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Abstract 1 

Age-related changes to the power and frequency of the brains oscillatory activity have been 2 

reported by an extensive literature. In contrast, the influence of advancing age on the shape of 3 

oscillation waveforms, a characteristic with increasingly recognised physiological and 4 

functional relevance, has not been previously investigated. To address this, we examined the 5 

shape of alpha and beta band oscillations from electroencephalography (EEG) data recorded 6 

during performance of simple and go/no-go reaction time tasks in 33 young (23.3 ± 2.9 years, 7 

27 females) and 27 older (60.0 ± 5.2 years, 23 females) adults. The shape of individual cycles 8 

was characterised using instantaneous frequency, and then decomposed into waveform motifs 9 

using principal component analysis. This analysis identified four principal components (one 10 

from the alpha band, 3 from the beta band) that were uniquely influenced by the different 11 

motor tasks and/or age. These each described different dimensions of shape and tended to be 12 

modulated during the reaction phase of each task. However, the way in which each facet of 13 

shape varied during the task was unrelated to motor performance, indexed via reaction time, 14 

in either group or band. Our results suggest that although oscillation shape is task-dependent, 15 

the nature of this effect is altered by advancing age. While these outcomes demonstrate the 16 

utility of this approach for understanding the neurophysiological effects of ageing, future 17 

work that more clearly links these outcomes with function will be critical. 18 

 19 
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Introduction 20 

While the ageing process is associated with many changes to functional capacity, deficits 21 

within the motor system can have some of the most significant impact on independence and 22 

quality of life. Although the factors that drive these deficits remain poorly understood, there 23 

is good evidence that changes in brain dynamics are an important element. In particular, 24 

numerous studies have examined how the brain’s oscillatory activity – which is seen as 25 

rhythmic fluctuations in its electrical potential/magnetic field strength – is altered by age. 26 

This literature suggests substantial changes associated with ageing, including reductions in 27 

power and peak frequency within the alpha band (~8-13 Hz; Chiang et al. 2011, Barry and De 28 

Blasio 2017, Scally et al. 2018, Sghirripa et al. 2021, Merkin et al. 2023, Tröndle et al. 29 

2023), in addition to increased power (Rossiter et al. 2014, Heinrichs-Graham and Wilson 30 

2016, Barry and De Blasio 2017, Heinrichs-Graham et al. 2018, Rempe et al. 2022) and 31 

frequency (Zhong and Chen 2022) in the beta band (~14-30 Hz). Importantly, these changes 32 

have been associated with deficits in motor function, including reduced skill learning (Rueda-33 

Delgado et al. 2019), reaction time (Van Hoornweder et al. 2022b) and accuracy (Van 34 

Hoornweder et al. 2022a). Furthermore, altered oscillatory activity has also been associated 35 

with motor pathologies common in older adults, such as Parkinson’s disease (Little et al. 36 

2012, De Hemptinne et al. 2013, De Hemptinne et al. 2015, Cole et al. 2017). Age-related 37 

changes in oscillatory activity therefore appear to be a functionally relevant element of 38 

ageing, and may have potential as biomarkers of age-related degradation, or accumulating 39 

pathology. 40 

Although effects of age on oscillatory activity are supported by numerous studies, outcomes 41 

have also been variable. For example, previous work has failed to replicate the often reported 42 

age-related reduction in alpha frequency (Polich 1997, Gaál et al. 2010, Caplan et al. 2015, 43 

Zhong and Chen 2022), whereas effects of age on both frequency and amplitude may be 44 
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confounded by age-related changes in non-oscillatory activity also present in EEG recordings 45 

(Donoghue et al. 2020, Merkin et al. 2023, Tröndle et al. 2023). This variability limits the 46 

utility of oscillatory metrics for understanding the ageing process and challenges their clinical 47 

application. One factor that may contribute to this variability is the way in which oscillatory 48 

activity has been assessed. The conventional approach to quantifying neuronal oscillations 49 

generally involves characterising their frequency or amplitude via Fourier-based methods 50 

applied to time series data that generally involve several minutes of recordings. However, this 51 

approach overlooks important features of oscillations that are only apparent in the time 52 

domain. In particular, the developing literature shows that examination of waveform shape 53 

can provide information that is physiologically and functionally relevant. For example, recent 54 

work suggests that a given oscillatory cycle can be characterised relative to a range of 55 

waveform motifs, with cycle-by-cycle variations in the relative contribution of different 56 

motifs driving variability in shape (Quinn et al. 2021b, Szul et al. 2022, Rayson et al. 2023) 57 

and having different relationships with movement (Szul et al. 2022, Rayson et al. 2023) and 58 

function (Quinn et al. 2021b). Furthermore, research in Parkinson’s disease supports the 59 

clinical utility of examining waveform shape. Specifically, the shape of beta oscillations is 60 

significantly altered in patients off medication (Cole et al. 2017, Jackson et al. 2019), but this 61 

is corrected by medication (Jackson et al. 2019) or deep brain stimulation (Cole et al. 2017). 62 

While the developing literature demonstrates the utility of examining the shape of oscillatory 63 

activity at the level of individual cycles, it remains to be investigated if this approach is 64 

sensitive to the neurophysiological and functional changes associated with advancing age. 65 

Within the current study, we aimed to address this limitation. The shape of oscillatory activity 66 

recorded at rest, or while performing a simple or go/no-go reaction time task, was quantified 67 

and compared between young and older adults. This was achieved by using a recently 68 

established methodology (Quinn et al. 2021b), within which empirical mode decomposition 69 
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(EMD) facilitates extraction of multiple narrowband waveforms for individual cycles of the 70 

target oscillation. Subsequent application of principal component analysis (PCA) then 71 

identifies dominant waveform motifs. Given the well-established effects of ageing on 72 

conventional measures of oscillatory activity within the alpha and beta bands (see above), 73 

these served as the bands of interest within the current study. 74 

Methods & Methods 75 

Dataset. 76 

The electroencephalography (EEG) recordings analysed in the current study were obtained 77 

from a recently described open access dataset (Ribeiro and Castelo-Branco 2019). This study 78 

recruited 36 young (mean age ± SD: 23.1 ± 2.8 years; 29 females) and 39 older (mean age ± 79 

SD: 60.4 ± 5.2 years; 31 females) adults to participate in a single session, within which EEG 80 

was recorded in different conditions (see below). A number of participants within this dataset 81 

presented signal noise that would have required low-pass filtering to remove. As this type of 82 

processing can be expected to influence the shape of the EEG recording (de Cheveigné and 83 

Nelken 2019), and given our primary interest in quantifying waveform shape, we therefore 84 

decided to exclude these participants from the analyses. Consequently, the current study 85 

examined data from a subset of 60 participants, including 33 young (mean age ± SD: 23.3 ± 86 

2.9 years; 27 females) and 27 older (mean age ± SD: 60.0 ± 5.2 years; 23 females) adults. All 87 

experimentation was performed in accordance with the Declaration of Helsinki, participants 88 

provided written, informed consent prior to inclusion, and the protocol was approved by the 89 

Ethics Committee of the Faculty of Medicine at the University of Coimbra.  90 

Experimental Task. 91 

Participants completed a cued reaction time task, which required a button press with the right 92 

index finger (or no response, depending on the condition) in response to auditory stimuli. A 93 
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passive listening condition involving 30 trials was first completed, wherein participants were 94 

exposed to the auditory tones to be used in the active conditions but were not required to 95 

respond (hereafter referred to as ‘rest’). Following this, simple (SRT) and go/no-go (GNG) 96 

reaction time tasks were completed, the order of which was counterbalanced between 97 

participants. During the SRT, a cue tone (indicating the start of the trial) was followed at a 98 

variable interval by a ‘go’ tone for a total of 100 trials. During the GNG, a cue tone was 99 

followed at a variable interval by either a ‘go’ tone, requiring a button press response (80 100 

trials), or a ‘no-go’ tone, requiring participants to withhold a response (20 trials). For both 101 

SRT and GNG, 20 catch trials were also included, in which the cue tone was not followed by 102 

any further tone. Between trials, participants fixated on a cross displayed on a screen in front 103 

of them. Slow trials were defined as a reaction time exceeding 700 ms, feedback on which 104 

was provided to participants by a different tone. The inter-trial interval ranged from 6.7 s to 105 

19.6 s, with a median value of 7.6 s. 106 

Electroencephalography (EEG) acquisition and pre-processing. 107 

EEG was recorded with a Neuroscan system via 64 electrodes in standard 10-20 locations. 108 

The signal was referenced to a location between CPz and Cz, the ground was located between 109 

FPz and Fz, and data were digitized at a rate of 500 Hz. Pre-processing used custom scripts 110 

on the Matlab platform (R2021b, Mathworks, USA) with EEGLAB (v2022.1)(Delorme and 111 

Makeig 2004) and TESA (v 1.1.1)(Rogasch et al. 2017) toolboxes. Slow drifts in the signals 112 

were first removed by high-pass filtering above 1 Hz using the pop_eegfiltnew function. Line 113 

noise and its first harmonic (i.e., 50 & 100 Hz) was then attenuated using the EEGLAB 114 

CleanLine plugin (Mullen 2012), which uses a multi-tapering approach to remove line noise 115 

while minimising signal distortion. Data were then epoched from 500 ms before to 6000 ms 116 

after the cue tone. Channels and epochs demonstrating persistent, large amplitude muscle 117 

activity or noise were then removed. Following this, independent component analysis (ICA) 118 
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was run using the FastICA algorithm (Hyvärinen and Oja 2000) and components associated 119 

with blinks, muscle activity, eye movement, and electrode noise were identified and removed 120 

based on visual inspection of component time course and topography. Missing channels were 121 

then replaced using spherical interpolation. 122 

Waveform analysis. 123 

All subsequent analysis of EEG data focussed on the C3 electrode, given its assumed location 124 

over the left sensorimotor cortex (Lefaucheur et al. 2017) activated during performance of 125 

reaction time tasks involving the right index finger. Furthermore, to facilitate comparisons 126 

with the SRT task, only trials from the ‘go’ condition of the GNG task were included in the 127 

analysis. Analysis of waveform shape of individual oscillatory cycles was performed 128 

according to the pipeline developed recently by Quinn et al. (2021b). This involved: (1) 129 

application of empirical mode decomposition (EMD) to decompose the recorded broadband 130 

signal into discrete narrowband oscillatory modes; (2) identification of individual cycles 131 

within oscillations of interest, and phase alignment to allow comparisons of shape between 132 

cycles with varying temporal dynamics and (3) application of principal component analysis 133 

(PCA) to identify consistent variations in cycle shape as waveform motifs. All analyses were 134 

performed in Python 3.10, using v0.4.0 of the EMD package (Quinn et al. 2021a) and v1.4.0 135 

of the SAILS package (Quinn and Hymers 2020). 136 

Empirical mode decomposition. EMD uses an iterative sifting process to decompose a 137 

broadband signal into narrowband intrinsic mode functions (IMFs), whereby higher 138 

frequency components of the signal are progressively extracted and subtracted from the 139 

signal. Briefly, maxima and minima of the broadband signal are identified, and upper and 140 

lower envelopes of the signal are developed by connecting and interpolating the maxima and 141 

minima, respectively. The mean of the overall envelope is then calculated and subtracted 142 
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from the signal. This process is repeated on the resulting waveform until the criteria defining 143 

an IMF are met. These are that the number of zero crossings equals the number of extrema 144 

(differing by no more than 1) and the mean of the signal envelope equals zero (Huang et al. 145 

1998). The first IMF is then subtracted from the original signal and the process is repeated to 146 

find the next IMF. Unlike conventional approaches to generating a narrowband signal that 147 

assume a sinusoidal waveform, this process conserves the native shape of the target 148 

oscillation (Quinn et al. 2021b). 149 

Within the current study, the EMD algorithm was applied using previously established 150 

options (Quinn et al. 2021b) and a maximum of 6 IMFs were generated. We applied the 151 

masked version of EMD, where a sinusoidal masking frequency is added to the waveform 152 

prior to sifting (Deering and Kaiser 2005). This reduces the impact of mode mixing, which 153 

refers to situations in which different frequency components are mixed into a single IMF due 154 

to noise or intermittent oscillations in the signal (Huang et al. 1999). Mask frequencies of 155 

120, 64, 32, 11, 7 and 2 Hz were applied, and validated by examination of instantaneous 156 

frequency profiles for each IMF (see supplementary figure S1); these showed clean 157 

separation between IMFs. Modes corresponding to conventional alpha and beta bands were 158 

found in the third (beta) and fourth (alpha) IMFs for all participants. 159 

To demonstrate the reliability of the IMFs prior to examination of single cycles, age-related 160 

changes in alpha amplitude and peak frequency were compared between estimates derived 161 

from the broadband data and the alpha IMF. To increase sensitivity to effects of age on alpha 162 

activity, this analysis utilised data derived from the Oz electrode. Broadband and IMF data 163 

from individual epochs in the passive listening condition were concatenated to form 164 

individual time series, which were then decomposed using Welch’s method (8s window 165 

length, 50% overlap between windows). Power and frequency values associated with the 166 
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alpha band (8-13Hz) within each group were then compared between techniques using 167 

independent samples t-tests, and the correlation between them was tested with Spearman’s 168 

rho. 169 

Cycle detection and phase alignment. Following EMD, individual cycles in the alpha and 170 

beta modes were identified based on the instantaneous amplitude and phase of the signal, 171 

derived using the normalised Hilbert transform (Quinn et al. 2021b). Cycles were only 172 

included in further analyses if their amplitude exceeded the 50th percentile for the mode 173 

(Fabus et al. 2021, Echeverria-Altuna et al. 2022), their phase characteristics met previously 174 

defined criteria for a reliable cycle, and they possessed unique control points (i.e., 175 

ascending/descending zero crossings, peak and trough)(Quinn et al. 2021b). The 176 

instantaneous frequency (IF) was then calculated for each cycle by taking the first derivative 177 

of instantaneous phase with respect to time (Huang et al. 2009). Waveform shape was then 178 

inferred from the IF of the cycle, wherein within-cycle fluctuations in IF indicate deviations 179 

in shape. However, it is not possible to directly compare IF profiles between different 180 

oscillations, as it is not clear if comparisons are occurring between consistent features of each 181 

cycle (e.g., comparing values from the peak of each cycle)(Quinn et al. 2021b). Identified 182 

cycles were therefore aligned to a common phase space, producing phase-aligned IF profiles 183 

that were directly comparable between oscillation cycles (Quinn et al. 2021b). To quantify the 184 

extent to which individual cycles deviated from a sinusoidal shape, phase-aligned IF profiles 185 

were projected onto the complex plane and a mean vector was calculated, with non-zero 186 

values indicating a non-sinusoidal shape. Real and imaginary values derived from individual 187 

cycle mean vectors (reflecting ascending-descending and peak-trough asymmetry, 188 

respectively) were compared to 0 using single sample t-tests (Quinn et al. 2021b). 189 
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Principal component analysis. The final step of the waveform analysis was to characterise the 190 

variability in waveform shape across cycles by submitting the phase-aligned IF profiles to 191 

PCA. The principal components (PCs) derived from this analysis can be viewed as waveform 192 

motifs describing major sources of variance relative to the mean instantaneous frequency 193 

profile. Furthermore, the scores describe the extent to which each PC contributes to a given 194 

cycle. The first 5 PCs within each frequency mode explained > 97% of variance in IF and 195 

were used for further analysis. 196 

Statistical analyses. 197 

Given recent evidence for temporal variance in waveform shape during a motor task (Szul et 198 

al. 2022, Rayson et al. 2023), a time factor was included for all analyses of cycle features. 199 

This categorised cycles as occurring either before (pre-go) or after (post-go) the go stimulus, 200 

or after the button press (post-react). Within each band, effects of task condition (rest, SRTpre-201 

go, SRTpost-go, SRTpost-react, GNGpre-go, GNGpost-go, GNGpost-react) and group (young, older) on 202 

mean within-cycle phase aligned IF and PC score were assessed using Bayesian generalised 203 

linear mixed models (GLMMs), resulting in 12 models being run (i.e., one model for phase 204 

aligned IF and one model for each of the first 5 PCs, within both alpha and beta bands). 205 

Within each model, a student’s t distribution and an identity link function were applied. The 206 

maximal random effects structure allowed by the data was used (i.e., by-participant random 207 

intercepts and slopes)(Barr 2013). Potential relationships between PC scores and performance 208 

(indexed by reaction time [RT]) were then investigated. For each trial, PC scores within each 209 

time point (i.e., pre-go, post-go and post-react) were summarised using the coefficient of 210 

variation and median. These were then correlated with RTs using robust Bayesian correlations 211 

(https://baezortega.github.io/2018/05/28/robust-correlation/).  212 
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All posterior distributions were estimated with the No-U-Turn-Sampler (NUTS) extension of 213 

Hamiltonian MCMC, implemented within the BRMS package (Bürkner 2017). Each model 214 

was run using 4 independent chains with 1000 warm up and 3000 post-warm up samples 215 

(total of 12,000 post-warm up samples) and default flat priors. Chain convergence was 216 

assessed by ensuring Rhat values were < 1.1, in addition to visual inspection of post-warm up 217 

samples (Gelman and Rubin 1992). Posterior predictive checks were conducted to ensure 218 

simulated data matched observed data (Gabry et al. 2019). After model fitting, the emmeans 219 

package (Lenth 2023) was used to generate custom contrasts; these included within- and 220 

between-subject effects for all dependent variables, in addition to interaction contrasts where 221 

relevant. Within these comparisons, effect existence was described using the probability of 222 

direction (pd), which reports the proportion of the posterior with the same sign as the median 223 

and ranges from 50% to 100% (Makowski et al. 2019). Effect significance was assessed by 224 

examining how far the posterior distribution for each contrast deviated from a region 225 

including zero (i.e., no practical difference). To achieve this, a region of practical equivalence 226 

(ROPE) was first defined; this refers to a range of values centred around zero that would be 227 

considered as practically equivalent to no difference for that contrast. Within the current 228 

study, this was set as ± 5% of the standard deviation (SD)(Kruschke 2018). The 89% highest 229 

density interval (HDI; i.e., the range which contains 89% of the posterior distribution) was 230 

then identified, and the extent to which it overlapped the ROPE was used to make a decision 231 

regarding the null hypothesis. The null hypothesis of no difference was accepted if the 89% 232 

HDI fell completely inside the ROPE or rejected if it fell completely outside the ROPE. In 233 

contrast, no decision was made if the 89% HDI partially overlapped the ROPE. (Kruschke 234 

2018, Puri et al. 2023). 235 

Results 236 
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As an initial step, measures of oscillatory activity provided by EMD were validated against 237 

those provided by conventional approaches to spectral analysis. This was achieved by 238 

applying Welch’s method to both the alpha mode and the broadband data, and comparing 239 

estimates of alpha frequency and amplitude. For both techniques, while there was no 240 

significant difference in peak frequency between groups (broadband: t58 = 1.0, p = 0.3; alpha 241 

IMF: t58 = 0.5, P = 0.6; Fig 1A2 & 1B2), power was significantly reduced in older adults 242 

(broadband: t58 = 2.8, p = 0.008; alpha IMF: t58 = 2.90, P = 0.005; Fig 1A3 & 1B3). 243 

Furthermore, estimates of both frequency (young: rho = 0.98, p < 0.0001; older: rho = 0.77, p 244 

< 0.0001) and power (young: rho = 0.99, P < 0.0001; older: rho = 0.98, p < 0.0001) were 245 

highly correlated between techniques (Fig 1C & 1D). These results support the reliability of 246 

the IMFs extracted by EMD. 247 

Figure 1. Alpha oscillation characteristics derived from broadband and IMF data. (A, 248 
B) Alpha band (8-13 Hz) characteristics quantified by application of Welch’s method to 249 
broadband data (A) and the alpha IMF (B). Power spectral density curves (A1, B1), peak 250 

frequency (A2, B2), and power (A3, B3) are compared between groups. (C, D) Correlations 251 
between the estimates of power (C) and peak frequency (D) derived from each method. *P < 252 
0.05 when compared to the young group. 253 
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Mean within-cycle instantaneous frequency varies between tasks and groups. 254 

Table 1 shows IF values for each group, task, and band, averaged over cycle phase. Between-255 

group comparisons of alpha frequency showed higher values in older participants that were 256 

consistent (all pd > 98.9%) and significant (all 0% in ROPE) for all tasks and time points. For 257 

older participants in both GNG and SRT tasks, consistent (all pd > 99.4%) and significant (all 258 

0% in ROPE) reductions in frequency were observed during the post-go period, relative to 259 

pre-go, post-react, as well as to the rest condition. Furthermore, reductions in frequency 260 

relative to the rest condition were consistent and significant for SRTpre-go (pd = 99.3, 0% in 261 

ROPE). Also, interaction contrasts suggested that reductions in alpha frequency during the 262 

post-go period of the RT task (relative to pre-go. post-react, and rest) and GNG task (relative 263 

to post-react only) were significantly and consistently (all pd > 99.2%, 0% in ROPE for all 264 

comparisons) greater in older compared to young adults. All other within-group comparisons 265 

were inconsistent and failed to provide sufficient evidence to accept or reject the null 266 

hypothesis (all pd < 98.2%, all % in ROPE between 3.3% and 73.2%).  267 

Between-group comparisons of beta frequency showed lower values in older participants that 268 

were consistent (all pd > 96.6%) and significant (all 0% in ROPE) for all tasks and time 269 

points. Within-group comparisons for young and older adults separately showed that 270 

frequency during both GNG and SRT was increased at the post-go time point, relative to pre-271 

go and post-react, and these differences were consistent (all pd > 98.1%) and significant (all 272 

0% in ROPE). For older participants, frequency during post-go was increased relative to rest 273 

for both GNG (pd = 98.4%, 0% in ROPE) and SRT (pd = 98.3%, 0% in ROPE). For young 274 

participants, frequency during post-go was significantly increased relative to rest for GNG 275 

(pd = 98.1%, 0% in ROPE), whereas SRT showed a relatively consistent increase (pd = 276 

93.5%) that failed to reach a practical level of significance (4% in ROPE). Furthermore, 277 

frequency during the post-react period was reduced relative to pre-go, and this was consistent 278 
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(pd > 99.9%) and significant (all 0% in ROPE) for GNG and SRT in both groups. All other 279 

comparisons were inconsistent and failed to provide sufficient evidence to accept or reject the 280 

null hypothesis (all pd < 84.9%, all % in ROPE between 9.4% and 21.1%).  281 

 282 
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Table 1. Effects of task on mean within-cycle instantaneous frequency 

     GNG  SRT 

   Rest  Pre-go  Post-go  Post-react  Pre-go  Post-go  Post-react 

Alpha Young  11.1 [10.8, 11.3]  11.2 [10.9, 11.5]  11.1 [10.8, 11.4]  11.2 [10.9, 11.5]  11.1 [10.8, 11.3]  11.0 [10.8, 11.3]  11.1 [10.8, 11.3] 

 Older  12.4 [11.9, 13.0]  12.3 [11.8, 12.8]  12.0 [11.5, 12.4]†*  12.4 [11.9, 12.9]  12.1 [11.6, 12.5]*  11.8 [11.3, 12.2]†*  12.4 [11.9, 12.9] 

Beta Young  25.2 [24.8, 25.5]  25.3 [24.9, 25.8]  25.6 [25.2, 26.1]†*  25.1 [24.7, 25.5]‡  25.3 [24.9. 25.6]  25.6 [25.2, 25.9]‡  24.9 [24.6, 25.3]‡ 

 Older  24.0 [23.5, 24.6]  24.1 [23.6, 24.6]  24.7 [24.2, 25.2]†*  23.8 [23.3, 24.3]‡  24.2 [23.6, 24.7]  24.8 [24.2, 25.4]†*  23.8 [23.3, 24.3]‡ 

Values are shown as median [lower 89% HDI, upper 89% HDI]. †Consistent and significant difference, relative to pre-go; ‡Consistent and significant difference relative to pre-go and post-go; 

*Consistent and significant difference relative to rest. 
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Alpha and beta waveforms are non-sinusoidal. 283 

Figure 2 shows alpha and beta IF as a function of phase, collapsed over group and task. For 284 

alpha cycles, the mean profile suggested that peak frequency of ~12.4 Hz tended to occur 285 

during the zero crossings, but dropped to ~12.0 Hz during the peak (Fig 2, left panel), 286 

consistent with a waveform having a broadened peak. In support of this, examination of mean 287 

vectors indicated positive x-axis (mean ± SD = 0.22 ± 0.74) and negative y-axis (mean ± SD 288 

= -0.057 ± 1.23) values, both of which were significantly different to zero (x-axis: t204,796 = 289 

136.5, P < 0.0001; y-axis: t204,796 = -21.3, P < 0.0001) (see inset of Fig 2, left panel). For beta 290 

cycles, the mean profile suggested that peak frequency of ~26 Hz occurred during the 291 

descending zero crossing but dropped to ~24.6 Hz just after the trough (Fig 2, right panel), 292 

consistent with a waveform having a fast descending edge and broadened trough. Mean 293 

vectors for the beta profile were positive (x-axis mean ± SD = 0.29 ± 1.35; y-axis mean ± SD 294 

= 0.062 ± 1.62) and significantly different to zero (x-axis: t277,684 = 113.7, P < 0.0001; y-axis: 295 

t277,684 = 20.1, P < 0.0001) (see inset of Fig 2, right panel). 296 

Figure 2. Phase aligned instantaneous frequency. Main panels show mean phase-aligned 297 
IF profiles for alpha (left) and beta (right) modes, whereas insets show mean vectors. Data 298 
are collapsed over age group and task; shaded section represents standard error of the mean. 299 

 300 
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Waveform motifs are differentially influenced by task and group. 301 

Figure 3 shows IF profiles and normalised waveforms for the first 5 components generated by 302 

PCA. These explained > 97% of variance in IF for both bands and described increasingly 303 

complex elements of waveform shape. For example, while PC1 described opposing variations 304 

in the speed of the ascending/descending half waves, and PC2 described opposing variations 305 

in the speed of the ascending/descending edges, subsequent PCs instead related to 306 

increasingly fractionated facets of cycle phase. Investigation of group, task, and time-point 307 

effects on between-cycle variance for each score identified 4 components of interest: alpha 308 

PC4 and beta PC1, PC2, and PC3 (Figure 4).  309 

 310 

For alpha PC4 in the SRT task, scores in older adults during the pre-go period were increased 311 

relative to the young group (pd = 98.1%, 0% in ROPE; Fig 4A, left panel). While increases in 312 

older adults were also consistent for the post-go (pd = 97.2%) and post-react (pd = 97.4%) 313 

SRT periods, there was partial overlap with the ROPE (0.4% and 1.5% in ROPE, 314 

respectively). All other contrasts were inconsistent and failed to provide sufficient evidence 315 

to accept or reject the null hypothesis (all pd < 95.34%, all % in ROPE between 17.0% and 316 

97.7%). For beta PC1 in the SRT task, scores in young participants during the post-go period 317 

were reduced relative to both pre-go (pd = 98.0%, 0% in ROPE) and post-react (pd = 97.0%, 318 

0% in ROPE; Fig 4B, left panel). All other contrasts were inconsistent and failed to provide 319 

sufficient evidence to accept or reject the null hypothesis (all pd < 91.3%, all % in ROPE 320 

between 4.87% and 25.4%). For beta PC2 of the SRT task, scores in older participants during 321 

the post-go period were increased relative to pre-go (pd = 98.6%, 0% in ROPE), post-react 322 

(pd = 99.5%, 05 in ROPE; Fig 4C, left panel), and rest (pd = 99.1%, 0% in ROPE). 323 

Furthermore, interaction contrasts showed that increases in score during the post-go period 324 

(relative to pre-go, post-react, and rest) were consistently and significantly greater in older 325 
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adults compared to young adults (all pd > 99.6%, 0% in ROPE for all comparisons). In 326 

addition, between-group comparisons for the post-go period showed larger scores in older 327 

adults that were consistent (pd = 99.9%) and significant (0% in ROPE). All other contrasts 328 

were inconsistent and failed to provide sufficient evidence to accept or reject the null 329 

hypothesis (all pd < 93.2%, all % in ROPE between 4.2% and 33.5%). For beta PC3 in the 330 

SRT task, scores in older participants during the post-go period were increased relative to the 331 

young group (pd = 97.6%, 0% in ROPE; Fig 4D, left panel). Between-group comparisons for 332 

the pre-go period also showed consistent increases in the older group, but these were not 333 

practically significant (4.7% in ROPE). In addition, the older group showed a consistent (pd 334 

= 95.6%) increase in PC3 scores in post-go relative to post-react, but this was not practically 335 

significant (4.0% in ROPE). For PC3 in the GNG task, scores in older adults during the post-336 

go period were reduced relative to post-react (pd = 98.1%, 0% in ROPE; Fig 4E, left panel) 337 

and rest (pd = 97.5%, 0% in ROPE). All other contrasts were inconsistent and failed to 338 

provide sufficient evidence to accept or reject the null hypothesis (all pd < 97.6%, all % in 339 

ROPE between 4.0% and 61.0%). 340 
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 341 

Figure 3. Principal components of waveform shape.  (A-J, left panel) Demeaned IF 342 
profiles for the first 5 principal components, plotted from the first percentile (blue lines, 343 
negative scores) to the ninety-ninth percentile (green line, positive scores) of scores observed 344 

for each component. (A-J, right panel) Normalised waveforms generated by the IF profiles 345 
for each PC score, demonstrating the influence of each PC on waveform shape. Components 346 
for the alpha mode are shown in the left column, whereas components for the beta mode are 347 
shown in the right column. The bracketed value after the PC label shows the percentage of 348 

variance explained by that component.    349 
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 350 

Figure 4. Waveform shape is altered by age and task. (A-E, left panel) Median PC scores 351 
compared between reaction phases and groups (young: dark blue; older: light blue) for the 352 

SRT (A-D) and GNG (E) tasks. Error bars indicate 89% HDI. *Significant and consistent 353 
difference between groups; †Significant and consistent difference, relative to post-react. 354 
‡Significant and consistent difference relative to both pre-go and post-react periods. (A-E, 355 
right panel) Projection of median PC scores shown in the right panel. The resulting IF 356 
profiles are compared between the pre-go (dotted green line), post-go (dashed-dotted orange 357 
line) and post-react (dashed purple line) time periods in young (left column) and older (right 358 
column) adults.  359 
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Correlation analysis. 360 

To investigate the relationship between waveform shape and motor function, RT was 361 

correlated against PC scores within each time point (quantified via median values and the 362 

coefficient of variation) using robust Bayesian correlations. This approach revealed 363 

correlation coefficients ranged from -0.095 to 0.136 across all comparisons, with a median 364 

value of -0.002. Consequently, RT values were unrelated to median scores, or the variance in 365 

scores, within each time point. 366 

Discussion 367 

Oscillatory cycles within the brains electrical activity are typically described by their peak 368 

frequency or amplitude. However, a developing literature suggests that examination of 369 

waveform shape provides additional insight into the physiological and functional relevance of 370 

oscillatory activity. Within the current study, we aimed to assess if waveform shape provides 371 

novel information about how the ageing process alters the brain, particularly with respect to 372 

motor function. To achieve this, we applied a recently developed approach, where within-373 

cycle fluctuations in IF index complex waveforms that are subsequently decomposed into 374 

motifs explaining different dimensions of shape. Using this approach, we identified task- and 375 

age-dependent changes in the shape of oscillatory cycles occurring within the alpha and beta 376 

range. 377 

Alpha and beta cycles exist across a range of waveform shapes. 378 

Quantification of oscillatory activity has been a key element of EEG and 379 

magnetoencephalography (MEG) research since the inception of these techniques, with their 380 

examination now supported by dedicated and extensive fields of research. These have 381 

established important contributions of oscillations to numerous functions within the brain, 382 

including communication between areas (Fries 2005, Fries 2015), integration of information 383 

across different spatiotemporal scales (Canolty and Knight 2010, Bonnefond et al. 2017) and 384 
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gating of information (Jensen and Mazaheri 2010). While the methodology available for the 385 

investigation of oscillatory activity is extensive, some variant of spectral analysis is generally 386 

applied. This often involves Fourier or wavelet convolution to decompose the broadband 387 

signal into narrowband frequency components, with changes in the power and peak 388 

frequency within canonical bands taken to reflect altered oscillatory activity (Donoghue et al. 389 

2022). However, these convolution techniques assume a sinusoidal waveform. In contrast, 390 

both recent and historical literature recognises that oscillatory activity is frequently non-391 

sinusoidal (for review, see; Cole and Voytek 2017). For example, the sensorimotor mu 392 

rhythm demonstrates an arch or wicket shape (Gastaut 1952, Kuhlman 1978), whereas the 393 

sensorimotor beta rhythm has been shown to have a sawtooth waveform (Cole et al. 2017, 394 

Jackson et al. 2019), as too have theta (Belluscio et al. 2012, Ghosh et al. 2020, Quinn et al. 395 

2021b) and gamma (Krishnakumaran et al. 2022) oscillations.  396 

Within the current study, we examined individual cycles of oscillatory activity with 397 

frequencies peaking in the alpha and beta range. For both, investigation of mean vectors 398 

suggested non-zero values that indicate a departure from a sinusoidal shape (Quinn et al. 399 

2021b). Consequently, our results further support the non-sinusoidal nature of these brain 400 

rhythms. However, examination of IF profiles for both bands suggest relatively increased 401 

speed of edges and decreased speed of extrema, which contrasts with previous descriptions of 402 

feature asymmetries (i.e., fast ascending edge/peak-slow descending edge/trough)(Cole et al. 403 

2017, Cole and Voytek 2017). Despite this, the magnitude of these shifts was not consistent 404 

across cycle features; for example, the decrease in alpha IF was greater at the peak than the 405 

trough, whereas the decrease in beta IF was greater at the trough than the peak (Fig 2). 406 

Furthermore, mean vectors showed substantial variability around the average (see Results), 407 

including examples across all parts of the complex plane describing edge (e.g., x-axes in 408 

insets of Fig 2) and extrema (e.g., y-axes in insets of Fig 2) asymmetries. Taken together, IF 409 

profiles and mean vectors suggest that alpha and beta cycles exist across a wide range of 410 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.16.562636doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.16.562636
http://creativecommons.org/licenses/by-nc/4.0/


23 
 

shapes. This is consistent with recent findings for oscillations in theta (Quinn et al. 2021b) 411 

and beta (Szul et al. 2022, Rayson et al. 2023) bands. 412 

To characterise the different facets of waveform shape, we implemented a recently developed 413 

approach involving identification of waveform motifs via PCA-based decomposition across 414 

individual cycles (Quinn et al. 2021b, Szul et al. 2022, Rayson et al. 2023). The first 5 PCs 415 

from this analysis explained more than 97% of variance in waveform shape for both alpha 416 

and beta modes, with the majority of this partitioned within PC1 (alpha = 51.9%, beta = 417 

48.9%) and PC2 (alpha = 32.5%, beta = 33.8%). For both modes, these described inversely 418 

related fluctuations in the speed of the first and second half wave (PC1), and ascending and 419 

descending edges (PC2) (Fig 3). Consequently, the first two PCs can be considered to 420 

characterise the dimensions of waveform shape indexed by control point-based measures of 421 

peak-trough and rise-decay asymmetry, respectively (Cole et al. 2017, Cole and Voytek 422 

2019). Importantly, these components recover descriptions of waveform shape that are 423 

consistent with previous studies but were not apparent in the composite IF profile (see 424 

preceding paragraph). Subsequent PCs explained substantially less variance; despite this, they 425 

nonetheless provide additional insight into increasingly subtle fluctuations in waveform 426 

shape, some of which were uniquely influenced by age and/or task (see below), 427 

demonstrating the potential value of the information they contain.  428 

Age and task uniquely influence specific facets of waveform shape. 429 

Scores associated with each PC described the extent to which different waveform motifs 430 

contributed to each cycle. Comparing scores between age groups and task conditions 431 

therefore allowed us to examine if/how each dimension of waveform shape is sensitive to 432 

different motor paradigms, and if the nature of this relationship is altered by advancing age. 433 

These comparisons identified several PCs that were significantly modulated (Fig 4), revealing 434 

differences between groups that were dependent on reaction phase (e.g., beta PC2), in 435 
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addition to those that were not (e.g., alpha PC4). Consequently, our results suggest that 436 

examining waveform shape in this way provides novel insight into the neurophysiological 437 

effects of ageing within the motor system. A caveat to this conclusion is that PC scores were 438 

unrelated to motor performance assessed via reaction time, which limits the functional 439 

implications we can infer. However, several factors could have contributed to this lack of 440 

correlation, and we do not believe it demonstrates functional irrelevance per se. For example, 441 

using a similar PCA-based approach, two recent studies showed that task-dependent changes 442 

in beta bursts were limited to specific centiles of PC scores, with greater modulation apparent 443 

in scores further from the median (Szul et al. 2022, Rayson et al. 2023). Consequently, 444 

examination of different points within the spectrum of shape described by each PC (e.g., Fig 445 

3) may have provided additional information with respect to functional relevance. We 446 

decided against similar analyses within the current study, mostly because the narrow post-go 447 

time window (within which the largest effects were apparent) only allowed identification of a 448 

relatively small number of cycles which would not be amenable to further subdivision. A 449 

related point is that both pre-go and post-react periods were relatively prolonged, which may 450 

have obscured changes in shape related to task performance. Our decision to examine wide 451 

time windows stemmed from the exploratory nature of this project and our desire to 452 

maximise the number of oscillatory cycles available for analysis. Future work will therefore 453 

need to examine specific time windows that can be expected to relate more directly to task 454 

performance.  455 

Alternatively, it may be that the neurophysiological processes contributing to the examined 456 

dimensions of waveform shape are unrelated to the elements of performance indexed by 457 

reaction time, which represents a relatively gross measure of motor function. Our decision to 458 

use open-source data for this project meant that the way in which performance was assessed 459 

was largely predetermined. However, this point clearly demonstrates the need for further 460 

examination in future studies using alternative motor tasks. It will be of particular benefit to 461 
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implement tasks that include extended reaction periods where the temporal evolution of 462 

waveform shape can be examined in greater detail. This is supported by our supplementary 463 

plots of PC scores over time; while the reduced sample density within the post-go period 464 

means these must be interpreted with caution, they nonetheless demonstrate substantial 465 

fluctuations not captured by the main analysis (see supplementary figures S2-S5).  466 

While the neurophysiological processes driving waveform shape are not well understood, the 467 

developing literature has identified several contributing mechanisms. For example, seminal 468 

work used multimodal evidence (local field potentials, MEG, modelling) in animal and 469 

human data to show that the shape of somatosensory beta bursts are driven by synchronous 470 

thalamic inputs to proximal and distal dendrites of pyramidal neurons (Sherman et al. 2016), 471 

and recent work with MEG supports a similar mechanism in human motor cortex (Bonaiuto 472 

et al. 2021). Furthermore, Cole and Voytek (2018) used hippocampal recordings in rodents to 473 

show that non-sinusoidal features of theta cycles relate to synchronisation, activation 474 

sequence, and firing rate in pyramidal neurons and interneurons; recent work from Garcia-475 

Rosales et al. (2023) also demonstrated the importance of synchronisation within local 476 

spiking activity for driving the shape of delta cycles within the fronto-auditory circuit of bats. 477 

Finally, Marshall et al. (2022) recently showed that application of transcranial direct current 478 

stimulation changes one half-wave of gamma cycles (recorded from human visual cortex with 479 

MEG), and used biophysical modelling to show that altered excitability of layer 5 pyramidal 480 

cells could explain their results. Taken together, this literature demonstrates that waveform 481 

shape reflects the structure and dynamics of local cortical networks, and their modulation by 482 

interconnected areas. The details of this largely remain to be determined, and likely reflect 483 

varied processes across different brain areas (e.g., Garcia-Rosales et al. 2023), making it 484 

difficult to speculate about their relation to the specific changes in waveform shape we report 485 

here. Nonetheless, it seems reasonable to suggest that our results may reflect task- and age-486 

dependent changes in cortical network activity/connectivity. Further exploration of the 487 
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mechanisms underpinning variations in waveform shape, possibly via pharmaceutical 488 

intervention or the application of non-invasive brain stimulation, will be critical for 489 

understanding the effects reported here.  490 

Instantaneous frequency is altered in older adults. 491 

Age-related comparisons of IF suggested that older adults showed an increase in cycle 492 

frequency for the alpha mode but decrease in cycle frequency for the beta mode. These 493 

outcomes contrast with previously reported effects of older age on the peak frequency of 494 

alpha and beta oscillations (see Introduction), derived using Fourier-based methods. Given 495 

that, within the current study, estimates of peak frequency using Welch’s method were highly 496 

comparable for both the raw data and the alpha IMF (Fig 1), this outcome is unlikely to 497 

reflect an artifact of EMD. It is also important to note that phase-aligned IF data were 498 

demeaned prior to PCA, meaning that our analysis of waveform motifs was not influenced by 499 

between-group differences in IF. That being said, Fourier-based estimates of peak frequency 500 

and Hilbert-Huang based estimates of IF cannot be considered to provide the same 501 

information about oscillatory activity (Huang et al. 1996, Huang et al. 1998, Huang et al. 502 

2009). In particular, Fourier based methods assume a linear and stationary signal (in contrast 503 

to the non-stationary nature of EEG), whereas estimates of IF are sensitive to the intra- and 504 

inter-wave fluctuations which are present in EEG data (Lo et al. 2009). Consequently, 505 

previously reported effects of age on oscillatory frequency (as calculated using Fourier-based 506 

techniques) have a temporal resolution that is limited by the length of the time window over 507 

which the Fourier transform was applied. In contrast, the IF data reported here were estimated 508 

directly from the narrowband IMFs via the differentiation of phase, and therefore resolve 509 

fluctuations in frequency on a much higher temporal scale (i.e., the level of individual 510 

oscillatory cycles). In addition to differences in temporal resolution, these techniques are also 511 

differentiated by the way in which they isolate oscillatory activity: conventional approaches 512 

using Fourier methods quantify activity within a priori bands, whereas analyses of IF can 513 
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include a much broader range of frequency values. Taken together, the previous and current 514 

examinations of age-related changes in oscillation frequency likely interrogate different 515 

characteristics of the underlying generators, possibly relating to different timescales of 516 

variability.  517 

In conclusion, the current study examined how the shape of oscillations within the alpha and 518 

beta bands varied in young and older adults as they performed SRT and GNG reaction time 519 

tasks. To achieve this, we implemented an analysis pipeline that characterised waveform 520 

shape based on within-cycle fluctuations in phase-aligned IF, which were subsequently 521 

decomposed into waveform motifs using PCA. Comparisons of motif scores identified 522 

several dimensions of shape that were influenced by age and/or task, possibly providing 523 

unique insight to cortical activity and connectivity associated with motor function in young 524 

and older adults. Future work that further examines how these fluctuations in shape relate to 525 

performance, in addition to the underlying mechanisms, will be important for identifying how 526 

this information can be used to understand age-related changes in the brains motor networks, 527 

and to inform new methods for influencing motor function in the elderly.   528 

Data availability 529 

Pre-processed EEG data and code used within analyses of the current study is available from 530 

https://osf.io/ctq98/. 531 

 532 
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