. Permutations were performed by randomly
scrambling clonal frequencies (n = 100) prior to lasso regression. Real and permuted clonal
frequency vectors were bootstrapped (n = 100) to address collinearity. P-values denote the
significance of the Anderson-Darling test, which evaluates whether two distributions are likely to
be derived from the same distribution. f) Results of a standard lasso model. g) Results of a
group lasso model where the truncal clone (equivalent to tumor purity) was placed in a separate
group. Unlike case 1, the group lasso model did not outperform the standard lasso model. h)
Density plot showing the number of times (out of 100 bootstraps) that the same explanatory
(clonal frequency vector) was retained by the standard lasso regression model, or ‘stability’. The
vertical line demarcates the point to the right of which only 5% of values belong to the permuted
distribution, i.e. a 5% FDR rate. i) Heatmap of FDR-corrected p-values (g-values; shared legend
for panels a-d) after comparing each gene set to all genes with stability > 45 for a given clone
(one-sided Fisher's exact test). Positive values represent enrichments of genes with significant
positive correlations to the ME (a-d) or significant positive modeling coefficients (i), while
negative values represent enrichments of genes with significant negative correlations to the ME
(a-d) or significant negative modeling coefficients (i).
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Figure S6 | Single-nucleus RNA-seq analysis validates inferences from bulk data.

a) UMAP plot of snRNA-seq data (n = 809 nuclei) with the tumor section IDs that served as the
source for each nucleus superimposed. b) UMAP plot of snRNA-seq data with malignancy
superimposed. Malignancy was determined by genotyping all nuclei via single-nucleus amplicon
sequencing (snAmp-seq) of cDNA spanning mutations in the truncal clone. ¢) Frequencies of
malignant clones in snRNA-seq data (n = 360 nuclei from four tumor sections) and bulk data (n
= 16 tumor sections), with correlations in legend. d) Relative abundance of nonmalignant cell
types in snRNA-seq data (n = 449 nuclei from four tumor sections) and bulk data (n = 16 tumor
sections), with correlations in legend. Estimates were scaled and centered for comparability.
Bulk estimates for (c-d) are derived from clonal abundance and module eigengene values
featured in Fig. 4p and Fig. S5a-d, respectively, averaged across the four sections flanking
each section analyzed by snRNA-seq (snRNA-seq section 17: bulk sections 14, 16, 18, 19;
snRNA-seq section 53: bulk sections 50, 51, 54, 55; snRNA-seq section 93: bulk sections 91,
92, 94, 95; snRNA-seq section 117: bulk sections 114, 116, 118, 119). e) Log-ratio output of the
CopyKat CNV algorithm“. Left: snAmp-seq malignancy assignments and snRNA-seq cluster
assignments. Right: sum of the absolute value of CopyKat CNV calls (chromosomal arms in
gray could not be called due to inadequate gene coverage).
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Overlapping gene expression signatures in bulk coexpression
modules and single-nucleus clusters
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Figure S7 | Bulk coexpression module genes map definitively onto single-nucleus
clusters.

a-j) Modules of coexpressed genes from bulk tumor sections (n = 90) that were most strongly
associated with specific clones (Fig. 5d-g) or nonmalignant cell classes (Fig. S5a-d) were
evaluated for differential expression in each snRNA-seq cluster vs. all other clusters (white
distributions: t-test results for all module genes). Genes that were not associated with each
module were evaluated in the same fashion (black distributions), and a one-sided Wilcoxon
rank-sum test was used to determine whether module genes were significantly upregulated in a
given snRNA-seq cluster relative to all other genes (*** = P < 1e-10).
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Figure 6 | Single-nucleus RNA-seq analysis validates inferences from bulk data.

a) Heatmap of P-values (one-sided Wilcoxon rank-sum test) comparing differential expression t-
values for genes comprising each bulk coexpression module (colors, x-axis) to all other genes in
each SN cluster versus all other clusters. b) UMAP plot of all nuclei (n = 809) with
characterizations of clusters from (a) superimposed. ¢) UMAP plot of malignant nuclei (n = 360),
with results of Slingshot trajectory analysis* superimposed. Malignancy was determined by
genotyping all nuclei via single-nucleus amplicon sequencing (snAmp-seq) of cDNA spanning
mutations in the truncal clone.
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Supervised analysis of single-nucleus clusters reveals robust malighant and
o nomalignant transcriptonal identities
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Figure 7 | Genotyping nuclei profiled by snRNA-seq reveals the limitations of single-cell
CNV-calling algorithms.

Heatmap of scaled log. expression vectors for the five most upregulated genes in each snRNA-
seq cluster vs. all other clusters (one-sided Wilcoxon rank-sum test). Far left: malignancy vector
determined by snAmp-seq of cDNA spanning mutations in the truncal clone. Left: malignancy
vectors inferred from CNV analysis of snRNA-seq data using the CopyKat*, InferCNV?, or
CaSpER*" algorithms (blue = nonmalignant; all other colors = malignant). Right: bar plots depict
the total number of unique reads (UMIs) for each nucleus and the average number of UMIs for
genes comprising the Gene Ontology category ‘mitotic chromosome condensation’ (GO:
0030261). Red vertical line: max expression of mitotic genes in neurons, which presumably
represents background noise.
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Figure S8 | Gene set enrichment analysis supports the functional distinctness of shnRNA-
seq clusters.

Clustered heatmap of FDR-corrected p-values (g-values) from one-sided Fisher’s exact tests
comparing featured gene sets with genes that were significantly upregulated (FDR < .05) in
each snRNA-seq cluster vs. all other clusters by the one-sided Wilcoxon rank-sum test.
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Figure 8 | Correlation to malighant cell abundance predicts single-cell differential
expression analysis of malignant vs. nonmalignant cells.

a-d) Analysis schematic. An adult malignant glioma consisting of malignant cells (pink)
interspersed with nonmalignant cells (a). b) Single-cell RNA-seq (scRNA-seq) reveals a
hypothetical gene (gene X) that is significantly up-regulated in malignant vs. nonmalignant cells.
c¢) Correlating the same gene’s expression pattern with a binary vector encoding malignant cell
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abundance (1 = malignant, 0 = nonmalignant) produces identical results. d) Left: ScCRNA-seq
data from 10 adult human IDH-mutant astrocytomas?® were randomly sampled and aggregated
to create 100 pseudobulk samples. Right (top): Genome-wide differential expression (DE) was
analyzed for all sampled cells. Right (bottom): Genome-wide gene coexpression was analyzed
for all pseudobulk samples. Each pseudobulk module was summarized by its module eigengene
(PC1), which was compared to malignant cell abundance, and the correlation between each
gene and each module eigengene (module conformity, or kve) was calculated. €) A pseudobulk
malignant cell module featuring the top 15 genes ranked by kwe. By correlating the module
eigengene to pseudobulk tumor purity (f), we see that this module is driven by variation in
malignant cell abundance among pseudobulk samples. g) The extent of DE (t-value) identified
by scRNA-seq of malignant vs. nonmalignant cells predicts the correlation between gene
expression and malignant cell abundance (pseudobulk kve).
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Figure S9 | Concordance of kve and differential expression t-values from bulk and single-
nucleus experiments.

a-j) Differential expression (DE) t-values (calculated by t-test for all genes between each
snRNA-seq cluster and all other clusters) largely predict the extent to which gene expression
patterns are correlated (kme values) to the bulk coexpression modules maost strongly associated
with each clone or nonmalignant cell type.
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Figure 9 | Integrating correlations to malignant cell abundance reveals core
transcriptional features of astrocytomas.

a) Gene expression correlations (n = 15,288 genes) to malignant cell abundance in case 1 and
case 2. Red and blue denote significantly correlated genes that were used for enrichment
analysis (b), and the star denotes AKR1C3. b) -Log.o FDR-corrected p-values (g-values) from
one-sided Fisher’s exact tests analyzing gene set enrichment in red and blue genes from (a). c)
Validated protein-protein interactions (PPI) from STRINGdb* for red genes from (a). The 201
proteins shown formed networks of five or more proteins, with the number of interactions equal
to the number of edges. d) -Logic FDR-corrected p-values (g-values) from one-sided Fisher’s
exact tests analyzing gene set enrichment for each STRINGdb interaction cluster in (c). e-f)
AKR1C3 immunostaining in FFPE tissue adjacent to the sectioned region of case 1 (e) and non-
neoplastic human brain (f). Image: 200x; scale bar: 50 um. g-i) Immunofluorescent co-staining
of IDH1 R132H (white), AKR1C3 (green), and nuclei (blue [DAPI]) in case one demonstrating
expression of AKR1C3 in malignant cells carrying the truncal IDH1 R132H mutation. Scale bar
denotes 50um.
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Supplementary Figure and Table Legends
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Section usage and quality control (case 1)

Somatic mutations identified by exome sequencing (case 1)
Primers for Amp-seq (case 1)

Amp-seq VAFs for all tumor sections (case 1)

CNV calls for all tumor sections (case 1)

Cellular and clonal abundance (case 1)

Module eigengenes (case 1)

kve values (case 1)

Description of gene sets used for enrichment analysis
Gene list for group-lasso model (case 1)

Enrichments for group-lasso model (case 1)

Section usage and quality control (normal human brain samples)
Module eigengenes differential coexpression

kve differential coexpression

Section usage and quality control (case 2)

Somatic mutations identified by exome sequencing (case 2)
Primers for Amp-seq (case 2)

Amp-seq VAFs for all tumor sections (case 2)

CNV calis for all tumor sections (case 2)

Cellular and clonal abundance (case 2)

Single-nucleus amplicon sequencing by Mission Bio
Module eigengenes (case 2)

kve values (case 2)

Gene list for lasso model (case 2)

Enrichments for lasso model (case 2)

Primers for shRNA-seq and shAmp-seq experiments
Single-nucleus amplicon of shRNA-seq nuclei

Positively differentially expressed genes for snRNA-seq
Intercase correlations
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