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Abstract

Age-related changes to the power and frequency of the brains oscillatory activity have been
reported by an extensive literature. In contrast, the influence of advancing age on the shape of
oscillation waveforms, a characteristic with increasingly recognised physiological and
functional relevance, has not been previously investigated. To address this, we examined the
shape of alpha and beta band oscillations from electroencephalography (EEG) data recorded
during performance of simple and go/no-go reaction time tasks in 33 young (23.3 £ 2.9 years,
27 females) and 27 older (60.0 &+ 5.2 years, 23 females) adults. The shape of individual cycles
was characterised using instantaneous frequency, and then decomposed into waveform motifs
using principal component analysis. This analysis identified four principal components (one
from the alpha band, 3 from the beta band) that were uniquely influenced by the different
motor tasks and/or age. These each described different dimensions of shape and tended to be
modulated during the reaction phase of each task. However, the way in which each facet of
shape varied during the task was unrelated to motor performance, indexed via reaction time,
in either group or band. Our results suggest that although oscillation shape is task-dependent,
the nature of this effect is altered by advancing age. While these outcomes demonstrate the
utility of this approach for understanding the neurophysiological effects of ageing, future

work that more clearly links these outcomes with function will be critical.
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Introduction

While the ageing process is associated with many changes to functional capacity, deficits
within the motor system can have some of the most significant impact on independence and
quality of life. Although the factors that drive these deficits remain poorly understood, there
is good evidence that changes in brain dynamics are an important element. In particular,
numerous studies have examined how the brain’s oscillatory activity — which is seen as
rhythmic fluctuations in its electrical potential/magnetic field strength — is altered by age.
This literature suggests substantial changes associated with ageing, including reductions in
power and peak frequency within the alpha band (~8-13 Hz; Chiang ef al. 2011, Barry and De
Blasio 2017, Scally et al. 2018, Sghirripa et al. 2021, Merkin et al. 2023, Trondle ef al.
2023), in addition to increased power (Rossiter ef al. 2014, Heinrichs-Graham and Wilson
2016, Barry and De Blasio 2017, Heinrichs-Graham ef al. 2018, Rempe ef al. 2022) and
frequency (Zhong and Chen 2022) in the beta band (~14-30 Hz). Importantly, these changes
have been associated with deficits in motor function, including reduced skill learning (Rueda-
Delgado et al. 2019), reaction time (Van Hoornweder et al. 2022b) and accuracy (Van
Hoornweder et al. 2022a). Furthermore, altered oscillatory activity has also been associated
with motor pathologies common in older adults, such as Parkinson’s disease (Little ef al.
2012, De Hemptinne et al. 2013, De Hemptinne et al. 2015, Cole et al. 2017). Age-related
changes in oscillatory activity therefore appear to be a functionally relevant element of
ageing, and may have potential as biomarkers of age-related degradation, or accumulating

pathology.

Although effects of age on oscillatory activity are supported by numerous studies, outcomes
have also been variable. For example, previous work has failed to replicate the often reported
age-related reduction in alpha frequency (Polich 1997, Gaal et al. 2010, Caplan et al. 2015,

Zhong and Chen 2022), whereas effects of age on both frequency and amplitude may be
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confounded by age-related changes in non-oscillatory activity also present in EEG recordings
(Donoghue et al. 2020, Merkin et al. 2023, Trondle et al. 2023). This variability limits the
utility of oscillatory metrics for understanding the ageing process and challenges their clinical
application. One factor that may contribute to this variability is the way in which oscillatory
activity has been assessed. The conventional approach to quantifying neuronal oscillations
generally involves characterising their frequency or amplitude via Fourier-based methods
applied to time series data that generally involve several minutes of recordings. However, this
approach overlooks important features of oscillations that are only apparent in the time
domain. In particular, the developing literature shows that examination of waveform shape
can provide information that is physiologically and functionally relevant. For example, recent
work suggests that a given oscillatory cycle can be characterised relative to a range of
waveform motifs, with cycle-by-cycle variations in the relative contribution of different
motifs driving variability in shape (Quinn et al. 2021b, Szul et al. 2022, Rayson et al. 2023)
and having different relationships with movement (Szul et al. 2022, Rayson et al. 2023) and
function (Quinn et al. 2021b). Furthermore, research in Parkinson’s disease supports the
clinical utility of examining waveform shape. Specifically, the shape of beta oscillations is
significantly altered in patients off medication (Cole et al. 2017, Jackson et al. 2019), but this

is corrected by medication (Jackson et al. 2019) or deep brain stimulation (Cole et al. 2017).

While the developing literature demonstrates the utility of examining the shape of oscillatory
activity at the level of individual cycles, it remains to be investigated if this approach is
sensitive to the neurophysiological and functional changes associated with advancing age.
Within the current study, we aimed to address this limitation. The shape of oscillatory activity
recorded at rest, or while performing a simple or go/no-go reaction time task, was quantified
and compared between young and older adults. This was achieved by using a recently

established methodology (Quinn et al. 2021b), within which empirical mode decomposition
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(EMD) facilitates extraction of multiple narrowband waveforms for individual cycles of the
target oscillation. Subsequent application of principal component analysis (PCA) then
identifies dominant waveform motifs. Given the well-established effects of ageing on
conventional measures of oscillatory activity within the alpha and beta bands (see above),

these served as the bands of interest within the current study.

Methods & Methods

Dataset.

The electroencephalography (EEG) recordings analysed in the current study were obtained
from a recently described open access dataset (Ribeiro and Castelo-Branco 2019). This study
recruited 36 young (mean age + SD: 23.1 + 2.8 years; 29 females) and 39 older (mean age +
SD: 60.4 + 5.2 years; 31 females) adults to participate in a single session, within which EEG
was recorded in different conditions (see below). A number of participants within this dataset
presented signal noise that would have required low-pass filtering to remove. As this type of
processing can be expected to influence the shape of the EEG recording (de Cheveigné and
Nelken 2019), and given our primary interest in quantifying waveform shape, we therefore
decided to exclude these participants from the analyses. Consequently, the current study
examined data from a subset of 60 participants, including 33 young (mean age + SD: 23.3 +
2.9 years; 27 females) and 27 older (mean age + SD: 60.0 + 5.2 years; 23 females) adults. All
experimentation was performed in accordance with the Declaration of Helsinki, participants
provided written, informed consent prior to inclusion, and the protocol was approved by the

Ethics Committee of the Faculty of Medicine at the University of Coimbra.

Experimental Task.

Participants completed a cued reaction time task, which required a button press with the right

index finger (or no response, depending on the condition) in response to auditory stimuli. A
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94  passive listening condition involving 30 trials was first completed, wherein participants were
95  exposed to the auditory tones to be used in the active conditions but were not required to
96 respond (hereafter referred to as ‘rest’). Following this, simple (SRT) and go/no-go (GNG)
97  reaction time tasks were completed, the order of which was counterbalanced between
98  participants. During the SRT, a cue tone (indicating the start of the trial) was followed at a
99  variable interval by a ‘go’ tone for a total of 100 trials. During the GNG, a cue tone was
100 followed at a variable interval by either a ‘go’ tone, requiring a button press response (80
101  trials), or a ‘no-go’ tone, requiring participants to withhold a response (20 trials). For both
102 SRT and GNG, 20 catch trials were also included, in which the cue tone was not followed by
103  any further tone. Between trials, participants fixated on a cross displayed on a screen in front
104  of them. Slow trials were defined as a reaction time exceeding 700 ms, feedback on which
105  was provided to participants by a different tone. The inter-trial interval ranged from 6.7 s to

106  19.6 s, with a median value of 7.6 s.

107  Electroencephalography (EEG) acquisition and pre-processing.

108  EEG was recorded with a Neuroscan system via 64 electrodes in standard 10-20 locations.
109  The signal was referenced to a location between CPz and Cz, the ground was located between
110  FPz and Fz, and data were digitized at a rate of 500 Hz. Pre-processing used custom scripts
111 on the Matlab platform (R2021b, Mathworks, USA) with EEGLAB (v2022.1)(Delorme and
112 Makeig 2004) and TESA (v 1.1.1)(Rogasch et al. 2017) toolboxes. Slow drifts in the signals
113 were first removed by high-pass filtering above 1 Hz using the pop_eegfiltnew function. Line
114  noise and its first harmonic (i.e., 50 & 100 Hz) was then attenuated using the EEGLAB

115  CleanLine plugin (Mullen 2012), which uses a multi-tapering approach to remove line noise
116  while minimising signal distortion. Data were then epoched from 500 ms before to 6000 ms
117  after the cue tone. Channels and epochs demonstrating persistent, large amplitude muscle

118  activity or noise were then removed. Following this, independent component analysis (ICA)
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119  was run using the FastICA algorithm (Hyvérinen and Oja 2000) and components associated
120  with blinks, muscle activity, eye movement, and electrode noise were identified and removed
121  based on visual inspection of component time course and topography. Missing channels were

122 then replaced using spherical interpolation.

123 Waveform analysis.

124  All subsequent analysis of EEG data focussed on the C3 electrode, given its assumed location
125  over the left sensorimotor cortex (Lefaucheur et al. 2017) activated during performance of
126  reaction time tasks involving the right index finger. Furthermore, to facilitate comparisons
127  with the SRT task, only trials from the ‘go’ condition of the GNG task were included in the
128  analysis. Analysis of waveform shape of individual oscillatory cycles was performed

129  according to the pipeline developed recently by Quinn et al. (2021b). This involved: (1)

130  application of empirical mode decomposition (EMD) to decompose the recorded broadband
131  signal into discrete narrowband oscillatory modes; (2) identification of individual cycles

132 within oscillations of interest, and phase alignment to allow comparisons of shape between
133 cycles with varying temporal dynamics and (3) application of principal component analysis
134  (PCA) to identify consistent variations in cycle shape as waveform motifs. All analyses were
135  performed in Python 3.10, using v0.4.0 of the EMD package (Quinn ef al. 2021a) and v1.4.0

136 of the SAILS package (Quinn and Hymers 2020).

137  Empirical mode decomposition. EMD uses an iterative sifting process to decompose a

138  broadband signal into narrowband intrinsic mode functions (IMFs), whereby higher

139  frequency components of the signal are progressively extracted and subtracted from the

140  signal. Briefly, maxima and minima of the broadband signal are identified, and upper and
141 lower envelopes of the signal are developed by connecting and interpolating the maxima and

142 minima, respectively. The mean of the overall envelope is then calculated and subtracted


https://doi.org/10.1101/2023.10.16.562636
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.562636; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

143 from the signal. This process is repeated on the resulting waveform until the criteria defining
144  an IMF are met. These are that the number of zero crossings equals the number of extrema
145  (differing by no more than 1) and the mean of the signal envelope equals zero (Huang et al.
146 1998). The first IMF is then subtracted from the original signal and the process is repeated to
147  find the next IMF. Unlike conventional approaches to generating a narrowband signal that
148  assume a sinusoidal waveform, this process conserves the native shape of the target

149  oscillation (Quinn et al. 2021Db).

150  Within the current study, the EMD algorithm was applied using previously established

151  options (Quinn et al. 2021b) and a maximum of 6 IMFs were generated. We applied the

152  masked version of EMD, where a sinusoidal masking frequency is added to the waveform
153  prior to sifting (Deering and Kaiser 2005). This reduces the impact of mode mixing, which
154  refers to situations in which different frequency components are mixed into a single IMF due
155  to noise or intermittent oscillations in the signal (Huang et al. 1999). Mask frequencies of
156 120, 64, 32, 11, 7 and 2 Hz were applied, and validated by examination of instantaneous

157  frequency profiles for each IMF (see supplementary figure S1); these showed clean

158  separation between IMFs. Modes corresponding to conventional alpha and beta bands were

159  found in the third (beta) and fourth (alpha) IMFs for all participants.

160  To demonstrate the reliability of the IMFs prior to examination of single cycles, age-related
161  changes in alpha amplitude and peak frequency were compared between estimates derived
162  from the broadband data and the alpha IMF. To increase sensitivity to effects of age on alpha
163  activity, this analysis utilised data derived from the Oz electrode. Broadband and IMF data
164  from individual epochs in the passive listening condition were concatenated to form

165  individual time series, which were then decomposed using Welch’s method (8s window

166  length, 50% overlap between windows). Power and frequency values associated with the
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167  alpha band (8-13Hz) within each group were then compared between techniques using
168  independent samples t-tests, and the correlation between them was tested with Spearman’s

169  rho.

170  Cycle detection and phase alignment. Following EMD, individual cycles in the alpha and

171  beta modes were identified based on the instantaneous amplitude and phase of the signal,

172 derived using the normalised Hilbert transform (Quinn et al. 2021b). Cycles were only

173 included in further analyses if their amplitude exceeded the 50" percentile for the mode

174  (Fabus ef al. 2021, Echeverria-Altuna et al. 2022), their phase characteristics met previously
175  defined criteria for a reliable cycle, and they possessed unique control points (i.e.,

176  ascending/descending zero crossings, peak and trough)(Quinn et al. 2021b). The

177  instantaneous frequency (IF) was then calculated for each cycle by taking the first derivative
178  of instantaneous phase with respect to time (Huang ef al. 2009). Waveform shape was then
179  inferred from the IF of the cycle, wherein within-cycle fluctuations in IF indicate deviations
180 in shape. However, it is not possible to directly compare IF profiles between different

181  oscillations, as it is not clear if comparisons are occurring between consistent features of each
182  cycle (e.g., comparing values from the peak of each cycle)(Quinn et al. 2021b). Identified
183  cycles were therefore aligned to a common phase space, producing phase-aligned IF profiles
184  that were directly comparable between oscillation cycles (Quinn et al. 2021b). To quantify the
185  extent to which individual cycles deviated from a sinusoidal shape, phase-aligned IF profiles
186  were projected onto the complex plane and a mean vector was calculated, with non-zero

187  values indicating a non-sinusoidal shape. Real and imaginary values derived from individual
188  cycle mean vectors (reflecting ascending-descending and peak-trough asymmetry,

189  respectively) were compared to 0 using single sample t-tests (Quinn et al. 2021b).
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190  Principal component analysis. The final step of the waveform analysis was to characterise the
191  variability in waveform shape across cycles by submitting the phase-aligned IF profiles to

192  PCA. The principal components (PCs) derived from this analysis can be viewed as waveform
193  motifs describing major sources of variance relative to the mean instantaneous frequency

194  profile. Furthermore, the scores describe the extent to which each PC contributes to a given
195  cycle. The first 5 PCs within each frequency mode explained > 97% of variance in IF and

196  were used for further analysis.

197  Statistical analyses.

198  Given recent evidence for temporal variance in waveform shape during a motor task (Szul et
199  al. 2022, Rayson et al. 2023), a time factor was included for all analyses of cycle features.
200  This categorised cycles as occurring either before (pre-go) or after (post-go) the go stimulus,
201  or after the button press (post-react). Within each band, effects of task condition (rest, SRT -
202 g0, SRTpost-gos SRTpost-react, GNGpre-go, GNGpost-go, GNGpost-reacr) and group (young, older) on
203  mean within-cycle phase aligned IF and PC score were assessed using Bayesian generalised
204  linear mixed models (GLMMs), resulting in 12 models being run (i.e., one model for phase
205  aligned IF and one model for each of the first 5 PCs, within both alpha and beta bands).

206  Within each model, a student’s ¢ distribution and an identity link function were applied. The
207  maximal random effects structure allowed by the data was used (i.e., by-participant random
208 intercepts and slopes)(Barr 2013). Potential relationships between PC scores and performance
209  (indexed by reaction time [RT]) were then investigated. For each trial, PC scores within each
210  time point (i.e., pre-go, post-go and post-react) were summarised using the coefficient of

211 variation and median. These were then correlated with RTs using robust Bayesian correlations

212 (https://baezortega.github.i0/2018/05/28/robust-correlation/).

10
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213 All posterior distributions were estimated with the No-U-Turn-Sampler (NUTS) extension of
214  Hamiltonian MCMC, implemented within the BRMS package (Biirkner 2017). Each model
215  was run using 4 independent chains with 1000 warm up and 3000 post-warm up samples

216  (total of 12,000 post-warm up samples) and default flat priors. Chain convergence was

217  assessed by ensuring Rhat values were < 1.1, in addition to visual inspection of post-warm up
218  samples (Gelman and Rubin 1992). Posterior predictive checks were conducted to ensure

219  simulated data matched observed data (Gabry ef al. 2019). After model fitting, the emmeans
220  package (Lenth 2023) was used to generate custom contrasts; these included within- and

221 between-subject effects for all dependent variables, in addition to interaction contrasts where
222 relevant. Within these comparisons, effect existence was described using the probability of
223 direction (pd), which reports the proportion of the posterior with the same sign as the median
224 and ranges from 50% to 100% (Makowski et al. 2019). Effect significance was assessed by
225  examining how far the posterior distribution for each contrast deviated from a region

226  including zero (i.e., no practical difference). To achieve this, a region of practical equivalence
227  (ROPE) was first defined; this refers to a range of values centred around zero that would be
228  considered as practically equivalent to no difference for that contrast. Within the current

229  study, this was set as = 5% of the standard deviation (SD)(Kruschke 2018). The 89% highest
230  density interval (HDI; i.e., the range which contains 89% of the posterior distribution) was
231 then identified, and the extent to which it overlapped the ROPE was used to make a decision
232 regarding the null hypothesis. The null hypothesis of no difference was accepted if the 89%
233 HDI fell completely inside the ROPE or rejected if it fell completely outside the ROPE. In
234 contrast, no decision was made if the 89% HDI partially overlapped the ROPE. (Kruschke

235 2018, Puri et al. 2023).

236  Results

11
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As an initial step, measures of oscillatory activity provided by EMD were validated against
those provided by conventional approaches to spectral analysis. This was achieved by
applying Welch’s method to both the alpha mode and the broadband data, and comparing
estimates of alpha frequency and amplitude. For both techniques, while there was no
significant difference in peak frequency between groups (broadband: 55 = 1.0, p = 0.3; alpha
IMF: 53 =0.5, P=0.6; Fig 1A2 & 1B2), power was significantly reduced in older adults
(broadband: tss = 2.8, p = 0.008; alpha IMF: #55 = 2.90, P =0.005; Fig 1A3 & 1B3).
Furthermore, estimates of both frequency (young: rho = 0.98, p <0.0001; older: rho = 0.77, p
< 0.0001) and power (young: tho = 0.99, P <0.0001; older: rho =0.98, p < 0.0001) were
highly correlated between techniques (Fig 1C & 1D). These results support the reliability of

the IMFs extracted by EMD.
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Figure 1. Alpha oscillation characteristics derived from broadband and IMF data. (A,
B) Alpha band (8-13 Hz) characteristics quantified by application of Welch’s method to
broadband data (4) and the alpha IMF (B). Power spectral density curves (41, Bl), peak
frequency (42, B2), and power (43, B3) are compared between groups. (C, D) Correlations
between the estimates of power (C) and peak frequency (D) derived from each method. *P <
0.05 when compared to the young group.
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254 Mean within-cycle instantaneous frequency varies between tasks and groups.

255  Table 1 shows IF values for each group, task, and band, averaged over cycle phase. Between-
256  group comparisons of alpha frequency showed higher values in older participants that were
257  consistent (all pd > 98.9%) and significant (all 0% in ROPE) for all tasks and time points. For
258  older participants in both GNG and SRT tasks, consistent (all pd > 99.4%) and significant (all
259 0% in ROPE) reductions in frequency were observed during the post-go period, relative to
260  pre-go, post-react, as well as to the rest condition. Furthermore, reductions in frequency

261  relative to the rest condition were consistent and significant for SRTpe¢o (pd = 99.3, 0% in
262  ROPE). Also, interaction contrasts suggested that reductions in alpha frequency during the
263 post-go period of the RT task (relative to pre-go. post-react, and rest) and GNG task (relative
264  to post-react only) were significantly and consistently (all pd > 99.2%, 0% in ROPE for all
265  comparisons) greater in older compared to young adults. All other within-group comparisons
266  were inconsistent and failed to provide sufficient evidence to accept or reject the null

267  hypothesis (all pd < 98.2%, all % in ROPE between 3.3% and 73.2%).

268  Between-group comparisons of beta frequency showed lower values in older participants that
269  were consistent (all pd > 96.6%) and significant (all 0% in ROPE) for all tasks and time

270  points. Within-group comparisons for young and older adults separately showed that

271 frequency during both GNG and SRT was increased at the post-go time point, relative to pre-
272 go and post-react, and these differences were consistent (all pd > 98.1%) and significant (all
273 0% in ROPE). For older participants, frequency during post-go was increased relative to rest
274 for both GNG (pd = 98.4%, 0% in ROPE) and SRT (pd = 98.3%, 0% in ROPE). For young
275  participants, frequency during post-go was significantly increased relative to rest for GNG
276  (pd =98.1%, 0% in ROPE), whereas SRT showed a relatively consistent increase (pd =

277  93.5%) that failed to reach a practical level of significance (4% in ROPE). Furthermore,

278  frequency during the post-react period was reduced relative to pre-go, and this was consistent
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279 (pd > 99.9%) and significant (all 0% in ROPE) for GNG and SRT in both groups. All other
280  comparisons were inconsistent and failed to provide sufficient evidence to accept or reject the

281  null hypothesis (all pd < 84.9%, all % in ROPE between 9.4% and 21.1%).

282
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Table 1. Effects of task on mean within-cycle instantaneous frequency

Alpha  Young
Older

Beta  Young
Older

Rest

GNG

SRT

Pre-go

Post-go Post-react

Pre-go Post-go Post-react

11.1[10.8, 11.3]
12.4111.9, 13.0]
25.2[24.8,25.5]
24.0 [23.5, 24.6]

11.2[10.9, 11.5]
12.3 [11.8, 12.8]
25.3[24.9, 25.8]
24.1[23.6, 24.6]

11.110.8,11.4]  11.2[10.9, 11.5]
12.0[11.5, 12.4]"  12.4[11.9, 12.9]
25.6[25.2,26.1]t 25.1[24.7,25.5]¢
24.7[24.2,252]1 23.8[23.3,24.3]

11.1[10.8,11.3] 11.0[10.8,11.3] 11.1[10.8, 11.3]
12.1[11.6,12.5]" 11.8[11.3,12.2]"" 12.4[11.9, 12.9]
25.3[24.9.25.6] 25.6[25.2,25.9]F 24.9[24.6,25.3]
24.21[23.6,24.7] 24.8[24.2,25.4]t" 23.8[23.3,24.3]

Values are shown as median [lower 89% HDI, upper 89% HDI]. TConsistent and significant difference, relative to pre-go; *Consistent and significant difference relative to pre-go and post-go;

“Consistent and significant difference relative to rest.
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283  Alpha and beta waveforms are non-sinusoidal.

284  Figure 2 shows alpha and beta IF as a function of phase, collapsed over group and task. For
285 alpha cycles, the mean profile suggested that peak frequency of ~12.4 Hz tended to occur
286  during the zero crossings, but dropped to ~12.0 Hz during the peak (Fig 2, left panel),

287  consistent with a waveform having a broadened peak. In support of this, examination of mean
288  vectors indicated positive x-axis (mean £ SD = 0.22 £ 0.74) and negative y-axis (mean + SD
289  =-0.057 £ 1.23) values, both of which were significantly different to zero (x-axis: #204,796 =
290  136.5, P <0.0001; y-axis: t204,796 = -21.3, P < 0.0001) (see inset of Fig 2, left panel). For beta
291  cycles, the mean profile suggested that peak frequency of ~26 Hz occurred during the

292 descending zero crossing but dropped to ~24.6 Hz just after the trough (Fig 2, right panel),
293  consistent with a waveform having a fast descending edge and broadened trough. Mean

294  vectors for the beta profile were positive (x-axis mean + SD = 0.29 + 1.35; y-axis mean + SD
295  =0.062 £ 1.62) and significantly different to zero (x-axis: 277,684 = 113.7, P <0.0001; y-axis:

296 177684 =20.1, P <0.0001) (see inset of Fig 2, right panel).

Alpha Beta
‘ 26.0
12.4 25.8 4
— 25.6
1234
p—
S 25.4
L
& 122 25.2 1
"
%))
£ 25.0 4
12.11
24.8
12.0 24.6
0 nf2 n 3nP2 o 0 nf2 n 302 2
Phase

297  Figure 2. Phase aligned instantaneous frequency. Main panels show mean phase-aligned
298  IF profiles for alpha (/eft) and beta (right) modes, whereas insets show mean vectors. Data
299 are collapsed over age group and task; shaded section represents standard error of the mean.

300

16


https://doi.org/10.1101/2023.10.16.562636
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.562636; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

301  Waveform motifs are differentially influenced by task and group.

302  Figure 3 shows IF profiles and normalised waveforms for the first 5 components generated by
303 PCA. These explained > 97% of variance in IF for both bands and described increasingly

304 complex elements of waveform shape. For example, while PC1 described opposing variations
305 in the speed of the ascending/descending half waves, and PC2 described opposing variations
306 in the speed of the ascending/descending edges, subsequent PCs instead related to

307 increasingly fractionated facets of cycle phase. Investigation of group, task, and time-point
308 effects on between-cycle variance for each score identified 4 components of interest: alpha

309 PC4 and beta PC1, PC2, and PC3 (Figure 4).

310

311  For alpha PC4 in the SRT task, scores in older adults during the pre-go period were increased
312 relative to the young group (pd = 98.1%, 0% in ROPE; Fig 4A, left panel). While increases in
313 older adults were also consistent for the post-go (pd = 97.2%) and post-react (pd = 97.4%)
314  SRT periods, there was partial overlap with the ROPE (0.4% and 1.5% in ROPE,

315  respectively). All other contrasts were inconsistent and failed to provide sufficient evidence
316  to accept or reject the null hypothesis (all pd < 95.34%, all % in ROPE between 17.0% and
317  97.7%). For beta PC1 in the SRT task, scores in young participants during the post-go period
318  were reduced relative to both pre-go (pd = 98.0%, 0% in ROPE) and post-react (pd = 97.0%,
319 0% in ROPE; Fig 4B, left panel). All other contrasts were inconsistent and failed to provide
320 sufficient evidence to accept or reject the null hypothesis (all pd < 91.3%, all % in ROPE

321  between 4.87% and 25.4%). For beta PC2 of the SRT task, scores in older participants during
322 the post-go period were increased relative to pre-go (pd = 98.6%, 0% in ROPE), post-react
323 (pd =99.5%, 05 in ROPE; Fig 4C, left panel), and rest (pd = 99.1%, 0% in ROPE).

324  Furthermore, interaction contrasts showed that increases in score during the post-go period

325  (relative to pre-go, post-react, and rest) were consistently and significantly greater in older
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326  adults compared to young adults (all pd > 99.6%, 0% in ROPE for all comparisons). In

327 addition, between-group comparisons for the post-go period showed larger scores in older
328  adults that were consistent (pd = 99.9%) and significant (0% in ROPE). All other contrasts
329  were inconsistent and failed to provide sufficient evidence to accept or reject the null

330  hypothesis (all pd < 93.2%, all % in ROPE between 4.2% and 33.5%). For beta PC3 in the
331  SRT task, scores in older participants during the post-go period were increased relative to the
332 young group (pd = 97.6%, 0% in ROPE; Fig 4D, left panel). Between-group comparisons for
333  the pre-go period also showed consistent increases in the older group, but these were not

334  practically significant (4.7% in ROPE). In addition, the older group showed a consistent (pd
335  =95.6%) increase in PC3 scores in post-go relative to post-react, but this was not practically
336  significant (4.0% in ROPE). For PC3 in the GNG task, scores in older adults during the post-
337  go period were reduced relative to post-react (pd = 98.1%, 0% in ROPE; Fig 4E, left panel)
338  and rest (pd = 97.5%, 0% in ROPE). All other contrasts were inconsistent and failed to

339  provide sufficient evidence to accept or reject the null hypothesis (all pd < 97.6%, all % in

340 ROPE between 4.0% and 61.0%).
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342  Figure 3. Principal components of waveform shape. (4-J, left panel) Demeaned IF

343  profiles for the first 5 principal components, plotted from the first percentile (blue lines,

344  negative scores) to the ninety-ninth percentile (green line, positive scores) of scores observed
345  for each component. (4-J, right panel) Normalised waveforms generated by the IF profiles
346  for each PC score, demonstrating the influence of each PC on waveform shape. Components
347  for the alpha mode are shown in the left column, whereas components for the beta mode are
348  shown in the right column. The bracketed value after the PC label shows the percentage of
349  variance explained by that component.
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Figure 4. Waveform shape is altered by age and task. (4-E, left panel) Median PC scores
compared between reaction phases and groups (young: dark blue; older: light blue) for the
SRT (4-D) and GNG (E) tasks. Error bars indicate 89% HDI. *Significant and consistent
difference between groups; TSignificant and consistent difference, relative to post-react.
*Significant and consistent difference relative to both pre-go and post-react periods. (4-E,
right panel) Projection of median PC scores shown in the right panel. The resulting IF
profiles are compared between the pre-go (dotted green line), post-go (dashed-dotted orange
line) and post-react (dashed purple line) time periods in young (left column) and older (right

column) adults.
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360  Correlation analysis.

361  To investigate the relationship between waveform shape and motor function, RT was

362  correlated against PC scores within each time point (quantified via median values and the
363  coefficient of variation) using robust Bayesian correlations. This approach revealed

364  correlation coefficients ranged from -0.095 to 0.136 across all comparisons, with a median
365  value of -0.002. Consequently, RT values were unrelated to median scores, or the variance in

366  scores, within each time point.

367 Discussion

368  Oscillatory cycles within the brains electrical activity are typically described by their peak
369 frequency or amplitude. However, a developing literature suggests that examination of

370  waveform shape provides additional insight into the physiological and functional relevance of
371  oscillatory activity. Within the current study, we aimed to assess if waveform shape provides
372 novel information about how the ageing process alters the brain, particularly with respect to
373  motor function. To achieve this, we applied a recently developed approach, where within-

374  cycle fluctuations in IF index complex waveforms that are subsequently decomposed into

375  motifs explaining different dimensions of shape. Using this approach, we identified task- and
376  age-dependent changes in the shape of oscillatory cycles occurring within the alpha and beta

377  range.

378  Alpha and beta cycles exist across a range of waveform shapes.

379  Quantification of oscillatory activity has been a key element of EEG and

380  magnetoencephalography (MEQG) research since the inception of these techniques, with their
381  examination now supported by dedicated and extensive fields of research. These have

382  established important contributions of oscillations to numerous functions within the brain,
383  including communication between areas (Fries 2005, Fries 2015), integration of information

384  across different spatiotemporal scales (Canolty and Knight 2010, Bonnefond et al. 2017) and
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385  gating of information (Jensen and Mazaheri 2010). While the methodology available for the
386 investigation of oscillatory activity is extensive, some variant of spectral analysis is generally
387 applied. This often involves Fourier or wavelet convolution to decompose the broadband

388  signal into narrowband frequency components, with changes in the power and peak

389  frequency within canonical bands taken to reflect altered oscillatory activity (Donoghue et al.
390 2022). However, these convolution techniques assume a sinusoidal waveform. In contrast,
391  Dboth recent and historical literature recognises that oscillatory activity is frequently non-

392  sinusoidal (for review, see; Cole and Voytek 2017). For example, the sensorimotor mu

393  rhythm demonstrates an arch or wicket shape (Gastaut 1952, Kuhlman 1978), whereas the
394  sensorimotor beta thythm has been shown to have a sawtooth waveform (Cole et al. 2017,
395  Jackson et al. 2019), as too have theta (Belluscio et al. 2012, Ghosh et al. 2020, Quinn et al.

396  2021b) and gamma (Krishnakumaran et al. 2022) oscillations.

397  Within the current study, we examined individual cycles of oscillatory activity with

398 frequencies peaking in the alpha and beta range. For both, investigation of mean vectors

399  suggested non-zero values that indicate a departure from a sinusoidal shape (Quinn et al.

400  2021b). Consequently, our results further support the non-sinusoidal nature of these brain
401  rhythms. However, examination of IF profiles for both bands suggest relatively increased
402  speed of edges and decreased speed of extrema, which contrasts with previous descriptions of
403  feature asymmetries (i.e., fast ascending edge/peak-slow descending edge/trough)(Cole et al.
404 2017, Cole and Voytek 2017). Despite this, the magnitude of these shifts was not consistent
405  across cycle features; for example, the decrease in alpha IF was greater at the peak than the
406  trough, whereas the decrease in beta IF was greater at the trough than the peak (Fig 2).

407  Furthermore, mean vectors showed substantial variability around the average (see Results),
408 including examples across all parts of the complex plane describing edge (e.g., x-axes in

409 insets of Fig 2) and extrema (e.g., y-axes in insets of Fig 2) asymmetries. Taken together, IF

410 profiles and mean vectors suggest that alpha and beta cycles exist across a wide range of
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411  shapes. This is consistent with recent findings for oscillations in theta (Quinn et al. 2021b)

412  and beta (Szul et al. 2022, Rayson et al. 2023) bands.

413  To characterise the different facets of waveform shape, we implemented a recently developed
414  approach involving identification of waveform motifs via PCA-based decomposition across
415  individual cycles (Quinn et al. 2021b, Szul et al. 2022, Rayson et al. 2023). The first 5 PCs
416  from this analysis explained more than 97% of variance in waveform shape for both alpha
417  and beta modes, with the majority of this partitioned within PC1 (alpha = 51.9%, beta =

418  48.9%) and PC2 (alpha = 32.5%, beta = 33.8%). For both modes, these described inversely
419  related fluctuations in the speed of the first and second half wave (PC1), and ascending and
420  descending edges (PC2) (Fig 3). Consequently, the first two PCs can be considered to

421  characterise the dimensions of waveform shape indexed by control point-based measures of
422  peak-trough and rise-decay asymmetry, respectively (Cole et al. 2017, Cole and Voytek

423 2019). Importantly, these components recover descriptions of waveform shape that are

424  consistent with previous studies but were not apparent in the composite IF profile (see

425  preceding paragraph). Subsequent PCs explained substantially less variance; despite this, they
426  nonetheless provide additional insight into increasingly subtle fluctuations in waveform

427  shape, some of which were uniquely influenced by age and/or task (see below),

428  demonstrating the potential value of the information they contain.

429  Age and task uniquely influence specific facets of waveform shape.

430  Scores associated with each PC described the extent to which different waveform motifs

431  contributed to each cycle. Comparing scores between age groups and task conditions

432 therefore allowed us to examine if/how each dimension of waveform shape is sensitive to

433  different motor paradigms, and if the nature of this relationship is altered by advancing age.
434  These comparisons identified several PCs that were significantly modulated (Fig 4), revealing

435  differences between groups that were dependent on reaction phase (e.g., beta PC2), in
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436  addition to those that were not (e.g., alpha PC4). Consequently, our results suggest that

437  examining waveform shape in this way provides novel insight into the neurophysiological
438  effects of ageing within the motor system. A caveat to this conclusion is that PC scores were
439  unrelated to motor performance assessed via reaction time, which limits the functional

440  implications we can infer. However, several factors could have contributed to this lack of

441  correlation, and we do not believe it demonstrates functional irrelevance per se. For example,
442  using a similar PCA-based approach, two recent studies showed that task-dependent changes
443  in beta bursts were limited to specific centiles of PC scores, with greater modulation apparent
444 in scores further from the median (Szul et al. 2022, Rayson et al. 2023). Consequently,

445  examination of different points within the spectrum of shape described by each PC (e.g., Fig
446  3) may have provided additional information with respect to functional relevance. We

447  decided against similar analyses within the current study, mostly because the narrow post-go
448  time window (within which the largest effects were apparent) only allowed identification of a
449  relatively small number of cycles which would not be amenable to further subdivision. A

450  related point is that both pre-go and post-react periods were relatively prolonged, which may
451  have obscured changes in shape related to task performance. Our decision to examine wide
452  time windows stemmed from the exploratory nature of this project and our desire to

453  maximise the number of oscillatory cycles available for analysis. Future work will therefore
454  need to examine specific time windows that can be expected to relate more directly to task

455  performance.

456  Alternatively, it may be that the neurophysiological processes contributing to the examined
457  dimensions of waveform shape are unrelated to the elements of performance indexed by

458  reaction time, which represents a relatively gross measure of motor function. Our decision to
459  use open-source data for this project meant that the way in which performance was assessed
460  was largely predetermined. However, this point clearly demonstrates the need for further

461  examination in future studies using alternative motor tasks. It will be of particular benefit to
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462  implement tasks that include extended reaction periods where the temporal evolution of
463  waveform shape can be examined in greater detail. This is supported by our supplementary
464  plots of PC scores over time; while the reduced sample density within the post-go period
465  means these must be interpreted with caution, they nonetheless demonstrate substantial

466  fluctuations not captured by the main analysis (see supplementary figures S2-S5).

467  While the neurophysiological processes driving waveform shape are not well understood, the
468  developing literature has identified several contributing mechanisms. For example, seminal
469  work used multimodal evidence (local field potentials, MEG, modelling) in animal and

470  human data to show that the shape of somatosensory beta bursts are driven by synchronous
471  thalamic inputs to proximal and distal dendrites of pyramidal neurons (Sherman et al. 2016),
472  and recent work with MEG supports a similar mechanism in human motor cortex (Bonaiuto
473 et al. 2021). Furthermore, Cole and Voytek (2018) used hippocampal recordings in rodents to
474  show that non-sinusoidal features of theta cycles relate to synchronisation, activation

475  sequence, and firing rate in pyramidal neurons and interneurons; recent work from Garcia-
476  Rosales et al. (2023) also demonstrated the importance of synchronisation within local

477  spiking activity for driving the shape of delta cycles within the fronto-auditory circuit of bats.
478  Finally, Marshall ef al. (2022) recently showed that application of transcranial direct current
479  stimulation changes one half-wave of gamma cycles (recorded from human visual cortex with
480 MEQ), and used biophysical modelling to show that altered excitability of layer 5 pyramidal
481  cells could explain their results. Taken together, this literature demonstrates that waveform
482  shape reflects the structure and dynamics of local cortical networks, and their modulation by
483  interconnected areas. The details of this largely remain to be determined, and likely reflect
484  varied processes across different brain areas (e.g., Garcia-Rosales et al. 2023), making it

485  difficult to speculate about their relation to the specific changes in waveform shape we report
486  here. Nonetheless, it seems reasonable to suggest that our results may reflect task- and age-

487  dependent changes in cortical network activity/connectivity. Further exploration of the
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488  mechanisms underpinning variations in waveform shape, possibly via pharmaceutical
489  intervention or the application of non-invasive brain stimulation, will be critical for

490  understanding the effects reported here.

491  Instantaneous frequency is altered in older adults.

492  Age-related comparisons of IF suggested that older adults showed an increase in cycle

493  frequency for the alpha mode but decrease in cycle frequency for the beta mode. These

494  outcomes contrast with previously reported effects of older age on the peak frequency of

495  alpha and beta oscillations (see Introduction), derived using Fourier-based methods. Given
496 that, within the current study, estimates of peak frequency using Welch’s method were highly
497  comparable for both the raw data and the alpha IMF (Fig 1), this outcome is unlikely to

498  reflect an artifact of EMD. It is also important to note that phase-aligned IF data were

499  demeaned prior to PCA, meaning that our analysis of waveform motifs was not influenced by
500 between-group differences in IF. That being said, Fourier-based estimates of peak frequency
501 and Hilbert-Huang based estimates of IF cannot be considered to provide the same

502  information about oscillatory activity (Huang et al. 1996, Huang et al. 1998, Huang et al.

503  2009). In particular, Fourier based methods assume a linear and stationary signal (in contrast
504  to the non-stationary nature of EEG), whereas estimates of IF are sensitive to the intra- and
505 inter-wave fluctuations which are present in EEG data (Lo et al. 2009). Consequently,

506  previously reported effects of age on oscillatory frequency (as calculated using Fourier-based
507 techniques) have a temporal resolution that is limited by the length of the time window over
508  which the Fourier transform was applied. In contrast, the IF data reported here were estimated
509  directly from the narrowband IMFs via the differentiation of phase, and therefore resolve

510 fluctuations in frequency on a much higher temporal scale (i.e., the level of individual

511  oscillatory cycles). In addition to differences in temporal resolution, these techniques are also
512  differentiated by the way in which they isolate oscillatory activity: conventional approaches

513  using Fourier methods quantify activity within a priori bands, whereas analyses of IF can
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514  include a much broader range of frequency values. Taken together, the previous and current
515  examinations of age-related changes in oscillation frequency likely interrogate different
516  characteristics of the underlying generators, possibly relating to different timescales of

517  variability.

518 In conclusion, the current study examined how the shape of oscillations within the alpha and
519  beta bands varied in young and older adults as they performed SRT and GNG reaction time
520 tasks. To achieve this, we implemented an analysis pipeline that characterised waveform

521  shape based on within-cycle fluctuations in phase-aligned IF, which were subsequently

522  decomposed into waveform motifs using PCA. Comparisons of motif scores identified

523  several dimensions of shape that were influenced by age and/or task, possibly providing

524  unique insight to cortical activity and connectivity associated with motor function in young
525 and older adults. Future work that further examines how these fluctuations in shape relate to
526  performance, in addition to the underlying mechanisms, will be important for identifying how
527  this information can be used to understand age-related changes in the brains motor networks,

528 and to inform new methods for influencing motor function in the elderly.

529  Data availability

530 Pre-processed EEG data and code used within analyses of the current study is available from

531  https://osf.i0/ctq98/.

532
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