

1 Isolating feedforward, lateral, and feedback mechanisms
2 underlying perceptual and attentional impairments of
3 conscious access

4
5 Samuel Noorman^{1,2,*}, Timo Stein^{1,2}, Johannes J. Fahrenfort^{1,2,3, **}, Simon van Gaal^{1,2, **}

6
7 ¹Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands

8 ²Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands

9 ³Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam,
10 Amsterdam, The Netherlands

11 *Correspondence: sgnoorman@gmail.com

12 **Shared senior authorship

13

14 This research was supported by a grant from the H2020 European Research Council (ERC STG
15 715605, SVG).

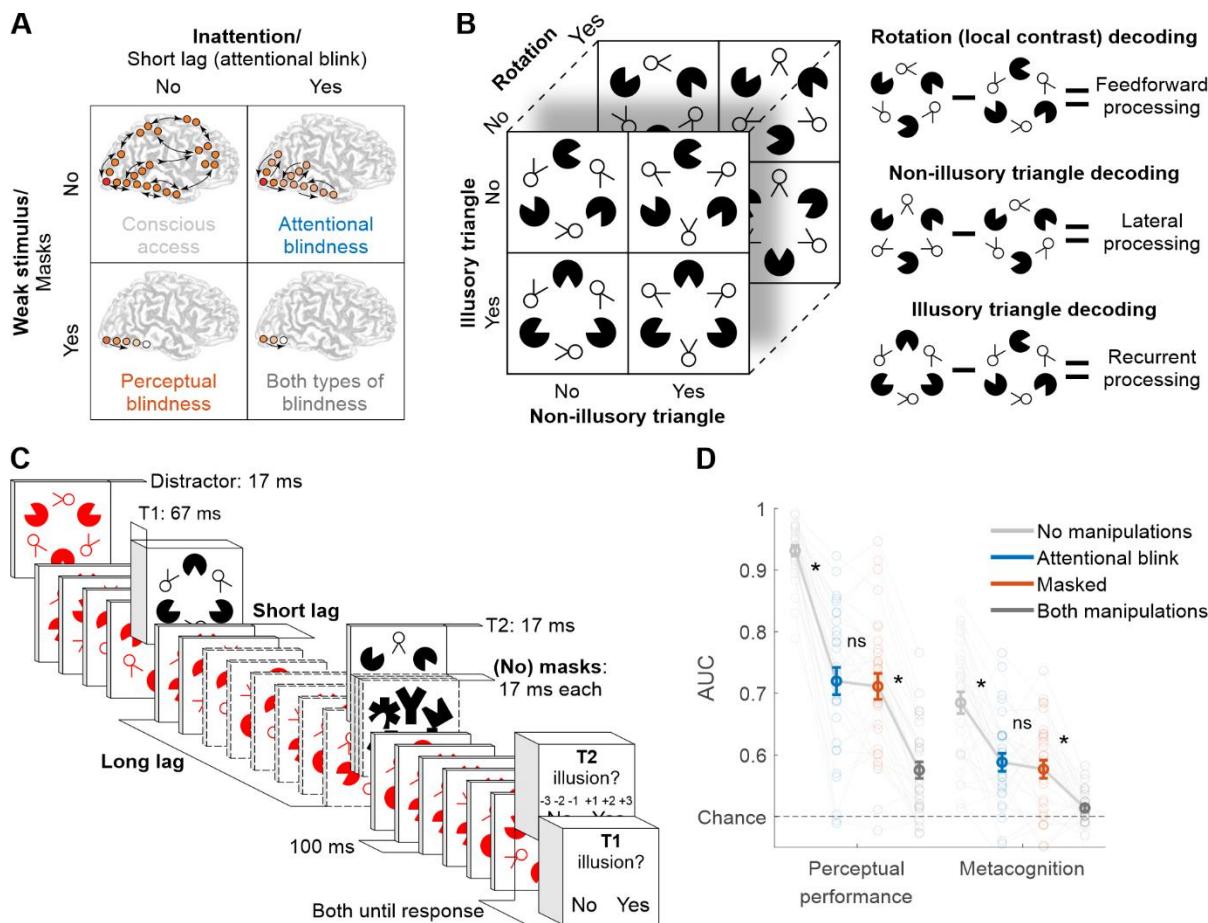
16 Abstract

17 This study investigates failures in conscious access resulting from either weak sensory input
18 (perceptual blindness) or unattended input (attentional blindness). Participants viewed an
19 illusory Kanizsa triangle within a rapid serial visual presentation of distractor stimuli while
20 electroencephalogram (EEG) was recorded. Distinct neural patterns associated with
21 feedforward, lateral, and local versus global feedback processes were identified by training and
22 testing classifiers on specific stimulus features. Perceptual performance was equated between
23 the perceptual (masking) and attentional (attentional blink) manipulation to circumvent common
24 confounds related to conditional differences in task performance. Decoding analyses revealed
25 that lateral and local feedback processes were impaired by masking but spared by the
26 attentional blink, with feedforward processing left largely unaffected by either manipulation.
27 Global feedback processes were directly related to perceptual and metacognitive performance
28 (conscious access), independent of the manipulation. These findings contribute to a
29 comprehensive understanding of four distinct neural stages leading to conscious access.

30 Introduction

31 Conscious access to sensory input can be impaired in two distinct ways (Dehaene et al., 2006;
32 Lamme, 2010; Mashour et al., 2020; Northoff & Lamme, 2020). Sensory input may lack
33 sufficient bottom-up strength, or top-down attention may be directed elsewhere. Despite both
34 cases resulting in a failure to perceive a stimulus, their underlying neural mechanisms are
35 thought to be remarkably different. Influential theories of consciousness such as global neuronal
36 workspace and recurrent processing theory propose four stages of neural information
37 processing associated with distinct levels of bottom-up signal strength and top-down attention.
38 These four stages can be investigated empirically by crossing “perceptual” manipulations that
39 degrade the strength of sensory input (e.g., reducing stimulus contrast, masking, continuous
40 flash suppression) with “attentional” manipulations that affect top-down attention (e.g.,
41 attentional blink, inattentional blindness, **Fig. 1A**).

42 According to these theoretical models, all stimuli elicit feedforward information transfer
43 from lower- to higher-level brain regions (**Fig. 1A**, bottom row), but recurrent interactions are
44 initiated only for stimuli with sufficient bottom-up strength (**Fig. 1A**, top row). If stimuli are
45 sufficiently strong and top-down attention is available, neural processing crosses a threshold,
46 triggering a process termed global ignition, facilitating widespread recurrent interactions
47 between frontal, parietal and sensory cortices, yielding conscious access (**Fig. 1A**, top left).
48 Crucially, when top-down attention is lacking, frontoparietal network ignition is prevented, while
49 local recurrent interactions within sensory brain regions remain relatively intact (“attentional
50 blindness”, **Fig. 1A**, top right) (Dehaene et al., 2003; Marti et al., 2015; Sergent et al., 2005;
51 Zivony & Lamy, 2022). Weak stimuli result in the absence, or a substantial reduction, of local
52 recurrent interactions (“perceptual blindness”, **Fig. 1A**, bottom left) (Fahrenfort et al., 2007;
53 Joglekar et al., 2018; van Gaal et al., 2008; van Vugt et al., 2018).


54 Although this framework is at the heart of influential theories of consciousness, the four
55 stages of the model and their underlying neural mechanisms have rarely been investigated
56 simultaneously within the same study (for an exception see Fahrenfort et al., 2017). One
57 challenge with comparing results across different studies, or even within a study, is that
58 perceptual manipulations tend to impair overall task performance more than attentional
59 manipulations, so that it may not be surprising to find that perceptual manipulations interrupt
60 recurrent interactions to a greater extent than attentional manipulations. Given the right
61 parameter settings, perceptual manipulations can be used to induce chance-level performance,
62 while it is not possible to use attentional manipulations to drive behavioral performance down to
63 chance, even when they are optimized fully. For this reason, attentional manipulations are often
64 combined with post-hoc selection of a subset of “blind” trials (e.g., attentional blink) or subjects
65 (e.g., inattentional blindness), a methodologically questionable practice that introduces criterion
66 confounds, sampling bias, and regression to the mean (Peters & Lau, 2016; T. Schmidt, 2015;
67 Shanks, 2017). Thus, when comparing perceptual to attentional manipulations, any (neural)
68 effect could reflect differences in task performance rather than genuine differences between
69 manipulations and hence stages in the model depicted in **Figure 1A**. While these issues with
70 comparing conditions that differ in task performance in consciousness research have been
71 acknowledged (Lau, 2022), they have rarely been addressed experimentally (Kanai et al., 2010;
72 Lau & Passingham, 2006; Meuwese et al., 2014). Another major challenge for testing the neural

73 underpinnings of the four-stage model is to isolate feedforward, local, and global recurrent
74 processes in humans using neuroimaging techniques. Although recent studies suggest that it is
75 feasible to isolate these processes through appropriate stimulus protocols and analysis
76 techniques (Fahrenfort et al., 2007, 2017; Kok et al., 2016; Kok & de Lange, 2014;
77 Vandenbroucke et al., 2014), consciousness research has not yet fully capitalized on these
78 advancements.

79 To test and further refine the four-stage model of consciousness in humans, we
80 compared all stages within the same experimental setup, matching task performance between a
81 perceptual manipulation (masking) and an attentional manipulation (attentional blink). Matching
82 task performance was crucial to our design to control for confounds due to performance
83 differences between perceptual and attentional failures of awareness. Further, we isolated
84 different neural processes by combining a novel visual stimulus whose features allowed
85 targeting distinct stages of visual processing with time-resolved decoding of these visual
86 features from electroencephalogram (EEG) data (**Fig. 1B**). The target stimulus differed along
87 three dimensions (illusory triangle, non-illusory triangle, and local contrast) that were
88 independently manipulated. First, “Pac-Man” stimuli could create either the perception of an
89 illusory surface in the shape of a Kanizsa triangle when aligned, or not, when misaligned.
90 Second, additional “two-legged white circles” could form either a non-illusory triangle when their
91 line segments were aligned, or not, when the legs were misaligned. Third, for the local contrast
92 manipulation, the whole stimulus was rotated by 180 degrees, so that the same retinotopic
93 positions had high contrast in one spatial configuration and low contrast when flipped 180
94 degrees.

95 Decoding the stimulus conditions of the illusory triangle, non-illusory triangle, and local
96 contrast at different points in time, in combination with the associated topography, served as
97 markers of distinct neural processes (**Fig. 1B**). To test the four-stage model, we collected
98 markers of feedforward, local recurrent, and global recurrent processing. Local contrast
99 decoding at early points in time served as a marker for feedforward processing, because the
100 differences in local contrast are processed early in the visual system and are resistant to
101 masking (Fahrenfort et al., 2007, 2017; Kandel et al., 2000; Lamme & Roelfsema, 2000).
102 Leveraging the well-established reliance of the Kanizsa illusion on recurrent processing
103 (Halgren et al., 2003; Kok et al., 2016; Kok & de Lange, 2014; Lee & Nguyen, 2001; Pak et al.,
104 2020; Wokke et al., 2013), illusory triangle decoding at earlier vs. later points in time served as
105 markers for local vs. global recurrent processing (Fahrenfort et al., 2017). Local recurrent
106 processing comprises both feedback and lateral interactions. We therefore attempted to
107 distinguish between these sub-components of local recurrent processing. Both the illusory and
108 the non-illusory triangle involved processing the alignment of collinear line segments of equal
109 length and equal distance between them, from now on referred to as collinearity. Collinearity
110 processing primarily relies on lateral connections (Bosking et al., 1997; Gilbert & Wiesel, 1979;
111 Li, 1998; Liang et al., 2017; K. E. Schmidt et al., 1997; Stettler et al., 2002). By subtracting non-
112 illusory triangle decoding (supported by lateral connections) from illusory triangle decoding
113 (supported by lateral and feedback connections), we aimed to isolate feedback processing, thus
114 effectively subtracting out the contribution of lateral interactions. Armed with these EEG markers
115 of different neural processes, we tested whether the effects of masking and the attentional blink
116 followed the predictions of the four-stage model of consciousness.

117

118
119

120 **Figure 1. Experimental design and behavior.** (A) Perceptual vs. attentional blindness in the four-stage
121 model. A stimulus with low bottom-up strength (masked) is thought to interrupt local recurrent processing
122 in sensory areas while leaving feedforward processing largely intact, while inattention (induced by the
123 attentional blink) is thought to interrupt global recurrent processing between frontoparietal areas and
124 sensory areas, while leaving local recurrent processing within sensory areas largely intact. Reprinted from
125 Dehaene et al. (2006) with permission from Elsevier. (B) Target stimulus set and schematic of the
126 markers for the different types of processing: local contrast decoding (supported by feedforward
127 connections), non-illusory triangle decoding (supported by lateral connections), and illusory triangle
128 decoding (supported by lateral and feedback connections) (C) Trial design. (D) Perceptual performance
129 refers to participants' ability to detect the Kanizsa illusion. Metacognition refers to participants' ability to
130 evaluate their own performance using confidence judgments. Both perceptual performance and
131 metacognition are measured as the area under the receiver operating characteristic curve (AUC). Error
132 bars are mean \pm standard error of the mean. Individual data points are plotted using low contrast. Ns is
133 not significant ($P \geq 0.477$, $BF_{01} \geq 4.05$). * $P \leq 0.001$.

134 Results

135 **Masking and the attentional blink were matched in perceptual performance and** 136 **metacognition**

137 We recorded the EEG signal of 30 participants who identified the presence or absence of an
138 illusory surface (triangle) in two black target stimuli (T1 and T2) that were presented amongst
139 red distractors in a rapid serial visual presentation task (**Fig. 1C**). We manipulated the visibility
140 of T2 in two ways: masking the stimulus and manipulating attention, resulting in a 2×2 factorial
141 design (**Fig. 1A**). Specifically, T2 could be either masked or unmasked (perceptual
142 manipulation), and T2 could be presented at either a long interval (900 ms) or a short interval
143 (200 or 300 ms) after T1, inducing an attentional blink (AB) effect for the short T1-T2 intervals
144 (Raymond et al., 1992). This design resulted in four conditions, which we from now on refer to
145 as the masked condition (T2 masked at the long T1-T2 interval), AB condition (T2 unmasked at
146 the short T1-T2 interval), no manipulations condition (T2 unmasked at the long T1-T2 interval),
147 and both manipulations condition (T2 masked at the short T1-T2 interval). At the end of a trial,
148 participants indicated whether each target (T1 and T2) contained an illusory surface or not.
149 Importantly, mask contrast in the masked condition was individually adjusted using a staircasing
150 procedure to match participants' performance in the AB condition, ensuring comparable
151 perceptual performance in the masked and the AB condition (see Methods for more details).

152 Conscious access can be assessed not only based on perceptual performance but also
153 through metacognitive sensitivity, the ability to evaluate one's own performance (Brown et al.,
154 2019; Dienes, 2007; Fleming & Lau, 2014; Lau & Passingham, 2006; Merikle et al., 2001; Seth
155 et al., 2008). Participants in our study provided confidence ratings on a 3-point scale (low,
156 medium, high) for their responses to T2. To ensure that the distribution of confidence ratings
157 was not influenced by overall differences in perceptual performance between conditions,
158 conditions that were matched in perceptual performance (masked and AB condition) were
159 presented in the same experimental block, while the other block type included the unmatched
160 conditions (no and both manipulations condition).

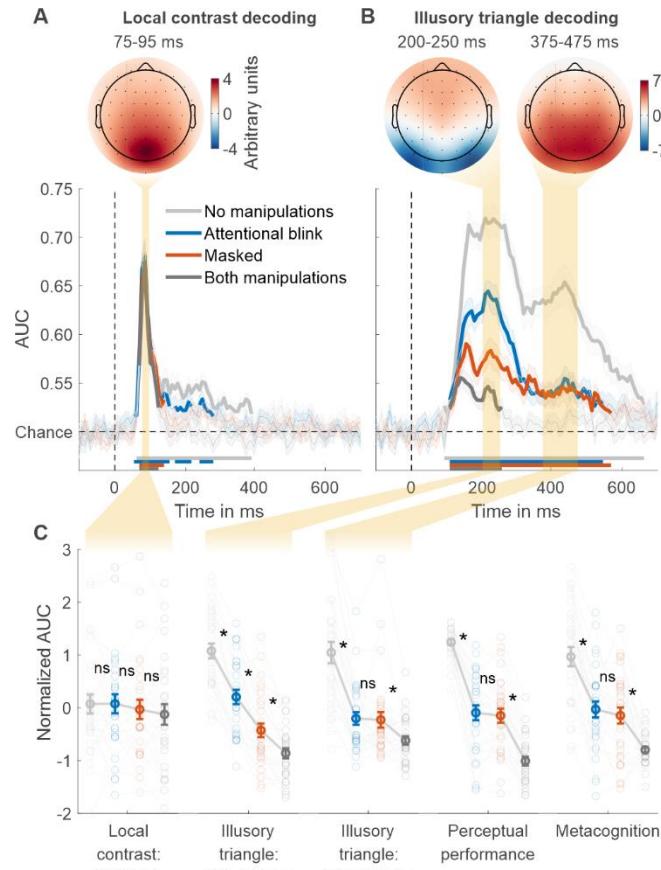
161 We used area under the receiver operating characteristic (ROC) curve (AUC) as a
162 shared metric for perceptual performance (detection of the Kanizsa illusion), metacognitive
163 sensitivity, and EEG decoding (see Methods for details on the calculation of these measures).
164 Repeated-measures (rm) ANOVA with the factors masking (present/absent) and T1-T2 lag
165 (short/long) revealed, as expected, that both masking and the short T1-T2 lag impaired
166 perceptual performance ($F_{1,29}=344.24, P<10^{-15}$ and $F_{1,29}=427.54, P<10^{-15}$) as well as
167 metacognitive sensitivity ($F_{1,29}=50.78, P<10^{-7}$ and $F_{1,29}=47.83, P<10^{-6}$). Importantly, paired t-tests
168 showed that we successfully matched the key conditions, the masked condition (masked, long
169 lag) and the AB condition (unmasked, short lag) for perceptual performance ($t_{29}=0.62, P=0.537$,
170 $BF_{01}=4.30$, **Fig. 1D**, left) as well as for metacognitive sensitivity ($t_{29}=0.72, P=0.477$, $BF_{01}=4.05$;
171 **Fig. 1D**, right, see **Fig. S1** for signal detection theory related measures of performance). Thus,
172 the two performance matched conditions were indistinguishable from each other in both
173 measures of conscious access.

174 **Masking and the attentional blink leave feedforward processing largely intact**

175 To derive our markers of the different neural processes from our EEG data, for each stimulus
176 feature we trained linear discriminant classifiers on the T1 data and tested them on the T2 data.
177 Classifiers used raw EEG activity across all electrodes. To leverage the similarities between T1
178 and T2 in task and stimulus context, all main analyses used T1 training data for T2 decoding.
179 This approach minimized possible differences in conscious access and working memory
180 demands between the training and test datasets.

181 For the marker of feedforward processing, the classifier categorized stimuli as either
182 pointing upwards or pointing downwards, thereby effectively decoding the stimuli's local
183 differences in contrast at the top vs. bottom of the stimulus. Classification performance (AUC)
184 over time was obtained, with peak decoding accuracy in a 75-95 ms time window (**Fig. 2A** and
185 **Fig. S2A**, top). The peak in decoding accuracy was occipital in nature (see the covariance/class
186 separability map of **Fig. 2A**) (Haufe et al., 2014), consistent with our previous findings
187 (Fahrenfort et al., 2017). We focused our analyses on the averages of this time window. An rm
188 ANOVA with the factors masking (present/absent) and T1-T2 lag (short/long) revealed only a
189 marginal effect of masking on feedforward processing ($F_{1,29}=6.51$, $P=0.016$), while the T1-T2 lag
190 had no significant effect ($F_{1,29}=0.32$, $P=0.578$). A paired t-test yielded no evidence for a
191 difference between the performance matched conditions (masked vs. AB; $t_{29}=1.42$, $P=0.166$,
192 $BF_{01}=2.08$; **Fig. 2C**, "Local contrast: 75-95 ms"). These results are in line with theoretical
193 proposals and empirical findings that suggest limited effects of masking and attentional
194 manipulations on feedforward processes (Dehaene et al., 2006; Fahrenfort et al., 2007, 2017;
195 Lamme, 2010).

196 **Stronger effect of masking than the attentional blink on local but not global
197 recurrent processing**


198 For the marker of recurrent processing, we trained a linear classifier on the T1 data to
199 discriminate between the absence and presence of the Kanizsa illusion and tested it on each of
200 the four conditions of the T2 data. The average of all four conditions revealed two prominent
201 peaks in decoding accuracy, consistent with previous research (**Fig. S2C**, top) (Fahrenfort et al.,
202 2017). Based on this previous study, our analyses focused on the averages of the two time
203 windows that encompassed these two peaks: specifically, from 200 to 250 ms and from 375 to
204 475 ms after target stimulus onset. The covariance/class separability maps (**Fig. 2B**) indicated
205 that during the earlier time window (200–250 ms) classification mainly relied on occipital
206 electrodes. Considering its timing, topology and previous findings, this neural event likely
207 reflects sensory processes and served as the marker for local recurrent processing (Fahrenfort
208 et al., 2017; Kok et al., 2016; Roelfsema, 2006; Wokke et al., 2013; Wyatte et al., 2014). The
209 timing and topology of the later neural event (375–475 ms) overlapped with the event-related
210 potential component P300, which is associated with conscious access (Fahrenfort et al., 2017;
211 Sergent et al., 2005; Weaver et al., 2019) and served as the marker for global recurrent
212 processing.

213 We tested how the consciousness manipulations affected these markers of local and
214 global recurrent processing (**Fig. 2C**), again conducting rm ANOVAs with the factors masking
215 (present/absent) and T1-T2 lag (short/long) that we followed-up on with paired t-tests comparing

216 the matched conditions (masked vs. AB). Importantly, we observed a distinct difference
217 between the performance matched conditions in the first decoding peak, the marker of local
218 recurrent processing. Local recurrent processing was significantly impaired by both masking
219 ($F_{1,29}=162.62, P<10^{-12}$) and the T1-T2 lag ($F_{1,29}=78.07, P<10^{-8}$), but importantly, it was more
220 affected by masking than the T1-T2 lag ($F_{1,29}=18.67, P<0.001$) (**Fig. 2C**, “Illusory triangle: 200-
221 250 ms”). Directly comparing the performance matched conditions, local recurrent processing
222 was more strongly impaired in the masked condition than in the AB condition ($t_{29}=4.66, P<10^{-4}$,
223 $BF_{01}=0.003$).

224 The pattern of results of the second peak, the marker of global recurrent processing,
225 was notably different. Global recurrent processing was impaired by both masking ($F_{1,29}=49.75,$
226 $P<10^{-7}$) and the T1-T2 lag ($F_{1,29}=78.48, P<10^{-9}$), and the matched conditions (masked and AB
227 condition) did not differ significantly from each other ($t_{29}=0.21, P=0.837, BF_{01}=5.04$) (**Fig. 2C**,
228 “Illusory triangle: 375-475 ms”). Furthermore, another rm ANOVA comparing local and global
229 recurrent processing between the matched conditions (masked/AB) revealed a significant
230 interaction, reflecting a larger difference between the AB and the masked condition in local
231 recurrent processing than in global recurrent processing ($F_{1,29}=31.53, P<10^{-5}$). Across the four
232 conditions, the pattern of behavioral results, both for perceptual performance and metacognitive
233 sensitivity, closely resembled global recurrent processing (**Fig. 2C**), indicating that global
234 recurrent processing reflected conscious access to the Kanizsa illusion.

235 Additional rm ANOVAs assessing the effect of the consciousness manipulations on the
236 different neural processes showed that, compared to feedforward processing, both
237 manipulations had stronger effects on both local recurrent processing (masking: $F_{1,29}=99.35,$
238 $P<10^{-10}$; AB: $F_{1,29}=38.95, P<10^{-6}$) and global recurrent processing (masking: $F_{1,29}=22.25, P<10^{-4}$;
239 AB: $F_{1,29}=49.60, P<10^{-7}$). This shows that masking and the AB specifically influenced local and
240 global recurrent processing respectively, while early feedforward processing was less affected.
241

242
243

244 **Figure 2. Local contrast and illusory triangle decoding using first targets as training data.** (A) Local
245 contrast decoding. (B) Illusory Kanizsa triangle decoding. For both features, covariance/class separability
246 maps reflecting underlying neural sources are shown. Below these maps: mean decoding performance,
247 area under the receiver operating characteristic curve (AUC), over time \pm standard error of the mean
248 (SEM). Thick lines differ from chance: $P < 0.05$, cluster-based permutation test. (C) Normalized (Z-scored)
249 AUC for every measure: mean decoding time windows and two types of behavior. Each measure is Z-
250 scored separately. Perceptual performance refers to participants' ability to detect the Kanizsa illusion.
251 Metacognition refers to participants' ability to evaluate their own performance using confidence
252 judgments. See Figure S3 for the same analyses but then for off-diagonal decoding profiles. Error bars
253 are mean \pm SEM. Individual data points are plotted using low contrast. Ns is not significant ($P \geq 0.166$,
254 $BF_{01} \geq 2.07$). * $P \leq 0.002$.

255

256 Distinguishing lateral vs. feedback connections in local recurrent processing

257 The performance matched masked and AB condition differed only in local recurrent processing,
258 which was markedly more impaired for the masked than the AB condition. To determine
259 whether this effect was specific to (local) feedback connections or also involved lateral
260 interactions, we distinguished the components of local recurrent processing: lateral and
261 feedback connections (Lamme et al., 1998; Roelfsema, 2006) (Fig. 1B). In our target stimulus,
262 collinearity was present when the Pac-Man stimuli aligned, inducing the illusory Kanizsa
263 triangle. Notably, collinearity was also present when the line segments of the "two-legged white

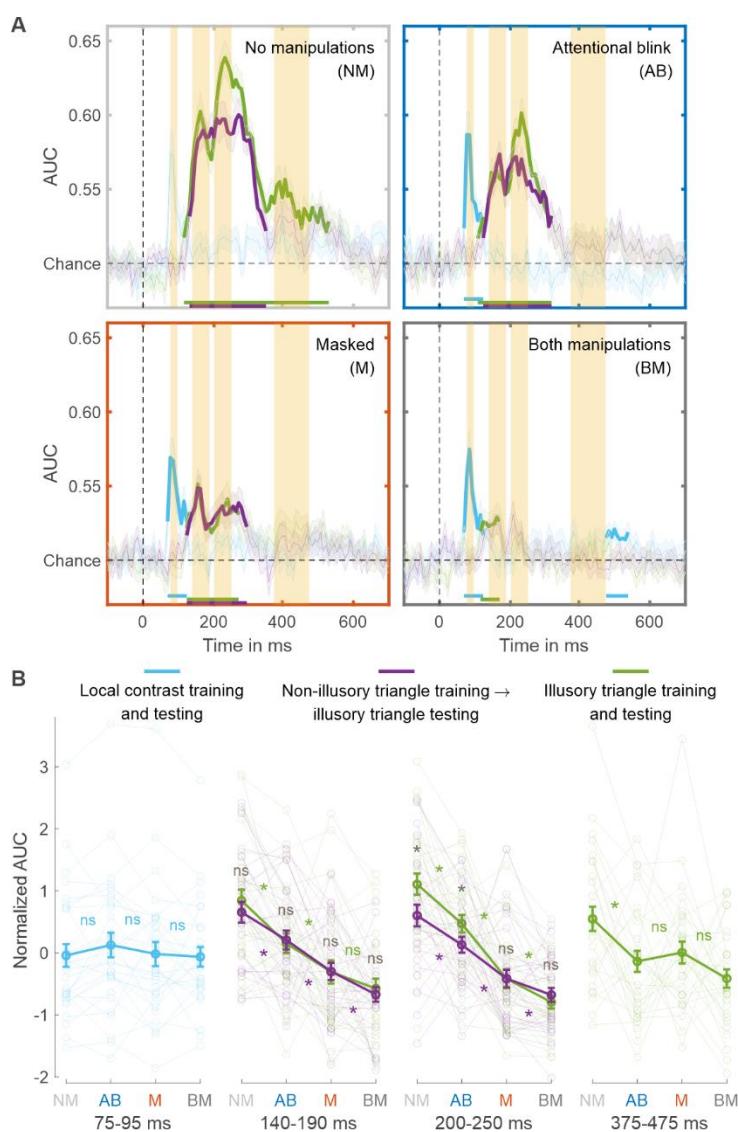
264 "circles" of the stimulus aligned, forming the non-illusory triangle. Note that the line segments
265 making up the triangle were equally long, and the spaces between them equally large, for the
266 illusory and non-illusory triangles. Collinearity processing primarily relies on lateral connections
267 (Bosking et al., 1997; Gilbert & Wiesel, 1979; Li, 1998; Liang et al., 2017; K. E. Schmidt et al.,
268 1997; Stettler et al., 2002), while processing of the Kanizsa illusion involves both lateral and
269 feedback connections (Halgren et al., 2003; Kok et al., 2016; Kok & de Lange, 2014; Lee &
270 Nguyen, 2001; Pak et al., 2020; Wokke et al., 2013). Thus, by comparing non-illusory triangle
271 decoding to illusory triangle decoding we can in principle isolate illusion-specific feedback
272 processing from the influence of lateral interactions.

273 However, the main RSVP task required participants to focus on the illusory triangle,
274 making it task-relevant, while non-illusory triangles were always task-irrelevant. This difference
275 could influence the direct comparison in decoding accuracy between the two types of triangles.
276 Therefore, to equate the effect of task-relevance in the comparison, classifiers were trained on
277 an independent training set in which each relevant stimulus feature was task-relevant.
278 Specifically, in different experimental blocks, participants either focused on local contrast, the
279 non-illusory triangle, or the illusory triangle (**Fig. S4**). We trained a classifier to distinguish
280 between the absence and presence of the task-relevant non-illusory triangle (collinearity-only)
281 and the same was done for the task-relevant illusory triangle (collinearity-plus-illusion). Then,
282 both classifiers were used to decode the presence vs. absence of the illusory triangle in the
283 main RSVP task (cross-task-decoding approach), which ensured that both training and testing
284 were always performed on task-relevant stimuli. By comparing Kanizsa decoding performance
285 in the RSVP task based on the collinearity-only classifier with decoding performance based on
286 the collinearity-plus-illusion classifier, we effectively subtract out the contribution of lateral
287 connections to illusion decoding and isolate illusion-specific feedback processing.

288 **Preserved lateral and local feedback connections during the attentional blink**

289 To determine a time window for (the start of) lateral processing, related to collinearity,
290 we first trained and tested classifiers to distinguish present vs. absent non-illusory triangles
291 (training and testing on non-illusory triangles only). We trained two classifiers, one on the T1 in
292 the RSVP task and one on the independent training set and tested their performance in
293 decoding the non-illusory triangle in the T2 data, where this triangle was always task-irrelevant.
294 The results of both classifiers converged and these analyses revealed a peak in decoding
295 accuracy at ~164 ms, suggestive of an effect of lateral processing, right before the 200-250 ms
296 time window of local recurrent processing (**Fig. S2B**). This peak was also evident when these
297 classifiers were used to categorize the presence vs. absence of the Kanizsa illusion (**Fig. S2C**,
298 first time window), as well as in previous research (Fahrenfort et al., 2017), suggesting that
299 lateral processes also contribute to Kanizsa decoding. Next, we tested that hypothesis in more
300 detail.

301 We examined how decoding the presence vs. absence of the Kanizsa illusion in the
302 RSVP task was affected by the consciousness manipulations, while training classifiers either on
303 the illusory (collinearity-plus-illusion) or non-illusory (collinearity-only) triangle from the
304 independent training set. **Figure 3A** shows the decoding accuracies of these analyses across
305 the entire time-window (purple and green lines). Follow-up analyses were performed using the


306 140-190 ms window, observed to reflect the peak of lateral processing (see the previous
307 paragraph). An rm ANOVA with the factors masking (present/absent), T1-T2 lag (short/long),
308 and training set (illusory/non-illusory triangle) revealed that both masking and the short T1-T2
309 lag impaired decoding accuracy (masking: $F_{1,29}=58.95$, $P<10^{-7}$; T1-T2 lag: $F_{1,29}=24.90$, $P<10^{-4}$).
310 Furthermore, paired t-tests comparing the matched conditions (masked vs. AB condition)
311 confirmed that decoding accuracy was more impaired in the masked than AB condition, both
312 when training was done on the illusory ($t_{29}=2.26$, $P=0.031$, $BF_{01}=0.58$) and non-illusory triangle
313 ($t_{29}=2.78$, $P=0.009$, $BF_{01}=0.21$; **Fig. 3B**, “140-190 ms”). Focusing on the performance matched
314 conditions and the role of the training set, an rm ANOVA with the factors condition (masked/AB)
315 and training set (illusory/non-illusory triangle) on T2 illusory triangle decoding revealed no
316 significant effect of training set ($F_{1,29}=0.09$, $P=0.766$), i.e., no evidence for illusion-specific
317 feedback processing, and no significant interaction ($F_{1,29}=0.04$, $P=0.837$). This demonstrates
318 that neural processing in the 140-190 ms window indeed reflects lateral rather than feedback
319 connections.

320 Interestingly, the marker for illusion-specific feedback emerged later, in the 200-250 ms
321 time window reflecting local recurrent processing. As can be seen in **Figure 3A**, when no
322 consciousness manipulations were applied (unmasked, long T1-T2 lag), there was significant
323 illusion-specific feedback processing, i.e., T2 illusory triangle decoding was better after training
324 a classifier on the Kanizsa illusion (collinearity-plus-illusion, green line) than after training a
325 classifier on the non-illusory triangle (collinearity-only, purple line) ($t_{29}=4.22$, $P<0.001$,
326 $BF_{01}=0.008$). Turning to the performance matched conditions, an rm ANOVA with the factors
327 condition (masked/AB) and training set (illusory/non-illusory triangle) on T2 illusory triangle
328 decoding yielded a significant effect of condition ($F_{1,29}=16.59$, $P<0.001$), with overall better
329 decoding for the AB than for the masked condition, and importantly, a significant interaction
330 ($F_{1,29}=4.65$, $P=0.039$). **Figure 3A** shows that decoding after training on illusory triangles
331 (collinearity-plus-illusion) was better than after training on non-illusory triangles (collinearity-
332 only) for the AB ($t_{29}=2.51$, $P=0.018$, $BF_{01}=0.36$, **Fig. 3A**, top right) but not for the masked
333 condition ($t_{29}=-0.02$, $P=0.982$, $BF_{01}=5.14$, **Fig. 3A**, bottom left). Thus, the marker for illusion-
334 specific feedback processing was still present in the AB condition, whereas this marker was fully
335 abolished in the masked condition. Feedback processing was not even affected by the AB
336 condition, as an rm ANOVA with the factors (masking is absent) condition (no
337 manipulations/AB) and training set (illusory/non-illusory triangle) revealed no significant
338 interaction ($F_{1,29}=1.33$, $P=0.259$). The classifier trained on non-illusory triangles (collinearity-
339 only) also performed better during the AB than masking ($t_{29}=2.85$, $P=0.008$, $BF_{01}=0.18$; **Fig. 3B**,
340 “200-250 ms”, purple line), hence both lateral and feedback processes were most strongly
341 impaired by masking. Control analyses presented in the **Supplementary information (Fig. S6)**
342 demonstrate that cross-feature-decoding can indeed isolate illusion-specific feedback processes
343 and does not reflect other, e.g., task- or attention-related, processes.

344 Having established that, we next aimed to replicate the observation that the two
345 consciousness manipulations left feedforward processing largely intact by training the classifier
346 on the independent training set in which local contrast was task-relevant (**Fig. 3A**, light blue
347 lines). As for our previous main analyses, we averaged the 75-95 ms time window, as this again
348 contained the decoding peak with occipital topography (**Fig. S2A**, bottom). Similar to our main
349 analyses, another rm ANOVA with the factors masking (present/absent) and T1-T2 lag

350 (short/long) showed that neither masking ($F_{1,29}=0.97$, $P=0.334$) nor the T1-T2 lag ($F_{1,29}=0.72$,
 351 $P=0.403$) had a significant effect on feedforward processing, and a paired t-test revealed no
 352 evidence of a significant difference between the two performance matched conditions (masked
 353 vs. AB condition, $t_{29}=1.20$, $P=0.240$, $BF_{01}=2.68$; **Fig. 3B**, “75-95 ms”). For completeness, we
 354 report local contrast decoding as a function of task-relevance in the **Supplementary**
 355 **information** and **Figure S7**. In short, local contrast decoding did not vary systematically with
 356 task-relevance of the stimulus feature.

357 Finally, we focused on the late 375-475 ms window, the marker for global recurrent
 358 processing directly linked to behavioral performance (**Fig. 3A**, last time window). Similarly as
 359 above, Illusory triangle decoding was now based on training the decoder on the illusory triangles
 360 from the independent training set. Replicating our main analysis, classifier performance was
 361 impaired by both masking ($F_{1,29}=6.01$, $P=0.020$) and T1-T2 lag ($F_{1,29}=10.10$, $P=0.004$) with no
 362 significant differences between the two performance matched conditions ($t_{29}=-0.63$, $P=0.531$,
 363 $BF_{01}=4.27$) (**Fig. 3B**, “375-475 ms”).
 364

365

366

367 **Figure 3. Separating lateral and feedback processes using the independent training dataset.** (A)
368 Illusory triangle decoding, after training classifiers on the independent training set on either the non-
369 collinearity-only, purple lines) or illusory triangle (collinearity-plus-illusion, green lines). For
370 comparison, training and testing on local contrast is shown in light blue. Mean decoding performance,
371 area under the receiver operating characteristic curve (AUC), over time \pm standard error of the mean
372 (SEM) is shown. Thick lines differ from chance: $P < 0.05$, cluster-based permutation test. The highlighted
373 time windows are 75-95, 140-190, 200-250, and 375-475 ms, corresponding to separate panels in (B),
374 which shows normalized (Z-scored) mean AUC for every time window. Each window is Z-scored
375 separately. Error bars are mean \pm SEM. Individual data points are plotted using low contrast. Ns is not
376 significant ($P \geq 0.084$, $BF_0 \geq 1.26$). * $P \leq 0.048$.

377

Discussion

378 We demonstrate that perceptual and attentional manipulations, despite similarly impairing
379 conscious access, exhibit distinct neural profiles in the brain. To investigate this difference, we
380 decoded different visual features targeting distinct stages of visual processing from human EEG
381 activity, while carefully matching a masked condition and an attentional blink (AB) condition in
382 perceptual and metacognitive performance. Decoding the illusory Kanizsa triangle served as a
383 marker for recurrent processing, revealing both global (late and centroparietal) and local (early
384 and occipital) recurrent processing. Global recurrent processing was similarly impaired by the
385 perceptual manipulation (masked condition) and the attentional manipulation (AB condition),
386 closely resembling their matched effects on behavioral performance. However, local recurrent
387 processing was markedly more impaired in the masked than the AB condition (Fahrenfort et al.,
388 2017), even though task performance was matched. This key neural difference was specific to
389 local recurrent processing, as the marker for feedforward processing (local contrast decoding)
390 was barely affected by the two consciousness manipulations. Furthermore, we further analyzed
391 the components of local recurrent processing and differentiated illusion-specific feedback from
392 processing by lateral connections by subtracting non-illusory (collinearity-only) from illusory
393 triangle (collinearity-plus-illusion) decoding. Both feedback and lateral processing were more
394 strongly impaired by masking than the AB. Notably, the marker for illusion-specific feedback
395 processing was unaffected by the AB, but completely abolished by masking. These findings
396 confirm and enrich empirical and theoretical work on perceptual vs. attentional mechanisms of
397 consciousness (Block, 2005; Dehaene et al., 2006; Hatamimajoumerd et al., 2022; Lamme,
398 2010; Pitts et al., 2018; Sergent & Dehaene, 2004), clearly distinguishing and specifying the
399 neural profiles of each processing stage of the influential four-stage model of conscious
400 experience.

401 To our knowledge, this is the first study to examine the neural mechanisms underlying
402 conscious access in which behavioral measures of conscious perception are carefully matched
403 between the attentional blink and masking within a single experimental design. Previous
404 investigations have typically employed separate paradigms for perceptual and attentional
405 manipulations, often using different stimuli associated with distinct neural mechanisms, which
406 complicates direct comparisons between manipulations and across studies. Further, inattention
407 approaches generally use stronger sensory input (e.g., stimuli of longer duration, higher
408 contrast) than perceptual manipulations (Stein et al., 2021). Here, we introduced a novel

409 stimulus that allowed us to isolate four distinct stages of visual processing by decoding different
410 features while holding visual stimulation and task context constant. Furthermore, measurement
411 of conscious perception often differs between perceptual and attentional manipulations. In
412 particular, inattention approaches, which have previously tended to reveal more extensive
413 neural processing, frequently involve post-hoc selection of “blind” trials or participants based on
414 subjective awareness reports, which is susceptible to criterion confounds and introduces
415 selection and sampling biases (Peters & Lau, 2016; T. Schmidt, 2015; Shanks, 2017). In
416 contrast, our study analyzed all trials and included all participants while carefully matching
417 perceptual performance and metacognition between masking and the AB. Therefore, any
418 observed neural difference between masking and the AB can be unequivocally attributed to
419 differences between attentional and perceptual manipulations of conscious access.

420 Compared to masking, the AB left local recurrent processing intact, while feedforward
421 processing did not differ between the two manipulations. Local recurrent processing plays a
422 critical role in perceptual integration, facilitating the organization of fragmented sensory
423 information, such as lines, surfaces, and objects, into a coherent whole (Roelfsema, 2023). Our
424 EEG decoding results support this notion, demonstrating that the AB allows for greater
425 processing of collinearity and the illusion specifically within a time window spanning 140 to 250
426 ms after stimulus onset, likely reflecting sparing of local recurrent processes in visual cortex
427 (Fahrenfort et al., 2017; Kok et al., 2016). This aligns with established models of the AB
428 phenomenon, in which the AB reflects a late post-perceptual central bottleneck characterized by
429 limited attentional capacity (Shapiro et al., 1997), so that sensory information presented during
430 the AB can nevertheless undergo extensive processing, allowing for perceptual integration,
431 possibly even leading up to semantic analysis (Luck et al., 1996).

432 Our finding of preserved local recurrent processing during the AB is also consistent with
433 classic load theory (Lavie & Dalton, 2014), where increasing perceptual load (Lavie & de
434 Fockert, 2003) more strongly reduces distractor processing than increasing cognitive load (e.g.,
435 by engaging working memory, as in our AB condition). According to this theory, perceptual and
436 attentional manipulations serve as early and late filters for incoming sensory information,
437 respectively, resulting in more extensive processing under inattention. Indeed, one of the few
438 neuroimaging studies that included both manipulations found that only perceptual but not
439 cognitive (working memory) load decreased fMRI activity in the parahippocampal place area in
440 response to distractor scenes (Yi et al., 2004). However, not all neuroimaging evidence is
441 consistent with a stronger effect of perceptual than cognitive load (Brockhoff et al., 2022).
442 Furthermore, previous research has shown that the impact of inattention vs. masking can
443 depend on the neural architecture required for the task at hand. For example, processes related
444 to the detection of conflicting response tendencies, a hallmark of cognitive control and strongly
445 associated with the prefrontal cortex (Ridderinkhof et al., 2004), are more susceptible to
446 inattention, which reduces the depth of stimulus processing (Nuiten et al., 2021) than to
447 masking, restricting recurrent interactions, but allowing for deep feedforward processing (all the
448 way up to prefrontal cortex) (Jiang et al., 2018; van Gaal et al., 2008). Thus, the preservation of
449 local recurrent interactions appears to be particularly important for perceptual integration,
450 aligning with the influential notion that perceptual segmentation and organization may represent
451 the mechanism of conscious experience (Lamme, 2020).

452 Local recurrent interactions in visual cortex encompass both lateral and feedback
453 connections. The distinct roles of lateral and feedback connections to visual function have
454 received limited attention in human cognitive neuroscience and remain unaddressed in theories
455 of consciousness. Here we distinguished a marker of lateral processing reflecting basic
456 collinearity processing and a marker of feedback processing reflecting illusion-specific
457 processing. We observed that lateral processing occurred earlier (between 140 and 190 ms
458 after target stimulus onset) than illusion-specific feedback processing (between 200 and 250
459 ms), in line with animal research (Angelucci & Bressloff, 2006; Lamme et al., 1998; Roelfsema,
460 2006). Both lateral and feedback processing were more strongly affected by masking than by
461 the AB, indicating that the “attentional blindness” stage of the four-stage model of
462 consciousness (**Fig. 1A**) involves both lateral and feedback connections. Interestingly, masking
463 had a stronger effect on illusion-specific feedback processing than on lateral processing. Along
464 with the distinct temporal and spatial EEG decoding patterns associated with each marker, this
465 suggests a processing sequence from feedforward processing to local recurrent interactions
466 encompassing lateral-to-feedback connections, ultimately leading to global recurrency and
467 conscious report.

468 Having delineated these distinct stages of feedforward, lateral, feedback and global
469 recurrent processing, one important avenue for future research is to distinguish between
470 unconscious and conscious perceptual processes at these stages. Having opted to equate
471 performance across manipulations in our study, behavioral performance was above chance
472 level for both consciousness manipulations. Follow-up research investigating perceptual
473 integration of fully unconscious stimuli could address ongoing debates between influential
474 theories of consciousness (Cogitate Consortium et al., 2023; Mudrik et al., 2014). The global
475 neuronal workspace theory suggests a durable, yet unconscious processing stage (referred to
476 as preconscious), where the input is not globally available, and amplification through top-down
477 attention is required for conscious access and report (Dehaene et al., 2006). In contrast, others
478 have argued that already local recurrent interactions reflect subjective phenomenal experience
479 (Block, 2005; Lamme, 2010). Moreover, markers like the P300 and ours for global recurrent
480 processing may reflect functions not directly related to conscious experience, like report or
481 decision-making (Alilović et al., 2023; Canales-Johnson et al., 2023; Pitts et al., 2018). Another
482 way forward therefore consists in combining no-report paradigms (Sergent et al., 2021;
483 Tsuchiya et al., 2015) with our EEG markers to examine whether local or global recurrent
484 processing more accurately reflects consciousness in the absence of report.

485 Methods

486 Participants

487 Thirty-three participants took part in the first two sessions (independent EEG training set and
488 practice). Three of them met the practice session’s pre-established criteria for exclusion (see
489 “Procedure”). The remaining 30 participants (22±3 years old, 10 men, 2 left-handed) took part in
490 the final (main experimental) session. They all had normal or corrected-to-normal vision. The

491 study was approved by the local ethics committee. Participants gave informed consent and
492 received research credits or 15 euros per hour.

493 **Stimuli**

494 The target stimulus set had a 2 (illusory Kanizsa triangle: present/absent) \times 2 (non-illusory
495 triangle: present/absent) \times 2 (rotation: present/absent) design, resulting in eight stimuli (**Fig.**
496 **1B**). Three aligned Pac-Man elements induced the Kanizsa illusion. The non-illusory triangle
497 was present when the stimuli's three other elements (the "two-legged white circles") were
498 aligned. The controls for both the illusory and non-illusory triangle were created by rotating their
499 elements by 90 degrees. Differences in local contrast were created by rotating the entire
500 stimulus by 180 degrees. The targets spanned 7.5 degrees by 8.3 degrees of visual angle. The
501 distance between the three Pac-Man stimuli as well as between the three aligned two-legged
502 white circles was 2.8 degrees of visual angle. Although neuronal responses to collinearity in
503 primary visual cortex are most robust when this distance is smaller (Kapadia et al., 1995, 2000),
504 longer-range lateral connections between neurons with similar orientation selectivity can span
505 distances corresponding to visual angles considerably greater than 2.8 degrees (Bosking et al.,
506 1997; Stettler et al., 2002).

507 The distractor stimulus set was the same as the target stimulus set, with two exceptions.
508 First, the distractors were red instead of black. Second, the distractors' six elements were
509 rotated by 180 degrees relative to the targets', so neither the illusory nor non-illusory triangle
510 was ever present in the distractors. Masks consisted of six differently shaped elements, all
511 capable of covering the targets' elements. Six masks were created by rotating the original mask
512 five times by 60 degrees. They spanned 8.5 degrees by 9.1 degrees of visual angle. The
513 fixation cross, which was always present, was adapted from Thaler et al. (2013).

514 **Procedure**

515 The experiment consisted of three separate sessions conducted on different days: a three-hour
516 session to collect EEG data for the independent training set, a 1.5-hour practice session, and a
517 three-hour experimental session. Tasks were programmed in Presentation software
518 (Neurobehavioral Systems) and displayed on a 23-inch, 60 Hz, 1920 \times 1080 pixels monitor. On
519 each trial of the experimental session, participants were shown two targets (T1 and T2) within a
520 rapid serial visual presentation (RSVP) of distractors (**Fig. 1C**). The targets and distractors had
521 a stimulus onset asynchrony of 100 ms. T2 and distractors were presented for 17 ms each. To
522 improve the decoding analyses' training dataset, T1 was presented for 67 ms. The longer
523 presentation duration facilitated attending to T1, which should result in greater deployment of
524 attentional resources and thereby increase the size of the AB. T1 was preceded by five
525 distractors and T2 was followed by six distractors.

526 T2 visibility was manipulated in two ways, using a perceptual and an attentional
527 manipulation (**Fig. 1A**). The perceptual manipulation consisted in masking T2 with three masks,
528 each presented for 17 ms with an interstimulus interval of 0 ms. The three masks were selected
529 randomly, but all differed from each other. Half of the T2s were masked; for the other half no
530 masks were presented (unmasked condition). The attentional manipulation consisted in
531 shortening the T1-T2 lag from a long interval of eight distractors (900 ms) to a short interval of

532 one or two distractors (200 or 300 ms). Half the trials had a long lag, the other half had a short
533 lag. The short lag duration was determined for each participant individually during the training
534 session. Short lags were expected to result in an AB. Participants were instructed to fixate on
535 the fixation cross. After the RSVP, they indicated for each target whether it contained the
536 Kanizsa illusion or not. For T2, participants simultaneously reported their confidence in their
537 response: low, medium, or high, resulting in six response options. To get accurate ratings,
538 participants first responded to T2 and then to T1. Response screens lasted until the response.
539 In short, the experimental session had an 8 (T1 stimulus conditions) \times 8 (T2 stimulus conditions)
540 \times 2 (masked/unmasked) \times 2 (short/long T1–T2 lag) task design, resulting in 256 conditions.
541 Each condition was presented four times, totaling 1024 trials.

542 The experimental session was preceded by the practice session, in which participants
543 were familiarized with the task. To proceed to the experimental session, participants had to
544 score above 80% correct for both T1 and unmasked, long lag T2. One participant was excluded
545 for failing to achieve this. The training session was also used to determine for each participant
546 the duration of the short lag (200 or 300 ms T1–T2 interval) that induced the largest AB (lowest
547 T2 accuracy) and that was used in the subsequent experimental session. Two participants were
548 excluded due to their AB size falling below the predetermined criterion. Specifically, their T2
549 accuracy at both short lags did not exhibit a decrease of more than 5% compared to long lags.

550 One of the main goals of this study was to match perceptual performance between the
551 perceptual and the attentional manipulation. We did this in two ways. First, during the training
552 session, the matching was done by staircasing mask contrast using the weighted up-down
553 method (Kaernbach, 1991). Contrast levels ranged from 0 (black) to 255 (white). Mask contrast
554 started at level 220. Each correct response made the task more difficult: masks got darker by
555 downward step size S_{down} . Each incorrect response made the task easier: masks got lighter by
556 upward step size S_{up} . Step sizes were determined by $S_{\text{up}} \times p = S_{\text{down}} \times (1 - p)$, where p is the
557 accuracy at short lags. The smallest step size was always nine contrast levels. A reversal is
558 making a mistake after a correct response, or vice versa. The staircase ended after 25
559 reversals. The mask contrast with which the experimental session started was the average
560 contrast level of the last 20 reversals. Second, during the experimental session, after every 32
561 masked trials, mask contrast was updated in accordance with our goal to match performance
562 over participants, while also matching performance within participants as well as possible.

563 To ensure that confidence ratings for these matched conditions (masked, long lag and
564 unmasked, short lag) were not contaminated by differences in perceptual performance, one type
565 of block only contained the matched conditions, while the other block type contained the two
566 remaining, unmatched conditions (masked, short lag and unmasked, long lag). To ensure every
567 confidence rating would have enough trials for creating receiver operating characteristic curves,
568 participants were instructed to distribute their responses evenly over all ratings within a block.
569 Participants received feedback about the distribution of their responses. The mask contrasts
570 from a performance matched block were used in the subsequent non-performance matched
571 block to ensure that masking remained orthogonal to the AB manipulation. The experimental
572 session therefore always started with a performance matched block.

573 We wanted to compare the marker for recurrent processing, illusory triangle decoding, to
574 the marker for lateral processing, non-illusory triangle decoding. However, during the
575 experimental session, the non-illusory triangle was never task-relevant, only the illusory one

576 was. During the independent EEG classification training session, we therefore made each visual
577 feature, one after the other, task-relevant. A target was presented for 33 ms every 900-1100 ms
578 (**Fig. S4**). Participants had to fixate on the fixation cross and indicate whether the current task-
579 relevant feature was absent or present. For each feature, each target was presented 64 times,
580 totaling 512 trials. The order of the task-relevant features was counterbalanced over
581 participants. For all sessions, response button mapping was counterbalanced within tasks.

582 **Behavioral analysis**

583 To quantify perceptual performance, we constructed receiver operating characteristic (ROC)
584 curves by plotting objective hit rates against objective false alarm rates. We used the six
585 response options to get five inflection points (Green & Swets, 1966). We also quantified
586 metacognitive sensitivity: the ability to know whether you were right or wrong. Performance is
587 high when you are confident in objectively correct responses and not confident in objectively
588 incorrect responses. We again constructed ROC curves, now by plotting the rate of high-
589 confidence correct responses (subjective hit rates) against the rate of high-confidence incorrect
590 responses (subjective false alarm rates). We used the three confidence ratings to get two
591 inflection points. To ensure that T1 was attended, trials with incorrect T1 responses were
592 excluded. Repeated measures ANOVAs and Bayesian t-tests were used to test the differences
593 between experimental conditions.

594 **EEG recording and preprocessing**

595 EEG was recorded at 1024 Hz using a 64 channel ActiveTwo system (BioSemi). Four
596 electrooculographic (EOG) electrodes measured horizontal and vertical eye movements. The
597 data were analyzed with MATLAB (MathWorks). For most of the preprocessing steps, EEGLAB
598 was used (Delorme & Makeig, 2004). The data were re-referenced to the earlobes. Poor
599 channels were interpolated. High-pass filtering can cause artifacts in decoding analyses; we
600 therefore removed slow drifts using trial-masked robust detrending (van Driel et al., 2021). Each
601 target was epoched from -250 to 1000 ms relative to target onset. To improve the results from
602 the independent component analysis (ICA), baseline correction was applied using the whole
603 epoch as baseline (Groppe et al., 2009). ICA was used to remove blinks. Blink components
604 were removed manually. Baseline correction was applied, now using a -250 to 0 ms window
605 relative to target onset. Trials with values outside of a -300 to 300 microvolts range were
606 removed. We used an adapted version of FieldTrip's `ft_artifact_zvalue` function to detect and
607 remove trials with muscle artifacts (Oostenveld et al., 2011). As in the behavioral analyses, trials
608 with incorrect T1 responses were excluded. Finally, the data were downsampled to 128 Hz.

609 **Multivariate pattern analyses**

610 To establish the markers for the different neural processes of interest (feedforward, lateral, and
611 recurrent), the processing of the different visual features (local contrast, non-illusory triangle,
612 and illusory Kanizsa triangle, respectively) were decoded (**Fig. 1B**) using the Amsterdam
613 Decoding and Modeling (ADAM) toolbox (Fahrenfort et al., 2018). For each participant and each
614 visual feature, a linear discriminant classifier was trained on the T1 data and tested on each

615 condition of the T2 data. The classifier was trained to discriminate between the feature's (e.g.,
616 the illusory triangle's) absence and presence based on the raw EEG activity across all
617 electrodes. AUC was again used as the performance measure. This procedure was executed
618 for every time sample in a trial, yielding classification performance over time. For the time
619 samples from -100 to 700 ms relative to target onset, we used a two-sided t-test to evaluate
620 whether classifier performance differed from chance. We used cluster-based permutation
621 testing (1000 iterations at a threshold of 0.05) to correct for multiple comparisons (Maris &
622 Oostenveld, 2007). To obtain topographic maps showing the neural sources of the classifier
623 performance, we multiplied the classifier weights with the data covariance matrix, yielding
624 covariance/class separability maps (Haufe et al., 2014).

625 In the decoding analyses described in the results, we applied “diagonal decoding”:
626 classifiers were tested on the same time sample they were trained on. We did the same
627 analyses again, now by applying “off-diagonal decoding”: classifiers trained on a particular time
628 point are tested on all time points (King & Dehaene, 2014). Off-diagonal decoding allowed us to
629 investigate whether patterns of activity during the time windows of interest were stable over time
630 (**Fig. S3**). For the illusory triangle, classifiers were trained on the 200-250 ms window and then
631 averaged. The same was done for the local contrast 75-95 ms window.

632 To distinguish between lateral and feedback connections in local (early and occipital)
633 recurrent processing, we trained classifiers on independent data based on collinearity-only (the
634 non-illusory triangle was task-relevant) or collinearity-plus-illusion (the illusory triangle was task-
635 relevant) and then decoded the Kanizsa illusion in T2s of the main RSVP task. The rationale for
636 this analysis is that collinearity is present both when the Pac-Man stimuli align to form the
637 illusory Kanizsa triangle and when the two-legged white circles align to form a non-illusory
638 triangle, but only in the case of the Kanizsa triangle do participants experience an illusion. The
639 comparison of T2 illusion decoding between the classifiers trained on the illusion and on
640 collinearity-only in the training set may therefore isolate illusion-specific feedback processing
641 from basic collinearity processing involving lateral connections (**Fig. 3**). In the **Supplementary**
642 **information (Fig. S5)**, we compare the independent training set to the training set used for the
643 main analyses, the T1 data from the RSVP task.

644 As described in the **Supplementary information** as well, a tenfold cross-validation
645 scheme was applied to the data from the independent training set to decode local contrast.
646 Individual participants' data were split into ten equal-sized folds after randomizing the task's trial
647 order. A classifier was then trained on nine folds and tested on the tenth one, ensuring
648 independence of the training and testing sets. This procedure was repeated until each fold
649 served as the test set once. Classifier performance, AUC, was averaged across all ten iterations
650 (**Fig. S7**).

651 As in the behavioral analyses, repeated measures ANOVAs and Bayesian t-tests were
652 used to test the differences between experimental conditions.

653 References

654 Alilović, J., Lampers, E., Slagter, H. A., & van Gaal, S. (2023). Illusory object recognition is
655 either perceptual or cognitive in origin depending on decision confidence. *PLoS Biology*,
656 21(3), e3002009.

657 Angelucci, A., & Bressloff, P. C. (2006). Contribution of feedforward, lateral and feedback
658 connections to the classical receptive field center and extra-classical receptive field
659 surround of primate V1 neurons. *Progress in Brain Research*, 154, 93–120.

660 Block, N. (2005). Two neural correlates of consciousness. *Trends in Cognitive Sciences*, 9(2),
661 46–52.

662 Bosking, W. H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the
663 arrangement of horizontal connections in tree shrew striate cortex. *The Journal of
664 Neuroscience: The Official Journal of the Society for Neuroscience*, 17(6), 2112–2127.

665 Brockhoff, L., Schindler, S., Bruchmann, M., & Straube, T. (2022). Effects of perceptual and
666 working memory load on brain responses to task-irrelevant stimuli: Review and
667 implications for future research. *Neuroscience and Biobehavioral Reviews*, 135, 104580.

668 Brown, R., Lau, H., & LeDoux, J. E. (2019). Understanding the Higher-Order Approach to
669 Consciousness. *Trends in Cognitive Sciences*. <https://doi.org/10.1016/j.tics.2019.06.009>

670 Canales-Johnson, A., Beerendonk, L., Chennu, S., Davidson, M. J., Ince, R. A. A., & van Gaal,
671 S. (2023). Feedback information transfer in the human brain reflects bistable perception
672 in the absence of report. *PLoS Biology*, 21(5), e3002120.

673 Cogitate Consortium, Ferrante, O., Gorska-Klimowska, U., Henin, S., Hirschhorn, R., Khalaf, A.,
674 Lepauvre, A., Liu, L., Richter, D., Vidal, Y., Bonacchi, N., Brown, T., Sripad, P.,
675 Armendariz, M., Bendtz, K., Ghafari, T., Hetenyi, D., Jeschke, J., Kozma, C., ... Melloni,
676 L. (2023). An adversarial collaboration to critically evaluate theories of consciousness. In
677 *bioRxiv* (p. 2023.06.23.546249). <https://doi.org/10.1101/2023.06.23.546249>

678 Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious,
679 preconscious, and subliminal processing: a testable taxonomy. *Trends in Cognitive
680 Sciences*, 10(5), 204–211.

681 Dehaene, S., Sergent, C., & Changeux, J.-P. (2003). A neuronal network model linking
682 subjective reports and objective physiological data during conscious perception.
683 *Proceedings of the National Academy of Sciences of the United States of America*,
684 100(14), 8520–8525.

685 Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial
686 EEG dynamics including independent component analysis. *Journal of Neuroscience
687 Methods*, 134(1), 9–21.

688 Dienes, Z. (2007). Subjective measures of unconscious knowledge. In R. Banerjee & B. K.
689 Chakrabarti (Eds.), *Progress in Brain Research* (Vol. 168, pp. 49–269). Elsevier.

690 Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. F. (2007). Masking disrupts reentrant
691 processing in human visual cortex. *Journal of Cognitive Neuroscience*, 19(9), 1488–
692 1497.

693 Fahrenfort, J. J., van Driel, J., van Gaal, S., & Olivers, C. N. L. (2018). From ERPs to MVPA
694 Using the Amsterdam Decoding and Modeling Toolbox (ADAM). *Frontiers in
695 Neuroscience*, 12, 368.

696 Fahrenfort, J. J., van Leeuwen, J., Olivers, C. N. L., & Hogendoorn, H. (2017). Perceptual
697 integration without conscious access. *Proceedings of the National Academy of Sciences
698 of the United States of America*, 114(14), 3744–3749.

699 Fleming, S. M., & Lau, H. C. (2014). How to measure metacognition. *Frontiers in Human
700 Neuroscience*, 8, 443.

701 Gilbert, C. D., & Wiesel, T. N. (1979). Morphology and intracortical projections of functionally
702 characterised neurones in the cat visual cortex. *Nature*, 280(5718), 120–125.

703 Green, D. M., & Swets, J. A. (1966). *Signal detection theory and psychophysics*. 455.

704 <https://psycnet.apa.org/fulltext/1967-02286-000.pdf>

705 Groppe, D. M., Makeig, S., & Kutas, M. (2009). Identifying reliable independent components via
706 split-half comparisons. *NeuroImage*, 45(4), 1199–1211.

707 Halgren, E., Mendola, J., Chong, C. D. R., & Dale, A. M. (2003). Cortical activation to illusory
708 shapes as measured with magnetoencephalography. *NeuroImage*, 18(4), 1001–1009.

709 Hatamimajoumerd, E., Ratan Murty, N. A., Pitts, M., & Cohen, M. A. (2022). Decoding
710 perceptual awareness across the brain with a no-report fMRI masking paradigm. *Current
711 Biology: CB*. <https://doi.org/10.1016/j.cub.2022.07.068>

712 Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F.
713 (2014). On the interpretation of weight vectors of linear models in multivariate
714 neuroimaging. *NeuroImage*, 87, 96–110.

715 Jiang, J., Correa, C. M., Geerts, J., & van Gaal, S. (2018). The relationship between conflict
716 awareness and behavioral and oscillatory signatures of immediate and delayed cognitive
717 control. *NeuroImage*, 177, 11–19.

718 Joglekar, M. R., Mejias, J. F., Yang, G. R., & Wang, X.-J. (2018). Inter-areal Balanced
719 Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the
720 Primate Cortex. *Neuron*, 98(1), 222-234.e8.

721 Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. *Perception &
722 Psychophysics*, 49(3), 227–229.

723 Kanai, R., Walsh, V., & Tseng, C.-H. (2010). Subjective discriminability of invisibility: a
724 framework for distinguishing perceptual and attentional failures of awareness.
725 *Consciousness and Cognition*, 19(4), 1045–1057.

726 Kandel, E. R., Schwartz, J. H., Jessell, T. M., & Siegelbaum, S. (2000). *Principles of neural
727 science*. academia.edu.

728 https://www.academia.edu/download/30536508/neuroscience_syllabus.pdf

729 Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995). Improvement in visual

730 sensitivity by changes in local context: parallel studies in human observers and in V1 of
731 alert monkeys. *Neuron*, 15(4), 843–856.

732 Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (2000). Spatial distribution of contextual
733 interactions in primary visual cortex and in visual perception. *Journal of*
734 *Neurophysiology*, 84(4), 2048–2062.

735 King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the
736 temporal generalization method. *Trends in Cognitive Sciences*, 18(4), 203–210.

737 Kok, P., Bains, L. J., van Mourik, T., Norris, D. G., & de Lange, F. P. (2016). Selective Activation
738 of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.
739 *Current Biology: CB*, 26(3), 371–376.

740 Kok, P., & de Lange, F. P. (2014). Shape perception simultaneously up- and downregulates
741 neural activity in the primary visual cortex. *Current Biology: CB*, 24(13), 1531–1535.

742 Lamme, V. A. F. (2010). How neuroscience will change our view on consciousness. *Cognitive*
743 *Neuroscience*, 1(3), 204–220.

744 Lamme, V. A. F. (2020). Visual Functions Generating Conscious Seeing. *Frontiers in*
745 *Psychology*, 11, 83.

746 Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by
747 feedforward and recurrent processing. *Trends in Neurosciences*, 23(11), 571–579.

748 Lamme, V. A. F., Supèr, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback
749 processing in the visual cortex. *Current Opinion in Neurobiology*, 8(4), 529–535.

750 Lau, H. C. (2022). *In Consciousness we Trust: The Cognitive Neuroscience of Subjective*
751 *Experience*. Oxford University Press.

752 Lau, H. C., & Passingham, R. E. (2006). Relative blindsight in normal observers and the neural
753 correlate of visual consciousness. *Proceedings of the National Academy of Sciences of*
754 *the United States of America*, 103(49), 18763–18768.

755 Lavie, N., & Dalton, P. (2014). Load theory of attention and cognitive control. *The Oxford*

756 *Handbook of Attention*, 56–75.

757 Lavie, N., & de Fockert, J. W. (2003). Contrasting effects of sensory limits and capacity limits in
758 visual selective attention. *Perception & Psychophysics*, 65(2), 202–212.

759 Lee, T. S., & Nguyen, M. (2001). Dynamics of subjective contour formation in the early visual
760 cortex. *Proceedings of the National Academy of Sciences of the United States of
761 America*, 98(4), 1907–1911.

762 Li, Z. (1998). A neural model of contour integration in the primary visual cortex. *Neural
763 Computation*, 10(4), 903–940.

764 Liang, H., Gong, X., Chen, M., Yan, Y., Li, W., & Gilbert, C. D. (2017). Interactions between
765 feedback and lateral connections in the primary visual cortex. *Proceedings of the
766 National Academy of Sciences of the United States of America*, 114(32), 8637–8642.

767 Luck, S. J., Vogel, E. K., & Shapiro, K. L. (1996). Word meanings can be accessed but not
768 reported during the attentional blink. *Nature*, 383(6601), 616–618.

769 Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data.
770 *Journal of Neuroscience Methods*, 164(1), 177–190.

771 Marti, S., King, J.-R., & Dehaene, S. (2015). Time-Resolved Decoding of Two Processing
772 Chains during Dual-Task Interference. *Neuron*, 88(6), 1297–1307.

773 Mashour, G. A., Roelfsema, P., Changeux, J.-P., & Dehaene, S. (2020). Conscious Processing
774 and the Global Neuronal Workspace Hypothesis. *Neuron*, 105(5), 776–798.

775 Merikle, P. M., Smilek, D., & Eastwood, J. D. (2001). Perception without awareness:
776 perspectives from cognitive psychology. *Cognition*, 79(1–2), 115–134.

777 Meuwese, J. D. I., van Loon, A. M., Lamme, V. A. F., & Fahrenfort, J. J. (2014). The subjective
778 experience of object recognition: comparing metacognition for object detection and
779 object categorization. *Attention, Perception & Psychophysics*, 76(4), 1057–1068.

780 Mudrik, L., Faivre, N., & Koch, C. (2014). Information integration without awareness. *Trends in
781 Cognitive Sciences*, 18(9), 488–496.

782 Northoff, G., & Lamme, V. A. F. (2020). Neural signs and mechanisms of consciousness: Is
783 there a potential convergence of theories of consciousness in sight? *Neuroscience and*
784 *Biobehavioral Reviews*, 118, 568–587.

785 Nuiten, S. A., Canales-Johnson, A., Beerendonk, L., Nanuashvili, N., Fahrenfort, J. J.,
786 Bekinschtein, T., & van Gaal, S. (2021). Preserved sensory processing but hampered
787 conflict detection when stimulus input is task-irrelevant. *eLife*, 10.
788 <https://doi.org/10.7554/eLife.64431>

789 Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software
790 for advanced analysis of MEG, EEG, and invasive electrophysiological data.
791 *Computational Intelligence and Neuroscience*, 2011, 156869.

792 Pak, A., Ryu, E., Li, C., & Chubykin, A. A. (2020). Top-Down Feedback Controls the Cortical
793 Representation of Illusory Contours in Mouse Primary Visual Cortex. *The Journal of*
794 *Neuroscience: The Official Journal of the Society for Neuroscience*, 40(3), 648–660.

795 Peters, M. A., & Lau, H. (2016). Correction: Human observers have optimal introspective access
796 to perceptual processes even for visually masked stimuli. *eLife*, 5.
797 <https://doi.org/10.7554/eLife.16332>

798 Pitts, M. A., Lutsyshyna, L. A., & Hillyard, S. A. (2018). The relationship between attention and
799 consciousness: an expanded taxonomy and implications for ‘no-report’ paradigms.
800 *Philosophical Transactions of the Royal Society of London. Series B, Biological*
801 *Sciences*, 373(1755), 20170348.

802 Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual
803 processing in an RSVP task: an attentional blink? *Journal of Experimental Psychology.*
804 *Human Perception and Performance*, 18(3), 849–860.

805 Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the
806 medial frontal cortex in cognitive control. *Science*, 306(5695), 443–447.

807 Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. *Annual Review of*

808 *Neuroscience*, 29, 203–227.

809 Roelfsema, P. R. (2023). Solving the binding problem: Assemblies form when neurons enhance
810 their firing rate—they don't need to oscillate or synchronize. *Neuron*, 111(7), 1003–1019.

811 Schmidt, K. E., Goebel, R., Löwel, S., & Singer, W. (1997). The perceptual grouping criterion of
812 colinearity is reflected by anisotropies of connections in the primary visual cortex. *The
813 European Journal of Neuroscience*, 9(5), 1083–1089.

814 Schmidt, T. (2015). Invisible Stimuli, Implicit Thresholds: Why Invisibility Judgments Cannot be
815 Interpreted in Isolation. *Advances in Cognitive Psychology / University of Finance and
816 Management in Warsaw*, 11(2), 31–41.

817 Sergent, C., Baillet, S., & Dehaene, S. (2005). Timing of the brain events underlying access to
818 consciousness during the attentional blink. *Nature Neuroscience*, 8(10), 1391–1400.

819 Sergent, C., Corazzol, M., Labouret, G., Stockart, F., Wexler, M., King, J.-R., Meyniel, F., &
820 Pressnitzer, D. (2021). Bifurcation in brain dynamics reveals a signature of conscious
821 processing independent of report. *Nature Communications*, 12(1), 1149.

822 Sergent, C., & Dehaene, S. (2004). Is consciousness a gradual phenomenon? Evidence for an
823 all-or-none bifurcation during the attentional blink. *Psychological Science*, 15(11), 720–
824 728.

825 Seth, A. K., Dienes, Z., Cleeremans, A., Overgaard, M., & Pessoa, L. (2008). Measuring
826 consciousness: relating behavioural and neurophysiological approaches. *Trends in
827 Cognitive Sciences*, 12(8), 314–321.

828 Shanks, D. R. (2017). Regressive research: The pitfalls of post hoc data selection in the study
829 of unconscious mental processes. *Psychonomic Bulletin & Review*, 24(3), 752–775.

830 Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1997). The attentional blink. *Trends in Cognitive
831 Sciences*, 1(8), 291–296.

832 Stein, T., Kaiser, D., Fahrenfort, J. J., & van Gaal, S. (2021). The human visual system
833 differentially represents subjectively and objectively invisible stimuli. *PLoS Biology*,

834 19(5), e3001241.

835 Stettler, D. D., Das, A., Bennett, J., & Gilbert, C. D. (2002). Lateral connectivity and contextual
836 interactions in macaque primary visual cortex. *Neuron*, 36(4), 739–750.

837 Thaler, L., Schütz, A. C., Goodale, M. A., & Gegenfurtner, K. R. (2013). What is the best fixation
838 target? The effect of target shape on stability of fixational eye movements. *Vision
839 Research*, 76, 31–42.

840 Tsuchiya, N., Wilke, M., Frässle, S., & Lamme, V. A. F. (2015). No-Report Paradigms:
841 Extracting the True Neural Correlates of Consciousness. *Trends in Cognitive Sciences*,
842 19(12), 757–770.

843 van Driel, J., Olivers, C. N. L., & Fahrenfort, J. J. (2021). High-pass filtering artifacts in
844 multivariate classification of neural time series data. *Journal of Neuroscience Methods*,
845 352, 109080.

846 van Gaal, S., Ridderinkhof, K. R., Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. F. (2008).
847 Frontal cortex mediates unconsciously triggered inhibitory control. *The Journal of
848 Neuroscience: The Official Journal of the Society for Neuroscience*, 28(32), 8053–8062.

849 van Vugt, B., Dagnino, B., Vartak, D., Safaai, H., Panzeri, S., Dehaene, S., & Roelfsema, P. R.
850 (2018). The threshold for conscious report: Signal loss and response bias in visual and
851 frontal cortex. *Science*, 360(6388), 537–542.

852 Vandenbroucke, A. R. E., Fahrenfort, J. J., Sligte, I. G., & Lamme, V. A. F. (2014). Seeing
853 without knowing: neural signatures of perceptual inference in the absence of report.
854 *Journal of Cognitive Neuroscience*, 26(5), 955–969.

855 Weaver, M. D., Fahrenfort, J. J., Belopolsky, A., & van Gaal, S. (2019). Independent Neural
856 Activity Patterns for Sensory- and Confidence-Based Information Maintenance during
857 Category-Selective Visual Processing. *ENeuro*, 6(1).

858 <https://doi.org/10.1523/ENEURO.0268-18.2018>

859 Wokke, M. E., Vandenbroucke, A. R. E., Scholte, H. S., & Lamme, V. A. F. (2013). Confuse

860 your illusion: feedback to early visual cortex contributes to perceptual completion.

861 *Psychological Science*, 24(1), 63–71.

862 Wyatte, D., Jilk, D. J., & O'Reilly, R. C. (2014). Early recurrent feedback facilitates visual object

863 recognition under challenging conditions. *Frontiers in Psychology*, 5, 674.

864 Yi, D.-J., Woodman, G. F., Widders, D., Marois, R., & Chun, M. M. (2004). Neural fate of

865 ignored stimuli: dissociable effects of perceptual and working memory load. *Nature Neuroscience*, 7(9), 992–996.

866

867 Zivony, A., & Lamy, D. (2022). What processes are disrupted during the attentional blink? An

868 integrative review of event-related potential research. *Psychonomic Bulletin & Review*,

869 29(2), 394–414.