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Abstract

The advent and success of foundation models such as GPT has sparked growing interest in
their application to single-cell biology. Models like Geneformer and scGPT have emerged
with the promise of serving as versatile tools for this specialized field. However, the efficacy
of these models, particularly in zero-shot settings where models are not fine-tuned but used
without any further training, remains an open question, especially as practical constraints
require useful models to function in settings that preclude fine-tuning (e.g., discovery settings
where labels are not fully known). This paper presents a rigorous evaluation of the zero-shot
performance of these proposed single-cell foundation models. We assess their utility in tasks
such as cell type clustering and batch effect correction, and evaluate the generality of their
pretraining objectives. Our results indicate that both Geneformer and scGPT exhibit limited
reliability in zero-shot settings and often underperform compared to simpler methods. These
findings serve as a cautionary note for the deployment of proposed single-cell foundation
models and highlight the need for more focused research to realize their potential.2

1 Introduction

The emergence of foundation models in machine learning has been both transformative and rapid, as evidenced
by the success of systems like ChatGPT [1] and DALL·E [2]. Foundation models are machine learning
methods pretrained on huge amounts of data, where the aim of the pretraining is to enable models to capture
universal patterns in data [3]. These models serve as adaptable starting points that can either be fine-tuned,
which involves a small amount of additional training to prompt the model to produce specific predictive
outputs, or used zero-shot, which involves extracting the model’s internal representation of input data (an
"embedding") for downstream analysis with no further task-specific training.

In single-cell biology, the foundation model framework offers an avenue for automating complex tasks,
such as cell type identification and gene expression prediction. Emerging research has begun to explore the
potential of foundation models in single-cell biology, particularly in single-cell transcriptomics, with several
models now available. These include scBERT [4], Genefomer [5], scGPT [6], scFoundation [7], SCimilarity
[8], and GeneCompass [9], which all present themselves as general models applicable to diverse analyses.

To evaluate their models, most previous works—including scGPT and Geneformer—rely on fine-tuning
to specialize task-specific models. While this approach is a well-established practice in fields like natural
language processing, its limitations become evident when applied to single-cell biology. Firstly, fine-tuning
commonly requires a prediction problem with defined labels. However, much of the work in single-cell
biology is inherently exploratory, where labels may not be available a priori. For instance, biologists often
cluster latent representations of single-cell gene expressions to discover new cell types without pre-existing
knowledge or imposed bias on the discovery process [10, 11, 12]. Secondly, the practicality of fine-tuning

∗Work performed while interning at Microsoft Research New England.
2The code used for our analyses can be accessed at https://github.com/microsoft/zero-shot-scfoundation.
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poses challenges for many labs. Even minimally fine-tuning foundation models can require extensive GPU
resources, given that, for example, scGPT’s architecture relies on the use of FlashAttention [13] not available
for older and smaller graphics cards3. Finally, zero-shot evaluation helps test the claim that pretraining
promotes a foundational understanding of biology by exposing whether pre-training provides meaningful
improvement over randomly initialized untrained models [14, 15, 16]. In alignment with these challenges,
zero-shot capabilities have been rigorously evaluated in many other biological domains. In microscopy
image analysis, for example, mainstream computer vision models have been shown to retrieve relevant image
phenotypes without fine-tuning [17]. Similarly, language models tailored for protein sequences provide useful
features for various protein engineering tasks even in zero-shot settings [18, 19, 20].

In this study, we assessed the zero-shot performance of two proposed foundation models in single-cell
biology: Geneformer [5] and scGPT [6]. We selected these models as representative examples in a rapidly
evolving field that includes other approaches like scBERT [4], scFoundation [7], SCimilarity [8], and
GeneCompass [9]. Our assessment covers a range of tasks, including the utility of embeddings for cell type
clustering, batch effect correction, and the effectiveness of the models’ input reconstruction based on the
pretraining objectives (Fig. 1). Our findings indicate that Geneformer and scGPT are unreliable when applied
in zero-shot scenarios. In tasks such as clustering and batch effect correction, they do not outperform simpler
dimensionality reduction techniques. Further, our evaluation reveals that their pretraining objectives do not
provide meaningful or useful information for biological applications. Together, our results caution against
the use of proposed single-cell foundation models in zero-shot settings and suggest that current pretraining
methods may not be initializing models with a general basis for transfer across biological settings.

Figure 1: Overview of the evaluation setup. Our evaluation framework centers around two proposed
foundation models, Geneformer and scGPT, and compares them to established methods like scVI and
simpler strategies such as selecting highly variable genes (HVG) or predicting mean expression. To ensure
comprehensive assessments, we curated a diverse set of five datasets. Our evaluation encompasses multiple
facets, including the quality of cell embeddings for tasks like cell type clustering and batch integration.
Additionally, we scrutinized the models’ performance with respect to their pretraining objectives.

2 Methodology

2.1 Models and baselines

We evaluated two proposed foundation models for single-cell transcriptomics: Geneformer [5] and scGPT [6].
We chose these models because they offer pretrained weights (whereas several other possible models did not
have public weights at time of evaluation) and have been trained using unsupervised objectives on extensive
datasets (ca. 30M single-cell transcriptomes). Here, we provide an overview of these models, including their
practices for extracting cell embeddings, or latent representations of single-cells, which we follow for our
analyses.

Both models accept single-cell gene expression vectors as input but represent input data differently. The input
to the Geneformer model is a ranked list where the gene’s position represents the gene’s expression relative
to the remaining genes in the cell. The model leverages a BERT-inspired architecture with 6 Transformer
layers, each with 4 attention heads. Geneformer is trained using a modification of the masked language
modeling (MLM) task, where the model is trained to recover randomly selected genes that are masked or

3FlashAttention currently supports Ampere, Ada, or Hopper GPUs (e.g., A100, RTX 3090, RTX 4090, H100) and Turing GPUs
(T4, RTX 2080). Currently, no plans exist to support other GPUs, such as the popular V100.
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corrupted. Since genes are ordered by their expression, this effectively predicts gene expression relative to
other genes. The model outputs gene embeddings, which are subsequently decoded into gene predictions. A
cell embedding is calculated by averaging over all gene embeddings extracted for that cell. Genefomer was
pretrained on 27.4M human single-cell transcriptomes (excluding malignant and immortalized cells).

scGPT preprocesses each gene expression vector by independently binning values into 50 equidistant bins
where the lowest bin is the lowest expression and the highest bin the highest expression. Next, the binned
values and the gene token (i.e. a unique index for each gene) are separately embedded, and summed in the
embedding space, jointly representing the gene and its binned expression. Like Geneformer, scGPT uses an
MLM task. However, scGPT directly learns a cell embedding, which is integrated into its pretraining loss
of predicting masked genes: scGPT first predicts a masked gene expression bin and a cell embedding from
unmasked genes and then, in a second step, further iteratively refines masked gene expression using the cell
embedding predicted in the first step. This means that scGPT outputs two sets of binned gene predictions in
its pretraining task, first from unmasked genes alone and second from conditioning on the cell embedding. In
our effort to understand the generalization of the pretraining objectives, we analyzed both. Finally, compared
to Geneformer, scGPT has 3× the parameters, using 12 Transformer layers with 8 attention heads. scGPT
is available in several variants, pretrained on multiple different datasets. In our analyses, we focused on
three variants of scGPT: pretrained on 814,000 kidney cells (scGPT kidney), on 10.3 million blood and bone
marrow cells (scGPT blood), and on 33 million non-cancerous human cells (scGPT human).

For baselines in evaluating cell embeddings, we compared Geneformer and scGPT against selecting highly
variable genes (HVGs). We standardize to 2,000 HVGs across all experiments. In addition, we compared all
methods to scVI, a scalable generative model [21] which we trained on each individual dataset. While this
means that we deploy scGPT and Geneformer zero-shot while training scVI on target data unsupervised, we
reasoned this set-up reflects practical settings where resources are available to train lightweight models, but
not to fine-tune large models. For the evaluation of the pretraining objective, we used the mean estimates or
average ranking as a reference.

2.2 Datasets

To assess the quality of cell embeddings and performance on batch integration tasks, we used five distinct
human tissue datasets (Table 1). These datasets include samples from the pancreas [22], two sets of peripheral
blood mononuclear cells (PBMCs) [23, 24], a cross-tissue immune cell atlas [25], and a multi-organ human
cell atlas [26]. Each dataset poses unique challenges relevant to single-cell analysis, such as the distinction
between well-defined and less well-defined cell type clusters, the integration of different technical batches
within the same tissue, and the unification of data across multiple tissues.

Dataset name Description No. of cells No. of labels No. of batches Ref.

Pancreas Cells from human pancreas created by 16k 14 6 [22]
combining data spanning 5 studies.

PBMC PBMCs from a healthy donor. 12k 9 2 [23] 4

PBMC PBMCs from a healthy donor. 95k 10 1 [24]

Immune Immune cells extracted from 16 different tissues 330k 45 31 [25]
across 12 adult organ donors.

Tabula Sapiens Cells from 24 different tissues 483k 24 27 [26]
across 15 human donors.

Table 1: Overview of the used datasets.

Among the selected datasets, the Pancreas dataset partially overlapped with the data used to pretrain Gene-
former. We conducted evaluations using both the complete Pancreas dataset and its non-overlapping subset.
The results were highly consistent between the two, leading us to include the entire Pancreas dataset for sim-
plicity in this evaluation. At the time of dataset selection, information on the data used for scGPT’s pretraining
was unavailable, preventing us from determining any potential overlaps at the time of our evaluations.

4Data available via data.pbmc_dataset function from scvi-tools [23] Python package.

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.16.561085doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.16.561085
http://creativecommons.org/licenses/by-nc/4.0/


2.3 Evaluation metrics

In this work, we evaluated the cell embedding space for its ability to separate known cell types correctly and
to integrate different batches. We also evaluated the performance of the models at the pretraining task by
evaluating their reconstruction accuracy.

2.3.1 Average silhouette width (ASW) and average BIO (AvgBIO) scores

One key aspect of evaluating cell embeddings is the degree to which cell types are distinct within the
embedding space. To assess this, we employ metrics based on the Average Silhouette Width (ASW) [22] and
the Average Bio (AvgBIO) scores [6]. Briefly, ASW is computed by taking the difference of the between-
cluster and within-cluster distances and dividing this by the larger of the two values. ASW is normalized to a
range between 0 and 1, where 0 signifies strong within-cluster cohesion, 0.5 indicates overlapping clusters,
and 1 denotes well-separated clusters. Higher ASW indicates better performance in separating clusters.
AvgBIO is the arithmetic mean of three individual metrics: ASW, Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI), as defined in [6]. NMI and ARI are calculated based on Louvain clusters
generated directly from the embedding space [22, 6]. AvgBIO is normalized to a 0-1 scale, with higher values
indicating better alignment between clusters and ground truth labels.

2.3.2 Batch integration score

To evaluate batch integration, we used a variation of the AWS score (as described in [22]). Briefly, the
silhouette scores are calculated with respect to the batch label by taking only its absolute value, where a score
of 0 is equivalent to absolute mixing and any deviation from 0 indicates the presence of a batch effect. To
keep with the used convention, the score is then subtracted from 1, resulting in final scores on a scale between
0 and 1, where a final score of 0 suggests complete separation of the batches and strong batch effect and 1
signifies a perfect batch mixing and integration.

2.3.3 Reconstructing gene expression

To evaluate the performance of scGPT in its pretraining objective, we used the mean squared error (MSE),
as used by the authors for the model’s loss [6]. To evaluate Geneformer’s performance in its pretraining
objective, we measured the Pearson’s correlation between the true and predicted ranked lists.

3 Results

3.1 Cell type clustering

Current proposed single-cell foundation models produce cell embeddings. These embeddings are intended
to project potentially noisy gene expression measurements to a more biologically relevant latent space and
to thus improve our ability to resolve cell types, consistent with previous machine learning methods in this
field (including scVI) [27, 28, 21, 29]. Both scGPT and Geneformer fine-tune their cell embeddings for cell
type classification. However, this strategy fails in more exploratory contexts where cell composition in the
dataset may not be known. For these applications, foundation models must produce robust cell embeddings
zero-shot. Therefore, we evaluated the zero-shot performance of scGPT and Geneformer in separating known
cell types across multiple datasets. We also compared these approaches to a baseline strategy of selecting
highly variable genes (HVGs) and to an unsupervised learning model, scVI.

We evaluated cell type clustering using two metrics, ASW and AvgBIO. For both metrics, Geneformer and
scGPT performed worse than our baseline strategies. For ASW, scVI consistently performed well, achieving
a median ASW of 0.54 and hitting a low of 0.47 in the Tabula Sapiens dataset (Fig. 2A). Geneformer’s
performance was more variable, with scores ranging from a high of 0.51 in the PBMC (95k) dataset to a low
of 0.37 and 0.38 in the Tabula Sapiend and Pancreas (16k) datasets, respectively. scGPT’s performance was
comparable with scVI, with median ASW equal to 0.53 and 0.54, respectively. Notably, HVG outperforms
Geneformer in all datasets except PBMC. For AvgBIO, HVG surpassed all other models in AvgBIO score in
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Figure 2: Proposed single-cell foundation models fail to outperform cell embeddings derived from HVG
or generated using the scVI model. A Average silhouette width score and B Average BIO score (described
in Section 2.3.1) calculated on the highly variable genes (HVG) of the log normalized input data and on the
embeddings extracted from scVI, scGPT, and Geneformer models. Median value annotated with a dashed
line. A higher score indicates better performance in separating clusters.

three out of five datasets (Fig. 2B). In the PBMC (12k) dataset, scVI, and scGPT performed similarly - both
scoring 0.69, while HVG matched the performance of Geneformer, achieving a score of 0.60. In the PBMC
(95k) dataset, scVI reached a score of 0.59, while HVG lagged slightly behind with a score of 0.53.
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Figure 3: Scope of the pretraining dataset
does not translate into better perfor-
mance at separating the cell types in cell
embedding space. Average BIO score (de-
scribed in 2.3.1) calculated on the embed-
dings extracted from selected variations of
the scGPT models. The dashed line marks
the median score across datasets.

Foundation models usually employ self-supervised tasks to en-
able scalability since they can train on any dataset, not just ones
with labels [3]. However, it is unclear if pretraining on larger
datasets improves the cell embeddings learned by proposed
single-cell foundation models. Therefore, we next assessed the
impact of the pretraining dataset on model performance. We
focused on scGPT due to its release of weights pretrained on
various datasets. We assessed four different models: randomly
initialized scGPT as a baseline with no pretraining, scGPT
pretrained on 814,000 kidney cells (scGPT kidney), on 10.3
million blood and bone marrow cells (scGPT blood), and on
33 million non-cancerous human cells (scGPT human). One
limitation of our analysis is the smaller models are trained on
tissue-specific data, confounding if differences in performance
are due to size or the composition of dataset. However, at
minimum, scGPT human includes all data used to train scGPT
blood and scGPT kidney. We hypothesized that scGPT-human’s
performance should not decrease relative to the other models,
and that models trained on closely-aligned datasets should, in
theory, out-perform random untrained models (although we show full results in Fig. 3 for posterity).

Surprisingly, scGPT human (AvgBIO 0.44) underperforms scGPT kidney, which has the highest median
AvgBIO score of 0.52. Moreover, the performance of scGPT blood on the PBMC dataset was close to that of
the randomly initialized model, suggesting that the performance of the cell embeddings remains poor even
with datasets closely aligned with pretraining data.

Overall, our findings demonstrate that foundation models in zero-shot configurations generally fail to
outperform cell embeddings derived from HVG or generated using the scVI model. Evaluating variants of
the scGPT model also highlights that pretraining on datasets spanning the same tissues does not necessarily
equate to performance above random initialization.
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3.2 Batch integration

Next, we sought to assess the zero-shot capabilities of proposed single-cell foundation models in batch
integration. Single-cell transcriptomics experiments, like all biological experiments, are impacted by batch
effects - systematic technical differences present when integrating data over different experiments, sequencing
technologies, or even when the experiment is reproduced for the same biological replicates. Due to batch
effects, tasks like mapping a new experiment to a reference atlas to identify the cell types present in the
data can fail. Hence, a common task in single-cell analysis is to eliminate batch effects without removing
meaningful biological differences, allowing for data integration [10, 11, 12].
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Figure 4: Zero-shot foundation models perform poorly at integrating batches of Pancreas dataset. A, B
Visualization of the UMAP projections of the pancreas dataset using normalized input data, normalized input
data preselected for highly variable genes (HVG), and cell embeddings generated by scVI, Geneformer and
scGPT human. Cells are color-coded by cell type (A) and batch (B).
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Figure 5: HVG selection out-
performs proposed foundation
models. Batch integration score
(described in Section 2.3.2) cal-
culated for all four datasets with
at least two batches.

We began with a qualitative evaluation of the Pancreas dataset, a com-
mon batch integration benchmark that includes data from five different
sources [22]. As commonly done in single-cell transcriptomics, we used
UMAP projections to visually inspect embeddings (Fig. 4). By annotating
the UMAP by cell type (Fig. 4A) versus experimental technique (Fig. 4B),
we jointly assess if cell embeddings correct for batch effects stemming
from techniques while still retaining cell type identity. As demonstrated by
the UMAP of all genes, batch effects impact this data, with experimental
techniques separated (and also forming sub-clusters, some of which are
a result of different batches taken with the same technique) (Fig. 4B).

Overall, we observed that while Geneformer and scGPT-human can inte-
grate different experiments conducted with the same experimental tech-
nique, they generally fail to correct for batch effects between techniques.
As depicted in Fig. 4A, the cell embedding space generated by Gene-
former fails to retain information about cell type, and any clustering is
primarily driven by batch effects (Fig. 4B). On the other hand, the space
created by scGPT offers some separation of cell types (Fig. 4A), but the
primary structure in the dimensionality reduction is driven by batch ef-

fects (Fig. 4B). In contrast, even the simple baseline of selecting highly variable genes (HVG) qualitatively
produces a similar or better result to scGPT, with the Smarter technique now being integrated with InDrop.
Finally, we observed that scVI mostly integrates this dataset, forming clusters primarily due to cell type, with
most techniques in the same cluster.
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To support these qualitative results, we produced batch integration metrics for each of our five datasets
(Fig. 4C). Geneformer underperforms compared to both scGPT and scVI across most datasets, achieving
a median batch integration score of only 0.79. scVI outperforms scGPT in datasets where the batch is
restricted to the technical variation (Pancreas and PBMC datasets), and scGPT performs better in more
complex datasets where both technical and biological batch effects are present (Immune and Tabula Sapiens
datasets). Surprisingly, the best batch integration scores for all datasets were achieved by selecting HVG.
This observation is slightly different from our qualitative evaluations of the UMAPs where scVI performs
better, and can be explained by shifts in our rankings calculating metrics in full rather reduced dimensions as
seen in Fig. S2 (we note that trained proposed foundation models underperform baselines in both settings).

In summary, our evaluation suggests that Geneformer and scGPT are not fully robust to batch effects in
zero-shot settings, often lagging behind existing methods like scVI, or simple data curation strategies like
selecting for HVG, particularly when batch effects are more severe.

3.3 Pretraining objective

Nex, to understand why Geneformer and scGPT underperform compared to baselines zero-shot, we posited
two hypotheses. First, it could be that the masked language modeling pretraining framework used by both
scGPT and Geneformer does not produce useful cell embeddings. The second could be that scGPT and
Geneformer have failed to generalize the pretraining task. Understanding this distinction could produce
insights for future directions. For example, if the models are reconstructing masked gene expression well for
our evaluation datasets but still failing to produce informative cell embeddings, this implies that a different
task may need to be designed; while if the models fail to predict gene expression accurately, improvements to
learning the pretraining task could still potentially improve the cell embeddings of these models.
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Figure 6: scGPT and Geneformer struggle with reconstructing gene expression. Reconstruction of the
PBMC (12k) dataset with A the output of the MLM task in scGPT model, B expression prediction from cell
embedding in scGPT, and C output of masked prediction in Geneformer model.

Evaluating whether models reconstruct masked gene expression accurately requires us to select how many
genes are masked in input. In training, both models select a percentage of genes to mask. However, following
a similar procedure for evaluation introduces stochasticity, and re-running random samples and/or iterating
over genes to account for this is computationally expensive. We, therefore, use all genes unmasked as input.
Not only does this eliminate stochasticity from sampling masked genes, but it also reflects the maximally
informative setting where models are asked to reconstruct genes given complete, not partial, input.

To gauge the quality of these reconstructions, we compared them to their true values. For scGPT, we
compared the bin value for each gene. Since scGPT produces gene predictions at two stages (with and
without conditioning from its cell embedding), we report both. For Geneformer, we compared the gene
rankings. Fig. 6 illustrates that both models face challenges in reconstructing gene expression. Without
conditioning on cell embedding, scGPT predicts the mean value of the input bin across all bin values (Fig.
6A). Predictions improve when conditioned on cell embeddings, particularly for higher input values (Fig.
6B). Geneformer also shows limitations. Under its MLM objective, it predicts the most likely gene at a given
position. Although there is a strong positive correlation for high-expression genes, the model fails to predict
low-expression genes (Fig. 6C), similar to scGPT when conditioned on cell embeddings.
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Figure 7: scGPT models perform similarly to when mean values are used. A MSE for the reconstructed
input compared to the input for the two objectives of scGPT: masked expression prediction (GEP) and gene
expression prediction from cell embedding (GEPC). The median value of the MSE for the mean used for
reconstruction indicated by a dashed line.

Next, we compared the performance of scGPT against a naive baseline of just predicting the mean expression
value of a gene. Surprisingly, this baseline prediction outperformed all scGPT variants when not using cell
embeddings (Fig. 7), with only marginal improvements observed when conditioning on cell embedding.
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Geneformer does not directly predict expression but generates a ranked
list of genes. To evaluate Geneformer, we therefore measure Pearson’s
correlation between the predicted ranking of genes and the actual gene
ranking. Overall, there was only a moderate correlation (Fig. 8), with
the median correlation across all five datasets of 0.59, with a best
correlation of 0.96 on the PBMC (95k) dataset.

4 Discussion

In this work, we evaluated two proposed foundation models for single-
cell biology – Geneformer and scGPT – and demonstrated their un-
reliability in zero-shot settings. In cell type clustering analyses, both
models fail to improve reliably over scVI. Critically, for some datasets,
the proposed foundation models perform worse at clustering cell types
than just selecting highly variable genes. At least for scGPT, we show
that matching the tissue of origin of the pretraining dataset to the target
task does not guarantee performance over even random initialization,
and that increasing the size and diversity of the pretraining dataset
over smaller tissue-specific data can sometimes decrease performance.
This suggests more research is needed to articulate the relationship
between pretraining data and performance. We also demonstrate that
these models are not fully robust to batch effects in zero-shot settings,
often lagging behind methods like scVI or simple data curation strategies like selecting for HVG.

Together, our results caution against using current single-cell transcriptomic foundation models in zero-shot
settings. Our analyses provide some insight on where future work needs to be concentrated to build bonafide
foundation models that are truly useful in these settings. We showed that neither scGPT nor Geneformer can
accurately predict gene expression on our evaluation datasets, even though these models are directly trained
to predict gene expression via their pre-training tasks. Notably, scGPT defaults to predicting the median bin
when only given access to gene embeddings (and not a cell embedding). This raises the possibility that current
adaptations of masked language modeling (MLM) are not effective at learning gene embeddings, which
would also impact Geneformer, given that it produces a cell embedding by averaging over gene embeddings.
Whether MLM, in general, is suited for learning single-cell embeddings is still an open question, but our work
suggests that current models are not effective at generalizing the MLM objective and that a good next step in
the field would be to improve the representation of genes and gene expression to overcome this challenge.
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