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Abstract

Nonhuman primates (NHPs) are indispensable animal models by virtue of the continuity of
behavioral repertoires across primates, including humans. However, behavioral assessment at
the laboratory level has so far been limited. By applying multiple deep neural networks trained
with large-scale datasets, we established an evaluation system that could reconstruct and
estimate three-dimensional (3D) poses of common marmosets, a small NHP that is suitable for
analyzing complex natural behaviors in laboratory setups. We further developed downstream
analytic methodologies to quantify a variety of behavioral parameters beyond simple motion
kinematics, such as social interactions and the internal state behind actions, obtained solely
from 3D pose data. Moreover, a fully unsupervised approach enabled us to detect
progressively-appearing symptomatic behaviors over a year in a Parkinson’s disease model.
The high-throughput and versatile nature of our analytic pipeline will open a new avenue for
neuroscience research dealing with big-data analyses of social/pathophysiological behaviors

in NHPs.
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Introduction

Quantitative evaluation of animal behavior is crucial for various research areas of neuroscience.
However, observing natural behaviors of freely moving animals by visual inspection incurs a
considerable cost. Meanwhile, recent advances in artificial intelligence (Al) allow us to pave
the way to quantify massive amounts of behavioral data in a large-scale and automated
manner', and assessment of natural behaviors with “markerless pose estimation” has already
been implemented in a number of studies®'°. Indeed, Al-based three-dimensional (3D) analysis
of body posture, involving the limb positions, makes it possible to evaluate a variety of

behavioral aspects that characterize nonhuman primates (NHPs)!12,

The application of this methodological innovation to the neuroscience research field is

now rapidly expanding'"-!3-17

, as it is expected to have a potential to bring about fundamental
changes in how to design behavioral experiments on NHPs which have long been carried out
in a head-fixed condition. In the past decades, accumulated evidence from a number of
research works, such as ethological studies on wild animals, suggests the continuity of
behavioral repertoires across primates including humans'®!. However, there remains a large

gap between the field and the laboratory research since experimental settings under freely

moving conditions have so far been limited at the laboratory level.

Common marmosets are one of the NHP species suitable for overcoming this problem,

given that their relatively small body size permits observations of complex natural behaviors

18-21

in laboratory setups'®~'. Furthermore, marmosets are a remarkably prosocial animal. It is

generally accepted that all family members cooperate to breed infants whose development is
successfully attained via interactions with their caregivers. This implies that marmosets can be
useful as a primate model for exploring social behavior'®?2. The development of telemetric

28-30

devices for brain activity recordings also accelerates the preparation of experimental

environment in a freely behaving fashion. In addition, the utility of marmosets which have
high reproductive efficiency has led to the production of brain disease models by genetic

23-27

engineering techniques> ', which requires the longitudinal and high-throughput assessment

3
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of symptomatic behaviors.

Two issues should be solved to achieve a methodological improvement in designing
behavioral experiments on marmosets. First, the practical use of “deep neural networks” for

behavioral analysis demands both a huge volume of ground truth data '*!°

and an analytic
pipeline that reconstructs 3D poses of multiple animals simultaneously while recognizing
individuals. Second, even if the best effort is made to establish such a system, a major question
still arises as to how effective this approach is to evaluate natural behaviors of freely moving
marmosets. In fact, quantitative analyses to date based on the markerless pose estimation have

highly been focused on the movement itself (e.g., kinematics of body-part movements and

sequence of motor actions) ®!7! leaving cognitive behaviors or social interactions untargeted.

In the present study, we developed a markerless 3D pose estimation system to analyze
natural behaviors of marmosets under freely moving conditions, and a large-scale training
dataset to promote automated quantification of videographic data. We further developed a set
of downstream analytic methodologies that took advantage of the potential of 3D pose data.
Here we show that (1) the 3D pose data are suitable for defining social behavior which should
be more than kinematics of a single animal and represents complex interactions among
multiple animals, (2) the 3D pose data are able to infer the animal’s internal state behind
actions, and (3) a completely unsupervised approach based on the 3D pose data allows us to
detect behavioral changes in response to pathophysiological conditions. Through these distinct
experimental subjects (parenting behavior of male vs. female marmosets, behavioral flexibility
of socially interacting marmosets, and symptomatic behaviors progressively appearing in a
marmoset model of Parkinson’s disease (PD), respectively), we have revealed the potent
applicability of our system that permits extracting a wide range of behavioral parameters

beyond spatiotemporal kinematics.
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90 Results

91 Markerless 3D pose estimation of multiple marmosets with individual
92  identification

93  Our analytic framework consisted of the following three elements: a multi-camera recording
94  system, an analytic pipeline combined with multiple deep neural networks, and large-scale
95  ground truth data to train the deep neural networks for accurate quantification. The recording
96  system included eight synchronized cameras surrounding a transparent cage that was specially
97  designed to allow housing of a marmoset family (up to four individuals) and to provide
98  continuous clear video recordings for several days or more. Multiview videographic data were
99 fed into the custom-made analytic pipeline which had fully been optimized for robust
100  reconstruction of the 3D poses of multiple marmosets under individual identification in a

101  variety of natural behavioral contexts (Fig. 1a).

102 For the analytic pipeline, regions of interest (ROIs) where marmosets were located were
103 first determined in each camera view at each time frame by using a detection network.
104  Subsequently,18 keypoints and a potential animal identity per ROI were estimated through a
105  pose network and an identity network, respectively. In each camera view, ROIs taken from
106  numbers of time frames were combined based on the spatial continuity to construct tracklets
107  which were composed of time-series data including the pose and identity. During this process,
108  individual tracklets contained information only from a single camera view, and, therefore, they
109  were fragmented by a short time period (Fig.1a, 2D processing). As the next step, a 3D tracklet
110  was constructed by combining several tracklets that represented the same animal from different
111  camera views by minimizing the so-called pose affinity score (Fig. 1a, camera association; for
112 details, see the Methods section). Finally, 3D tracklets were combined across the entire
113 recording time based on both the spatial continuity and the probability of animal identity (Fig.

114 1a, 3D optimization).

115 To achieve the accurate and robust 3D pose estimation, we created annotations of 3D
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116  keypoints for more than 7404 bodies (consisting of eight different views) (Fig. 1c, d) in a
117  variety of natural behavioral contexts (Fig. 2a, b), which could be used as a ground truth dataset
118  for training both the detection and pose networks. The requirement for a training dataset of
119  animal recognition largely depended on experimental conditions (with/without infants, the use
120  ofacolor tag, implantation of neuron activity recording devices, etc.). In the present study, we
121  tested either a pair of marmosets or a breeding family (including male and female parents with
122 their infants). A neckless type of color tag was attached to adult marmosets to facilitate
123 identification. Under these conditions, we labeled 4231 samples in total for ID classification.
124 With this dataset, we used 80% for training and 10% each for validation and test. The ground
125  truth dataset was created from 29 different individuals ranging from 1.5 months old (infant) to

126 12 years old (adult).

127 The final performance of animal detection and identification in 3D space was 99.3% and
128  98.8% in precision and recall, respectively (Fig. 2c, d, Video S1). The geometric error in pose
129  estimation at each keypoint was 9.68 mm (4.86 ~15.25) in 3D space (Fig. 2¢). On the scale of
130  human body, the estimation error of, for example, the wrist positions were about 4 cm. This
131 accuracy was comparable to the state-of-the-art performance of a similar task in human pose
132 estimation®? where enormous amounts of ground truth data were available, indicating that our
133 system consisting of the recording environment, training dataset, and analytic pipeline reached
134 the highest level that was considered achievable at the present time. However, a major question
135 remained as to the extent to which our system would practically be useful for actual
136 experiments, which was hard to judge from the so-far-listed score alone. In the following
137  sections, we explored the potential of 3D pose data by quantifying various types of behavioral

138  parameters that were beyond simple spatiotemporal kinematics of the body parts.

139

140  Differential roles of male vs. female marmosets in parenting as defined by
141  automated detection of social behavior

142 When introducing the automated quantification into natural behaviors, evaluation of social
6
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143 behavior is the most difficult and beneficial, since it is more than kinematics of a single animal.
144  In the first set of our experiments, we tested the potential of 3D pose data for assessing food-
145  sharing behavior which is frequently observed in a breeding family of marmosets. Both male
146  and female marmosets generally take care of their infants together, and, therefore, they are
147 characterized as cooperative breeders, which is similar to the human case, but is relatively rare
148  in other NHPs'®. As part of parenting, adult marmosets share their food with infant marmosets,
149  which enables the infants not only to satisfy their nutritional needs, but also to obtain an
150  opportunity of learning about diet**. Thus, we attempted to quantify food-sharing behavior of

151  breeding marmoset families.

152 In the present experiment, we sought to detect the food-sharing behavior by applying a
153  spatiotemporal filter to 3D pose time-course data. Two marmoset families participated in this
154  experiment. Since the output of our system was a simple time-course data of the 3D posture in
155  each marmoset, we started with engineering the features that might capture food-sharing
156  events in the marmoset families based on the 3D pose time-course data. According to such
157  data obtained from parents and infants, we computed the distance between the either the
158  infants' mouths/hands and those of parents' hands/mouths, and its derivatives (i.e., velocity).
159  Comparison with videographic images confirmed that the resulting time-course data could be
160  potentially good indicators to detect the food-sharing event between the parents and the infants
161  (Fig.3a,b). Via spatiotemporal thresholds of these quantitative posture and motion parameters,
162 we then defined and counted the occurrence of such events automatically (for details, see the
163  Methods section). Moreover, we acquired annotations by a human observer to optimize and
164  verify the automated detection of food-sharing events based on a subset of videographic
165  sequences randomly selected from the entire study cohort. The threshold values were tuned
166  using 25% of the annotation data. The detection accuracy (i.e., true positive, false positive,
167  and false negative) was estimated with the rest of annotations which was not used for the
168  parameter tuning (Fig. 3c). We obtained the Precision-Recall curve (Fig. 3d) and estimated the
169  optimal F1 and Cohen’s kappa which were 0.80 and 0.77, respectively. These scores satisfied

170  common criteria for the inter-observer reliability in behavioral sciences®, thus indicating that
7
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171  our automated analysis was reliable enough for quantification of social behavior. Furthermore,
172 we used this detector for the rest of the entire dataset and found that the food-sharing event
173 occurred more frequently in male than in female parents (Fig. 3e-f). Such a difference between
174  fathers and mothers is suggested by previous studies on distinct species of New World
175  monkeys*-¥7. The overall results demonstrated that our Al-based analytic pipeline clarified the
176  differential roles of cooperating breeding animals in parenting under the laboratory

177  environment, and that this pipeline could be useful for quantifying social behavior.

178

179  Behavioral adjustment depending on others’ internal state as investigated by
180  recurrent neural networks

181  Inthe second set of our experiments, we assessed the extent to which our system with 3D pose
182  time-course data could infer the animal’s internal state behind actions. In social life of primates,
183  itis crucial to adjust one’s own behavior depending on others’ internal state, such as emotions,

184  intentions, and other physiological needs***

. Conceivably, internally-guided behavioral
185  changes by others may not readily be observable, but can be judged by watching over
186  themselves*'. Several human neuroimaging studies have shown neural substrates that are
187  involved in this sort of cognitive function*?*3. On the other hand, only a few related works
188  have so far been available in NHPs***8, because nonverbal behavioral paradigms are so limited
189  that the possible underlying mechanism remains to be investigated. Here, we attempted to

190  overcome this issue by combining a novel freely-moving behavioral task with our analytic

191  pipeline using a deep neural network.

192 To examine a social behavioral action in response to others’ internal state, we developed
193  a food competition task under freely moving conditions where two marmosets interacted to
194  share or keep a valuable food (Fig. 4a,b). Two different pairs of marmosets participated in this
195  experiment. The partner’s internal state (either full or hungry) was controlled without notifying
196  the subject before the experiment started. Then, only the subject animal could obtain a large

197  food that takes a couple of minutes to eat. The partner animal in the same cage may try to take
8
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198  away or beg for the food from the subject, and, therefore, the subject should pay attention to
199  the partner’s action. Employing this behavioral task, we tested how the subject might adjust

200  his/her behavior depending on the partner’s internal state.

201 The Long Short-Term Memory (LSTM) %, a type of recurrent neural network for temporal
202  data analysis was used to decode the partner’s internal state. Two different LSTMs, LSTMartner
203  and LSTMiuwject, with the same architecture were trained to decode the partner’s internal state
204  (i.e., full or hungry) from actions of either the subject or the partner (Fig. 4c). These LSTMs
205  were designed to utilize the 3D pose data for 800ms as input and to generate as output a score
206  representing the partner’s internal state, i.e., hungriness. The output score of LSTMparmer Was
207  predicted only from the partner’s action and could even display a variability within single trials
208  (Fig. 4d). For example, in a scene with higher score (Fig. 4D, left panel), the partner was
209  directly approaching the subject as if the partner tried to take away the food from the subject.
210  Conversely, in a scene with lower score, the partner was exploring inside the cage without any
211  interest in either the subject or the food. Similarly, as the partner’s internal state (and the
212 resulting action) might probably affect the subject’s behavior, the output score of LSTMjubject
213 was able to predict the partner’s internal state solely from the subject’s action (Fig. 4¢). Even
214  though the outputs of both LSTMs fluctuated within single trials or across trials, the overall
215  scores were higher in a hungry than in a full condition (Fig. 4f). Thus, not only LSTMartner but
216  also LSTMuject precisely predicted the partner’s condition on average (Fig. 4g). The accurate
217  decoding of the LSTMgupject Output indicated that the marmoset indeed adjusted his/her own

218  behavior flexibly based on others’ internal state.

219 Another important question arises as to whether such a behavioral change might be an
220  immediate, simple reaction to an others’ particular action rather than a reflection of others’
221  internal state behind the sequence of their actions. The comparison between the LSTMartner
222 and the LSTMguwicct €xhibited a positive correlation, which indicated that an immediate action
223 by the subject was related to the sequence of the partner’s actions at that moment regardless

224 of the partner’s internal state (Fig. 5a). Concurrently, at any level of the LSTMparmer output, the
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225  LSTMiubject output was consistently higher in the hungry than in the full condition (Fig. 5b).
226  The present result implied that the one’s reaction towards the same sort of action by the other
227  was changed according to the internal state. As an example of such behavioral adjustment
228 depending on others’ internal state, we found that, in a pair of marmosets, the gaze behavior
229  ofthe subject was changed according to the partner’s internal state. One marmoset sometimes
230  looked back at the other when the other marmoset looked at the one (Fig. 5c). This look-back
231  behavior was more frequently seen in a hungry than in a full condition (Fig. 5d), again
232  indicating that the subject’s reaction towards the same action by the partner was changed based
233 on the partner’s internal state. The overall results demonstrated the cognitive complexity of
234  marmosets in the social context, thus elucidating that they flexibly adjust their behaviors

235  depending on others’ internal state that is not readily observable by an immediate action alone.

236

237  Progressive manifestation of motor deficits in a marmoset model of PD as revealed
238 by unsupervised clustering

239  In the third set of our experiments, we evaluated whether a completely unsupervised approach
240  might allow us to detect behavioral changes in response to pathological conditions if relatively
241  large-scale 3D pose data are available. To this end, we analyzed symptomatic behaviors in a
242  marmoset model of PD. It is well known that PD progressively manifests motor deficits, such
243 as akinesia, rigidity, and tremor, which is caused by degeneration/loss of dopaminergic neurons
244  in the substantia nigra pars compacta (SN¢) **!. Given that over-expression of mutant variants
245  of alpha-synuclein (a-syn) emulates the progressive aspect of the disease, much emphasis has
246  been placed on the notion that an animal model produced by a-syn over-expression is suitable
247  for PD research’>%, In this model, however, observations over months or even years are
248  required for behavioral assessment of phenotype expression, and, therefore, automated
249  quantification of symptomatic behaviors is indispensable. Here, we yielded a PD model
250  marmoset by injecting a combination of adeno-associated virus (AAV) vector™ carrying the

55,56

251  mutant o-syn gene and pathological a-syn fibril®’ into the nigra on one side of the brain

10
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252  (Fig. 6a). Histological analysis using tyrosine hydroxylase (TH) immunostaining after the
253  behavioral observation confirmed loss of dopaminergic neurons from the SNc¢. With this PD

254  model, varying motor activity was monitored for two days per month over one year.

255 Employing our analytic pipeline in a fully unsupervised manner without any a priori
256  hypothesis, we could identify a couple of behavioral changes in the marmoset PD model. First,
257 by means of dimensional reduction and clustering approach, we determined action motifs that
258  were the patterns of 3D pose time-series data repeatedly observed throughout the recording
259  period (Fig. 6b; for details, see the Methods section). We found that some actions were
260  occasionally observed before the surgery, and others gradually appeared after the surgery (Fig.
261 6¢). Specific behavioral actions, such as running, turning, and jumping from wood, were
262  reduced after the surgery (Fig. 6d,e; upper panels). Conversely, various types of “stay” actions
263  were increasingly observed several months after the surgery (Fig. 6d,e; bottom panels).
264  Interestingly, apparently similar postures were classified into different clusters notably by the
265  difference in the neck angle (Fig. 6f). Some postures were seen more frequently, whereas
266  others were observed less frequently after the surgery (Fig, 6g). After three months, an
267  increased tonus of the neck muscle markedly appeared contralaterally as evidenced by the

268  finding that the head bent towards the side opposite to the nigral injection site.

269 We further quantified the amount of gross movement (as an index of reduced locomotion)
270  and the head posture based on the 3D pose time-series data, and then successfully confirmed
271  the progression of symptomatic behaviors obtained from the unsupervised analysis (Fig. 6h-j).
272 The overall results indicated that parkinsonian phenotypes induced by a-syn over-expression
273  gradually progressed. This suggested that our system allowed the longitudinal and high-
274  throughput evaluation of symptomatic behaviors in brain disease models without any

275 behavioral tasks.

276

277
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278  Discussion

279  Inthe present study, we have developed the analytic pipeline that permits automated and high-
280  throughput quantification of natural behaviors of common marmosets using a markerless
281  motion capture system which consists of multiple deep neural networks. With the large-scale
282  ground truth dataset, the decoding accuracy reached the best performance that we could expect
283 at the present time. Applying this system, we have revealed that our approach is capable of
284  detecting behavioral changes due to a variety of experimental conditions, such as differential
285  contributions of males vs. females to parenting in breeding families, flexible behavioral
286  adjustment depending on others’ internal state, and progressive manifestation of motor
287  impairments in a PD model. Our results provide a novel framework to many research areas of
288  neuroscience using NHPs by introducing objective and large-scale quantification of animal
289  behavior. It should also be noted here, however, that there are some limitations on the use of
290  the analytic pipeline that we have developed in this study. First, the proposed system is able
291  to quantify only restricted variations of behavioral actions that are represented by 18 keypoints.
292 Thus, other types of actions, such as facial expression, cannot be quantified®?. Second, careful
293  assessment is needed to confirm that behavioral data obtained from our system are not
294  attributable to erroncous tracking of individual animals. The 3D pose time-course data may
295  sometimes be derived from a mixture of multiple animals, although such an error is rare as
296  shown in Figure 2c,d. In a severe condition where individual recognition is inaccurate, an

297  alternative system should be called for to address this issue specifically>®.

298 Recent technological innovations have attracted much attention to experimental
299  paradigms with freely moving marmosets. Large-scale telemetric recordings of neuronal

t3!, and electrocorticography recordings from almost the

300 activity were successfully carried ou
301  entire lateral hemisphere were also reported®-%°. Combining these recording techniques with
302  our analytic pipeline allows comprehensive understanding of the correlation between cortical

303  signals and behavioral dynamics. This could be an appropriate methodology to explore the

304  cortical circuitry related to behavioral actions of particular interest. Then, optogenetic® and

12
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305  chemogenetic®® approaches, which are also compatible with freely-moving experimental
306  conditions, enable us to disclose the causal role of a specific neural circuit in the expression
307 of a given type of natural behaviors. Until recently, major efforts have been made to assess
308 motor and cognitive functions of NHPs through analysis of eye/hand movements as the
309  behavioral output. Now, the Al-based innovative development has increasingly been
310  accomplished to quantify and evaluate social interactions in a certain animal population with
311  high efficiency®. This may make it feasible to elucidate the neural mechanisms underlying
312  behavioral theories, so far intensively explored in socio-ecological and ethological studies, for
313  example, the Machiavellian theory in which expansion of the cerebral cortex, especially the

314  frontal lobe, leads to the adaptation to social complexity in our daily life®*-¢%,

315 The novel pipeline that we have established for 3D pose time-series analysis of a group
316  of marmosets can be utilized in various experimental environments and laboratories. All that
317  is required is to estimate the camera calibration parameters for accurate 3D reconstructions
318 and to refine the neural networks for detection, identification and pose estimation of
319  individuals. Concerning the former requirement, at least a two-camera system should work
320  though our experiments were conducted with eight cameras to enhance the robustness and
321  accuracy, and then data needed for the calibration will be acquired within hours. With respect
322  to the latter requirement, the neural networks for 2D analysis should be re-tuned to each
323  experimental environment or laboratory because of the differences in varying factors, such as
324 background, lighting, and camera angle. In our experiments, we provided a substantial amount
325  of ground truth data to achieve robust 3D analysis, which will be of immense help for adapting
326  neural networks to specific environments and achieving impeccable performance. In recent
327  years, several tools, for example, “style transfer” °°’ further support a transfer learning of the
328  networks from some environment to others. Moreover, while our analytic pipeline has highly

329  been optimized for marmosets, It can be customized for other species as well.

330 The present study has revealed the potent applicability of the 3D pose data, as evidenced

331 by a wide range of behavioral parameters beyond spatiotemporal kinematics that can be
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332  quantified via a proper choice of downstream analytic methodologies (Fig. 7). The simplest
333 method is to detect specific behavioral events by defining spatiotemporal parameters derived
334  from certain combinations of 3D keypoints, as demonstrated in the food-sharing experiment.
335 A key factor to succeed in this method is appropriate feature engineering that is suitable for
336  target event detection and parameter tuning with a small set of supervised data, both of which
337  should be performed by experts of animal behavioral observations. Moreover, we have
338  elucidated that simple spatiotemporal data concerning the 3D poses permit quantification of
339  the internal state of marmosets which is combined with cutting-edge neural networks, for
340  instance, a recurrent neural network (i.e., LSTM) in the present study. This brings about a
341  unique opportunity of studying the mind behind the complex social behavior in primates.
342  Finally, a fully-unsupervised data mining approach is capable of disclosing behavioral changes
343  induced by pathophysiological manipulation, as shown in the PD model experiment. This
344  approach is specifically beneficial to explore behavioral changes comprehensively if a
345  substantial amount of data are available. Such methodological innovations are greatly
346  meritorious given that the behavioral complexity inherent in NHPs substantially accentuates
347  the assessment of neurological/psychiatric/developmental disorder models. The high-
348  throughput and versatile trait of our evaluation system will play critical roles in establishing a

349  new standard that quantifies social/pathophysiological behaviors of NHPs.
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350 Methods

351  Animals

352 All procedures for the use and experiments of common marmosets were approved by the
353  Animal Welfare and Animal Care Committee of the Center for the Evolutionally Origins of the
354  Human Behavior, Kyoto University, followed by the Guidelines for Care and Use of
355  Nonhuman Primates established by the same institution. First, 29 marmosets (ranging from
356 1.5 months olds to 12 years old; 13 males and 16 females) were used to create the ground truth
357  dataset. Four adult and two infant marmosets derived from two families participated in the
358  food-sharing experiment. Then, two pairs of adult marmosets were utilized for the food

359  competition experiment, and one adult marmoset was for the PD model experiment.

360

361 Recording system

362 A recording booth was a 90-cm cubic box which consisted of acrylic transparent walls, and a
363  metal mesh floor and ceiling. This recoding booth was designed to keep up to four animals
364  under the Ethical Guideline of the Japan Neuroscience Society and equipped with common
365  items required for a normal marmoset cage, such as water bottles, food boxes, and perches.
366  Videographic images were recorded by Motif system (Loopbio, Lange G, Wien, Austria) which
367  was synchronized with eight machine vision cameras (2048x1536-pixel, 24 fps). The cameras
368  were arranged horizontally with an equal distance as surrounding the recording booth. The

369  viewing angle of each camera was set at 110x70 degree to cover the whole booth.

370 To accomplish accurate 3D reconstructions, we obtained intrinsic (e.g., lens distortion
371  coefficients) and extrinsic (e.g., camera positions) camera calibration parameters by the
372  OpenCV framework as follows: The intrinsic parameters were obtained by
373  cv2.omnidir.calibrate using the images of a checker-board pattern recorded by each camera;
374  and the extrinsic parameters were initialized by cv2.solvPnP function by the 3D coordinates
375  of a set of landmark positions in the recording booth and their 2D coordinates projected onto
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376  the camera image. To improve the calibration accuracy, we further optimized both the intrinsic
377  and the extrinsic parameters simultaneously by minimizing the projection (reconstruction)

378  errors of the trajectory of a small object (a ping-pong ball) moved inside the recording cage®®.

379

380  Ground truth dataset

381  Our keypoint schema follows that of macaque-pose!? dataset with slight modification to fit to
382  analyze the whole-body movements of marmosets. Specifically, we annotated 20 keypoints
383 consisting of the nose, eyes (left and right), ears, shoulders, elbows, wrists, hips, knees, ankles,
384  back, and the middle and tip of the tail (while the last two keypoints were not used in the
385  analytic pipeline). The annotators were trained by movies of marmosets whose body parts
386  corresponding to the keypoints were marked by paint markers. The annotations were
387  performed in a 3D manner by using custom-made software where those of a single body were
388  acollection of 3D positions constructed through triangulation of 2D positions via all cameras.
389  While the 3D positions could be computed with triangulation once a single keypoint was
390 annotated via more than two cameras, the annotators visually confirmed every keypoint for all
391  cameras to maximize precision. We used images from 29 different marmosets and annotated
392 7404 bodies in a 3D space which were equivalent to 56103 bodies in a 2D space. We selected
393  scenes from different behavioral contexts, 732 bodies from full-day recordings of a single
394  animal, 654 bodies from those of two animals, 2010 bodies from three-animal recordings, and
395 4008 bodies from four-animal recordings. The annotation frames were semi-manually selected

396 to maximize variations of the behavioral contents.

397

398  Markerless 3D multi-animal pose estimation
399  The analytic pipeline started from the analysis of 2D images taken from each camera (Fig.1b
400 2D processes). The detection network analyzed the locations of marmosets in an image of each

401  frame and generated a bunch of bounding boxes, which are rectangles of partial regions
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402  bounded by the smallest rectangle enclosing a marmoset as a region of interest. Then, the pose
403  network estimated 18 keypoints, and the ID network estimated an animal ID for all bounding
404  boxes. The bounding boxes were combined along the time axis at the 2D level to construct so-
405  called 2D tracklets, namely time-series data consisting of the regions of a marmoset associated
406  with the postures and animal IDs. As multiple bounding boxes could be detected in each frame,
407  the bounding boxes that seemed to correspond to a single marmoset were combined based on
408  the consistency in the positions of the marmoset across frames. At this moment, the 2D
409  tracklets were still fragmented in short durations, because one animal who were occluded by
410  objects or other animals, and, therefore, it could not be tracked continuously. The 2D
411  processing was implemented using OpenMMLab®’, a set of image processing libraries for deep
412  neural networks. The network architecture used here was yolox-1"° and resnet-50"' for
413  detection and identification. The pose networks were hrnet-w327? for both the food-sharing
414  and the food competition experiments, and dekr-hrnet-w487 for the PD model experiment.
415  The connections of bounding boxes to construct 2D tracklets were performed by using

416  ByteTrack™.

417 Subsequently, the 3D pose time-series data on each animal were obtained with four steps.
418  The first to third steps corresponded to camera association and the fourth step to 3D

419  optimization in Figure la.

420 As the first step, in each frame, we grouped the bounding boxes (tracklets were not used
421  here) likely belonging to the same marmosets across different cameras. This process was
422  performed only in key frames which were every 0.5 sec to reduce computational load. We
423  searched for the optimal grouping of bounding boxes by minimizing geometric inconsistency
424 (i.e., the inverse of the so-called pose affinity score’®) between the boxes from different

425  cameras within a group. We defined geometric inconsistency D, as below.
1
426 Dyg(xyx)) = 37 Zm=1 dg (7', Lij (x) + dg (', Lij (") (1)
427  where x{' indicated the 2D position of the n-th keypoint of pose 1, L;; (x]-”) the projection
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428  line associated with x}l from a different camera, and dy(-,1) the point-to-line distance for 1.

429  The optimization was performed according to the algorithm proposed by Dong et al. 3. Once
430  the grouping of bounding boxes was established, we constructed the 3D pose of a marmoset
431  for each group of the bounding boxes by triangulation of the 2D poses in each key frame. Then,
432  we obtained 3D poses of marmosets in every key frame, while their temporal association

433 remained undetermined.

434 As the second step, the matching of the same animal over time was performed as follows:
435 A combination of 3D poses across adjacent key frames could be considered, in the Graph
436  theory, the maximum matching M of a complete bipartite graph G=(S, 7 E) with non-negative
437  edge cost c:E = R =0, where S, T are 3D poses for key frame ¢ and #+1. Here we defined

438  the cost ¢(i,j) for the edge connecting Si and 7j poses as below.
439 c(@)) = Xnad(xl,xf) (2)

440  where N indicated the number of keypoints, x;* and xj" represented the 3D position of the

441  n-th keypoint of the 3D pose Si and Tj, respectively, and d(:,-) was the distance between two
442  points in a 3D space. This cost represented geometrical inconsistency of a pair of 3D poses.
443  The maximum matching M was obtained by minimizing the cost ),ep c(e) through the
444  Hungarian algorithm. In addition, the edge connections were removed if the geometrical
445  inconsistency per keypoint was over an empirically determined threshold 7,=150. The frames
446  between the key frames were complemented by continuity of 2D tracklets which were
447  combinations of multiple bounding boxes over time in a 2D space. Through this process, we

448  obtained 3D tracklets time-series data on 3D posture.

449 Third, a marmoset ID was assigned for each 3D tracklet. The ID was assigned in every

450  frame if the following criterion was satisfied:
Nig
451 Nig > T,, ~ > T;  (3)
452  where N;; was the number of instances for the most frequently observed ID, N was the
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453  number of all bounding boxes taken from all cameras, 7> and T3 were hyperparameters, set as
454 12 and 0.8, respectively. Here, within a sliding time window (5 sec), all the bounding boxes
455  Dbelonging to a single 3D tracklet were considered. If the same ID was assigned to a different
456  tracklet at the same time point, the ID was given only to the tracklet with the highest Niz. A 3D
457  tracklet was divided at the time point when the IDs assigned by the above criterion were

458  changed within the 3D tracklet.

459 The fourth step was the final refinement of the 3D tracklets. There might be the case
460  where multiple 3D tracklets, which should correspond to the same animal, were dissociated
461 due to the failure in the previous steps. To compensate such a case, these tracklets were
462  integrated by the following procedure. Suppose that there was a tracklet that had not yet been
463  assigned an ID, T,.mp; and a tracklet that had been assigned an ID, Tyimmp. During the period
464  when two 3D tracklets overlapped, if the difference between their 3D trajectory was less than
465  the error threshold 743=200, then the ID of T\.mp propagated to that of 7,./p. This was repeated
466  twice for the entire dataset. Furthermore, for tracklets that had not yet been assigned an ID,
467  we assigned the remaining ID if the IDs of all but one animal had been assigned. Finally, the
468  tracklets with the same ID were integrated, and the resulting 3D pose time-series data on

469  individual marmosets were spatiotemporally smoothed and normalized via anipose’.

470

471  Food-sharing experiment

472 A couple of marmoset families participated in this experiment. Each family consisted of a
473 father, a mother, and their infant who was about three months of age at the start of the
474  experiment. A piece of home-made Arabian gumball was given to each of the parents
475  simultaneously, and then their social interactions were observed. When both gumballs were
476  consumed, new ones were given again to the parents separately. The experiment was carried

477  out for about 30 min per day and repeated for 12 or 16 days in two families.

478 Food-sharing events were detected by the following procedure. First, 3D pose data on
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479  three individuals per family were obtained with the analytic pipeline. At this stage, the 3D pose
480  data were independent across the animals and were not suitable for detecting social behavior.
481 Therefore, we created new features by combining the 3D pose data about the infant and parents.
482  Specifically, we calculated the distance between the mouth or the left or right hand of the infant
483  and those of each parent. Considering all combinations for a pair of the infant and one of
484  his/her parent, this process generated 9 different values for each time frame. The smallest one
485  of these values was taken for each frame, and the resulting time-series data (D) and the first
486  derivative (V) were obtained. A food-sharing event was marked when there were at least Ty
487  consecutive frames in which D and V were larger than detection parameters 7y and 7v. To
488  optimize these detection parameters and to evaluate detection accuracy, a human observer
489  counted the occurrence of food-sharing events as a subset of the entire dataset. The human
490  observer coded the presence or absence of food-sharing events for every 15 sec and analyzed
491  for 90 min in total. The threshold value obtained from the human coding was optimized by
492  maximizing the consistency to the automated detection by using 25% of the annotation data.
493  The detection accuracy was obtained from the rest of the annotation data. The Precision-Recall
494  curve shown in Figure 3d was obtained by varying 7, from the optimal value. The statistical
495  significance in the difference between the father and the mother in the food-sharing events
496  were evaluated with a paired two-tailed z-test (o = 0.05) with the number of observations on

497  each recording day as independent data points.

498

499  Food competition experiment

500  Two pairs of marmosets were used for this experiment. For each pair, the subject and partner
501  animals were familiar with each other as they had been kept in the same cage. Food deprivation
502  was performed from the evening of one day before the experiment, and, therefore, both animals
503  were in a hungry state at the start of the experiment. Just before the experiment, the partner’s
504  state was controlled to be either hungry or full by the following procedure. The partner was

505  separated from the subject immediately before the experiment in order that they could not see
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506  each other. In a full condition, enough food was provided until the partner could not eat any
507  more. In a hungry condition, the partner was forced to stay for the same duration as in the full
508  condition. In each trial, the subject but not the partner was provided with a gumball with high
509  reward value, and their social interactions were observed. The experiments were performed 3-

510 4 trials per day, and a hungry or a full condition was randomly assigned across days.

511 LSTM®, a type of recurrent neural network, was used to predict the partner’s internal
512  state obtained from 3D pose data on either the subject or the partner. We coded LSTMs using
513  the implementation in pytorch 2.0. The architecture of LSTMs for the subject and partner was
514  the same. The LSTMs took 3D pose time-course data for 20 frames (corresponding to 800 ms)
515  from either the partner or the subject as input and generated two output scores indicating that
516  the likelihood of the partner’s internal state was either hungry or full. Cross entropy loss was
517  computed across the outputs and the experimental conditions for the network training. As a
518  quantitative representation of the partner’s hungriness (such as in Fig.4d), we took the value

519  in the final full connection layer before the softmax function.

520 The input dataset for LSTM networks was composed of the aligned-posture, locomotion
521  speed, degree of approach-avoidance, and head direction, as calculated by the following
522 procedure. To obtain the aligned-posture, the 3D pose data were shifted frame by frame, and,
523  thus, the midpoint between the left and the right hip keypoint was aligned in the same position
524  across the frames. Then, the aligned data were further rotated along the horizontal plane, and,
525  therefore, the azimuth of the trunk was aligned across the frames. The locomotion speed was
526  the first derivative of the trajectory of the hip-mid point. The approach-avoidance was the inner
527  product of the locomotion vector (a vector connecting the mid-point of the hip keypoint across
528  adjacent frames) and the vector from the position of one marmoset to that of another marmoset.
529  The head direction was the angle between the one’s head direction (the 45-degree upright
530  vector from a vector connecting the nose and the midpoint of the left and right eyes and ears)

531 and the direction to the other.

532 One fourth of the total data was used to train the networks, and the training was iterated
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533  until the learning curve reached a plateau. The best network weights over the training iterations
534  were selected based on the performance of the prediction for the rest of the dataset which had
535  not been used for the training. In the analysis of Figure 5c and d, the look-back behavior was
536  defined as the head direction (as defined in the previous paragraph) of the subject (as the
537  calculation mentioned above) became below 40 degrees and were aligned by the onset of the
538  partner’s gaze ( head direction should be below 40 degrees) which was kept for more than 800
539  ms. The bar graph in Figure 5d denoted the sum of the look-back behavior between 0.5-1.5 sec
540  to the partner’s gaze. The statistical significance was obtained by an unpaired two-sided ¢-test

541 for the differences between the conditions.

542

543  PD model experiment

544 A PD marmoset model was produced by unilateral injections of both virus vector expressing
545  mutant a-syn and pathological a-syn fibril into the SNc. A total of 12-ul solutions consisting
546  of 4 ul of AAV2.1-hTH-a-syn (G51D) (4.88x10e13 gc/ml)3* and 8 ul of the fibril (5 mg/ml)
547 7 was injected into four rostrocaudally and mediolaterally different loci of the SNc through a
548 10-ul Hamilton microsyringe (30 gauge) over 35 min per penetration. The injection
549  coordinates were adjusted individually based on MR images. A surgical navigation system
550  (Brainsight, Rogue Research, Montréal, Québec, Canada) was used to accurately guide the
551  position of the injection sites’®. The animal was anesthetized with ketamine hydrochloride (20-
552 40 mg/kg, i.m.) and maintained with isoflurane (1-2%) during the surgery while SpO,, heart
553 rate, and rectal temperature were monitored. A water-heating circulator was used to control the
554  body temperature. An analgesic (Meloxicam; 0.1-0.2 mg/kg, i.m.) was also administered before
555  and for a couple of days after the injection. Behavioral observations were conducted once a
556  month. The marmoset was moved to the recording booth and allowed to stay there for two
557  days. Food pellets were supplied once a day and water was available ad [libitum. Video
558  recordings was done for 20 min per hour from 9 a.m. to 4 p.m. (a total of 160 min per day).

559  The recordings were started two months before the surgery and continued 12 months after the

22


https://doi.org/10.1101/2023.10.16.561623
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.16.561623; this version posted October 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

560  surgery.

561 After the behavioral assessment, immunohistochemical analysis was performed to
562  confirm loss of dopamine neurons from the SNc. The animal was deeply anesthetized with
563  ketamine hydrochloride (40mg/kg, i.m.) and sodium secobarbital (50 mg/kg, i.v.), and perfused
564  transcardially with 0.1M phosphate-buffered saline (PBS) followed by 4% paraformaldehyde
565 in 0.1 M phosphate buffer (pH 7.4). Then, the brain was removed from the skull, postfixed
566  overnight, and saturated with 30% sucrose at 4°C. Coronal sections were cut serially at the 40-
567  um thickness on a freezing microtome. A series of every tenth section was used for tyrosine
568  hydroxylase (TH) immunostaining. The sections were pretreated with 0.3% H>O, for 30 min
569  and immersed in 1% skim milk for 2 hr. The sections were then incubated for 48 hr at 4°C with
570  mouse anti-TH antibody (1:2,000; Millipore, Burlington, MA) in 0.1 M PBS containing 2%
571  normal donkey serum and 0.1% Triton X-100. Subsequently, the sections were incubated with
572  biotinylated donkey anti-mouse IgG antibody (1:1,000; Jackson ImmunoResearch, West Grove,
573 PA) for 2 hr at room temperature in the same fresh medium, followed by the avidin-biotin-
574  peroxidase complex (ABC Elite; 1:200; Vector laboratories, Burlingame, USA) in 0.1 M PBS
575  for 2 hr at room temperature. Finally, the antigen was visualized with diaminobenzidine (DAB)
576  containing nickel ammonium sulfate (0.01% DAB, 1.0% nickel ammonium sulfate, and
577  0.0003% H»0,). The sections were mounted onto gelatin-coated glass slides and counterstained

578 with 1% Neutral red.

579 An unsupervised clustering of behavioral actions was performed by using time-series data
580  about action features which were computed based on the 3D pose data as follows: First, the
581  aligned postures were obtained as described in the previous section. Then, the spectrogram
582  representation (0.05-12.8 Hz) of these data was obtained from the fast Fourier transformation,
583  and, therefore, the data at a single time point contained not only instantaneous postural
584  information, but also dynamics of the postures. In the end, the action features used for the
585  clustering were created by adding locomotion vector to this spectrogram. The clustering was

586  carried out by using the k-means clustering method with the number of classes fixed ====to
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587 56, and, thus, all videographic frames throughout the entire recording period were classified
588 as one of the 56 action clusters. Then, the time-course of the occurrence rate of each action
589  class was obtained as shown in Figure 6¢. The order of these action clusters was defined by
590  the following procedure. The 56-dimensional time-series data representing the action
591  occurrence rate were analyzed by the principal component analysis (PCA). Then, the first
592 principal component PC/ showed monotonic increment in which the score was low before the
593  surgery and was gradually being increased after the surgery. Therefore, the order of the
594  coefficients of PCI was used as the order of the action clusters. In other words, the actions
595  with the small cluster number were frequently observed after the surgery, and those with the
596  larger cluster number were often observed before the surgery. In Figure 6j, the azimuth and tilt
597  of the head were calculated by the vector form the midpoint of the shoulders to that of the eyes
598  in the aligned posture. For both the movements and the head angles, the errors were estimated
599 by the bootstrap method. All data during the pre-surgery period were used to estimate the 95%
600  confidential intervals. The mean for every 15 min was taken as an independent data point, and

601  the repetition of the bootstrap sampling was 2000 times.
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849

850  Fig. 1. Analytic pipeline for Al-based quantification of marmoset natural behaviors.

851  a: Overview of the analytic pipeline. For each of the videographic images captured by different
852  cameras, short fragments of time-series data including postures and potential animal IDs, i.e.,
853 2D tracklets, were generated (2D processing). Then, cross-view matching across the cameras
854  was carried out to construct 3D tracklets representing 3D postures and potential animal IDs
855  (camera association). Lastly, 3D pose time-courses for each animal were obtained by
856  combining multiple 3D tracklets over the entire recoding time based on spatial continuity and
857  animals IDs of the 3D tracklets (3D optimization). Note that the two spatial dimensions (X, y)
858  are shown in one axis instead of two different axes, but this is only for visualization purposes.
859  b: 3D annotations of a marmoset family. Upper-left, a cropped image taken from a single
860  camera. Lower-left, the same image with the annotations. Right, cropped images of the same
861  scene taken from different cameras. ¢: Reconstructed 3D poses of a marmoset family obtained

862  from the same scene as b. d: Exemplified 3D poses from different viewpoints.
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864 Fig. 2. Exemplified annotations and decoding accuracy of the analytic pipeline.
865 a: Examples of annotations in different behavioral contexts. Each column denotes the
866 original images, the same images with annotations, and the 3D poses, respectively, from the
867 left to the right. b: Examples of social behaviors. We obtained annotations for 2733 scenes,

868 and 7404 and 56103 bodies in a 3D or 2D space, respectively. ¢,d: Precision and recall rates

869 for detection and identification of individual animals. e: Errors between annotations and Al
870 prediction of 3D poses. Errors were around 10 mm in marmosets with 200 mm of body
871 length.
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873 Fig. 3. Differential contributions of father vs. mother marmosets to food-sharing events
874 with their infants.

875 a: Time-course of engineered features obtained from 3D poses of a marmoset family to
876 predict food-sharing events. Top, the distance between the infant’s hand (either left or right)
877 or mouth and those of the parents (for details, see the Methods section). Middle, the
878 magnified view of the top panel. Each number corresponds to that of each image in b. Bottom,
879 the velocity calculated as the first derivative of the middle panel. b: Exemplified scenes
880 taken from marmoset family recordings. Each number corresponds to that of the time point
881 in a; neutral in yellow (1,3,5) and food-sharing events in magenta (2, 4, 6). Note that the
882 smallest values in the mid-panel of a correspond to the food-sharing events. ¢: Comparison
883 between the human annotations (as ground truth) and the Al-based prediction obtained by
884 applying a spatiotemporal filter to the engineered features shown in a. Colors in the third
885 row represent true positive, false-positive, and false negative, respectively. The most of Al
886 detection were true positive (i.e., the green bars were predominant). d: Precision-recall curve
887 of the optimized detection. The highest F1 value (0.80) was at the intersection of the two
888 dotted lines. This detection performance satisfied a common criterion in animal behavior
889 research. e: Food-sharing events between the male/female and their infant predicted from
890 the Al-based analysis for an example session. f: Rates of food-sharing events averaged
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891 across days. Our behavioral quantification via the Al-based pipeline reveals that the food-
892 sharing event with infants occurs more frequently in male than in female parents (df=25,

893 t=4.55, p=0.0001).
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894 Fig. 4. Quantification of the internal state predicted from actions.
895 a: Design of a food-competition task. The partner (P)’s internal state (either full or hungry)
896 was controlled before the main experiment without notifying the subject (S). b: Exemplified
897 scene during the task and the magnified face of the subject (Inset). A valuable food (gum
898 ball) was given only to the subject. The partner might simply display no interest in the food,
899 or attempt to take away the food from the subject, and, therefore, the subject should pay
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900 attention to the partner. ¢: Schemes of analytic approaches using long-short-term-memory
901 (LSTM) networks. Two different LSTMs with the same architecture, i.e., LSTMparmer and
902 LSTMiubject, Were trained to predict the partner’s internal state from either the partner’s or
903 the subject’s actions as input. d and e: Time-courses of the predicted internal state of the

904 partner obtained as the output from the LSTMparner and LSTMgupicet, r€spectively. Higher

905 scores indicate the behavior in a hungrier state. Images in the lower panels are the scenes
906 corresponding to the frames specified by the numbers in brackets in the upper row.
907 Behavioral types indicated in white were determined by visual inspection of video
908 recordings. Two examples shown here were derived from the hungry condition. f: Predicted
909 internal state of the partner. Note that there are clear differences between the two conditions,
910 while subtle variations within a trial or across days are also quantified. g: Performance of
911 the LSTMartner and LSTMiupject to discriminate conditions. The training and test of the
912 networks were conducted in different subsets from the whole dataset. Shown is the average
913 accuracy across all trials. Errors denote standard errors. The internal state of the partner can
914 accurately be predicted not only from the actions of the partner itself, but also from those of
915 the subject (binomial test; ps<0.0006, n=56 for each condition).
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918 Fig. 5. Response to partner’s action changes according to the internal state.
919 a: Relationship between the instantaneous LSTM output of the partner and the subject. The
920 likelihood of the partner’s hungry state predicted from the subject’s actions is positively

921 correlated with that from the partner’s actions (#=0.22, p<0.001 and r=0.045, p=0.007 for

922 the full and hungry condition respectively). Importantly, at the same level of the LSTMpartner
923 output, the LSTMupject Output is substantially different across conditions. b: The partner’s
924 internal state predicted from the subject’s actions at different levels of the LSTMparmer output.
925 Light-colored bars represent the distributions of the LSTMparner output, and thicken bars

926 represent median. At all levels of the LSTMparer output, the LSTMgupieer Output is
927 significantly different according to the partner’s internal state (ps < 0.001) indicating that

928 the subject’s response to similar actions by the partner changes according to the partner’s
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929 internal state.. ¢: Look-back behavior when two marmosets interact with each other. On the
930 left side, five images are arranged in a time-series fashion from the top to the bottom. The
931 left animal is the partner, and the right animal is the subject. Red circles indicate the timing
932 when one marmoset was looking at the other. On the right side, a diagram shows time-
933 dependent changes in the head angle of one marmoset towards the other. The partner directed
934 the head towards the subject, and the subject looked back at the partner. d: Time-dependent
935 changes in the subject’s gaze towards the partner aligned by the onset of the partner’s gaze.
936 The y-axis represents the changes in the subject’s look-back behavior from baseline period

937 (-1~ 0s). In a full (blue) or hungry (red) condition, the line and shaded zone represent the
938 mean and standard error, respectively. The bar plots represent sum and standard error of
939 look-back response between 0.5 to 1.5s, showing significant difference across conditions
940 (df=555, t=2.77, p=0.0058) Note that the subject looked back at the partner more frequently

941 in the hungry than in the full condition.
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942 Fig. 6. Longitudinal evaluation of progressive motor symptoms in a PD model
943 marmoset.
944 a: Left, site of combined injections of AAV vector carrying the mutant a-syn gene and

945 pathological a-syn fibril seed in the substantia nigra compacta (SNc) indicated by the white

946 arrow. Natural behaviors were recorded on two consecutive days per month before and after
947 the injections. Right, section of tyrosine hydroxylase (TH) staining showing the lateralized
948 degradation of TH in the SNc and the caudate, a projection target of the SNc. b: Results of
949 the unsupervised action motif clustering. Each dot represents an instance of action which
950 was plotted on the axes of the first three principal components (PC1-3) used for the action
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951 classification, and each color corresponds to the classified action. ¢: Heatmap representing
952 the frequency of each action motif cluster observed over longitudinal recordings from the
953 pre-injections to 12 months post-injections. d: Examples of the most frequently observed
954 actions before and after the injections. Before the injections (cluster 45, 48 and 49), quick
955 locomotion, such as jumping, gallop, and quick turning, was mainly observed. In contrast, a
956 variety of “stay” postures with slight differences were primarily seen after the injections (2,
957 4 and 5). Exemplified images were taken from the videographic data. Each number
958 corresponds to an action cluster in c¢. e: Time-course for the frequency of occurrence of
959 action clusters shown in d. f: Representative postures which seem similar though clustered
960 into different classes. Note the differences in the tilt angle and azimuth of the head between
961 the pre-injection (i.e., 54) and the post-injection (i.e., 2). Front, frontal view. Lateral, lateral
962 view. g: Time-course for the frequency of occurrence of action clusters shown in f. h:
963 Histograms of the locomotion speed in different months. Red triangles represent a decreasing
964 trend of fast locomotion as the progression of motor symptoms. i: Analysis of bradykinesia
965 as assessed with changes in the frequency of fast locomotion (0.5 m/s) over several months.
966 The dotted horizontal lines indicate upper and lower bound of the 95% confidential interval
967 for pre-injections data (note that these bounds were so close so that it is hard to see the gap).
968 j: Analysis of abnormal posture in the neck as assessed with changes in the tilt angle and
969 azimuth of the head over several months. The dotted horizontal lines indicate 95%
970 confidential as in I (again, the bounds were so close).
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Fig. 7. Overview of comprehensive approaches to quantification of marmoset natural
behaviors based on 3D poses.

Analytic workflow in the present study. The 3D pose time-course data per se are merely
pieces of spatiotemporal information about body postures involving the limb positions.
However, by combining with proper downstream analytic methodologies, the data allow us

to elucidate a wide spectrum of behavioral parameters based on the 3D poses alone.
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