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Abstract

The autophagy adaptor WDFY3 is linked to neurodevelopmental delay and altered brain
size. Loss-of-function variants are associated with an increased brain size in both humans and
mice. We thus, hypothesized that the microcephaly observed in some of the patients may be
related to a gain-of-function of the WDFY3 gene product. While the role of WDFY3 loss-of-
function has been studied extensively in neurons, little is known about the effects of WDFY3
overexpression in different neural cell types. We utilized a Drosophila melanogaster
overexpression model to investigate the effect of the WDFY3 ortholog Bchs (blue cheese) on
development, CNS size, and gene expression profiles. Glial and neuronal overexpression of
Bchs impaired CNS development, locomotion and autophagy. Glial overexpression of Bchs
also altered CNS size significantly. We identified 79 genes that were differentially expressed
and overlapped in flies that overexpress Bchs in glial and neuronal cells, respectively.
Additionally, upon neuronal Bchs overexpression differentially expressed genes clustered in
gene ontology categories associated with autophagy and mitochondria. Our data indicate that
WDFY3/Bchs overexpression in both neurons and glial cells results in impaired neural
development, which corresponds to symptoms observed in  WDFY3-related

neurodevelopmental delay.

Keywords: WDFY3, ALFY, Bchs, neurodevelopmental delay, transcriptomics
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Introduction

Over the past decade, a growing body of evidence, including functional analyses and
patient related data, has provided substantial support for the involvement of WDFY3 in
neurodevelopmental disorders (Le Duc et al. 2019; Stessman et al. 2017; Wang et al. 2016).
WDFY3 encodes an autophagosomal scaffolding protein involved in targeted recruitment and

destruction of macromolecular components including aggregation-prone proteins (Clausen et

al. 2010; Filimonenko et al. 2010; Finley et al. 2003; Simonsen et al. 2004).

Previous studies in mice demonstrated that Wdfy3 regulates neurodevelopmental
processes such as neuronal connectivity, proliferation, migration, and synaptic morphology
(Dragich et al. 2016; Orosco et al. 2014; Schaaf et al. 2022; Sgreng et al. 2022). Loss-of-
function variants of WDFY3 or its Drosophila ortholog blue cheese (Bchs) result in
neurodegeneration and protein aggregation, indicating autophagic defects (Clausen et al. 2010;
Filimonenko et al. 2010; Finley et al. 2003; Fox et al. 2020; Han et al. 2015; Hebbar et al.
2015; Lim & Kraut 2009; Simonsen et al. 2004). The increased head circumference, but also a
decreased learning capacity observed in affected human individuals, were faithfully
recapitulated in heterozygotes of a Wdfy3 knockout mouse model, while homozygotes of
hypomorphic Wdfy3 alleles showed perinatal lethality (Dragich et al. 2016; Le Duc et al. 2019;
Orosco et al. 2014). However, while loss-of-function variants were associated with increased
head circumference, at least two variants have been identified in individuals with microcephaly
(Kadir et al. 2016; Le Duc et al. 2019). We, thus, hypothesized that WDFY3 loss- and gain-of-

function genotypes may result in opposing phenotypes in respect to brain size.

Currently an increasing number of studies concentrate on loss of WDFY3/Bchs and its
effects on the nervous system with a focus on neuronal impairment. Although glial cells are
known to play an essential role for neuronal function and neurodevelopment (Bittern et al.
2021; Kim et al. 2020; Lago-Baldaia et al. 2020; Rahman et al. 2022), they have received rather
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little attention in the effort to unravel WDFY3-associated pathomechanisms. So far, it was
shown that loss of Wdfy3 is accompanied with mislocalisation of glial guidepost cells, which
provide guidance cues for the formation of axonal tracts (Dragich et al. 2016). Hypomorphic
Wdfy3 alleles also increase symmetric proliferative divisions of radial glial cells, neural stem
cells which give rise to neurons and glia (Orosco et al. 2014). Further, Wdfy3 is involved in the
turnover of oligodendrocytic myelin sheaths (Aber et al. 2022). Single-cell RNA-sequencing
(RNA-seq) demonstrated an approximately 10x higher WDFY3 expression in neurons and glial
cells compared to all other cells (N'TPM > 200) with oligodendrocytes showing the highest
expression (N'TPM > 400) (Karlsson et al. 2021). Hence, glial cells may play an important role

in the pathophysiology of WDFY3-related neurodevelopmental disorders.

To address the unknown role of glial cells in WDFY3-related pathologies and to
understand whether WDFY3 overexpression as proxy for a WDFY3 gain-of-function condition
may be related to neurodevelopmental disorders, here we investigated the effects of Bchs
overexpression in glial cells and neurons. While both glial and neuronal Bchs overexpression
impaired neural development, locomotion, and autophagy, central nervous system (CNS) size
was altered only after overexpression in glial cells. Further, based on transcriptomics analyses
we identified differentially expressed genes in glial and neuronal Bchs overexpression flies
compared to the respective controls. We found an overlap of 79 differentially expressed genes
in both Bchs overexpression conditions, which may be involved in the pathological mechanism

that unfolds upon WDFY3 dysfunction.

Results

Developmental delay in glial Bchs overexpression flies

A common symptom of probands carrying a pathogenic WDFY3 variant is

neurodevelopmental delay (Le Duc et al. 2019; Stessman et al. 2017; Wang et al. 2016). In
4
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98 flies, both loss-of-function and overexpression of the WDFY3 ortholog Bchs were previously

99  shown to impair neuronal function (Finley et al. 2003; Hebbar et al. 2015; Khodosh et al. 2006;
100  Kraut et al. 2001; Kriston-Vizi et al. 2011; Lim & Kraut 2009; Sim et al. 2019; Stessman et al.
101 2017). However, not much is known about how Bchs dysregulation impacts glial cells. To better
102 understand the relevance of Bchs in different neural cell types, we tested the effect of Bchs
103 overexpression, as a proxy for gain-of-function effects, in glial cells (repo-Gal4) and neurons
104 (nSyb-Gal4) on development, locomotion, CNS morphology, and autophagy (DiAntonio ef al.
105 1993; Sepp et al. 2001). We found that panglial Bchs overexpression delayed the development
106  from egg to adult fly (Fig 1A). Importantly, Mendelian ratios of the adult F1 generation of
107 crossing Gal4/Sb with UAS-bchs::HA/Sb for panglial and panneuronal Bchs overexpression
108  corresponded to the expected ratios, but ubiquitous Bchs overexpression (act5C-Gal4) was
109  lethal (Fig S1). The developmental time of neuronal Bchs overexpression animals was further
110  investigated to exclude a delay in early developmental steps, which cannot be detected at the
111  stage of adult eclosion. The timepoint of larval hatching was not delayed in animals
112 overexpressing Bchs in neurons, indicating normal embryonal development (Fig S2A).
113 However, a significantly reduced size of neuronal Bchs-overexpressing larvae was observed in
114  early larval development (62.44 h and 100.8 h after egg laying), but not in later larval stages
115 (153 hafter egg laying) (Fig S2B). These data suggest that neuronal Bchs overexpression causes

116  changes in development during early larval stages.

117 Panneuronal Bchs overexpression caused deficits in the development of the wings and
118  thorax (Fig 1B,E). Adult flies did not properly expand their wings (~90 %) and displayed a
119  dimpled thorax (~43 %). In contrast, only a small percentage of flies overexpressing Bchs in
120 glial cells (wing: ~22 %, thorax: 3 %) presented with those deficits (Fig 1D,E). Crustacean
121 cardioactive peptide (CCAP) neurons are known to play an essential role in wing expansion

122 (Luan et al. 2006; Park et al. 2003). Therefore, we hypothesized that Bchs overexpression in
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123 this subtype of neurons caused the wing and thorax abnormalities. Driving Bchs overexpression
124 specifically only in CCAP neurons (CCAP-Gal4) resulted in almost complete penetrance of
125  those defects (wing: ~100 %, thorax: ~99 %), as opposed to Bchs overexpression in
126  motoneurons (0k6-Gal4, wing: ~19 %, thorax: ~1 %)) (Fig S1). Hence, CCAP neurons are

127  sensitive to Bchs overexpression.

128 Since probands with WDFY3 variants show impaired motor coordination (Le Duc et al.
129  2019), we also tested larval locomotion in our fly models. Both panglial and panneuronal Bchs
130  overexpression decreased larval crawling velocities indicating a locomotion deficit (Fig 2C,F).
131  Overexpressing Bchs only in the subset of motoneurons (0k6-Gal4) was sufficient to slow larval
132 movement (Fig S4). Together these data show that glial and neuronal Bchs overexpression

133 impacts fly development and locomotion.
134
135  Glial Bchs regulates CNS size and glial cell number

136 Another symptom in carriers of pathogenic WDFY3 variants is their abnormal head
137  circumference (Le Duc et al. 2019; Stessman et al. 2017; Wang et al. 2016). It was previously
138 described that the Bchs loss-of-function mutant bchs® presents with decreased larval and adult
139  brain volumes, while neuronal Bchs overexpression by elav-Gal4 causes an increased larval
140  brain volume (Finley ez al. 2003; Kriston-Vizi et al. 2011). Further, fly pharates ubiquitously
141  overexpressing human WDFY3 carrying a missense variant that is linked to microcephaly in

142 human individuals, displayed smaller brain volumes (Kadir ef al. 2016).

143 In our setup, neuronal Bchs overexpression did not alter the brain size to fly length ratio
144 in adult flies or the ventral nerve cord (VNC) length in larvae and adults (Fig 2E,3E,F).
145  However, we found that adult flies overexpressing Bchs in glial cells had a decreased brain size
146  to fly length ratio (Fig 3B), while neither brain size nor fly length alone were significantly

147  altered in comparison to controls (Fig SSA,B). Further, glial Bchs overexpression markedly
6
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148  increased the longitudinal VNC length in larvae and adult flies (Fig 2B,3C). In adults, the length
149  of the abdominal but not thoracic neuromeres of the VNC was elongated (Fig S5C). We then
150  sought to identify the glial cell type responsible for VNC elongation by enforcing Bchs
151  overexpression in glial subtypes through specific Gal4 drivers. We found that Bchs
152  overexpression in subperineural glial cells (rL82-Gal4) was sufficient to increase the larval
153  VNC length, while overexpression in perineural (c527-Gal4) or wrapping glia (nrv2-Gal4) was
154  not (Fig S6). Subperineural glial cells are essential for the blood brain barrier (BBB) and form
155  septate junctions (Baumgartner et al. 1996; Stork et al. 2008). These data demonstrate that glial

156  Bchs plays a role in regulating CNS size.

157 Elongation of the VNC may be caused by an increased number of glial cells. Therefore,
158  we quantified the number of glial cells in the larval brain using an anti-repo antibody, which is
159  apanglial cell marker (Xiong et al. 1994). Panglial Bchs overexpression significantly increased
160  the number of repo™ nuclei but not their density (Fig 4A,B). We additionally observed an
161  increased number of glial cells in the peripheral nervous system (Fig S7). In conclusion, Bchs

162 overexpression can act on glial proliferation or apoptosis inside and outside the CNS.
163

164 Bchs overexpression causes protein accumulation and a shift towards non-acidic autophagic

165  vesicles

166 The autophagy adaptor ref(2)P links ubiquitinated proteins to autophagosomes via
167 interactions with Atg8a, which is anchored to autophagic compartment membranes (Jain et al.
168 2015). Aggregates of ref(2)P are considered as a marker of misfunctioning protein degradation
169 by autophagy or the ubiquitin-proteasome system (UPS) (Bartlett ez al. 2011; Nezis et al. 2008;
170  Pircs et al. 2012). Bchs loss-of-function variants have been described to lead to a ref(2)P
171  (human homolog: p62) accumulation and an increase in early autophagic compartments,

172 suggesting an impaired autophagic flux (Clausen et al. 2010; Hebbar et al. 2015; Sim et al.
7
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173 2019). To test whether Bchs overexpression impairs autophagy, ref(2)P immunostainings and
174  an autophagic vesicle pH-reporter were utilized. Our data indicate strong accumulation of
175  ref(2)P in the thoracic neuromeres of the VNC and milder also in the brain upon glial Bchs
176  overexpression in the adult CNS (Fig 3A). Consistently, the overall larval CNS showed

177  increased ref(2)P staining (Fig 2A).

178 In contrast, adult flies overexpressing Bchs panneuronally accumulated ref(2)P most
179  prominently in the posterior region of the VNC but also with a lower signal intensity in the
180  brain (Fig 3D). Larvae displayed ref(2)P aggregates in a subset of neurons in the VNC (Fig
181  2D), which we speculated to be motoneurons due to the flies’ locomotion phenotype. Driving
182  Bchs overexpression in motoneurons simultaneously with a membrane-bound GFP
183  demonstrated that a subset of motoneurons did form ref(2)P aggregates in response to Bchs
184  overexpression (Fig S4). It was previously shown that Bchs overexpression in even-skipped
185  (eve)-positive motoneurons aCC and RP2 leads to morphological abnormalities and neuronal
186  death (Lim und Kraut 2009; Hebbar et al. 2015; Sim et al. 2019). We thus hypothesized that
187  the ref(2)P signal might localize to eve-positive neurons, and conducted a double
188  immunostaining of eve and ref(2)P confirming that a small subset of eve-positive neurons

189  accumulate ref(2)P (Fig S8). However, also eve-negative neurons showed ref(2)P expression.

190 We further applied a GFP-mCherry-Atg8a reporter to check the ratio of non-acidic to
191  acidic autophagic vesicles in larval brains (Nezis et al. 2010). Fusion of an autophagosome with
192 an endosome or lysosome results in an acidic autophagic vesicle, termed amphisome or
193 autolysosome, respectively. GFP fluorescence is quenched in the acidic environment leading to
194 an mCherry-only signal that does not colocalize with a concurrent GFP signal. In larvae
195  overexpressing Bchs in glial cells, a significantly increased colocalization of mCherry and GFP
196  signals was observed in comparison to the control indicating a shift of the ratio towards non-

197  acidic autophagic vesicles (Fig SA,B,C,S9A). Dissimilarly, in animals with panneuronal Bchs
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198  overexpression no significant difference in the acidic environment of autophagic vesicles was
199  detected (Fig 5SD,E,F,S9B). Collectively, the ref(2)P accumulation and change in autophagic
200  compartment acidity indicates that glial Bchs overexpression affects autophagic flux prior to or

201  at the step of acidification of autophagic vesicles.
202
203 Bchs overexpression leads to altered transcriptome profiles

204  To understand which molecular pathways are affected by Bchs overexpression and how this
205  impacts brain function, we performed RNA-seq on heads from adult flies overexpressing Bchs
206  1in glia or neurons. Although Bchs overexpression in glial cells caused a more severe phenotype
207  with differences in brain size and autophagy when compared to neuronal overexpression (Fig
208  3,5), we identified more differentially expressed genes (i.e. genes with different expression in
209  Bchs overexpression flies as opposed to control animals carrying only the Gal4 driver or only
210  the UAS-target gene) in the panneuronal nSyb-Gal4/UAS-bchs::HA condition (2,107 genes;
211  glial Bchs overexpression: 156 genes) (Tab S1). 79 genes were similarly differentially
212 expressed upon Bchs overexpression in glia and neurons, which represented a highly significant

213 overlap (p-value < 0.0001 from 1,000 simulations using 13,000 genes for random sampling).

214 Among the overlapping differentially expressed genes we identified Im/] and Rab32 (Tab S1),
215  which are known to play an important role in autophagy (Hirota & Tanaka 2009; Wang et al.
216  2012; Wu & Tu 2011). The gene ontology (GO) categories enriched for both glial and neuronal
217  Bchs overexpression were related to extracellular space (Tab S1), hinting to the biological
218  provenance of the observed phenotypes. Additionally, for glial Bchs overexpression the GO
219  category septate junction (GO:0005918) was enriched. Whereas, neuronal Bchs overexpression

220  led to an enrichment of GO categories related to autophagy and mitochondria.

221  Taken together, there was a significant number of overlapping genes that suffered dysregulation

222 after Bchs overexpression in neurons or glial cells. This implies an altered molecular
9
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223 mechanism regardless of the inquired cell type. We identified genes involved in autophagy and

224 lysosome formation, but also an enrichment of genes annotated to the extracellular space.

225

226  Discussion

227  WDFY3 loss-of-function variants have been linked to neurodevelopmental and
228  neurodegenerative disorders (Dragich et al. 2016; Finley et al. 2003; Le Duc et al. 2019; Orosco
229  etal. 2014; Schaaf et al. 2022). Further, WDFY3 variants have been associated with an increase
230  ordecrease in brain size (Finley et al. 2003; Kadir et al. 2016; Kriston-Vizi et al. 2011; Le Duc
231 et al. 2019; Orosco et al. 2014). We hypothesized that variants underlying potential loss- or
232 gain-of-function have opposing effects on brain size. Here, we used a Drosophila Bchs
233 overexpression model as a proxy for gain-of-function effects in development. Ubiquitous Bchs
234  overexpression was lethal (Fig S1), suggesting that Bchs expression levels are highly relevant
235  also in non-neural tissue. We then overexpressed Bchs in different cell types of the nervous

236  system to understand how dysregulation in different cells impacts development.

237

238  Bchs overexpression impaired nervous system, wing, and thorax development

239 We tested whether dysregulation of WDFY3/Bchs in glial cells may contribute to
240  phenotypic abnormalities observed in probands with WDFY3 variants. We detected a prolonged
241  developmental time for flies overexpressing Bchs in glial cells, but not for panneuronal

242 overexpression, indicating a role of glial Bchs in developmental processes (Fig 1A).

243 On the other side, neuronal Bchs overexpression caused higher rates of wing and thorax
244  defects. Driving Bchs overexpression only in CCAP neurons was sufficient to cause these
245  morphological phenotypes, implicating that CCAP neurons are responsible for wing and thorax

246  abnormalities. CCAP neurons are well known to have a major role in post-ecdysis development

10
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247  (Luan et al. 2006; Park et al. 2003). Suppressing their activity disrupts tonic abdominal
248  contractions and air swallowing, a motor program necessary to pump hemolymph into wings
249  to unfold them (Peabody er al. 2009). Further, CCAP neurons secrete the hormone bursicon,
250  required for wing expansion and tanning, into the hemolymph (Dewey et al. 2004; Loveall &
251  Deitcher 2010; Luo et al. 2005). Interestingly, similar wing and thorax abnormalities were
252  noticed upon misexpression of TBPH (human ortholog: TDP-43), an RNA-binding protein, or
253  knockdown of Gcle, an enzyme involved in glutathione synthesis, in CCAP neurons (Mercer
254 et al. 2016; Vanden Broeck et al. 2013). Dysregulations of those genes were hypothesized to
255  induce premature degeneration of CCAP neurons causing wing and thorax defects. Therefore,
256  we suspect that also Bchs overexpression might have contributed to a degeneration of CCAP
257  neurons. Importantly, WDFY3 is involved in the removal of mutant TDP-43 (Han et al. 2015),
258  suggesting that Bchs overexpression might lead to a misregulation of TBPH in CCAP neurons.
259  However, in our transcriptomic analyses, we did not identify 7BPH or Gclc to be differentially
260  expressed in flies overexpressing Bchs in neurons. On the other side, Pburs, a subunit of the
261  hormone bursicon was upregulated (Tab S1, 10-fold higher expression, adj-p= 0.0008) (Luo et
262 al. 2005). Null mutants of Pburs were similarly described to have a wing expansion deficit
263  (Lahr et al. 2012). The observed weak penetrance of wing and thorax abnormalities in glial
264  Bchs overexpression flies may indicate that in a small number of flies glial Bchs overexpression
265  provoked a misfunctioning of CCAP neurons (Fig 1D,E). Similarly, the weak penetrance of
266  abnormalities in motoneuronal Bchs overexpression could be explained by its expression in
267 CCAP motoneurons but not in CCAP interneurons (Fig S3). Our data suggest that both,
268  neuronal and glial Bchs dysregulation contribute to developmental defects. This is further
269  supported by the impaired crawling behavior in glial and neuronal Bchs overexpression larvae
270  (Fig 2C,F), which is in accordance with delayed motor development observed in affected

271  patients (Le Duc et al. 2019).
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272

273 Bchs affects CNS morphology

274 WDFY3 loss-of-function variants lead to an increased brain size in mice and humans
275  (Le Duc et al. 2019; Orosco et al. 2014), while Bchs loss-of-function variants were described
276  to reduce the brain size (Finley er al. 2003; Kriston-Vizi et al. 2011). Although dysregulated
277  WDFY3/Bchs levels might have different downstream effects in the respective model
278  organisms, we were still prompted to check whether the overexpression in the different nervous

279  system cells impact the overall brain size.

280 In our study, only glial, but not neuronal, Bchs overexpression caused alterations in CNS
281  size, presented in an elongated VNC and a decreased brain size to fly length ratio (Fig 2,3). In
282  contrast, previous studies demonstrated that neuronal Bchs overexpression increases larval
283  brain size (Kriston-Vizi et al. 2011). This discrepancy of neuronal overexpression phenotypes
284  might be due to investigation of different developmental stages or because of using different
285  neuronal drivers. Importantly, glial Bchs can influence the CNS size, demonstrating that glia
286 need to be considered when examining the mechanism underlying altered CNS size.
287  Furthermore, different cell types also of distinct stages of differentiation might contribute to the
288  altered CNS size of WDFY3/Bchs mutants. The contribution of each cell type might depend on
289  the observed developmental phase. In mice, Orosco et al. showed that hypomorphic variants of
290  Wdfy3 increase symmetric proliferation of radial glia, neural stem cells, which give rise to
291  neurons and glia (Orosco et al. 2014). Interestingly, glial Bchs overexpression resulted in a gain
292 of glial cell number (Fig 4,S7). This gain could have been caused similarly by increased
293  proliferation of Drosophila neural stem cells (neuroblasts), intermediate progenitor cells or glial
294 cells. It is well known that glial cells can regulate neuroblast proliferation (Contreras et al.
295  2021; Kanai et al. 2018; Nguyen & Cheng 2022; Yang et al. 2021). However, reduced glial cell
296  death could also have provoked the cell number increase. Further studies are needed, to
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297  determine whether the increased glial cell number is caused by alteration of proliferation or cell

298 death.

299 Several genes have been previously associated with elongated VNC as seen in glial Bchs
300 overexpression larvae (Fig 2), e.g. glial overexpression of the genes mmp2 or kuz, encoding
301  metalloproteases (Dai et al. 2018; Kato et al. 2011; Losada-Perez et al. 2016; Meyer et al. 2014;
302  Pandey et al. 2011; Skeath et al. 2017; Winkler et al. 2021). Both proteases likely regulate BBB
303  integrity (Kanda et al. 2019; Petri et al. 2019). Subperineural glia form an essential part of the
304 BBB by producing septate junctions. Importantly, Bchs overexpression in subperineural glia
305  was sufficient to promote VNC elongation. Additionally, in our transcriptomic analyses we
306  found a dysregulation of genes associated with septate junctions (7sf2, kune, cold, gli, hoka,
307  udt, Tab S1) in flies overexpressing Bchs in glial cells (Hijazi ef al. 2011; Izumi et al. 2021;
308 Kanda er al. 2019; Nelson et al. 2010; Schulte et al. 2003; Tiklova et al. 2010). This suggests
309 that glial Bchs overexpression impairs proper septate junction formation and BBB integrity,
310  which could contribute to the altered brain size observed in different animal models and

311  probands.

312

313 Bchs overexpression impairs autophagic flux

314 Further, transcriptomics analyses identified 2,107 and 156 genes to be differentially
315  expressed in flies overexpressing Bchs in neurons and glia, respectively (Tab S1). For neuronal
316  and glial Bchs overexpression, 50 and 3 of the differentially expressed genes, respectively, are
317  annotated to the GO category autophagy (GO:0006914) or its child terms. Those genes play

318  important roles in autophagy, which is the main known function of WDFY3/Bchs.

319 Bchs is an adaptor between ref(2)P and the autophagosomal membrane, therefore, a gain
320  of Bchs could be assumed to increase autophagic flux (Clausen et al. 2010; Filimonenko et al.

321  2010; Sim et al. 2019; Simonsen et al. 2004). However, our data showing ref(2)P aggregation
13
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322 and a shifted ratio towards non-acidic autophagic vesicles when Bchs was overexpressed in glia
323  suggest that the overexpression disrupts the autophagy pathway (Fig 2,3,5). Additionally,
324  neuronal and glial Bchs overexpression decreased mRNA levels of the autophagy-associated
325 genes Imll and Rab32 (lightoid) (Tab S1), further supporting a perturbed autophagic flux
326 (Wang et al. 2012; Wu & Tu 2011). Nevertheless, we cannot rule out that formation of non-
327  acidic autophagic vesicles was increased but the downstream autophagy pathway was limited

328 by the fusion step, leading to an excessive build-up of non-acidic vesicles.

329 In both, larval and adult CNS, glial Bchs overexpression compared to neuronal Bchs
330  overexpression resulted in a ref(2)P aggregation pattern that was more widely spread in the
331  CNS (Fig 2,3). However, from ref(2)P accumulation it is not possible to conclude on the impact
332 on neuronal function. Yet, recent research has shown that glial autophagy impacts neuronal
333  health, e.g. in neurodegenerative diseases like Parkinson’s disease and Alzheimer’s disease
334  (Bankston et al. 2019; Cho et al. 2014; Choi et al. 2020; Damulewicz et al. 2022; Kreher et al.

335  2021; Szabo et al. 2023; Tu et al. 2021).

336 In this study, we demonstrated that glial, as well as neuronal Bchs overexpression can
337 lead to developmental abnormalities. While neurons have been implicated in WDFY3-
338  associated pathologies, our data indicate that glial Bchs dysregulation also contributes to
339  phenotypic defects. Since at least in respect to brain size WDFY3/Bchs was shown to yield
340  different downstream effects in different model organisms, further investigations should be
341  carried out to decipher the role of glial WDFY3 in WDFY3-related neurodevelopmental

342  disorders, and whether a modulation of glial function could rescue the phenotype.

343
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344  Materials and Methods
345  Fly husbandry

346 Flies were maintained on standard cornmeal food at 25 °C and a 12:12 light-dark cycle.

347  The following Drosophila melanogaster strains were used:

348 w!lI8
349  ;; repo-GAL4/TM6B Th, (RRID:BDSC_7415)

350 ;; nSyb-GAL4/Sb, (gift from J. Simpson)

351 ; UAS-bchs::HA, (RRID:BDSC_51636)

352 ;;act5C-Gal4/Th,Sh, (RRID:BDSC_3954)

353  ; 0k6-GAL4 w*, (Marqués et al. 2002)

354  ; UASp-GFP-mCherry-Atg8a, (RRID:BDSC_37749)

355 ; UAS-mCDS8::GFP, UAS-mCDS8::GFP, (RRID:BDSC_5137)
356  ;; UAS-mCDS8::GFP, (RRID:BDSC_5130)

357 ; Burs-GAL4, (RRID:BDSC_40972)

358 ;; CCAP-GAL4, (RRID:BDSC_25686)

359  ; rL82-GALA, (Sepp & Auld 1999)

360 ; nrv2-GAL4, (RRID:BDSC_6800)

361  ;; ¢527-Gal4, (RRID:BDSC_90391)

362
363  Mendelian ratio and adult developmental time

364 15 virgin females (UAS-bchs::HA/Sb') and 5 males (cell type-specific reporter-
365  Gal4/Sb"), all carrying the balancer chromosome (marker: Sb'), were crossed and switched to
366 a new vial every day. Numbers of flies carrying the balancer chromosome (no Bchs

367  overexpression) and flies not carrying the balancer (Bchs overexpression) in the F1 generation
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368  of five vials were counted for each genotype. Newly hatched flies were counted every 24 h. For

369  each vial, counting was started on the day the first adult fly hatched and continued for ten days.

370

371  PEDtracker — embryonal developmental time, larval and pupal size

372 The development of panneuronal Bchs overexpression flies (nSyb-Gal4/UAS-bchs::HA)
373 as well as the controls nSyb-Gal4/+ and UAS-bchs::HA/+ was monitored using the PEDtracker
374  system (Schumann & Triphan 2020). According to the previously published protocol, the
375  development of the specimen was observed from egg hatching to pupation. Larval hatching
376  timepoint, larval size over development as well as pupal size were then manually measured
377  using ImageJ (Schneider et al. 2012). Statistical analysis was performed using Kruskal-Wallis

378  test or one-way ANOVA depending on the distribution of the data.

379

380  Assessing the condition of wings and thoraces

381 20 virgin females and 10 males were crossed and switched to a new vial every second
382  day. For each genotype, the F1 generation in three vials was analysed. For each vial, collecting
383  flies was started on the day the first adult fly hatched and continued for five days. The condition
384  of wings and thoraces was evaluated 24 h after collecting the flies (24—48 h old flies). Wings
385  were categorized into folded, partially folded, and expanded. Thoraces were categorized into

386  dimpled and not dimpled.

387

388  Larval locomotion

389 Petri dishes with a diameter of 9 cm filled with 1 % agarose were prepared. Five third
390  instar larvae were placed in the middle of a petri dish and recorded (camera: Logitech C920

391  HD Pro) for 1 min. The first 5 sec of a recording were dismissed and larval behavior of the
16
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392  following 30 sec investigated. Recordings were analysed by using the ImageJ freehand line tool
393 to measure the length of the crawled route of a larva. For each genotype, 30 larvae were

394  examined if not stated otherwise.

395

396  Immunohistochemistry

397 Larvae: Wandering third instar larvae were dissected in ice-cold HL-3 solution (Stewart
398  etal 1994), fixed with PFA (4 % in PBS) and collected in 1x PBS. Blocking, primary antibody
399  incubation and secondary antibody incubation were consecutively performed in PBT (1x PBS
400  + 0.05 % Triton X-100, Sigma-Aldrich) containing 5 % normal goat serum (NGS, Jackson
401  ImmunoResearch) at 4°C overnight. Antibody incubation steps were followed by washing two
402  times shortly and three times 15 min (1x PBS + 0.05 % Triton X-100). Samples were stored in

403  Vectashield (Vector Laboratories) at 4°C overnight before mounting.

404 Adult flies: The CNS of adult female flies (21—33 h old) were dissected in ice-cold
405  Ringer solution, fixed in 4 % PFA for 30 min at room temperature and collected in 1x PBS.
406  Blocking was done at room temperature for 24 h in PBT (Ix PBS + 1 % Triton X-100)
407  containing 5 % NGS. Primary antibody incubation was carried out at 4°C for 24 h and
408  secondary antibody incubation at 4°C for 24—48 h. Antibody incubation steps were followed
409 by moving samples to room temperature for 1 h and washing two times shortly and three times

410 15 min with PBT. Samples were stored in Vectashield at 4°C overnight before mounting.

411  The following antibodies were used at following dilutions: rabbit-anti-Ref(2)P (1:500, Abcam,
412 ab178440), mouse-anti-repo (1:250, DSHB, 8D12 concentrate), mouse-anti-even skipped
413  (1:50, DSHB, 2B8), goat-anti-mouse conjugated with Alexa Fluor-488 or -405 (1:250,
414  Invitrogen, A-11001, RRID: AB_2534069 and A-31553, RRID: AB_221604), goat-anti-
415  horseradish peroxidase (HRP) conjugated with Alexa Fluor-488 or -647 (1:250, Jackson

416  ImmunoResearch, 123-545-021, RRID: AB_2338965 and 123-605-021, RRID: AB_2338967),
17
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417  Cy3- or Cy5-conjugated goat-anti-rabbit (1:250, Jackson ImmunoResearch, 111-165-144,

418  RRID:AB_2338006 and 111-175-144, RRID: AB_2338013).

419

420  Central nervous system size measurement

421 Larval VNC was measured and normalized to the larval length which was determined
422  before dissection. Larvae were placed into a petri dish filled with HL-3 on ice and imaged
423  (camera: Leica DFC365 FX, microscope: Leica MZ10 F). Brains were stained against HRP,
424  imaged and a maximum projection of the z-stack was performed with ImageJ. The length of

425  the larvae and the VNC were measured with the ImageJ Straight Line tool.

426 The size of the VNC and the brain of adult flies was determined and normalized to the
427  fly length. The adult fly was anesthetized by putting it in a vial on ice. The fly was transferred
428  toapetri dish and imaged (camera: Leica DFC365 FX, microscope: Leica MZ10 F). The central
429  nervous system was stained against HRP, imaged, and a maximum projection was performed.
430  Lengths of the fly and the VNC were measured with the ImageJ Straight Line tool. The area of

431  the brain was measured with the ImageJ Freehand selection tool.

432

433 Number of glial cells

434 Larvae were stained with anti-repo antibody and imaged. Repo-positive nuclei were
435  counted using the ImageJ plugin cell counter. For analysis of glial cell number in the peripheral
436  nervous system, glial nuclei number was determined at the entry point of the peripheral nerve
437  bundle into the body wall muscles at the region, where the bundle divides into the TN, ISN,
438  and SN nerve branches. Peripheral nerves innervating the hemisegments A4R and A4L were

439  analysed.

440
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441  Colocalization of GFP-mCherry-Atg8 fluorophore signals

442 Larval brains were dissected and fixed as described before, stored in Vectashield for at
443  least 24 h and imaged. Images were deconvoluted using Huygens Essentials software (strategy:
444  standard). Analyses of images were performed with the Image] plugin coloc 2 (Pearson
445  correlation, above threshold) and using the freehand selection tool to set a ROI surrounding the

446  brain.

447

448  Imaging

449 Image acquisition was performed with a Leica SP8 confocal microscope unless

450  specified otherwise.

451

452  RNA extraction and sequencing

453 RNA was extracted from five female and five male fly heads for one sample. Flies
454 (22-31 h after eclosion) were anesthetized with carbon dioxide and heads were cut using a
455  scalpel. Heads were immediately transferred to an ice-cold 2 ml Eppendorf tube containing
456  Trizol or RLT buffer. RNA extraction followed immediately using the RNeasy Micro Kit
457  (Qiagen, Cat. No. 74004) according to protocol or exchanging the first step of homogenization
458  in RLT buffer with the following Trizol protocol (Invitrogen, Cat. No. 15596026). Heads were
459  homogenized in 500 pl Trizol, centrifuged for 5 min at 10,000 rpm at 4°C, supernatant was
460  tranferred to a new tube, 200 pl chloroform (Carl Roth, No. 6340.1) was added and the tube
461  was shaken for 15 sec. An incubation step at room temperature for 3 min was followed by
462  centrifugation for 5 min at 10,000 rpm at 4°C. The upper aqueous phase was transferred in a

463  new tube and it was continued with the RNeasy Micro Kit protocol. Homogenization was
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464  performed on ice using the Ultra-Turrax (IKA T10 basic) five times for 10 sec. For each

465  genotype five samples were sequenced.

466 RNA-seq libraries were prepared using TruSeq RNA Library Prep Kit v2 (Illumina, San
467  Diego, CA) and sequenced on an Illumina NovaSeq platform with 151 bp paired-end reads with

468  an average of ~135 million reads per library.

469

470  Differential Gene Expression (DEG) analysis

471 RNA-Seq reads were mapped to the Drosophila genome assembly BDGP6.32
472  (GCA_000001215.4) with STAR (version 2.6.1d) (Dobin et al. 2013). Reads were processed
473  as previously described (Korner et al. 2022). We computed the transcript levels with htseq-
474  count (version 0.6.0) (Anders et al. 2015). Genes with a sum of less than 10 reads in all samples
475  together were excluded from further analysis. Differential expression of genes was determined
476  with the R package DESeq2 (version 1.30.1) (Love et al. 2014), which uses the Benjamini-
477  Hochberg method to correct for multiple testing (Benjamini ez al. 2001). Genes were considered
478  to be significantly differentially expressed if p-adj < 0.05. To check clustering of RNA-
479  sequencing samples of subjects and controls, a principal component analysis (PCA) was
480  performed with the R package pcaExplorer (version 2.6.0) (Marini und Binder 2019). RNA
481  count data were variance stabilized transformed and the 500 most variable genes (top n genes)
482  were selected for computing the principal components. We tested 5 samples of adult heads from
483  glial/neuronal Bchs overexpression (repo-Gal4/UAS-bchs::HA and nSyb-Gal4/UAS-bchs::HA,
484  respectively) against the pooled samples of both controls, 5 samples of the Gal4-driver control
485  (repo-Gal4/+ and nSyb-Gal4/+, respectively) and 5 samples of the UAS control (UAS-

486  bchs::HA/+).
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487 To identify which pathways are enriched with differentially expressed genes we used
488  the GOfuncR package with a hypergeometric test and the Drosophila GO annotations

489  org.Dm.eg.db v.3.17 (Carlson 2019; Grote 2021).
490
491  Statistics

492 Data are shown as mean + SEM. Statistical analyses were performed with SigmaPlot
493 12.5 (Systat software) using two-tailed Student’s t-tests or Mann-Whitney Rank Sum test for

494  non-normally distributed data, if not stated otherwise.
495
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Fig 1. Developmental deficits in Bchs overexpression flies.

A) Glial Bchs overexpression (left, repo-Gal4/UAS-bchs::HA, green) prolonged the
developmental time from egg to eclosion of adult flies, unlike neuronal overexpression (right,
nSyb-Gal4/UAS-bchs::HA, blue), in comparison to controls (left: repo-Gal4/+ white, UAS-
bchs::HA/+ gray) (right: nSyb-Gal4/+ white, UAS-bchs::HA/+ gray). Flies of 5 vials were
pooled. n > 88. B, C) Images of flies overexpressing Bchs in neurons. Bchs overexpression
caused wing expansion and dimpled thorax defects (arrow). D, E) Quantification of wing (D)
and thorax (E) defects. Both defects had a higher rate in neuronal than in glial Bchs

overexpression. n > 72.
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Fig 2. Larval locomotion and VNC length were affected by glial Bchs overexpression.

A, D) Larval brains were stained against HRP (top) and ref(2)P (bottom). Bchs
overexpression in glial cells (A, repo-Gal4/UAS-bchs::HA, right) and neurons (D, nSyb-
Gal4/UAS-bchs::HA, right) caused accumulation of ref(2)P, in contrast to controls. Arrows
exemplary point out ref(2)P aggregates. Scale bar: 100 um. B, E) Quantification of VNC length
normalized to larval length. Increased VNC length was observed in glial Bchs overexpression
(B, green) larvae but not neuronal overexpression (E, blue). n =5. C, F) Overexpression of Bchs
in glial cells (C, green) or neurons (F, blue) reduced the crawling velocity. n > 29. B, C, E, F)

Data are shown as mean + SEM.
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Fig 3. Glial Bchs overexpression affected adult CNS size.

A, D) Adult CNSs were stained against HRP (top) and ref(2)P (bottom). Bchs
overexpression in glial cells (A, repo-Gal4/UAS-bchs::HA, right) caused accumulation of
ref(2)P in the brain and thoracic neuromeres of the VNC. Neuronal Bchs overexpression (D,
nSyb-Gal4/UAS-bchs::HA, right) led to ref(2)P accumulation in the brain and posterior region
of the VNC. Arrows indicate ref(2)P accumulation. Scale bar: 200 um. B, E) Quantification of
brain size normalized to fly length. A decreased brain size to fly length ratio was noted in glial
Bchs overexpression adults (B, green) but not for neuronal overexpression (E, blue). B) n > 23.
E) n > 15. C, F) Overexpression of Bchs in glial cells (C, green), but not in neurons (F, blue),
elongated the VNC length (normalized to fly length). C) n > 15. F) n > 6. B, C, E, F) Data are

shown as mean + SEM.
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844  Fig 4. Glial cell number in larval CNS increased by glial Bchs overexpression.

845 A) Glial nuclei in the larval CNS were counted by staining against repo. B) Glial cell
846  density was determined by dividing the glial cell number by the larval CNS area. A, B) Glial
847  Bchs overexpression raised the glial cell number but did not alter the glial cell density. n = 5.

848 Data are shown as mean + SEM.
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Fig 5. Ratio of non-acidic to acidic autophagic vesicles was altered through Bchs

overexpression.

A-F) The GFP-mCherry-Atg8a reporter was used to investigate autophagic flux in
larval brains and was expressed in the same cell type as the Bchs overexpression. Autophagic
flux was compared between larvae only expressing the Atg8a reporter (top, white, A—C: UAS-
GFP-mCherry-Atg8a/+; repo-Gal4/+ and D—F: UAS-GFP-mCherry-Atg8a/+; nSyb-Gald/+)
and larvae expressing the Atg8a reporter simultaneously with the Bchs overexpression (A—C:
bottom, green, UAS-GFP-mCherry-Atg8a/+; repo-Gal4/UAS-bchs::HA and D—F: bottom,
blue, UAS-GFP-mCherry-Atg8a/+; nSyb-Gal4/UAS-bchs::HA). As negative controls animals

were used which carried both UAS-target genes, but not the Gal4 (C, F: gray, UAS-GFP-
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mCherry-Atg8a/+; UAS-bchs::HA/+, Fig S9). A, D) GFP (left) and mCherry (middle) signals
were imaged with a confocal microscope and images were deconvoluted. Right: GFP and
mCherry images merged. Scale bar: 100 pm. Box indicates the region of the insets shown in
(B) and (E). B, E) Scale bar: 20 um. C, F) Quantification of colocalization of GFP and mCherry

signals using Pearson’s coefficient. C) n > 9. F) n > 16. Data are shown as mean + SEM.
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