
Assessing the limits of zero-shot foundation models in single-cell biology

Kasia Z. Kedzierska^{1,*}, Lorin Crawford², Ava P. Amini², Alex X. Lu²

¹University of Oxford, Oxford, UK; ²Microsoft Research, Cambridge, MA, USA
kasia@well.ox.ac.uk, {lcrawford, ava.amini, lualex}@microsoft.com

Abstract

The advent and success of foundation models such as GPT has sparked growing interest in their application to single-cell biology. Models like Geneformer and scGPT have emerged with the promise of serving as versatile tools for this specialized field. However, the efficacy of these models, particularly in zero-shot settings where models are not fine-tuned but used without any further training, remains an open question, especially as practical constraints require useful models to function in settings that preclude fine-tuning (e.g., discovery settings where labels are not fully known). This paper presents a rigorous evaluation of the zero-shot performance of these proposed single-cell foundation models. We assess their utility in tasks such as cell type clustering and batch effect correction, and evaluate the generality of their pretraining objectives. Our results indicate that both Geneformer and scGPT exhibit limited reliability in zero-shot settings and often underperform compared to simpler methods. These findings serve as a cautionary note for the deployment of proposed single-cell foundation models and highlight the need for more focused research to realize their potential.²

1 Introduction

The emergence of foundation models in machine learning has been both transformative and rapid, as evidenced by the success of systems like ChatGPT [1] and DALL·E [2]. Foundation models are machine learning methods pretrained on huge amounts of data, where the aim of the pretraining is to enable models to capture universal patterns in data [3]. These models serve as adaptable starting points that can either be fine-tuned, which involves a small amount of additional training to prompt the model to produce specific predictive outputs, or used zero-shot, which involves extracting the model's internal representation of input data (an "embedding") for downstream analysis with no further task-specific training.

In single-cell biology, the foundation model framework offers an avenue for automating complex tasks, such as cell type identification and gene expression prediction. Emerging research has begun to explore the potential of foundation models in single-cell biology, particularly in single-cell transcriptomics, with several models now available. These include scBERT [4], Geneformer [5], scGPT [6], scFoundation [7], SCimilarity [8], and GeneCompass [9], which all present themselves as general models applicable to diverse analyses.

To evaluate their models, most previous works—including scGPT and Geneformer—rely on fine-tuning to specialize task-specific models. While this approach is a well-established practice in fields like natural language processing, its limitations become evident when applied to single-cell biology. Firstly, fine-tuning commonly requires a prediction problem with defined labels. However, much of the work in single-cell biology is inherently exploratory, where labels may not be available *a priori*. For instance, biologists often cluster latent representations of single-cell gene expressions to discover new cell types without pre-existing knowledge or imposed bias on the discovery process [10, 11, 12]. Secondly, the practicality of fine-tuning

^{*}Work performed while interning at Microsoft Research New England.

²The code used for our analyses can be accessed at <https://github.com/microsoft/zero-shot-scfoundation>.

poses challenges for many labs. Even minimally fine-tuning foundation models can require extensive GPU resources, given that, for example, scGPT’s architecture relies on the use of FlashAttention [13] not available for older and smaller graphics cards³. Finally, zero-shot evaluation helps test the claim that pretraining promotes a foundational understanding of biology by exposing whether pre-training provides meaningful improvement over randomly initialized untrained models [14, 15, 16]. In alignment with these challenges, zero-shot capabilities have been rigorously evaluated in many other biological domains. In microscopy image analysis, for example, mainstream computer vision models have been shown to retrieve relevant image phenotypes without fine-tuning [17]. Similarly, language models tailored for protein sequences provide useful features for various protein engineering tasks even in zero-shot settings [18, 19, 20].

In this study, we assessed the zero-shot performance of two proposed foundation models in single-cell biology: Geneformer [5] and scGPT [6]. We selected these models as representative examples in a rapidly evolving field that includes other approaches like scBERT [4], scFoundation [7], SCimilarity [8], and GeneCompass [9]. Our assessment covers a range of tasks, including the utility of embeddings for cell type clustering, batch effect correction, and the effectiveness of the models’ input reconstruction based on the pretraining objectives (Fig. 1). Our findings indicate that Geneformer and scGPT are unreliable when applied in zero-shot scenarios. In tasks such as clustering and batch effect correction, they do not outperform simpler dimensionality reduction techniques. Further, our evaluation reveals that their pretraining objectives do not provide meaningful or useful information for biological applications. Together, our results caution against the use of proposed single-cell foundation models in zero-shot settings and suggest that current pretraining methods may not be initializing models with a general basis for transfer across biological settings.

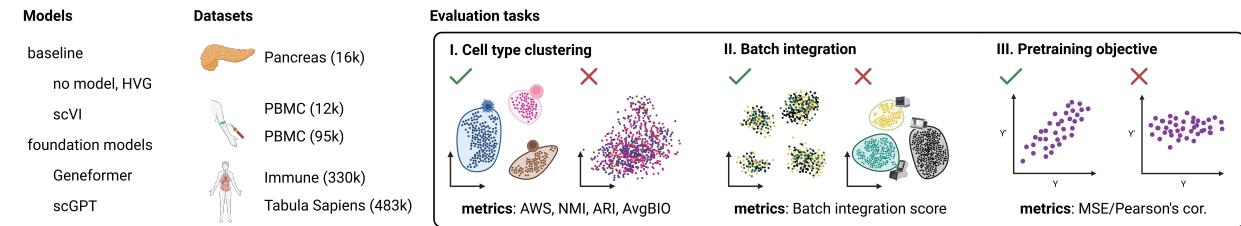


Figure 1: Overview of the evaluation setup. Our evaluation framework centers around two proposed foundation models, Geneformer and scGPT, and compares them to established methods like scVI and simpler strategies such as selecting highly variable genes (HVG) or predicting mean expression. To ensure comprehensive assessments, we curated a diverse set of five datasets. Our evaluation encompasses multiple facets, including the quality of cell embeddings for tasks like cell type clustering and batch integration. Additionally, we scrutinized the models’ performance with respect to their pretraining objectives.

2 Methodology

2.1 Models and baselines

We evaluated two proposed foundation models for single-cell transcriptomics: Geneformer [5] and scGPT [6]. We chose these models because they offer pretrained weights (whereas several other possible models did not have public weights at time of evaluation) and have been trained using unsupervised objectives on extensive datasets (ca. 30M single-cell transcriptomes). Here, we provide an overview of these models, including their practices for extracting cell embeddings, or latent representations of single-cells, which we follow for our analyses.

Both models accept single-cell gene expression vectors as input but represent input data differently. The input to the Geneformer model is a ranked list where the gene’s position represents the gene’s expression relative to the remaining genes in the cell. The model leverages a BERT-inspired architecture with 6 Transformer layers, each with 4 attention heads. Geneformer is trained using a modification of the masked language modeling (MLM) task, where the model is trained to recover randomly selected genes that are masked or

³FlashAttention currently supports Ampere, Ada, or Hopper GPUs (e.g., A100, RTX 3090, RTX 4090, H100) and Turing GPUs (T4, RTX 2080). Currently, no plans exist to support other GPUs, such as the popular V100.

corrupted. Since genes are ordered by their expression, this effectively predicts gene expression relative to other genes. The model outputs gene embeddings, which are subsequently decoded into gene predictions. A cell embedding is calculated by averaging over all gene embeddings extracted for that cell. Genefomer was pretrained on 27.4M human single-cell transcriptomes (excluding malignant and immortalized cells).

scGPT preprocesses each gene expression vector by independently binning values into 50 equidistant bins where the lowest bin is the lowest expression and the highest bin the highest expression. Next, the binned values and the gene token (i.e. a unique index for each gene) are separately embedded, and summed in the embedding space, jointly representing the gene and its binned expression. Like Geneformer, scGPT uses an MLM task. However, scGPT directly learns a cell embedding, which is integrated into its pretraining loss of predicting masked genes: scGPT first predicts a masked gene expression bin and a cell embedding from unmasked genes and then, in a second step, further iteratively refines masked gene expression using the cell embedding predicted in the first step. This means that scGPT outputs two sets of binned gene predictions in its pretraining task, first from unmasked genes alone and second from conditioning on the cell embedding. In our effort to understand the generalization of the pretraining objectives, we analyzed both. Finally, compared to Geneformer, scGPT has $3\times$ the parameters, using 12 Transformer layers with 8 attention heads. scGPT is available in several variants, pretrained on multiple different datasets. In our analyses, we focused on three variants of scGPT: pretrained on 814,000 kidney cells (scGPT kidney), on 10.3 million blood and bone marrow cells (scGPT blood), and on 33 million non-cancerous human cells (scGPT human).

For baselines in evaluating cell embeddings, we compared Geneformer and scGPT against selecting highly variable genes (HVGs). We standardize to 2,000 HVGs across all experiments. In addition, we compared all methods to scVI, a scalable generative model [21] which we trained on each individual dataset. While this means that we deploy scGPT and Geneformer zero-shot while training scVI on target data unsupervised, we reasoned this set-up reflects practical settings where resources are available to train lightweight models, but not to fine-tune large models. For the evaluation of the pretraining objective, we used the mean estimates or average ranking as a reference.

2.2 Datasets

To assess the quality of cell embeddings and performance on batch integration tasks, we used five distinct human tissue datasets (Table 1). These datasets include samples from the pancreas [22], two sets of peripheral blood mononuclear cells (PBMCs) [23, 24], a cross-tissue immune cell atlas [25], and a multi-organ human cell atlas [26]. Each dataset poses unique challenges relevant to single-cell analysis, such as the distinction between well-defined and less well-defined cell type clusters, the integration of different technical batches within the same tissue, and the unification of data across multiple tissues.

Dataset name	Description	No. of cells	No. of labels	No. of batches	Ref.
Pancreas	Cells from human pancreas created by combining data spanning 5 studies.	16k	14	6	[22]
PBMC	PBMCs from a healthy donor.	12k	9	2	[23] ⁴
PBMC	PBMCs from a healthy donor.	95k	10	1	[24]
Immune	Immune cells extracted from 16 different tissues across 12 adult organ donors.	330k	45	31	[25]
Tabula Sapiens	Cells from 24 different tissues across 15 human donors.	483k	24	27	[26]

Table 1: Overview of the used datasets.

Among the selected datasets, the Pancreas dataset partially overlapped with the data used to pretrain Geneformer. We conducted evaluations using both the complete Pancreas dataset and its non-overlapping subset. The results were highly consistent between the two, leading us to include the entire Pancreas dataset for simplicity in this evaluation. At the time of dataset selection, information on the data used for scGPT’s pretraining was unavailable, preventing us from determining any potential overlaps at the time of our evaluations.

⁴Data available via `data.pbmc_dataset` function from `scvi-tools` [23] Python package.

2.3 Evaluation metrics

In this work, we evaluated the cell embedding space for its ability to separate known cell types correctly and to integrate different batches. We also evaluated the performance of the models at the pretraining task by evaluating their reconstruction accuracy.

2.3.1 Average silhouette width (ASW) and average BIO (AvgBIO) scores

One key aspect of evaluating cell embeddings is the degree to which cell types are distinct within the embedding space. To assess this, we employ metrics based on the Average Silhouette Width (ASW) [22] and the Average Bio (AvgBIO) scores [6]. Briefly, ASW is computed by taking the difference of the between-cluster and within-cluster distances and dividing this by the larger of the two values. ASW is normalized to a range between 0 and 1, where 0 signifies strong within-cluster cohesion, 0.5 indicates overlapping clusters, and 1 denotes well-separated clusters. Higher ASW indicates better performance in separating clusters. AvgBIO is the arithmetic mean of three individual metrics: ASW, Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI), as defined in [6]. NMI and ARI are calculated based on Louvain clusters generated directly from the embedding space [22, 6]. AvgBIO is normalized to a 0-1 scale, with higher values indicating better alignment between clusters and ground truth labels.

2.3.2 Batch integration score

To evaluate batch integration, we used a variation of the AWS score (as described in [22]). Briefly, the silhouette scores are calculated with respect to the batch label by taking only its absolute value, where a score of 0 is equivalent to absolute mixing and any deviation from 0 indicates the presence of a batch effect. To keep with the used convention, the score is then subtracted from 1, resulting in final scores on a scale between 0 and 1, where a final score of 0 suggests complete separation of the batches and strong batch effect and 1 signifies a perfect batch mixing and integration.

2.3.3 Reconstructing gene expression

To evaluate the performance of scGPT in its pretraining objective, we used the mean squared error (MSE), as used by the authors for the model's loss [6]. To evaluate Geneformer's performance in its pretraining objective, we measured the Pearson's correlation between the true and predicted ranked lists.

3 Results

3.1 Cell type clustering

Current proposed single-cell foundation models produce cell embeddings. These embeddings are intended to project potentially noisy gene expression measurements to a more biologically relevant latent space and to thus improve our ability to resolve cell types, consistent with previous machine learning methods in this field (including scVI) [27, 28, 21, 29]. Both scGPT and Geneformer fine-tune their cell embeddings for cell type classification. However, this strategy fails in more exploratory contexts where cell composition in the dataset may not be known. For these applications, foundation models must produce robust cell embeddings zero-shot. Therefore, we evaluated the zero-shot performance of scGPT and Geneformer in separating known cell types across multiple datasets. We also compared these approaches to a baseline strategy of selecting highly variable genes (HVGs) and to an unsupervised learning model, scVI.

We evaluated cell type clustering using two metrics, ASW and AvgBIO. For both metrics, Geneformer and scGPT performed worse than our baseline strategies. For ASW, scVI consistently performed well, achieving a median ASW of 0.54 and hitting a low of 0.47 in the Tabula Sapiens dataset (Fig. 2A). Geneformer's performance was more variable, with scores ranging from a high of 0.51 in the PBMC (95k) dataset to a low of 0.37 and 0.38 in the Tabula Sapien and Pancreas (16k) datasets, respectively. scGPT's performance was comparable with scVI, with median ASW equal to 0.53 and 0.54, respectively. Notably, HVG outperforms Geneformer in all datasets except PBMC. For AvgBIO, HVG surpassed all other models in AvgBIO score in

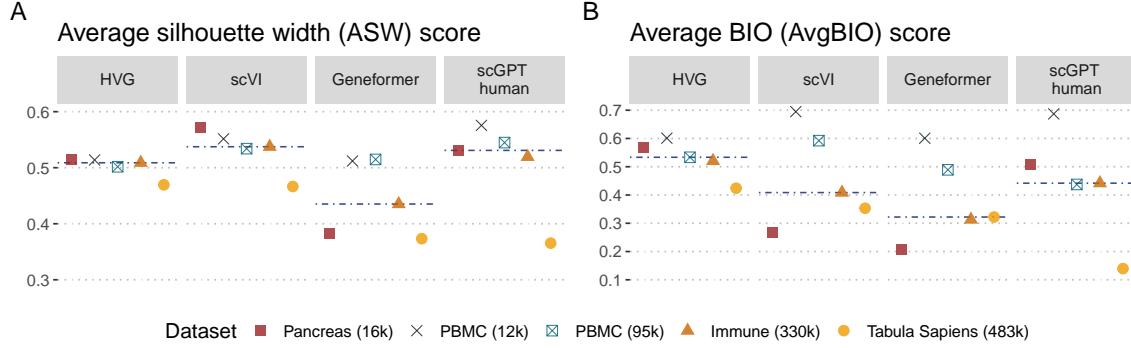


Figure 2: Proposed single-cell foundation models fail to outperform cell embeddings derived from HVG or generated using the scVI model. **A** Average silhouette width (ASW) score and **B** Average BIO (AvgBIO) score (described in Section 2.3.1) calculated on the highly variable genes (HVG) of the log normalized input data and on the embeddings extracted from scVI, scGPT, and Geneformer models. Median value annotated with a dashed line. A higher score indicates better performance in separating clusters.

three out of five datasets (Fig. 2B). In the PBMC (12k) dataset, scVI, and scGPT performed similarly - both scoring 0.69, while HVG matched the performance of Geneformer, achieving a score of 0.60. In the PBMC (95k) dataset, scVI reached a score of 0.59, while HVG lagged slightly behind with a score of 0.53.

Foundation models usually employ self-supervised tasks to enable scalability since they can train on any dataset, not just ones with labels [3]. However, it is unclear if pretraining on larger datasets improves the cell embeddings learned by proposed single-cell foundation models. Therefore, we next assessed the impact of the pretraining dataset on model performance. We focused on scGPT due to its release of weights pretrained on various datasets. We assessed four different models: randomly initialized scGPT as a baseline with no pretraining, scGPT pretrained on 814,000 kidney cells (scGPT kidney), on 10.3 million blood and bone marrow cells (scGPT blood), and on 33 million non-cancerous human cells (scGPT human). One limitation of our analysis is the smaller models are trained on tissue-specific data, confounding if differences in performance are due to size or the composition of dataset. However, at minimum, scGPT human includes all data used to train scGPT blood and scGPT kidney. We hypothesized that scGPT-human's performance should not decrease relative to the other models, and that models trained on closely-aligned datasets should, in theory, out-perform random untrained models (although we show full results in Fig. 3 for posterity).

Surprisingly, scGPT human (AvgBIO 0.44) underperforms scGPT kidney, which has the highest median AvgBIO score of 0.52. Moreover, the performance of scGPT blood on the PBMC dataset was close to that of the randomly initialized model, suggesting that the performance of the cell embeddings remains poor even with datasets closely aligned with pretraining data.

Overall, our findings demonstrate that foundation models in zero-shot configurations generally fail to outperform cell embeddings derived from HVG or generated using the scVI model. Evaluating variants of the scGPT model also highlights that pretraining on datasets spanning the same tissues does not necessarily equate to performance above random initialization.

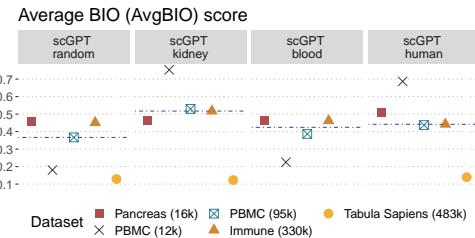


Figure 3: Scope of the pretraining dataset does not translate into better performance at separating the cell types in cell embedding space. Average BIO score (described in 2.3.1) calculated on the embeddings extracted from selected variations of the scGPT models. The dashed line marks the median score across datasets.

3.2 Batch integration

Next, we sought to assess the zero-shot capabilities of proposed single-cell foundation models in batch integration. Single-cell transcriptomics experiments, like all biological experiments, are impacted by batch effects - systematic technical differences present when integrating data over different experiments, sequencing technologies, or even when the experiment is reproduced for the same biological replicates. Due to batch effects, tasks like mapping a new experiment to a reference atlas to identify the cell types present in the data can fail. Hence, a common task in single-cell analysis is to eliminate batch effects without removing meaningful biological differences, allowing for data integration [10, 11, 12].

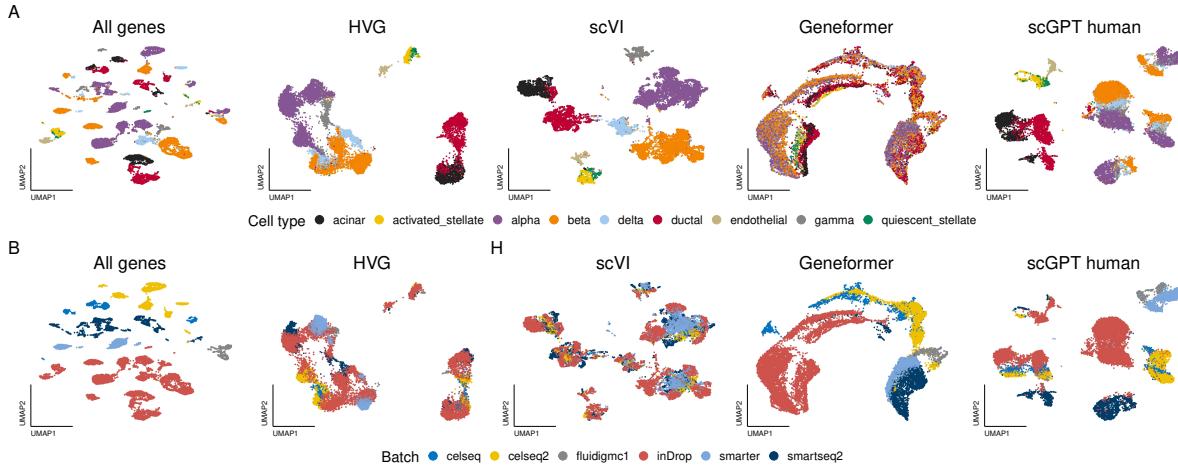


Figure 4: Zero-shot foundation models perform poorly at integrating batches of Pancreas dataset. **A, B** Visualization of the UMAP projections of the pancreas dataset using normalized input data, normalized input data preselected for highly variable genes (HVG), and cell embeddings generated by scVI, Geneformer and scGPT human. Cells are color-coded by cell type (A) and batch (B).

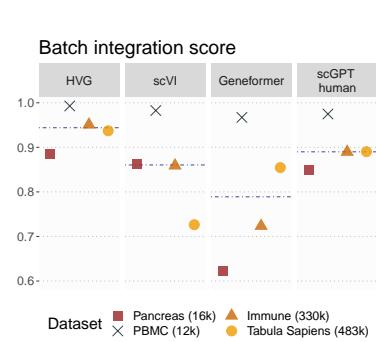


Figure 5: HVG selection outperforms proposed foundation models. Batch integration score (described in Section 2.3.2) calculated for all four datasets with at least two batches.

We began with a qualitative evaluation of the Pancreas dataset, a common batch integration benchmark that includes data from five different sources [22]. As commonly done in single-cell transcriptomics, we used UMAP projections to visually inspect embeddings (Fig. 4). By annotating the UMAP by cell type (Fig. 4A) versus experimental technique (Fig. 4B), we jointly assess if cell embeddings correct for batch effects stemming from techniques while still retaining cell type identity. As demonstrated by the UMAP of all genes, batch effects impact this data, with experimental techniques separated (and also forming sub-clusters, some of which are a result of different batches taken with the same technique) (Fig. 4B).

Overall, we observed that while Geneformer and scGPT-human can integrate different experiments conducted with the same experimental technique, they generally fail to correct for batch effects between techniques. As depicted in Fig. 4A, the cell embedding space generated by Geneformer fails to retain information about cell type, and any clustering is primarily driven by batch effects (Fig. 4B). On the other hand, the space created by scGPT offers some separation of cell types (Fig. 4A), but the primary structure in the dimensionality reduction is driven by batch effects (Fig. 4B). In contrast, even the simple baseline of selecting highly variable genes (HVG) qualitatively produces a similar or better result to scGPT, with the Smarter technique now being integrated with InDrop. Finally, we observed that scVI mostly integrates this dataset, forming clusters primarily due to cell type, with most techniques in the same cluster.

effects (Fig. 4B). In contrast, even the simple baseline of selecting highly variable genes (HVG) qualitatively produces a similar or better result to scGPT, with the Smarter technique now being integrated with InDrop. Finally, we observed that scVI mostly integrates this dataset, forming clusters primarily due to cell type, with most techniques in the same cluster.

To support these qualitative results, we produced batch integration metrics for each of our five datasets (Fig. 4C). Geneformer underperforms compared to both scGPT and scVI across most datasets, achieving a median batch integration score of only 0.79. scVI outperforms scGPT in datasets where the batch is restricted to the technical variation (Pancreas and PBMC datasets), and scGPT performs better in more complex datasets where both technical and biological batch effects are present (Immune and Tabula Sapiens datasets). Surprisingly, the best batch integration scores for all datasets were achieved by selecting HVG. This observation is slightly different from our qualitative evaluations of the UMAPs where scVI performs better, and can be explained by shifts in our rankings calculating metrics in full rather reduced dimensions as seen in Fig. S2 (we note that trained proposed foundation models underperform baselines in both settings).

In summary, our evaluation suggests that Geneformer and scGPT are not fully robust to batch effects in zero-shot settings, often lagging behind existing methods like scVI, or simple data curation strategies like selecting for HVG, particularly when batch effects are more severe.

3.3 Pretraining objective

Next, to understand why Geneformer and scGPT underperform compared to baselines zero-shot, we posited two hypotheses. First, it could be that the masked language modeling pretraining framework used by both scGPT and Geneformer does not produce useful cell embeddings. The second could be that scGPT and Geneformer have failed to generalize the pretraining task. Understanding this distinction could produce insights for future directions. For example, if the models are reconstructing masked gene expression well for our evaluation datasets but still failing to produce informative cell embeddings, this implies that a different task may need to be designed; while if the models fail to predict gene expression accurately, improvements to learning the pretraining task could still potentially improve the cell embeddings of these models.

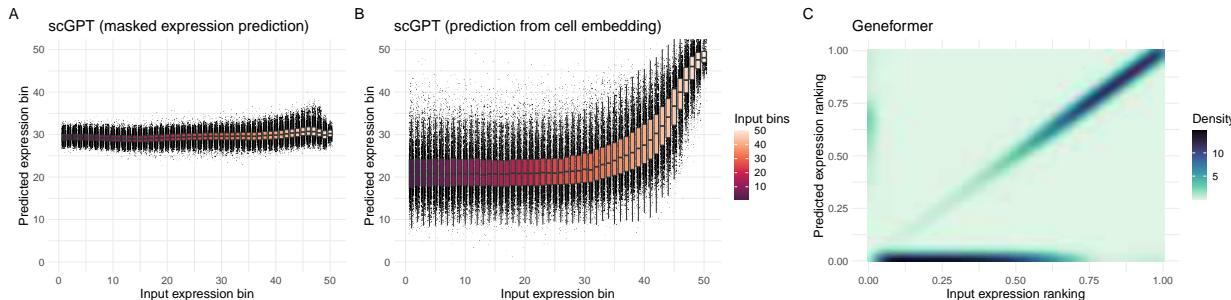


Figure 6: scGPT and Geneformer struggle with reconstructing gene expression. Reconstruction of the PBMC (12k) dataset with **A** the output of the MLM task in scGPT model, **B** expression prediction from cell embedding in scGPT, and **C** output of masked prediction in Geneformer model.

Evaluating whether models reconstruct masked gene expression accurately requires us to select how many genes are masked in input. In training, both models select a percentage of genes to mask. However, following a similar procedure for evaluation introduces stochasticity, and re-running random samples and/or iterating over genes to account for this is computationally expensive. We, therefore, use *all* genes unmasked as input. Not only does this eliminate stochasticity from sampling masked genes, but it also reflects the maximally informative setting where models are asked to reconstruct genes given complete, not partial, input.

To gauge the quality of these reconstructions, we compared them to their true values. For scGPT, we compared the bin value for each gene. Since scGPT produces gene predictions at two stages (with and without conditioning from its cell embedding), we report both. For Geneformer, we compared the gene rankings. Fig. 6 illustrates that both models face challenges in reconstructing gene expression. Without conditioning on cell embedding, scGPT predicts the mean value of the input bin across all bin values (Fig. 6A). Predictions improve when conditioned on cell embeddings, particularly for higher input values (Fig. 6B). Geneformer also shows limitations. Under its MLM objective, it predicts the most likely gene at a given position. Although there is a strong positive correlation for high-expression genes, the model fails to predict low-expression genes (Fig. 6C), similar to scGPT when conditioned on cell embeddings.

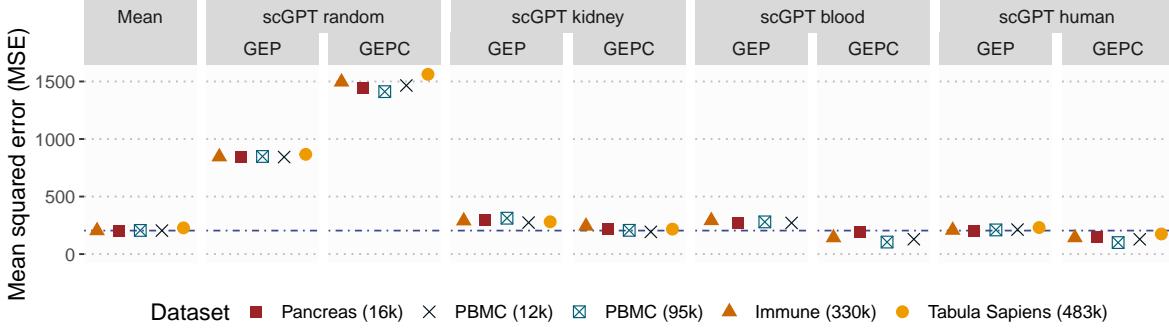


Figure 7: scGPT models perform similarly to when mean values are used. A MSE for the reconstructed input compared to the input for the two objectives of scGPT: masked expression prediction (GEP) and gene expression prediction from cell embedding (GEPC). The median value of the MSE for the mean used for reconstruction indicated by a dashed line.

Next, we compared the performance of scGPT against a naive baseline of just predicting the mean expression value of a gene. Surprisingly, this baseline prediction outperformed all scGPT variants when not using cell embeddings (Fig. 7), with only marginal improvements observed when conditioning on cell embedding.

Geneformer does not directly predict expression but generates a ranked list of genes. To evaluate Geneformer, we therefore measure Pearson’s correlation between the predicted ranking of genes and the actual gene ranking. Overall, there was only a moderate correlation (Fig. 8), with the median correlation across all five datasets of 0.59, with a best correlation of 0.96 on the PBMC (95k) dataset.

4 Discussion

In this work, we evaluated two proposed foundation models for single-cell biology – Geneformer and scGPT – and demonstrated their unreliability in zero-shot settings. In cell type clustering analyses, both models fail to improve reliably over scVI. Critically, for some datasets, the proposed foundation models perform worse at clustering cell types than just selecting highly variable genes. At least for scGPT, we show that matching the tissue of origin of the pretraining dataset to the target task does not guarantee performance over even random initialization, and that increasing the size and diversity of the pretraining dataset over smaller tissue-specific data can sometimes decrease performance. This suggests more research is needed to articulate the relationship between pretraining data and performance. We also demonstrate that these models are not fully robust to batch effects in zero-shot settings, often lagging behind methods like scVI or simple data curation strategies like selecting for HVG.

Together, our results caution against using current single-cell transcriptomic foundation models in zero-shot settings. Our analyses provide some insight on where future work needs to be concentrated to build bona fide foundation models that are truly useful in these settings. We showed that neither scGPT nor Geneformer can accurately predict gene expression on our evaluation datasets, even though these models are directly trained to predict gene expression via their pre-training tasks. Notably, scGPT defaults to predicting the median bin when only given access to gene embeddings (and not a cell embedding). This raises the possibility that current adaptations of masked language modeling (MLM) are not effective at learning gene embeddings, which would also impact Geneformer, given that it produces a cell embedding by averaging over gene embeddings. Whether MLM, in general, is suited for learning single-cell embeddings is still an open question, but our work suggests that current models are not effective at generalizing the MLM objective and that a good next step in the field would be to improve the representation of genes and gene expression to overcome this challenge.

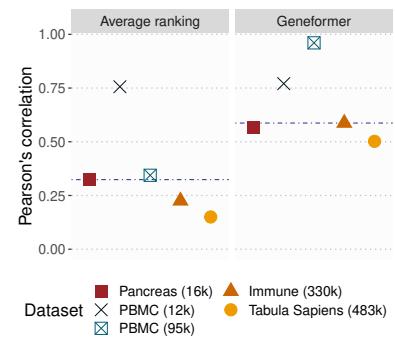


Figure 8: Geneformer outputs improved rankings over the average. Pearson’s correlation computed between the input ranking and ranking composed of the average position of a gene across all cells in the dataset (left) or Geneformer output (right).

References

- [1] T. B. Brown, B. Mann, N. Ryder et al. Language Models are Few-Shot Learners. 2020. doi:10.48550/arXiv.2005.14165. URL <http://arxiv.org/abs/2005.14165>. ArXiv:2005.14165 [cs].
- [2] A. Ramesh, M. Pavlov, G. Goh et al. Zero-Shot Text-to-Image Generation. 2021. doi:10.48550/arXiv.2102.12092. URL <http://arxiv.org/abs/2102.12092>. ArXiv:2102.12092 [cs].
- [3] R. Bommasani, D. A. Hudson, E. Adeli et al. On the Opportunities and Risks of Foundation Models. 2022. doi:10.48550/arXiv.2108.07258. URL <http://arxiv.org/abs/2108.07258>. ArXiv:2108.07258 [cs].
- [4] F. Yang, W. Wang, F. Wang et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. *Nature Machine Intelligence*, 4(10):852–866, 2022. doi:10.1038/s42256-022-00534-z.
- [5] C. V. Theodoris, L. Xiao, A. Chopra et al. Transfer learning enables predictions in network biology. *Nature*, 618(7965):616–624, 2023. doi:10.1038/s41586-023-06139-9.
- [6] H. Cui, C. Wang, H. Maan et al. scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI. 2023. doi:10.1101/2023.04.30.538439. URL <https://www.biorxiv.org/content/10.1101/2023.04.30.538439v2>.
- [7] M. Hao, J. Gong, X. Zeng et al. Large Scale Foundation Model on Single-cell Transcriptomics. 2023. doi:10.1101/2023.05.29.542705. URL <https://www.biorxiv.org/content/10.1101/2023.05.29.542705v4>. Pages: 2023.05.29.542705 Section: New Results.
- [8] G. Heimberg, T. Kuo, D. DePianto et al. Scalable querying of human cell atlases via a foundational model reveals commonalities across fibrosis-associated macrophages. 2023. doi:10.1101/2023.07.18.549537. URL <https://www.biorxiv.org/content/10.1101/2023.07.18.549537v3>. Pages: 2023.07.18.549537 Section: New Results.
- [9] X. Yang, G. Liu, G. Feng et al. GeneCompass: Deciphering Universal Gene Regulatory Mechanisms with Knowledge-Informed Cross-Species Foundation Model. 2023. doi:10.1101/2023.09.26.559542. URL <https://www.biorxiv.org/content/10.1101/2023.09.26.559542v1>. Pages: 2023.09.26.559542 Section: New Results.
- [10] B. Hie, J. Peters, S. K. Nyquist et al. Computational Methods for Single-Cell RNA Sequencing. *Annual Review of Biomedical Data Science*, 3(1):339–364, 2020. doi:10.1146/annurev-biodatasci-012220-100601.
- [11] R. Argelaguet, A. S. E. Cuomo, O. Stegle et al. Computational principles and challenges in single-cell data integration. *Nature Biotechnology*, 39(10):1202–1215, 2021. doi:10.1038/s41587-021-00895-7.
- [12] L. Heumos, A. C. Schaar, C. Lance et al. Best practices for single-cell analysis across modalities. *Nature Reviews Genetics*, 24(8):550–572, 2023. doi:10.1038/s41576-023-00586-w.
- [13] T. Dao, D. Y. Fu, S. Ermon et al. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. 2022. doi:10.48550/arXiv.2205.14135. URL <http://arxiv.org/abs/2205.14135>. ArXiv:2205.14135 [cs].
- [14] C. Matsoukas, J. F. Haslum, M. Sorkhei et al. What Makes Transfer Learning Work For Medical Images: Feature Reuse & Other Factors. 2022. doi:10.48550/arXiv.2203.01825. URL <http://arxiv.org/abs/2203.01825>. ArXiv:2203.01825 [cs, eess].
- [15] A. Shafehsazzadeh, D. Belanger and D. Dohan. Is Transfer Learning Necessary for Protein Landscape Prediction? 2020. doi:10.48550/arXiv.2011.03443. URL <http://arxiv.org/abs/2011.03443>. ArXiv:2011.03443 [cs, q-bio].
- [16] C. Dallago, J. Mou, K. E. Johnston et al. FLIP: Benchmark tasks in fitness landscape inference for proteins. 2021. URL <https://openreview.net/forum?id=p2dMLEwL8tF>.
- [17] D. M. Ando, C. Y. McLean and M. Berndl. Improving Phenotypic Measurements in High-Content Imaging Screens. 2017. doi:10.1101/161422. URL <https://www.biorxiv.org/content/10.1101/161422v1>. Pages: 161422 Section: New Results.

- [18] J. Jumper, R. Evans, A. Pritzel et al. Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873):583–589, 2021. doi:10.1038/s41586-021-03819-2.
- [19] R. Verkuil, O. Kabeli, Y. Du et al. Language models generalize beyond natural proteins. 2022. doi: 10.1101/2022.12.21.521521. URL <https://www.biorxiv.org/content/10.1101/2022.12.21.521521v1>. Pages: 2022.12.21.521521 Section: New Results.
- [20] S. Alamdari, N. Thakkar, R. v. d. Berg et al. Protein generation with evolutionary diffusion: sequence is all you need. 2023. doi:10.1101/2023.09.11.556673. URL <https://www.biorxiv.org/content/10.1101/2023.09.11.556673v1>. Pages: 2023.09.11.556673 Section: New Results.
- [21] R. Lopez, J. Regier, M. B. Cole et al. Deep generative modeling for single-cell transcriptomics. *Nature Methods*, 15(12):1053–1058, 2018. doi:10.1038/s41592-018-0229-2.
- [22] M. D. Luecken, M. Büttner, K. Chaichoompu et al. Benchmarking atlas-level data integration in single-cell genomics. *Nature Methods*, 19(1):41–50, 2022. doi:10.1038/s41592-021-01336-8.
- [23] A. Gayoso, R. Lopez, G. Xing et al. A Python library for probabilistic analysis of single-cell omics data. *Nature Biotechnology*, 40(2):163–166, 2022. doi:10.1038/s41587-021-01206-w.
- [24] G. X. Y. Zheng, J. M. Terry, P. Belgrader et al. Massively parallel digital transcriptional profiling of single cells. *Nature Communications*, 8(1):14049, 2017. doi:10.1038/ncomms14049.
- [25] C. Domínguez Conde, C. Xu, L. B. Jarvis et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. *Science*, 376(6594):eabl5197, 2022. doi:10.1126/science.abl5197.
- [26] Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. *Science*, 376(6594):eabl4896, 2022. doi:10.1126/science.abl4896.
- [27] E. Pierson and C. Yau. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. *Genome Biology*, 16(1):241, 2015. doi:10.1186/s13059-015-0805-z.
- [28] S. Prabhakaran, E. Azizi, A. Carr et al. Dirichlet Process Mixture Model for Correcting Technical Variation in Single-Cell Gene Expression Data. *JMLR workshop and conference proceedings*, 48:1070–1079, 2016.
- [29] I. Korsunsky, N. Millard, J. Fan et al. Fast, sensitive and accurate integration of single-cell data with Harmony. *Nature Methods*, 16(12):1289–1296, 2019. doi:10.1038/s41592-019-0619-0.