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Abstract 25 

Nonhuman primates (NHPs) are indispensable animal models by virtue of the continuity of 26 

behavioral repertoires across primates, including humans. However, behavioral assessment at 27 

the laboratory level has so far been limited. By applying multiple deep neural networks trained 28 

with large-scale datasets, we established an evaluation system that could reconstruct and 29 

estimate three-dimensional (3D) poses of common marmosets, a small NHP that is suitable for 30 

analyzing complex natural behaviors in laboratory setups. We further developed downstream 31 

analytic methodologies to quantify a variety of behavioral parameters beyond simple motion 32 

kinematics, such as social interactions and the internal state behind actions, obtained solely 33 

from 3D pose data. Moreover, a fully unsupervised approach enabled us to detect 34 

progressively-appearing symptomatic behaviors over a year in a Parkinson’s disease model. 35 

The high-throughput and versatile nature of our analytic pipeline will open a new avenue for 36 

neuroscience research dealing with big-data analyses of social/pathophysiological behaviors 37 

in NHPs.  38 
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Introduction 39 

Quantitative evaluation of animal behavior is crucial for various research areas of neuroscience. 40 

However, observing natural behaviors of freely moving animals by visual inspection incurs a 41 

considerable cost. Meanwhile, recent advances in artificial intelligence (AI) allow us to pave 42 

the way to quantify massive amounts of behavioral data in a large-scale and automated 43 

manner1-4, and assessment of natural behaviors with “markerless pose estimation” has already 44 

been implemented in a number of studies5-10. Indeed, AI-based three-dimensional (3D) analysis 45 

of body posture, involving the limb positions, makes it possible to evaluate a variety of 46 

behavioral aspects that characterize nonhuman primates (NHPs)11,12.  47 

 The application of this methodological innovation to the neuroscience research field is 48 

now rapidly expanding11,13-17, as it is expected to have a potential to bring about fundamental 49 

changes in how to design behavioral experiments on NHPs which have long been carried out 50 

in a head-fixed condition. In the past decades, accumulated evidence from a number of 51 

research works, such as ethological studies on wild animals, suggests the continuity of 52 

behavioral repertoires across primates including humans19-21. However, there remains a large 53 

gap between the field and the laboratory research since experimental settings under freely 54 

moving conditions have so far been limited at the laboratory level. 55 

Common marmosets are one of the NHP species suitable for overcoming this problem, 56 

given that their relatively small body size permits observations of complex natural behaviors 57 

in laboratory setups18-21. Furthermore, marmosets are a remarkably prosocial animal. It is 58 

generally accepted that all family members cooperate to breed infants whose development is 59 

successfully attained via interactions with their caregivers. This implies that marmosets can be 60 

useful as a primate model for exploring social behavior18,22. The development of telemetric 61 

devices for brain activity recordings28-30 also accelerates the preparation of experimental 62 

environment in a freely behaving fashion. In addition, the utility of marmosets which have 63 

high reproductive efficiency has led to the production of brain disease models by genetic 64 

engineering techniques23-27, which requires the longitudinal and high-throughput assessment 65 
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of symptomatic behaviors. 66 

Two issues should be solved to achieve a methodological improvement in designing 67 

behavioral experiments on marmosets. First, the practical use of “deep neural networks” for 68 

behavioral analysis demands both a huge volume of ground truth data 14,16 and an analytic 69 

pipeline that reconstructs 3D poses of multiple animals simultaneously while recognizing 70 

individuals. Second, even if the best effort is made to establish such a system, a major question 71 

still arises as to how effective this approach is to evaluate natural behaviors of freely moving 72 

marmosets. In fact, quantitative analyses to date based on the markerless pose estimation have 73 

highly been focused on the movement itself (e.g., kinematics of body-part movements and 74 

sequence of motor actions) 6,17,31, leaving cognitive behaviors or social interactions untargeted. 75 

In the present study, we developed a markerless 3D pose estimation system to analyze 76 

natural behaviors of marmosets under freely moving conditions, and a large-scale training 77 

dataset to promote automated quantification of videographic data. We further developed a set 78 

of downstream analytic methodologies that took advantage of the potential of 3D pose data. 79 

Here we show that (1) the 3D pose data are suitable for defining social behavior which should 80 

be more than kinematics of a single animal and represents complex interactions among 81 

multiple animals, (2) the 3D pose data are able to infer the animal’s internal state behind 82 

actions, and (3) a completely unsupervised approach based on the 3D pose data allows us to 83 

detect behavioral changes in response to pathophysiological conditions. Through these distinct 84 

experimental subjects (parenting behavior of male vs. female marmosets, behavioral flexibility 85 

of socially interacting marmosets, and symptomatic behaviors progressively appearing in a 86 

marmoset model of Parkinson’s disease (PD), respectively), we have revealed the potent 87 

applicability of our system that permits extracting a wide range of behavioral parameters 88 

beyond spatiotemporal kinematics.  89 
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Results 90 

Markerless 3D pose estimation of multiple marmosets with individual 91 

identification 92 

Our analytic framework consisted of the following three elements: a multi-camera recording 93 

system, an analytic pipeline combined with multiple deep neural networks, and large-scale 94 

ground truth data to train the deep neural networks for accurate quantification. The recording 95 

system included eight synchronized cameras surrounding a transparent cage that was specially 96 

designed to allow housing of a marmoset family (up to four individuals) and to provide 97 

continuous clear video recordings for several days or more. Multiview videographic data were 98 

fed into the custom-made analytic pipeline which had fully been optimized for robust 99 

reconstruction of the 3D poses of multiple marmosets under individual identification in a 100 

variety of natural behavioral contexts (Fig. 1a). 101 

For the analytic pipeline, regions of interest (ROIs) where marmosets were located were 102 

first determined in each camera view at each time frame by using a detection network. 103 

Subsequently,18 keypoints and a potential animal identity per ROI were estimated through a 104 

pose network and an identity network, respectively. In each camera view, ROIs taken from 105 

numbers of time frames were combined based on the spatial continuity to construct tracklets 106 

which were composed of time-series data including the pose and identity. During this process, 107 

individual tracklets contained information only from a single camera view, and, therefore, they 108 

were fragmented by a short time period (Fig.1a, 2D processing). As the next step, a 3D tracklet 109 

was constructed by combining several tracklets that represented the same animal from different 110 

camera views by minimizing the so-called pose affinity score (Fig. 1a, camera association; for 111 

details, see the Methods section). Finally, 3D tracklets were combined across the entire 112 

recording time based on both the spatial continuity and the probability of animal identity (Fig. 113 

1a, 3D optimization). 114 

To achieve the accurate and robust 3D pose estimation, we created annotations of 3D 115 
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keypoints for more than 7404 bodies (consisting of eight different views) (Fig. 1c, d) in a 116 

variety of natural behavioral contexts (Fig. 2a, b), which could be used as a ground truth dataset 117 

for training both the detection and pose networks. The requirement for a training dataset of 118 

animal recognition largely depended on experimental conditions (with/without infants, the use 119 

of a color tag, implantation of neuron activity recording devices, etc.). In the present study, we 120 

tested either a pair of marmosets or a breeding family (including male and female parents with 121 

their infants). A neckless type of color tag was attached to adult marmosets to facilitate 122 

identification. Under these conditions, we labeled 4231 samples in total for ID classification. 123 

With this dataset, we used 80% for training and 10% each for validation and test. The ground 124 

truth dataset was created from 29 different individuals ranging from 1.5 months old (infant) to 125 

12 years old (adult). 126 

The final performance of animal detection and identification in 3D space was 99.3% and 127 

98.8% in precision and recall, respectively (Fig. 2c, d, Video S1). The geometric error in pose 128 

estimation at each keypoint was 9.68 mm (4.86 ~15.25) in 3D space (Fig. 2e). On the scale of 129 

human body, the estimation error of, for example, the wrist positions were about 4 cm. This 130 

accuracy was comparable to the state-of-the-art performance of a similar task in human pose 131 

estimation32 where enormous amounts of ground truth data were available, indicating that our 132 

system consisting of the recording environment, training dataset, and analytic pipeline reached 133 

the highest level that was considered achievable at the present time. However, a major question 134 

remained as to the extent to which our system would practically be useful for actual 135 

experiments, which was hard to judge from the so-far-listed score alone. In the following 136 

sections, we explored the potential of 3D pose data by quantifying various types of behavioral 137 

parameters that were beyond simple spatiotemporal kinematics of the body parts. 138 

 139 

Differential roles of male vs. female marmosets in parenting as defined by 140 

automated detection of social behavior  141 

When introducing the automated quantification into natural behaviors, evaluation of social 142 
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behavior is the most difficult and beneficial, since it is more than kinematics of a single animal. 143 

In the first set of our experiments, we tested the potential of 3D pose data for assessing food-144 

sharing behavior which is frequently observed in a breeding family of marmosets. Both male 145 

and female marmosets generally take care of their infants together, and, therefore, they are 146 

characterized as cooperative breeders, which is similar to the human case, but is relatively rare 147 

in other NHPs18. As part of parenting, adult marmosets share their food with infant marmosets, 148 

which enables the infants not only to satisfy their nutritional needs, but also to obtain an 149 

opportunity of learning about diet33. Thus, we attempted to quantify food-sharing behavior of 150 

breeding marmoset families. 151 

In the present experiment, we sought to detect the food-sharing behavior by applying a 152 

spatiotemporal filter to 3D pose time-course data. Two marmoset families participated in this 153 

experiment. Since the output of our system was a simple time-course data of the 3D posture in 154 

each marmoset, we started with engineering the features that might capture food-sharing 155 

events in the marmoset families based on the 3D pose time-course data. According to such 156 

data obtained from parents and infants, we computed the distance between the either the 157 

infants' mouths/hands and those of parents' hands/mouths, and its derivatives (i.e., velocity). 158 

Comparison with videographic images confirmed that the resulting time-course data could be 159 

potentially good indicators to detect the food-sharing event between the parents and the infants 160 

(Fig. 3a, b). Via spatiotemporal thresholds of these quantitative posture and motion parameters, 161 

we then defined and counted the occurrence of such events automatically (for details, see the 162 

Methods section). Moreover, we acquired annotations by a human observer to optimize and 163 

verify the automated detection of food-sharing events based on a subset of videographic 164 

sequences randomly selected from the entire study cohort. The threshold values were tuned 165 

using 25% of the annotation data. The detection accuracy (i.e., true positive, false positive, 166 

and false negative) was estimated with the rest of annotations which was not used for the 167 

parameter tuning (Fig. 3c). We obtained the Precision-Recall curve (Fig. 3d) and estimated the 168 

optimal F1 and Cohen’s kappa which were 0.80 and 0.77, respectively. These scores satisfied 169 

common criteria for the inter-observer reliability in behavioral sciences34, thus indicating that 170 
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our automated analysis was reliable enough for quantification of social behavior. Furthermore, 171 

we used this detector for the rest of the entire dataset and found that the food-sharing event 172 

occurred more frequently in male than in female parents (Fig. 3e-f). Such a difference between 173 

fathers and mothers is suggested by previous studies on distinct species of New World 174 

monkeys35-37. The overall results demonstrated that our AI-based analytic pipeline clarified the 175 

differential roles of cooperating breeding animals in parenting under the laboratory 176 

environment, and that this pipeline could be useful for quantifying social behavior. 177 

 178 

Behavioral adjustment depending on others’ internal state as investigated by 179 

recurrent neural networks 180 

In the second set of our experiments, we assessed the extent to which our system with 3D pose 181 

time-course data could infer the animal’s internal state behind actions. In social life of primates, 182 

it is crucial to adjust one’s own behavior depending on others’ internal state, such as emotions, 183 

intentions, and other physiological needs38-40. Conceivably, internally-guided behavioral 184 

changes by others may not readily be observable, but can be judged by watching over 185 

themselves41. Several human neuroimaging studies have shown neural substrates that are 186 

involved in this sort of cognitive function42-45. On the other hand, only a few related works 187 

have so far been available in NHPs46-48, because nonverbal behavioral paradigms are so limited 188 

that the possible underlying mechanism remains to be investigated. Here, we attempted to 189 

overcome this issue by combining a novel freely-moving behavioral task with our analytic 190 

pipeline using a deep neural network. 191 

To examine a social behavioral action in response to others’ internal state, we developed 192 

a food competition task under freely moving conditions where two marmosets interacted to 193 

share or keep a valuable food (Fig. 4a,b). Two different pairs of marmosets participated in this 194 

experiment. The partner’s internal state (either full or hungry) was controlled without notifying 195 

the subject before the experiment started. Then, only the subject animal could obtain a large 196 

food that takes a couple of minutes to eat. The partner animal in the same cage may try to take 197 
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away or beg for the food from the subject, and, therefore, the subject should pay attention to 198 

the partner’s action. Employing this behavioral task, we tested how the subject might adjust 199 

his/her behavior depending on the partner’s internal state.  200 

The Long Short-Term Memory (LSTM) 49, a type of recurrent neural network for temporal 201 

data analysis was used to decode the partner’s internal state. Two different LSTMs, LSTMpartner 202 

and LSTMsubject, with the same architecture were trained to decode the partner’s internal state 203 

(i.e., full or hungry) from actions of either the subject or the partner (Fig. 4c). These LSTMs 204 

were designed to utilize the 3D pose data for 800ms as input and to generate as output a score 205 

representing the partner’s internal state, i.e., hungriness. The output score of LSTMpartner was 206 

predicted only from the partner’s action and could even display a variability within single trials 207 

(Fig. 4d). For example, in a scene with higher score (Fig. 4D, left panel), the partner was 208 

directly approaching the subject as if the partner tried to take away the food from the subject. 209 

Conversely, in a scene with lower score, the partner was exploring inside the cage without any 210 

interest in either the subject or the food. Similarly, as the partner’s internal state (and the 211 

resulting action) might probably affect the subject’s behavior, the output score of LSTMsubject 212 

was able to predict the partner’s internal state solely from the subject’s action (Fig. 4e). Even 213 

though the outputs of both LSTMs fluctuated within single trials or across trials, the overall 214 

scores were higher in a hungry than in a full condition (Fig. 4f). Thus, not only LSTMpartner but 215 

also LSTMsubject precisely predicted the partner’s condition on average (Fig. 4g). The accurate 216 

decoding of the LSTMsubject output indicated that the marmoset indeed adjusted his/her own 217 

behavior flexibly based on others’ internal state.  218 

Another important question arises as to whether such a behavioral change might be an 219 

immediate, simple reaction to an others’ particular action rather than a reflection of others’ 220 

internal state behind the sequence of their actions. The comparison between the LSTMpartner 221 

and the LSTMsubject exhibited a positive correlation, which indicated that an immediate action 222 

by the subject was related to the sequence of the partner’s actions at that moment regardless 223 

of the partner’s internal state (Fig. 5a). Concurrently, at any level of the LSTMpartner output, the 224 
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LSTMsubject output was consistently higher in the hungry than in the full condition (Fig. 5b). 225 

The present result implied that the one’s reaction towards the same sort of action by the other 226 

was changed according to the internal state. As an example of such behavioral adjustment 227 

depending on others’ internal state, we found that, in a pair of marmosets, the gaze behavior 228 

of the subject was changed according to the partner’s internal state. One marmoset sometimes 229 

looked back at the other when the other marmoset looked at the one (Fig. 5c). This look-back 230 

behavior was more frequently seen in a hungry than in a full condition (Fig. 5d), again 231 

indicating that the subject’s reaction towards the same action by the partner was changed based 232 

on the partner’s internal state. The overall results demonstrated the cognitive complexity of 233 

marmosets in the social context, thus elucidating that they flexibly adjust their behaviors 234 

depending on others’ internal state that is not readily observable by an immediate action alone. 235 

 236 

Progressive manifestation of motor deficits in a marmoset model of PD as revealed 237 

by unsupervised clustering 238 

In the third set of our experiments, we evaluated whether a completely unsupervised approach 239 

might allow us to detect behavioral changes in response to pathological conditions if relatively 240 

large-scale 3D pose data are available. To this end, we analyzed symptomatic behaviors in a 241 

marmoset model of PD. It is well known that PD progressively manifests motor deficits, such 242 

as akinesia, rigidity, and tremor, which is caused by degeneration/loss of dopaminergic neurons 243 

in the substantia nigra pars compacta (SNc) 50,51. Given that over-expression of mutant variants 244 

of alpha-synuclein (α-syn) emulates the progressive aspect of the disease, much emphasis has 245 

been placed on the notion that an animal model produced by α-syn over-expression is suitable 246 

for PD research52,53. In this model, however, observations over months or even years are 247 

required for behavioral assessment of phenotype expression, and, therefore, automated 248 

quantification of symptomatic behaviors is indispensable. Here, we yielded a PD model 249 

marmoset by injecting a combination of adeno-associated virus (AAV) vector54 carrying the 250 

mutant α-syn gene55,56 and pathological α-syn fibril57 into the nigra on one side of the brain 251 
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(Fig. 6a). Histological analysis using tyrosine hydroxylase (TH) immunostaining after the 252 

behavioral observation confirmed loss of dopaminergic neurons from the SNc. With this PD 253 

model, varying motor activity was monitored for two days per month over one year.  254 

Employing our analytic pipeline in a fully unsupervised manner without any a priori 255 

hypothesis, we could identify a couple of behavioral changes in the marmoset PD model. First, 256 

by means of dimensional reduction and clustering approach, we determined action motifs that 257 

were the patterns of 3D pose time-series data repeatedly observed throughout the recording 258 

period (Fig. 6b; for details, see the Methods section). We found that some actions were 259 

occasionally observed before the surgery, and others gradually appeared after the surgery (Fig. 260 

6c). Specific behavioral actions, such as running, turning, and jumping from wood, were 261 

reduced after the surgery (Fig. 6d,e; upper panels). Conversely, various types of “stay” actions 262 

were increasingly observed several months after the surgery (Fig. 6d,e; bottom panels). 263 

Interestingly, apparently similar postures were classified into different clusters notably by the 264 

difference in the neck angle (Fig. 6f). Some postures were seen more frequently, whereas 265 

others were observed less frequently after the surgery (Fig, 6g). After three months, an 266 

increased tonus of the neck muscle markedly appeared contralaterally as evidenced by the 267 

finding that the head bent towards the side opposite to the nigral injection site.  268 

We further quantified the amount of gross movement (as an index of reduced locomotion) 269 

and the head posture based on the 3D pose time-series data, and then successfully confirmed 270 

the progression of symptomatic behaviors obtained from the unsupervised analysis (Fig. 6h-j). 271 

The overall results indicated that parkinsonian phenotypes induced by α-syn over-expression 272 

gradually progressed. This suggested that our system allowed the longitudinal and high-273 

throughput evaluation of symptomatic behaviors in brain disease models without any 274 

behavioral tasks. 275 

 276 

  277 
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Discussion 278 

In the present study, we have developed the analytic pipeline that permits automated and high-279 

throughput quantification of natural behaviors of common marmosets using a markerless 280 

motion capture system which consists of multiple deep neural networks. With the large-scale 281 

ground truth dataset, the decoding accuracy reached the best performance that we could expect 282 

at the present time. Applying this system, we have revealed that our approach is capable of 283 

detecting behavioral changes due to a variety of experimental conditions, such as differential 284 

contributions of males vs. females to parenting in breeding families, flexible behavioral 285 

adjustment depending on others’ internal state, and progressive manifestation of motor 286 

impairments in a PD model. Our results provide a novel framework to many research areas of 287 

neuroscience using NHPs by introducing objective and large-scale quantification of animal 288 

behavior. It should also be noted here, however, that there are some limitations on the use of 289 

the analytic pipeline that we have developed in this study. First, the proposed system is able 290 

to quantify only restricted variations of behavioral actions that are represented by 18 keypoints. 291 

Thus, other types of actions, such as facial expression, cannot be quantified62. Second, careful 292 

assessment is needed to confirm that behavioral data obtained from our system are not 293 

attributable to erroneous tracking of individual animals. The 3D pose time-course data may 294 

sometimes be derived from a mixture of multiple animals, although such an error is rare as 295 

shown in Figure 2c,d. In a severe condition where individual recognition is inaccurate, an 296 

alternative system should be called for to address this issue specifically58. 297 

Recent technological innovations have attracted much attention to experimental 298 

paradigms with freely moving marmosets. Large-scale telemetric recordings of neuronal 299 

activity were successfully carried out31, and electrocorticography recordings from almost the 300 

entire lateral hemisphere were also reported59,60. Combining these recording techniques with 301 

our analytic pipeline allows comprehensive understanding of the correlation between cortical 302 

signals and behavioral dynamics. This could be an appropriate methodology to explore the 303 

cortical circuitry related to behavioral actions of particular interest. Then, optogenetic61 and 304 
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chemogenetic62 approaches, which are also compatible with freely-moving experimental 305 

conditions, enable us to disclose the causal role of a specific neural circuit in the expression 306 

of a given type of natural behaviors. Until recently, major efforts have been made to assess 307 

motor and cognitive functions of NHPs through analysis of eye/hand movements as the 308 

behavioral output. Now, the AI-based innovative development has increasingly been 309 

accomplished to quantify and evaluate social interactions in a certain animal population with 310 

high efficiency3. This may make it feasible to elucidate the neural mechanisms underlying 311 

behavioral theories, so far intensively explored in socio-ecological and ethological studies, for 312 

example, the Machiavellian theory in which expansion of the cerebral cortex, especially the 313 

frontal lobe, leads to the adaptation to social complexity in our daily life63-65. 314 

The novel pipeline that we have established for 3D pose time-series analysis of a group 315 

of marmosets can be utilized in various experimental environments and laboratories. All that 316 

is required is to estimate the camera calibration parameters for accurate 3D reconstructions 317 

and to refine the neural networks for detection, identification and pose estimation of 318 

individuals. Concerning the former requirement, at least a two-camera system should work 319 

though our experiments were conducted with eight cameras to enhance the robustness and 320 

accuracy, and then data needed for the calibration will be acquired within hours. With respect 321 

to the latter requirement, the neural networks for 2D analysis should be re-tuned to each 322 

experimental environment or laboratory because of the differences in varying factors, such as 323 

background, lighting, and camera angle. In our experiments, we provided a substantial amount 324 

of ground truth data to achieve robust 3D analysis, which will be of immense help for adapting 325 

neural networks to specific environments and achieving impeccable performance. In recent 326 

years, several tools, for example, “style transfer” 66,67, further support a transfer learning of the 327 

networks from some environment to others. Moreover, while our analytic pipeline has highly 328 

been optimized for marmosets, It can be customized for other species as well. 329 

 The present study has revealed the potent applicability of the 3D pose data, as evidenced 330 

by a wide range of behavioral parameters beyond spatiotemporal kinematics that can be 331 
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quantified via a proper choice of downstream analytic methodologies (Fig. 7). The simplest 332 

method is to detect specific behavioral events by defining spatiotemporal parameters derived 333 

from certain combinations of 3D keypoints, as demonstrated in the food-sharing experiment. 334 

A key factor to succeed in this method is appropriate feature engineering that is suitable for 335 

target event detection and parameter tuning with a small set of supervised data, both of which 336 

should be performed by experts of animal behavioral observations. Moreover, we have 337 

elucidated that simple spatiotemporal data concerning the 3D poses permit quantification of 338 

the internal state of marmosets which is combined with cutting-edge neural networks, for 339 

instance, a recurrent neural network (i.e., LSTM) in the present study. This brings about a 340 

unique opportunity of studying the mind behind the complex social behavior in primates. 341 

Finally, a fully-unsupervised data mining approach is capable of disclosing behavioral changes 342 

induced by pathophysiological manipulation, as shown in the PD model experiment. This 343 

approach is specifically beneficial to explore behavioral changes comprehensively if a 344 

substantial amount of data are available. Such methodological innovations are greatly 345 

meritorious given that the behavioral complexity inherent in NHPs substantially accentuates 346 

the assessment of neurological/psychiatric/developmental disorder models. The high-347 

throughput and versatile trait of our evaluation system will play critical roles in establishing a 348 

new standard that quantifies social/pathophysiological behaviors of NHPs.  349 
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Methods 350 

Animals 351 

All procedures for the use and experiments of common marmosets were approved by the 352 

Animal Welfare and Animal Care Committee of the Center for the Evolutionally Origins of the 353 

Human Behavior, Kyoto University, followed by the Guidelines for Care and Use of 354 

Nonhuman Primates established by the same institution. First, 29 marmosets (ranging from 355 

1.5 months olds to 12 years old; 13 males and 16 females) were used to create the ground truth 356 

dataset. Four adult and two infant marmosets derived from two families participated in the 357 

food-sharing experiment. Then, two pairs of adult marmosets were utilized for the food 358 

competition experiment, and one adult marmoset was for the PD model experiment. 359 

 360 

Recording system 361 

A recording booth was a 90-cm cubic box which consisted of acrylic transparent walls, and a 362 

metal mesh floor and ceiling. This recoding booth was designed to keep up to four animals 363 

under the Ethical Guideline of the Japan Neuroscience Society and equipped with common 364 

items required for a normal marmoset cage, such as water bottles, food boxes, and perches. 365 

Videographic images were recorded by Motif system (Loopbio, Lange G, Wien, Austria) which 366 

was synchronized with eight machine vision cameras (2048x1536-pixel, 24 fps). The cameras 367 

were arranged horizontally with an equal distance as surrounding the recording booth. The 368 

viewing angle of each camera was set at 110x70 degree to cover the whole booth.  369 

 To accomplish accurate 3D reconstructions, we obtained intrinsic (e.g., lens distortion 370 

coefficients) and extrinsic (e.g., camera positions) camera calibration parameters by the 371 

OpenCV framework as follows: The intrinsic parameters were obtained by 372 

cv2.omnidir.calibrate using the images of a checker-board pattern recorded by each camera; 373 

and the extrinsic parameters were initialized by cv2.solvPnP function by the 3D coordinates 374 

of a set of landmark positions in the recording booth and their 2D coordinates projected onto 375 
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the camera image. To improve the calibration accuracy, we further optimized both the intrinsic 376 

and the extrinsic parameters simultaneously by minimizing the projection (reconstruction) 377 

errors of the trajectory of a small object (a ping-pong ball) moved inside the recording cage68. 378 

 379 

Ground truth dataset 380 

Our keypoint schema follows that of macaque-pose12 dataset with slight modification to fit to 381 

analyze the whole-body movements of marmosets. Specifically, we annotated 20 keypoints 382 

consisting of the nose, eyes (left and right), ears, shoulders, elbows, wrists, hips, knees, ankles, 383 

back, and the middle and tip of the tail (while the last two keypoints were not used in the 384 

analytic pipeline). The annotators were trained by movies of marmosets whose body parts 385 

corresponding to the keypoints were marked by paint markers. The annotations were 386 

performed in a 3D manner by using custom-made software where those of a single body were 387 

a collection of 3D positions constructed through triangulation of 2D positions via all cameras. 388 

While the 3D positions could be computed with triangulation once a single keypoint was 389 

annotated via more than two cameras, the annotators visually confirmed every keypoint for all 390 

cameras to maximize precision. We used images from 29 different marmosets and annotated 391 

7404 bodies in a 3D space which were equivalent to 56103 bodies in a 2D space. We selected 392 

scenes from different behavioral contexts, 732 bodies from full-day recordings of a single 393 

animal, 654 bodies from those of two animals, 2010 bodies from three-animal recordings, and 394 

4008 bodies from four-animal recordings. The annotation frames were semi-manually selected 395 

to maximize variations of the behavioral contents.  396 

 397 

Markerless 3D multi-animal pose estimation  398 

The analytic pipeline started from the analysis of 2D images taken from each camera (Fig.1b 399 

2D processes). The detection network analyzed the locations of marmosets in an image of each 400 

frame and generated a bunch of bounding boxes, which are rectangles of partial regions 401 
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bounded by the smallest rectangle enclosing a marmoset as a region of interest. Then, the pose 402 

network estimated 18 keypoints, and the ID network estimated an animal ID for all bounding 403 

boxes. The bounding boxes were combined along the time axis at the 2D level to construct so-404 

called 2D tracklets, namely time-series data consisting of the regions of a marmoset associated 405 

with the postures and animal IDs. As multiple bounding boxes could be detected in each frame, 406 

the bounding boxes that seemed to correspond to a single marmoset were combined based on 407 

the consistency in the positions of the marmoset across frames. At this moment, the 2D 408 

tracklets were still fragmented in short durations, because one animal who were occluded by 409 

objects or other animals, and, therefore, it could not be tracked continuously. The 2D 410 

processing was implemented using OpenMMLab69, a set of image processing libraries for deep 411 

neural networks. The network architecture used here was yolox-l70 and resnet-5071 for 412 

detection and identification. The pose networks were hrnet-w3272 for both the food-sharing 413 

and the food competition experiments, and dekr-hrnet-w4873 for the PD model experiment. 414 

The connections of bounding boxes to construct 2D tracklets were performed by using 415 

ByteTrack74. 416 

 Subsequently, the 3D pose time-series data on each animal were obtained with four steps. 417 

The first to third steps corresponded to camera association and the fourth step to 3D 418 

optimization in Figure 1a. 419 

 As the first step, in each frame, we grouped the bounding boxes (tracklets were not used 420 

here) likely belonging to the same marmosets across different cameras. This process was 421 

performed only in key frames which were every 0.5 sec to reduce computational load. We 422 

searched for the optimal grouping of bounding boxes by minimizing geometric inconsistency 423 

(i.e., the inverse of the so-called pose affinity score75) between the boxes from different 424 

cameras within a group. We defined geometric inconsistency Dg as below. 425 

끫歮끫殨�끫毊끫殬,끫毊끫殮� =
12끫殶∑ 끫殢끫殨(끫毊끫殬끫殶,끫殂끫殶=1 끫歾끫殬끫殬(끫毊끫殬끫殶)) + 끫殢끫殨(끫毊끫殬끫殶,끫歾끫殬끫殬(끫毊끫殬끫殶))  (1) 426 

where 끫毊끫殬끫殶 indicated the 2D position of the n-th keypoint of pose I, 끫歾끫殬끫殬(끫毊끫殬끫殶) the projection 427 
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line associated with 끫毊끫殬끫殶 from a different camera, and 끫殢끫殨(⋅, 끫殲) the point-to-line distance for l. 428 

The optimization was performed according to the algorithm proposed by Dong et al. 80. Once 429 

the grouping of bounding boxes was established, we constructed the 3D pose of a marmoset 430 

for each group of the bounding boxes by triangulation of the 2D poses in each key frame. Then, 431 

we obtained 3D poses of marmosets in every key frame, while their temporal association 432 

remained undetermined. 433 

 As the second step, the matching of the same animal over time was performed as follows: 434 

A combination of 3D poses across adjacent key frames could be considered, in the Graph 435 

theory, the maximum matching M of a complete bipartite graph G=(S,T;E) with non-negative 436 

edge cost 끫殠:끫歰 → ℝ ≥ 0, where S, T are 3D poses for key frame t and t+1. Here we defined 437 

the cost c(i,j) for the edge connecting Si and Tj poses as below. 438 끫殠(끫殬, 끫殮) =  ∑ 끫殢(끫毊끫殬끫殶,끫殂끫殶=1 끫毊끫殬끫殶)   (2) 439 

where N indicated the number of keypoints, 끫毊끫殬끫殶 and 끫毊끫殬끫殶 represented the 3D position of the 440 

n-th keypoint of the 3D pose Si and Tj, respectively, and 끫殢(⋅,⋅) was the distance between two 441 

points in a 3D space. This cost represented geometrical inconsistency of a pair of 3D poses. 442 

The maximum matching M was obtained by minimizing the cost ∑ 끫殠(끫殤)끫殤∈끫殀   through the 443 

Hungarian algorithm. In addition, the edge connections were removed if the geometrical 444 

inconsistency per keypoint was over an empirically determined threshold T1=150. The frames 445 

between the key frames were complemented by continuity of 2D tracklets which were 446 

combinations of multiple bounding boxes over time in a 2D space. Through this process, we 447 

obtained 3D tracklets time-series data on 3D posture. 448 

 Third, a marmoset ID was assigned for each 3D tracklet. The ID was assigned in every 449 

frame if the following criterion was satisfied:   450 

끫殂끫殬끫殬 > 끫殎2,
끫殂끫殬끫殬끫殂 > 끫殎3  (3) 451 

where 끫殂끫殬끫殬  was the number of instances for the most frequently observed ID, N was the 452 
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number of all bounding boxes taken from all cameras, T2 and T3 were hyperparameters, set as 453 

12 and 0.8, respectively. Here, within a sliding time window (5 sec), all the bounding boxes 454 

belonging to a single 3D tracklet were considered. If the same ID was assigned to a different 455 

tracklet at the same time point, the ID was given only to the tracklet with the highest Nid. A 3D 456 

tracklet was divided at the time point when the IDs assigned by the above criterion were 457 

changed within the 3D tracklet.   458 

 The fourth step was the final refinement of the 3D tracklets. There might be the case 459 

where multiple 3D tracklets, which should correspond to the same animal, were dissociated 460 

due to the failure in the previous steps. To compensate such a case, these tracklets were 461 

integrated by the following procedure. Suppose that there was a tracklet that had not yet been 462 

assigned an ID, TnoID; and a tracklet that had been assigned an ID, TwithID. During the period 463 

when two 3D tracklets overlapped, if the difference between their 3D trajectory was less than 464 

the error threshold T4=200, then the ID of TwithID propagated to that of TnoID. This was repeated 465 

twice for the entire dataset. Furthermore, for tracklets that had not yet been assigned an ID, 466 

we assigned the remaining ID if the IDs of all but one animal had been assigned. Finally, the 467 

tracklets with the same ID were integrated, and the resulting 3D pose time-series data on 468 

individual marmosets were spatiotemporally smoothed and normalized via anipose73. 469 

 470 

Food-sharing experiment  471 

A couple of marmoset families participated in this experiment. Each family consisted of a 472 

father, a mother, and their infant who was about three months of age at the start of the 473 

experiment. A piece of home-made Arabian gumball was given to each of the parents 474 

simultaneously, and then their social interactions were observed. When both gumballs were 475 

consumed, new ones were given again to the parents separately. The experiment was carried 476 

out for about 30 min per day and repeated for 12 or 16 days in two families. 477 

 Food-sharing events were detected by the following procedure. First, 3D pose data on 478 
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three individuals per family were obtained with the analytic pipeline. At this stage, the 3D pose 479 

data were independent across the animals and were not suitable for detecting social behavior. 480 

Therefore, we created new features by combining the 3D pose data about the infant and parents. 481 

Specifically, we calculated the distance between the mouth or the left or right hand of the infant 482 

and those of each parent. Considering all combinations for a pair of the infant and one of 483 

his/her parent, this process generated 9 different values for each time frame. The smallest one 484 

of these values was taken for each frame, and the resulting time-series data (D) and the first 485 

derivative (V) were obtained. A food-sharing event was marked when there were at least TN 486 

consecutive frames in which D and V were larger than detection parameters Td and Tv. To 487 

optimize these detection parameters and to evaluate detection accuracy, a human observer 488 

counted the occurrence of food-sharing events as a subset of the entire dataset. The human 489 

observer coded the presence or absence of food-sharing events for every 15 sec and analyzed 490 

for 90 min in total. The threshold value obtained from the human coding was optimized by 491 

maximizing the consistency to the automated detection by using 25% of the annotation data. 492 

The detection accuracy was obtained from the rest of the annotation data. The Precision-Recall 493 

curve shown in Figure 3d was obtained by varying Td from the optimal value. The statistical 494 

significance in the difference between the father and the mother in the food-sharing events 495 

were evaluated with a paired two-tailed t-test (α = 0.05) with the number of observations on 496 

each recording day as independent data points. 497 

 498 

Food competition experiment  499 

Two pairs of marmosets were used for this experiment. For each pair, the subject and partner 500 

animals were familiar with each other as they had been kept in the same cage. Food deprivation 501 

was performed from the evening of one day before the experiment, and, therefore, both animals 502 

were in a hungry state at the start of the experiment. Just before the experiment, the partner’s 503 

state was controlled to be either hungry or full by the following procedure. The partner was 504 

separated from the subject immediately before the experiment in order that they could not see 505 
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each other. In a full condition, enough food was provided until the partner could not eat any 506 

more. In a hungry condition, the partner was forced to stay for the same duration as in the full 507 

condition. In each trial, the subject but not the partner was provided with a gumball with high 508 

reward value, and their social interactions were observed. The experiments were performed 3-509 

4 trials per day, and a hungry or a full condition was randomly assigned across days.  510 

 LSTM49, a type of recurrent neural network, was used to predict the partner’s internal 511 

state obtained from 3D pose data on either the subject or the partner. We coded LSTMs using 512 

the implementation in pytorch 2.0. The architecture of LSTMs for the subject and partner was 513 

the same. The LSTMs took 3D pose time-course data for 20 frames (corresponding to 800 ms) 514 

from either the partner or the subject as input and generated two output scores indicating that 515 

the likelihood of the partner’s internal state was either hungry or full. Cross entropy loss was 516 

computed across the outputs and the experimental conditions for the network training. As a 517 

quantitative representation of the partner’s hungriness (such as in Fig.4d), we took the value 518 

in the final full connection layer before the softmax function.   519 

 The input dataset for LSTM networks was composed of the aligned-posture, locomotion 520 

speed, degree of approach-avoidance, and head direction, as calculated by the following 521 

procedure. To obtain the aligned-posture, the 3D pose data were shifted frame by frame, and, 522 

thus, the midpoint between the left and the right hip keypoint was aligned in the same position 523 

across the frames. Then, the aligned data were further rotated along the horizontal plane, and, 524 

therefore, the azimuth of the trunk was aligned across the frames. The locomotion speed was 525 

the first derivative of the trajectory of the hip-mid point. The approach-avoidance was the inner 526 

product of the locomotion vector (a vector connecting the mid-point of the hip keypoint across 527 

adjacent frames) and the vector from the position of one marmoset to that of another marmoset. 528 

The head direction was the angle between the one’s head direction (the 45-degree upright 529 

vector from a vector connecting the nose and the midpoint of the left and right eyes and ears) 530 

and the direction to the other. 531 

 One fourth of the total data was used to train the networks, and the training was iterated 532 
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until the learning curve reached a plateau. The best network weights over the training iterations 533 

were selected based on the performance of the prediction for the rest of the dataset which had 534 

not been used for the training. In the analysis of Figure 5c and d, the look-back behavior was 535 

defined as the head direction (as defined in the previous paragraph) of the subject (as the 536 

calculation mentioned above) became below 40 degrees and were aligned by the onset of the 537 

partner’s gaze ( head direction should be below 40 degrees) which was kept for more than 800 538 

ms. The bar graph in Figure 5d denoted the sum of the look-back behavior between 0.5-1.5 sec 539 

to the partner’s gaze. The statistical significance was obtained by an unpaired two-sided t-test 540 

for the differences between the conditions.  541 

 542 

PD model experiment 543 

A PD marmoset model was produced by unilateral injections of both virus vector expressing 544 

mutant α-syn and pathological α-syn fibril into the SNc. A total of 12-µl solutions consisting 545 

of 4 µl of AAV2.1-hTH-α-syn (G51D) (4.88x10e13 gc/ml) 54 and 8 µl of the fibril (5 mg/ml) 546 

57 was injected into four rostrocaudally and mediolaterally different loci of the SNc through a 547 

10-µl Hamilton microsyringe (30 gauge) over 35 min per penetration. The injection 548 

coordinates were adjusted individually based on MR images. A surgical navigation system 549 

(Brainsight, Rogue Research, Montréal, Québec, Canada) was used to accurately guide the 550 

position of the injection sites76. The animal was anesthetized with ketamine hydrochloride (20-551 

40 mg/kg, i.m.) and maintained with isoflurane (1-2%) during the surgery while SpO2, heart 552 

rate, and rectal temperature were monitored. A water-heating circulator was used to control the 553 

body temperature. An analgesic (Meloxicam; 0.1-0.2 mg/kg, i.m.) was also administered before 554 

and for a couple of days after the injection. Behavioral observations were conducted once a 555 

month. The marmoset was moved to the recording booth and allowed to stay there for two 556 

days. Food pellets were supplied once a day and water was available ad libitum. Video 557 

recordings was done for 20 min per hour from 9 a.m. to 4 p.m. (a total of 160 min per day). 558 

The recordings were started two months before the surgery and continued 12 months after the 559 
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surgery. 560 

 After the behavioral assessment, immunohistochemical analysis was performed to 561 

confirm loss of dopamine neurons from the SNc. The animal was deeply anesthetized with 562 

ketamine hydrochloride (40mg/kg, i.m.) and sodium secobarbital (50 mg/kg, i.v.), and perfused 563 

transcardially with 0.1M phosphate-buffered saline (PBS) followed by 4% paraformaldehyde 564 

in 0.1 M phosphate buffer (pH 7.4). Then, the brain was removed from the skull, postfixed 565 

overnight, and saturated with 30% sucrose at 4°C. Coronal sections were cut serially at the 40-566 

µm thickness on a freezing microtome. A series of every tenth section was used for tyrosine 567 

hydroxylase (TH) immunostaining. The sections were pretreated with 0.3% H2O2 for 30 min 568 

and immersed in 1% skim milk for 2 hr. The sections were then incubated for 48 hr at 4°C with 569 

mouse anti-TH antibody (1:2,000; Millipore, Burlington, MA) in 0.1 M PBS containing 2% 570 

normal donkey serum and 0.1% Triton X-100. Subsequently, the sections were incubated with 571 

biotinylated donkey anti-mouse IgG antibody (1:1,000; Jackson ImmunoResearch, West Grove, 572 

PA) for 2 hr at room temperature in the same fresh medium, followed by the avidin-biotin-573 

peroxidase complex (ABC Elite; 1:200; Vector laboratories, Burlingame, USA) in 0.1 M PBS 574 

for 2 hr at room temperature. Finally, the antigen was visualized with diaminobenzidine (DAB) 575 

containing nickel ammonium sulfate (0.01% DAB, 1.0% nickel ammonium sulfate, and 576 

0.0003% H202). The sections were mounted onto gelatin-coated glass slides and counterstained 577 

with 1% Neutral red. 578 

An unsupervised clustering of behavioral actions was performed by using time-series data 579 

about action features which were computed based on the 3D pose data as follows: First, the 580 

aligned postures were obtained as described in the previous section. Then, the spectrogram 581 

representation (0.05-12.8 Hz) of these data was obtained from the fast Fourier transformation, 582 

and, therefore, the data at a single time point contained not only instantaneous postural 583 

information, but also dynamics of the postures. In the end, the action features used for the 584 

clustering were created by adding locomotion vector to this spectrogram. The clustering was 585 

carried out by using the k-means clustering method with the number of classes fixed ====to 586 
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56, and, thus, all videographic frames throughout the entire recording period were classified 587 

as one of the 56 action clusters. Then, the time-course of the occurrence rate of each action 588 

class was obtained as shown in Figure 6c. The order of these action clusters was defined by 589 

the following procedure. The 56-dimensional time-series data representing the action 590 

occurrence rate were analyzed by the principal component analysis (PCA). Then, the first 591 

principal component PC1 showed monotonic increment in which the score was low before the 592 

surgery and was gradually being increased after the surgery. Therefore, the order of the 593 

coefficients of PC1 was used as the order of the action clusters. In other words, the actions 594 

with the small cluster number were frequently observed after the surgery, and those with the 595 

larger cluster number were often observed before the surgery. In Figure 6j, the azimuth and tilt 596 

of the head were calculated by the vector form the midpoint of the shoulders to that of the eyes 597 

in the aligned posture. For both the movements and the head angles, the errors were estimated 598 

by the bootstrap method. All data during the pre-surgery period were used to estimate the 95% 599 

confidential intervals. The mean for every 15 min was taken as an independent data point, and 600 

the repetition of the bootstrap sampling was 2000 times.  601 
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849 

Fig. 1. Analytic pipeline for AI-based quantification of marmoset natural behaviors. 850 

a: Overview of the analytic pipeline. For each of the videographic images captured by different 851 

cameras, short fragments of time-series data including postures and potential animal IDs, i.e., 852 

2D tracklets, were generated (2D processing). Then, cross-view matching across the cameras 853 

was carried out to construct 3D tracklets representing 3D postures and potential animal IDs 854 

(camera association). Lastly, 3D pose time-courses for each animal were obtained by 855 

combining multiple 3D tracklets over the entire recoding time based on spatial continuity and 856 

animals IDs of the 3D tracklets (3D optimization). Note that the two spatial dimensions (x, y) 857 

are shown in one axis instead of two different axes, but this is only for visualization purposes. 858 

b: 3D annotations of a marmoset family. Upper-left, a cropped image taken from a single 859 

camera. Lower-left, the same image with the annotations. Right, cropped images of the same 860 

scene taken from different cameras. c: Reconstructed 3D poses of a marmoset family obtained 861 

from the same scene as b. d: Exemplified 3D poses from different viewpoints.  862 
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863 

Fig. 2. Exemplified annotations and decoding accuracy of the analytic pipeline. 864 

a: Examples of annotations in different behavioral contexts. Each column denotes the 865 

original images, the same images with annotations, and the 3D poses, respectively, from the 866 

left to the right. b: Examples of social behaviors. We obtained annotations for 2733 scenes, 867 

and 7404 and 56103 bodies in a 3D or 2D space, respectively. c,d: Precision and recall rates 868 

for detection and identification of individual animals. e: Errors between annotations and AI 869 

prediction of 3D poses. Errors were around 10 mm in marmosets with 200 mm of body 870 

length.  871 
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872 

Fig. 3. Differential contributions of father vs. mother marmosets to food-sharing events 873 

with their infants. 874 

a: Time-course of engineered features obtained from 3D poses of a marmoset family to 875 

predict food-sharing events. Top, the distance between the infant’s hand (either left or right) 876 

or mouth and those of the parents (for details, see the Methods section). Middle, the 877 

magnified view of the top panel. Each number corresponds to that of each image in b. Bottom, 878 

the velocity calculated as the first derivative of the middle panel. b: Exemplified scenes 879 

taken from marmoset family recordings. Each number corresponds to that of the time point 880 

in a; neutral in yellow (1,3,5) and food-sharing events in magenta (2, 4, 6). Note that the 881 

smallest values in the mid-panel of a correspond to the food-sharing events. c: Comparison 882 

between the human annotations (as ground truth) and the AI-based prediction obtained by 883 

applying a spatiotemporal filter to the engineered features shown in a. Colors in the third 884 

row represent true positive, false-positive, and false negative, respectively. The most of AI 885 

detection were true positive (i.e., the green bars were predominant). d: Precision-recall curve 886 

of the optimized detection. The highest F1 value (0.80) was at the intersection of the two 887 

dotted lines. This detection performance satisfied a common criterion in animal behavior 888 

research. e: Food-sharing events between the male/female and their infant predicted from 889 

the AI-based analysis for an example session. f: Rates of food-sharing events averaged 890 
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across days. Our behavioral quantification via the AI-based pipeline reveals that the food-891 

sharing event with infants occurs more frequently in male than in female parents (df=25, 892 

t=4.55, p=0.0001).  893 
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Fig. 4. Quantification of the internal state predicted from actions. 894 

a: Design of a food-competition task. The partner (P)’s internal state (either full or hungry) 895 

was controlled before the main experiment without notifying the subject (S). b: Exemplified 896 

scene during the task and the magnified face of the subject (Inset). A valuable food (gum 897 

ball) was given only to the subject. The partner might simply display no interest in the food, 898 

or attempt to take away the food from the subject, and, therefore, the subject should pay 899 
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attention to the partner. c: Schemes of analytic approaches using long-short-term-memory 900 

(LSTM) networks. Two different LSTMs with the same architecture, i.e., LSTMpartner and 901 

LSTMsubject, were trained to predict the partner’s internal state from either the partner’s or 902 

the subject’s actions as input. d and e: Time-courses of the predicted internal state of the 903 

partner obtained as the output from the LSTMpartner and LSTMsubject, respectively. Higher 904 

scores indicate the behavior in a hungrier state. Images in the lower panels are the scenes 905 

corresponding to the frames specified by the numbers in brackets in the upper row. 906 

Behavioral types indicated in white were determined by visual inspection of video 907 

recordings. Two examples shown here were derived from the hungry condition. f: Predicted 908 

internal state of the partner. Note that there are clear differences between the two conditions, 909 

while subtle variations within a trial or across days are also quantified. g: Performance of 910 

the LSTMpartner and LSTMsubject to discriminate conditions. The training and test of the 911 

networks were conducted in different subsets from the whole dataset. Shown is the average 912 

accuracy across all trials. Errors denote standard errors. The internal state of the partner can 913 

accurately be predicted not only from the actions of the partner itself, but also from those of 914 

the subject (binomial test; ps<0.0006, n=56 for each condition).  915 
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 916 
 917 

Fig. 5. Response to partner’s action changes according to the internal state. 918 

a: Relationship between the instantaneous LSTM output of the partner and the subject. The 919 

likelihood of the partner’s hungry state predicted from the subject’s actions is positively 920 

correlated with that from the partner’s actions (r=0.22, p<0.001 and r=0.045, p=0.007 for 921 

the full and hungry condition respectively). Importantly, at the same level of the LSTMpartner 922 

output, the LSTMsubject output is substantially different across conditions. b: The partner’s 923 

internal state predicted from the subject’s actions at different levels of the LSTMpartner output. 924 

Light-colored bars represent the distributions of the LSTMpartner output, and thicken bars 925 

represent median. At all levels of the LSTMpartner output, the LSTMsubject output is 926 

significantly different according to the partner’s internal state (ps < 0.001) indicating that 927 

the subject’s response to similar actions by the partner changes according to the partner’s 928 
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internal state.. c: Look-back behavior when two marmosets interact with each other. On the 929 

left side, five images are arranged in a time-series fashion from the top to the bottom. The 930 

left animal is the partner, and the right animal is the subject. Red circles indicate the timing 931 

when one marmoset was looking at the other. On the right side, a diagram shows time-932 

dependent changes in the head angle of one marmoset towards the other. The partner directed 933 

the head towards the subject, and the subject looked back at the partner. d: Time-dependent 934 

changes in the subject’s gaze towards the partner aligned by the onset of the partner’s gaze. 935 

The y-axis represents the changes in the subject’s look-back behavior from baseline period 936 

( -1 ~ 0s) . In a full (blue) or hungry (red) condition, the line and shaded zone represent the 937 

mean and standard error, respectively. The bar plots represent sum and standard error of 938 

look-back response between 0.5 to 1.5s, showing significant difference across conditions 939 

(df=555, t=2.77, p=0.0058) Note that the subject looked back at the partner more frequently 940 

in the hungry than in the full condition.  941 
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Fig. 6. Longitudinal evaluation of progressive motor symptoms in a PD model 942 

marmoset. 943 

a: Left, site of combined injections of AAV vector carrying the mutant α-syn gene and 944 

pathological α-syn fibril seed in the substantia nigra compacta (SNc) indicated by the white 945 

arrow. Natural behaviors were recorded on two consecutive days per month before and after 946 

the injections. Right, section of tyrosine hydroxylase (TH) staining showing the lateralized 947 

degradation of TH in the SNc and the caudate, a projection target of the SNc. b: Results of 948 

the unsupervised action motif clustering. Each dot represents an instance of action which 949 

was plotted on the axes of the first three principal components (PC1-3) used for the action 950 
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classification, and each color corresponds to the classified action. c: Heatmap representing 951 

the frequency of each action motif cluster observed over longitudinal recordings from the 952 

pre-injections to 12 months post-injections. d: Examples of the most frequently observed 953 

actions before and after the injections. Before the injections (cluster 45, 48 and 49), quick 954 

locomotion, such as jumping, gallop, and quick turning, was mainly observed. In contrast, a 955 

variety of “stay” postures with slight differences were primarily seen after the injections (2, 956 

4 and 5). Exemplified images were taken from the videographic data. Each number 957 

corresponds to an action cluster in c. e: Time-course for the frequency of occurrence of 958 

action clusters shown in d. f: Representative postures which seem similar though clustered 959 

into different classes. Note the differences in the tilt angle and azimuth of the head between 960 

the pre-injection (i.e., 54) and the post-injection (i.e., 2). Front, frontal view. Lateral, lateral 961 

view. g: Time-course for the frequency of occurrence of action clusters shown in f. h: 962 

Histograms of the locomotion speed in different months. Red triangles represent a decreasing 963 

trend of fast locomotion as the progression of motor symptoms. i: Analysis of bradykinesia 964 

as assessed with changes in the frequency of fast locomotion (0.5 m/s) over several months. 965 

The dotted horizontal lines indicate upper and lower bound of the 95% confidential interval 966 

for pre-injections data (note that these bounds were so close so that it is hard to see the gap). 967 

j: Analysis of abnormal posture in the neck as assessed with changes in the tilt angle and 968 

azimuth of the head over several months. The dotted horizontal lines indicate 95% 969 

confidential as in I (again, the bounds were so close). 970 
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 971 

Fig. 7. Overview of comprehensive approaches to quantification of marmoset natural 972 

behaviors based on 3D poses. 973 

Analytic workflow in the present study. The 3D pose time-course data per se are merely 974 

pieces of spatiotemporal information about body postures involving the limb positions. 975 

However, by combining with proper downstream analytic methodologies, the data allow us 976 

to elucidate a wide spectrum of behavioral parameters based on the 3D poses alone. 977 

 978 
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