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Abstract

The Holocene (beginning ~12,000 years ago) encompassed some of the most significant changes in
human evolution, with far-reaching consequences for the dietary, physical, and mental health of
present-day populations. Using a dataset of >1600 imputed ancient genomes !, we modelled the
selection landscape during the transition from hunting and gathering, to farming and pastoralism
across West Eurasia. We identify major selection signals related to metabolism, including that
selection at the FADS cluster began earlier than previously reported, and that selection near the LCT
locus predates the emergence of the lactase persistence allele by thousands of years. We also find
strong selection in the HLA region, possibly due to increased exposure to pathogens during the
Bronze Age. Using ancient individuals to infer local ancestry tracts in >400,000 samples from the
UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic, and
Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we
show that height differences between Northern and Southern Europe are associated with differential
Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched
for Neolithic farmer ancestry, while risk alleles for diabetes and Alzheimer’s disease are enriched for
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Western Hunter-gatherer ancestry. Our results suggest that ancient selection and migration were
major contributors to the distribution of phenotypic diversity in present-day Europeans.

Main

One of the central goals of human evolutionary genetics is to understand how natural selection has
shaped the genomes of present-day people in response to changes in culture and environment. The
transition from hunter-gatherers, to farmers, and subsequently pastoralists, during the Holocene in
Eurasia, involved some of the most dramatic changes in diet, health and social organisation
experienced during recent human evolution. These changes represent major shifts in environmental
exposure, impacting the evolutionary forces acting on the human gene pool and imposing a series of
heterogeneous selection pressures. As human lifestyles changed, close contact with domestic
animals and higher population densities are likely to have increased exposure to infectious diseases,
introducing new challenges to our immune system 3,

Our understanding of the genetic architecture of complex traits in humans has been substantially
advanced by genome-wide association studies (GWAS), which have identified large numbers of
genetic variants associated with phenotypes of interest *°. However, the extent to which these
variants have been under directional selection during recent human evolution remains unclear.
While signatures of selection can be identified from patterns of genetic diversity in extant
populations ©, this can be challenging in humans, which have been exposed to highly diverse and
dynamic local environments through time and space. In the complex mosaic of genetic affinities
that constitute a present-day human genome, any putative signatures of selection may misrepresent
the timing and magnitude of the selective process. For example, episodes of admixture between
ancestral populations can result in present-day haplotypes which contain no evidence of selective
processes occurring further back in time. Ancient DNA (aDNA) provides the potential to resolve
these issues, by directly observing changes in trait-associated allele frequencies over time.

Whilst numerous prior studies have used ancient DNA to infer patterns of selection in Eurasia
during the Holocene (e.g., 7”), many key questions remain unanswered. To what extent are present-
day genetic differences due to natural selection or to differential patterns of admixture? What are
the genetic legacies of Mesolithic, Neolithic, and Bronze Age populations in present-day complex
traits? How has the complex admixture history of Holocene Eurasia affected our ability to detect
natural selection in genetic data? To investigate these questions, we tested for traces of divergent
selection in health and lifestyle-related genetic variants using three broad approaches. Firstly, we
looked for evidence of selection by identifying strong differentiation in allele frequencies between
ancient populations. Secondly, we reconstructed the allele frequency trajectories and selection
coefficients of tens of thousands of trait-associated variants, using a novel chromosome painting
technique to model ancestry-specific allele frequency trajectories through time. This allowed us to
identify many trait-associated variants with novel evidence for directional selection, and to answer
long-standing questions about the timing of selection for key health, dietary and pigmentation
associated loci. Lastly, we used ancient genomes to infer local ancestry tracts in >400,000 present-
day genomes from the UK Biobank >, and calculated ancestry-specific polygenic risk scores for 35
complex traits. This allowed us to characterise the genetic legacy of Mesolithic, Neolithic, and
Bronze Age populations in present-day phenotypes.
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Fig 1. Geographic and temporal distribution of the 1,015 ancient genomes from West Eurasia.

a, Map of West Eurasia showing sampling locations and ages of the ancient samples; b, Raincloud plot of the sample
ages, grouped by sampling region: Western Europe (n=156), Central / Eastern Europe (n=268), Southern Europe
(n=136), Northern Europe (n=432), and Central / Western Asia (n=23). Boxplot shows the median, and first and third
quartiles of the sample ages, and whiskers extend to the largest value no further than 1.5 times the interquartile range.

Samples and data

Our analyses are undertaken on a large collection of shotgun-sequenced ancient genomes presented
in the accompanying study ‘Population Genomics of Postglacial Western Eurasia’ !. This dataset
comprises 1,664 imputed diploid ancient genomes and more than 8.5 million SNPs, with an
estimated imputation error rate of 1.9% and a phasing switch error rate of 2.0% for 1X genomes.
Full details of the validation and benchmarking of the imputation and phasing of this dataset are
provided in reference '°. These samples represent a considerable transect of Eurasia, ranging
longitudinally from the Atlantic coast to Lake Baikal, and latitudinally from Scandinavia to the
Middle East (Fig. 1). The included genomes constitute a thorough temporal sequence from 11,000
cal. BP to 1,000 cal. BP. This dataset allowed us to characterise in fine detail the changes in
selective pressures exerted by major transitions in human culture and environment.

Genetic legacy of ancient Eurasians

We began our analysis by inferring local ancestry tracts in present-day populations by chromosome
'painting' !' the UK Biobank (UKB) with Mesolithic, Neolithic, and Bronze Age individuals as tract
sources. We used a pipeline adapted from GLOBETROTTER '2, and estimated admixture
proportions via Non-Negative Least Squares (Supplementary Note 2). In total, we painted 433,395
present-day genomes, including 24,511 individuals born outside the UK, from 126 countries
(Supplementary Note 1). Our results show that none of the Mesolithic, Neolithic or Bronze Age
ancestries are homogeneously distributed among present-day Eurasian populations (Fig. 2).
Western hunter-gatherer (WHG) related ancestries are highest in present-day individuals from the
Baltic States, Belarus, Poland, and Russia; Eastern hunter-gatherer (EHG) related ancestries are
highest in Mongolia, Finland, Estonia and Central Asia; and Caucasus hunter-gatherer (CHG)
related ancestries are highest in countries east of the Caucasus, in Pakistan, India, Afghanistan and
Iran, in accordance with previous results '*. The CHG-related ancestries likely reflect affinities to
both Caucasus hunter-gatherer and Iranian Neolithic individuals, explaining the relatively high
levels in south Asia 4. Consistent with expectations '°, Neolithic Anatolian-related farmer
ancestries are concentrated around the Mediterranean basin, with high levels in southern Europe,
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the Near East, and North Africa, including the Horn of Africa, but are less frequent in Northern
Europe. This is in direct contrast to the Steppe-related ancestries, which are found in high levels in
northern Europe, peaking in Ireland, Iceland, Norway, and Sweden, and decreasing further south.
There is also evidence for their spread into southern Asia. Overall, these results refine global
patterns of spatial distributions of ancient ancestries amongst present-day individuals. We caution,
however, that absolute admixture proportions should be interpreted with caution in regions where
our ancient source populations are less directly related to present-day individuals, such as in Africa
and East Asia. Whilst these values are dependent on the reference samples used, as well as the
treatment of pre- or post-admixture drift, the relative geographical variation and associations should
remain consistent.

The availability of a large number of present-day genomes (n=408,884) from self-identified “white
British” individuals who share similar positions on a PCA ° allowed us to further examine the
distribution of ancient ancestries at high resolution in present-day Britain (Supplementary Note 2).
Although regional ancestry distributions differ by only a few percentage points, we find clear
evidence of geographical heterogeneity across the United Kingdom. This can be visualised by
averaging ancestry proportions per county, based on place of birth (Fig. 2, inset boxes). The
proportion of Neolithic farmer ancestries is highest in southern and eastern England today and
lower in Scotland, Wales, and Cornwall. Steppe-related ancestries are inversely distributed, peaking
in the Outer Hebrides and Ireland, a pattern only previously described for Scotland '6. This regional
pattern was already evident in the Pre-Roman Iron Age and persists to the present day even though
immigrating Anglo-Saxons had relatively less affinities to Neolithic farmers than the Iron-Age
individuals of southwest Briton. Although this Neolithic farmer/Steppe-related dichotomy mirrors
the modern ‘Anglo-Saxon’/‘Celtic’ ethnic divide, its origins are older, resulting from continuous
migration from a continental population relatively enriched in Neolithic farmer ancestries, starting
as early as the Late Bronze Age !7!8, By measuring haplotypes from these ancestries in present-day
individuals, we show that these patterns differentiate Wales and Cornwall as well as Scotland from
England. We also find higher levels of WHG-related ancestries in central and Northern England.
These results demonstrate clear ancestry differences within an ‘ethnic group’ (white British),
highlighting the need to account for subtle population structure when using resources such as the
UK Biobank .
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Fig 2. The genetic legacy of ancient Eurasian ancestries in present-day populations.

Maps showing the average ancestry of a, Western hunter-gatherer (WHG); b, Eastern hunter-gatherer (EHG); ¢,
Caucasus hunter-gatherer (CHG); d, Neolithic farmer; and e, Steppe pastoralist ancestry components per country (left)
and per county or unitary authority within Great Britain and per-country for the Republic of Ireland and Northern
Ireland (right). Estimation was performed using ChromoPainter and NNLS, on samples of a ‘typical ancestral
background’ for each non-UK country (n=24,511) and Northern Ireland. For Great Britain, an average of self-identified
‘white British’ samples were used to represent each UK county and unitary authority, based on place of birth
(n=408,884). Countries with <4 and counties with <15 samples are shown in grey. Map uses ArcGIS layers World
Countries Generalized and World Terrain.
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Ancestry-stratified selective sweeps

Having identified that significant differences in ancestries persist in seemingly homogeneous
present-day populations, we sought to disentangle these effects by developing a novel chromosome
painting technique that allows us to label haplotypes based on their genetic affinities to ancient
individuals. To achieve this, we built a quantitative admixture graph model (Fig. 3; Supplementary
Note 3) that represents the four major ancestry flows contributing to present-day European genomes
over the last 50,000 years 2°. We used this model to simulate genomes at time periods and in sample
sizes equivalent to our empirical dataset, and inferred tree sequences using Relate 2!22, We trained a
neural network classifier to estimate the path backwards in time through the population structure
taken by each simulated individual, at each position in the genome. Our trained classifier was then
used to infer the ancestral paths taken at each site, using 1,015 imputed ancient genomes from West
Eurasia which passed quality filters. Using simulations, we show that our novel chromosome
painting method has an average accuracy of 94.6% for the four ancestral paths leading to present-
day Europeans and is robust to model misspecification.

Out of Africa population

EHG

4 @ Bronze age
5 — 3 Anatolian
o

Present day Europeans

Fig 3. A schematic of the model of population structure in Europe.

Quantitative admixture model used to simulate genomes to train the local ancestry neural network classifier. Moving
down the figure is forwards in time and the population split times and admixture times are given in generations ago.
Each branch is labelled with the effective population size of the population. Coloured lines represent the populations
declared in the simulation that extend through time.

We then adapted CLUES ?* to model aDNA time-series data (Supplementary Notes 4 and 5) and
used it to infer allele frequency trajectories and selection coefficients for 33,341 quality-controlled
trait-associated variants from the GWAS Catalogue 2*. An equal number of putatively neutral,
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frequency-paired variants were used as a control set (Supplementary Note 4). To control for
possible confounders, we built a causal model to distinguish direct effects of age on allele
frequency from indirect effects mediated by read depth, read length, and/or error rates
(Supplementary Note 6), and developed a mapping bias test used to evaluate systematic differences
between data from ancient and present-day populations (Supplementary Note 4). Because
admixture between groups with differing allele frequencies can confound interpretation of allele
frequency changes through time, we used the local ancestry paths from our novel chromosome
painting model to stratify haplotypes in our selection tests. By conditioning on these path labels, we
are able to infer selection trajectories while controlling for changes in admixture proportions
through time.

Our analysis identified no genome-wide significant (p < Se-8) selective sweeps when using
genomes from present-day individuals alone (1000 Genomes Project populations GBR, FIN and
TSI 2%), although trait-associated variants were enriched for evidence of selection compared to the
control group (p < 7.29¢-35, Wilcoxon signed-rank test). In contrast, when using imputed aDNA
genotype probabilities, we identified 11 genome-wide significant selective sweeps in the GWAS
group (n=476 SNPs with p < 5e-8), and no sweeps in the control group, despite some SNPs
exhibiting evidence of selection (n=51). These results are consistent with selection preferentially
acting on trait-associated variants. We then conditioned our selection analysis on each of our four
local ancestry pathways — i.e., local ancestry tracts passing through either Western hunter-
gatherers (WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) or Anatolian
farmers (ANA) — and identified 21 genome-wide significant selection peaks (Fig. 4 and Extended
Data Figs. 1-10). This suggests that admixture between ancestral populations has masked evidence
of selection at many trait-associated loci in Eurasian populations 2°.

Selection on diet-associated loci

We find strong changes in selection associated with lactose digestion after the introduction of
farming, but prior to the expansion of the Steppe pastoralists into Europe around 5,000 years ago
2728 the timing of which is a long standing controversy 232, The strongest overall signal of
selection in the pan-ancestry analysis is observed at the MCM6 / LCT locus (rs4988235:A; p=1.68e-
59; s=0.0194), where the derived allele results in lactase persistence 3. The trajectory inferred from
the pan-ancestry analysis indicates that the lactase persistence allele began increasing in frequency
c. 6,000 years ago and has continued to increase up to present times (Fig. 4). In the ancestry-
stratified analyses, this signal is driven primarily by sweeps in two of the ancestral backgrounds,
associated with EHG and CHG. We also observed that many selected SNPs within this locus
exhibited earlier evidence of selection than at rs4988235, suggesting that selection at the
MCMG6/LCT locus is more complex than previously thought. To investigate this further, we
expanded our selection scan to include all SNPs within the ~2.6 megabase (Mb) wide sweep locus
(n=5,608) and checked for the earliest evidence of selection. We observed that the vast majority of
genome-wide significant SNPs at this locus began rising in frequency earlier than rs4988235,
indicating that strong positive selection at this locus predates the emergence of the lactase
persistence allele by thousands of years. Among the alleles showing much earlier frequency rises
was 151438307 T (p=9.77e-24; s=0.0146), which began rising in frequency c. 12,000 years ago
(Fig. 4). This allele has been shown to regulate energy expenditure and contribute to metabolic
disease, and it has been hypothesised to be an ancient adaptation to famine 4. The high linkage
disequilibrium between rs1438307 and rs4988235 in present-day individuals (R? = 0.89 in 1000G
GBR) may explain the recently observed correlation between frequency rises in the lactase
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persistence allele and archaeological proxies for famine and increased pathogen exposure *°. To
control for potential bias introduced by imputation, we replicated these results using genotype
likelihoods, called directly from the aDNA sequencing reads, and with publicly available 1240k
capture array data from the Allen Ancient DNA Resource, version 52.2 3¢ (Supplementary Note 4).

We also found strong selection in the FADS gene cluster — FADSI (rs174546:C; p=4.41e-19;
s=0.0126) and FADS?2 (rs174581:G; p=2.21e-19; s=0.0138) — which are associated with fatty acid
metabolism and known to respond to changes in diet from a more/less vegetarian to a more/less
carnivorous diet 37~#!, In contrast to previous results ***!, we find that much of the selection
associated with a more vegetarian diet occurred in Neolithic populations before they arrived in
Europe, then continued during the Neolithic (Fig. 4). The strong signal of selection in this region in
the pan-ancestry analysis is driven primarily by a sweep occurring across the EHG, WHG and ANA
haplotypic backgrounds (Fig. 4). Interestingly, we do not find statistically significant evidence of
selection at this locus in the CHG background, but most of the allele frequency rise in the EHG
background occurs after their admixture with CHG (around 8 Kya #?), within whom the selected
alleles were already close to present-day frequencies. This suggests that the selected alleles may
already have existed at substantial frequencies in early farmer populations in the Middle East and
among Caucasus Hunter-gatherers (associated with the ANA and CHG backgrounds, respectively)
and were subject to continued selection as eastern groups moved northwards and westwards during
the late Neolithic and Bronze Age periods.
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Fig 4. Genome-wide selection scan for trait-associated variants.

a, Manhattan plot of p-values from selection scan with CLUES, based on a time-series of imputed aDNA genotype
probabilities. Twenty-one genome-wide significant selection peaks highlighted in grey and labelled with the gene
closest to the most significant SNP within each locus. Within each sweep, SNPs are positioned on the y-axis and

coloured by their most significant marginal ancestry. Outside of the sweeps, SNPs show p-values from the pan-ancestry

analysis and are coloured grey. Red dotted lines indicate genome-wide significance (p < 5e-8). b, Detailed plots for
three genome-wide significant sweep loci: (i) MCMBO, lactase persistence; (ii) SLC45A2, skin pigmentation; and (iii)
FADS2, lipid metabolism. Rows show results for the pan-ancestry analysis (ALL) plus the four marginal ancestries:
Western hunter-gatherers (WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian
farmers (ANA). The first column of each loci shows zoomed Manhattan plots of the p-values for each ancestry, and
column two shows allele frequency trajectories for the top SNPs across all ancestries (grey shading for the marginal
ancestries indicates approximate temporal extent of the pre-admixture population).
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When specifically comparing selection signatures differentiating ancient hunter-gatherer and farmer
populations 43, we also observe a large number of regions associated with lipid and sugar
metabolism, and various metabolic disorders (Supplementary Note 7). These include, for example,
a region in chromosome 22 containing PA7Z1, which regulates the expression of FADSI, and
MORC?2, which plays an important role in cellular lipid metabolism #*. Another region in
chromosome 3 overlaps with GPR15, which is both related to immune tolerance and to intestinal
homeostasis 4%, Finally, in chromosome 18, we recover a selection candidate region spanning
SMAD?7, which is associated with inflammatory bowel diseases such as Crohn's disease 7. Taken
together these results suggest that the transition to agriculture imposed a substantial amount of
selection for humans to adapt to a new diet and lifestyle, and that the prevalence of some diseases
observed today may be a consequence of these selective processes.

Selection on immunity-associated loci

We also observe evidence of strong selection in several loci associated with immunity and
autoimmune disease (Supplementary Note 4). Some of these putative selection events occurred
earlier than previously claimed and are likely associated with the transition to agriculture, which
may help explain the high prevalence of autoimmune diseases today. Most notably, we detect an 8
Mb wide selection sweep signal in chromosome 6 (chr6:25.4-33.5 Mb), spanning the full length of
the human leukocyte antigen (HLA) region. The selection trajectories of the variants within this
locus support multiple independent sweeps, occurring at different times and with differing
intensities. The strongest signal of selection at this locus in the pan-ancestry analysis is at an
intergenic variant, located between HLA-A and HLA-W (rs7747253:A; p=7.56e-32; s=-0.0178),
associated with protection against chickenpox (OR 0.888 °), increased risk of intestinal infections
(OR 1.08 *®) and decreased heel bone mineral density (OR 0.98 #°). This allele rapidly decreased in
frequency, beginning c. 8,000 years ago (Extended Data Fig. 3), reducing risk of intestinal
infections, at the cost of increasing risk of chickenpox. In contrast, the signal of selection at C2
(rs9267677:C; p= 6.60e-26; s= 0.0441), also found within this sweep, shows a gradual increase in
frequency beginning c. 4,000 years ago, before rising more rapidly c. 1,000 years ago. In this case,
the favoured allele is associated with protection against some sexually transmitted diseases (STDs)
(OR 0.786 *®), primarily those caused by human papillomavirus, and with increased psoriasis risk
(OR 2.2 ). This locus provides a good example of the hypothesis that the high prevalence of auto-
immune diseases in present-day populations may, in part, be due to genetic trade-offs; by which
selection increased protection against pathogens with the pleiotropic effect of increased
susceptibility to auto-immune diseases .

These results also highlight the complex temporal dynamics of selection at the HLA locus, which
not only plays a role in the regulation of the immune system but is also associated with many non-
immune-related phenotypes. The high pleiotropy in this region makes it difficult to determine
which selection pressures may have driven these increases in frequencies at different periods of
time. However, profound shifts in lifestyle in Eurasian populations during the Holocene have been
hypothesised to be drivers for strong selection on loci involved in immune response. These include
a change in diet and closer contact with domestic animals, combined with higher mobility and
increasing population density. We further explore the complex pattern of ancestry-specific selection
at the HLA locus in our companion paper, “Elevated genetic risk for Multiple Sclerosis emerged in
Steppe Pastoralist populations” 3!,
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We also identify selection signals at the SLC2244 (rs35260072:C; p=8.49¢-20; s=0.0172) locus,
associated with increased itch intensity from mosquito bites (OR 1.049 32), protection against
childhood and adult asthma (OR 0.902 and 0.909 “¥) and asthma-related infections (OR 0.913 4%)
and we find that the derived variant has been steadily rising in frequency since c. 9,000 years ago
(Extended Data Fig. 9). However, in the same SLC2244 candidate region as rs35260072, we find
that the frequency of the previously reported allele rs1050152:T (which also protects against asthma
(OR 0.90 ) and related infections) plateaued c. 1,500 years ago, contrary to previous reports
suggesting a recent rise in frequency 7. Similarly, we detect selection at the HECTD4
(rs11066188:A; p=9.51e-31 s=0.0198) and ATXN2 (rs653178:C; p=3.73e-29; s=0.0189) loci, both
of which have been rising in frequency for c. 9,000 years (Extended Data Fig. 4), also contrary to
previous reports of a more recent rise in frequency ’. These SNPs are associated with protection
against urethritis and urethral syndrome (OR 0.769 and 0.775 #®), which are often caused by STDs,
or accumulated urethral damage from having more than 5 births. Both SNPs are also linked to
increased risk of intestinal infectious diseases (OR 1.03 and 1.04), several non-specific parasitic
diseases (OR 1.44 and 1.59 #®), schistosomiasis (OR 1.13 and 1.32 *®), helminthiases (OR 1.29 and
1.28 48), spirochaetes (OR 1.14 and 1.12 *¥), pneumonia (OR 1.03 and 1.03 #®) and viral hepatitis
(OR 1.15 and 1.15 3). These SNPs also increase the risk of celiac disease and rheumatoid arthritis 3.
Thus, several highly pleiotropic disease-associated loci, which were previously thought to be the
result of recent adaptation, may have been subject to selection for a much longer period of time.

Selection on the 17q21.31 locus

We further detect signs of strong selection in a 2 Mb sweep on chromosome 17 (chr17:44.0-46.0
Mb), spanning a locus on 17q21.3, implicated in neurodegenerative and developmental disorders.
The locus includes an inversion and other structural polymorphisms with indications of a recent
positive selection sweep in some human populations *°°, Specifically, partial duplications of the
KANSLI gene likely occurred independently on the inverted (H2) and non-inverted (H1) haplotypes
(Extended Data Fig. 11a) and both are found in high frequencies (15-25%) among current European
and Middle Eastern populations but are much rarer in Sub-Saharan African and East Asian
populations. We used both SNP genotypes and WGS read depth information to determine inversion
(H1/H2) and KANSL1 duplication (d) status in the ancient individuals studied here (Supplementary
Note 8).

The H2 haplotype is observed in two of three previously published genomes *¢ of Anatolian
aceramic-associated Neolithic individuals (Bon001 and Bon004) from around 10,000 BP, but data
were insufficient to identify KANSLI duplications. The oldest evidence for KANSLI duplications is
observed in an early Neolithic individual (AH1 from 9,900 BP 37) from present-day Iran, followed
by two Mesolithic individuals (NEO281 from 9,724 BP and KK1 38 from 9,720 BP), from present-
day Georgia, all of whom are heterozygous for the inversion and carry the inverted duplication. The
KANSLI duplications are also detected in two Neolithic individuals, from present-day Russia
(NEO560 from 7,919 BP (H1d) and NEO212 from 7,390 BP (H2d)). With both H1d and H2d
having spread to large parts of Europe with Anatolian Neolithic farmer ancestries, their frequency
seems unchanged in most of Europe as Steppe-related ancestries become dominant in large parts of
the subcontinent (Extended Data Fig. 11c). The fact that both H1d and H2d are found in apparently
high frequencies in both early Anatolian farmers and the earliest Steppe-related ancestry groups
suggests that any selective sweep acting on the H1d and H2d variants would probably have
occurred in populations ancestral to both.
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We note that the strongest signal of selection observed in the pan-ancestry analysis at this locus is at
MAPT (rs4792897:G; p=1.33e-18; s=0.0299 (Extended Data Fig. 8; Supplementary Note 4), which
codes for the tau protein >, and is associated with protection against mumps (OR 0.776 *®) and
increased risk of snoring (OR 1.04 ). More generally, polymorphisms in MAPT have been
associated with increased risk of a number of neurodegenerative disorders, including Alzheimer’s
disease and Parkinson’s disease ¢!. However, we caution that this region is also enriched for
evidence of reference bias in our dataset—especially around the KANSLI gene—due to complex
structural polymorphisms (Supplementary Note 10).

Selection on pigmentation loci

Our results identify strong selection for lighter skin pigmentation in groups moving northwards and
westwards, consistent with the hypothesis that selection is caused by reduced UV exposure and
resulting vitamin D deficiency. We find that the most strongly selected alleles reached near-fixation
several thousand years ago, suggesting that this process was not associated with recent sexual
selection as previously proposed 2. In the pan-ancestry analysis we detect strong selection at the
SLC45A2 locus (rs35395:C; p=1.60e-44; s=0.0215) 893, with the selected allele (responsible for
lighter skin), increasing in frequency from c. 13,000 years ago, until plateauing c. 2,000 years ago
(Fig. 4). The predominant hypothesis is that high melanin levels in the skin are important in
equatorial regions owing to its protection against UV radiation, whereas lighter skin has been
selected for at higher latitudes (where UV radiation is less intense) because some UV penetration is
required for cutaneous synthesis of vitamin D 4%, Our findings confirm pigmentation alleles as
major targets of selection during the Holocene - particularly on a small proportion of loci with
large effect sizes %.

Additionally, our results provide detailed information about the duration and geographic spread of
these processes (Fig. 4) suggesting that an allele associated with lighter skin was selected for
repeatedly, probably as a consequence of similar environmental pressures occurring at different
times in different regions. In the ancestry-stratified analysis, all marginal ancestries show broad
agreement at the SLC4542 locus (Fig. 4) but differ in the timing of their frequency shifts. The
ANA-associated ancestry background shows the earliest evidence for selection at rs35395, followed
by EHG and WHG around c. 10,000 years ago, and CHG c. 2,000 years later. In all ancestry
backgrounds except ANA, the selected haplotypes plateau at high frequency by c. 2,000 years ago,
whilst the ANA haplotype background reaches near fixation 1,000 years earlier. We also detect
strong selection at the SLC24A5 locus (rs1426654:A; p=2.28e-16; s=0.0185) which is also
associated with skin pigmentation %37, At this locus, the selected allele increased in frequency even
earlier than SLC45A42 and reached near fixation c. 3,500 years ago. Selection on this locus thus
seems to have occurred early on in groups that were moving northwards and westwards, and only
later in the Western hunter-gatherer background after these groups encountered and admixed with
the incoming populations.

Selection among major axes of variation

Beyond patterns of genetic change at the Mesolithic-Neolithic transition, much genetic variability
observed today reflects high genetic differentiation in the hunter-gatherer groups that eventually
contributed to present-day European genetic diversity **. Indeed, a substantial number of loci
associated with cardiovascular disease, metabolism and lifestyle diseases trace their genetic
variability prior to the Neolithic transition, to ancient differential selection in ancestry groups
occupying different parts of the Eurasian continent (Supplementary Note 7). These may represent
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selection episodes that preceded the admixture events described above and led to differentiation
between ancient hunter-gatherer groups in the late Pleistocene and early Holocene. One of these
overlaps with the SLC24A43 gene which is a salt sensitivity gene significantly expressed in obese
individuals %®. Another spans ROPN1 and KALRN, two genes involved in vascular disorders . A
further region contains SLC35F3, which codes for a thiamine transport 7° and has been associated
with hypertension in a Han Chinese cohort 7!, Finally, there is a candidate region containing several
genes (CH25H, FAS) associated with obesity and lipid metabolism ">7* and another peak with
several genes (ASXL2, RAB10, HADHA, GPR113) involved in glucose homeostasis and fatty acid
metabolism "7, These loci predominantly reflect ancient patterns of extreme differentiation
between Eastern and Western Eurasian genomes and may be candidates for selection after the
separation of the Pleistocene populations that occupied different environments across the continent
(roughly 45,000 years ago '3).

Pathogenic structural variants

Rare, recurrent copy-number variants (CNVs) are known to cause neurodevelopmental disorders
and are associated with a range of psychiatric and physical traits with variable expressivity and
incomplete penetrance ’%7°. To understand the prevalence of pathogenic structural variants over
time we examined 50 genomic regions susceptible to recurrent CN'Vs, known to be the most
prevalent drivers of human developmental pathologies 0. The analysis included 1442 ancient
shotgun genomes passing quality control for CNV analysis (Supplementary Note 10) and 1093
present-day human genomes for comparison 382, We identified CNVs in ancient individuals at ten
loci using a read-depth based approach and digital Comparative Genomic Hybridization *°.
Although most of the observed CNVs (including duplications at 15q11.2 and CHRNA7, and CNVs
spanning parts of the TAR locus and 22q11.2 distal) have not been unambiguously associated with
disease in large studies, the identified CNVs include deletions and duplications that have been
associated with developmental delay, dysmorphic features, and neuropsychiatric abnormalities such
as autism (most notably at 1q21.1, 3929, 16p12.1 and the DiGeorge/VCEFES locus, but also deletions
at 15q11.2 and duplications at 16p13.11). Overall, the carrier frequency in the ancient individuals is
similar to that reported in the UK Biobank genomes (1.25% vs 1.6% at 15q11.2 and CHRNA7
combined, and 0.8% vs 1.1% across the remaining loci combined) ®. These results suggest that
large, recurrent CNVs that can lead to several pathologies were present at similar frequencies in the
ancient and present-day populations included in this study.
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Fig. 5. Ancestral risk scores (ARS) for 35 complex traits.

Showing the genetic risk that a present-day individual would possess if they were composed entirely of one ancestry.
Based on chromosome painting of the UK Biobank, for 35 complex traits found to be significantly over-dispersed in
ancient populations. Confidence intervals (95%) are estimated by bootstrapping present-day samples (n=408,884) and
centred on the mean estimate.
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Phenotypic legacy of ancient Eurasians

In addition to identifying evidence of selection for trait-associated variants, we also estimated the
contribution from different genetic ancestries (associated with EHG, CHG, WHG, Steppe
pastoralists and Neolithic farmers) to variation in complex traits in present-day individuals. We
calculated ancestry-specific polygenic risk scores — hereafter ancestral risk scores (ARS) — based
on chromosome painting of >400,000 UKB genomes using ChromoPainter % (Fig. 5,
Supplementary Note 9). This allowed us to identify which ancient ancestry components are over-
represented in present-day UK populations at loci significantly associated with a given trait and is
analogous to the genetic risk that a present-day individual would possess if they were composed
entirely of one of the ancestry groupings defined in this study. This analysis avoids issues related to
the portability of polygenic risk scores between populations %, as our ancestral risk scores are
calculated from the same individuals used to estimate the effect sizes. Working with large numbers
of imputed ancient genomes provides high statistical power to use ancient populations as ancestral
sources. We focused on 35 phenotypes whose polygenic scores were significantly over-dispersed
among the ancient populations (Supplementary Note 9), as well as well as three large effect alleles
at the APOE gene (ApoE2, ApoE3, and ApoE4) known to significantly mediate risk of developing
Alzheimer’s disease 8. We emphasise that this approach makes no direct reference to ancient
phenotypes, but instead describes how these genetic ancestry components contributed to the
present-day phenotypic landscape.

We find that for many anthropometric traits—like trunk predicted mass, forced expiratory volume
in 1-second (FEV1), and basal metabolic rate—the ARS for Steppe ancestry was the highest,
followed by EHG and CHG/WHG, whilst Neolithic farmer ancestry consistently scored the lowest
for these measurements. Consistent with previous studies, hair and skin pigmentation also showed
significant differences, with scores for skin colour for WHG, EHG and CHG higher (i.e. darker)
than for Neolithic farmer and Steppe-associated ancestries ®%27-2; and scores for traits related to
malignant neoplasms of the skin were elevated in Neolithic farmer-associated ancestries. Both
Neolithic farmer and Steppe-associated ancestries have higher scores for blonde and light brown
hair, while the Hunter-Gatherer-associated ancestries have higher scores for dark brown hair, and

CHGe-associated ancestries had the highest score for black hair.

In terms of genetic contributions to risk for diseases, the WHG ancestral component had strikingly
high scores for traits related to cholesterol, blood pressure and diabetes. The Neolithic farmer
component scored the highest for anxiety, guilty feelings, and irritability; CHG and WHG ancestry
components consistently scored the lowest for these three traits. We found the ApoE4 allele
(rs429358:C and rs7412:C, which increases risk of Alzheimer's disease) preferentially painted with
a WHG/EHG haplotypic background, suggesting it was likely brought into Western Eurasia by
early hunter-gatherers (Supplementary Note 9). This result is in line with the present-day European
distribution of this allele, which is highest in north-eastern Europe, where the proportion of these
ancestries is larger than in other regions of the continent ®. In contrast, we found the ApoE2 allele
(rs429358:T and rs7412:T, which decreases risk for Alzheimer's disease) on a haplotypic
background with affinities to Steppe pastoralists. Our pan-ancestry analysis identified positive
selection favouring ApoE2 (p=6.99e-3; s=0.0130), beginning c. 7,000 years ago and plateauing c.
2,500 years ago (Supplementary Note 4). However, we did not identify evidence of selection for
either ApoE3 (rs429358:T and rs7412:C) or ApoE4, contrary to a recent study with a smaller
sample size and unphased genotypes 3. The selective forces likely favouring ApoE2 in Steppe
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pastoralists may be associated with protective immune responses against infectious challenges, such
as protection against malaria or an unknown viral infection (Supplementary Note 9).

In light of the ancestry gradients within the United Kingdom and across Eurasia (Fig. 2), these
results support the hypothesis that migration-mediated geographic variation in phenotypes and
disease risk is commonplace, and points to a way forward for explaining geographically structured
disease prevalence through differential admixture processes between present-day populations.
These results also help to clarify the famous discussion of selection in Europe relating to height 79,
Our finding that the Steppe and EHG associated ancestral components have elevated genetic values
for height in the UK Biobank demonstrates that height differences between Northern and Southern
Europe may be a consequence of differential ancestry, rather than selection, as claimed in many
previous studies °!. However, our results do not preclude the possibility that height has been
selected for in specific populations °>%3.

Discussion

The fundamental changes in diet resulting from the transitions from hunting and gathering to
farming, and subsequently to pastoralism, precipitated far-reaching consequences for the physical
and mental health of present-day Eurasian populations. These dramatic cultural changes created a
heterogeneous mix of selection pressures, likely related to changes in diet and increased population
densities, including selection for resistance to novel infectious challenges. Due to the highly
pleiotropic nature of each sweep region, it is difficult to ascribe causal factors to any of our
selection signals, and we did not exhaustively test all non-trait associated variants. However, our
results show that selection during the Holocene has had a substantial impact on present-day genetic
disease risk, as well as the distribution of genetic factors affecting metabolic and anthropometric
traits. Our analyses have also shown that the ability to detect signatures of natural selection in
present-day human genomes is drastically limited by conflicting selection pressures in different
ancestral populations masking the signals. Developing methods to trace selection while accounting
for differential admixture allowed us to effectively double the number of genome-wide significant
selection peaks and helped clarify the trajectories of a number of variants related to diet and
lifestyle. Furthermore, we have shown that numerous complex traits thought to have been under
local selection are better explained by differing genetic contributions of ancient individuals to
present-day variation. Overall, our results emphasise how the interplay between ancient selection
and major admixture events occurring in the Mesolithic, Neolithic and Bronze Age have profoundly
shaped the patterns of genetic variation observed in present-day humans across Eurasia.

Data availability

All ancient genomic data used in this study are already published and listed in Supplementary Table
1. Data was aligned to the human reference GRCh37. Modern human genomes were obtained from
the 1000 Genomes Project (1KGP) ?°, the Simons Genome Diversity Project (SGDP) ®!, and the
Human Genome Diversity Project (HGDP) 82. GWAS data was obtained from the GWAS Catalog
24 the FinnGen Study %3, and the UK Biobank (UKB)>.

Code availability

The scripts used to run the chromosome painting (Supplementary Note 2) and calculate ARS in the
UK Biobank (Supplementary Note 9) are available at https://github.com/will-
camb/mesoneo_selection_paper (https://doi.org/10.5281/zenodo.8301166). The software to perform
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the ancestral path chromosome painting described in Supplementary Note 3 is available on GitHub
at https://github.com/AliPearson/AncestralPaths (https://doi.org/10.5281/zenod0.8319452), and the
demographic model is available in the stdpopsim library (see https://popsim-consortium.github.io/
stdpopsim-docs/stable/catalog.html#sec_catalog_homsap_models_ancienteurope 4a21). The
analysis pipeline and ‘conda’ environment necessary to replicate the analysis of allele frequency
trajectories of trait-associated variants in Supplementary Note 4 are available at
https://github.com/ekirving/mesoneo_paper (https://doi.org/10.5281/zenodo0.8289755). The
modified version of CLUES used in this study is available from https://github.com/standard-
aaron/clues (https://doi.org/10.5281/zenodo.8228252). The pipeline to replicate the analyses for
Supplementary Note 7 can be found at https://github.com/albarema/neo
(https://doi.org/10.5281/zenodo0.8301253). All other analyses relied upon available software which
has been fully referenced in the manuscript and detailed in the relevant supplementary notes.
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Extended Data Fig. 1. Selection at the MCMG6 locus. CLUES selection results for the most significant sweep locus,
showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers (WHG), Eastern
hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one shows zoomed
Manhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs across all
ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-admixture

population).
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Extended Data Fig. 2. Selection at the SLC45A2 locus. CLUES selection results for the second most significant
sweep locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers
(WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one
shows zoomed Manhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs
across all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-

admixture population).

26


https://doi.org/10.1101/2022.09.22.509027
http://creativecommons.org/licenses/by-nc-nd/4.0/

839

840
841
842
843
844
845
846

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.22.509027; this version posted October 18, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

HLA
ALL
50~

__40-

[

2

g3o-

8 rs7747253 ~
S 20- rs1270942
o ’
=]

27929388

, ekt

12-10-8 6 -4 -2 0
kyr BP

WHG
50~

__40-

[

2 151270942

gao-

s 157747253

S 20- \

o .

2 2535296 .
10- = ‘___Es_i?%l{%_g»_
04 'Y ¥ SE

chr6:25.4-33.5 Mb

1.0 ﬁ
. rs7747253
0.6

/53094188
02 rs1270942
0.0 _JVSZS%Z%

EHG
50-
__40-
[
=2
gso-
a 153094188
S, 3
2207 57747253 .
Q: " rs1270942
' 10- .
04
1.0
08
0.6 rs3094188
4
S oa rs7747253
02 (' .
00 eom—23210342
-12-10-8 -6 -4 -2 0
kyr BP

CHG
50~
.40~
[
= 3094188
rs
gao-
e
S 20- 57747253
£y \ r$2535296
o
' 10- /
e s SisA2 70942 -

Chr6:25.4-33.5 Mb

1.0 \
0.8

0.

k4

B4
0.2
0.0

6

\ rs3094188

4
2 128%553_8
131376643

12-10-8 6 -4 -2 0
kyr BP

ANA
50~
__40-
[}
32
g 30-
=N
5 152535296
ézo- m7147253\
" 10- .
- =75782365 530457042 -
M
0 ! "
chr6:25.4-33.5 Mb
1.0 x
08 rs7747253
0.6
% rs3094188
B4 /_trszwsz%
0.0 151270942

-12-10-8 -6 4 2 0
kyr BP

Extended Data Fig. 3. Selection at the HLA locus. CLUES selection results for the third most significant sweep
locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers (WHG),
Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one shows
zoomed Manbhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs across
all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-admixture

population).
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Extended Data Fig. 4. Selection at the ACAD10 locus. CLUES selection results for the fourth most significant sweep
locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers (WHG),
Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one shows
zoomed Manbhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs across
all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-admixture

population).
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Extended Data Fig. 5. Selection at the CCDC12 locus. CLUES selection results for the fifth most significant sweep
locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers (WHG),
Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one shows
zoomed Manbhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs across
all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-admixture

population).
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Extended Data Fig. 6. Selection at the RNASSP158 locus. CLUES selection results for the sixth most significant
sweep locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers
(WHG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one
shows zoomed Manhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs
across all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-

admixture population).
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870 Extended Data Fig. 7. Selection at the GATA4 locus. CLUES selection results for the seventh most significant sweep
871 locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers (WHG),
872 Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one shows
873 zoomed Manbhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs across
874 all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-admixture
875  population).
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878 Extended Data Fig. 8. Selection at the ARL17B locus. CLUES selection results for the eight most significant sweep
879 locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers (WHG),
880 Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one shows
881 zoomed Manbhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs across
882 all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-admixture
883  population).
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886  Extended Data Fig. 9. Selection at the IRF1 locus. CLUES selection results for the ninth most significant sweep
887 locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers (WHG),
888 Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one shows
889 zoomed Manbhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs across
890 all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-admixture
891  population).
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894  Extended Data Fig. 10. Selection at the KRT18P51 locus. CLUES selection results for the tenth most significant
895 sweep locus, showing the pan-ancestry analysis (ALL) plus the four marginal ancestries: Western hunter-gatherers
896  (WHGQG), Eastern hunter-gatherers (EHG), Caucasus hunter-gatherers (CHG) and Anatolian farmers (ANA). Row one
897 shows zoomed Manhattan plots of the p-values for each ancestry, and row two shows allele trajectories for the top SNPs
898  across all ancestries (grey shading for the marginal ancestries indicates approximate temporal extent of the pre-
899  admixture population).
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Extended Data Fig. 11. The 17q21.31 inversion locus. A) Haplotypes of the 17g21.31 locus: the ancestral (non-
inverted) H1 17q21.31 and the inverted H2 haplotype. Duplications of the KANSLI gene have occurred independently
on both lineages yielding H1D and H2D haplotypes. B) Frequency of the 17q21.31 inversion and duplication
haplotypes across present-day global populations (Human Genome Diversity Project 82). D) Change in the frequency of
the 17q21.31 inversion haplotype through time.
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