

Healthy ageing influences how the shape of alpha and beta oscillations change during reaction time tasks.

George M Opie¹, James M Hughes² & Rohan Puri³

1. Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
2. School of Mechanical Engineering, The University of Adelaide, Adelaide, Australia
3. School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia

Correspondence:

George M. Opie

Email: george.opie@adelaide.edu.au

Acknowledgements

The authors would like to thank Dr Andrew Quinn for useful advice on implementation of the waveform analysis pipeline. GMO was supported by a discovery early career research award from the Australian Research Council (DE230100022).

1 Abstract

2 Age-related changes to the power and frequency of the brains oscillatory activity have been
3 reported by an extensive literature. In contrast, the influence of advancing age on the *shape* of
4 oscillation waveforms, a characteristic with increasingly recognised physiological and
5 functional relevance, has not been previously investigated. To address this, we examined the
6 shape of alpha and beta band oscillations from electroencephalography (EEG) data recorded
7 during performance of simple and go/no-go reaction time tasks in 33 young (23.3 ± 2.9 years,
8 27 females) and 27 older (60.0 ± 5.2 years, 23 females) adults. The shape of individual cycles
9 was characterised using instantaneous frequency, and then decomposed into waveform motifs
10 using principal component analysis. This analysis identified four principal components (one
11 from the alpha band, 3 from the beta band) that were uniquely influenced by the different
12 motor tasks and/or age. These each described different dimensions of shape and tended to be
13 modulated during the reaction phase of each task. However, the way in which each facet of
14 shape varied during the task was unrelated to motor performance, indexed via reaction time,
15 in either group or band. Our results suggest that although oscillation shape is task-dependent,
16 the nature of this effect is altered by advancing age. While these outcomes demonstrate the
17 utility of this approach for understanding the neurophysiological effects of ageing, future
18 work that more clearly links these outcomes with function will be critical.

19

20 Introduction

21 While the ageing process is associated with many changes to functional capacity, deficits
22 within the motor system can have some of the most significant impact on independence and
23 quality of life. Although the factors that drive these deficits remain poorly understood, there
24 is good evidence that changes in brain dynamics are an important element. In particular,
25 numerous studies have examined how the brain's oscillatory activity – which is seen as
26 rhythmic fluctuations in its electrical potential/magnetic field strength – is altered by age.
27 This literature suggests substantial changes associated with ageing, including reductions in
28 power and peak frequency within the alpha band (~8-13 Hz; Chiang *et al.* 2011, Barry and De
29 Blasio 2017, Scally *et al.* 2018, Sghirripa *et al.* 2021, Merkin *et al.* 2023, Tröndle *et al.*
30 2023), in addition to increased power (Rossiter *et al.* 2014, Heinrichs-Graham and Wilson
31 2016, Barry and De Blasio 2017, Heinrichs-Graham *et al.* 2018, Rempe *et al.* 2022) and
32 frequency (Zhong and Chen 2022) in the beta band (~14-30 Hz). Importantly, these changes
33 have been associated with deficits in motor function, including reduced skill learning (Rueda-
34 Delgado *et al.* 2019), reaction time (Van Hoornweder *et al.* 2022b) and accuracy (Van
35 Hoornweder *et al.* 2022a). Furthermore, altered oscillatory activity has also been associated
36 with motor pathologies common in older adults, such as Parkinson's disease (Little *et al.*
37 2012, De Hemptinne *et al.* 2013, De Hemptinne *et al.* 2015, Cole *et al.* 2017). Age-related
38 changes in oscillatory activity therefore appear to be a functionally relevant element of
39 ageing, and may have potential as biomarkers of age-related degradation, or accumulating
40 pathology.

41 Although effects of age on oscillatory activity are supported by numerous studies, outcomes
42 have also been variable. For example, previous work has failed to replicate the often reported
43 age-related reduction in alpha frequency (Polich 1997, Gaál *et al.* 2010, Caplan *et al.* 2015,
44 Zhong and Chen 2022), whereas effects of age on both frequency and amplitude may be

45 confounded by age-related changes in non-oscillatory activity also present in EEG recordings
46 (Donoghue *et al.* 2020, Merkin *et al.* 2023, Tröndle *et al.* 2023). This variability limits the
47 utility of oscillatory metrics for understanding the ageing process and challenges their clinical
48 application. One factor that may contribute to this variability is the way in which oscillatory
49 activity has been assessed. The conventional approach to quantifying neuronal oscillations
50 generally involves characterising their frequency or amplitude via Fourier-based methods
51 applied to time series data that generally involve several minutes of recordings. However, this
52 approach overlooks important features of oscillations that are only apparent in the time
53 domain. In particular, the developing literature shows that examination of waveform *shape*
54 can provide information that is physiologically and functionally relevant. For example, recent
55 work suggests that a given oscillatory cycle can be characterised relative to a range of
56 waveform motifs, with cycle-by-cycle variations in the relative contribution of different
57 motifs driving variability in shape (Quinn *et al.* 2021b, Szul *et al.* 2022, Rayson *et al.* 2023)
58 and having different relationships with movement (Szul *et al.* 2022, Rayson *et al.* 2023) and
59 function (Quinn *et al.* 2021b). Furthermore, research in Parkinson's disease supports the
60 clinical utility of examining waveform shape. Specifically, the shape of beta oscillations is
61 significantly altered in patients off medication (Cole *et al.* 2017, Jackson *et al.* 2019), but this
62 is corrected by medication (Jackson *et al.* 2019) or deep brain stimulation (Cole *et al.* 2017).
63 While the developing literature demonstrates the utility of examining the shape of oscillatory
64 activity at the level of individual cycles, it remains to be investigated if this approach is
65 sensitive to the neurophysiological and functional changes associated with advancing age.
66 Within the current study, we aimed to address this limitation. The shape of oscillatory activity
67 recorded at rest, or while performing a simple or go/no-go reaction time task, was quantified
68 and compared between young and older adults. This was achieved by using a recently
69 established methodology (Quinn *et al.* 2021b), within which empirical mode decomposition

70 (EMD) facilitates extraction of multiple narrowband waveforms for individual cycles of the
71 target oscillation. Subsequent application of principal component analysis (PCA) then
72 identifies dominant waveform motifs. Given the well-established effects of ageing on
73 conventional measures of oscillatory activity within the alpha and beta bands (see above),
74 these served as the bands of interest within the current study.

75 **Methods & Methods**

76 Dataset.

77 The electroencephalography (EEG) recordings analysed in the current study were obtained
78 from a recently described open access dataset (Ribeiro and Castelo-Branco 2019). This study
79 recruited 36 young (mean age \pm SD: 23.1 ± 2.8 years; 29 females) and 39 older (mean age \pm
80 SD: 60.4 ± 5.2 years; 31 females) adults to participate in a single session, within which EEG
81 was recorded in different conditions (see below). A number of participants within this dataset
82 presented signal noise that would have required low-pass filtering to remove. As this type of
83 processing can be expected to influence the shape of the EEG recording (de Cheveigné and
84 Nelken 2019), and given our primary interest in quantifying waveform shape, we therefore
85 decided to exclude these participants from the analyses. Consequently, the current study
86 examined data from a subset of 60 participants, including 33 young (mean age \pm SD: $23.3 \pm$
87 2.9 years; 27 females) and 27 older (mean age \pm SD: 60.0 ± 5.2 years; 23 females) adults. All
88 experimentation was performed in accordance with the Declaration of Helsinki, participants
89 provided written, informed consent prior to inclusion, and the protocol was approved by the
90 Ethics Committee of the Faculty of Medicine at the University of Coimbra.

91 Experimental Task.

92 Participants completed a cued reaction time task, which required a button press with the right
93 index finger (or no response, depending on the condition) in response to auditory stimuli. A

94 passive listening condition involving 30 trials was first completed, wherein participants were
95 exposed to the auditory tones to be used in the active conditions but were not required to
96 respond (hereafter referred to as ‘rest’). Following this, simple (SRT) and go/no-go (GNG)
97 reaction time tasks were completed, the order of which was counterbalanced between
98 participants. During the SRT, a cue tone (indicating the start of the trial) was followed at a
99 variable interval by a ‘go’ tone for a total of 100 trials. During the GNG, a cue tone was
100 followed at a variable interval by either a ‘go’ tone, requiring a button press response (80
101 trials), or a ‘no-go’ tone, requiring participants to withhold a response (20 trials). For both
102 SRT and GNG, 20 catch trials were also included, in which the cue tone was not followed by
103 any further tone. Between trials, participants fixated on a cross displayed on a screen in front
104 of them. Slow trials were defined as a reaction time exceeding 700 ms, feedback on which
105 was provided to participants by a different tone. The inter-trial interval ranged from 6.7 s to
106 19.6 s, with a median value of 7.6 s.

107 Electroencephalography (EEG) acquisition and pre-processing.

108 EEG was recorded with a Neuroscan system via 64 electrodes in standard 10-20 locations.
109 The signal was referenced to a location between CPz and Cz, the ground was located between
110 FPz and Fz, and data were digitized at a rate of 500 Hz. Pre-processing used custom scripts
111 on the Matlab platform (R2021b, Mathworks, USA) with EEGLAB (v2022.1)(Delorme and
112 Makeig 2004) and TESA (v 1.1.1)(Rogasch *et al.* 2017) toolboxes. Slow drifts in the signals
113 were first removed by high-pass filtering above 1 Hz using the *pop_eegfiltnew* function. Line
114 noise and its first harmonic (i.e., 50 & 100 Hz) was then attenuated using the EEGLAB
115 CleanLine plugin (Mullen 2012), which uses a multi-tapering approach to remove line noise
116 while minimising signal distortion. Data were then epoched from 500 ms before to 6000 ms
117 after the cue tone. Channels and epochs demonstrating persistent, large amplitude muscle
118 activity or noise were then removed. Following this, independent component analysis (ICA)

119 was run using the FastICA algorithm (Hyvärinen and Oja 2000) and components associated
120 with blinks, muscle activity, eye movement, and electrode noise were identified and removed
121 based on visual inspection of component time course and topography. Missing channels were
122 then replaced using spherical interpolation.

123 Waveform analysis.

124 All subsequent analysis of EEG data focussed on the C3 electrode, given its assumed location
125 over the left sensorimotor cortex (Lefaucheur *et al.* 2017) activated during performance of
126 reaction time tasks involving the right index finger. Furthermore, to facilitate comparisons
127 with the SRT task, only trials from the ‘go’ condition of the GNG task were included in the
128 analysis. Analysis of waveform shape of individual oscillatory cycles was performed
129 according to the pipeline developed recently by Quinn *et al.* (2021b). This involved: (1)
130 application of empirical mode decomposition (EMD) to decompose the recorded broadband
131 signal into discrete narrowband oscillatory modes; (2) identification of individual cycles
132 within oscillations of interest, and phase alignment to allow comparisons of shape between
133 cycles with varying temporal dynamics and (3) application of principal component analysis
134 (PCA) to identify consistent variations in cycle shape as waveform motifs. All analyses were
135 performed in Python 3.10, using v0.4.0 of the EMD package (Quinn *et al.* 2021a) and v1.4.0
136 of the SAILS package (Quinn and Hymers 2020).

137 *Empirical mode decomposition.* EMD uses an iterative sifting process to decompose a
138 broadband signal into narrowband intrinsic mode functions (IMFs), whereby higher
139 frequency components of the signal are progressively extracted and subtracted from the
140 signal. Briefly, maxima and minima of the broadband signal are identified, and upper and
141 lower envelopes of the signal are developed by connecting and interpolating the maxima and
142 minima, respectively. The mean of the overall envelope is then calculated and subtracted

143 from the signal. This process is repeated on the resulting waveform until the criteria defining
144 an IMF are met. These are that the number of zero crossings equals the number of extrema
145 (differing by no more than 1) and the mean of the signal envelope equals zero (Huang *et al.*
146 1998). The first IMF is then subtracted from the original signal and the process is repeated to
147 find the next IMF. Unlike conventional approaches to generating a narrowband signal that
148 assume a sinusoidal waveform, this process conserves the native shape of the target
149 oscillation (Quinn *et al.* 2021b).

150 Within the current study, the EMD algorithm was applied using previously established
151 options (Quinn *et al.* 2021b) and a maximum of 6 IMFs were generated. We applied the
152 masked version of EMD, where a sinusoidal masking frequency is added to the waveform
153 prior to sifting (Deering and Kaiser 2005). This reduces the impact of mode mixing, which
154 refers to situations in which different frequency components are mixed into a single IMF due
155 to noise or intermittent oscillations in the signal (Huang *et al.* 1999). Mask frequencies of
156 120, 64, 32, 11, 7 and 2 Hz were applied, and validated by examination of instantaneous
157 frequency profiles for each IMF (see supplementary figure S1); these showed clean
158 separation between IMFs. Modes corresponding to conventional alpha and beta bands were
159 found in the third (beta) and fourth (alpha) IMFs for all participants.

160 To demonstrate the reliability of the IMFs prior to examination of single cycles, age-related
161 changes in alpha amplitude and peak frequency were compared between estimates derived
162 from the broadband data and the alpha IMF. To increase sensitivity to effects of age on alpha
163 activity, this analysis utilised data derived from the Oz electrode. Broadband and IMF data
164 from individual epochs in the passive listening condition were concatenated to form
165 individual time series, which were then decomposed using Welch's method (8s window
166 length, 50% overlap between windows). Power and frequency values associated with the

167 alpha band (8-13Hz) within each group were then compared between techniques using
168 independent samples t-tests, and the correlation between them was tested with Spearman's
169 rho.

170 *Cycle detection and phase alignment.* Following EMD, individual cycles in the alpha and
171 beta modes were identified based on the instantaneous amplitude and phase of the signal,
172 derived using the normalised Hilbert transform (Quinn et al. 2021b). Cycles were only
173 included in further analyses if their amplitude exceeded the 50th percentile for the mode
174 (Fabus *et al.* 2021, Echeverria-Altuna *et al.* 2022), their phase characteristics met previously
175 defined criteria for a reliable cycle, and they possessed unique control points (i.e.,
176 ascending/descending zero crossings, peak and trough)(Quinn et al. 2021b). The
177 instantaneous frequency (IF) was then calculated for each cycle by taking the first derivative
178 of instantaneous phase with respect to time (Huang *et al.* 2009). Waveform shape was then
179 inferred from the IF of the cycle, wherein within-cycle fluctuations in IF indicate deviations
180 in shape. However, it is not possible to directly compare IF profiles between different
181 oscillations, as it is not clear if comparisons are occurring between consistent features of each
182 cycle (e.g., comparing values from the peak of each cycle)(Quinn et al. 2021b). Identified
183 cycles were therefore aligned to a common phase space, producing phase-aligned IF profiles
184 that were directly comparable between oscillation cycles (Quinn et al. 2021b). To quantify the
185 extent to which individual cycles deviated from a sinusoidal shape, phase-aligned IF profiles
186 were projected onto the complex plane and a mean vector was calculated, with non-zero
187 values indicating a non-sinusoidal shape. Real and imaginary values derived from individual
188 cycle mean vectors (reflecting ascending-descending and peak-trough asymmetry,
189 respectively) were compared to 0 using single sample t-tests (Quinn et al. 2021b).

190 *Principal component analysis.* The final step of the waveform analysis was to characterise the
191 variability in waveform shape across cycles by submitting the phase-aligned IF profiles to
192 PCA. The principal components (PCs) derived from this analysis can be viewed as waveform
193 motifs describing major sources of variance relative to the mean instantaneous frequency
194 profile. Furthermore, the scores describe the extent to which each PC contributes to a given
195 cycle. The first 5 PCs within each frequency mode explained > 97% of variance in IF and
196 were used for further analysis.

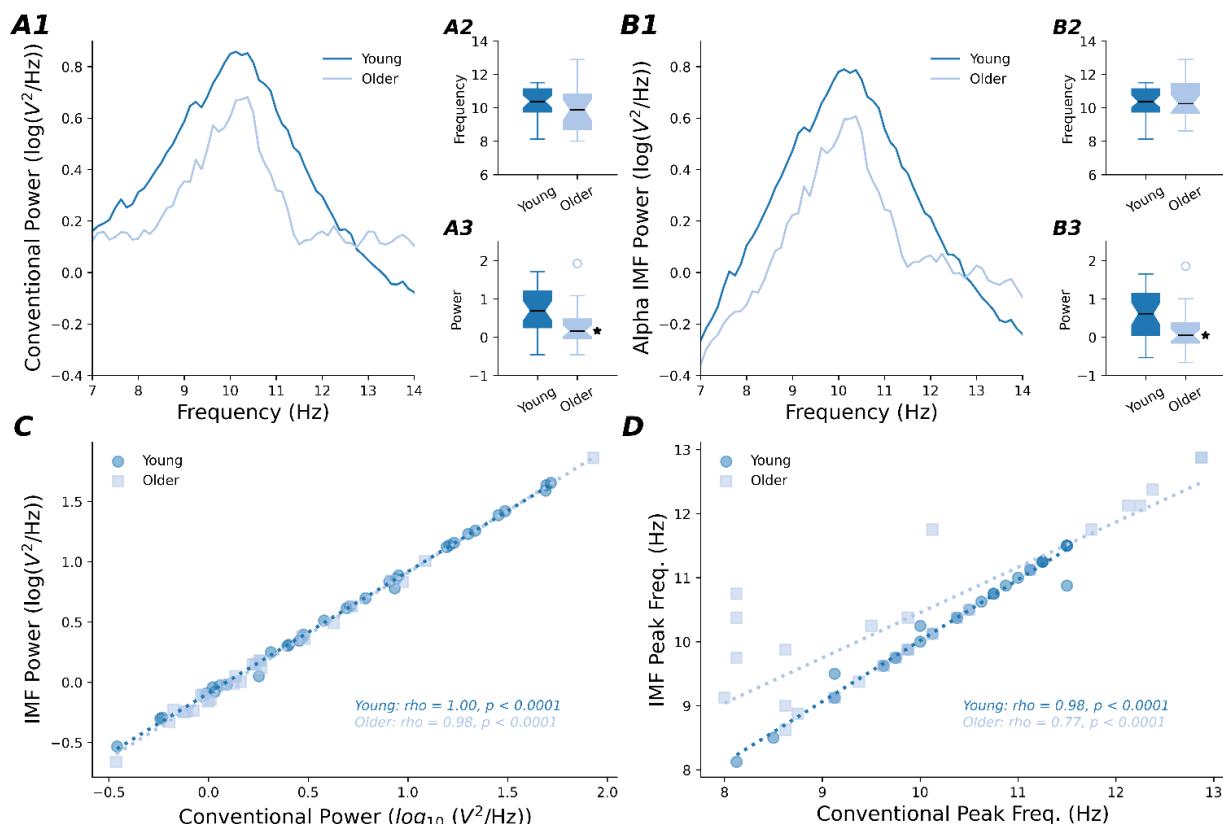
197 *Statistical analyses.*

198 Given recent evidence for temporal variance in waveform shape during a motor task (Szul et
199 al. 2022, Rayson et al. 2023), a time factor was included for all analyses of cycle features.
200 This categorised cycles as occurring either before (pre-go) or after (post-go) the go stimulus,
201 or after the button press (post-react). Within each band, effects of task condition (rest, SRT_{pre-}
202 go, SRT_{post-go}, SRT_{post-react}, GNG_{pre-go}, GNG_{post-go}, GNG_{post-react}) and group (young, older) on
203 mean within-cycle phase aligned IF and PC score were assessed using Bayesian generalised
204 linear mixed models (GLMMs), resulting in 12 models being run (i.e., one model for phase
205 aligned IF and one model for each of the first 5 PCs, within both alpha and beta bands).
206 Within each model, a student's *t* distribution and an identity link function were applied. The
207 maximal random effects structure allowed by the data was used (i.e., by-participant random
208 intercepts and slopes)(Barr 2013). Potential relationships between PC scores and performance
209 (indexed by reaction time [RT]) were then investigated. For each trial, PC scores within each
210 time point (i.e., pre-go, post-go and post-react) were summarised using the coefficient of
211 variation and median. These were then correlated with RTs using robust Bayesian correlations
212 (<https://baezortega.github.io/2018/05/28/robust-correlation/>).

213 All posterior distributions were estimated with the No-U-Turn-Sampler (NUTS) extension of
214 Hamiltonian MCMC, implemented within the BRMS package (Bürkner 2017). Each model
215 was run using 4 independent chains with 1000 warm up and 3000 post-warm up samples
216 (total of 12,000 post-warm up samples) and default flat priors. Chain convergence was
217 assessed by ensuring Rhat values were < 1.1 , in addition to visual inspection of post-warm up
218 samples (Gelman and Rubin 1992). Posterior predictive checks were conducted to ensure
219 simulated data matched observed data (Gabry *et al.* 2019). After model fitting, the *emmeans*
220 package (Lenth 2023) was used to generate custom contrasts; these included within- and
221 between-subject effects for all dependent variables, in addition to interaction contrasts where
222 relevant. Within these comparisons, effect *existence* was described using the probability of
223 direction (*pd*), which reports the proportion of the posterior with the same sign as the median
224 and ranges from 50% to 100% (Makowski *et al.* 2019). Effect *significance* was assessed by
225 examining how far the posterior distribution for each contrast deviated from a region
226 including zero (i.e., no practical difference). To achieve this, a region of practical equivalence
227 (ROPE) was first defined; this refers to a range of values centred around zero that would be
228 considered as practically equivalent to no difference for that contrast. Within the current
229 study, this was set as $\pm 5\%$ of the standard deviation (SD)(Kruschke 2018). The 89% highest
230 density interval (HDI; i.e., the range which contains 89% of the posterior distribution) was
231 then identified, and the extent to which it overlapped the ROPE was used to make a decision
232 regarding the null hypothesis. The null hypothesis of no difference was accepted if the 89%
233 HDI fell completely inside the ROPE or rejected if it fell completely outside the ROPE. In
234 contrast, no decision was made if the 89% HDI partially overlapped the ROPE. (Kruschke
235 2018, Puri *et al.* 2023).

236 **Results**

237 As an initial step, measures of oscillatory activity provided by EMD were validated against
 238 those provided by conventional approaches to spectral analysis. This was achieved by
 239 applying Welch's method to both the alpha mode and the broadband data, and comparing
 240 estimates of alpha frequency and amplitude. For both techniques, while there was no
 241 significant difference in peak frequency between groups (broadband: $t_{58} = 1.0, p = 0.3$; alpha
 242 IMF: $t_{58} = 0.5, P = 0.6$; Fig 1A2 & 1B2), power was significantly reduced in older adults
 243 (broadband: $t_{58} = 2.8, p = 0.008$; alpha IMF: $t_{58} = 2.90, P = 0.005$; Fig 1A3 & 1B3).
 244 Furthermore, estimates of both frequency (young: $\rho = 0.98, p < 0.0001$; older: $\rho = 0.77, p$
 245 < 0.0001) and power (young: $\rho = 0.99, P < 0.0001$; older: $\rho = 0.98, p < 0.0001$) were
 246 highly correlated between techniques (Fig 1C & 1D). These results support the reliability of
 247 the IMFs extracted by EMD.



248 **Figure 1. Alpha oscillation characteristics derived from broadband and IMF data. (A,**
 249 **B)** Alpha band (8-13 Hz) characteristics quantified by application of Welch's method to
 250 broadband data (A) and the alpha IMF (B). Power spectral density curves (A1, B1), peak
 251 frequency (A2, B2), and power (A3, B3) are compared between groups. (C, D) Correlations
 252 between the estimates of power (C) and peak frequency (D) derived from each method. * $P <$
 253 0.05 when compared to the young group.

254 *Mean within-cycle instantaneous frequency varies between tasks and groups.*

255 Table 1 shows IF values for each group, task, and band, averaged over cycle phase. Between-
256 group comparisons of alpha frequency showed higher values in older participants that were
257 consistent (all $pd > 98.9\%$) and significant (all 0% in ROPE) for all tasks and time points. For
258 older participants in both GNG and SRT tasks, consistent (all $pd > 99.4\%$) and significant (all
259 0% in ROPE) reductions in frequency were observed during the post-go period, relative to
260 pre-go, post-react, as well as to the rest condition. Furthermore, reductions in frequency
261 relative to the rest condition were consistent and significant for SRT_{pre-go} ($pd = 99.3$, 0% in
262 ROPE). Also, interaction contrasts suggested that reductions in alpha frequency during the
263 post-go period of the RT task (relative to pre-go, post-react, and rest) and GNG task (relative
264 to post-react only) were significantly and consistently (all $pd > 99.2\%$, 0% in ROPE for all
265 comparisons) greater in older compared to young adults. All other within-group comparisons
266 were inconsistent and failed to provide sufficient evidence to accept or reject the null
267 hypothesis (all $pd < 98.2\%$, all % in ROPE between 3.3% and 73.2%).

268 Between-group comparisons of beta frequency showed lower values in older participants that
269 were consistent (all $pd > 96.6\%$) and significant (all 0% in ROPE) for all tasks and time
270 points. Within-group comparisons for young and older adults separately showed that
271 frequency during both GNG and SRT was increased at the post-go time point, relative to pre-
272 go and post-react, and these differences were consistent (all $pd > 98.1\%$) and significant (all
273 0% in ROPE). For older participants, frequency during post-go was increased relative to rest
274 for both GNG ($pd = 98.4\%$, 0% in ROPE) and SRT ($pd = 98.3\%$, 0% in ROPE). For young
275 participants, frequency during post-go was significantly increased relative to rest for GNG
276 ($pd = 98.1\%$, 0% in ROPE), whereas SRT showed a relatively consistent increase ($pd =$
277 93.5%) that failed to reach a practical level of significance (4% in ROPE). Furthermore,
278 frequency during the post-react period was reduced relative to pre-go, and this was consistent

279 (pd > 99.9%) and significant (all 0% in ROPE) for GNG and SRT in both groups. All other
280 comparisons were inconsistent and failed to provide sufficient evidence to accept or reject the
281 null hypothesis (all pd < 84.9%, all % in ROPE between 9.4% and 21.1%).

282

Table 1. Effects of task on mean within-cycle instantaneous frequency

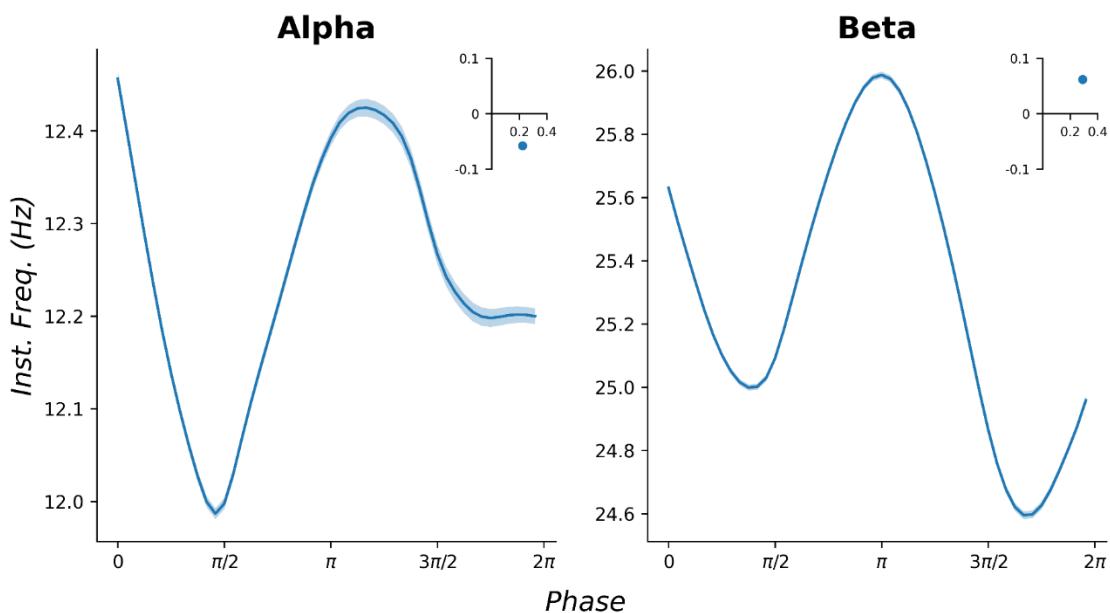
		Rest	GNG			SRT		
			Pre-go	Post-go	Post-react	Pre-go	Post-go	Post-react
Alpha	Young	11.1 [10.8, 11.3]	11.2 [10.9, 11.5]	11.1 [10.8, 11.4]	11.2 [10.9, 11.5]	11.1 [10.8, 11.3]	11.0 [10.8, 11.3]	11.1 [10.8, 11.3]
	Older	12.4 [11.9, 13.0]	12.3 [11.8, 12.8]	12.0 [11.5, 12.4] ^{†*}	12.4 [11.9, 12.9]	12.1 [11.6, 12.5] [*]	11.8 [11.3, 12.2] ^{†*}	12.4 [11.9, 12.9]
Beta	Young	25.2 [24.8, 25.5]	25.3 [24.9, 25.8]	25.6 [25.2, 26.1] ^{†*}	25.1 [24.7, 25.5] [‡]	25.3 [24.9, 25.6]	25.6 [25.2, 25.9] [‡]	24.9 [24.6, 25.3] [‡]
	Older	24.0 [23.5, 24.6]	24.1 [23.6, 24.6]	24.7 [24.2, 25.2] ^{†*}	23.8 [23.3, 24.3] [‡]	24.2 [23.6, 24.7]	24.8 [24.2, 25.4] ^{†*}	23.8 [23.3, 24.3] [‡]

Values are shown as median [lower 89% HDI, upper 89% HDI]. [†]Consistent and significant difference, relative to pre-go; [‡]Consistent and significant difference relative to pre-go and post-go;

*Consistent and significant difference relative to rest.

283 *Alpha and beta waveforms are non-sinusoidal.*

284 Figure 2 shows alpha and beta IF as a function of phase, collapsed over group and task. For
285 alpha cycles, the mean profile suggested that peak frequency of ~12.4 Hz tended to occur
286 during the zero crossings, but dropped to ~12.0 Hz during the peak (Fig 2, left panel),
287 consistent with a waveform having a broadened peak. In support of this, examination of mean
288 vectors indicated positive x-axis (mean \pm SD = 0.22 ± 0.74) and negative y-axis (mean \pm SD
289 = -0.057 ± 1.23) values, both of which were significantly different to zero (x-axis: $t_{204,796} =$
290 136.5, $P < 0.0001$; y-axis: $t_{204,796} = -21.3$, $P < 0.0001$) (see inset of Fig 2, left panel). For beta
291 cycles, the mean profile suggested that peak frequency of ~26 Hz occurred during the
292 descending zero crossing but dropped to ~24.6 Hz just after the trough (Fig 2, right panel),
293 consistent with a waveform having a fast descending edge and broadened trough. Mean
294 vectors for the beta profile were positive (x-axis mean \pm SD = 0.29 ± 1.35 ; y-axis mean \pm SD
295 = 0.062 ± 1.62) and significantly different to zero (x-axis: $t_{277,684} = 113.7$, $P < 0.0001$; y-axis:
296 $t_{277,684} = 20.1$, $P < 0.0001$) (see inset of Fig 2, right panel).



297 **Figure 2. Phase aligned instantaneous frequency.** Main panels show mean phase-aligned
298 IF profiles for alpha (left) and beta (right) modes, whereas insets show mean vectors. Data
299 are collapsed over age group and task; shaded section represents standard error of the mean.

300

301 *Waveform motifs are differentially influenced by task and group.*

302 Figure 3 shows IF profiles and normalised waveforms for the first 5 components generated by

303 PCA. These explained > 97% of variance in IF for both bands and described increasingly

304 complex elements of waveform shape. For example, while PC1 described opposing variations

305 in the speed of the ascending/descending half waves, and PC2 described opposing variations

306 in the speed of the ascending/descending edges, subsequent PCs instead related to

307 increasingly fractionated facets of cycle phase. Investigation of group, task, and time-point

308 effects on between-cycle variance for each score identified 4 components of interest: alpha

309 PC4 and beta PC1, PC2, and PC3 (Figure 4).

310

311 For alpha PC4 in the SRT task, scores in older adults during the pre-go period were increased

312 relative to the young group ($pd = 98.1\%, 0\%$ in ROPE; Fig 4A, left panel). While increases in

313 older adults were also consistent for the post-go ($pd = 97.2\%$) and post-react ($pd = 97.4\%$)

314 SRT periods, there was partial overlap with the ROPE (0.4% and 1.5% in ROPE,

315 respectively). All other contrasts were inconsistent and failed to provide sufficient evidence

316 to accept or reject the null hypothesis (all $pd < 95.34\%$, all % in ROPE between 17.0% and

317 97.7%). For beta PC1 in the SRT task, scores in young participants during the post-go period

318 were reduced relative to both pre-go ($pd = 98.0\%, 0\%$ in ROPE) and post-react ($pd = 97.0\%$,

319 0% in ROPE; Fig 4B, left panel). All other contrasts were inconsistent and failed to provide

320 sufficient evidence to accept or reject the null hypothesis (all $pd < 91.3\%$, all % in ROPE

321 between 4.87% and 25.4%). For beta PC2 of the SRT task, scores in older participants during

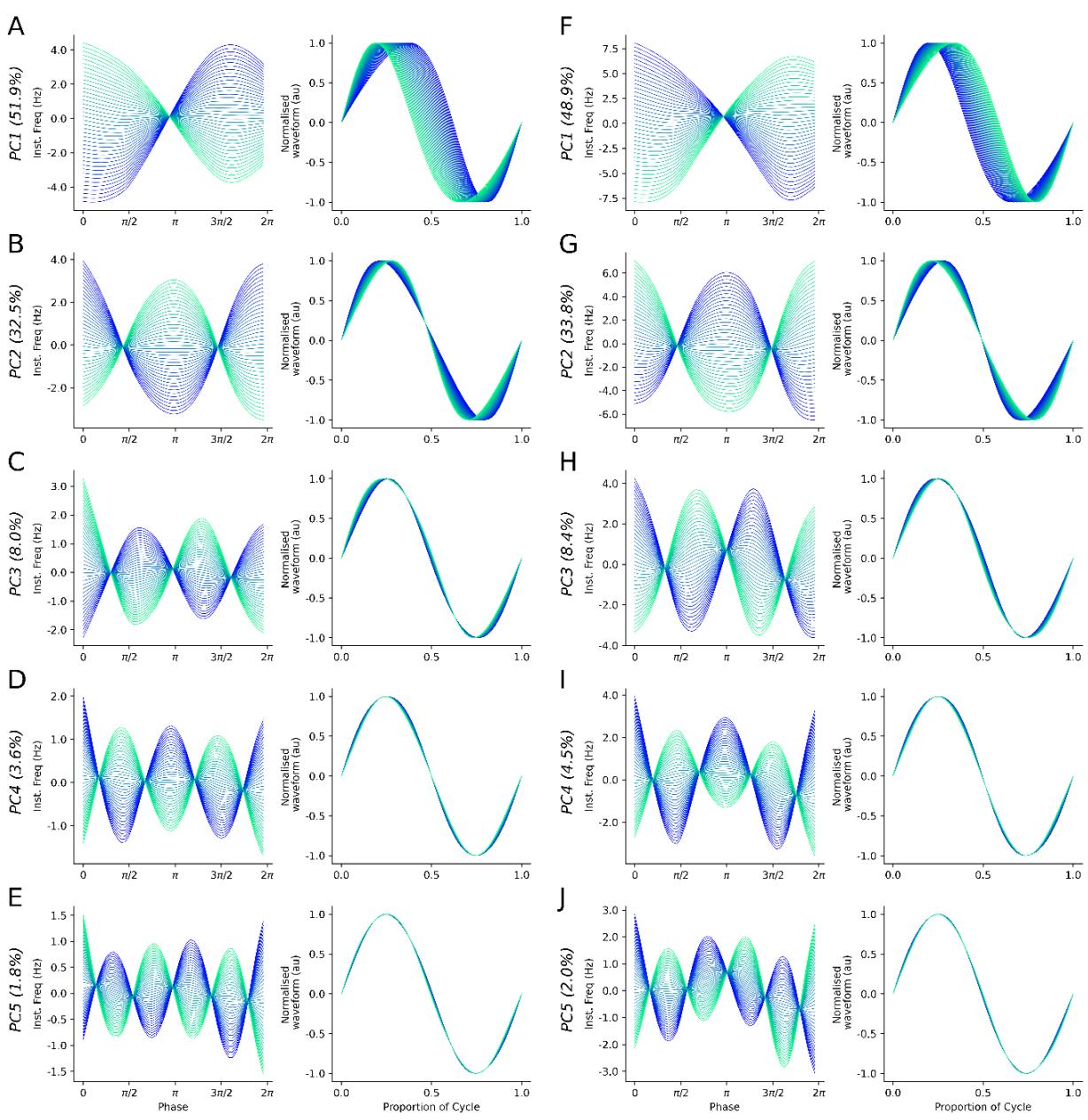
322 the post-go period were increased relative to pre-go ($pd = 98.6\%, 0\%$ in ROPE), post-react

323 ($pd = 99.5\%, 0\%$ in ROPE; Fig 4C, left panel), and rest ($pd = 99.1\%, 0\%$ in ROPE).

324 Furthermore, interaction contrasts showed that increases in score during the post-go period

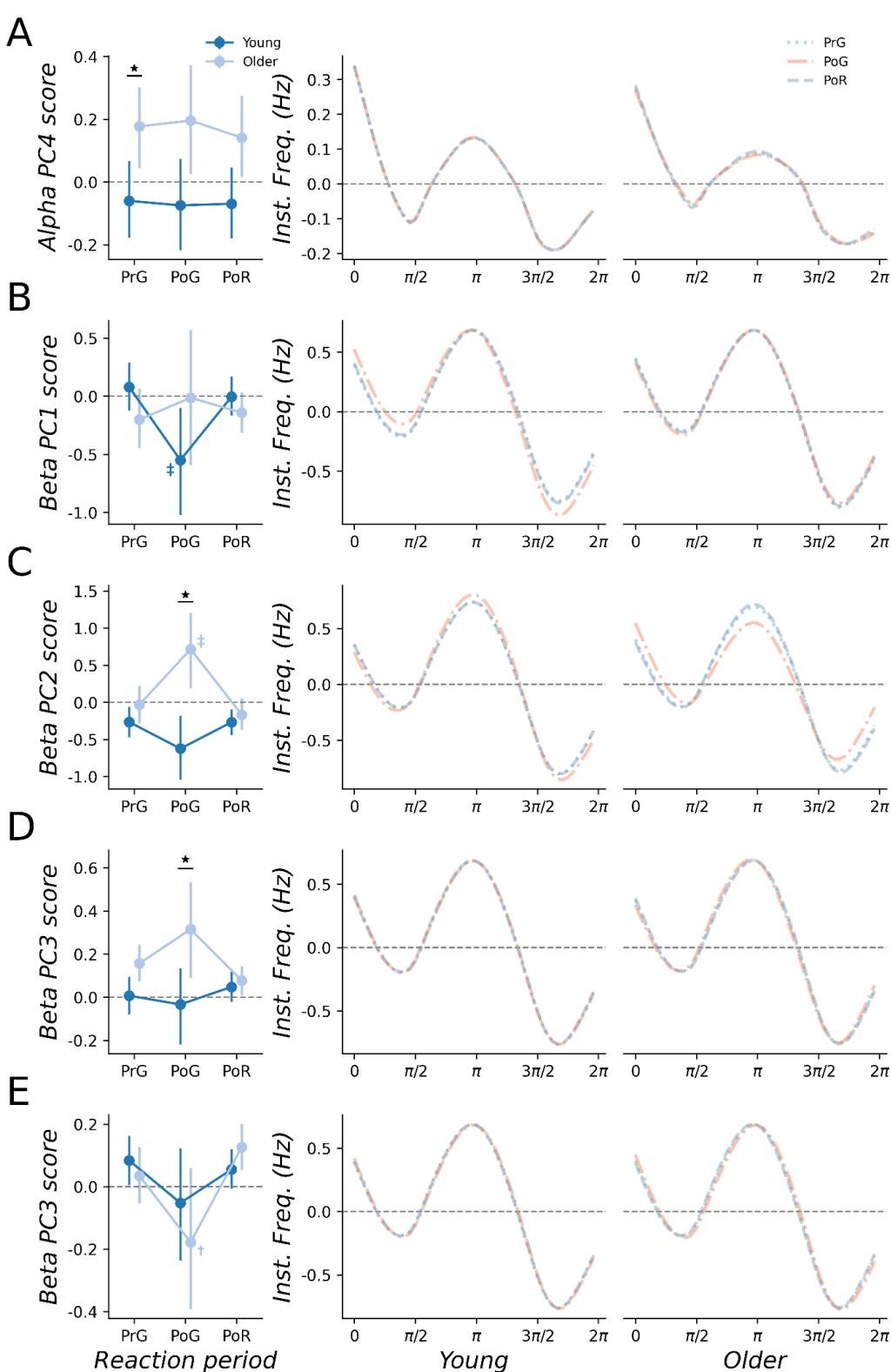
325 (relative to pre-go, post-react, and rest) were consistently and significantly greater in older

326 adults compared to young adults (all $pd > 99.6\%$, 0% in ROPE for all comparisons). In
327 addition, between-group comparisons for the post-go period showed larger scores in older
328 adults that were consistent ($pd = 99.9\%$) and significant (0% in ROPE). All other contrasts
329 were inconsistent and failed to provide sufficient evidence to accept or reject the null
330 hypothesis (all $pd < 93.2\%$, all % in ROPE between 4.2% and 33.5%). For beta PC3 in the
331 SRT task, scores in older participants during the post-go period were increased relative to the
332 young group ($pd = 97.6\%$, 0% in ROPE; Fig 4D, left panel). Between-group comparisons for
333 the pre-go period also showed consistent increases in the older group, but these were not
334 practically significant (4.7% in ROPE). In addition, the older group showed a consistent (pd
335 = 95.6%) increase in PC3 scores in post-go relative to post-react, but this was not practically
336 significant (4.0% in ROPE). For PC3 in the GNG task, scores in older adults during the post-
337 go period were reduced relative to post-react ($pd = 98.1\%$, 0% in ROPE; Fig 4E, left panel)
338 and rest ($pd = 97.5\%$, 0% in ROPE). All other contrasts were inconsistent and failed to
339 provide sufficient evidence to accept or reject the null hypothesis (all $pd < 97.6\%$, all % in
340 ROPE between 4.0% and 61.0%).



341

342 **Figure 3. Principal components of waveform shape. (A-J, left panel)** Demeaned IF
 343 profiles for the first 5 principal components, plotted from the first percentile (blue lines,
 344 negative scores) to the ninety-ninth percentile (green line, positive scores) of scores observed
 345 for each component. **(A-J, right panel)** Normalised waveforms generated by the IF profiles
 346 for each PC score, demonstrating the influence of each PC on waveform shape. Components
 347 for the alpha mode are shown in the left column, whereas components for the beta mode are
 348 shown in the right column. The bracketed value after the PC label shows the percentage of
 349 variance explained by that component.



351 **Figure 4. Waveform shape is altered by age and task. (A-E, left panel)** Median PC scores
352 compared between reaction phases and groups (young: dark blue; older: light blue) for the
353 SRT (A-D) and GNG (E) tasks. Error bars indicate 89% HDI. *Significant and consistent
354 difference between groups; †Significant and consistent difference, relative to post-react.
355 ‡Significant and consistent difference relative to both pre-go and post-react periods. (A-E,
356 **right panel**) Projection of median PC scores shown in the right panel. The resulting IF
357 profiles are compared between the pre-go (dotted green line), post-go (dashed-dotted orange
358 line) and post-react (dashed purple line) time periods in young (left column) and older (right
359 column) adults.

360 *Correlation analysis.*

361 To investigate the relationship between waveform shape and motor function, RT was

362 correlated against PC scores within each time point (quantified via median values and the

363 coefficient of variation) using robust Bayesian correlations. This approach revealed

364 correlation coefficients ranged from -0.095 to 0.136 across all comparisons, with a median

365 value of -0.002. Consequently, RT values were unrelated to median scores, or the variance in

366 scores, within each time point.

367 **Discussion**

368 Oscillatory cycles within the brains electrical activity are typically described by their peak

369 frequency or amplitude. However, a developing literature suggests that examination of

370 waveform shape provides additional insight into the physiological and functional relevance of

371 oscillatory activity. Within the current study, we aimed to assess if waveform shape provides

372 novel information about how the ageing process alters the brain, particularly with respect to

373 motor function. To achieve this, we applied a recently developed approach, where within-

374 cycle fluctuations in IF index complex waveforms that are subsequently decomposed into

375 motifs explaining different dimensions of shape. Using this approach, we identified task- and

376 age-dependent changes in the shape of oscillatory cycles occurring within the alpha and beta

377 range.

378 *Alpha and beta cycles exist across a range of waveform shapes.*

379 Quantification of oscillatory activity has been a key element of EEG and

380 magnetoencephalography (MEG) research since the inception of these techniques, with their

381 examination now supported by dedicated and extensive fields of research. These have

382 established important contributions of oscillations to numerous functions within the brain,

383 including communication between areas (Fries 2005, Fries 2015), integration of information

384 across different spatiotemporal scales (Canolty and Knight 2010, Bonnefond *et al.* 2017) and

385 gating of information (Jensen and Mazaheri 2010). While the methodology available for the
386 investigation of oscillatory activity is extensive, some variant of spectral analysis is generally
387 applied. This often involves Fourier or wavelet convolution to decompose the broadband
388 signal into narrowband frequency components, with changes in the power and peak
389 frequency within canonical bands taken to reflect altered oscillatory activity (Donoghue *et al.*
390 2022). However, these convolution techniques assume a sinusoidal waveform. In contrast,
391 both recent and historical literature recognises that oscillatory activity is frequently non-
392 sinusoidal (for review, see; Cole and Voytek 2017). For example, the sensorimotor mu
393 rhythm demonstrates an arch or wicket shape (Gastaut 1952, Kuhlman 1978), whereas the
394 sensorimotor beta rhythm has been shown to have a sawtooth waveform (Cole *et al.* 2017,
395 Jackson *et al.* 2019), as too have theta (Belluscio *et al.* 2012, Ghosh *et al.* 2020, Quinn *et al.*
396 2021b) and gamma (Krishnakumaran *et al.* 2022) oscillations.

397 Within the current study, we examined individual cycles of oscillatory activity with
398 frequencies peaking in the alpha and beta range. For both, investigation of mean vectors
399 suggested non-zero values that indicate a departure from a sinusoidal shape (Quinn *et al.*
400 2021b). Consequently, our results further support the non-sinusoidal nature of these brain
401 rhythms. However, examination of IF profiles for both bands suggest relatively increased
402 speed of edges and decreased speed of extrema, which contrasts with previous descriptions of
403 feature asymmetries (i.e., fast ascending edge/peak-slow descending edge/trough)(Cole *et al.*
404 2017, Cole and Voytek 2017). Despite this, the magnitude of these shifts was not consistent
405 across cycle features; for example, the decrease in alpha IF was greater at the peak than the
406 trough, whereas the decrease in beta IF was greater at the trough than the peak (Fig 2).
407 Furthermore, mean vectors showed substantial variability around the average (see Results),
408 including examples across all parts of the complex plane describing edge (e.g., x-axes in
409 insets of Fig 2) and extrema (e.g., y-axes in insets of Fig 2) asymmetries. Taken together, IF
410 profiles and mean vectors suggest that alpha and beta cycles exist across a wide range of

411 shapes. This is consistent with recent findings for oscillations in theta (Quinn et al. 2021b)
412 and beta (Szul et al. 2022, Rayson et al. 2023) bands.

413 To characterise the different facets of waveform shape, we implemented a recently developed
414 approach involving identification of waveform motifs via PCA-based decomposition across
415 individual cycles (Quinn et al. 2021b, Szul et al. 2022, Rayson et al. 2023). The first 5 PCs
416 from this analysis explained more than 97% of variance in waveform shape for both alpha
417 and beta modes, with the majority of this partitioned within PC1 (alpha = 51.9%, beta =
418 48.9%) and PC2 (alpha = 32.5%, beta = 33.8%). For both modes, these described inversely
419 related fluctuations in the speed of the first and second half wave (PC1), and ascending and
420 descending edges (PC2) (Fig 3). Consequently, the first two PCs can be considered to
421 characterise the dimensions of waveform shape indexed by control point-based measures of
422 peak-trough and rise-decay asymmetry, respectively (Cole et al. 2017, Cole and Voytek
423 2019). Importantly, these components recover descriptions of waveform shape that are
424 consistent with previous studies but were not apparent in the composite IF profile (see
425 preceding paragraph). Subsequent PCs explained substantially less variance; despite this, they
426 nonetheless provide additional insight into increasingly subtle fluctuations in waveform
427 shape, some of which were uniquely influenced by age and/or task (see below),
428 demonstrating the potential value of the information they contain.

429 *Age and task uniquely influence specific facets of waveform shape.*

430 Scores associated with each PC described the extent to which different waveform motifs
431 contributed to each cycle. Comparing scores between age groups and task conditions
432 therefore allowed us to examine if/how each dimension of waveform shape is sensitive to
433 different motor paradigms, and if the nature of this relationship is altered by advancing age.
434 These comparisons identified several PCs that were significantly modulated (Fig 4), revealing
435 differences between groups that were dependent on reaction phase (e.g., beta PC2), in

436 addition to those that were not (e.g., alpha PC4). Consequently, our results suggest that
437 examining waveform shape in this way provides novel insight into the neurophysiological
438 effects of ageing within the motor system. A caveat to this conclusion is that PC scores were
439 unrelated to motor performance assessed via reaction time, which limits the functional
440 implications we can infer. However, several factors could have contributed to this lack of
441 correlation, and we do not believe it demonstrates functional irrelevance per se. For example,
442 using a similar PCA-based approach, two recent studies showed that task-dependent changes
443 in beta bursts were limited to specific centiles of PC scores, with greater modulation apparent
444 in scores further from the median (Szul et al. 2022, Rayson et al. 2023). Consequently,
445 examination of different points within the spectrum of shape described by each PC (e.g., Fig
446 3) may have provided additional information with respect to functional relevance. We
447 decided against similar analyses within the current study, mostly because the narrow post-go
448 time window (within which the largest effects were apparent) only allowed identification of a
449 relatively small number of cycles which would not be amenable to further subdivision. A
450 related point is that both pre-go and post-react periods were relatively prolonged, which may
451 have obscured changes in shape related to task performance. Our decision to examine wide
452 time windows stemmed from the exploratory nature of this project and our desire to
453 maximise the number of oscillatory cycles available for analysis. Future work will therefore
454 need to examine specific time windows that can be expected to relate more directly to task
455 performance.

456 Alternatively, it may be that the neurophysiological processes contributing to the examined
457 dimensions of waveform shape are unrelated to the elements of performance indexed by
458 reaction time, which represents a relatively gross measure of motor function. Our decision to
459 use open-source data for this project meant that the way in which performance was assessed
460 was largely predetermined. However, this point clearly demonstrates the need for further
461 examination in future studies using alternative motor tasks. It will be of particular benefit to

462 implement tasks that include extended reaction periods where the temporal evolution of
463 waveform shape can be examined in greater detail. This is supported by our supplementary
464 plots of PC scores over time; while the reduced sample density within the post-go period
465 means these must be interpreted with caution, they nonetheless demonstrate substantial
466 fluctuations not captured by the main analysis (see supplementary figures S2-S5).

467 While the neurophysiological processes driving waveform shape are not well understood, the
468 developing literature has identified several contributing mechanisms. For example, seminal
469 work used multimodal evidence (local field potentials, MEG, modelling) in animal and
470 human data to show that the shape of somatosensory beta bursts are driven by synchronous
471 thalamic inputs to proximal and distal dendrites of pyramidal neurons (Sherman *et al.* 2016),
472 and recent work with MEG supports a similar mechanism in human motor cortex (Bonaiuto
473 *et al.* 2021). Furthermore, Cole and Voytek (2018) used hippocampal recordings in rodents to
474 show that non-sinusoidal features of theta cycles relate to synchronisation, activation
475 sequence, and firing rate in pyramidal neurons and interneurons; recent work from Garcia-
476 Rosales *et al.* (2023) also demonstrated the importance of synchronisation within local
477 spiking activity for driving the shape of delta cycles within the fronto-auditory circuit of bats.
478 Finally, Marshall *et al.* (2022) recently showed that application of transcranial direct current
479 stimulation changes one half-wave of gamma cycles (recorded from human visual cortex with
480 MEG), and used biophysical modelling to show that altered excitability of layer 5 pyramidal
481 cells could explain their results. Taken together, this literature demonstrates that waveform
482 shape reflects the structure and dynamics of local cortical networks, and their modulation by
483 interconnected areas. The details of this largely remain to be determined, and likely reflect
484 varied processes across different brain areas (e.g., Garcia-Rosales *et al.* 2023), making it
485 difficult to speculate about their relation to the specific changes in waveform shape we report
486 here. Nonetheless, it seems reasonable to suggest that our results may reflect task- and age-
487 dependent changes in cortical network activity/connectivity. Further exploration of the

488 mechanisms underpinning variations in waveform shape, possibly via pharmaceutical
489 intervention or the application of non-invasive brain stimulation, will be critical for
490 understanding the effects reported here.

491 *Instantaneous frequency is altered in older adults.*

492 Age-related comparisons of IF suggested that older adults showed an increase in cycle
493 frequency for the alpha mode but decrease in cycle frequency for the beta mode. These
494 outcomes contrast with previously reported effects of older age on the peak frequency of
495 alpha and beta oscillations (see *Introduction*), derived using Fourier-based methods. Given
496 that, within the current study, estimates of peak frequency using Welch's method were highly
497 comparable for both the raw data and the alpha IMF (Fig 1), this outcome is unlikely to
498 reflect an artifact of EMD. It is also important to note that phase-aligned IF data were
499 demeaned prior to PCA, meaning that our analysis of waveform motifs was not influenced by
500 between-group differences in IF. That being said, Fourier-based estimates of peak frequency
501 and Hilbert-Huang based estimates of IF cannot be considered to provide the same
502 information about oscillatory activity (Huang et al. 1996, Huang et al. 1998, Huang et al.
503 2009). In particular, Fourier based methods assume a linear and stationary signal (in contrast
504 to the non-stationary nature of EEG), whereas estimates of IF are sensitive to the intra- and
505 inter-wave fluctuations which are present in EEG data (Lo et al. 2009). Consequently,
506 previously reported effects of age on oscillatory frequency (as calculated using Fourier-based
507 techniques) have a temporal resolution that is limited by the length of the time window over
508 which the Fourier transform was applied. In contrast, the IF data reported here were estimated
509 directly from the narrowband IMFs via the differentiation of phase, and therefore resolve
510 fluctuations in frequency on a much higher temporal scale (i.e., the level of individual
511 oscillatory cycles). In addition to differences in temporal resolution, these techniques are also
512 differentiated by the way in which they isolate oscillatory activity: conventional approaches
513 using Fourier methods quantify activity within *a priori* bands, whereas analyses of IF can

514 include a much broader range of frequency values. Taken together, the previous and current
515 examinations of age-related changes in oscillation frequency likely interrogate different
516 characteristics of the underlying generators, possibly relating to different timescales of
517 variability.

518 In conclusion, the current study examined how the shape of oscillations within the alpha and
519 beta bands varied in young and older adults as they performed SRT and GNG reaction time
520 tasks. To achieve this, we implemented an analysis pipeline that characterised waveform
521 shape based on within-cycle fluctuations in phase-aligned IF, which were subsequently
522 decomposed into waveform motifs using PCA. Comparisons of motif scores identified
523 several dimensions of shape that were influenced by age and/or task, possibly providing
524 unique insight to cortical activity and connectivity associated with motor function in young
525 and older adults. Future work that further examines how these fluctuations in shape relate to
526 performance, in addition to the underlying mechanisms, will be important for identifying how
527 this information can be used to understand age-related changes in the brains motor networks,
528 and to inform new methods for influencing motor function in the elderly.

529 **Data availability**

530 Pre-processed EEG data and code used within analyses of the current study is available from
531 <https://osf.io/ctq98/>.

532

533 References

534 Barr, D. J. (2013). Random effects structure for testing interactions in linear mixed-effects
535 models, *Frontiers Media SA*. **4**: 328.

536 Barry, R. J. and F. M. De Blasio (2017). "EEG differences between eyes-closed and eyes-
537 open resting remain in healthy ageing." *Biological Psychology* **129**: 293-304.

538 Belluscio, M. A., K. Mizuseki, R. Schmidt, R. Kempter and G. Buzsáki (2012). "Cross-
539 frequency phase-phase coupling between theta and gamma oscillations in the hippocampus."
540 *Journal of Neuroscience* **32**(2): 423-435.

541 Bonaiuto, J. J., S. Little, S. A. Neymotin, S. R. Jones, G. R. Barnes and S. Bestmann (2021).
542 "Laminar dynamics of high amplitude beta bursts in human motor cortex." *NeuroImage* **242**:
543 118479.

544 Bonnefond, M., S. Kastner and O. Jensen (2017). "Communication between brain areas based
545 on nested oscillations." *eneuro* **4**(2).

546 Bürkner, P.-C. (2017). "brms: An R package for Bayesian multilevel models using Stan."
547 *Journal of statistical software* **80**: 1-28.

548 Canolty, R. T. and R. T. Knight (2010). "The functional role of cross-frequency coupling."
549 *Trends in Cognitive Sciences* **14**(11): 506-515.

550 Caplan, J. B., M. Bottomley, P. Kang and R. A. Dixon (2015). "Distinguishing rhythmic from
551 non-rhythmic brain activity during rest in healthy neurocognitive aging." *NeuroImage* **112**:
552 341-352.

553 Chiang, A. K., C. J. Rennie, P. A. Robinson, S. J. van Albada and C. C. Kerr (2011). "Age
554 trends and sex differences of alpha rhythms including split alpha peaks." *Clinical
555 Neurophysiology* **122**(8): 1505-1517.

556 Cole, S. and B. Voytek (2018). "Hippocampal theta bursting and waveform shape reflect CA1
557 spiking patterns." *BioRxiv*: 452987.

558 Cole, S. and B. Voytek (2019). "Cycle-by-cycle analysis of neural oscillations." *Journal of
559 neurophysiology* **122**(2): 849-861.

560 Cole, S. R., R. van der Meij, E. J. Peterson, C. de Hemptinne, P. A. Starr and B. Voytek
561 (2017). "Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson's
562 disease." *Journal of Neuroscience* **37**(18): 4830-4840.

563 Cole, S. R. and B. Voytek (2017). "Brain oscillations and the importance of waveform shape."
564 *Trends in cognitive sciences* **21**(2): 137-149.

565 de Cheveigné, A. and I. Nelken (2019). "Filters: when, why, and how (not) to use them."
566 *Neuron* **102**(2): 280-293.

567 De Hemptinne, C., E. S. Ryapolova-Webb, E. L. Air, P. A. Garcia, K. J. Miller, J. G.
568 Ojemann, J. L. Ostrem, N. B. Galifianakis and P. A. Starr (2013). "Exaggerated phase-

569 amplitude coupling in the primary motor cortex in Parkinson disease." Proceedings of the
570 national academy of sciences **110**(12): 4780-4785.

571 De Hemptinne, C., N. C. Swann, J. L. Ostrem, E. S. Ryapolova-Webb, M. San Luciano, N. B.
572 Galifianakis and P. A. Starr (2015). "Therapeutic deep brain stimulation reduces cortical
573 phase-amplitude coupling in Parkinson's disease." Nature Neuroscience **18**(5): 779-786.

574 Deering, R. and J. F. Kaiser (2005). The use of a masking signal to improve empirical mode
575 decomposition. Proceedings. (ICASSP '05). IEEE International Conference on Acoustics,
576 Speech, and Signal Processing, 2005.

577 Delorme, A. and S. Makeig (2004). "EEGLAB: an open source toolbox for analysis of single-
578 trial EEG dynamics including independent component analysis." Journal of Neuroscience
579 Methods **134**(1): 9-21.

580 Donoghue, T., M. Haller, E. J. Peterson, P. Varma, P. Sebastian, R. Gao, T. Noto, A. H. Lara,
581 J. D. Wallis, R. T. Knight, A. Shestyuk and B. Voytek (2020). "Parameterizing neural power
582 spectra into periodic and aperiodic components." Nature Neuroscience **23**(12): 1655-1665.

583 Donoghue, T., N. Schaworokow and B. Voytek (2022). "Methodological considerations for
584 studying neural oscillations." European journal of neuroscience **55**(11-12): 3502-3527.

585 Echeverria-Altuna, I., A. J. Quinn, N. Zokaei, M. W. Woolrich, A. C. Nobre and F. van Ede
586 (2022). "Transient beta activity and cortico-muscular connectivity during sustained motor
587 behaviour." Progress in neurobiology **214**: 102281.

588 Fabus, M. S., A. J. Quinn, C. E. Warnaby and M. W. Woolrich (2021). "Automatic
589 decomposition of electrophysiological data into distinct nonsinusoidal oscillatory modes."
590 Journal of Neurophysiology **126**(5): 1670-1684.

591 Fries, P. (2005). "A mechanism for cognitive dynamics: neuronal communication through
592 neuronal coherence." Trends in Cognitive Sciences **9**(10): 474-480.

593 Fries, P. (2015). "Rhythms for cognition: communication through coherence." Neuron **88**(1):
594 220-235.

595 Gaál, Z. A., R. Boha, C. J. Stam and M. Molnár (2010). "Age-dependent features of EEG-
596 reactivity—Spectral, complexity, and network characteristics." Neuroscience letters **479**(1):
597 79-84.

598 Gabry, J., D. Simpson, A. Vehtari, M. Betancourt and A. Gelman (2019). "Visualization in
599 Bayesian workflow." Journal of the Royal Statistical Society Series A: Statistics in Society
600 **182**(2): 389-402.

601 Garcia-Rosales, F., N. Schaworokow and J. C. Hechavarria (2023). "Oscillatory waveform
602 shape and temporal spike correlations differ across bat frontal and auditory cortex." bioRxiv:
603 2023.2007.2003.547519.

604 Gastaut, H. (1952). "Etude d'une activité électroencéphalographique méconnue: le rythme
605 rolandique en arceau." Marseille méd **89**: 296-310.

606 Gelman, A. and D. B. Rubin (1992). "Inference from iterative simulation using multiple
607 sequences." *Statistical science* **7**(4): 457-472.

608 Ghosh, M., B. E. Shanahan, S. C. Furtak, G. A. Mashour, R. D. Burwell and O. J. Ahmed
609 (2020). "Instantaneous amplitude and shape of postrhinal theta oscillations differentially
610 encode running speed." *Behavioral neuroscience* **134**(6): 516.

611 Heinrichs-Graham, E., T. J. McDermott, M. S. Mills, A. I. Wiesman, Y.-P. Wang, J. M.
612 Stephen, V. D. Calhoun and T. W. Wilson (2018). "The lifespan trajectory of neural
613 oscillatory activity in the motor system." *Developmental cognitive neuroscience* **30**: 159-168.

614 Heinrichs-Graham, E. and T. W. Wilson (2016). "Is an absolute level of cortical beta
615 suppression required for proper movement? Magnetoencephalographic evidence from healthy
616 aging." *Neuroimage* **134**: 514-521.

617 Huang, N. E., Z. Shen and S. R. Long (1999). "A new view of nonlinear water waves: the
618 Hilbert spectrum." *Annual review of fluid mechanics* **31**(1): 417-457.

619 Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung
620 and H. H. Liu (1998). "The empirical mode decomposition and the Hilbert spectrum for
621 nonlinear and non-stationary time series analysis." *Proceedings of the Royal Society of
622 London. Series A: mathematical, physical and engineering sciences* **454**(1971): 903-995.

623 Huang, N. E., Z. Wu, S. R. Long, K. C. Arnold, X. Chen and K. Blank (2009). "On
624 instantaneous frequency." *Advances in adaptive data analysis* **1**(02): 177-229.

625 Hyvärinen, A. and E. Oja (2000). "Independent component analysis: algorithms and
626 applications." *Neural Networks* **13**(4): 411-430.

627 Jackson, N., S. R. Cole, B. Voytek and N. C. Swann (2019). "Characteristics of waveform
628 shape in Parkinson's disease detected with scalp electroencephalography." *eneuro* **6**(3).

629 Jensen, O. and A. Mazaheri (2010). "Shaping functional architecture by oscillatory alpha
630 activity: gating by inhibition." *Frontiers in human neuroscience* **4**: 186.

631 Krishnakumaran, R., M. Raees and S. Ray (2022). "Shape analysis of gamma rhythm
632 supports a superlinear inhibitory regime in an inhibition-stabilized network." *PLoS
633 Computational Biology* **18**(2): e1009886.

634 Kruschke, J. K. (2018). "Rejecting or accepting parameter values in Bayesian estimation."
635 *Advances in methods and practices in psychological science* **1**(2): 270-280.

636 Kuhlman, W. N. (1978). "Functional topography of the human mu rhythm."
637 *Electroencephalography and clinical neurophysiology* **44**(1): 83-93.

638 Lefaucheur, J.-P., A. Antal, S. S. Ayache, D. H. Benninger, J. Brunelin, F. Cogiamanian, M.
639 Cotelli, D. De Ridder, R. Ferrucci and B. Langguth (2017). "Evidence-based guidelines on
640 the therapeutic use of transcranial direct current stimulation (tDCS)." *Clinical
641 Neurophysiology* **128**(1): 56-92.

642 Lenth, R. (2023). "emmeans: Estimated Marginal Means, aka

643 Least-Squares Means (R package version 1.8.5)." from <https://CRAN.R-project.org/package=emmeans>.

645 Little, S., A. Pogosyan, A. A. Kuhn and P. Brown (2012). " β band stability over time
646 correlates with Parkinsonian rigidity and bradykinesia." *Experimental Neurology* **236**(2):
647 383-388.

648 Makowski, D., M. S. Ben-Shachar, S. A. Chen and D. Lüdecke (2019). "Indices of effect
649 existence and significance in the Bayesian framework." *Frontiers in psychology* **10**: 2767.

650 Marshall, T. R., A. J. Quinn, O. Jensen and T. O. Bergmann (2022). "Transcranial direct
651 current stimulation alters the waveform shape of cortical gamma oscillations." *bioRxiv*:
652 2022.2004. 2025.489371.

653 Merkin, A., S. Sghirripa, L. Graetz, A. E. Smith, B. Hordacre, R. Harris, J. Pitcher, J.
654 Semmler, N. C. Rogasch and M. Goldsworthy (2023). "Do age-related differences in
655 aperiodic neural activity explain differences in resting EEG alpha?" *Neurobiology of Aging*
656 **121**: 78-87.

657 Mullen, T. (2012). "NTRC: cleanline." Tool/Resource Info [WWW Document]. Available
658 online at: <https://www.nitrc.org/projects/cleanline>.

659 Polich, J. (1997). "EEG and ERP assessment of normal aging." *Electroencephalography and*
660 *Clinical Neurophysiology/Evoked Potentials Section* **104**(3): 244-256.

661 Puri, R., R. J. St George and M. R. Hinder (2023). "Investigating the role of contextual cues
662 and interhemispheric inhibitory mechanisms in response-selective stopping: a TMS study."
663 *Cognitive, Affective, & Behavioral Neuroscience* **23**(1): 84-99.

664 Quinn, A. and M. Hymers (2020). "SAILS: spectral analysis in linear systems." *Journal of*
665 *open source software* **5**(47).

666 Quinn, A. J., V. Lopes-dos-Santos, D. Dupret, A. C. Nobre and M. W. Woolrich (2021a).
667 "EMD: empirical mode decomposition and Hilbert-Huang spectral analyses in Python."
668 *Journal of open source software* **6**(59).

669 Quinn, A. J., V. Lopes-dos-Santos, N. Huang, W.-K. Liang, C.-H. Juan, J.-R. Yeh, A. C.
670 Nobre, D. Dupret and M. W. Woolrich (2021b). "Within-cycle instantaneous frequency
671 profiles report oscillatory waveform dynamics." *Journal of neurophysiology* **126**(4): 1190-
672 1208.

673 Rayson, H., M. J. Szul, P. Khoueiry, R. Debnath, M. Gautier-Martins, P. F. Ferrari, N. Fox
674 and J. J. Bonaiuto (2023). "Bursting with potential: How sensorimotor beta bursts develop
675 from infancy to adulthood." *bioRxiv*: 2023.2005. 2009.539976.

676 Rempe, M. P., B. J. Lew, C. M. Embury, N. J. Christopher-Hayes, M. Schantell and T. W.
677 Wilson (2022). "Spontaneous sensorimotor beta power and cortical thickness uniquely
678 predict motor function in healthy aging." *NeuroImage* **263**: 119651.

679 Ribeiro, M. J. and M. Castelo-Branco (2019). "Age-related differences in event-related
680 potentials and pupillary responses in cued reaction time tasks." *Neurobiology of aging* **73**:
681 177-189.

682 Rogasch, N. C., C. Sullivan, R. H. Thomson, N. S. Rose, N. W. Bailey, P. B. Fitzgerald, F.
683 Farzan and J. C. Hernandez-Pavon (2017). "Analysing concurrent transcranial magnetic
684 stimulation and electroencephalographic data: a review and introduction to the open-source
685 TESA software." *NeuroImage* **147**: 934-951.

686 Rossiter, H. E., E. M. Davis, E. V. Clark, M.-H. Boudrias and N. S. Ward (2014). "Beta
687 oscillations reflect changes in motor cortex inhibition in healthy ageing." *NeuroImage* **91**:
688 360-365.

689 Rueda-Delgado, L. M., K. F. Heise, A. Daffertshofer, D. Mantini and S. P. Swinnen (2019).
690 "Age-related differences in neural spectral power during motor learning." *Neurobiology of
691 aging* **77**: 44-57.

692 Scally, B., M. R. Burke, D. Bunce and J.-F. Delvenne (2018). "Resting-state EEG power and
693 connectivity are associated with alpha peak frequency slowing in healthy aging."
694 *Neurobiology of aging* **71**: 149-155.

695 Sghirripa, S., L. Graetz, A. Merkin, N. C. Rogasch, J. G. Semmler and M. R. Goldsworthy
696 (2021). "Load-dependent modulation of alpha oscillations during working memory encoding
697 and retention in young and older adults." *Psychophysiology* **58**(2): e13719.

698 Sherman, M. A., S. Lee, R. Law, S. Haegens, C. A. Thorn, M. S. Hämäläinen, C. I. Moore
699 and S. R. Jones (2016). "Neural mechanisms of transient neocortical beta rhythms:
700 Converging evidence from humans, computational modeling, monkeys, and mice."
701 *Proceedings of the National Academy of Sciences* **113**(33): E4885-E4894.

702 Szul, M. J., S. Papadopoulos, S. Alavizadeh, S. Daligaut, D. Schwartz, J. Mattout and J. J.
703 Bonaiuto (2022). "Diverse beta burst waveform motifs characterize movement-related
704 cortical dynamics." *bioRxiv*: 2022.2012. 2013.520225.

705 Tröndle, M., T. Popov, A. Pedroni, C. Pfeiffer, Z. Barańczuk-Turska and N. Langer (2023).
706 "Decomposing age effects in EEG alpha power." *Cortex* **161**: 116-144.

707 Van Hoornweder, S., D. A. Blanco-Mora, S. Depestele, K. van Dun, K. Cuypers, S.
708 Verstraelen and R. Meesen (2022a). "Aging and Complexity Effects on Hemisphere-
709 Dependent Movement-Related Beta Desynchronization during Bimanual Motor Planning and
710 Execution." *Brain Sciences* **12**(11): 1444.

711 Van Hoornweder, S., D. A. B. Mora, S. Depestele, J. Frieske, K. van Dun, K. Cuypers, S.
712 Verstraelen and R. Meesen (2022b). "Age and Interlimb Coordination Complexity Modulate
713 Oscillatory Spectral Dynamics and Large-scale Functional Connectivity." *Neuroscience* **496**:
714 1-15.

715 Zhong, X. Z. and J. J. Chen (2022). "Resting-state functional magnetic resonance imaging
716 signal variations in aging: The role of neural activity." *Human Brain Mapping* **43**(9): 2880-
717 2897.

718