

1 **Full title**

2 Establishing an AI-based evaluation system that quantifies social/pathophysiological  
3 behaviors of common marmosets

4

5 **Authors**

6 Takaaki Kaneko<sup>1\*#†</sup>, Jumpei Matsumoto<sup>2,3\*</sup>, Wanyi Lu<sup>1</sup>, Xincheng Zhao<sup>1</sup>, Louie Richard Ueno-  
7 Nigh<sup>1</sup>, Takao Oishi<sup>1</sup>, Kei Kimura<sup>1</sup>, Yukiko Otsuka<sup>1</sup>, Andi Zheng<sup>1</sup>, Kensuke Ikenaka<sup>4</sup>, Kousuke  
8 Baba<sup>4</sup>, Hideki Mochizuki<sup>4</sup>, Hisao Nishijo<sup>2,3</sup>, Ken-ichi Inoue<sup>1</sup>, Masahiko Takada<sup>1,4#</sup>

9

10 **Affiliations**

11 1. Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi  
12 484-8506, Japan.

13 2. Department of System Emotional Science, Faculty of Medicine, University of Toyama,  
14 Toyama 930-0194, Japan.

15 3. Research Center for Idling Brain Science, University of Toyama, Toyama 930-0194, Japan.

16 4. Department of Neurology, Osaka University School of Medicine, Suita, Osaka 565-0871,  
17 Japan.

18 \*These authors contributed equally to this work.

19 # Corresponding authors:

20 kaneko.takaaki.v40@kyoto-u.jp to T.K.; takada.masahiko.7x@kyoto-u.ac.jp to M.T.

21 † Present address:

22 Division of Behavioral Development, Department of System Neuroscience, National  
23 Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi  
24 444-8585, Japan.

25 **Abstract**

26 Nonhuman primates (NHPs) are indispensable animal models by virtue of the continuity of  
27 behavioral repertoires across primates, including humans. However, behavioral assessment at  
28 the laboratory level has so far been limited. By applying multiple deep neural networks trained  
29 with large-scale datasets, we established an evaluation system that could reconstruct and  
30 estimate three-dimensional (3D) poses of common marmosets, a small NHP that is suitable for  
31 analyzing complex natural behaviors in laboratory setups. We further developed downstream  
32 analytic methodologies to quantify a variety of behavioral parameters beyond simple motion  
33 kinematics, such as social interactions and the internal state behind actions, obtained solely  
34 from 3D pose data. Moreover, a fully unsupervised approach enabled us to detect  
35 progressively-appearing symptomatic behaviors over a year in a Parkinson's disease model.  
36 The high-throughput and versatile nature of our analytic pipeline will open a new avenue for  
37 neuroscience research dealing with big-data analyses of social/pathophysiological behaviors  
38 in NHPs.

## 39 **Introduction**

40 Quantitative evaluation of animal behavior is crucial for various research areas of neuroscience.  
41 However, observing natural behaviors of freely moving animals by visual inspection incurs a  
42 considerable cost. Meanwhile, recent advances in artificial intelligence (AI) allow us to pave  
43 the way to quantify massive amounts of behavioral data in a large-scale and automated  
44 manner<sup>1-4</sup>, and assessment of natural behaviors with “markerless pose estimation” has already  
45 been implemented in a number of studies<sup>5-10</sup>. Indeed, AI-based three-dimensional (3D) analysis  
46 of body posture, involving the limb positions, makes it possible to evaluate a variety of  
47 behavioral aspects that characterize nonhuman primates (NHPs)<sup>11,12</sup>.

48 The application of this methodological innovation to the neuroscience research field is  
49 now rapidly expanding<sup>11,13-17</sup>, as it is expected to have a potential to bring about fundamental  
50 changes in how to design behavioral experiments on NHPs which have long been carried out  
51 in a head-fixed condition. In the past decades, accumulated evidence from a number of  
52 research works, such as ethological studies on wild animals, suggests the continuity of  
53 behavioral repertoires across primates including humans<sup>19-21</sup>. However, there remains a large  
54 gap between the field and the laboratory research since experimental settings under freely  
55 moving conditions have so far been limited at the laboratory level.

56 Common marmosets are one of the NHP species suitable for overcoming this problem,  
57 given that their relatively small body size permits observations of complex natural behaviors  
58 in laboratory setups<sup>18-21</sup>. Furthermore, marmosets are a remarkably prosocial animal. It is  
59 generally accepted that all family members cooperate to breed infants whose development is  
60 successfully attained via interactions with their caregivers. This implies that marmosets can be  
61 useful as a primate model for exploring social behavior<sup>18,22</sup>. The development of telemetric  
62 devices for brain activity recordings<sup>28-30</sup> also accelerates the preparation of experimental  
63 environment in a freely behaving fashion. In addition, the utility of marmosets which have  
64 high reproductive efficiency has led to the production of brain disease models by genetic  
65 engineering techniques<sup>23-27</sup>, which requires the longitudinal and high-throughput assessment

66 of symptomatic behaviors.

67 Two issues should be solved to achieve a methodological improvement in designing  
68 behavioral experiments on marmosets. First, the practical use of “deep neural networks” for  
69 behavioral analysis demands both a huge volume of ground truth data <sup>14,16</sup> and an analytic  
70 pipeline that reconstructs 3D poses of multiple animals simultaneously while recognizing  
71 individuals. Second, even if the best effort is made to establish such a system, a major question  
72 still arises as to how effective this approach is to evaluate natural behaviors of freely moving  
73 marmosets. In fact, quantitative analyses to date based on the markerless pose estimation have  
74 highly been focused on the movement itself (e.g., kinematics of body-part movements and  
75 sequence of motor actions)<sup>6,17,31</sup>, leaving cognitive behaviors or social interactions untargeted.

76 In the present study, we developed a markerless 3D pose estimation system to analyze  
77 natural behaviors of marmosets under freely moving conditions, and a large-scale training  
78 dataset to promote automated quantification of videographic data. We further developed a set  
79 of downstream analytic methodologies that took advantage of the potential of 3D pose data.  
80 Here we show that (1) the 3D pose data are suitable for defining social behavior which should  
81 be more than kinematics of a single animal and represents complex interactions among  
82 multiple animals, (2) the 3D pose data are able to infer the animal’s internal state behind  
83 actions, and (3) a completely unsupervised approach based on the 3D pose data allows us to  
84 detect behavioral changes in response to pathophysiological conditions. Through these distinct  
85 experimental subjects (parenting behavior of male vs. female marmosets, behavioral flexibility  
86 of socially interacting marmosets, and symptomatic behaviors progressively appearing in a  
87 marmoset model of Parkinson’s disease (PD), respectively), we have revealed the potent  
88 applicability of our system that permits extracting a wide range of behavioral parameters  
89 beyond spatiotemporal kinematics.

90 **Results**

91 **Markerless 3D pose estimation of multiple marmosets with individual  
92 identification**

93 Our analytic framework consisted of the following three elements: a multi-camera recording  
94 system, an analytic pipeline combined with multiple deep neural networks, and large-scale  
95 ground truth data to train the deep neural networks for accurate quantification. The recording  
96 system included eight synchronized cameras surrounding a transparent cage that was specially  
97 designed to allow housing of a marmoset family (up to four individuals) and to provide  
98 continuous clear video recordings for several days or more. Multiview videographic data were  
99 fed into the custom-made analytic pipeline which had fully been optimized for robust  
100 reconstruction of the 3D poses of multiple marmosets under individual identification in a  
101 variety of natural behavioral contexts (Fig. 1a).

102 For the analytic pipeline, regions of interest (ROIs) where marmosets were located were  
103 first determined in each camera view at each time frame by using a detection network.  
104 Subsequently, 18 keypoints and a potential animal identity per ROI were estimated through a  
105 pose network and an identity network, respectively. In each camera view, ROIs taken from  
106 numbers of time frames were combined based on the spatial continuity to construct tracklets  
107 which were composed of time-series data including the pose and identity. During this process,  
108 individual tracklets contained information only from a single camera view, and, therefore, they  
109 were fragmented by a short time period (Fig. 1a, *2D processing*). As the next step, a 3D tracklet  
110 was constructed by combining several tracklets that represented the same animal from different  
111 camera views by minimizing the so-called pose affinity score (Fig. 1a, *camera association*; for  
112 details, see the Methods section). Finally, 3D tracklets were combined across the entire  
113 recording time based on both the spatial continuity and the probability of animal identity (Fig.  
114 1a, *3D optimization*).

115 To achieve the accurate and robust 3D pose estimation, we created annotations of 3D

116 keypoints for more than 7404 bodies (consisting of eight different views) (Fig. 1c, d) in a  
117 variety of natural behavioral contexts (Fig. 2a, b), which could be used as a ground truth dataset  
118 for training both the detection and pose networks. The requirement for a training dataset of  
119 animal recognition largely depended on experimental conditions (with/without infants, the use  
120 of a color tag, implantation of neuron activity recording devices, etc.). In the present study, we  
121 tested either a pair of marmosets or a breeding family (including male and female parents with  
122 their infants). A neckless type of color tag was attached to adult marmosets to facilitate  
123 identification. Under these conditions, we labeled 4231 samples in total for ID classification.  
124 With this dataset, we used 80% for training and 10% each for validation and test. The ground  
125 truth dataset was created from 29 different individuals ranging from 1.5 months old (infant) to  
126 12 years old (adult).

127 The final performance of animal detection and identification in 3D space was 99.3% and  
128 98.8% in precision and recall, respectively (Fig. 2c, d, Video S1). The geometric error in pose  
129 estimation at each keypoint was 9.68 mm (4.86 ~15.25) in 3D space (Fig. 2e). On the scale of  
130 human body, the estimation error of, for example, the wrist positions were about 4 cm. This  
131 accuracy was comparable to the state-of-the-art performance of a similar task in human pose  
132 estimation<sup>32</sup> where enormous amounts of ground truth data were available, indicating that our  
133 system consisting of the recording environment, training dataset, and analytic pipeline reached  
134 the highest level that was considered achievable at the present time. However, a major question  
135 remained as to the extent to which our system would practically be useful for actual  
136 experiments, which was hard to judge from the so-far-listed score alone. In the following  
137 sections, we explored the potential of 3D pose data by quantifying various types of behavioral  
138 parameters that were beyond simple spatiotemporal kinematics of the body parts.

139

140 **Differential roles of male vs. female marmosets in parenting as defined by  
141 automated detection of social behavior**

142 When introducing the automated quantification into natural behaviors, evaluation of social

143 behavior is the most difficult and beneficial, since it is more than kinematics of a single animal.  
144 In the first set of our experiments, we tested the potential of 3D pose data for assessing food-  
145 sharing behavior which is frequently observed in a breeding family of marmosets. Both male  
146 and female marmosets generally take care of their infants together, and, therefore, they are  
147 characterized as cooperative breeders, which is similar to the human case, but is relatively rare  
148 in other NHPs<sup>18</sup>. As part of parenting, adult marmosets share their food with infant marmosets,  
149 which enables the infants not only to satisfy their nutritional needs, but also to obtain an  
150 opportunity of learning about diet<sup>33</sup>. Thus, we attempted to quantify food-sharing behavior of  
151 breeding marmoset families.

152 In the present experiment, we sought to detect the food-sharing behavior by applying a  
153 spatiotemporal filter to 3D pose time-course data. Two marmoset families participated in this  
154 experiment. Since the output of our system was a simple time-course data of the 3D posture in  
155 each marmoset, we started with engineering the features that might capture food-sharing  
156 events in the marmoset families based on the 3D pose time-course data. According to such  
157 data obtained from parents and infants, we computed the distance between the either the  
158 infants' mouths/hands and those of parents' hands/mouths, and its derivatives (i.e., velocity).  
159 Comparison with videographic images confirmed that the resulting time-course data could be  
160 potentially good indicators to detect the food-sharing event between the parents and the infants  
161 (Fig. 3a, b). Via spatiotemporal thresholds of these quantitative posture and motion parameters,  
162 we then defined and counted the occurrence of such events automatically (for details, see the  
163 Methods section). Moreover, we acquired annotations by a human observer to optimize and  
164 verify the automated detection of food-sharing events based on a subset of videographic  
165 sequences randomly selected from the entire study cohort. The threshold values were tuned  
166 using 25% of the annotation data. The detection accuracy (i.e., true positive, false positive,  
167 and false negative) was estimated with the rest of annotations which was not used for the  
168 parameter tuning (Fig. 3c). We obtained the Precision-Recall curve (Fig. 3d) and estimated the  
169 optimal F1 and Cohen's kappa which were 0.80 and 0.77, respectively. These scores satisfied  
170 common criteria for the inter-observer reliability in behavioral sciences<sup>34</sup>, thus indicating that

171 our automated analysis was reliable enough for quantification of social behavior. Furthermore,  
172 we used this detector for the rest of the entire dataset and found that the food-sharing event  
173 occurred more frequently in male than in female parents (Fig. 3e-f). Such a difference between  
174 fathers and mothers is suggested by previous studies on distinct species of New World  
175 monkeys<sup>35-37</sup>. The overall results demonstrated that our AI-based analytic pipeline clarified the  
176 differential roles of cooperating breeding animals in parenting under the laboratory  
177 environment, and that this pipeline could be useful for quantifying social behavior.

178

179 **Behavioral adjustment depending on others' internal state as investigated by  
180 recurrent neural networks**

181 In the second set of our experiments, we assessed the extent to which our system with 3D pose  
182 time-course data could infer the animal's internal state behind actions. In social life of primates,  
183 it is crucial to adjust one's own behavior depending on others' internal state, such as emotions,  
184 intentions, and other physiological needs<sup>38-40</sup>. Conceivably, internally-guided behavioral  
185 changes by others may not readily be observable, but can be judged by watching over  
186 themselves<sup>41</sup>. Several human neuroimaging studies have shown neural substrates that are  
187 involved in this sort of cognitive function<sup>42-45</sup>. On the other hand, only a few related works  
188 have so far been available in NHPs<sup>46-48</sup>, because nonverbal behavioral paradigms are so limited  
189 that the possible underlying mechanism remains to be investigated. Here, we attempted to  
190 overcome this issue by combining a novel freely-moving behavioral task with our analytic  
191 pipeline using a deep neural network.

192 To examine a social behavioral action in response to others' internal state, we developed  
193 a food competition task under freely moving conditions where two marmosets interacted to  
194 share or keep a valuable food (Fig. 4a,b). Two different pairs of marmosets participated in this  
195 experiment. The partner's internal state (either full or hungry) was controlled without notifying  
196 the subject before the experiment started. Then, only the subject animal could obtain a large  
197 food that takes a couple of minutes to eat. The partner animal in the same cage may try to take

198 away or beg for the food from the subject, and, therefore, the subject should pay attention to  
199 the partner's action. Employing this behavioral task, we tested how the subject might adjust  
200 his/her behavior depending on the partner's internal state.

201 The Long Short-Term Memory (LSTM)<sup>49</sup>, a type of recurrent neural network for temporal  
202 data analysis was used to decode the partner's internal state. Two different LSTMs,  $LSTM_{partner}$   
203 and  $LSTM_{subject}$ , with the same architecture were trained to decode the partner's internal state  
204 (i.e., full or hungry) from actions of either the subject or the partner (Fig. 4c). These LSTMs  
205 were designed to utilize the 3D pose data for 800ms as input and to generate as output a score  
206 representing the partner's internal state, i.e., hungeriness. The output score of  $LSTM_{partner}$  was  
207 predicted only from the partner's action and could even display a variability within single trials  
208 (Fig. 4d). For example, in a scene with higher score (Fig. 4D, left panel), the partner was  
209 directly approaching the subject as if the partner tried to take away the food from the subject.  
210 Conversely, in a scene with lower score, the partner was exploring inside the cage without any  
211 interest in either the subject or the food. Similarly, as the partner's internal state (and the  
212 resulting action) might probably affect the subject's behavior, the output score of  $LSTM_{subject}$   
213 was able to predict the partner's internal state solely from the subject's action (Fig. 4e). Even  
214 though the outputs of both LSTMs fluctuated within single trials or across trials, the overall  
215 scores were higher in a hungry than in a full condition (Fig. 4f). Thus, not only  $LSTM_{partner}$  but  
216 also  $LSTM_{subject}$  precisely predicted the partner's condition on average (Fig. 4g). The accurate  
217 decoding of the  $LSTM_{subject}$  output indicated that the marmoset indeed adjusted his/her own  
218 behavior flexibly based on others' internal state.

219 Another important question arises as to whether such a behavioral change might be an  
220 immediate, simple reaction to an others' particular action rather than a reflection of others'  
221 internal state behind the sequence of their actions. The comparison between the  $LSTM_{partner}$   
222 and the  $LSTM_{subject}$  exhibited a positive correlation, which indicated that an immediate action  
223 by the subject was related to the sequence of the partner's actions at that moment regardless  
224 of the partner's internal state (Fig. 5a). Concurrently, at any level of the  $LSTM_{partner}$  output, the

225 LSTM<sub>subject</sub> output was consistently higher in the hungry than in the full condition (Fig. 5b).  
226 The present result implied that the one's reaction towards the same sort of action by the other  
227 was changed according to the internal state. As an example of such behavioral adjustment  
228 depending on others' internal state, we found that, in a pair of marmosets, the gaze behavior  
229 of the subject was changed according to the partner's internal state. One marmoset sometimes  
230 looked back at the other when the other marmoset looked at the one (Fig. 5c). This look-back  
231 behavior was more frequently seen in a hungry than in a full condition (Fig. 5d), again  
232 indicating that the subject's reaction towards the same action by the partner was changed based  
233 on the partner's internal state. The overall results demonstrated the cognitive complexity of  
234 marmosets in the social context, thus elucidating that they flexibly adjust their behaviors  
235 depending on others' internal state that is not readily observable by an immediate action alone.

236

237 **Progressive manifestation of motor deficits in a marmoset model of PD as revealed  
238 by unsupervised clustering**

239 In the third set of our experiments, we evaluated whether a completely unsupervised approach  
240 might allow us to detect behavioral changes in response to pathological conditions if relatively  
241 large-scale 3D pose data are available. To this end, we analyzed symptomatic behaviors in a  
242 marmoset model of PD. It is well known that PD progressively manifests motor deficits, such  
243 as akinesia, rigidity, and tremor, which is caused by degeneration/loss of dopaminergic neurons  
244 in the substantia nigra pars compacta (SNc)<sup>50,51</sup>. Given that over-expression of mutant variants  
245 of alpha-synuclein (α-syn) emulates the progressive aspect of the disease, much emphasis has  
246 been placed on the notion that an animal model produced by α-syn over-expression is suitable  
247 for PD research<sup>52,53</sup>. In this model, however, observations over months or even years are  
248 required for behavioral assessment of phenotype expression, and, therefore, automated  
249 quantification of symptomatic behaviors is indispensable. Here, we yielded a PD model  
250 marmoset by injecting a combination of adeno-associated virus (AAV) vector<sup>54</sup> carrying the  
251 mutant α-syn gene<sup>55,56</sup> and pathological α-syn fibril<sup>57</sup> into the nigra on one side of the brain

252 (Fig. 6a). Histological analysis using tyrosine hydroxylase (TH) immunostaining after the  
253 behavioral observation confirmed loss of dopaminergic neurons from the SNc. With this PD  
254 model, varying motor activity was monitored for two days per month over one year.

255 Employing our analytic pipeline in a fully unsupervised manner without any a priori  
256 hypothesis, we could identify a couple of behavioral changes in the marmoset PD model. First,  
257 by means of dimensional reduction and clustering approach, we determined action motifs that  
258 were the patterns of 3D pose time-series data repeatedly observed throughout the recording  
259 period (Fig. 6b; for details, see the Methods section). We found that some actions were  
260 occasionally observed before the surgery, and others gradually appeared after the surgery (Fig.  
261 6c). Specific behavioral actions, such as running, turning, and jumping from wood, were  
262 reduced after the surgery (Fig. 6d,e; upper panels). Conversely, various types of “stay” actions  
263 were increasingly observed several months after the surgery (Fig. 6d,e; bottom panels).  
264 Interestingly, apparently similar postures were classified into different clusters notably by the  
265 difference in the neck angle (Fig. 6f). Some postures were seen more frequently, whereas  
266 others were observed less frequently after the surgery (Fig. 6g). After three months, an  
267 increased tonus of the neck muscle markedly appeared contralaterally as evidenced by the  
268 finding that the head bent towards the side opposite to the nigral injection site.

269 We further quantified the amount of gross movement (as an index of reduced locomotion)  
270 and the head posture based on the 3D pose time-series data, and then successfully confirmed  
271 the progression of symptomatic behaviors obtained from the unsupervised analysis (Fig. 6h-j).  
272 The overall results indicated that parkinsonian phenotypes induced by  $\alpha$ -syn over-expression  
273 gradually progressed. This suggested that our system allowed the longitudinal and high-  
274 throughput evaluation of symptomatic behaviors in brain disease models without any  
275 behavioral tasks.

276

277

278 **Discussion**

279 In the present study, we have developed the analytic pipeline that permits automated and high-  
280 throughput quantification of natural behaviors of common marmosets using a markerless  
281 motion capture system which consists of multiple deep neural networks. With the large-scale  
282 ground truth dataset, the decoding accuracy reached the best performance that we could expect  
283 at the present time. Applying this system, we have revealed that our approach is capable of  
284 detecting behavioral changes due to a variety of experimental conditions, such as differential  
285 contributions of males vs. females to parenting in breeding families, flexible behavioral  
286 adjustment depending on others' internal state, and progressive manifestation of motor  
287 impairments in a PD model. Our results provide a novel framework to many research areas of  
288 neuroscience using NHPs by introducing objective and large-scale quantification of animal  
289 behavior. It should also be noted here, however, that there are some limitations on the use of  
290 the analytic pipeline that we have developed in this study. First, the proposed system is able  
291 to quantify only restricted variations of behavioral actions that are represented by 18 keypoints.  
292 Thus, other types of actions, such as facial expression, cannot be quantified<sup>62</sup>. Second, careful  
293 assessment is needed to confirm that behavioral data obtained from our system are not  
294 attributable to erroneous tracking of individual animals. The 3D pose time-course data may  
295 sometimes be derived from a mixture of multiple animals, although such an error is rare as  
296 shown in Figure 2c,d. In a severe condition where individual recognition is inaccurate, an  
297 alternative system should be called for to address this issue specifically<sup>58</sup>.

298 Recent technological innovations have attracted much attention to experimental  
299 paradigms with freely moving marmosets. Large-scale telemetric recordings of neuronal  
300 activity were successfully carried out<sup>31</sup>, and electrocorticography recordings from almost the  
301 entire lateral hemisphere were also reported<sup>59,60</sup>. Combining these recording techniques with  
302 our analytic pipeline allows comprehensive understanding of the correlation between cortical  
303 signals and behavioral dynamics. This could be an appropriate methodology to explore the  
304 cortical circuitry related to behavioral actions of particular interest. Then, optogenetic<sup>61</sup> and

305 chemogenetic<sup>62</sup> approaches, which are also compatible with freely-moving experimental  
306 conditions, enable us to disclose the causal role of a specific neural circuit in the expression  
307 of a given type of natural behaviors. Until recently, major efforts have been made to assess  
308 motor and cognitive functions of NHPs through analysis of eye/hand movements as the  
309 behavioral output. Now, the AI-based innovative development has increasingly been  
310 accomplished to quantify and evaluate social interactions in a certain animal population with  
311 high efficiency<sup>3</sup>. This may make it feasible to elucidate the neural mechanisms underlying  
312 behavioral theories, so far intensively explored in socio-ecological and ethological studies, for  
313 example, the Machiavellian theory in which expansion of the cerebral cortex, especially the  
314 frontal lobe, leads to the adaptation to social complexity in our daily life<sup>63-65</sup>.

315 The novel pipeline that we have established for 3D pose time-series analysis of a group  
316 of marmosets can be utilized in various experimental environments and laboratories. All that  
317 is required is to estimate the camera calibration parameters for accurate 3D reconstructions  
318 and to refine the neural networks for detection, identification and pose estimation of  
319 individuals. Concerning the former requirement, at least a two-camera system should work  
320 though our experiments were conducted with eight cameras to enhance the robustness and  
321 accuracy, and then data needed for the calibration will be acquired within hours. With respect  
322 to the latter requirement, the neural networks for 2D analysis should be re-tuned to each  
323 experimental environment or laboratory because of the differences in varying factors, such as  
324 background, lighting, and camera angle. In our experiments, we provided a substantial amount  
325 of ground truth data to achieve robust 3D analysis, which will be of immense help for adapting  
326 neural networks to specific environments and achieving impeccable performance. In recent  
327 years, several tools, for example, “style transfer”<sup>66,67</sup>, further support a transfer learning of the  
328 networks from some environment to others. Moreover, while our analytic pipeline has highly  
329 been optimized for marmosets, It can be customized for other species as well.

330 The present study has revealed the potent applicability of the 3D pose data, as evidenced  
331 by a wide range of behavioral parameters beyond spatiotemporal kinematics that can be

332 quantified via a proper choice of downstream analytic methodologies (Fig. 7). The simplest  
333 method is to detect specific behavioral events by defining spatiotemporal parameters derived  
334 from certain combinations of 3D keypoints, as demonstrated in the food-sharing experiment.  
335 A key factor to succeed in this method is appropriate feature engineering that is suitable for  
336 target event detection and parameter tuning with a small set of supervised data, both of which  
337 should be performed by experts of animal behavioral observations. Moreover, we have  
338 elucidated that simple spatiotemporal data concerning the 3D poses permit quantification of  
339 the internal state of marmosets which is combined with cutting-edge neural networks, for  
340 instance, a recurrent neural network (i.e., LSTM) in the present study. This brings about a  
341 unique opportunity of studying the mind behind the complex social behavior in primates.  
342 Finally, a fully-unsupervised data mining approach is capable of disclosing behavioral changes  
343 induced by pathophysiological manipulation, as shown in the PD model experiment. This  
344 approach is specifically beneficial to explore behavioral changes comprehensively if a  
345 substantial amount of data are available. Such methodological innovations are greatly  
346 meritorious given that the behavioral complexity inherent in NHPs substantially accentuates  
347 the assessment of neurological/psychiatric/developmental disorder models. The high-  
348 throughput and versatile trait of our evaluation system will play critical roles in establishing a  
349 new standard that quantifies social/pathophysiological behaviors of NHPs.

350 **Methods**

351 **Animals**

352 All procedures for the use and experiments of common marmosets were approved by the  
353 Animal Welfare and Animal Care Committee of the Center for the Evolutionally Origins of the  
354 Human Behavior, Kyoto University, followed by the Guidelines for Care and Use of  
355 Nonhuman Primates established by the same institution. First, 29 marmosets (ranging from  
356 1.5 months olds to 12 years old; 13 males and 16 females) were used to create the ground truth  
357 dataset. Four adult and two infant marmosets derived from two families participated in the  
358 food-sharing experiment. Then, two pairs of adult marmosets were utilized for the food  
359 competition experiment, and one adult marmoset was for the PD model experiment.

360

361 **Recording system**

362 A recording booth was a 90-cm cubic box which consisted of acrylic transparent walls, and a  
363 metal mesh floor and ceiling. This recording booth was designed to keep up to four animals  
364 under the Ethical Guideline of the Japan Neuroscience Society and equipped with common  
365 items required for a normal marmoset cage, such as water bottles, food boxes, and perches.  
366 Videographic images were recorded by Motif system (Loopbio, Lange G, Wien, Austria) which  
367 was synchronized with eight machine vision cameras (2048x1536-pixel, 24 fps). The cameras  
368 were arranged horizontally with an equal distance as surrounding the recording booth. The  
369 viewing angle of each camera was set at 110x70 degree to cover the whole booth.

370 To accomplish accurate 3D reconstructions, we obtained intrinsic (e.g., lens distortion  
371 coefficients) and extrinsic (e.g., camera positions) camera calibration parameters by the  
372 OpenCV framework as follows: The intrinsic parameters were obtained by  
373 cv2.omnidir.calibrate using the images of a checker-board pattern recorded by each camera;  
374 and the extrinsic parameters were initialized by cv2.solvPnP function by the 3D coordinates  
375 of a set of landmark positions in the recording booth and their 2D coordinates projected onto

376 the camera image. To improve the calibration accuracy, we further optimized both the intrinsic  
377 and the extrinsic parameters simultaneously by minimizing the projection (reconstruction)  
378 errors of the trajectory of a small object (a ping-pong ball) moved inside the recording cage<sup>68</sup>.

379

380 **Ground truth dataset**

381 Our keypoint schema follows that of macaque-pose<sup>12</sup> dataset with slight modification to fit to  
382 analyze the whole-body movements of marmosets. Specifically, we annotated 20 keypoints  
383 consisting of the nose, eyes (left and right), ears, shoulders, elbows, wrists, hips, knees, ankles,  
384 back, and the middle and tip of the tail (while the last two keypoints were not used in the  
385 analytic pipeline). The annotators were trained by movies of marmosets whose body parts  
386 corresponding to the keypoints were marked by paint markers. The annotations were  
387 performed in a 3D manner by using custom-made software where those of a single body were  
388 a collection of 3D positions constructed through triangulation of 2D positions via all cameras.  
389 While the 3D positions could be computed with triangulation once a single keypoint was  
390 annotated via more than two cameras, the annotators visually confirmed every keypoint for all  
391 cameras to maximize precision. We used images from 29 different marmosets and annotated  
392 7404 bodies in a 3D space which were equivalent to 56103 bodies in a 2D space. We selected  
393 scenes from different behavioral contexts, 732 bodies from full-day recordings of a single  
394 animal, 654 bodies from those of two animals, 2010 bodies from three-animal recordings, and  
395 4008 bodies from four-animal recordings. The annotation frames were semi-manually selected  
396 to maximize variations of the behavioral contents.

397

398 **Markerless 3D multi-animal pose estimation**

399 The analytic pipeline started from the analysis of 2D images taken from each camera (Fig.1b  
400 *2D processes*). The detection network analyzed the locations of marmosets in an image of each  
401 frame and generated a bunch of bounding boxes, which are rectangles of partial regions

402 bounded by the smallest rectangle enclosing a marmoset as a region of interest. Then, the pose  
403 network estimated 18 keypoints, and the ID network estimated an animal ID for all bounding  
404 boxes. The bounding boxes were combined along the time axis at the 2D level to construct so-  
405 called 2D tracklets, namely time-series data consisting of the regions of a marmoset associated  
406 with the postures and animal IDs. As multiple bounding boxes could be detected in each frame,  
407 the bounding boxes that seemed to correspond to a single marmoset were combined based on  
408 the consistency in the positions of the marmoset across frames. At this moment, the 2D  
409 tracklets were still fragmented in short durations, because one animal who were occluded by  
410 objects or other animals, and, therefore, it could not be tracked continuously. The 2D  
411 processing was implemented using OpenMMLab<sup>69</sup>, a set of image processing libraries for deep  
412 neural networks. The network architecture used here was yolox-l<sup>70</sup> and resnet-50<sup>71</sup> for  
413 detection and identification. The pose networks were hrnet-w32<sup>72</sup> for both the food-sharing  
414 and the food competition experiments, and dekr-hrnet-w48<sup>73</sup> for the PD model experiment.  
415 The connections of bounding boxes to construct 2D tracklets were performed by using  
416 *ByteTrack*<sup>74</sup>.

417 Subsequently, the 3D pose time-series data on each animal were obtained with four steps.  
418 The first to third steps corresponded to *camera association* and the fourth step to *3D*  
419 *optimization* in Figure 1a.

420 As the first step, in each frame, we grouped the bounding boxes (tracklets were not used  
421 here) likely belonging to the same marmosets across different cameras. This process was  
422 performed only in key frames which were every 0.5 sec to reduce computational load. We  
423 searched for the optimal grouping of bounding boxes by minimizing geometric inconsistency  
424 (i.e., the inverse of the so-called pose affinity score<sup>75</sup>) between the boxes from different  
425 cameras within a group. We defined geometric inconsistency  $D_g$  as below.

$$426 D_g(x_i, x_j) = \frac{1}{2n} \sum_{n=1}^N d_g(x_i^n, L_{ij}(x_i^n)) + d_g(x_j^n, L_{ij}(x_j^n)) \quad (1)$$

427 where  $x_i^n$  indicated the 2D position of the  $n$ -th keypoint of pose  $I$ ,  $L_{ij}(x_j^n)$  the projection

428 line associated with  $x_j^n$  from a different camera, and  $d_g(\cdot, l)$  the point-to-line distance for l.  
429 The optimization was performed according to the algorithm proposed by Dong et al.<sup>80</sup>. Once  
430 the grouping of bounding boxes was established, we constructed the 3D pose of a marmoset  
431 for each group of the bounding boxes by triangulation of the 2D poses in each key frame. Then,  
432 we obtained 3D poses of marmosets in every key frame, while their temporal association  
433 remained undetermined.

434 As the second step, the matching of the same animal over time was performed as follows:  
435 A combination of 3D poses across adjacent key frames could be considered, in the Graph  
436 theory, the maximum matching  $M$  of a complete bipartite graph  $G=(S, T; E)$  with non-negative  
437 edge cost  $c: E \rightarrow \mathbb{R} \geq 0$ , where  $S, T$  are 3D poses for key frame  $t$  and  $t+1$ . Here we defined  
438 the cost  $c(i, j)$  for the edge connecting  $S_i$  and  $T_j$  poses as below.

439 
$$c(i, j) = \sum_{n=1}^N d(x_i^n, x_j^n) \quad (2)$$

440 where  $N$  indicated the number of keypoints,  $x_i^n$  and  $x_j^n$  represented the 3D position of the  
441  $n$ -th keypoint of the 3D pose  $S_i$  and  $T_j$ , respectively, and  $d(\cdot, \cdot)$  was the distance between two  
442 points in a 3D space. This cost represented geometrical inconsistency of a pair of 3D poses.  
443 The maximum matching  $M$  was obtained by minimizing the cost  $\sum_{e \in M} c(e)$  through the  
444 Hungarian algorithm. In addition, the edge connections were removed if the geometrical  
445 inconsistency per keypoint was over an empirically determined threshold  $T_I=150$ . The frames  
446 between the key frames were complemented by continuity of 2D tracklets which were  
447 combinations of multiple bounding boxes over time in a 2D space. Through this process, we  
448 obtained 3D tracklets time-series data on 3D posture.

449 Third, a marmoset ID was assigned for each 3D tracklet. The ID was assigned in every  
450 frame if the following criterion was satisfied:

451 
$$N_{id} > T_2, \frac{N_{id}}{N} > T_3 \quad (3)$$

452 where  $N_{id}$  was the number of instances for the most frequently observed ID,  $N$  was the

453 number of all bounding boxes taken from all cameras,  $T_2$  and  $T_3$  were hyperparameters, set as  
454 12 and 0.8, respectively. Here, within a sliding time window (5 sec), all the bounding boxes  
455 belonging to a single 3D tracklet were considered. If the same ID was assigned to a different  
456 tracklet at the same time point, the ID was given only to the tracklet with the highest  $N_{id}$ . A 3D  
457 tracklet was divided at the time point when the IDs assigned by the above criterion were  
458 changed within the 3D tracklet.

459 The fourth step was the final refinement of the 3D tracklets. There might be the case  
460 where multiple 3D tracklets, which should correspond to the same animal, were dissociated  
461 due to the failure in the previous steps. To compensate such a case, these tracklets were  
462 integrated by the following procedure. Suppose that there was a tracklet that had not yet been  
463 assigned an ID,  $T_{noID}$ ; and a tracklet that had been assigned an ID,  $T_{withID}$ . During the period  
464 when two 3D tracklets overlapped, if the difference between their 3D trajectory was less than  
465 the error threshold  $T_4=200$ , then the ID of  $T_{withID}$  propagated to that of  $T_{noID}$ . This was repeated  
466 twice for the entire dataset. Furthermore, for tracklets that had not yet been assigned an ID,  
467 we assigned the remaining ID if the IDs of all but one animal had been assigned. Finally, the  
468 tracklets with the same ID were integrated, and the resulting 3D pose time-series data on  
469 individual marmosets were spatiotemporally smoothed and normalized via anipose<sup>73</sup>.

470

## 471 **Food-sharing experiment**

472 A couple of marmoset families participated in this experiment. Each family consisted of a  
473 father, a mother, and their infant who was about three months of age at the start of the  
474 experiment. A piece of home-made Arabian gumball was given to each of the parents  
475 simultaneously, and then their social interactions were observed. When both gumballs were  
476 consumed, new ones were given again to the parents separately. The experiment was carried  
477 out for about 30 min per day and repeated for 12 or 16 days in two families.

478 Food-sharing events were detected by the following procedure. First, 3D pose data on

479 three individuals per family were obtained with the analytic pipeline. At this stage, the 3D pose  
480 data were independent across the animals and were not suitable for detecting social behavior.  
481 Therefore, we created new features by combining the 3D pose data about the infant and parents.  
482 Specifically, we calculated the distance between the mouth or the left or right hand of the infant  
483 and those of each parent. Considering all combinations for a pair of the infant and one of  
484 his/her parent, this process generated 9 different values for each time frame. The smallest one  
485 of these values was taken for each frame, and the resulting time-series data ( $D$ ) and the first  
486 derivative ( $V$ ) were obtained. A food-sharing event was marked when there were at least  $T_N$   
487 consecutive frames in which  $D$  and  $V$  were larger than detection parameters  $T_d$  and  $T_v$ . To  
488 optimize these detection parameters and to evaluate detection accuracy, a human observer  
489 counted the occurrence of food-sharing events as a subset of the entire dataset. The human  
490 observer coded the presence or absence of food-sharing events for every 15 sec and analyzed  
491 for 90 min in total. The threshold value obtained from the human coding was optimized by  
492 maximizing the consistency to the automated detection by using 25% of the annotation data.  
493 The detection accuracy was obtained from the rest of the annotation data. The Precision-Recall  
494 curve shown in Figure 3d was obtained by varying  $T_d$  from the optimal value. The statistical  
495 significance in the difference between the father and the mother in the food-sharing events  
496 were evaluated with a paired two-tailed  $t$ -test ( $\alpha = 0.05$ ) with the number of observations on  
497 each recording day as independent data points.

498

## 499 **Food competition experiment**

500 Two pairs of marmosets were used for this experiment. For each pair, the subject and partner  
501 animals were familiar with each other as they had been kept in the same cage. Food deprivation  
502 was performed from the evening of one day before the experiment, and, therefore, both animals  
503 were in a hungry state at the start of the experiment. Just before the experiment, the partner's  
504 state was controlled to be either hungry or full by the following procedure. The partner was  
505 separated from the subject immediately before the experiment in order that they could not see

506 each other. In a full condition, enough food was provided until the partner could not eat any  
507 more. In a hungry condition, the partner was forced to stay for the same duration as in the full  
508 condition. In each trial, the subject but not the partner was provided with a gumball with high  
509 reward value, and their social interactions were observed. The experiments were performed 3-  
510 4 trials per day, and a hungry or a full condition was randomly assigned across days.

511 LSTM<sup>49</sup>, a type of recurrent neural network, was used to predict the partner's internal  
512 state obtained from 3D pose data on either the subject or the partner. We coded LSTMs using  
513 the implementation in pytorch 2.0. The architecture of LSTMs for the subject and partner was  
514 the same. The LSTMs took 3D pose time-course data for 20 frames (corresponding to 800 ms)  
515 from either the partner or the subject as input and generated two output scores indicating that  
516 the likelihood of the partner's internal state was either hungry or full. Cross entropy loss was  
517 computed across the outputs and the experimental conditions for the network training. As a  
518 quantitative representation of the partner's hunger (such as in Fig.4d), we took the value  
519 in the final full connection layer before the softmax function.

520 The input dataset for LSTM networks was composed of the aligned-posture, locomotion  
521 speed, degree of approach-avoidance, and head direction, as calculated by the following  
522 procedure. To obtain the aligned-posture, the 3D pose data were shifted frame by frame, and,  
523 thus, the midpoint between the left and the right hip keypoint was aligned in the same position  
524 across the frames. Then, the aligned data were further rotated along the horizontal plane, and,  
525 therefore, the azimuth of the trunk was aligned across the frames. The locomotion speed was  
526 the first derivative of the trajectory of the hip-mid point. The approach-avoidance was the inner  
527 product of the locomotion vector (a vector connecting the mid-point of the hip keypoint across  
528 adjacent frames) and the vector from the position of one marmoset to that of another marmoset.  
529 The head direction was the angle between the one's head direction (the 45-degree upright  
530 vector from a vector connecting the nose and the midpoint of the left and right eyes and ears)  
531 and the direction to the other.

532 One fourth of the total data was used to train the networks, and the training was iterated

533 until the learning curve reached a plateau. The best network weights over the training iterations  
534 were selected based on the performance of the prediction for the rest of the dataset which had  
535 not been used for the training. In the analysis of Figure 5c and d, the look-back behavior was  
536 defined as the head direction (as defined in the previous paragraph) of the subject (as the  
537 calculation mentioned above) became below 40 degrees and were aligned by the onset of the  
538 partner's gaze ( head direction should be below 40 degrees) which was kept for more than 800  
539 ms. The bar graph in Figure 5d denoted the sum of the look-back behavior between 0.5-1.5 sec  
540 to the partner's gaze. The statistical significance was obtained by an unpaired two-sided *t*-test  
541 for the differences between the conditions.

542

#### 543 **PD model experiment**

544 A PD marmoset model was produced by unilateral injections of both virus vector expressing  
545 mutant  $\alpha$ -syn and pathological  $\alpha$ -syn fibril into the SNC. A total of 12- $\mu$ l solutions consisting  
546 of 4  $\mu$ l of AAV2.1-hTH- $\alpha$ -syn (G51D) (4.88x10e13 gc/ml)<sup>54</sup> and 8  $\mu$ l of the fibril (5 mg/ml)  
547<sup>57</sup> was injected into four rostrocaudally and mediolaterally different loci of the SNC through a  
548 10- $\mu$ l Hamilton microsyringe (30 gauge) over 35 min per penetration. The injection  
549 coordinates were adjusted individually based on MR images. A surgical navigation system  
550 (Brainsight, Rogue Research, Montréal, Québec, Canada) was used to accurately guide the  
551 position of the injection sites<sup>76</sup>. The animal was anesthetized with ketamine hydrochloride (20-  
552 40 mg/kg, i.m.) and maintained with isoflurane (1-2%) during the surgery while SpO<sub>2</sub>, heart  
553 rate, and rectal temperature were monitored. A water-heating circulator was used to control the  
554 body temperature. An analgesic (Meloxicam; 0.1-0.2 mg/kg, i.m.) was also administered before  
555 and for a couple of days after the injection. Behavioral observations were conducted once a  
556 month. The marmoset was moved to the recording booth and allowed to stay there for two  
557 days. Food pellets were supplied once a day and water was available *ad libitum*. Video  
558 recordings was done for 20 min per hour from 9 a.m. to 4 p.m. (a total of 160 min per day).  
559 The recordings were started two months before the surgery and continued 12 months after the

560 surgery.

561 After the behavioral assessment, immunohistochemical analysis was performed to  
562 confirm loss of dopamine neurons from the SNc. The animal was deeply anesthetized with  
563 ketamine hydrochloride (40mg/kg, i.m.) and sodium secobarbital (50 mg/kg, i.v.), and perfused  
564 transcardially with 0.1M phosphate-buffered saline (PBS) followed by 4% paraformaldehyde  
565 in 0.1 M phosphate buffer (pH 7.4). Then, the brain was removed from the skull, postfixed  
566 overnight, and saturated with 30% sucrose at 4°C. Coronal sections were cut serially at the 40-  
567 µm thickness on a freezing microtome. A series of every tenth section was used for tyrosine  
568 hydroxylase (TH) immunostaining. The sections were pretreated with 0.3% H<sub>2</sub>O<sub>2</sub> for 30 min  
569 and immersed in 1% skim milk for 2 hr. The sections were then incubated for 48 hr at 4°C with  
570 mouse anti-TH antibody (1:2,000; Millipore, Burlington, MA) in 0.1 M PBS containing 2%  
571 normal donkey serum and 0.1% Triton X-100. Subsequently, the sections were incubated with  
572 biotinylated donkey anti-mouse IgG antibody (1:1,000; Jackson ImmunoResearch, West Grove,  
573 PA) for 2 hr at room temperature in the same fresh medium, followed by the avidin-biotin-  
574 peroxidase complex (ABC Elite; 1:200; Vector laboratories, Burlingame, USA) in 0.1 M PBS  
575 for 2 hr at room temperature. Finally, the antigen was visualized with diaminobenzidine (DAB)  
576 containing nickel ammonium sulfate (0.01% DAB, 1.0% nickel ammonium sulfate, and  
577 0.0003% H<sub>2</sub>O<sub>2</sub>). The sections were mounted onto gelatin-coated glass slides and counterstained  
578 with 1% Neutral red.

579 An unsupervised clustering of behavioral actions was performed by using time-series data  
580 about action features which were computed based on the 3D pose data as follows: First, the  
581 aligned postures were obtained as described in the previous section. Then, the spectrogram  
582 representation (0.05-12.8 Hz) of these data was obtained from the fast Fourier transformation,  
583 and, therefore, the data at a single time point contained not only instantaneous postural  
584 information, but also dynamics of the postures. In the end, the action features used for the  
585 clustering were created by adding locomotion vector to this spectrogram. The clustering was  
586 carried out by using the k-means clustering method with the number of classes fixed ==to

587 56, and, thus, all videographic frames throughout the entire recording period were classified  
588 as one of the 56 action clusters. Then, the time-course of the occurrence rate of each action  
589 class was obtained as shown in Figure 6c. The order of these action clusters was defined by  
590 the following procedure. The 56-dimensional time-series data representing the action  
591 occurrence rate were analyzed by the principal component analysis (PCA). Then, the first  
592 principal component  $PCI$  showed monotonic increment in which the score was low before the  
593 surgery and was gradually being increased after the surgery. Therefore, the order of the  
594 coefficients of  $PCI$  was used as the order of the action clusters. In other words, the actions  
595 with the small cluster number were frequently observed after the surgery, and those with the  
596 larger cluster number were often observed before the surgery. In Figure 6j, the azimuth and tilt  
597 of the head were calculated by the vector form the midpoint of the shoulders to that of the eyes  
598 in the aligned posture. For both the movements and the head angles, the errors were estimated  
599 by the bootstrap method. All data during the pre-surgery period were used to estimate the 95%  
600 confidential intervals. The mean for every 15 min was taken as an independent data point, and  
601 the repetition of the bootstrap sampling was 2000 times.

602 **Acknowledgements**

603 We are grateful to Eri Sumiya for the care of animals, Akihisa Kaneko and Dr. Takako Miyabe  
604 for their veterinary support, Maki Fujiwara and Mayuko Nakano for preparation of the virus  
605 vector, Dr. Cesar Aguirre for preparation of the fibril, and Emiko Tanaka for technical support  
606 of the histological analysis. We also thank Amarbayasgalant Badarch for annotations of animal  
607 identification and tracking. This work was supported by JSPS KAKENHI Grant Numbers  
608 19H05467 to M.T., 22H05157 and 22K19480 to Ki.I., and 22K07325 to T.K.; AMED  
609 Brain/MINDS Grant Number JP22dm0207077 to M.T. and T.K.

610

611 **Author contributions**

612 T.K., J.M., Ki.I. and M.T. designed the experiments. T.K. and J.M. developed the analytic  
613 pipeline. T.K., W.L., X.Z., L.U., K.K., Y.O. performed the experiments. A.Z. and Ki.I. prepared  
614 the viral vector. Ks.I., K.B. and H.M. prepared the fibril. T.K. J.M. and Ki.I. analyzed data.  
615 H.N., T.O., Ki.I. and M.T. supervised the experimenters. T.K. and M.T. wrote the draft. T.K.,  
616 J.M., Ki.I. and M.T. reviewed and edited the manuscript.

617

618 **Declaration of interests**

619 The authors declare no competing interests.

620 **Data and code availability**

621 The 3D ground truth for marmosets and code for the core functions will be made available  
622 in a public repository at the time of publication in a peer reviewed journal. Additional code  
623 and data associated with this work is available from the Lead Contact upon request.

## 624 References

625

626 1. Coffey, K.R., Marx, R.E., and Neumaier, J.F. (2019). DeepSqueak: a deep learning-  
627 based system for detection and analysis of ultrasonic vocalizations.  
628 *Neuropsychopharmacology* *44*, 859-868.

629 2. Dolensek, N., Gehrlach, D.A., Klein, A.S., and Gogolla, N. (2020). Facial  
630 expressions of emotion states and their neuronal correlates in mice. *Science* *368*, 89-  
631 94.

632 3. Schofield, D., Nagrani, A., Zisserman, A., Hayashi, M., Matsuzawa, T., Biro, D., and  
633 Carvalho, S. (2019). Chimpanzee face recognition from videos in the wild using deep  
634 learning. *Sci. Adv.* *5*, eaaw0736.

635 4. Wu, Z., Zhang, C., Gu, X., Duporge, I., Hughey, L.F., Stabach, J.A., Skidmore, A.K.,  
636 Hopcraft, J.G.C., Lee, S.J., Atkinson, P.M., et al. (2023). Deep learning enables  
637 satellite-based monitoring of large populations of terrestrial mammals across  
638 heterogeneous landscape. *Nat. Commun.* *14*, 3072.

639 5. Graving, J.M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B.R., and Couzin,  
640 I.D. (2019). DeepPoseKit, a software toolkit for fast and robust animal pose  
641 estimation using deep learning. *eLife* *8*, e47994.

642 6. Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., Rahman, M.M., Di  
643 Santo, V., Soberanes, D., Feng, G., et al. (2022). Multi-animal pose estimation,  
644 identification and tracking with DeepLabCut. *Nat. Methods* *19*, 496-504.

645 7. Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., and  
646 Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-defined body  
647 parts with deep learning. *Nat. Neurosci.* *21*, 1281-1289.

648 8. Pereira, T.D., Tabris, N., Matsliah, A., Turner, D.M., Li, J., Ravindranath, S.,  
649 Papadoyannis, E.S., Normand, E., Deutsch, D.S., Wang, Z.Y., et al. (2022). SLEAP:  
650 A deep learning system for multi-animal pose tracking. *Nat. Methods* *19*, 486-495.

651 9. Marshall, J.D., Aldarondo, D.E., Dunn, T.W., Wang, W.L., Berman, G.J., and  
652 Ölveczky, B.P. (2021). Continuous Whole-Body 3D Kinematic Recordings across the  
653 Rodent Behavioral Repertoire. *Neuron* *109*, 420-437.e428.

654 10. Schneider, A., Zimmermann, C., Alyahyay, M., Steenbergen, F., Brox, T., and  
655 Diester, I. (2022). 3D pose estimation enables virtual head fixation in freely moving  
656 rats. *Neuron* *110*, 2080-2093.e2010.

657 11. Berger, M., Agha, N.S., and Gail, A. (2020). Wireless recording from unrestrained  
658 monkeys reveals motor goal encoding beyond immediate reach in frontoparietal  
659 cortex. *eLife* *9*, e51322.

660 12. Voloh, B., Maisson, D.J.N., Cervera, R.L., Conover, I., Zambre, M., Hayden, B., and  
661 Zimmermann, J. (2023). Hierarchical action encoding in prefrontal cortex of freely  
662 moving macaques. *Cell Rep.* *42*, 113091.

663 13. Ebina, T., Obara, K., Watakabe, A., Masamizu, Y., Terada, S.-I., Matoba, R., Takaji,  
664 M., Hatanaka, N., Nambu, A., Mizukami, H., et al. (2019). Arm movements induced

665 by noninvasive optogenetic stimulation of the motor cortex in the common  
666 marmoset. *Proc. Natl. Acad. Sci. U. S. A.* *116*, 22844-22850.

667 14. Labuguen, R., Matsumoto, J., Negrete, S.B., Nishimaru, H., Nishijo, H., Takada, M.,  
668 Go, Y., Inoue, K.-i., and Shibata, T. (2021). MacaquePose: A Novel “In the Wild”  
669 Macaque Monkey Pose Dataset for Markerless Motion Capture. *Front. Behav.*  
670 *Neurosci.* *14*, 581154.

671 15. Shaw, L., Wang, K.H., and Mitchell, J. (2023). Fast prediction in marmoset reach-to-  
672 grasp movements for dynamic prey. *Curr. Biol.* *33*, 2557-2565.e2554.

673 16. Yao, Y., Bala, P., Mohan, A., Bliss-Moreau, E., Coleman, K., Freeman, S.M.,  
674 Machado, C.J., Raper, J., Zimmermann, J., Hayden, B.Y., and Park, H.S. (2023).  
675 OpenMonkeyChallenge: Dataset and Benchmark Challenges for Pose Estimation of  
676 Non-human Primates. *Int. J. Comput. Vis.* *131*, 243–258.

677 17. Testard, C., Tremblay, S., Parodi, F., DiTullio, R.W., Acevedo-Ithier, A., Gardiner,  
678 K., Kording, K.P., and Platt, M. (2023). Neural signatures of natural behavior in  
679 socializing macaques. *bioRxiv*, 2023.2007.2005.547833.

680 18. Miller, C.T., Freiwald, W.A., Leopold, D.A., Mitchell, J.F., Silva, A.C., and Wang, X.  
681 (2016). Marmosets: A Neuroscientific Model of Human Social Behavior. *Neuron* *90*,  
682 219-233.

683 19. Yano-Nashimoto, S., Truzzi, A., Shinozuka, K., Murayama, A., Kurachi, T., Moriyama,  
684 Ito, K., Tokuno, H., Miyazawa, E., Esposito, G., Okano, H., et al. (2023). Infant  
685 attachment behaviors reflect the parenting style of individual caregiver in common  
686 marmosets. *bioRxiv*, 2023.2005.2018.541258.

687 20. Huang, J., Cheng, X., Zhang, S., Chang, L., Li, X., Liang, Z., and Gong, N. (2020).  
688 Having Infants in the Family Group Promotes Altruistic Behavior of Marmoset  
689 Monkeys. *Curr. Biol.* *30*, 4047-4055.e4043.

690 21. Courellis, H.S., Nummela, S.U., Metke, M., Diehl, G.W., Bussell, R., Cauwenberghs,  
691 G., and Miller, C.T. (2019). Spatial encoding in primate hippocampus during free  
692 navigation. *PLoS Biol.* *17*, e3000546.

693 22. Samandra, R., Haque, Z.Z., Rosa, M.G.P., and Mansouri, F.A. (2022). The marmoset  
694 as a model for investigating the neural basis of social cognition in health and disease.  
695 *Neurosci. Biobehav. Rev.* *138*, 104692.

696 23. Okano, H. (2021). Current Status of and Perspectives on the Application of  
697 Marmosets in Neurobiology. *Annu. Rev. Neurosci.* *44*, 27-48.

698 24. Kishi, N., Sato, K., Sasaki, E., and Okano, H. (2014). Common marmoset as a new  
699 model animal for neuroscience research and genome editing technology. *Dev.*  
700 *Growth Differ.* *56*, 53-62.

701 25. Feng, G., Jensen, F.E., Greely, H.T., Okano, H., Treue, S., Roberts, A.C., Fox, J.G.,  
702 Caddick, S., Poo, M.M., Newsome, W.T., and Morrison, J.H. (2020). Opportunities  
703 and limitations of genetically modified nonhuman primate models for neuroscience  
704 research. *Proc. Natl. Acad. Sci. U. S. A.* *117*, 24022-24031.

705 26. Sasaki, E., Suemizu, H., Shimada, A., Hanazawa, K., Oiwa, R., Kamioka, M.,  
706 Tomioka, I., Sotomaru, Y., Hirakawa, R., Eto, T., et al. (2009). Generation of  
707 transgenic non-human primates with germline transmission. *Nature* *459*, 523-527.

708 27. Sato, K., Oiwa, R., Kumita, W., Henry, R., Sakuma, T., Ito, R., Nozu, R., Inoue, T.,  
709 Katano, I., Sato, K., et al. (2016). Generation of a Nonhuman Primate Model of  
710 Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. *Cell*  
711 *Stem Cell* *19*, 127-138.

712 28. Walker, J.D., Pirsichel, F., Sundiang, M., Niekrasz, M., MacLean, J.N., and  
713 Hatsopoulos, N.G. (2021). Chronic wireless neural population recordings with  
714 common marmosets. *Cell Rep.* *36*, 109379.

715 29. Roy, S., and Wang, X. (2012). Wireless multi-channel single unit recording in freely  
716 moving and vocalizing primates. *J. Neurosci. Methods* *203*, 28-40.

717 30. Hoffmann, K., Coolen, A., Schlumbohm, C., Meerlo, P., and Fuchs, E. (2012).  
718 Remote long-term registrations of sleep-wake rhythms, core body temperature and  
719 activity in marmoset monkeys. *Behav. Brain Res.* *235*, 113-123.

720 31. Bala, P.C., Eisenreich, B.R., Yoo, S.B.M., Hayden, B.Y., Park, H.S., and  
721 Zimmermann, J. (2020). Automated markerless pose estimation in freely moving  
722 macaques with OpenMonkeyStudio. *Nat. Commun.* *11*, 4560.

723 32. Wang, J., Tan, S., Zhen, X., Xu, S., Zheng, F., He, Z., and Shao, L. (2021). Deep 3D  
724 human pose estimation: A review. *Comput. Vis. Image Underst.* *210*, 103225.

725 33. Brown, G.R., Almond, R.E.A., and Bergen, Y.v. (2004). Begging, stealing, and  
726 offering: food transfer in nonhuman primates. *Adv. Stud. Behav.* *34*, 265-295.

727 34. Joseph, F.L., Bruce, L., and Paik, M.C. (2003). Statistical methods for rates and  
728 proportions (John Wiley & Sons, Inc.).

729 35. Saito, A., Izumi, A., and Nakamura, K. (2008). Food transfer in common marmosets:  
730 parents change their tolerance depending on the age of offspring. *Am. J. Primatol.*  
731 *70*, 999-1002.

732 36. Guerreiro Martins, E.M., Moura, A.C.A., Finkenwirth, C., Griesser, M., and Burkart,  
733 J.M. (2019). Food sharing patterns in three species of callitrichid monkeys  
734 (*Callithrix jacchus*, *Leontopithecus chrysomelas*, *Saguinus midas*): Individual and  
735 species differences. *J. Comp. Psychol.* *133*, 474-487.

736 37. Price, E.C., and Feistner, A.T.C. (2001). Food Sharing in Pied Bare-Faced Tamarins  
737 (*Saguinus bicolor bicolor*): Development and Individual Differences. *Int. J. Primatol.*  
738 *22*, 231-241.

739 38. Call, J., and Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30  
740 years later. *Trends Cogn. Sci.* *12*, 187-192.

741 39. Isoda, M. (2021). The Role of the Medial Prefrontal Cortex in Moderating Neural  
742 Representations of Self and Other in Primates. *Annu. Rev. Neurosci.* *44*, 295-313.

743 40. Isoda, M., Noritake, A., and Ninomiya, T. (2018). Development of social systems  
744 neuroscience using macaques. *Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.* *94*, 305-323.

745 41. Lokesh, R., Sullivan, S., Calalo, J.A., Roth, A., Swanik, B., Carter, M.J., and  
746 Cashaback, J.G.A. (2022). Humans utilize sensory evidence of others' intended  
747 action to make online decisions. *Sci. Rep.* *12*, 8806.

748 42. Tso, I.F., Rutherford, S., Fang, Y., Angstadt, M., and Taylor, S.F. (2018). The "social

749        brain" is highly sensitive to the mere presence of social information: An automated  
750        meta-analysis and an independent study. *PLoS One* *13*, e0196503.

751        43. Frith, C.D., and Frith, U. (2006). The neural basis of mentalizing. *Neuron* *50*, 531-  
752        534.

753        44. Gallagher, H.L., and Frith, C.D. (2003). Functional imaging of 'theory of mind'.  
754        *Trends Cogn. Sci.* *7*, 77-83.

755        45. Siegal, M., and Varley, R. (2002). Neural systems involved in 'theory of mind'. *Nat.*  
756        *Rev. Neurosci.* *3*, 463-471.

757        46. Hayashi, T., Akikawa, R., Kawasaki, K., Egawa, J., Minamimoto, T., Kobayashi, K.,  
758        Kato, S., Hori, Y., Nagai, Y., Iijima, A., et al. (2020). Macaques Exhibit Implicit  
759        Gaze Bias Anticipating Others' False-Belief-Driven Actions via Medial Prefrontal  
760        Cortex. *Cell Rep.* *30*, 4433-4444.e4435.

761        47. Haroush, K., and Williams, Ziv M. (2015). Neuronal prediction of opponent's  
762        behavior during cooperative social interchange in primates. *Cell* *160*, 1233-1245.

763        48. Roumazeilles, L., Schurz, M., Lojkiewicz, M., Verhagen, L., Schüffelgen, U.,  
764        Marche, K., Mahmoodi, A., Emberton, A., Simpson, K., Joly, O., et al. (2021). Social  
765        prediction modulates activity of macaque superior temporal cortex. *Sci. Adv.* *7*,  
766        eabh2392.

767        49. Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. *Neural*  
768        *Comput.* *9*, 1735-1780.

769        50. Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Lanciego, J.L., Artieda, J.,  
770        Gonzalo, N., and Olanow, C.W. (2000). Pathophysiology of the basal ganglia in  
771        Parkinson's disease. *Trends Neurosci.* *23*, S8-S19.

772        51. Chiken, S., Takada, M., and Nambu, A. (2021). Altered Dynamic Information Flow  
773        through the Cortico-Basal Ganglia Pathways Mediates Parkinson's Disease  
774        Symptoms. *Cereb. Cortex* *31*, 5363-5380.

775        52. Shimozawa, A., Ono, M., Takahara, D., Tarutani, A., Imura, S., Masuda-Suzukake,  
776        M., Higuchi, M., Yanai, K., Hisanaga, S.-i., and Hasegawa, M. (2017). Propagation  
777        of pathological  $\alpha$ -synuclein in marmoset brain. *Acta Neuropathol. Commun.* *5*, 12.

778        53. Eslamboli, A., Romero-Ramos, M., Burger, C., Bjorklund, T., Muzyczka, N.,  
779        Mandel, R.J., Baker, H., Ridley, R.M., and Kirik, D. (2007). Long-term  
780        consequences of human alpha-synuclein overexpression in the primate ventral  
781        midbrain. *Brain* *130*, 799-815.

782        54. Kimura, K., Nagai, Y., Hatanaka, G., Fang, Y., Tanabe, S., Zheng, A., Fujiwara, M.,  
783        Nakano, M., Hori, Y., Takeuchi, R.F., et al. (2023). A mosaic adeno-associated virus  
784        vector as a versatile tool that exhibits high levels of transgene expression and neuron  
785        specificity in primate brain. *Nat. Commun.* *14*, 4762.

786        55. Lesage, S., Anheim, M., Letournel, F., Bousset, L., Honoré, A., Rozas, N., Pieri, L.,  
787        Madiona, K., Dürr, A., Melki, R., et al. (2013). G51D  $\alpha$ -synuclein mutation causes a  
788        novel Parkinsonian-pyramidal syndrome. *Ann. Neurol.* *73*, 459-471.

789        56. Kiely, A.P., Asi, Y.T., Kara, E., Limousin, P., Ling, H., Lewis, P., Proukakis, C.,  
790        Quinn, N., Lees, A.J., Hardy, J., et al. (2013).  $\alpha$ -Synucleinopathy associated with

791            792            G51D SNCA mutation: a link between Parkinson's disease and multiple system  
atrophy? *Acta Neuropathol.* *125*, 753-769.

793            57.            Hayakawa, H., Nakatani, R., Ikenaka, K., Aguirre, C., Choong, C.-J., Tsuda, H.,  
794            Nagano, S., Koike, M., Ikeuchi, T., Hasegawa, M., et al. (2020). Structurally Distinct  
795             $\alpha$ -Synuclein Fibrils Induce Robust Parkinsonian Pathology. *Mov. Disord.* *35*, 256-  
796            267.

797            58.            Matsumoto, J., Kaneko, T., Kimura, K., Negrete, S.B., Guo, J., Suda-Hashimoto, N.,  
798            Kaneko, A., Morimoto, M., Nishimaru, H., Setogawa, T., et al. (2023). Three-  
799            dimensional markerless motion capture of multiple freely behaving monkeys for  
800            automated characterization of social behavior. *bioRxiv*, 2023.2009.2013.556332.

801            59.            Kaneko, T., Komatsu, M., Yamamori, T., Ichinohe, N., and Okano, H. (2022).  
802            Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets.  
803            *Commun. Biol.* *5*, 108.

804            60.            Komatsu, M., Kaneko, T., Okano, H., and Ichinohe, N. (2019). Chronic Implantation  
805            of Whole-cortical Electrocorticographic Array in the Common Marmoset. *Journal of*  
806            *Visualized Experiments* *144*, e58980.

807            61.            Yoshimoto, S., Araki, T., Uemura, T., Nezu, T., Sekitani, T., Suzuki, T., Yoshida, F.,  
808            and Hirata, M. (2016). Implantable wireless 64-channel system with flexible ECoG  
809            electrode and optogenetics probe. *2016 IEEE Biomedical Circuits and Systems*  
810            Conference (BioCAS), 476-479.

811            62.            Mimura, K., Nagai, Y., Inoue, K.-i., Matsumoto, J., Hori, Y., Sato, C., Kimura, K.,  
812            Okauchi, T., Hirabayashi, T., Nishijo, H., et al. (2021). Chemogenetic activation of  
813            nigrostriatal dopamine neurons in freely moving common marmosets. *iScience* *24*,  
814            103066.

815            63.            Dunbar, R.I.M. (1992). Neocortex size as a constraint on group-size in primates. *J.*  
816            *Hum. Evol.* *22*, 469-493.

817            64.            Dunbar, R.I.M., and Shultz, S. (2021). Social complexity and the fractal structure of  
818            group size in primate social evolution. *Biol. Rev.* *96*, 1889-1906.

819            65.            Whiten, A., and Byrne, R.W. (1988). Tactical deception in primates. *Behav. Brain*  
820            *Sci.* *11*, 233-244.

821            66.            Bolaños, L.A., Xiao, D., Ford, N.L., LeDue, J.M., Gupta, P.K., Doebeli, C., Hu, H.,  
822            Rhodin, H., and Murphy, T.H. (2021). A three-dimensional virtual mouse generates  
823            synthetic training data for behavioral analysis. *Nat. Methods* *18*, 378-381.

824            67.            Kim, J., Kim, M., Kang, H., and Lee, K. (2019). U-GAT-IT: Unsupervised  
825            Generative Attentional Networks with Adaptive Layer-Instance Normalization for  
826            Image-to-Image Translation. *arXiv*, arXiv:1907.10830.

827            68.            Karashchuk, P., Rupp, K.L., Dickinson, E.S., Walling-Bell, S., Sanders, E., Azim, E.,  
828            Brunton, B.W., and Tuthill, J.C. (2021). Anipose: A toolkit for robust markerless 3D  
829            pose estimation. *Cell Rep.* *36*, 109730.

830            69.            Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,  
831            Xu, J., et al. (2019). MMDetection: Open MMLab Detection Toolbox and  
832            Benchmark. *arXiv*:1906.07155.

833 70. Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021). YOLOX: Exceeding YOLO  
834 Series in 2021. arXiv:2107.08430.

835 71. He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image  
836 Recognition. arXiv:1512.03385.

837 72. Sun, K., Xiao, B., Liu, D., and Wang, J. (2019). Deep High-resolution Representation  
838 Learning for Human Pose Estimation. arXiv:1902.09212.

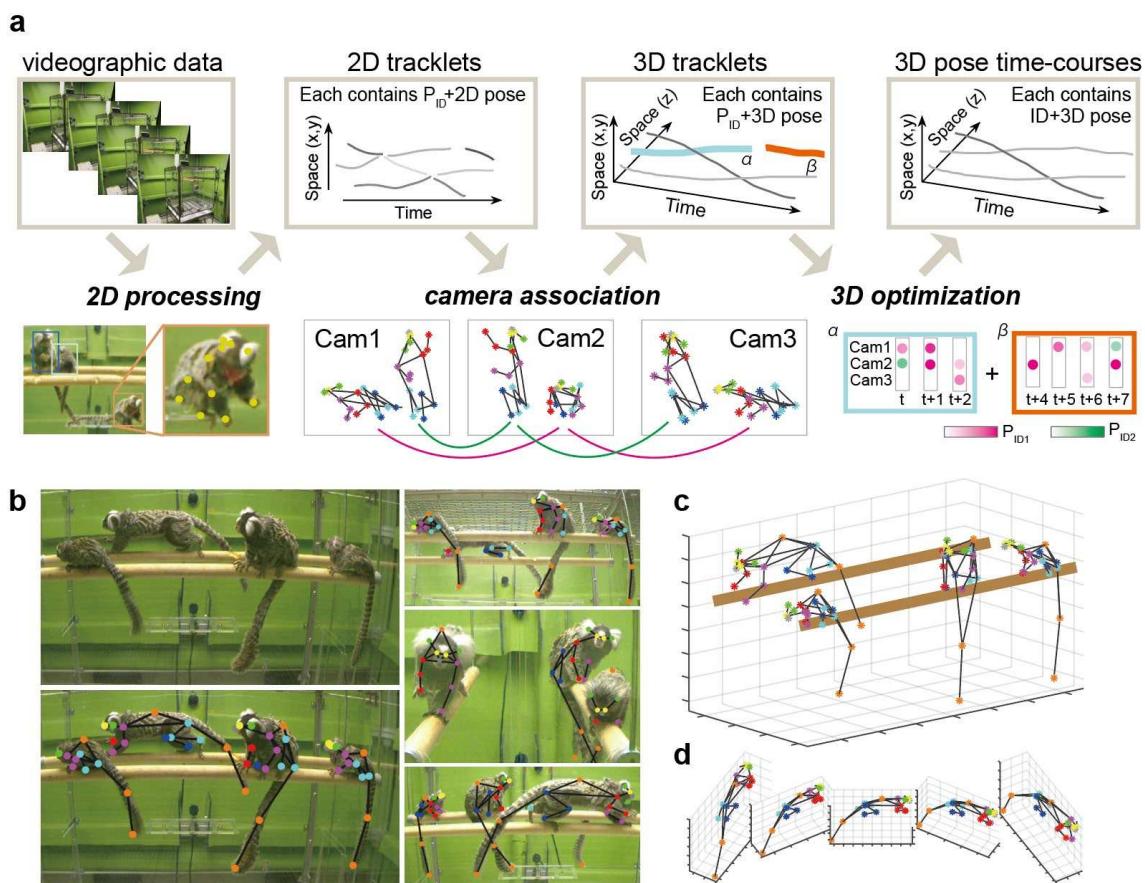
839 73. Geng, Z., Sun, K., Xiao, B., Zhang, Z., and Wang, J. (2021). Bottom-Up Human Pose  
840 Estimation Via Disentangled Keypoint Regression. arXiv:2104.02300.

841 74. Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and Wang,  
842 X. (2021). ByteTrack: Multi-Object Tracking by Associating Every Detection Box.  
843 arXiv:2110.06864.

844 75. Dong, J., Jiang, W., Huang, Q., Bao, H., and Zhou, X. (2019). Fast and Robust Multi-  
845 Person 3D Pose Estimation from Multiple Views. arXiv:1901.04111.

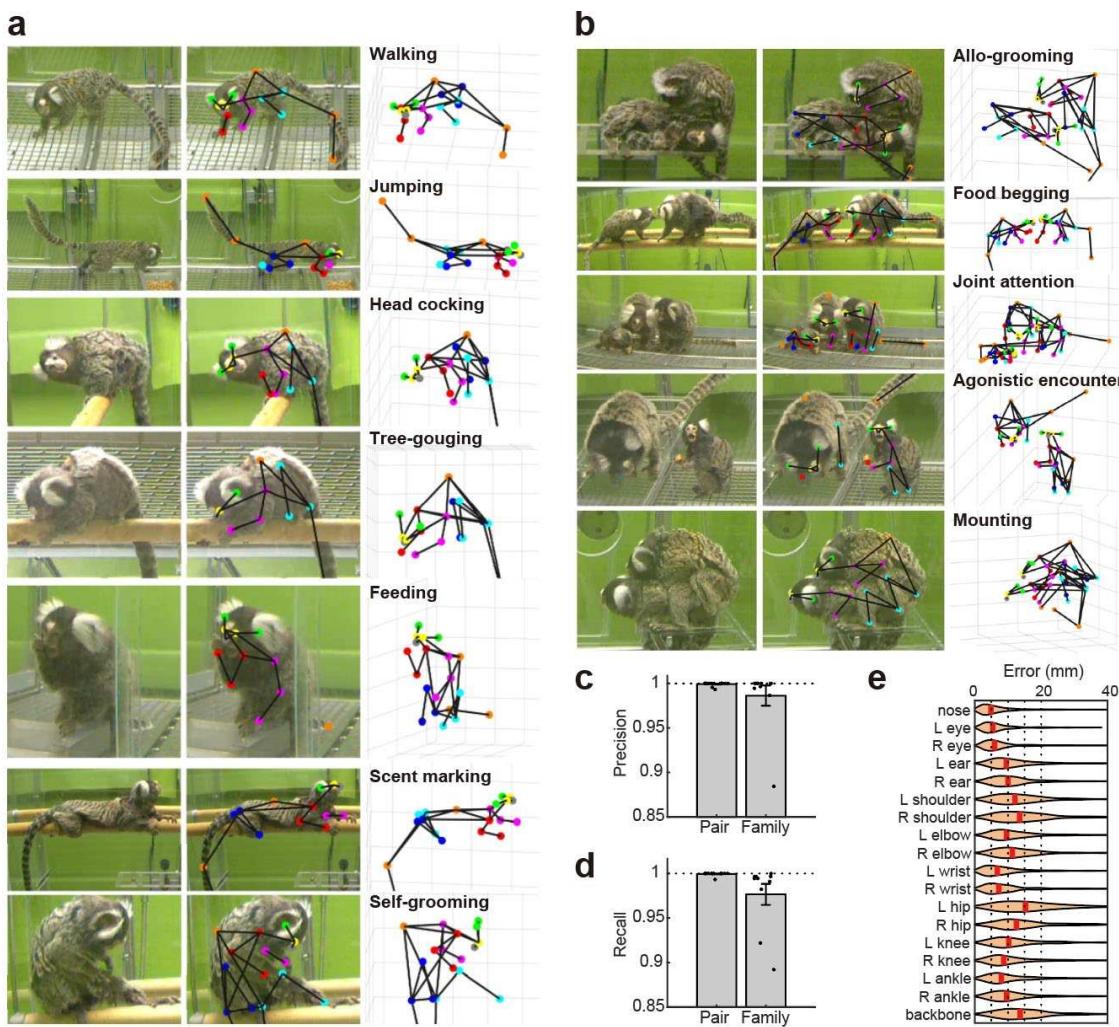
846 76. Mundinano, I.-C., Flecknell, P.A., and Bourne, J.A. (2016). MRI-guided stereotaxic  
847 brain surgery in the infant and adult common marmoset. Nat. Protoc. *11*, 1299-1308.

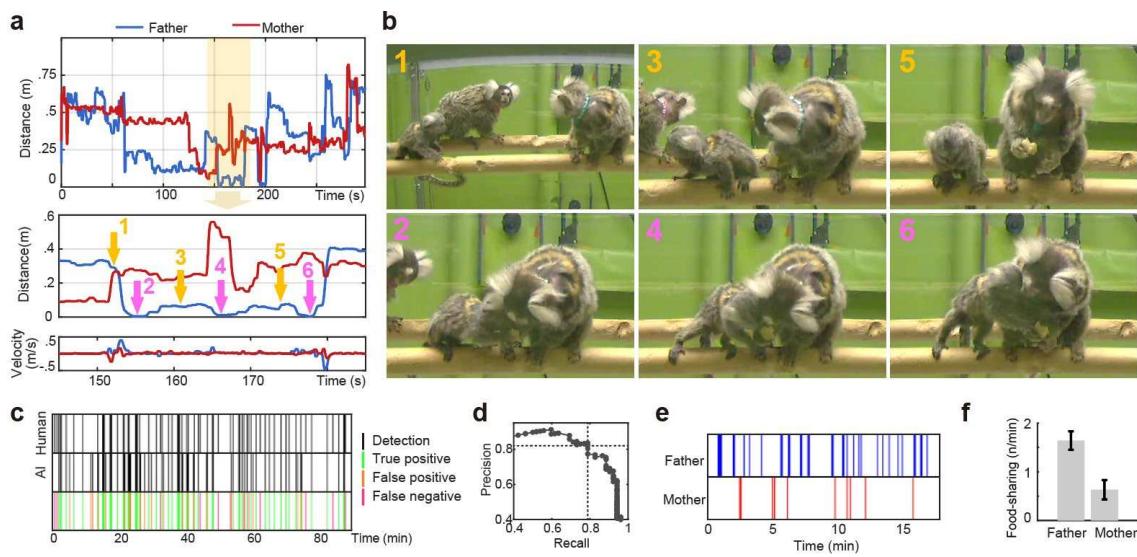
848



849  
850 **Fig. 1. Analytic pipeline for AI-based quantification of marmoset natural behaviors.**

851 **a:** Overview of the analytic pipeline. For each of the videographic images captured by different  
 852 cameras, short fragments of time-series data including postures and potential animal IDs, i.e.,  
 853 2D tracklets, were generated (*2D processing*). Then, cross-view matching across the cameras  
 854 was carried out to construct 3D tracklets representing 3D postures and potential animal IDs  
 855 (*camera association*). Lastly, 3D pose time-courses for each animal were obtained by  
 856 combining multiple 3D tracklets over the entire recording time based on spatial continuity and  
 857 animals IDs of the 3D tracklets (*3D optimization*). Note that the two spatial dimensions (x, y)  
 858 are shown in one axis instead of two different axes, but this is only for visualization purposes.  
 859 **b:** 3D annotations of a marmoset family. Upper-left, a cropped image taken from a single  
 860 camera. Lower-left, the same image with the annotations. Right, cropped images of the same  
 861 scene taken from different cameras. **c:** Reconstructed 3D poses of a marmoset family obtained  
 862 from the same scene as b. **d:** Exemplified 3D poses from different viewpoints.



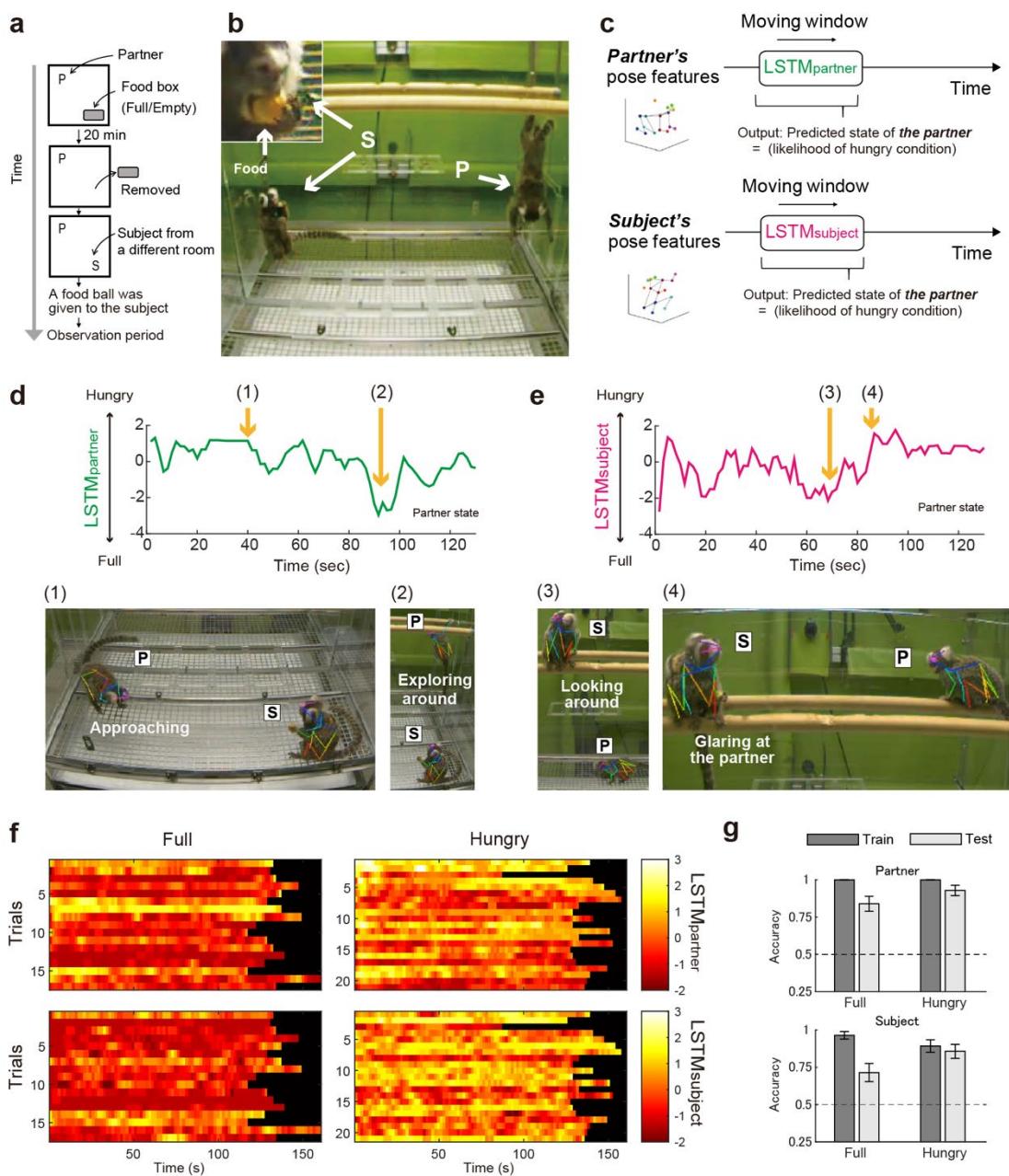


872

873 **Fig. 3. Differential contributions of father vs. mother marmosets to food-sharing events**  
 874 **with their infants.**

875 **a:** Time-course of engineered features obtained from 3D poses of a marmoset family to  
 876 predict food-sharing events. Top, the distance between the infant's hand (either left or right)  
 877 or mouth and those of the parents (for details, see the Methods section). Middle, the  
 878 magnified view of the top panel. Each number corresponds to that of each image in **b**. Bottom,  
 879 the velocity calculated as the first derivative of the middle panel. **b:** Exemplified scenes  
 880 taken from marmoset family recordings. Each number corresponds to that of the time point  
 881 in **a**; neutral in yellow (1,3,5) and food-sharing events in magenta (2, 4, 6). Note that the  
 882 smallest values in the mid-panel of **a** correspond to the food-sharing events. **c:** Comparison  
 883 between the human annotations (as ground truth) and the AI-based prediction obtained by  
 884 applying a spatiotemporal filter to the engineered features shown in **a**. Colors in the third  
 885 row represent true positive, false-positive, and false negative, respectively. The most of AI  
 886 detection were true positive (i.e., the green bars were predominant). **d:** Precision-recall curve  
 887 of the optimized detection. The highest F1 value (0.80) was at the intersection of the two  
 888 dotted lines. This detection performance satisfied a common criterion in animal behavior  
 889 research. **e:** Food-sharing events between the male/female and their infant predicted from  
 890 the AI-based analysis for an example session. **f:** Rates of food-sharing events averaged

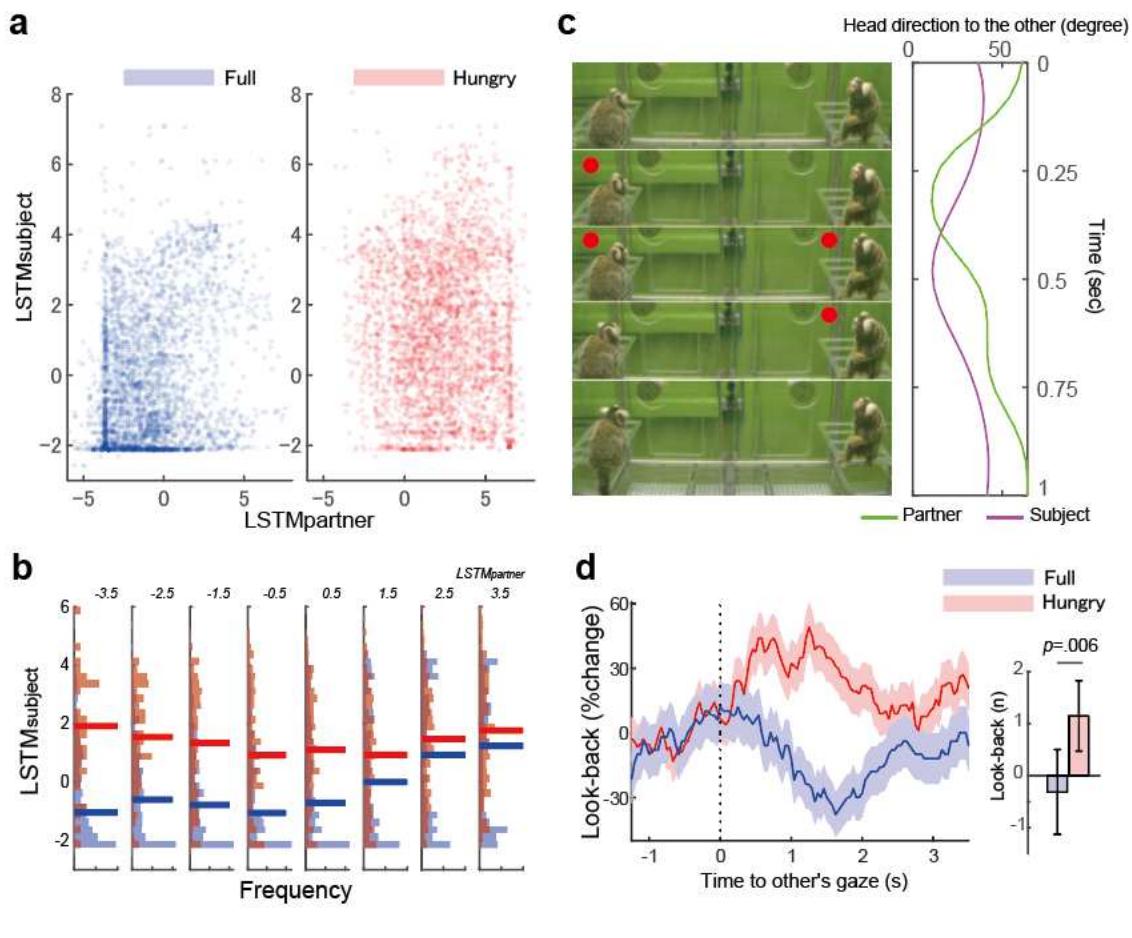
891 across days. Our behavioral quantification via the AI-based pipeline reveals that the food-  
892 sharing event with infants occurs more frequently in male than in female parents ( $df=25$ ,  
893  $t=4.55, p=0.0001$ ).



894 **Fig. 4. Quantification of the internal state predicted from actions.**

895 **a:** Design of a food-competition task. The partner (P)'s internal state (either full or hungry)  
 896 was controlled before the main experiment without notifying the subject (S). **b:** Exemplified  
 897 scene during the task and the magnified face of the subject (Inset). A valuable food (gum  
 898 ball) was given only to the subject. The partner might simply display no interest in the food,  
 899 or attempt to take away the food from the subject, and, therefore, the subject should pay

900 attention to the partner. **c**: Schemes of analytic approaches using long-short-term-memory  
901 (LSTM) networks. Two different LSTMs with the same architecture, i.e.,  $\text{LSTM}_{\text{partner}}$  and  
902  $\text{LSTM}_{\text{subject}}$ , were trained to predict the partner's internal state from either the partner's or  
903 the subject's actions as input. **d and e**: Time-courses of the predicted internal state of the  
904 partner obtained as the output from the  $\text{LSTM}_{\text{partner}}$  and  $\text{LSTM}_{\text{subject}}$ , respectively. Higher  
905 scores indicate the behavior in a hungrier state. Images in the lower panels are the scenes  
906 corresponding to the frames specified by the numbers in brackets in the upper row.  
907 Behavioral types indicated in white were determined by visual inspection of video  
908 recordings. Two examples shown here were derived from the hungry condition. **f**: Predicted  
909 internal state of the partner. Note that there are clear differences between the two conditions,  
910 while subtle variations within a trial or across days are also quantified. **g**: Performance of  
911 the  $\text{LSTM}_{\text{partner}}$  and  $\text{LSTM}_{\text{subject}}$  to discriminate conditions. The training and test of the  
912 networks were conducted in different subsets from the whole dataset. Shown is the average  
913 accuracy across all trials. Errors denote standard errors. The internal state of the partner can  
914 accurately be predicted not only from the actions of the partner itself, but also from those of  
915 the subject (binomial test;  $ps < 0.0006$ ,  $n=56$  for each condition).

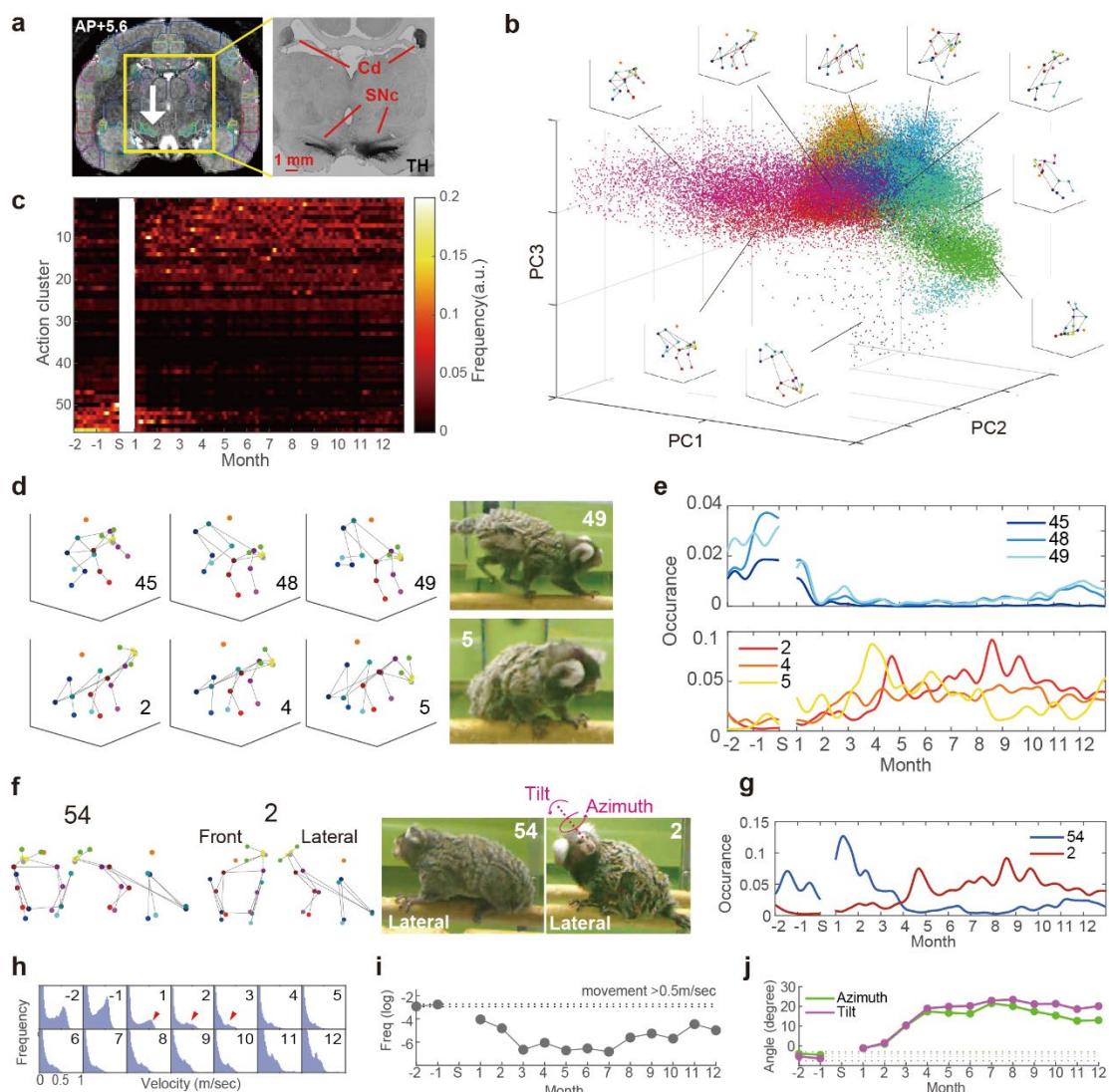


916  
917

918 **Fig. 5. Response to partner's action changes according to the internal state.**

919 **a:** Relationship between the instantaneous LSTM output of the partner and the subject. The  
920 likelihood of the partner's hungry state predicted from the subject's actions is positively  
921 correlated with that from the partner's actions ( $r=0.22, p<0.001$  and  $r=0.045, p=0.007$  for  
922 the full and hungry condition respectively). Importantly, at the same level of the  $LSTM_{partner}$   
923 output, the  $LSTM_{subject}$  output is substantially different across conditions. **b:** The partner's  
924 internal state predicted from the subject's actions at different levels of the  $LSTM_{partner}$  output.  
925 Light-colored bars represent the distributions of the  $LSTM_{partner}$  output, and thickened bars  
926 represent median. At all levels of the  $LSTM_{partner}$  output, the  $LSTM_{subject}$  output is  
927 significantly different according to the partner's internal state ( $p < 0.001$ ) indicating that  
928 the subject's response to similar actions by the partner changes according to the partner's

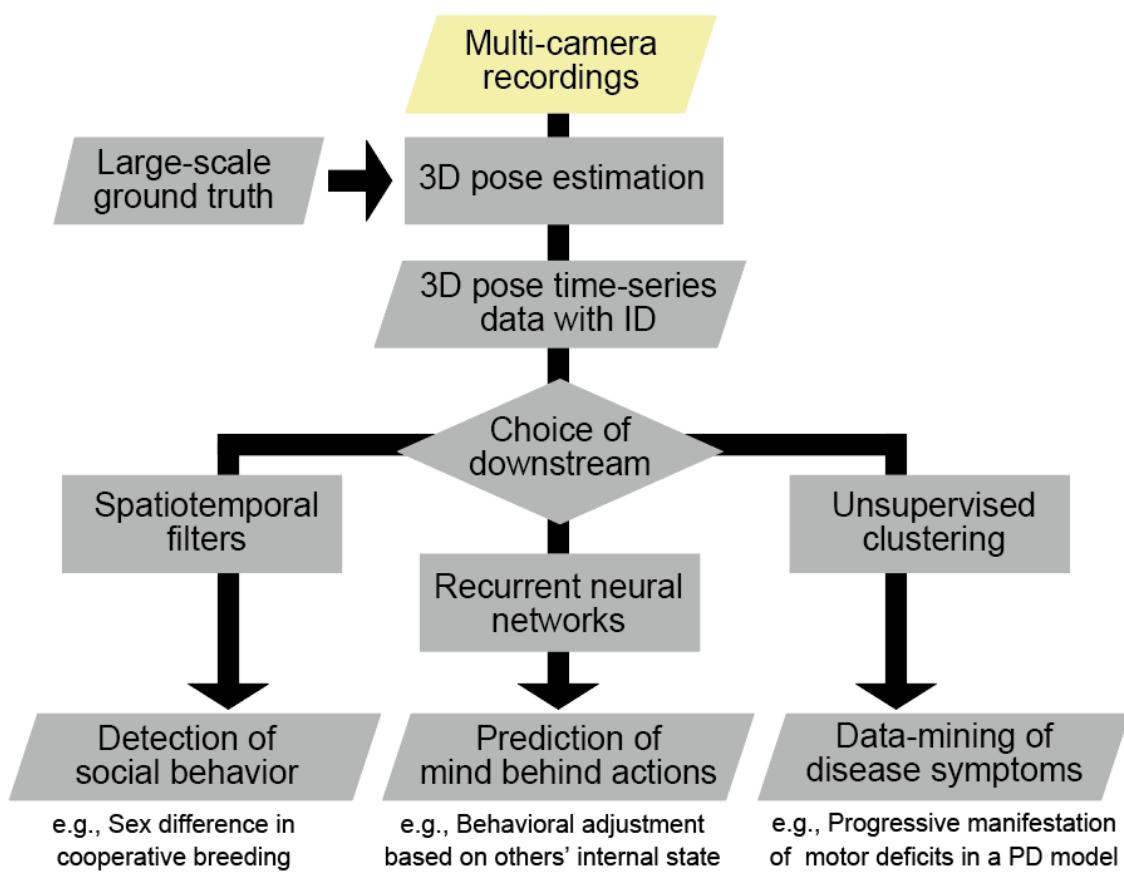
929 internal state.. **c:** Look-back behavior when two marmosets interact with each other. On the  
930 left side, five images are arranged in a time-series fashion from the top to the bottom. The  
931 left animal is the partner, and the right animal is the subject. Red circles indicate the timing  
932 when one marmoset was looking at the other. On the right side, a diagram shows time-  
933 dependent changes in the head angle of one marmoset towards the other. The partner directed  
934 the head towards the subject, and the subject looked back at the partner. **d:** Time-dependent  
935 changes in the subject's gaze towards the partner aligned by the onset of the partner's gaze.  
936 The y-axis represents the changes in the subject's look-back behavior from baseline period  
937 ( -1 ~ 0s) . In a full (blue) or hungry (red) condition, the line and shaded zone represent the  
938 mean and standard error, respectively. The bar plots represent sum and standard error of  
939 look-back response between 0.5 to 1.5s, showing significant difference across conditions  
940 ( $df=555, t=2.77, p=0.0058$ ) Note that the subject looked back at the partner more frequently  
941 in the hungry than in the full condition.



942 **Fig. 6. Longitudinal evaluation of progressive motor symptoms in a PD model**  
943 **marmoset.**

944 **a:** Left, site of combined injections of AAV vector carrying the mutant  $\alpha$ -syn gene and  
945 pathological  $\alpha$ -syn fibril seed in the substantia nigra pars compacta (SNC) indicated by the white  
946 arrow. Natural behaviors were recorded on two consecutive days per month before and after  
947 the injections. Right, section of tyrosine hydroxylase (TH) staining showing the lateralized  
948 degradation of TH in the SNC and the caudate, a projection target of the SNC. **b:** Results of  
949 the unsupervised action motif clustering. Each dot represents an instance of action which  
950 was plotted on the axes of the first three principal components (PC1-3) used for the action

951 classification, and each color corresponds to the classified action. **c:** Heatmap representing  
952 the frequency of each action motif cluster observed over longitudinal recordings from the  
953 pre-injections to 12 months post-injections. **d:** Examples of the most frequently observed  
954 actions before and after the injections. Before the injections (cluster 45, 48 and 49), quick  
955 locomotion, such as jumping, gallop, and quick turning, was mainly observed. In contrast, a  
956 variety of “stay” postures with slight differences were primarily seen after the injections (2,  
957 4 and 5). Exemplified images were taken from the videographic data. Each number  
958 corresponds to an action cluster in **c**. **e:** Time-course for the frequency of occurrence of  
959 action clusters shown in **d**. **f:** Representative postures which seem similar though clustered  
960 into different classes. Note the differences in the tilt angle and azimuth of the head between  
961 the pre-injection (i.e., 54) and the post-injection (i.e., 2). Front, frontal view. Lateral, lateral  
962 view. **g:** Time-course for the frequency of occurrence of action clusters shown in **f**. **h:**  
963 Histograms of the locomotion speed in different months. Red triangles represent a decreasing  
964 trend of fast locomotion as the progression of motor symptoms. **i:** Analysis of bradykinesia  
965 as assessed with changes in the frequency of fast locomotion (0.5 m/s) over several months.  
966 The dotted horizontal lines indicate upper and lower bound of the 95% confidential interval  
967 for pre-injections data (note that these bounds were so close so that it is hard to see the gap).  
968 **j:** Analysis of abnormal posture in the neck as assessed with changes in the tilt angle and  
969 azimuth of the head over several months. The dotted horizontal lines indicate 95%  
970 confidential as in **I** (again, the bounds were so close).



971

972 **Fig. 7. Overview of comprehensive approaches to quantification of marmoset natural**  
973 **behaviors based on 3D poses.**

974 Analytic workflow in the present study. The 3D pose time-course data *per se* are merely  
975 pieces of spatiotemporal information about body postures involving the limb positions.  
976 However, by combining with proper downstream analytic methodologies, the data allow us  
977 to elucidate a wide spectrum of behavioral parameters based on the 3D poses alone.  
978